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A common method of estimating natural mortality in bivalves includes several 

assumptions that are likely violated for oysters Crassostrea virginica in Chesapeake Bay, 

Maryland. In addition, while oyster disease dynamics are well studied spatially and 

temporally in the mid-Atlantic region, changes in disease-related relationships have not 

been investigated in Maryland. We developed a Bayesian estimator for natural mortality 

and applied it to oysters in Maryland. We then used the model output along with 

environmental factors and disease data to explore changes in the disease system over 

time. We found the largest differences in natural mortality estimates between the box 

count method and Bayesian model 1-3 years after a high mortality event. Some 

relationships changed over time in the disease system, most notably those associated with 

MSX, suggesting resistance to MSX has potentially developed. This work improves our 

estimates of natural mortality and understanding of oyster disease dynamics in Maryland. 
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Chapter 1: Patterns in oyster natural mortality in Chesapeake Bay, 

Maryland using a novel Bayesian estimator 

Introduction 

Natural mortality (i.e., all mortality due to non-fishing causes) is a key process in 

population dynamics. Stock assessment models typically require accurate estimates of 

natural mortality to obtain accurate estimates of abundance and fishery management 

reference points (Clark 1999, Deroba & Schueller 2013, Johnson et al. 2015). Despite 

this need, natural mortality is often difficult to estimate because natural mortality events 

are rarely observed for many organisms. A variety of approaches have been developed to 

infer a natural mortality rate in the absence of data, including methods that use growth 

parameters with environmental temperature (Pauly 1980) and longevity of the species 

(Hoenig 1983, Hewitt & Hoenig 2005). However, these techniques vary in their degree of 

reliability, and some perform poorly (Kenchington 2014). In addition, these methods only 

provide estimates of the average natural mortality rate over a relatively long period and 

thus cannot be used to understand the inter-annual variability of natural mortality. 

 

Although observing, and hence estimating, natural mortality is difficult for most species, 

for many bivalves indirect observation of natural mortality frequently occurs. Bivalves 

often leave behind articulated valves (i.e., shells connected by the hinge ligament) when 

they die, providing evidence that natural mortality has occurred. Observations of 

articulated valves allow natural mortality to be estimated at much higher resolution than 

is possible for other organisms (e.g., Ford et al. 2006), although the time scale at which 
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natural mortality can be estimated depends in part on how long the articulated valves 

persist in the environment. For example, if the valves remain articulated for about one 

year, they can be used to estimate time-varying natural mortality on an annual scale. One 

caveat of using articulated valves to estimate natural mortality is that it only quantifies 

sources of mortality which leave behind articulated valves. For example, if the main 

source of natural mortality is a predator that crushes the shells of the bivalve during 

predation, this type of mortality will not leave behind articulated valves, and quantifying 

natural mortality using observations of articulated valves would be a poor choice for such 

a species.  However, if a disease event is the primary cause of mortality, the valves of the 

bivalves that die often remain articulated, and disease mortality will be well represented 

using articulated valves to estimate the natural mortality rate. 

 

Several estimators of natural mortality use counts of live bivalves and articulated valves 

(e.g., Dickie 1955, Caddy 1989, Ford et al. 2006, Walter et al. 2007, Vølstad et al. 2008), 

but these estimators have some shortcomings. First of all, some estimators are not formal 

statistical models, so uncertainty in the natural mortality rate is not quantified (e.g., 

Dickie 1955, Caddy 1989, Ford et al. 2006). Second, the assumptions of most estimators 

are restrictive and unrealistic for bivalves, and therefore are likely violated (e.g., Dickie 

1955, Caddy 1989, Vølstad et al. 2008). For example, Dickie (1955) assumes a constant 

natural mortality rate such that the creation rate of articulated valves is equal to their 

disarticulation rate. Bivalves can experience large pulsed mortality events (e.g., Andrews 

& Wood 1967, Walter et al. 2007, Munroe et al. 2013), which would cause the natural 

mortality rate to change over time. In this case, the creation and disarticulation rates of 
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articulated valves are not in equilibrium, violating a key assumption of the estimator. 

Lastly, some estimators require additional data (e.g., Ford et al. 2006) or more frequent 

data collection than is typical (e.g., Ford et al. 2006, Walter et al. 2007). A statistical 

estimator for natural mortality that uses articulated valves with generalizable assumptions 

for bivalves and only requires annual (as opposed to more frequent) survey data has not 

been developed. 

 

The eastern oyster Crassostrea virginica occurs in coastal ecosystems on the Atlantic 

Coast of North America from the Gulf of St. Lawrence, Canada to the Gulf of Mexico 

(Carriker & Gaffney 1996). Although eastern oysters were harvested commercially 

throughout their range historically, at present active oyster fisheries are fewer and much 

smaller because oysters are less abundant. Oysters are ecologically important in part 

because they build reefs (also known as bars) that provide habitat for other organisms, 

including fish, clams, amphipods, and polychaetes (Rodney & Paynter 2006), and 

because they are filter feeders that potentially exert top-down control on phytoplankton, 

sequestering nutrients and potentially reducing hypoxia in the Chesapeake Bay (Newell 

1988, Newell et al. 2007). In particular, oyster bars may be important for nitrogen 

removal (Kellogg et al. 2013). 

 

The eastern oyster in Chesapeake Bay, Maryland (upper Chesapeake Bay) supported the 

largest oyster fishery in the world at its peak in the 1880s, as the Maryland catch was 

double the total catch of all countries other than the US at this time (Kennedy & Breisch 

1983). While harvest has declined since the 1880s peak, upper Chesapeake Bay still 
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supports an active commercial oyster fishery open from October to March. The harvest 

during the 2014-2015 season was 388,658 Maryland bushels in upper Chesapeake Bay, 

about 2% of historical peak harvest in Maryland (Tarnowski 2016). Despite harvest 

declines, the eastern oyster remains economically important in Maryland; for example, 

the Maryland harvest in 2014-2015 had a dockside value of $17.1 million USD 

(Tarnowski 2016). 

 

The Maryland Department of Natural Resources (MDNR) conducts a fishery-

independent survey for oysters each fall. One component of this monitoring is estimating 

the annual natural mortality rate (i.e., the proportion of oysters that die each year) using 

the “box count method” (a “box” is a set of articulated valves from an oyster; Ford et al. 

2006). The box count mortality rate bM  is calculated by dividing the number of boxes in 

the sample, b , by the sum of the number of boxes and live oysters, l , in the same 

sample, 

 b

b
M

b l
=

+
. (1) 

Estimates of natural mortality rates for the Maryland portion of Chesapeake Bay are 

obtained using the box count method with samples from 43 fixed sites, which are then 

averaged to obtain the “observed” mortality index (Tarnowski 2017). While the box 

count method is a logical choice for these annual survey data because of its simple 

calculation and minimal data requirements (counts of live oysters and boxes from a single 

sample in a year is sufficient to calculate an estimate of natural mortality), it relies on 

strong assumptions to ensure unbiased estimates and is not a statistical estimator.  
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Violations of the assumptions of the box count method may lead to bias in the estimates 

of natural mortality obtained using the method. Some assumptions of the box count 

method include that 1) boxes persist in the environment for exactly one year, and 2) live 

oysters and boxes are equally collected and retained by the survey gear. These 

assumptions may be violated for oysters in the Maryland portion of Chesapeake Bay. 

Some boxes remain intact for less than one year, while others persist for longer than one 

year (Christmas et al. 1997, Ford et al. 2006). Additionally, the efficiency of dredge 

survey gear is lower for boxes than for live oysters (relative to divers; Powell et al. 2007; 

Marenghi et al. 2017). Efficiency is defined here as the number of live oysters or boxes 

that remain intact in a dredge sample relative to the number present per area swept 

(divers are assumed 100% efficient). Efficiency may be lower for boxes than for live 

oysters because boxes are more likely to be broken apart by the dredge, although other 

causes may also contribute. 

 

The challenge of accurately estimating uncertainty is another limitation of the box count 

method because quantifying the uncertainty in the natural mortality rate is an important 

component of understanding natural mortality and its interannual variability. Because the 

box count method is not a statistical estimator, it can only provide point estimates of 

natural mortality. Design-based estimators (Thompson 2002) could be used with the ratio 

of boxes to live oysters to estimate uncertainty, but they are likely to overestimate the 

precision because observations of individual live oysters and boxes are treated as 
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independent. In addition, they also require applying the delta method because boxes are 

in the numerator and the denominator. 

 

Despite their potential to result in biased estimates of natural mortality, the implications 

of using the box count method for a population that does not adequately meet its 

assumptions have not been investigated, nor have there been attempts to modify the 

method to correct for potential violations of the assumptions and to obtain more accurate 

estimates of uncertainty. Therefore, our objectives were twofold. First, we wanted to 

develop a new statistical method for estimating natural mortality using observations of 

live oysters and boxes that incorporates corrections for boxes persisting for longer than 

one year, accounts for unequal efficiencies between live oysters and boxes, and quantifies 

uncertainty. Then, we used this method to understand spatial and temporal patterns of 

oyster natural mortality in Maryland. 

Methods 

We developed a Bayesian model and fitted it to observations of adult (> 1 year old) live 

oysters and boxes from the MDNR fall dredge survey to estimate natural mortality rates 

for each year. Estimation of natural mortality was done spatially on the NOAA code 

level, where NOAA codes are the statistical catch reporting areas of the Maryland portion 

of Chesapeake Bay (Figure 1a). The Bayesian model differed from the box count method 

primarily because it allowed boxes to persist for longer than one year and estimated a rate 

at which boxes disarticulate, accounted for boxes disarticulating before the survey (i.e., 

some boxes that persisted for less than one year), and accounted for the differences in the 

ability of the survey dredge to collect and retain live oysters compared to its ability to 
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collect and retain boxes. We then investigated patterns in natural mortality among all 

NOAA codes by implementing dynamic factor analysis on time series of natural 

mortality by NOAA code as estimated from the Bayesian model. 

Data 

We used data on counts of adult live oysters and adult-sized boxes per half Maryland 

bushel (Maryland bushel ≈ 46 L) cultch in individual dredge tows from the fall dredge 

survey to inform parameter estimation in the model. The survey is described in Vølstad et 

al. (2008) and in greater detail in annual reports from MDNR (e.g., Tarnowski 2016). In 

short, the survey samples 66 fixed sites (i.e., bars) annually, but also includes additional 

non-random samples of interest to MDNR. A 32-inch oyster dredge was used to collect 

power-dredged oyster samples on more than 250 oyster bars each year. Distance towed 

was not standardized, but it was adjusted to obtain at least a half bushel of cultch, if 

possible, at each site. At most bars in a given year, only 1 tow was conducted (69.7% of 

bar and year combinations), but at least 2 replicate tows are completed at the 66 fixed 

sampling sites. Less than 1% of site and year combinations had more than 3 replicate 

tows. Adult oysters and adult-sized boxes were counted in a half bushel subsample of 

cultch from the dredge tow unless a half bushel sample from the dredge was not obtained. 

This rarely occurred (<1% of samples), so we normalized all data to per half Maryland 

bushel cultch. Spat (i.e., oysters < 1 year old) are also counted during the fall dredge 

survey but were not included in our analysis because spat boxes are rarely observed. 

 

In the model, we used data from bars that were sampled at least once every year during 

1990-2017 (i.e., the bar had a “complete time series”), because the model required 
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complete time series for each oyster bar. All NOAA codes with at least two bars with 

complete time series of dredge survey observations were included in the model to 

estimate natural mortality rates on the NOAA code level. 

 

In the Maryland portion of Chesapeake Bay, 32 NOAA codes had sufficient data (i.e., a 

complete time series during 1990-2017 at ≥ 2 oyster bars) to estimate natural mortality 

using the Bayesian model. In total, data from 153 bars informed the model, where the 

median number of bars in a NOAA code with adequate data to include in the model was 

5 (Table 1). In all, data from 6,722 dredge tows were used.  

Model structure 

The model was developed to estimate natural mortality rates by NOAA code from oyster 

bar-specific data. We used data on live oysters and boxes to estimate natural mortality 

rates, but also included a box dynamics model that addressed differences in efficiency in 

live oysters and boxes and the process of boxes disarticulating. By including the box 

dynamics, we were able to estimate a box decay rate of oysters in addition to the natural 

mortality rates. 

Box dynamics model 

The box dynamics model tracked a pool of boxes on each bar, including additions 

through natural mortality and losses through disarticulation. We calculated the mean 

number of boxes for a bar i  in year y , ,i y  as the sum of boxes from natural mortality 

that occurred in previous years that have not yet disarticulated and boxes from natural 

mortality that occurred in year y , 
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where 
, 1i y −

 is the mean number of boxes from the previous year at the same bar, d  is the 

instantaneous box disarticulation rate (i.e., the rate at which the hinge ligament 

connecting the two valves of a box fails;  yr-1), which was the same rate for all bars and 

years, 
,i y  is the number of oyster deaths at bar i  in year y  given the same efficiency as 

for live oysters, and 
qR  is the ratio of the efficiency of live oysters to the efficiency of 

boxes for all bars and years, which also includes a correction for boxes that disarticulate 

before the survey. Because of the time series structure of the box dynamics model, one 

additional year of data for boxes was required to estimate the number of boxes at the 

beginning of the time series. 
qR  converted 

,i y  from the efficiency of live oysters to that 

of boxes, which was necessary because the other term in the above equation assumed the 

efficiency of boxes. Thus, the model includes corrections for boxes persisting for longer 

than one year, unequal efficiencies for observing live oysters and boxes in the survey, and 

boxes disarticulating before the survey. 

