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The stability of time-invariant multiparameter singular perturbation problems is
considered and the implications of two time-scale stability resuits for multiple time-
scale systems are clarified. An example shows that the asymptotic stability of a
multiparameter singular perturbation problem under the ‘bounded murual ratios’
assumption for arbitrary bounds on the ratios of the small parameters does not
imply asymptotic stability under the multiple time scales assumption for any
ordering of the smallness of the purameters. However, this conclusion does apply
when only two small parameters are present and the fast variables are scalar-valued.
A multipacrameter singularly perturbed system may be asymptotically stable for all
sufficiently small (and positive) values of the perturbuation parameters, even though
the boundary layer system does not sutisfy the D-stability criterion. These examples
are discussed in the light of the 'strong D-stubility’ condition which must be imposed
to obtain results that are robust to small perturbations in the model. Necessary and
sufficient conditions for robustness of a stability property that holds for all
sullicicatly small values of the singular perturbation parameters are given.

1. Introduction
This paper resolves several questions regarding the asymptotic stability of time-
invariant muitiparameter singular perturbution problems of the form

X=dAx-+ By (1w
gy;=Cx+Dy, i=1,...,M ' {1b)

Here xeR", y=(y,, .-, ya) e R", yieR™, e=(¢,, ..., &) with each g >0 a small
parameter, 4, B, C,, D; are real matrices of appropriate dimension, and the dot denotes
differentiation with respect to time ¢.

Recall (Abed 1985 b, Khalil and Kokotovic 1979 b and Ladde and Siljak 1983)
that (1) possesses two time scales if the ratios ¢/¢; are bounded, and it possesses
multiple time scales otherwise. The multiple time-scale case is typtfied by the
assumption (Tokhonov 1952, Wasow 1965, Hoppensteadt 1971 and O’Malley 1969)
Eivr/e;—~0asg—0,i=1,..., M — L In the sequel, it will be convenient to refer to
systems with two time scales by stating that they possess ‘bounded mutual ratios.” In
this way no confusion will arise when the bounds on the ratios of the small parameters
are discussed.

The following three questions are resolved in this paper.

Question 1
Does the asymptotic stability of (1) under the bounded mutuul ratios assumption
for arbitrury bounds on the ratios ¢/¢; imply asymptotic stability even under the
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1. Introduction

This paper resolves several questions regarding the asymptotic stability of time-
invariant multiparameter singular perturbation problems of the form

T — Az + By © (1a)
¢y fj.l == (Ji x A ])z Y., ) :l,,u.,l‘/[. (lb)
Here 2 €ERY, y = {(y,, ..., yy) ER™, vy er™, € = {€, ..., €p) with cach

¢; > 0 a small parameter, A, B, C;, D; are real matrices of appropriate dimension,
and the dot denotes differentiation with respect to time { .

Recall {2,5, 7] that (1) possesses two time scales if' the ratios ¢; /e; arc bounded,
and it possesses multiple time scales otherwise. The multiple time-scale case is typified
by the assumption {11, 13,3, 8! €;,,/¢; —+ 0 as ¢; — 0,7 = 1,..,M~1. In the scquel it
will be convenient to refer to systems with two tiine scales by stating that they possess

5

‘hounded mutual ratios.” Jn this way no confusion will arise when the bounds on the

ratios of the small parameters are discussed.
The following three questions are resolved in this paper:

Question 1. Does the asymptotic stability of (1) under the bounded mutual ratios
assumption for arbitrary bounds on the ratios €i/6j imply asymptotic stability even
under the multiple time scales hypothesis, for arbitrary ordering of the smallness of
parameters?

Question 2. Is the so-called block D -stability condition necessary for Eq. (1) to be
asymptotically stable for all sufliciently small | € |, €; > 0,1 =1,.,M, regardless of the
ratios ¢; /€; 7

Question 3. What are the necessary and sufficient conditions for the robustness of the
stability property of Question 2 to small perturbations in the matrices A ,B Gy Dy ?

