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Abstract

Applications that query into very large multi-
dimensional datasets are becoming more common.
Many self-describing scientific data file formats have also
emerged, which have structural metadata to help navigate
the multi-dimensional arrays that are stored in the files.
The files may also contain application-specific semantic
metadata. In this paper, we discuss efficient methods
for performing searches for subsets of multi-dimensional
data objects, using semantic information to build multi-
dimensional indexes, and group data items into properly
sized chunks to maximize disk I/O bandwidth. This work is
the first step in the design and implementation of a generic
indexing library that will work with various high-dimension
scientific data file formats containing semantic information
about the stored data. To validate the approach, we have
implemented indexing structures for NASA remote sensing
data stored in the HDF format with a specific schema
(HDF-EQS), and show the performance improvements that
are gained from indexing the datasets, compared to using
the existing HDF library for accessing the data.

1 Introduction

Asthesize of datafiles produced in many scientific areas
continues to grow, currently it is not hard to find databases
containing terabytes of data, and petabytes or exabytes of
data will soon be common. In order to store and process
such large datasets, we have been developing middleware
systems such as the Active Data Repository(ADR) [12] and
DataCutter [4]. Scientific datasets can be stored and pro-
cessed on acluster or paralel machine with ADR or across
a distributed set of machines (the Grid) with DataCuitter.
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These systems support efficient subsetting and processing
of large dataset by integrating application-specific process-
ing into the storage manager.

Another issue related to dealing with large datasets
is that, to help in navigating through large scientific
datasets, many self-describing scientific data file formats
have been developed, such as Flexible Image Transport
System(FITS) [7], Planetary Data System(PDS) [1], Net-
work Common Data Format(NetCDF) [17], and Hierarchi-
cal Data Format(HDF) [15]. Self-describing data formats
contain structural metadata, which is used by a correspond-
ing runtime library to navigate through the file to improve
I/0 performance, by alowing for direct access (once the
metadata is read) to particular datasets within afile, or to
parts of the dataset. Files in these self-describing formats
also may contain application-specific metadata, which pro-
vides semantic information about the contents of thefile[8].
XML isan example of atext-based self-describing datafor-
mat that is widely used. In this paper, we address the prob-
lem of improving the performance of accessing subsets of
data stored in scientific self-describing data formats, using
spatial indexing techniques.

The contents of scientific data files typically are a col-
lection of multi-dimensional arrays, which we will refer to
as datasets, along with the corresponding metadata. Since
a dataset can be sparse, it is often useful to organize the
raw data as chunks of some fixed size and allocate stor-
age on demand, instead of organizing the data as one con-
tiguous sequence within the file. If no datais written to a
chunk then that chunk will not be allocated on disk. In addi-
tion to storage savings from allocating space for chunks as
needed, data chunking makes it possible to extend the size
of a dataset as required by an application and may also im-
prove /O performance, as we will show in the experimental
results later in the paper.

Dataset can be spread over disks discontinuously in
chunked storage layout, hence the file should have indexing
structures such as B-trees to locate the file address of each
chunks. However B-tree is not capable of handling multi-



dimensional information. And none of self-describing data
file formats support the multi-dimensional indexing feature
to the best of our knowledge.

In the past couple of decades, much research has been
done to create high-dimensional indexing structures that
satisfy range queries and nearest neighbor queries effi-
ciently, such as R-trees [9] and its descendants, including
R+-trees[19], and R*-trees[2], SS-trees[22], SR-tree[11],
and X-trees[3].

With these multi-dimensional indexing trees, we are de-
signing a generic indexing library that stores semantic in-
dexing information into any kind of self-describing scien-
tific dataformat. For this purpose, it isimpractical to mod-
ify the internal structures of various data formats; instead
we create separate index files for the data structures stored
in afile that uses a self-describing format. The index struc-
tures that are used depend on the semantics of the stored
scientific data objects. For example, some data objects may
require a one dimensional index based on temporal values,
while other data objects may require a 2D or 3D spatial
index. Such semantic information about what data fields
to use for indexing is required both to create index files
and to generate functions that allow for performing multi-
dimensional range queries using the index. A range query
specifies the data to be retrieved as a bounding rectanglein
amulti-dimensional coordinate space (i.e. the one used to
build the index).