 

We parameterized the box dynamics portion of the model as a function of the natural 

mortality rate for each NOAA code. In the Maryland portion of Chesapeake Bay, the 

oyster fishery occurs in the fall and winter, while natural mortality mostly occurs in the 

summer (Ford et al. 2006, Albright et al. 2007). Because observations from the survey 

take place after natural mortality, we needed to parameterize the model to be in terms of 

the number of oysters alive after natural mortality and the natural mortality rate. The 

number of oysters that die from natural mortality, 
,i y , was calculated as the difference 
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between the number of live oysters before natural mortality and the number at the time of 

the survey,  

 
, , , ,i y i y i y  = −  (3) 

where 
,i y  is the number of live oysters at bar i  in year y  after the fishing season ends 

and after growth has occurred but before natural mortality occurs, and 
,i y  is the number 

of live oysters after natural mortality occurs at bar i  in year y . 

 

Because there was not a survey before natural mortality occurred, 
,i y  was not directly 

estimable using the fall dredge survey data, and a variable that could be estimated using 

the fall dredge survey data was needed. If natural mortality is the only source of mortality 

after the fishing season,
,i y  can be calculated as the product of 

,i y  and the annual 

survival rate over the period where natural mortality occurs, 

 
, , ,(1 ),i y i y r yM = −   (4) 

where 
,r yM  is the annual natural mortality rate for oysters in NOAA code r  and year y . 

Note that a common natural mortality rate was assumed for all bars within a NOAA code. 

The above equation can be solved for 
,i y , 

 
,

,

,

,
1

i y

i y

r yM


 =

−
  (5) 

and then substituted into equation (3) to remove 
,i y  as a variable, 
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The number of oysters that die from natural mortality at bar i  in year y , 
,i y , is now 

specified in terms of variables that are estimable using the fall dredge survey data (
,i y ) 

or of interest (
,r yM ). This equation was substituted for 

,i y in equation (2) to get the 

complete box dynamics model as a function of the natural mortality rate,  
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Parameter estimation 

The joint posterior distribution of the parameters is given by 

 ( | ) ( | ) ( )P data Likelihood data priors    ,  (8) 

where   is the vector of estimated parameters and ( )priors   is the joint prior probability 

of the parameters. 

 

The likelihood functions in the model described how well the model fits the observed 

number of live oysters or boxes. The model allowed multiple observations for a bar in a 

year. Observation n  of the number of live adult oysters 
, ,n i yl  on bar i  in year y  followed 

a Poisson distribution with a mean parameter 
,i y  for bar i  in year y ,  

 
, , ,~ ( )n i y i yl Pois  . (9) 

Likewise, observation n  of the number of boxes 
, ,n i yb  on bar i  in year y  followed a 

Poisson distribution with a mean parameter 
,i y  specific for bar i  and year y , 

 
, , ,~ ( )n i y i yPob is  . (10) 
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Priors on the estimates of 
,i y were distributed normally on the loge scale with a mean 

,e r ylog  , specific for each NOAA code r  and year y , and standard deviation  , which 

is the same across NOAA codes and years, 

 
, ,~ ( , ).e i y e r ylog N log    (11) 

Similarly, loge scale estimates of 
,0i  from different bars in the same NOAA code were 

assumed to be distributed normally with a mean parameter for year 0 , 
,0e rlog B , and 

standard deviation  , 

 
,0 ,0~ ( , ),e i e rlog N log B    (12) 

where   is the same in equations (11) and (12). A uniform prior was placed on   to 

restrict the parameter to a reasonable range between 0 and 3,  

 ~ (0,3),uniform   (13) 

while normal priors were assumed for 
,e r ylog   and 

,0e rlog B , 

 
, ~ ( , )e r ylog N      (14) 

 
,0 ~ ( , ),e r B Blog B N     (15) 

where   and B  are means and    and B  are standard deviations. The means   and 

B  were estimated from the mean of all observed values of live oysters (for  ) and 

boxes (for B ) for all NOAA codes and years.1 To ensure that these priors were relatively 

non-informative,    and B  were both set at 5. 

                                                 
1 Estimates of natural mortality and the box disarticulation rate were the same for a model that set the 

means at 0 instead of using the data. 
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For the box disarticulation rate, we used a normal prior with mean d  and standard 

deviation d , 

 ~ ( , ),d dd N     (16) 

where 0.51d =  and 0.04d = , based on results from box disarticulation studies 

(Christmas et al. 1997, Ford et al. 2006). The values for d and d  were calculated using 

data on the mean time since death (d) for samples from each year, season, and habitat 

type in Christmas et al. (1997) and assuming exponential decay to convert mean time 

since death (d) to an instantaneous disarticulation rate (yr-1). Instantaneous disarticulation 

rates (d-1) were reported in Ford et al. (2006) and were converted to instantaneous 

disarticulation rates (yr-1) for samples from each month and site. The mean and standard 

error of these estimates were used as estimates of d and d , respectively. 

 

The annual natural mortality rate for each NOAA code and year, 
,r yM , had priors that 

followed a diffuse beta distribution with   and   parameter values of 1, 

 
, ~ (1,1).r yM Beta   (17) 

A beta distribution was chosen because annual natural mortality rates must be between 0 

and 1.  

 

The efficiency ratio 
qR  could not be estimated within the model because there was not 

enough information in the live oyster count and box count data to determine its value. 

Therefore, it was specified as a constant based on the averaged estimated efficiencies of 

live oysters and boxes from dredge efficiency studies (Powell et al. 2007, Marenghi et al. 
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2017) and on 20% of boxes disarticulating before the survey (Ford et al. 2006).  The 

efficiency ratio was calculated for each life stage (juvenile, submarket, and market) and 

sampling location from data in the two studies by dividing efficiencies of live oysters by 

efficiencies of boxes and then averaging them to obtain an overall mean efficiency ratio 

that does not account for boxes disarticulating before the survey, 1.68. Ford et al. (2006) 

deployed boxes from recently sacrificed oysters in early July and checked them monthly 

for disarticulation; after about 100 days (in early October and 3 months after 

deployment), approximately 20% of the boxes had disarticulated, so we used this value as 

an approximate estimate of the percent of boxes from mortality that occurred in that year 

that would disarticulate before the fall dredge survey. To account for boxes 

disarticulating before the survey in the model, we divided the mean efficiency ratio (1.68) 

by the proportion of boxes remaining intact for the survey (0.8), and the resulting value 

was used for the efficiency ratio in the model,  

 2.10.qR =   (18) 

The fundamental parameters (i.e., parameters estimated directly in the model) were 

,e i ylog  , 
,0e ilog  , d , 

,r yM ,  , 
,e r ylog  , and 

,0e rlog B .  

Model implementation 

The posterior distributions of the parameters were obtained using Stan through the R 

package RStan (Stan Development Team 2018). Stan uses Hamiltonian Monte Carlo with 

a No-U-Turn sampler (HMC/NUTS) to estimate marginal posterior distributions for all 

model parameters. Three independent chains were run with 2,000 burn-in iterations and 

2,000 post-burn-in iterations per chain. The number of iterations was chosen such that 
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effective sample sizes were close to 1,000 for all model parameters.  A model was 

considered to have converged if all three chains had similar posterior distributions for 

each parameter, as indicated by a Gelman and Rubin potential scale reduction statistic 

(Gelman & Rubin 1992) below 1.1 and if there were no divergent samples in the 

posterior. Divergent samples are a sampling issue unique to the algorithm used by Stan. 

Broader regional grouping of model results 

 

Throughout presentation of the results, we grouped results from NOAA codes into 

broader regions for easier comparison of spatial trends on a larger scale (Figure 1b). Note 

that these broader regions were not included in the model. 

Comparison of model natural mortality with box count natural mortality 

To compare the difference in the natural mortality estimated between the box count 

method and the Bayesian model, natural mortality rates on the NOAA code level were 

also calculated using the box count method and the same data used in the model. For each 

sample, an estimate of the natural mortality rate was calculated using equation (1), then 

these estimates were averaged by year and NOAA code to obtain an estimate of natural 

mortality from the box count method for a NOAA code in a year. 

Dynamic factor analysis 

We used dynamic factor analysis (DFA) to describe common trends in natural mortality 

among NOAA codes (e.g., Zuur et al. 2003, Peterson et al. 2017). Median estimates of 

natural mortality by year in each NOAA code from the Bayesian model were converted 

to instantaneous rates to better satisfy the normality assumption, and each time series was 
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standardized by subtracting the mean and dividing by the standard deviation of the time 

series.  The mean and standard deviations were also examined for patterns. 

 

We implemented DFA models in a similar manner to Zuur et al. (2003), Peterson et al. 

(2017), and Holmes et al. (2018). We used a covariance matrix with equal parameter 

value along the diagonal and zeros in the off-diagonals (i.e., equal variance and no 

covariance) for parsimony and because the standardized natural mortality estimates 

should have similar error variances given that they were estimated from the same types of 

data using the same model. 

 

DFA models with one to four trends were compared using the corrected Akaike 

Information Criterion (AICc; Burnham & Anderson 2002). Models with AICc that were 

less than 5 units different from the lowest AICc were considered similar (Peterson et al. 

2017), and the fits and observed values were examined. The most parsimonious model 

with the lowest AICc, given that the fits to the data were reasonable, was chosen as the 

“best” model. The “mean fit” diagnostic, the ratio of the sum of squared residuals to the 

sum of squared measured values  (Zuur et al. 2003), was also used to identify poorly 

fitting models. As in Peterson et al. (2017), we considered values of mean fit 

approximately greater than 0.6 as indicative of poor model fit. 

 

DFA models were implemented using the R package MARSS (Holmes et al. 2012), 

which uses a maximum likelihood approach to estimate parameter values. The models 

estimated common trends among NOAA codes, as well as loading on those trends. The 
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loadings on the DFA trends are a measure of how much a NOAA code influences each 

trend, and magnitudes of 0.2 or greater can be regarded as having a relatively strong 

influence (Zuur et al. 2003).  

Results 

Natural mortality from model and comparison with box count estimator 

For all parameters, the Gelman and Rubin potential scale reduction statistic was below 

1.1 and there were no divergent samples in any of the posteriors. The lowest effective 

sample size was 974 for the annual natural mortality estimate in NOAA code 99 (Wye 

River) in 2016. All other effective sample sizes were above 1,000, and most of the 

parameters had the maximum possible effective sample size of 6,000.  

 

Throughout the results and discussion, we refer to estimates from the Bayesian model as 

“model natural mortality” and estimates from the box count method as “box count natural 

mortality.” These estimates of natural mortality are reported on the annualized scale 

(proportion yr-1) unless otherwise noted. 

The estimated standard deviations (SDs) of the model natural mortality posterior 

distributions varied from 0.005 to 0.220, with an average of 0.040. Uncertainty was also 

consistent across years, with the average standard deviation by year varying from 0.027 

in 2013 to 0.061 in 2003 and with a mean of 0.040. There was no clear relationship 

between the magnitude of the natural mortality rate and the amount of uncertainty 

associated with it.  
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The average (over years) of median instantaneous model natural mortality from the 

model by NOAA code during 1991-2017 varied from 0.12 to 0.47 (annualized: 0.12 to 

0.37; Figure 2A). In general, average natural mortality was lower in both the northern 

part of the bay and farther upstream in the tributaries. Likewise, the standard deviations 

associated with the median instantaneous natural mortality were typically higher in parts 

of the bay where the average median instantaneous natural mortality was higher (Figure 

2B). However, there were some exceptions. For example, the NOAA codes 053, 137, and 

637 (located in the Choptank River region) were not among the highest average median 

natural mortalities relative to other NOAA codes, but they had the highest standard 

deviations (median instantaneous over years) of all modeled NOAA codes. 

 

Model natural mortality was generally higher and more variable in the beginning of the 

time series (1991 to 2002) and lower and less variable at the end (2003 to 2017; Figures 

3-9; Table 2). Despite similar temporal patterns, the year in which natural mortality first 

became lower and less variable differed among the regions of the bay. 

 

In general, model natural mortality and box count natural mortality followed a similar 

pattern (Figures 3-9). During periods of low natural mortality over multiple years, the 

model estimates were either similar to or slightly higher than the box count estimates of 

natural mortality. However, there were two situations in which model natural mortality 

deviated from box count mortality in a consistent way. First, natural mortality from the 

model was often higher than the box count method estimates in years with a relatively 

high natural mortality event and in years with consistently low natural mortality (e.g., 
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2002 in North Mid-Bay; Figure 3A). Secondly, in the two to three years following a 

relatively high natural mortality event, the model natural mortality was usually lower 

than the box count natural mortality (e.g., 2003-2005 in North Mid-Bay; Figure 3A).  

 

In the sections below that refer to model natural mortality by region, averages (avgs) and 

standard deviations (SDs) unless otherwise noted were calculated by taking the average 

or the standard deviation of annual point estimates of the median model natural mortality 

from the years mentioned and all NOAA codes in the region (unless specific NOAA 

codes are mentioned). 

  

Only one NOAA code (127, North Mid-Bay) in the Western Shore region had enough 

data to allow estimation of natural mortality using the model. Natural mortality was 

relatively low during 1991-1999 and 2003-2017 (avg = 0.10 yr-1) and was elevated during 

2000-2002 (avg = 0.43 yr-1; Figure 3). 

 

In the Chester River region, patterns of natural mortality for the two NOAA codes in the 

Chester River (131 and 231) were more similar to one another than to nearby Upper Bay 

(NOAA code 25) located in the Chesapeake Bay Mainstem (Figure 4). The Upper Bay 

had a unique pattern, with low natural mortality throughout the time series (time series 

avg = 0.11 yr-1) except for two relatively high values in 1996 and 2011.The Chester River 

NOAA codes (131 and 231) had increased natural mortality during 2000-2002 (avg = 

0.46 yr-1), but the Lower Chester River (131) had additional high natural mortality events 

in 1992, 1996, and 2006 (avg = 0.42 yr-1). The Mid Chester river (231) had smaller peaks 
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in natural mortality in 1996 and 2005 (avg = 0.26 yr-1), as well as relatively high natural 

mortality in 2003. 