The difficulty one encounters in Question 1 is that the upper bounds on the ¢;
guarantecing stability might vanish in the limit that the upper and lower bounds on the
ratios of the ¢; approach oo and 0, respectively. Question 1 is resolved by presenting an
example. It turns out that the answer to Question 1 is negative except in the case
A = m -= 2 This observation shows, in particular, that general results on systems (1)
containing two small parameters ¢, ¢, need nol apply to systems with three or more
small parameters. Question 2 is the casiest of the questions above to resolve and is
included mainly as motivation for Question 3, whose resolution depends on the recently
proposed concept of strong D -stubility {1].

halil and Wokotovic 4] have also considered the relationship between the stability
properties of system (1) under the bounded mutual ratios assumption and the multiple
time scales hypothesis. They obtained explicit conditions under which a certain block
D -stability condition which implies stability assuming bounded mutual ratios also
implics stability in the multiple time-seale set-up. The results on Question 1 given below
indicare that some such additional conditions are indeed necessary to guarantee stability

in the multiple time scales setting




As in [2], it is useful to define matrices € and D by

C' = block diag (C,,...,Cyy) (2a)

D = block col (D ,....Dyy) - (2h)

and rewrite (1) as

r = Az + By (3a)
E(e)y == Cx + Dy (3b)
where ' (€) 1= block diag (€,1,, ,....€) Ly, )

In the scquel o(f7) for a square matrix £ denotes the spectrum or set of eigenvalues
of F, and R‘y denotes  the positive orthant of R™, e the set
{ ce M tep >0, ¢ =1,..M } It will at times be convenient to use the notation
A=A -BD™C, und to dcnote the Jacobian matrix of (3) by J(¢), i.e.

A B

J{e) = E )¢ EY D]

(4)

2. Background

In this section several theorems on the stability of multiparameter singular pertur-
bation problems are recalled. The first follows from a time-varying version proved by
Khalil and Kokotovic [5]. It applies under the bounded mutual ratios assumption.

Theorem 1. Let H denote the set

v, =1,..,.M } (5)

where the ¢;; and Cy; are fized positive numbers. Then the null solution of (3) is asymp-
totically stable for all ¢ € H with |e| sufficiently small if: (1) the reduced system obtained
by formally setting € == 0 us asymptotically siable, i.e.
Reo (A —BD'C) < o, (6)
and (17 )
Re o (I He)D) < 0 (7)
Jor wll e € H .
Recall {10, that a square matrix /7 is said to be D -stable it tor any diagonal matrix
D with strictly positive diagonal clements, DF is stable. Assumption (47 ) can be viewed

as a special instance of the following definition {5].




Definition 1. The matrix F € R™*™ is block D -stable (relative to the multi-index
(my,...omy))if forall d; > 0,1 =1,.. M,

Reo(D(d)F) < 0 (8)
where

D (d) := block diag (d [y, , . .., dy L) (9)

Thus (20) of Theorem 1 holds if D is block D -stable relative to the multi-index
(my,...,my ). Before stating the next theorem it is useful to introduce the following ter-
minology {1].

Definition 2. The matrix /7 € R™ "™ is strongly D-stable it (¢) F' is D -stable, and

(w0 ) there is a g > 0 such that /7 4+ is D -stable for cach G € R™ ™™ with |G| < 4.
Definition 2 is a special case of the following more general notion of ‘strong block

D -stabilicy.” A general class of strongly block D -stable matrices has been identified in

i
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Definition 3. The matrix F € R™*™ s strongly block D -stable (relative to the
multi-index m == (m,....my)) it (2 ) I is block D -stable (relative to 7 ), and (47 ) there
is a gt > 0 such that /' +G is block D -stable (relative to ) for each G € R™*x™
with |G < p.

The next theorem states that if the reduced system is stable and if D is strongly
block D -stable, stability of the multiparameter singular perturbation problem (3) is
guaranteed for all sufficiently small |c| € € R‘l’. Note the removal of the constraint (5)
on the relative magnitudes of the singular perturbation parameters which was needed in
Theorem 1. Thus, assuming strong block D -stability, a significant generalization is real-
ized. Both the two time-scale setting and the multiple time-scale case are treated in the
same framework.

Theorem 2. Suppose that all etgenvalues of Ay = A ~BD *C have strictly negative real
parts, and let D be strongly block D -stable. relative to the multi-index (m,....mu).
Then there is a > 0 such that the null solution of system (1) (or, equivalently, of (3)) is
asymptotically stable for all € == (¢,, . . ., ep) withld < pande; > 0,7 =1,.. .M.

Theorem 2 is a special case of the following result.
Theorem 3. Suppose A, is « stable matriz, and let the set I C I Iil be such that

Re ol lL"NeYD ) < 0 (10)

Jor all e € [T . Morcover. assume that (10) also holds f D is replaced by any sufficiently
small perturbation of D, for all e € II . Then the null solution of (3) is asymptotically
stable for all ¢ € 1 with|d sufficiently small.