Asthefirst step with this approach, and in order to show
that indexing improves 1/0 performance, we have designed
an indexing library that creastes an R*-tree for datasets
stored in HDF4 or HDF5 formats. We concentrate on im-
proving the performance of reading data from the datasets,
since many datasets are never modified once created (i.e.
datasets acquired from sensors or produced by simulations
do not change once acquired).

The rest of the paper is organized as follows. Sec-
tion 2 defines the terminology for data chunking, and dis-
cusses performanceissues related to chunking. In Section 3
we present the design of a generic spatial indexing library
and show the performance improvements provided by data
chunking and indexing for range queries. We conclude in
Section 4.

2 Data Chunking

Data chunking partitions a dataset into coarse-grained
blocks to reduce disk access time when accessing large
amounts of data in a file. Most self describing scientific
data formats store data as multi-dimensiona arrays, to ease
access from within scientific programs. Scientific applica-
tions access multi-dimensional arrays with various access
patterns. Some applications read sub-arrays in row major
order, or in column maor order. Others read sub-arrays

specified as regular sections [10]. Scientific data format li-
braries support reading sub-arrays with various access pat-
terns, but most of them do not show good 1/0O performance
along every dimension. Only afew libraries, which support
data chunking, achieve similar performancefor any kind of
access pattern. For datasets consisting of data arrays, each
data chunk can be viewed as a sub-array within the dataset.
The order of data accesses into a multi-dimensional array
critically affects the 1/O performance. To achieve maxi-
mum |/O performance by minimizing disk seek operations,
each chunk should be a single contiguous sequence in the
file. We use the term physical chunk to refer to a sub-array
that is a physically contiguous single sequence within afile
on disk. Depending on the data access pattern, physical
chunking can provide much higher 1/0 performance than
a contiguous, row or column major, ordering of the array
elements [21, 18]. A logical chunk, on the other hand, is
a conceptual partitioning of a dataset on disk. A multi-
dimensional dataset can be partitioned into logical chunks
whether it isasingle contiguous array or aphysically chun-
ked array. When adataset is stored asasingle array on disk,
disk seek operations are required to access each row of a
logical chunk. On the other hand, when a dataset is par-
titioned and ordered as physical chunks, the layout of the
physical chunking can aso be viewed as the logical chunk-
ing. However, logical chunking does not necessarily haveto
use the same partition as physical chunking, (i.e. alogica
chunk in a physically chunked dataset can contain several
physical chunks, and could even be a subset of a physical
chunk). Logical chunking by itself does not improve 1/0
performance, but is necessary to create an index into the
data, as we will discussin Section 3.

2.1 Casestudy - HDF

Hierarchical Data Format: Hierarchical Data Format
(HDF) is a self-describing scientific data file format and
runtime library devel oped at the National Center for Super-
computing Applications (NCSA) to store and serve hetero-
geneous scientific data. A file stored in HDF contains sup-
porting metadata that describes the content of thefilein de-
tail, including information for each multi-dimensional array
stored, such as the file offset, array size and the data type of
array elements. HDF also allows application-specific meta-
data to be stored. Thus, the metadata within a file make
HDF an essentially machine independent format. The most
recent version of HDF is HDF5. Although HDF5 was de-
signed to overcome some deficiencies of the older HDF4,
HDF5 has atotally different internal representation of data
objects from previous HDF versions. HDF4 is backward
compatible with previous versions HDF, but HDF5 is not
compatible with HDF4 [15].



Data chunking in HDF: To improve I/O performance,
HDF supports two different storage layouts. The default
storage layout is a contiguous layout, in which the elements
of amulti-dimensional array are stored in either row-major
order or column-major order. The second choiceis a chun-
ked layout, in which data is stored as physical chunks, as
described above, with each chunk stored in row-major or
column-major order.

Data chunking also works well with data set compres-
sion, hence HDF also provides a compressed chunked lay-
out. When an application requests a subset of a compressed
dataset stored with a chunked layout, it is not necessary
to decompress the entire data set, but only the chunks that
overlap with the requested subset [8]. However, we will not
discuss data compression issues further in this paper.