 

Natural mortality was high during 2001-2002 and 2007 across all NOAA codes in the 

Eastern Bay region (Figure 5). The Wye and Miles Rivers (NOAA Codes 99 and 60) also 

had high natural mortality events in 1991 and 1992 (avg = 0.57 yr-1) that did not occur in 

Eastern Bay. In addition, during 2011 – 2017 in all Eastern Bay region NOAA codes, 

there was a gradual increase in natural mortality, although natural mortality fluctuated 

interannually in the Miles River (NOAA Code 60). 

 

Patterns of model natural mortality were more consistent among NOAA codes in the 

Choptank River region (Figure 6) than in the other regions. During 1991-2002, natural 

mortality was interannually variable in most NOAA codes with some years of high 

natural mortality. Lower and less variable natural mortality started in 2003-2004. All 

NOAA codes in the Choptank region had a consistent peak in natural mortality in 2002 

(avg = 0.84 yr-1), followed by (in most NOAA codes) lower natural mortality in 2003 (all 

NOAA code avg = 0.19 yr-1). 

 

Natural mortality for NOAA codes in the Patuxent River region had different patterns 

than the other regions (Figure 7). All Patuxent River NOAA codes had high natural 

mortality events, during 1991-1992 and 1999-2000 followed by a period of lower and 

less variable natural mortality that started around 2003. Patterns of natural mortality in 

the Upper and Lower Patuxent (NOAA codes 168 and 368) were similar, with high 
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natural mortality events in 2001 and 2002 that were not seen in Lower Bay West (NOAA 

code 229). 

 

The Potomoc River region did not have as consistent of a pattern as some other regions 

(Figure 8). While most NOAA codes in the Potomac had several relatively high natural 

mortality events during 1999-2002, there were no other consistent patterns among NOAA 

codes. Some NOAA codes like the Lower Potomac River (177) had natural mortality that 

fluctuated throughout the time series, while other NOAA codes like the Mid Potomac 

River (277) had natural mortality that generally decreased over the time series (with the 

exception of high natural mortality events during 2000-2002).  

 

In the NOAA codes of the Tangier Sound region, natural mortality was on average more 

than twice as high and more variable during 1991-2006 than during 2007-2017 (Figure 

9). The patterns in natural mortality were not entirely consistent among all NOAA codes 

in the region, but all NOAA codes experienced relatively high natural mortality events in 

1992 and 1999, and most NOAA codes had high natural mortality events in 1995. Many 

of the NOAA codes (six of eight) experienced low natural mortality in 1993, and all 

NOAA codes except Honga River (NOAA code 47) had low natural mortality in 2011. 

Box disarticulation rate 

One parameter was estimated for the box disarticulation rate for all NOAA codes and 

years. The instantaneous box disarticulation rate posterior was higher (avg = 1.11, 

corresponding with 67% of boxes disarticulating each year) than the prior that was 
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created from literature values (avg = 0.51 or 40% of boxes disarticulate each year; Figure 

10). 

Dynamic factor analysis 

After standardizing the natural mortality time series, some common patterns among 

NOAA codes were visible (Figure 11). Most NOAA codes had substantial variability 

with several high peaks during 1991-2002, but few NOAA codes had high values after 

2002. The DFA was able to describe the time series relatively well with two trends 

(Figure 12). The two-trend model had a lower AICc than the one, three, and four trend 

models, and it also had reasonable fitted values and a mean fit diagnostic (Table 3). 

Therefore, we selected the two-trend model. 

 

The first DFA trend displayed a relatively stable pattern during 1991-1997 before a 

distinct increase in natural mortality during 1998-2002, followed by a decline in 2003-

2005, and a relatively stable pattern during 2006-2017 (Figure 12). The second DFA 

trend indicated fluctuating natural mortality during 1991-2002 (with peaks in 1992, 1995, 

and 1999). After 2000, the trend was relatively low and consistent, except for a small 

peak in 2005.  

 

Although there was variability among NOAA codes within regions, in general NOAA 

codes in the more northernly part of Chesapeake Bay had higher positive loadings on 

trend 1 than the southernly part, while the southern part had higher positive loadings on 

trend 2 (Figure 13). NOAA codes 025 and 377 (Upper Bay and Upper Potomac) did not 
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fall along the north-south gradient of loadings, as they had large negative loadings on 

trend 2 (-0.25 and -0.48, respectively).  

Discussion 

The Bayesian model and box count method had similar natural mortality patterns in most 

years, but the model often had slightly higher values than the box count method due to 

the opposing corrections included in the model. The amount of difference between the 

natural mortality rates estimated by the two methods depends on the values of the 

efficiency ratio (including the correction for boxes disarticulating before the survey) and 

the box disarticulation rate.  If the dredge efficiency of live oysters is higher than that of 

boxes, the natural mortality rate estimated by the model is increased relative to assuming 

equal efficiency. Likewise, accounting for boxes decaying before the survey increases 

natural mortality estimates. In contrast, when boxes persist for longer than one year, the 

model will estimate lower natural mortality. For oysters in the Maryland portion of 

Chesapeake Bay, in most years the effect of correcting for dredge efficiency differences 

between live oysters and boxes and for boxes disarticulating before the survey was larger 

than the effect of correcting for boxes persisting for longer than one year. The opposing 

corrections that were not completely balanced resulted in model natural mortality rates 

that were slightly higher than box count natural mortality rates. For example, in a 

sensitivity run of the Bayesian model that did not incorporate a correction for boxes 

disarticulating before the survey, natural mortality estimates decreased by 17.8% on 

average across all years and NOAA codes. 
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However, in years following a high natural mortality event, model natural mortality 

estimates were substantially lower than box count estimates. The Bayesian model 

performs better than the box count method at estimating natural mortality rates, given that 

boxes are persisting for longer than one year as specified in the Bayesian model. This 

occurred because in the model, while the effect size of the corrections for difference in 

efficiency and for boxes disarticulating before the survey on the natural mortality rate 

remained the same as in all other years, the effect size of the correction for boxes 

persisting for longer than 1 year on the natural mortality rate increased. For all years, a 

constant proportion of boxes created during a natural mortality event remained intact 

through the next year (the constant proportion depends on the box disarticulation rate), 

but in years with a high natural mortality event, a higher number of boxes (per unit 

cultch) are created during a large natural mortality event, thus resulting in a higher 

number of boxes remaining the following year. Additionally, the effect of boxes from 

previous years on the natural mortality rate was often substantial in years after a high 

natural mortality event also because the number of oysters alive was reduced in next year. 

For example, in 2003 (the year after oyster bars in many NOAA codes experienced high 

mortality events), on average 68% of the boxes observed across bars were attributed to 

residual boxes (i.e., boxes from the previous year), while in 2016 (2015 was not a high 

mortality year), 34% of the observed boxes were treated as residual. In contrast, the box 

count method assumes that all boxes observed during the year following a high natural 

mortality event came from oysters that died in the same year (i.e., no boxes were treated 

as residual).  Thus, the box count method estimated a higher rate of natural mortality in 
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the year following the natural mortality event compared to the model, which is an 

overestimate if boxes do persist longer than one year. 

 

The patterns in natural mortality were consistent among most regions of the Maryland 

portion of Chesapeake Bay. In most NOAA codes, the trends and loadings from the 

dynamic factor analysis indicted that natural mortality increased substantially during 

1999-2002 (trend 1), was more variable in the beginning of the time series (apparent in 

trend 2) and has consistently remained below average during 2006-2017 (trends 1 and 2). 

The trends from the dynamic factor analysis correspond qualitatively well with previous 

patterns of natural mortality in a Maryland-wide population dynamics model (Wilberg et 

al. 2011), as natural mortality was interannually variable before 2002, increased 

substantially during 1999-2002, and declined to low levels after 2002 in both the dynamic 

factor analysis trends and in the previous estimates. 

 

Natural mortality from an oyster stock assessment for Maryland (Maryland Department 

of Natural Resources 2018) was estimated at the same spatial scale as the Bayesian model 

and thus could be directly compared to estimates from the Bayesian model. The natural 

mortality rates from both methods were correlated (Pearson correlation coefficient = 

0.67), although natural mortality was higher in the stock assessment model than in the 

Bayesian model (i.e., 23% average natural mortality in the stock assessment model 

compared to 10% average in the Bayesian model). The difference among estimates is 

likely due to structural differences between the models. The stock assessment model used 

information about live oyster density changing over time (i.e., it followed density of 
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oysters by stage) and also estimated the difference in efficiency between live oysters and 

boxes as opposed to setting it as a constant as in the Bayesian model. 

 

Different environmental conditions such as winter temperature, summer temperature, 

summer salinity, and disease levels could explain the spatial north-south gradient in the 

loadings on trends from the dynamic factor analysis. Most natural mortality on adult 

oysters in Maryland during 1991-2017 is likely caused by the diseases MSX and dermo 

(Ford & Tripp 1996), as there are few predators that can prey upon adult oysters in 

Maryland (White & Wilson 1996).  However, levels of MSX and dermo in Maryland can 

vary spatially. For example, MSX is consistently found in the Tangier Sound region and 

spreads to other regions of the Maryland portion of Chesapeake Bay during years of low 

freshwater flow when salinity increases throughout the bay (Tarnowski 2017). Salinity 

and temperature can influence disease levels (Hewatt & Andrews 1956, Ford & Haskin 

1982, Chu & La Peyre 1993, Bushek et al. 2012).  Investigating the relationship between 

natural mortality, disease, and environmental conditions may allow for a better 

understanding of why natural mortality patterns differ regionally. 

 

The Upper Bay and Upper Potomac (NOAA codes 25 and 377) had natural mortality 

patterns distinct from the patterns of other NOAA codes. This is likely because these 

regions are in the freshest parts of Chesapeake Bay where oysters persist and are subject 

to freshets that can cause localized oyster mortality events (MDNR 2001, Tarnowski 

2012).  Interestingly, freshets lower salinity and hence reduce MSX and dermo infection 

intensities (Ford 1985, La Peyre et al. 2003, 2009), so in most NOAA codes, natural 
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mortality due to disease (and hence natural mortality overall) should be lower when there 

are freshet-caused natural mortality events in the Upper Bay or Upper Potomac. This may 

explain why there were negative loadings in the Upper Bay and Upper Potomac for trend 

2, but positive loadings in most other NOAA codes in Maryland. 

 

Multiple hypotheses could explain the lower and less variable natural mortality since 

2003. The relatively low natural mortality since 2003 could have been caused by 

environmental conditions unfavorable to disease during this period; for example, low 

salinity can inhibit the development of MSX and dermo (Haskin & Ford 1982, Albright 

et al. 2007). Since 2003, only 2 of 15 years have had lower than average streamflow into 

the Chesapeake Bay (a surrogate of bay-wide interannual variation in salinity), compared 

to 5 of 12 years during 1991-2002.2 Alternatively, the relationships between 

environmental conditions, disease, and natural mortality rates may have changed over 

time. One possible mechanism is that oysters in the Maryland portion of Chesapeake Bay 

have acquired resistance to disease, defined as, “the relative ability of an organism to 

avoid infection or to withstand the effects of disease” (Ford & Tripp 1996). While 

evidence of resistance to MSX by oysters has been found in Delaware Bay (Haskin & 

Ford 1979, Ford & Bushek 2012, Bushek & Ford 2016) and in the Virginia portion of 

Chesapeake Bay (Carnegie & Burreson 2011), it has not been documented in the 

Maryland portion of Chesapeake Bay. Evidence of dermo resistance has been found in 

oysters from Tangier Sound (Encomio et al. 2005), but not in oysters from the Choptank 

(Encomio et al. 2005), near Annapolis, Maryland (Brown et al. 2005b), or in Delaware 

                                                 
2 Data available at https://md.water.usgs.gov/waterdata/chesinflow/annualized/data. 
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Bay (Bushek & Ford 2016). Investigating the relationship between environmental 

conditions, disease, and natural mortality before and since 2002 may illuminate if indeed 

favorable environmental conditions have kept disease levels low in recent years or if 

there has been a change in how oysters respond to either disease. 

 

The Bayesian model required information on relative efficiency and box disarticulation 

rates to correct for these effects, which may differ depending on the survey gear (Chai et 

al. 1992), habitat characteristics (Powell et al. 2007), or oyster density (Morson et al. 

2018). Because survey efficiency experiments on both boxes and live oysters have not 

been published for Maryland, we only used one estimate of relative efficiency for all 

NOAA codes and years derived from survey efficiency experiments conducted in 

Delaware Bay. Further investigation into the factors affecting relative efficiency may 

allow for better understanding of which factors influence relative efficiency of live 

oysters and boxes, which would allow these factors to inform different values of relative 

efficiency by NOAA code and year. Without additional efficiency data, it is unlikely that 

relative efficiency could be estimated in the model. 

 

A key assumption of methods using counts of live oysters and boxes to estimate natural 

mortality is that the main sources of natural mortality leave behind boxes. Any natural 

mortality that does not will not be quantified, although the model could be modified to 

account for a proportion of mortality that does not leave behind a box. For adult oysters 

in Maryland, assuming all natural mortality leaves behind a box is reasonable, as the 

largest sources of natural mortality, MSX and dermo diseases and freshets, result in 
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boxes. Predation caused by organisms that crush shells of their prey would not be 

captured in the box count method nor model, but few predators can crush the shells of 

adult oysters (White & Wilson 1996). Thus, predation not resulting in a box is likely 

negligible for oysters in Maryland. 

 

The posterior of the box decay rate was higher than its prior, suggesting that a higher 

proportion of boxes decay in a year than described by the prior. Our prior was based on 

field experiments in which oysters were sacrificed, and the resulting boxes were attached 

to trays or racks deployed on or near oyster bars and periodically monitored for 

disarticulation (Christmas et al. 1997, Ford et al. 2006). A faster disarticulation rate in the 

model of wild oysters on natural bars than these experiments is expected for two reasons. 