The next lemma was invraduced in {20 Tv gives an algebraic matrix Riceati equation
whose solution is usetul in exhibiting o vransformation which decouples the fast and slow
mades of (3). C



Lemma 1. Suppose det D £ 0 und denote E = E(¢), Ag:= A ~ BD'C. Then

the Riccati equation
pr + EMD'C -1)A, — ETBI + ED'CBT =0 (11)

for the m Xn matrix T has a locally unique solution T'(¢) near 0 € R™*" for |
sufliciently small.

The next theorem gives an exact expression for the eigenvalues of J(€) in terms of
the cigenvalues of matrices associated with appropriate fast and slow subsystems of (3).
This theorem was derived in {2] by using Lemma | to exhibit a similarity transformation
rendering J(€) in block upper triangular form. It will be the main tool in the stability
analysis of the examples studied below.

Theorem 4. Let |d| be sufficiently small so that Lemma 1 applies. Then
o(J(€) =oa(dA - BD'C + BI(c) U oL e)D + DT'CB - I'(e)B) (12)
fe; 70,0 = 1,0,

3. Stability of multiple time-scale systems

Condition (i2 ) of Theorem 1 holds if D is block D -stable. Hence if D is block D-
stable and the eigenvalues of 4 4 all have negative real parts, asymptotic stability of the
multiparameter singularly perturbed system (3) is certain for all sufficiently small l€|
¢ € H . Indeed, this statement applies for any set f{ of the form (5), i.e. for arbitrary
bounds 0 < ¢;; < Cy; < oc. In the limic that ¢;; — 0 and C;; — oo the set H
approaches the positive orthant I2 ‘l".

These considerations might lead one to assert that if, for any set H of the form (5)
(i.e., for arbitrary ¢;; . C’ij > 0), the multiparameter problem (3) is asymptotically stable
for all ¢ € H with |¢ sufficiently small, then (3) is also asymptotically stable under the
multiple time scales hypothesis, for all possible orderings of the smallness of the parame-
ters €, . .., €3y. Unfortunately the claim is false. ‘The claim fails because the upper
bound on IE] cuaranteeing stability may vanish in  the limit ¢; — 0 and

C.; —co,1,) = 1. M.

ij
Recall that the authors of [4] obtain explicii conditions under which block D -
stability also implies stability in the multiple time-scale set-up. In the light of the firse
example given bhelow, it is clear that some such additional condition on the system is
pecessary to guarantec stability in the multiple time-scale setting. Another approach is
to invoke Theorem 2 using strong [ -stability Now on to the example.
Consider  a  multiparameter  singular  perturbation  problem (3) with n =3,
== =23, and with matrices A . £, ¢, D given by

000 : 001
A !l—fl ()]. Do [() 01 ]

110 “L00




0 01
C=1,, D = [0 -1 1)‘ (13)
-1-10

The matrix [ is easily checked to be D -stable. However D is not strongly D -stable,
since for any p >0 the perturbed matrix

oot

D, == [0 -1 1]. (14)
-1 -10

is not D -stable. T'o see this, note that the characteristic polynomial of ©(8)D 4 Where

e(0) is a diagonal matrix diag (9,,0,,05), 0, >0, 1 = 1,2,3, is

N 0y = O N o (005 — 0,0, + 0,05 )N

+ (L = e )0,050,. ' (15)
Clearly the coeflicient of A2 can be made nonpositive by a suitable choice of 8,, 8, > 0,
for any p>0.

Usce Theorem <4 to approximate the eigenvalues of the system for small Iel: one has

A-BD'C = -1, so that the three slow eigenvalues are O (]c|) close to —1, and
100
DB — [0 0 o), (16)
001
implying the fast eigenvalues are O (I(—:|) close to the eigenvalues of
1 0 51_1
K{¢):=EYo)D + D*'CB = 0 —e et (17)
el -1
€7 et 1
The characteristic polynomial py (A} of K (¢) may be computed as
1 o 2 1 1
pr(N) =N+ (— — 2\ o (12 + 2N
€, €y €,€4 €0€q
: 1 1 ) 1
(== - : (18)
€y €afy €1€s€5

Recall that all the roots of a cubic polynomial X* + po.\® + p,\ + p, have negative
real parts iff and only if p; = 0.7 ==0,1,2 and p,p, > po. The coellicients of pg (N)
will clearly be positive for all sufliciently small positive ¢,,¢,,¢;,. Now the condition