In HDF5, a chunked layout has other advantages over
a contiguous layout. In particular, a chunked storage lay-
out alows extending the size of a stored multi-dimensional
array in any dimension, not just the slowest varying ar-
ray dimension (outermost in row-major order, innermost in
column-mgjor order). In addition, disk space for a chunk
does not have to be allocated on disk until data is written
into that chunk, which can decrease disk storage require-
ments. HDF4, on the other hand, provides only some of the
advantages of a chunked layout. In HDF4, extending the
size of an array dimension is alowed only for the slowest
varying dimension, but not for any other dimensions.

In accessing a subset of a large dataset, data chunking
reduces expensive disk seek times and improvesoverall 1/0
performance by taking advantage of spatial locality in any
of dimensions [21]. If an application accesses a data ele-
ment in alarge dataset, thereis ahigh probability that it will
also access nearby elements, in al dimensions for a multi-
dimensional array dataset. On the other hand, the contigu-
ous storage layout can exploit spatia locality only in the
dimension that varies fastest in storage order. (i.e. thein-
nermost dimension for row-major order and the outermost
dimension for column-major order).

However, a chunked layout does not aways provide
better performance than a contiguous layout. One case
in which data chunking may hurt I/O performance occurs
when the size of a chunk is very large and the region se-
lected to read is smaller than the size of a chunk, causing
unnecessary data to be read from disk, since disk 1/O is a-
ways done in units of complete chunks.

Potential problems with HDF data chunking: Both
the HDF4 and HDFS libraries cache data in a data chunk
cacheto improve I/O performance. However, the functions
that read datasetsin both libraries are designed asif the size
of the data chunk cache is infinite, potentially causing sig-
nificant performance problems. Because the read functions
in the HDF libraries read arrays in row major (or column
major) order, whether the array has a chunked layout or con-
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(a) H5Dread. A chunked layout can reduce performance. Sup-
pose each chunk contains a subarray of 3x3 elements, and the
size of each chunk is 512K bytes. Since the default size of the
data chunk cache is IMB, the cache can only store two chunks.
Reading element (0,6) evictsthefirst chunk from the cache, which
contains element (1,0), thereby causing a cache miss.
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(b) H5Xread. The H5Xread function reads data elementsin chunk
order to minimize cache misses. Therefore the same chunk on
disk will not be read multiple times.

Figure 1. The ordering problemfor H5Dread with a
chunked layout

tiguous layout, that ordering does not match the ordering of
data with a chunked storage layout, potentially leading to
many data chunk cache misses.

Suppose we want to read two rows of a dataset stored
with achunked layout. The standard HDF library read func-
tion, H5Dread, reads the datain row major order, as shown
in Figure 1(a). When the first row of the array is read, al
array elements in the chunks that contain the first row are
cached in the data chunk cache, along with the rest of the
chunks. When the next row is read, the library searches
in the cache, but will not find the chunk needed, because
the default chunk cache size is IMB. If the total size of
the chunksthat contain one row of a dataset is greater than
1MB, the data chunk cache will not be able to hold al the
chunks and will evict the chunksin the cache using an LRU
replacement policy. Therefore when the library reads the
second row of array elements, thefirst element in the second
row will not be found in the cache, as shown in Figure 1(a).
So the chunk containing that array element must be read
from disk again, and the same problem will occur for all
other data chunks both in that row and in subsequent rows.



The HDF library devel opers have recognized this problem,
and warn of severe performancepenaltiesinthe HDF User’'s
Guide [14]. Their solution to the problemisto add a func-
tion to the HDF5 API that increases the size of the data
chunk cache, placing the burden of selecting the appropri-
ate data chunk cache size on the application devel oper. We
now propose another solution.

H5Xread: We have added new functionality to the
HDF5 library, in the form of afunction called H5Xread with
the same interface as H5Dread, to read multi-dimensional
array datasets from disk in the same order they are stored
with a chunked storage layout. Such a strategy avoids un-
necessary cache misses and reading the same chunk from
disk multiple times. After chunks are retrieved from disk,
they are reorganized in memory to produce the desired con-
tiguous array layout. For arrays stored with a contiguous
layout, H5Xread reads the data from disk in the same or-
der as H5Dread. Figure 1 shows the difference in data ac-
cesses between the H5Xread and H5Dread functions. The
array read function in the HDF4 library has the same per-
formance problem as H5Dread, and the same functionality
asin H5Xread can be implemented for that library.