First, boxes in experiments are not exposed to wave action and other disturbance 

processes like they would be on a natural oyster bar. For example, Christmas et al. (1997) 

attached oysters to treys that were covered with lids, specifically because “wave action 

and storm events resulted in the periodic loss of oysters from uncovered trays.” Second, 

oyster fishing during the winter likely breaks up some boxes on bars, which would result 

in a higher estimated disarticulation rate like we found in the model. 

 

Our Bayesian natural mortality model could be applied to other bivalve populations or 

other species that leave long term evidence of natural mortality. The observations of live 

and dead individuals must occur in the same gear, however, so our approach would likely 

be limited to molluscs or other sessile or slow-moving species. Our approach has the 

potential to reduce bias in estimated natural mortality rates when assumptions of other 
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methods are violated. However, some modifications to the model would be necessary. 

The priors in our current version were tailored for oysters in the Maryland portion of 

Chesapeake Bay and would need to be modified for application to another species or 

oysters in a different region. In particular, the disarticulation rate of boxes likely differs 

among bivalve species and among locations (location: Christmas et al. 1997; Ford et al. 

2006). In addition, fishing and natural mortality happen at different times for oysters in 

the Maryland portion of Chesapeake Bay, and this is a key assumption of the model. The 

model would need additional modifications and data for populations where fishing and 

natural mortality occur simultaneously. 

 

This model and analysis illuminated the implications of assumptions of the box count 

method, corrected for these assumptions, and provided natural mortality estimates in 

Maryland at a finer spatial scale than previously available without using a full population 

dynamics model and additional data sources. In addition, the model we developed, albeit 

with some modifications, could be generalized to other bivalve populations or other 

species that leave long-term evidence of natural mortality. 
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Tables 
Table 1. Number of bars with complete time series by region (names in bold between lines) and NOAA 

code. A bar with a complete time series is one that was sampled at least once every year during 1990-2017. 

NA indicates that natural mortality in the NOAA code was not modeled because of inadequate data.  

NOAA 

Code NOAA Code Name 

Number 

of Bars 

NOAA 

Code NOAA Code Name 

Number 

of Bars 

Western Shore   Tangier Sound 

127 North Mid-Bay 5 129 Lower Bay East NA 
55 Magothy River NA 47 Honga River 5 

82 Severn River NA 43 Fishing Bay 5 

88 South River NA 62 Nanticoke River 6 

94 West & Rhode Rivers NA 292 Tangier Sound North 3 

Chester River   96 Wicomico River (East) 3 

25 Upper Bay 11 98 Monie Bay NA 
131 Lower Chester River 2 192 Tangier Sound South 9 

231 Mid Chester River 6 57 Manokin River 5 

331 Upper Chester River NA 5 Big Annemessex River NA 

Eastern 

Bay 

    72 Pocomoke Sound 5 

39 Eastern Bay 6    
99 Wye River 3    

60 Miles River 4    

Choptank River      

27 South Mid-Bay 6    
437 Harris Creek 2    

537 Broad Creek 2    

637 Tred Avon River 4    

137 Lower Choptank River 4    

237 Mid Choptank River 6    

337 Upper Choptank River 6    

53 Little Choptank River 6    

Patuxent River      

229 Lower Bay West 3    
168 Lower Patuxent River 6    

268 Mid Patuxent River NA    

368 Upper Patuxent River 5    

Potomac River      

177 Lower Potomac River 4    
86 Smith Creek NA    

78 St. Mary's River 5    

277 Mid Potomac River 5    

174 Breton & St. Clements 

ClemenClements Bays 

2    

274 Wicomico River (West) 5    

377 Upper Potomac River 4    

 

 

 

 

 

 



 

 

32 

 

Table 2. Median natural mortality rate (fraction yr-1) from the Bayesian model by region and NOAA Code during 1991-2017 and the time series mean. Names in 

bold between lines indicate the region in which the NOAA codes were grouped. 

NOAA Code 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Western Shore                 

127 0.116 0.027 0.135 0.173 0.123 0.211 0.101 0.124 0.190 0.314 0.336 0.635 0.144 0.028 0.015 0.166 

55 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

82 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

88 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

94 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Chester River                 

25 0.065 0.085 0.058 0.222 0.011 0.382 0.009 0.101 0.072 0.177 0.068 0.217 0.059 0.079 0.007 0.075 

131 0.172 0.405 0.064 0.193 0.083 0.434 0.046 0.092 0.168 0.357 0.420 0.570 0.245 0.040 0.011 0.413 

231 0.053 0.090 0.052 0.181 0.097 0.260 0.071 0.075 0.101 0.295 0.520 0.590 0.332 0.040 0.267 0.059 

331 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Eastern Bay                 

39 0.222 0.412 0.337 0.217 0.365 0.199 0.129 0.133 0.315 0.342 0.496 0.582 0.121 0.011 0.064 0.530 

99 0.653 0.539 0.095 0.233 0.366 0.074 0.110 0.133 0.213 0.450 0.498 0.622 0.543 0.036 0.040 0.089 

60 0.541 0.558 0.296 0.204 0.413 0.244 0.023 0.186 0.219 0.361 0.505 0.650 0.393 0.034 0.105 0.434 

Choptank River                 

27 0.126 0.657 0.385 0.297 0.544 0.273 0.223 0.345 0.434 0.569 0.390 0.801 0.013 0.014 0.027 0.220 

437 0.509 0.283 0.385 0.044 0.305 0.116 0.113 0.086 0.339 0.102 0.287 0.896 0.098 0.025 0.014 0.039 

537 0.682 0.484 0.145 0.018 0.383 0.118 0.094 0.175 0.551 0.074 0.429 0.844 0.085 0.008 0.004 0.019 

637 0.798 0.531 0.364 0.061 0.352 0.127 0.092 0.145 0.508 0.494 0.301 0.904 0.474 0.196 0.048 0.050 

137 0.432 0.573 0.261 0.023 0.312 0.113 0.067 0.128 0.414 0.435 0.583 0.943 0.078 0.024 0.009 0.012 

237 0.432 0.682 0.551 0.046 0.257 0.279 0.064 0.041 0.221 0.503 0.370 0.851 0.218 0.103 0.052 0.138 

337 0.093 0.319 0.317 0.144 0.127 0.161 0.021 0.132 0.100 0.252 0.283 0.552 0.522 0.150 0.054 0.074 

53 0.583 0.561 0.263 0.006 0.251 0.055 0.116 0.189 0.407 0.389 0.633 0.961 0.030 0.007 0.008 0.124 

Patuxent River                 

229 0.720 0.887 0.031 0.025 0.271 0.384 0.196 0.327 0.533 0.679 0.153 0.288 0.104 0.013 0.175 0.217 

168 0.662 0.865 0.212 0.214 0.285 0.404 0.117 0.370 0.748 0.590 0.629 0.644 0.013 0.058 0.281 0.452 

268 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

368 0.558 0.702 0.046 0.060 0.138 0.048 0.077 0.072 0.516 0.600 0.583 0.627 0.020 0.085 0.148 0.198 



 

 

33 

 

Table 2, continued. 

 

NOAA Code 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Potomac River                 

177 0.507 0.692 0.148 0.110 0.636 0.156 0.171 0.303 0.881 0.616 0.121 0.614 0.153 0.302 0.391 0.375 

86 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

78 0.234 0.360 0.171 0.152 0.202 0.207 0.164 0.162 0.466 0.679 0.399 0.814 0.045 0.486 0.561 0.013 

277 0.496 0.216 0.215 0.114 0.201 0.140 0.050 0.262 0.298 0.605 0.662 0.744 0.105 0.306 0.256 0.185 

174 0.685 0.238 0.054 0.224 0.503 0.105 0.256 0.276 0.531 0.761 0.674 0.742 0.189 0.310 0.333 0.113 

274 0.260 0.190 0.038 0.053 0.297 0.250 0.038 0.062 0.370 0.375 0.448 0.596 0.131 0.123 0.055 0.221 

377 0.022 0.083 0.451 0.479 0.011 0.168 0.097 0.260 0.024 0.062 0.167 0.525 0.416 0.337 0.026 0.021 

Tangier Sound                 

129 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

47 0.583 0.778 0.035 0.104 0.578 0.177 0.228 0.533 0.653 0.236 0.442 0.327 0.091 0.345 0.514 0.096 

43 0.378 0.683 0.349 0.055 0.598 0.700 0.482 0.085 0.695 0.750 0.454 0.710 0.349 0.406 0.337 0.249 

62 0.123 0.559 0.075 0.224 0.160 0.141 0.174 0.059 0.661 0.098 0.325 0.642 0.304 0.213 0.100 0.258 

292 0.399 0.802 0.090 0.150 0.796 0.583 0.165 0.222 0.716 0.306 0.252 0.517 0.264 0.479 0.523 0.239 

96 0.040 0.733 0.357 0.237 0.358 0.232 0.328 0.172 0.796 0.566 0.361 0.531 0.182 0.312 0.069 0.151 

98 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

192 0.520 0.763 0.175 0.256 0.766 0.304 0.172 0.355 0.589 0.287 0.395 0.479 0.316 0.368 0.324 0.192 

57 0.527 0.683 0.052 0.271 0.821 0.261 0.154 0.215 0.665 0.266 0.274 0.328 0.102 0.331 0.748 0.049 

5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

72 0.579 0.572 0.059 0.278 0.856 0.216 0.424 0.299 0.539 0.255 0.457 0.437 0.093 0.185 0.295 0.090 
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Table 2, continued. 

 

NOAA Code 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean 

Western Shore                 

127 0.041 0.172 0.109 0.060 0.027 0.063 0.049 0.032 0.032 0.063 0.119 0.133 

55 NA NA NA NA NA NA NA NA NA NA NA NA 

82 NA NA NA NA NA NA NA NA NA NA NA NA 

88 NA NA NA NA NA NA NA NA NA NA NA NA 

94 NA NA NA NA NA NA NA NA NA NA NA NA 

Chester River                 

25 0.063 0.091 0.042 0.164 0.563 0.017 0.108 0.010 0.096 0.014 0.007 0.106 

131 0.271 0.328 0.274 0.089 0.135 0.088 0.112 0.076 0.034 0.094 0.062 0.196 

231 0.135 0.072 0.085 0.144 0.086 0.071 0.052 0.173 0.037 0.164 0.033 0.153 

331 NA NA NA NA NA NA NA NA NA NA NA NA 

Eastern Bay                 

39 0.609 0.220 0.239 0.110 0.048 0.026 0.069 0.112 0.066 0.201 0.246 0.238 

99 0.310 0.307 0.257 0.341 0.028 0.035 0.023 0.079 0.113 0.227 0.333 0.250 

60 0.622 0.396 0.299 0.086 0.055 0.082 0.022 0.136 0.038 0.208 0.118 0.268 

Choptank River                 

27 0.020 0.258 0.201 0.162 0.053 0.019 0.048 0.084 0.241 0.273 0.300 0.258 

437 0.181 0.108 0.060 0.067 0.030 0.003 0.099 0.012 0.080 0.227 0.059 0.169 

537 0.075 0.149 0.050 0.064 0.032 0.024 0.074 0.078 0.182 0.111 0.035 0.185 

637 0.116 0.057 0.184 0.095 0.026 0.153 0.128 0.107 0.185 0.254 0.176 0.256 

137 0.100 0.125 0.065 0.072 0.051 0.052 0.086 0.084 0.196 0.315 0.249 0.215 

237 0.103 0.044 0.030 0.109 0.084 0.068 0.128 0.172 0.063 0.319 0.094 0.223 

337 0.052 0.068 0.080 0.077 0.072 0.050 0.146 0.022 0.072 0.150 0.179 0.158 

53 0.213 0.182 0.277 0.287 0.021 0.176 0.179 0.151 0.187 0.413 0.193 0.254 

Patuxent River                 

229 0.422 0.077 0.212 0.112 0.137 0.018 0.125 0.063 0.208 0.304 0.067 0.250 

168 0.265 0.100 0.226 0.252 0.039 0.195 0.165 0.096 0.275 0.341 0.077 0.318 

268 NA NA NA NA NA NA NA NA NA NA NA NA 

368 0.036 0.214 0.142 0.195 0.021 0.111 0.110 0.078 0.132 0.215 0.051 0.214 
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Table 2, continued. 

 

NOAA Code 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean 

Potomac River                 

177 0.159 0.318 0.455 0.258 0.110 0.104 0.223 0.117 0.189 0.563 0.033 0.322 

86 NA NA NA NA NA NA NA NA NA NA NA NA 

78 0.029 0.167 0.280 0.208 0.050 0.123 0.050 0.168 0.214 0.425 0.105 0.257 

277 0.127 0.088 0.103 0.210 0.053 0.127 0.116 0.108 0.163 0.054 0.044 0.224 

174 0.105 0.072 0.060 0.081 0.378 0.301 0.052 0.172 0.147 0.099 0.084 0.279 

274 0.402 0.230 0.055 0.231 0.082 0.112 0.150 0.032 0.062 0.096 0.012 0.184 

377 0.055 0.139 0.059 0.170 0.212 0.124 0.204 0.047 0.058 0.054 0.094 0.162 

Tangier Sound                 

129 NA NA NA NA NA NA NA NA NA NA NA NA 

47 0.038 0.098 0.186 0.163 0.140 0.187 0.217 0.159 0.229 0.152 0.229 0.278 

43 0.023 0.076 0.081 0.082 0.044 0.132 0.158 0.217 0.179 0.228 0.011 0.315 

62 0.084 0.127 0.075 0.078 0.102 0.170 0.051 0.113 0.075 0.167 0.082 0.194 

292 0.178 0.039 0.262 0.288 0.152 0.158 0.181 0.217 0.254 0.214 0.020 0.314 

96 0.388 0.146 0.052 0.135 0.058 0.069 0.142 0.180 0.344 0.462 0.200 0.282 

98 NA NA NA NA NA NA NA NA NA NA NA NA 

192 0.114 0.203 0.258 0.307 0.091 0.156 0.160 0.355 0.246 0.059 0.113 0.308 

57 0.054 0.198 0.153 0.244 0.035 0.210 0.172 0.166 0.159 0.162 0.140 0.275 

5 NA NA NA NA NA NA NA NA NA NA NA NA 

72 0.021 0.288 0.170 0.127 0.034 0.146 0.145 0.188 0.182 0.091 0.182 0.267 
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Table 3. Corrected Akaike’s Information Criterion (AICc) and mean fit comparisons of dynamic factor 

analysis with different numbers of trends. The differences in the AICc values (ΔAICc) were calculated as 

the difference in AICc between a given model and the one with the lowest AICc.  The mean fit comparison 

is calculated as in Zuur et al. (2003) and Peterson et al. (2017). 