PP o - P ls casily checked to transiate into the inequality
1 4 2 I 2
J S 0 4 e . B
o o7 . / 2 (19)
Caty o €16 Cuy Co

Multiplication of (19) by ¢,¢, gives the cquivalent condition
PG L0 &G
dey o o—(—) 20y F 22— — 42— (20)
o Oy €2 Cy Oy -

Clearly, inequality (20) can be satisfied given any (finite) bounds on the ratios ¢; /cj by




choosing ¢, sufticiently small. However, it is not satisfied for all €;,€6,,65 > 0 with

€; < p for any p > 0. This can be seen by noting that the left side of inequality (19)

1
does not depend on €;. Thus, even though the left side of (19) is of higher order than
the right side, it can not be made larger than the right side for all sufficiently small lel
T'o see that even under the multiple time-scale set-up this system need not be stable,
choose the ordering

€L == €, €3 = €5 (21)
ol the small parameters. Denoting ¢, by 6 for simplicity, (19) now becomes

1 A 2 1 2
— = =2 S

51 8 & 8 &

(22)

Since the right side of (22) is larger than the left side for all sufficiently small values of 6,
clearly the multiple time-scale problem for this example with the given ordering of small-
ness of parameters is unstable for all sufficiently small €o!

Remark 1. In the analysis of vhis example, terms in the characteristic polynomial of
order O (|el) have been justifiably disregarded, as they can not change the stability of the
system for sufliciently small lc[ unless one is dealing with a case in which the analysis
shows the system is marginally stable. The strictness of satisfaction of the inequalities
above (or of their opposites in case of instability) shows that no marginal stability or
marginal instability arises here.

Remark 2. One can easily check that it is not possible to construct an example with
only two small parameters €,. ¢, and scalar fast variables y,, y, which yields the same
conclusion as the loregoing example. Simply use Theorem 4 and the fact that a monic
quadratic polynomial is stable precisely when the coefficients are positive. Hence the
answer to Question 1 is yes only for M = m == 2.

4. D -Stability is not necessary for stability

From the results stated in Section 2 one might suspect that strong D -stability is a
necessary condition for stabiliry of system (3), if it is required that stability holds for all
sulliciently small |, ¢, >0, 1 == 1,...,M regardless of the ratios ¢; /€;. The next example
shows that such is not the case. and moreover that the stated property might hold even
it the milder D -stability condition does not apply.

Consider Eq. (3) where

01

10
1o )

D= (74). 07 = (4 (23)

and where A is chosen such that A —=BD "' is stable. Since D has a pair of pure ima-
ginury cigenvalues =4/, it is clearly not D -stable. The ‘fast ecigenvalues’ of (3) will by
Theorem 4 be O (H) close  to the roots of the characteristic polynomial of

YD + D NCB L which s

NN e

(24)

€10




The coefficients in the characteristic polynomial are positive for all sufficiently small
positive values of €, €,.

Thus for the present example system (3) is stable for all sufficiently small le[ €; >0,
¢ == 1,...,M, even though D is not strongly D -stable, indeed not even D -stable.

5. Robust stability

Two examples have been presented resolving questions on the relationship of two
tiine-scale and multiple time-scale singular perturbation problems. Although both exam-
ples are self-explanatory, some remarks regarding the second example are appropriate.
This éxample shows that D -stability is nof a necessary condition for the asymptotic sta-
bility of the multiparameter singular perturbation problem (3) for all sufficiently small
values of the small parameters, regardless of their relative magnitudes. This at first
glance is surprising since the first example did not possess this desirable stability pro-
perty, even though it did satisfy the D -stability hypothesis. The resolution of this issue
lics in the realization that it is often important to study the robustness of stability pro-
perties under small perturbations of the system model. With this viewpoint, the stability
property of the system of the second example does not persist under sméll perturbations
of the matrix D, since the perturbed D matrix may possess an eigenvalue with positive
real part. A similar statement holds for the first example since for some ¢ the matrix
E7Y(e)D may have positive real part if a small perturbation is allowed in D .

This line of reasoning leads to the following necessary and sufficient condition for
the robust stability of the multiparameter singular perturbation problem (3) for all
sufliciently small |e], ¢; >0,1 = 1,.. M.

Theorem 5. A necessary and sufficient condition such that
(i ) The null solution of the multiparameter

singular perturbation problem (3) ts asymptotically
stable for all sufficiently smallld € R* | and

(ii ) Property (i ) holds for all sufficiently small perturbations
of the malrices A .B.C D .

is that Ay be a stable matriz and D be strongly block D -stable.
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