Performance evaluation: We now present the results
of a performance evaluation of the standard HDF5 dataset
read function, H5Dread, with our H5Xread function, for
chunked storage layouts. In the experiment, we partitioned
a two-dimensional 64MB dataset, containing an array of
4000x1000 elements, each of which is 16 bytes. The ar-
ray was partitioned into 160 KB logical chunks, each of
which contains 100x100 elements. For the chunked layout,
we made the physical chunk size the same as the logical
chunk size. The 64MB dataset is large enough for this per-
formance evaluation because it will show the performance
differences between the access functions. The experiments
were run on a SunBlade 100 workstation with a 500MHz
Sparcv9 processor, 256MB memory, and a 7200RPM IDE
disk with a seek time of 9ms.

Figure 2 showsthetimeto read two different shaped sub-
arrays from the dataset. We measured the wall clock time,
varying the number of rowsread inin Figure 2(a), and vary-
ing the number of columnsread in Figure 2(b).

Figure 2(a) shows that the chunked storage layout pro-
vides better 1/0 performance than the contiguous layout in
most cases. The performance gap between the chunked lay-
out and the contiguous layout increases as the number of
rows increases. This is because as the size of a column
grows, even more disk seek operation are needed for the
contiguous layout than for the chunked layout.

For these experiments, we used the HDF library default
sized data chunk cache of 1IMB, so the chunk cache holds
six of the 160KB chunks. In Figure 2(b), when the num-
ber of columnsin the selected subarray is less than or equal
to 600, the H5Xread function shows similar performance
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Figure 2. Timeto read selected regions of the dataset

to that of H5Dread for a chunked layout, but as the num-
ber of columns increases, so that the size of each row in-
creases, the cache fills up before reading an entire row - in
this experiment when the row size reaches 700 elements, at
which point the H5Dread function suffers from many cache
misses, while H5X read continues to provide stable 1/O per-
formance. The performancedifference can bealargefactor,
here up to afactor of 9, asis seen in theright side of thefig-
ure.

The H5Xread functionality also provides stable perfor-
mance characteristics for higher dimensional datasets. We
have evaluated performance for three-dimensional datasets,
and the results are essentially the same as those for the two-
dimensional experiments, meaning that the H5Xread func-
tion with achunked layout provides better performancethan
H5Dread with either a chunked or a contiguous layout.



3 Spatial Indexing

A common type of retrieval pattern on multi-dimensional
datasetsis spatial range queries, which read a subset of the
multi-dimensional array within a given range of values for
each of several dimensions (e.g., three-dimensional space
or time). If an application hasto scan the entire index space
(the metadata) for the entire dataset, performing a spatia
range query could be a very expensive operation.

A large number of indexing techniques have been pro-
posed to improve the performance of range queries and
nearest neighbor queries for multi-dimensional datasets.
Techniquesfor speeding up searches into high-dimensional
datasets have been researched extensively [5, 6]. The most
common multi-dimensional indexing structure, the R-tree,
is a height-balanced tree similar to the well-known B-
tree[9]. When point dataisinserted into aleaf node of an R-
tree, the minimum bounding boxes of theinternal nodesare
enlarged to cover the child nodes, sometimes requiring that
internal nodes be split to maintain the balance criteria. For
a given multi-dimensional range query, a search into an R-
tree traverses al nodesin the tree with minimum bounding
boxes that overlap the range. The R*-tree is an optimized
R-tree extensions that minimizes overlap of nodes[2].

The goal of using a spatial index is to avoid searching
al the elementsin amulti-dimensional dataset to performa
spatial range query. If the dataset is partitioned into coarse-
grained chunks, and the bounding box for each chunk (i.e.
the minimum and maximum values for each dimension, for
example, spatial and temporal coordinates) is placed in an
index structure, not al elements within the dataset must
be searched, but only elements in the chunks with bound-
ing boxes that overlap the query range. This effect reduces
the amount of data retrieved from disk, and should improve
guery response time.