Number of Trends ΔAICc Mean Fit 

1 163.0 0.49 

2 0.0 0.32 

3 2.4 0.27 

4 18.3 0.23 
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Figures 

 
Figure 1. Maps of the Maryland Portion of Chesapeake Bay denoting A) NOAA codes (numbers in black 

text; see Table 1 for NOAA code names) and B) regions. Note that NOAA Code 14 was not included in a 

region because it likely has no oyster bars and is not sampled during the fall dredge survey. Yellow points 

mark the approximate locations of bars that were included in the model. 
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Figure 2. A) Mean and B) standard deviation (SD) of the times series of model instantaneous natural 

mortality (M; yr-1) medians by NOAA code. Darker colors indicate a higher mean or standard deviation 

over the time series, and crosshatching indicates NOAA codes that were not modeled due to insufficient 

data. 
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Figure 3. Natural mortality rate estimates (M; proportion yr-1) for adult oysters from the model (boxplots) 

and the box count method (points) for NOAA codes of the Western Shore region. For the boxplot, the box 

represents the interquartile range, the line the median, and the whiskers 95% credibility intervals. The solid 

blue line connects the median values of the boxplots. The year labels correspond with the calendar year of 

when the natural mortality occurred. 

 
Figure 4. Natural mortality rate estimates (M; proportion yr-1) for the Chester River region. Symbol 

definitions are the same as Figure 3. 

 
Figure 5. Natural mortality rate estimates (M; proportion yr-1) for the Eastern Bay region. Symbol 

definitions are the same as Figure 3. 
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Figure 6. Natural mortality rate estimates (M; proportion yr-1) for the Choptank River region. Symbol 

definitions are the same as Figure 3. 
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Figure 7. Natural mortality rate estimates (M; proportion yr-1) for the Patuxent River region. Symbol 

definitions are the same as Figure 3. 

 
Figure 8. Natural mortality rate estimates (M; proportion yr-1) for the Potomac River region. Symbol 

definitions are the same as Figure 3. 
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Figure 9. Natural mortality rate estimates (M; proportion yr-1) for the Tangier Sound region. Symbol 

definitions are the same as Figure 3. 
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Figure 10. Prior (black line) and posterior (green histogram) distributions for the box decay (i.e., 

disarticulation) rate from the model. 

 
Figure 11. Standardized time series of median instantaneous natural mortality rates. Each line represents a 

time series of median instantaneous natural mortality for a NOAA code from the Bayesian model after 

subtracting the mean and dividing by the standard deviation of the time series. Lighter lines represent just 

one time series, whereas darker lines show where several time series have overlapping values. 
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Figure 12. Trends and loadings from dynamic factor analysis with 2 trends. The labels on the factor 

loadings are NOAA codes, ordered by regions generally from north (left) to south (right). See table 1 for 

NOAA code names. 
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Figure 13. Loadings from dynamic factor analysis with two trends. The NOAA code numbers are plotted at 

the location of their loadings, and their color indicates the region of the NOAA code, where more 

northernly NOAA codes have lighter colors than more southernly NOAA codes. See table 1 for NOAA 

code names. 
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Chapter 2: Do the relationships of environmental factors, disease, and 

natural mortality for oysters in Chesapeake Bay, MD change spatially and/or 

temporally? 

Introduction 

Infectious marine diseases are increasing in some groups of marine organisms (Ward & 

Lafferty 2004) and are expected to continue to increase in frequency and severity in the 

future (Harvell et al. 2002, Burge et al. 2014). This trend is particularly problematic for 

fished species, because lethal infectious marine diseases can decrease abundance by 

increasing natural (i.e., non-fishing derived) mortality (e.g., Marty et al. 2010, Hoenig et 

al. 2017). Furthermore, infectious marine diseases affect the population dynamics of 

fished species including marine fishes like pacific herring Clupea pallasi (Marty et al. 

2003, 2010) and striped bass Morone saxatilis (Gauthier et al. 2008, Hoenig et al. 2017), 

decapods like snow crab Chionoecetes opilio and American lobster Homarus americanus  

(Hoenig et al. 2017), and many mollusc species (Gulka et al. 1983, Arzul & Carnegie 

2015). 

 

The eastern oyster Crassostrea virginica has been susceptible to disease throughout most 

of its range in the last few decades (Burge et al. 2014), particularly to the diseases MSX 

and dermo, which are caused by the protozoan parasites Haplosporidium nelsoni and 

Perkinsus marinus, respectively. In the mid-Atlantic region of the U.S., these diseases 

cause epizootics resulting in mass mortality (Ford & Tripp 1996, Albright et al. 2007), 

which has likely fundamentally changed the population dynamics of these oyster 
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populations (Wilberg et al. 2011). The severity of mortality events due to MSX and 

dermo can fluctuate depending on environmental conditions, especially salinity and 

temperature. High salinity is typically correlated with increases in MSX and dermo 

disease levels (Bushek et al. 2012, Petes et al. 2012, Wang et al. 2012), whereas low 

salinity can suppress infections (Ford 1985, La Peyre et al. 2003). Thus, a gradient of 

MSX and dermo is typical in estuaries, where diseases are most prevalent or have the 

highest infection intensity in the highest salinity waters (Tarnowski 2017). In addition, 

salinity can vary interannually at the same estuarine location due to the amount of 

freshwater inflow, resulting in variability in disease levels among years (Bushek et al. 

2012). Temperature is also considered an important factor for disease, with disease levels 

increasing at higher temperatures (Hewatt & Andrews 1956, Ford & Haskin 1982, Chu & 

La Peyre 1993). Temperature is correlated with the seasonal cycling of MSX and dermo 

in the mid-Atlantic region, where disease levels and disease mortality are highest during 

the warmest months and are depressed during the winter (Andrews & Hewatt 1957, Ford 

& Haskin 1982, Ford & Tripp 1996, Ford et al. 1999, Ragone Calvo et al. 2003, 

Audemard et al. 2006). 

 

The relationships in the oyster disease system may change, as oysters can develop 

resistance to disease (Haskin & Ford 1979). Ford and Tripp (1996) define resistance as 

“the relative ability of an organism to avoid infection or to withstand the effects of 

disease”.  Resistance has been shown in some regions for MSX, but not for dermo. For 

example, in Delaware Bay and in the Virginia portion of Chesapeake Bay, resistance of 

oysters to MSX has been well documented (Haskin & Ford 1979, Carnegie & Burreson 
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2011, Bushek & Ford 2016). However, although stocks vary in their susceptibility to 

dermo (Bushek & Allen 1996, Brown et al. 2005a, Brown et al. 2005b, Encomio et al. 

2005), resistance to dermo has not been clearly shown in the Mid-Atlantic region (Brown 

et al. 2005b, Bushek et al. 2012, Bushek & Ford 2016). Despite considerable research on 

disease resistance of wild oysters in nearby Delaware Bay and the Virginia portion of 

Chesapeake Bay, resistance to MSX by wild oysters has not been investigated in the 

Maryland waters of Chesapeake Bay. 

 

The development of resistance could lead to changes in the relationships between 

environmental factors, disease prevalences, and disease mortality (the oyster disease 

system). Since 2003, natural mortality has been consistently low (chapter 1). This may be 

because favorable environmental conditions (i.e., low temperature and salinity) have 

allowed disease pressure to subside. It is also possible that disease resistance has 

developed, or both scenarios have worked in tandem to create low and stable mortality 

since 2003. Our objective was to examine spatial and temporal changes in the disease 

system of Maryland adult oysters during 1991-2017. We assessed if these relationships 

indicated the development of disease resistance. If oysters develop resistance to disease, 

then they may experience lower disease prevalences for the same temperature and salinity 

conditions compared to the past, or oysters could still experience high levels of disease, 

but a given prevalence may not result in the same natural mortality rate. If there were no 

clear changes, then it is likely that mortality has only been low and stable since 2003 

because of favorable environmental conditions and not because of a change in the 

relationships in the oyster disease system. 
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Methods 

We constructed structural equation models (SEMs) that specified causal relationships 

among temperature and salinity during the spring and summer, MSX and dermo 

prevalences in the fall, and natural mortality rates (which include disease mortality). 

Structural equation modeling (SEM) is used to estimate relationships among variables 

where causation is implied. Latent (i.e., unobserved) variables can also be included (SEM 

is also called path analysis when no latent variables are included). While it can be 

computationally similar to linear regression, the strengths of SEM are that it is a 

framework where causation is explicitly included and indirect effects (or mediation) can 

be estimated. In our analysis, the models had the same causal relationships but estimated 

parameters for different temporal and spatial groupings. We then used model selection 

criteria to select the best model among the suite of models and used the selected model to 

describe how relationships changed temporally or spatially in Maryland. 

Study site: The Maryland portion of Chesapeake Bay 

The Chesapeake Bay is a partially mixed estuary in the mid-Atlantic region of the U.S. 

Our study focused on the northern half of the bay that is part of Maryland (Figure 14). In 

general, the Maryland waters of Chesapeake Bay are less saline than the lower (Virginia) 

portion of the Bay, but the salinity gradient from the northern to the southern part of the 

Maryland portion of the bay is still substantial (approximately 6 to 17 on average among 

a subset of Maryland oyster bars) and varies interannually due to freshwater inflow. 

Oysters occur throughout Maryland’s portion of Chesapeake Bay on subtidal bars in 

areas with average salinities > 5 (Maryland Department of Natural Resources 2016). 
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Data 

Disease prevalences and natural mortality 

Maryland Department of Natural Resources (MDNR) collects data each year on disease3 

as well as counts of live oysters and boxes per dredge tow during the oyster fall dredge 

survey (see Vølstad et al. 2008 or Tarnowski 2017 for a description of methods). At 43 

fixed sites, 30 adult oysters are retained and assessed for MSX and dermo presence or 

absence, although sample sizes can be fewer than 30 if 30 oysters were not collected. 

Methods of assessing MSX and dermo disease have changed over time (for description of 

oyster disease analyses, see Tarnowski 2017). Prevalence (i.e., percent infected) at each 

bar and year for each disease was calculated. 

 

Median annual natural mortality for each bar and year was taken from the Bayesian 

model (chapter 1). This model uses observations of live oysters and boxes (i.e., 

articulated oyster shells) to estimate rates of natural mortality on an annual time step. 

This model also includes corrections for differential dredge efficiency between live 

oysters and boxes, as well as for boxes persisting for more or less than one year. In this 

model, natural mortality was estimated on the NOAA code level (NOAA codes are 

statistical catch areas that typically include multiple bars), so bars were assigned natural 

mortality values based on NOAA codes (i.e., all bars in the same NOAA code were 

assigned the same time series of natural mortality). 

                                                 
3 Maryland Department of Natural Resources, Fisheries Service, Cooperative Oxford Laboratory. (2018). 

MDNR Individual Oyster Disease Data, (1990 to 2017) [Dataset] 
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Temperature and salinity 

Because continuous measurements of temperature and salinity during the season were not 

available over the entire time series (1991-2017) for the oyster bars included in our study, 

we used interpolated water temperature and salinity at the surface for the midpoint of 

each bar from the Chesapeake Bay Program Tidal Water Quality Monitoring data4. These 

data have been collected at least monthly year-round since 19845. We used ordinary 

kriging to interpolate the surface (i.e., typically <1 m depth in the water column) water 

temperature and salinity values during each “cruise” (a simultaneous sampling effort 

across the bay that can span multiple days) at all sites in the tidal region of Chesapeake 

Bay (both Virginia and Maryland). Although oyster bars in Maryland are typically 

subtidal, surface water temperature and salinity should describe conditions experienced 

by oysters, as oyster bars likely can only persist long-term in regions of the bay that are 

well mixed. In addition, using surface data provides the most information for kriging 

because there are more observations for the surface than for other layers of the water 

column. On average, the difference in salinity between depths of 1 m and 4 m was only 1 

(4.1 m is the average depth of oyster bars in the fall dredge survey). 

 

Although the monitoring data should be collected at fixed sites at least once a month, 

sampling procedures differ in tributaries and the mainstem, and sites are not always 

sampled during each cruise. To ensure sufficient spatial coverage for kriging, we only 

used interpolations from cruises that had at least 5 samples taken in each of 3 general 

                                                 
4Data available from 

https://www.chesapeakebay.net/what/downloads/cbp_water_quality_database_1984_present. 
5 Dataset description at 

https://www.chesapeakebay.net/documents/3676/wq_data_userguide_10feb12_mod.pdf. 
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regions of Maryland: the western tributaries, eastern tributaries, and mainstem of 

Chesapeake Bay, Maryland (i.e., cruises had to have at least 15 samples total). 

 

We followed ordinary kriging procedures outlined in Murphy et al. (2010) by using the R 

package automap (Hiemstra et al. 2009). In short, we considered several variogram 

functions, selected the sample variogram with the smallest residual sum of squares for 

each cruise and variable (water temperature or salinity), and used this variogram to 

perform ordinary kriging. Water temperature and salinity values were interpolated at the 

centroid locations of oyster bars that are sampled annually for disease (Figures A-1, A-2 

for example kriging values). If the centroid of an oyster bar was outside of the range of 

the observations, then no estimate of the variable at that oyster bar was recorded for the 

cruise.  

 

Because kriging allows interpolated estimates of salinity to be outside the range of 

observed values (i.e., salinity that is negative or > 35), estimates that were outside of this 

range were removed (4 values of 19,006 interpolated estimates). The removal of these 

four points did not greatly influence the summarized values of salinity. No values were 

removed from the temperature data set because unreasonable values were not identified. 

 

We quantified water temperature and salinity at oyster bars as the average during April to 

October for each year. Monthly averages were obtained from the interpolated data sets by 

oyster bar, and values for the months from April to October were averaged. Field and 

modeling studies from the Mid-Atlantic region (Burreson & Ragone-Calvo 1996, Ford et 
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al. 1999, Paraso et al. 1999, Powell et al. 1999, Ragone Calvo et al. 2003, Audemard et 

al. 2006, Albright et al. 2007, Abbe et al. 2010) indicate that the April to October window 

encompasses the months when disease levels increase in the Chesapeake Bay. 

Structural equation modeling 

We compared nine structural equation models to investigate the importance of allowing 

relationships to vary temporally and spatially (Table 4). We modeled disease (MSX and 

dermo) prevalences as a function of environmental variables (temperature and salinity) 

and natural mortality as a function of disease prevalences (Figure 15).  All relationships 

among variables were assumed to be linear with an estimated intercept. We compared 

models with different temporal groupings to determine if there was evidence for a change 

in these relationships over time perhaps due to the development of disease resistance, 

while spatial groupings were included to determine if there was any indication for 

difference in responses spatially.  All models had the same structure but varied in their 

temporal and spatial groupings (i.e., different intercepts and slopes were estimated for the 

relationships for each temporal and/or spatial group combination).  The R package lavaan 

(Rosseel 2012) was used to estimate parameters using a maximum likelihood framework.   

 

We considered models with one, two, or four temporal groups and one to three spatial 

groups in all potential combinations. Models with one period included years 1991-2017, 

two periods were separated into 1991-2002 and 2003-2017, and four periods were 

separated into 1991-1997, 1998-2004, 2005-2011, and 2012-2017. Average salinity 

groups from the Maryland Oyster Management Review (Maryland Department of Natural 

Resources 2016) were used to group bars into spatial salinity categories. These categories 
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were high (>14 on average), medium (12 to 14), and low (5 to 11) salinity by NOAA 

code. Bars were assigned a salinity category (low, medium, or high) based on their 

NOAA code (Figure 14). For models with two spatial groups, the medium and high 

salinity zones were combined into one group. 

 

Because our study focused on understanding how disease dynamics may have changed in 

Maryland over space and time, we removed other known natural mortality events from 

the dataset. In particular, freshets (pulsed freshwater events) can cause localized mass 

mortalities in oysters that are not disease related (MDNR 2001, Tarnowski 2012, Munroe 

et al. 2013). We used fall survey reports from MDNR (MDNR 2001, Tarnowski 2012) to 

determine years and locations where these freshets occurred (Table A-2) and did not 

include data from these bars and years in the model. 

 

Models were compared using model selection criteria, including Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), sample-size corrected BIC 

(BIC2; Kuha 2004), sample-sized corrected AIC (AICC; Burnham and Anderson 2002), 

and Hannan-Quinn Information Criterion (HQC; Hannan and Quinn 1979) to determine 

which model had the best fit to the data. Only bars and years that had estimates of all 

variables were included in the models. We also used the absolute fit measures root mean 

squared error of approximation (RMSEA), standardized root mean squared residual 

(SRMR) and the comparative fit index (CFI) to compare fit among the models. 
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Results 

Model selection and fit 

Models that divided up both time and space performed better than those that did not by 

all model selection criteria (Table 5). However, the model selection criteria differed in 

their identification of the best model. AIC indicated that the model with four temporal 

groups and three spatial groups (model 9) was the best model, but BIC, BIC2, and HQC 

selected the model with two temporal and two spatial groups (model 6). AICC suggested 

that the model with two temporal groups and three spatial groups (model 7) should be 

chosen. Ultimately, we selected model 6, the model with two temporal (1991-2002 and 

2002-2017) and two spatial (low and medium/high salinity) groups, because it was the 

most parsimonious among the models chosen by at least one model selection criterion, 

most of the model selection criteria suggested it was the optimal model, and among the 

models chosen by at least one model selection criterion, it had the best absolute model fit 

measures of RMSEA, SRMR, and CFI. For the selected model, the R2 values ranged 

from 0.08 to 0.45 (Table 6). 

Temperature, salinity, disease prevalence, and natural mortality 

Average temperature during April-October was similar among bars and years, varying 

between 19.5 °C and 23.1°C (Table 7). Average salinity varied more than temperature, 

ranging from 3.1-19.2. On average across bars, salinity was lower in the low salinity zone 

group compared to the medium/high salinity zone group during 1991-2002 and 2003-

2017. Within the salinity zone groups, average salinity was slightly lower during 2003-

2017. 
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MSX prevalence was lower than dermo prevalence (Table 7), with averages across bars 

by temporal and spatial groups ranging from 0.7-15.7 % for MSX and 52.9-84.1 % for 

dermo. Both MSX and dermo prevalences were on average higher in the medium/high 

salinity zone group compared to the low salinity zone group in the same period and were 

higher during 1991-2002 than during 2003-2017 within the salinity zone groups. 

 

Average natural mortality across bars by temporal and spatial group ranged from 14.6-

38.6% (Table 7). Natural mortality was higher on average in the medium/high salinity 

zone group compared to the low salinity zone group in the same period. Within the 

salinity zone groups, mortality was higher on average across bars during 1991-2002 than 

2003-2017. 

MSX prevalence relationships with temperature, salinity, and natural mortality 

The effect of average temperature during April-October on MSX prevalence was not 

consistent among groups (Figure 16; Table 8). During 1991-2002 in the low salinity zone 

group, temperature had a positive effect on MSX, while during 2003-2017 in the 

medium/high salinity group, there was a negative effect. During 2003-2017 in the low 

salinity zone group and 1991-2002 in the medium/high salinity zone group, there was no 

effect, with 95% confidence intervals (CIs) that overlapped with zero. 

 

Average salinity during April to October had a positive effect on MSX prevalence, with 

95% CIs that did not include zero (Figure 16; Table 8). The size of the effect was larger 

in the medium/high salinity zone group compared to the low salinity group during the 
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same period. Within both the low and medium/high salinity zone groups, the size of the 

effect declined over time, indicating that in the later period, MSX prevalence would not 

increase as much for the same increase in salinity.  

 

Estimates of the intercepts for MSX prevalence were -58.8 ± 20.0 % during 1991-2002 in 

the low salinity zone group and 44.8 ± 15.4 % during 2003-2017 in the medium/high 

salinity zone group (Table 9). In the other two groups, the intercepts were not 

significantly different from zero. 

 

MSX prevalence had a positive effect on natural mortality in all groups, except during 

2003-2017 in the low salinity region (95% CIs included zero; Figure 16; Table 8). In both 

low and medium/high salinity zone groups, the amount of mortality per unit MSX 

prevalence decreased over time, and there was no difference between the amount of 

mortality per unit MSX prevalence in different salinity zone groups during the same 

period (overlapping 95% CIs). 

 

Estimates of the intercept for natural mortality during 2003-2017 in the low salinity zone 

group and the medium/high salinity zones group were 4.80 ± 1.28 % and 4.93 ± 1.36 %, 

respectively (Table 9). The intercepts for both salinity zone groups during 1991-2002 

were not significantly different from zero. 
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Dermo prevalence relationships with temperature, salinity, and natural mortality 

 

There was no clear effect of temperature on dermo prevalence in most cases, except 

during 1991-2002 in the low salinity zone group (Figure 16; Table 8) in which 

temperature had a positive effect on dermo prevalence. The effect of temperature on 

dermo had 95% CIs that overlapped zero for all other groups. 

 

Salinity had a positive effect on dermo prevalences for all groups (Figure 16; Table 8), 

but temporal change in the effect of salinity on dermo differed spatially. For the low 

salinity group, the size of the salinity effect remained approximately the same over time, 

whereas it increased over time in the medium/high salinity group. Across regions, the 

effect was larger in the low salinity group compared to the medium/high salinity group 

during 1991-2002, but effects were similar in size during 2003-2017. 

 

Estimates of the intercept for dermo prevalence was -154.5 ± 51.5 % during 1991-2002 in 

the low salinity zone group (Table 9). Intercepts for all other groups were not 

significantly different from zero (95% CIs overlapped zero). 

 

Dermo prevalence had a positive effect on natural mortality in all groups (Figure 16; 

Table 8). Mortality per prevalence may have decreased for dermo in both salinity groups, 

although the 95% CIs are overlapped within the salinity zone groups. There was no 

difference between the amount of mortality per dermo prevalence during the same period 

but in different salinity groups. 
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Discussion 

The oyster disease system appears to have changed over time in Maryland. The same 

MSX prevalence resulted in less mortality in both salinity zone groups during 2003-2017 

relative to 1991-2002, which is expected if oysters have developed resistance to MSX. 

Given that resistance to MSX has been documented in both Delaware Bay and the highest 

salinity waters of Chesapeake Bay, Virginia (Haskin & Ford 1979, Carnegie & Burreson 

2011, Ford & Bushek 2012, Bushek & Ford 2016), it is not surprising that oysters in 

Maryland also show similar signs of resistance to MSX.  

 

We also found somewhat weaker support for the development of resistance to dermo 

(than to MSX) in Maryland during 2003-2017. Dermo-resistant oysters (i.e., oysters that 

experienced less mortality for the same prevalence) from Tangier Sound in the most 

saline part of the Maryland portion of Chesapeake Bay were found during 1999-2001, 

although oysters from the Choptank region did not have dermo resistance (Encomio et al. 

2005). Interestingly, our results suggest that higher resistance may have developed since 

2003, and that both low and medium/high salinity zones of Maryland may have 

developed some resistance to dermo over time. To our knowledge, no studies have 

investigated resistance to dermo in Chesapeake Bay during 2003-2017, and our results 

suggest that dermo resistance for oysters in Maryland is worth reinvestigating. There has 

been disagreement in the literature about the ability of oysters to develop resistance to 

dermo in the mid-Atlantic region  (Bushek & Allen 1996, Yu et al. 2011, Bushek et al. 

2012, Powell et al. 2012, Bushek & Ford 2016). 
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The model selection criteria indicated strong evidence that allowing for both temporal 

and spatial change when examining the oyster disease system in Maryland is important, 

as models with multiple temporal and spatial groups described the data better than 

models with less complexity. In Delaware Bay, relationships between dermo intensity 

and mortality differ spatially (Bushek et al. 2012), which demonstrates the importance of 

allowing for spatial differences in parameters associated with disease. Similarly, studies 

that found the development of MSX resistance (Haskin & Ford 1979, Carnegie & 

Burreson 2011, Ford & Bushek 2012, Bushek & Ford 2016) demonstrate the need for 

allowing for temporal changes. However, most studies on oyster disease have not 

attempted to estimate changes in relationships over time because of limited temporal and 

spatial scope. A strength of this study was a 27-year time series over a wide spatial area 

that allowed us to estimate spatiotemporal change in disease-associated parameters. 

 

Low salinity regions in both Delaware Bay and the Virginia portion of Chesapeake Bay 

provide refuge from MSX, and consequentially inhibited the development of disease 

resistance to some extent (Carnegie & Burreson 2011, Ford & Bushek 2012, Bushek & 

Ford 2016). We did not find substantial differences between salinity zone groups in the 

changes in the MSX-mortality (or dermo-mortality) relationships, which suggests that 

low salinity regions included in our study may not serve as refuges. It is possible that 

regions of lower salinity than were included in our study could provide such a refuge. 

However, it is also possible that the spatial groups included in the model may not be at 

the appropriate spatial scale to detect refuges. A further complication is that refuges are 
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ephemeral due to salinity variability, meaning refuges and non-refuges are more of a 

continuum than two clearly distinct categories (Ford et al. 2012). 

 

Salinity was more important than temperature in driving disease dynamics for most 

temporal and spatial groups. While temperature is an important driver of the seasonal 

cycling of diseases in the mid-Atlantic region (Andrews & Hewatt 1957, Ford & Haskin 

1982, Ragone Calvo et al. 2003, Audemard et al. 2006), interannual variability in 

temperature did not have a large effect on disease prevalences, as in most spatiotemporal 

groups, the temperature-prevalence coefficient was not different than zero. Conversely, 

salinity consistently had a positive effect on disease prevalences. Salinity has been shown 

to affect oyster diseases in a number of systems (Mackin 1956, La Peyre et al. 2003, 

Pollack et al. 2011, Bushek et al. 2012). In Delaware Bay salinity modulates the 

interannual variability in disease levels, while temperature is important for the seasonal 

cycling of the disease (Paraso et al. 1999). 

 

The direction of change over time in the salinity-prevalence relationship differed between 

MSX and dermo. The effect of salinity on MSX prevalence decreased over time in both 

spatial groups, but the effect of salinity on dermo prevalence remained the same in the 

low salinity zone group and increased over time in the medium/high salinity zones group. 

Differences between the diseases may account for these results. One difference between 

the diseases is the way they are transmitted. Dermo transmission primarily occurs  

through oysters filtering infective P. marinus cells in the water column that originated 

either from the tissue of deceased oysters or to a lesser degree from the pseudofeces and 
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feces of other oysters (Bushek et al. 2002, Ragone Calvo et al. 2003, Audemard et al. 

2006). Less is known about the transmission of MSX. Initial infections start on the gills, 

suggesting the infection is likely acquired from an unknown infectious stage present in 

the water (Farley 1967, 1968, Ford & Tripp 1996, Sunila et al. 2000). However, unlike 

for dermo, for MSX there may be an unknown organism that serves as a reservoir for 

MSX infective cells or aids in transmission of MSX (Ford & Haskin 1982, Ford & Tripp 

1996, Sunila et al. 2000). The changes in the relationship between salinity and MSX 

prevalence could be caused by changes in the abundance of an alternate host species. A 

large number of copies of H. nelsoni DNA were present in tunicates, Styela sp., 

suggesting they could be the unknown MSX reservoirs or transmission aides (Messerman 

& Bowden 2016). Another difference between MSX and dermo that may account for the 

difference in the direction of change for salinity-prevalence relationships is that different 

genes are associated with resistance to MSX and resistance to dermo and can be selected 

on differentially. It has not been possible to breed oysters that are both highly resistant to 

MSX and dermo, suggesting resistance to these diseases are not linked (Burreson 1991, 

Frank-Lawale et al. 2014). In addition, genetic modeling of resistance development 

suggest that MSX likely has one locus that is the most influential for the development of 

resistance due to its fast development of resistance (Munroe et al. 2015), while dermo 

may have many loci that are approximately equally influential (Powell et al. 2011). 

Finally, the virulence of the parasites that cause MSX and dermo can change over time, 

and not necessarily in the same way. Changes in virulence of parasites may affect the 

salinity-prevalence relationships and/or the prevalence-mortality relationships. 
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We did not account for direct effects of salinity and temperature on natural mortality in 

the models because we wanted to focus on changes in the disease system and because the 

number of oysters dying directly from salinity or temperature extremes is likely a small 

portion of the Maryland population. While freezing temperatures can kill intertidal 

oysters that are exposed, this analysis only looked at subtidal oyster bars that had an 

average depth of 4.1 m. Oysters are also tolerant of high temperatures (Shumway 1996), 

and oysters on subtidal reefs in Maryland are unlikely to be exposed to lethal 

temperatures (maximum and minimum kriged temperature estimates at oyster bars 

included in this analysis were 0.02°C and 31.1°C, respectively). Low salinity can also 

directly kill oysters on subtidal reefs in Maryland and can cause significant mortality 

(MDNR 2001, Tarnowski 2012), but these freshet localized mass mortality events are 

well documented. We removed data that may have included freshet-caused mortality 

because the focus of our study was on how the oyster disease system has changed over 

time. 

 

It is also possible that salinity and temperature can affect mortality indirectly as mediated 

by predators rather than MSX and dermo parasites. However, we could not account for 

the potential change in predation rate due to salinity and temperature in the structural 

equation models. Oyster drills (several species of predatory gastropods) are among the 

few predators in Maryland that can kill adult oysters and are most active at high salinities 

and temperatures (White & Wilson 1996). The approximate abundance of fouling 

organisms (including oyster drills) in dredge samples are recorded during the MDNR fall 
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dredge survey, so these data could potentially be incorporated into the modeling to 

account for differential predation mortality temporally and spatially. 

 

We used disease prevalence in the fall as a proxy of annual disease pressure, but this may 

not fully capture disease pressure because it only provides a snapshot of disease in the 

fall and because it does not include a measure of intensity or severity. Seasonal disease 

cycles may vary among years (Ragone Calvo et al. 2003, Audemard et al. 2006), but we 

could not include these intra-annual dynamics in the models because disease data is only 

collected during the fall in Maryland. For example, where MSX and dermo co-occur, 

MSX can have several peaks in intensity during the year (Andrews 1982), and one of the 

peaks in MSX sometimes occurs before a peak in dermo (Ragone Calvo et al. 2003, 

Audemard et al. 2006). When MSX causes widespread mortality before dermo (due to a 

peak in disease intensity), there are less oysters available to die and spread infective 

dermo particles (Ragone Calvo et al. 2003). Oysters can also acquire MSX and dermo 

concurrently (Sunila et al. 2000, Ragone Calvo et al. 2003), but the effect of oysters 

having both diseases is not well characterized. The disease level can also be quantified 

differently in the structural equation models; for example, infection intensity could be 

used instead of prevalence (e.g., Albright et al. 2007, Abbe et al. 2010, Bushek et al. 

2012). We did not include a measures of infection intensity in the models because 

methods to assess MSX intensity have changed over time.  

 

Natural mortality rates estimated on the NOAA code level were applied to all bars within 

the NOAA code, and thus the analysis ignores among bar variability within a NOAA 
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code. To address the different spatial scales between the NOAA code level estimates of 

natural mortality and the bar-level estimates of temperature, salinity, and disease 

prevalences used in the structural equation models, the analyses could either be 

conducted on the NOAA code level for all data, or the natural mortality could be 

modified to estimate bar-level natural mortality. Of these two options, using bar-level 

estimates of natural mortality would provide the best alignment between the model 

assumptions and the data. If natural mortality rates are similar among bars within a 

NOAA code, then the results of the analysis would not change; however, natural 

mortality rates varying substantially among bars within a NOAA code could change the 

results of the analysis.  

 

We had to choose spatial categories to group the data for the models. We chose salinity to 

create spatial groupings, as we thought that if refuges from disease existed, they would 

occur based on average salinity regimes. The salinity zones from Maryland Department 

of Natural Resources (2016) were one approach to define groups by salinity, although 

other salinity groupings are possible. The methods to create these salinity groupings were 

not specified in the report, and thus it is possible the salinity zones are not relevant to the 

modeled years. Furthermore, the salinity zones were created for NOAA codes, and thus 

by applying these groupings to bars, there could be some misclassifications. 

 

We also had to choose temporal breakpoints to group the data. We chose the breakpoints 

in the time series for two reasons: to break the time series into nearly even lengths of time 

and because of the high mortality events during 1999-2002. We thought that if resistance 
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to either MSX or dermo had developed in a short time frame due to a selective event, it 

would have developed after 2002, and therefore we would see evidence of resistance if 

we broke the times series between 2002 and 2003. For models with three breakpoints 

(four temporal groups), we further divided time series as evenly as possible between 1991 

and 2002, and 2003 and 2017. Other breakpoints could be possible, but 2002 was 

estimated as the best year for a single breakpoint (based on relative model fit) in a 

subsequent analysis in which the 2 temporal and 2 spatial group SEM was implemented 

varying the breakpoint year (breakpoints tested were every other year during 1996-2014). 

 

Another choice in the analysis was how to summarize environmental data in a way that is 

relevant to oyster disease. We chose average warm weather temperature and salinity 

because they are simple, relevant metrics that were possible to calculate with the 

temporal resolution of the kriged salinity and temperature estimates. Other possibilities 

include using degree days or specifying the number of observations where temperature or 

salinity were above or below a biological threshold for the effects of disease on oysters. 

Using either technique could be challenging due to the temporal resolution of the 

environmental data (observations were collected only 1 – 2 times per month). 

Furthermore, relationships could be non-linear (e.g., an exponential relationship between 

temperature and prevalence), which would be difficult to implement within the R 

package lavaan. Experimental studies and syntheses have provided insight into potential 

temperature and salinity thresholds for MSX and dermo (Hewatt & Andrews 1956, Ford 

& Haskin 1982, Ford 1985, Chu & La Peyre 1993, Chu et al. 1993), but using this 

information within our modeling framework would also be difficult. 
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Previous oyster disease studies have found high winter temperature correlated with high 

MSX disease levels the following year (e.g., Ford & Haskin 1982, Bushek et al. 2012). 

Using average winter temperature (i.e., temperature during January and February) instead 

of warm weather temperature in our analysis had no qualitative effect on the changes in 

coefficients among spatial and temporal groups. Additional sensitivity analyses of 

changing the months of data included in the averages of temperature and salinity could be 

conducted to understand the effect of our chosen temperature and salinity windows on the 

analysis. 

 

Another limitation of the analysis is that it was not possible to include estimates of 

uncertainty in natural mortality in the SEMs. Output from the Bayesian natural mortality 

model (chapter 1) was treated as data in the SEMs. Similarly, we used estimates of 

temperature and salinity that were derived from kriging. Using model estimates as data 

can be problematic because the uncertainty in the estimates is not promulgated through 

the analyses, which can cause conclusions to be overstated (Brooks & Deroba 2015). To 

improve the analysis, the uncertainty of the estimates could be included when fitting the 

structural equation models, or both the estimation of natural mortality and fitting of 

structural equation models could be done within the same framework. Including 

uncertainty was not done because it could not be implemented in the R package lavaan 

that we used to fit the SEMs. 

 



 

 

68 

 

Our analysis estimated change in the environment-disease-mortality relationships for 

oysters in Maryland and suggests that both environmental conditions and potential 

changes in how oysters resist disease are important to consider when trying to predict 

mortality from disease. In particular, natural mortality rates have been low since 2003 

(chapter 1) likely not just because of good environmental conditions (i.e., high rainfall 

resulting in lower than normal salinity), but also because oysters appear to have 

developed resistance to MSX.  This resistance is indicated by a decrease in the natural 

mortality at a given level of MSX prevalence and possibly by a reduction in the level of 

prevalence at a given salinity. Thus, lower mortality levels from MSX may be expected 

into the future in Maryland barring additional changes in this complex disease system.  

These results are encouraging because oyster recovery may not be possible without 

decreases in disease-related natural mortality (Mann & Powell 2007). 
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Tables 

 
Table 4. Structural equation models compared, with their associated temporal and spatial groups. These 

models have the same structure (outlined in Figure 15) and only differ in the number of spatial and 

temporal groups (shown in the number of temporal/spatial groups columns). The temporal groups (years) 

column shows the year range for each temporal group, while the spatial groups (salinity zones) columns 

shows how the data were divided up into spatial groups using salinity zones.  The total number of groups 

column shows the number of separate models estimated due to the number of spatial and temporal groups 

used to divide up the data. 

Model 

number 

Number 

of 

temporal 

groups 

Temporal groups 

(years) 

Number 

of spatial 

groups 

Spatial groups (salinity 

zones) 

Total 

number 

of groups 

1 1 1991-2017 1 All zones together 1 

2 2 1991-2002, 2003-1997 1 All zones together 2 

3 4 1991-1997, 1998-2004, 

2005-2011, 2012-2017 

1 All zones together 4 

4 1 1991-2017 2 Low and Medium/High 2 

5 1 1991-2017 3 Low, Medium, and High 3 

6 2 1991-2002, 2003-2017 2 Low and Medium/High 4 

7 2 1991-2002, 2003-2017 3 Low, Medium, and High 6 

8 4 1991-1997, 1998-2004, 

2005-2011, 2012-2017 

2 Low and Medium/High 8 

9 4 1991-1997, 1998-2004, 

2005-2011, 2012-2017 

3 Low, Medium, and High 12 
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Table 5. Model selection criteria and absolute fit measures for SEM models. The first three columns show model number (which corresponds with model 

numbers in Table 4) and the number of temporal and spatial groups included in the model, respectively. Model selection criteria are shown relative to the model 

with the lowest value and included Akaike information criterion (AIC), Bayesian information criterion (BIC), a sample size corrected Bayesian information 

criterion (BIC2), sample size corrected AIC (AICc), and Hannan-Quinn Information Criterion (HQC). Absolute fit measures included the root mean squared error 

of approximation (RMSEA), standardized root mean squared residual (SRMR), and the comparative fit index (CFI). The shaded row indicates the model chosen 

on the basis of the model selection criteria and relatively good fit measures. 

Model 

number 

Number 

of 

temporal 

groups 

Number 

of  

spatial 

groups ΔAIC ΔBIC ΔBIC2 ΔAICc ΔHQC RMSEA SRMR CFI 

1 0 0 1488.05 1239.62 1353.96 1455.07 1352.62 0.07 0.02 0.99 

2 2 0 649.83 461.92 538.15 617.65 537.26 0.11 0.03 0.96 

3 4 0 662.00 595.12 595.12 633.03 595.12 0.14 0.04 0.95 

4 0 2 1162.88 974.96 1051.19 1130.69 1050.30 0.09 0.03 0.97 

5 0 3 1107.36 979.96 1018.08 1076.51 1017.63 0.10 0.03 0.97 

6 2 2 66.88 0.00 0.00 37.92 0.00 0.12 0.04 0.94 

7 2 3 23.45 77.61 1.37 0.00 2.27 0.15 0.04 0.92 

8 4 2 76.80 251.99 99.53 61.32 101.32 0.17 0.05 0.92 

9 4 3 0.00 417.26 112.34 8.50 115.91 0.21 0.06 0.88 
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Table 6. R2 for each group and variable and number of observations per group for the selected model 

(model 6; 2 temporal and 2 spatial groups). The years and salinity columns indicate the temporal and 

spatial classifications of the group, while the columns MSX Prevalence, Dermo Prevalence, and Mortality 

indicate R2 values for their respective variables. The number of observations indicates the number of points 

(observations of temperature, salinity, disease prevalences, and natural mortality for one bar in one year) 

included in each of the temporal and spatial groups. 

 

Years Salinity Zone 

MSX 

Prevalence 

Dermo 

Prevalence Mortality 

Number of 

observations 

1991-2002 Low 0.22 0.26 0.45 241 

2003-2017 Low 0.11 0.08 0.20 329 

1991-2002 Medium/High 0.33 0.11 0.39 246 

2003-2017 Medium/High 0.20 0.18 0.24 329 

 

 

Table 7. Mean, median, minimum, and maximum of temperature, salinity, disease, and mortality data used 

in the models by model 6 (2 temporal and 2 spatial groups). These were calculated by grouping the model 

input values for each variable (Variable column) by temporal (years) and spatial (salinity zone) groups, 

then calculating each measure (mean, median, minimum, and maximum) using the data for each group. 

Years Salinity Zone Variable Mean Median Minimum Maximum 

1991-2002 Low Temperature 21.6 21.6 19.7 23.0 

2003-2017 Low Temperature 21.4 21.4 19.5 23.0 

1991-2002 Medium/High Temperature 21.6 21.5 19.9 23.1 

2003-2017 Medium/High Temperature 21.5 21.4 19.5 23.1 

1991-2002 Low Salinity 10.4 10.3 3.5 17.1 

2003-2017 Low Salinity 9.5 9.8 3.1 15.5 

1991-2002 Medium/High Salinity 12.9 13.3 6.4 19.2 

2003-2017 Medium/High Salinity 12.6 12.6 5.7 18.2 

1991-2002 Low MSX Prevalence 4.4 0.0 0.0 60.0 

2003-2017 Low MSX Prevalence 0.7 0.0 0.0 26.7 

1991-2002 Medium/High MSX Prevalence 15.7 6.7 0.0 100.0 

2003-2017 Medium/High MSX Prevalence 5.5 0.0 0.0 60.0 

1991-2002 Low Dermo Prevalence 76.1 86.7 0.0 100.0 

2003-2017 Low Dermo Prevalence 52.9 53.3 0.0 100.0 

1991-2002 Medium/High Dermo Prevalence 84.1 90.0 6.7 100.0 

2003-2017 Medium/High Dermo Prevalence 63.2 70.0 0.0 100.0 

1991-2002 Low Mortality 29.9 27.9 0.9 89.6 

2003-2017 Low Mortality 14.6 10.3 0.3 62.2 

1991-2002 Medium/High Mortality 38.6 35.5 0.6 96.1 

2003-2017 Medium/High Mortality 16.1 15.1 0.4 74.8 
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Table 8. Coefficient estimates for the selected model (model 6; two temporal and two spatial groups). Years and salinity zone columns indicate the group for 

which the coefficient was estimated. For the relationship column, the coefficient is included with the variable on the left-hand side of the relationship to estimate 

the variable on the right-hand side. Asterisks to the left of the estimate indicate coefficients that were not significantly different from zero. SE is the standard 

error associated with the estimate, and Lower/Upper 95% CI are the lower and upper approximate 95% confidence intervals, respectively. 

Years Salinity Zone Relationship Estimate SE Lower 95% CI Upper 95% CI 

1991-2002 Low Temperature -> % MSX Prevalence 2.009 0.949 0.148 3.870 

2003-2017 Low Temperature -> % MSX Prevalence *-0.348 0.203 -0.745 0.049 

1991-2002 Medium/High Temperature -> % MSX Prevalence *-2.383 1.602 -5.523 0.757 

2003-2017 Medium/High Temperature -> % MSX Prevalence -2.930 0.731 -4.363 -1.496 

1991-2002 Low Salinity -> % MSX Prevalence 1.905 0.260 1.396 2.414 

2003-2017 Low Salinity -> % MSX Prevalence 0.376 0.059 0.260 0.491 

1991-2002 Medium/High Salinity -> % MSX Prevalence 4.200 0.385 3.446 4.954 

2003-2017 Medium/High Salinity -> % MSX Prevalence 1.876 0.214 1.457 2.296 

1991-2002 Low % MSX Prevalence -> % Mortality 0.796 0.089 0.621 0.971 

2003-2017 Low % MSX Prevalence -> % Mortality *0.103 0.239 -0.366 0.571 

1991-2002 Medium/High % MSX Prevalence -> % Mortality 0.670 0.062 0.549 0.791 

2003-2017 Medium/High % MSX Prevalence -> % Mortality 0.347 0.060 0.230 0.465 

1991-2002 Low Temperature -> % Dermo Prevalence 8.305 2.444 3.515 13.094 

2003-2017 Low Temperature -> % Dermo Prevalence *-1.795 2.377 -6.454 2.864 

1991-2002 Medium/High Temperature -> % Dermo Prevalence *2.262 1.825 -1.315 5.840 

2003-2017 Medium/High Temperature -> % Dermo Prevalence *1.755 2.253 -2.660 6.170 

1991-2002 Low Salinity -> % Dermo Prevalence 4.950 0.668 3.641 6.260 

2003-2017 Low Salinity -> % Dermo Prevalence 3.649 0.692 2.293 5.005 

1991-2002 Medium/High Salinity -> % Dermo Prevalence 2.074 0.438 1.215 2.933 

2003-2017 Medium/High Salinity -> % Dermo Prevalence 5.361 0.659 4.069 6.653 

1991-2002 Low % Dermo Prevalence -> % Mortality 0.287 0.034 0.221 0.354 

2003-2017 Low % Dermo Prevalence -> % Mortality 0.184 0.021 0.143 0.225 

1991-2002 Medium/High % Dermo Prevalence -> % Mortality 0.277 0.063 0.154 0.400 

2003-2017 Medium/High % Dermo Prevalence -> % Mortality 0.146 0.020 0.107 0.184 
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Table 9. Intercept estimates for the selected model (model 6; 2 temporal and 2 spatial groups). Years and 

salinity zone columns indicate the group for which the intercept was estimated, and the variable indicates 

the variable for which the intercept was estimated. Asterisks to the left of the estimate indicate intercepts 

that were not significantly different from zero. SE is the standard error associated with the estimate, and 

Lower/Upper 95% CI are the lower and upper approximate 95% confidence intervals, respectively. 

 

Years Salinity Zone Variable Estimate SE 

Lower 95% 

CI 

Upper 95% 

CI 

1991-2002 Low MSX Prevalence -58.79 20.01 -98.02 -19.57 

2003-2017 Low MSX Prevalence *4.53 4.32 -3.94 13.01 

1991-2002 Medium/High MSX Prevalence *12.69 33.40 -52.78 78.16 

2003-2017 Medium/High MSX Prevalence 44.84 15.38 14.70 74.98 

1991-2002 Low Dermo Prevalence -154.50 51.51 -255.45 -53.55 

2003-2017 Low Dermo Prevalence *56.66 50.74 -42.79 156.12 

1991-2002 Medium/High Dermo Prevalence *8.40 38.06 -66.20 82.99 

2003-2017 Medium/High Dermo Prevalence *-41.78 47.36 -134.59 51.04 

1991-2002 Low Mortality *4.54 2.69 -0.72 9.81 

2003-2017 Low Mortality 4.80 1.28 2.28 7.31 

1991-2002 Medium/High Mortality *4.89 5.31 -5.53 15.31 

2003-2017 Medium/High Mortality 4.93 1.36 2.25 7.60 
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Figures 

 
Figure 14. Map of Maryland portion of Chesapeake Bay showing location of oyster bars included in 

models. The circles represent the approximate location of the center of the oyster bars and are shaded gray 

based on the salinity zone category. The gray asterisk denotes the approximate location of Washington, 

D.C. for reference. 

 
Figure 15. Path analysis diagram of structural equation models. Following standard path analysis diagram 

conventions, the boxes represent observed variables in the model. The arrows indicate the direction of the 

relationships, where the variable from which the arrow originates causes the variable to which the arrow is 

pointing. Intercepts, covariances, and residual variances are not illustrated here for clarity, but all 

relationships are assumed to be linear with an intercept. 
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Figure 16. Coefficients (bars) of model relationships (plot titles) for the selected model, model 6 (2 

temporal and 2 spatial groups). The error bars represent approximate 95% confidence intervals. The units 

for temperature are °C, for prevalences are percent infected, and for mortality are percent yr-1. The units of 

the coefficients therefore are the units for the second variable of the relationship per the units of the first 

variable; for example, the units for the temperature affecting MSX relationship (top left) are percent 

infected °C-1). Negative values indicate that there is an inverse relationship between the two variables. 
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Appendices 

Appendix to Chapter 2 

 

 
 

Figure 1-A. Example kriged data set for salinity, Cruise BAY282 (August 1998). The top row of figures 

show kriged point estimates (kriging prediction) and its associated standard error (kriging standard error) 

on maps of the Chesapeake Bay. The colors on the plots show the predictions of point estimates or standard 

error from kriging, while the black circles denote the location of samples used in kriging. The bottom row 

shows the experimental variogram (points) and the fitted variogram model (line) used in kriging. The text 

in the bottom right corner of the variogram plot shows the fitted variogram model form and its estimated 

parameters. 
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Figure 2-A. Example kriged data set for temperature (°C), Cruise BAY284 (August 1998). Symbol 

definitions are the same as appendix figure A-1. 
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Figure 3-A. Average water temperature (°C) and salinity by oyster bar during March – October. 

Temperature estimates are shown in red, while salinity estimates are shown in blue. The boxes at the top of 

each plot show the bar name (top) and its salinity category (Low, Med, or High; bottom). All points in 

these plots were used as input for the structural equation models. 

 

 

 
Figure 4-A. Fall disease prevalences and natural mortality.  MSX prevalence is shown in black, Dermo 

prevalence is shown in blue, and natural mortality is shown in orange. The boxes at the top of each plot 

show the bar name (top) and its salinity category (Low, Med, or High; bottom). All points in these plots 

were used as input for the structural equation models. 

 



 

 

79 

 

 

Biplots: 

 
Figure 5-A. MSX prevalence (percent infected) versus temperature (°C). Points denote observations of 

MSX prevalence and temperature at a bar in a year. These were plotted separately according to the spatial 

and salinity groups in the selected model (model 6, 2 temporal and 2 spatial groups). The temporal (years) 

and spatial (salinity zone) group is shown in the title of each plot. The line and shaded area are loess curves 

and estimated uncertainty. 

 

 
Figure 6-A. MSX prevalence (percent infected) versus salinity. Symbol definitions are as in Figure 5-A. 
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Figure 7-A. Natural mortality (percent yr-1) versus MSX prevalence (percent infected). Symbol definitions 

are as in Figure 5-A, but a loess curve and uncertainty was not estimated, and a small amount (5%) of 

random noise was added to the data to reveal overlapping points. 

 

 

 

 
Figure 8-A. Dermo prevalence (percent infected) versus temperature (°C). Symbol definitions are as in 

Figure 5-A. 
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Figure 9-A. Dermo prevalence (percent infected) versus salinity. Symbol definitions are as in Figure 5-A. 

 

 

 

 
Figure 10-A. Natural mortality (percent yr-1) versus dermo prevalence (percent infected). Symbol 

definitions are as in Figure 5-A. 
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Figure 11-A. Salinity versus temperature (°C). Symbol definitions are as in Figure 5-A. 

 

 

 
Figure 12-A. Dermo prevalence (percent infected) versus MSX prevalence (percent infected). Symbol 

definitions are as in Figure 5-A, but a loess curve and uncertainty were not estimated, and a small amount 

(5%) of random noise was added to the data to reveal overlapping points. 
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Table 1-A. Residual variances and covariance estimates for the best model (2 temporal and 2 spatial 

groups). Years and salinity zone columns indicate the group for which the variance or covariance was 

estimated, the variable column shows the variable for which covariance or residual variances were 

estimated. For covariances, the other variable name is shown in the covariance variable column.  SE is the 

standard error associated with the estimate, and Lower/Upper 95% CI are the lower and upper approximate 

95% confidence intervals, respectively. Exogeneous variables (temperature and salinity) do not have 

estimates of error. 

 

Years Salinity Zone Variable 

Co-

variance 

Variable Estimate SE 

Lower 

95% CI 

Upper 

95% CI 

1991-2002 Low Temperature  0.427 NA NA NA 

1991-2002 Low Temperature Salinity 0.378 NA NA NA 

1991-2002 Low Salinity  5.710 NA NA NA 

1991-2002 Low 

MSX 

Prevalence  87.309 7.954 71.720 102.898 

1991-2002 Low 

Dermo 

Prevalence  578.255 52.678 475.007 681.503 

1991-2002 Low Mortality  204.373 18.618 167.882 240.864 

2003-2017 Low Temperature  0.525 NA NA NA 

2003-2017 Low Temperature Salinity 0.177 NA NA NA 

2003-2017 Low Salinity  6.203 NA NA NA 

2003-2017 Low 

MSX 

Prevalence  7.023 0.548 5.950 8.096 

2003-2017 Low 

Dermo 

Prevalence  967.474 75.432 819.627 1115.320 

2003-2017 Low Mortality  147.718 11.517 125.144 170.292 

1991-2002 Medium/High Temperature  0.423 NA NA NA 

1991-2002 Medium/High Temperature Salinity 0.536 NA NA NA 

1991-2002 Medium/High Salinity  7.343 NA NA NA 

1991-2002 Medium/High 

MSX 

Prevalence  242.481 21.864 199.628 285.333 

1991-2002 Medium/High 

Dermo 

Prevalence  314.795 28.384 259.162 370.428 

1991-2002 Medium/High Mortality  331.169 29.860 272.642 389.696 

2003-2017 Medium/High Temperature  0.468 NA NA NA 

2003-2017 Medium/High Temperature Salinity 0.327 NA NA NA 

2003-2017 Medium/High Salinity  5.463 NA NA NA 

2003-2017 Medium/High 

MSX 

Prevalence  78.869 6.149 66.817 90.922 

2003-2017 Medium/High 

Dermo 

Prevalence  748.102 58.328 633.779 862.425 

2003-2017 Medium/High Mortality  112.985 8.809 95.719 130.251 
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Table 2-A. Years and NOAA codes where freshets were known to occur. Data from bars within these 

NOAA codes in the years listed were not included in the structural equation models. 

 

Year NOAA Code 

1993 377 

1994 377 

1996 377 

1998 377 

1993 274 

1994 129 

1994 25 

1994 331 

1994 231 

1994 337 

1996 129 

1996 25 

1996 331 

1996 231 

1998 129 

1998 337 

2011 25 
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