3.1 Multi-dimensional scientific data formats

We have been designing and implementing a generic in-
dexing library for various multi-dimensional scientific data
formats using an R*-tree. The R*-tree provides better per-
formance and storage utilization than an R-tree, especially
for high-dimensional data. Figure 3 shows the design of the
indexing library. A new multi-dimensional scientific data
format can utilize the services of the indexing library by
implementing three functions that (1) create an index file,
(2) search the index file for a range query, and (3) read a
subset of the dataset using the information returned from
searching the index. The generic indexing library provides
an API for these functions. The functions must pass in as
parameters the dataset name, the dataset size, the type of
the data stored in the dataset, the number of dimensions for
the multi-dimensional dataset, data chunking information,
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Figure 3. Generic spatial indexing library

and an index file name. With this information, the indexing
library can create theindex in the index file, which can then
be used to search the dataset via range queries, and aso
read subsets of the dataset using file location information
acquired from the index. Once the R*-tree index is created
and stored on disk, applications can use that index as long
as the dataset is not updated. In order to read data files in
a specific scientific data format, the indexing library read
function must call a read function from the particular sci-
entific data format library. The name of the read function,
and some additional information about various parameters,
must be obtained from the scientific dataformat library. Fu-
ture work on the generic indexing library will concentrate
on automatically extracting that information from the meta-
datawithin the self-describing data file to automate genera-
tion of an index, and we also plan to automate the process
of generating the range query functions (index search and
dataread) for a scientific dataformat library.

The generic indexing library has an index creation mod-
ule, an index searching module, a resolution interpolation
module, and afiltering module. Multi-dimensional datasets,
in particular ones with spatial and/or temporal dimensions,
may contain dataelements at different granularities. For ex-
ample, multiple sensors on the same orbiting satellite may
have different resolutions. Hence some sensor datasets may
have arrays that are several times larger than the corre-
sponding geographic datasets that allow for determining the
spatio-temporal locations of the data elements. The generic
indexing library addresses this problem by providing an in-
terpolation mechanism, which we do not discuss further.
The last function that the indexing utility library provides
is data filtering. Because data is stored as chunks, a range
query can return al the chunksthat overlap the given range
query. However, not all data elementsin those chunks will
overlap the query range, so the library supports data filter-
ing to return only those data elements that fall within the
query range. If the application can accept extra elements



(i.e. perform its own filtering), the library can also return
the unfiltered chunks.

3.2 Casestudy: HDF-EOS

NASA’s Earth Observing System Data and Information
System (EOSDI S) is a system that acquires, stores, and dis-
tributes sensor data acquired from orbiting satellites. HDF
has been selected as the standard data format by the EOS-
DIS project, and a metadata schema has been specified to
store Earth Observing System (EOS) data. In addition, a
library has been implemented on top of the HDF library,
called HDF-EQOS, to extend the capabilities of the HDF li-
brary to allow for the construction of special data structures,
called grids, swaths, and points. We focus on swaths, be-
cause that is the way most HDF-EOS datais stored [16]. A
grid structure is produced using a projection operation via
a given mathematical transformation between the rows and
columns of an array and the latitude/longitude information
stored with the EOS data, and is used to store the results
of such projection operations. The latitude/longitude infor-
mation for each array element can be computed based on
the array offset using map projections such as Mercator or
Goode. A point structureisatablethat containsdatarecords
taken at irregular time intervals and across scattered geo-
graphic locations. A swath structure is based on the way a
typical satellite sensor acquires data, whereby an instrument
takes a series of scans perpendicular to the ground track of
the satellite as it moves along that ground track.

The HDF-EOS library has versions both for HDF4 and
HDF5, caled HDF-EO$4 and HDF-EOS5. Despite HDF4
and HDF5 being quite different data formats, the HDF-
EOS4 and HDF-EOSS libraries have essentially the same
basic features for the HDF-EOS data structures. One of
the differences between the two versionsis that HDF-EOS4
supports data chunking only for grid structures, and not for
point or swath structure. HDF-EOS5 supports data chunk-
ing for swath structures. Both versions of the HDF-EOS
library allow a user to specify a range query, by specify-
ing the data to retrieve as a box in latitude and longitude.
Once a query region is defined, by the defboxregion() func-
tion, the user reads the data from that query region with an
extractregion() function.

In an HDF-EOS swath structure, the latitude, longi-
tude, and temporal information for the dataset is stored as
separate arrays from the sensor value arrays. To retrieve
the geographic information for a data element in a sensor
value array, the elements in the geographic datasets that
have the same offsets as the sensor element must be re-
trieved. The HDF-EOS library does not support spatial in-
dexing structures. To read the sensor values that fall within
a query range, the defboxregion function must scan every
geographic dataset to obtain the location(s) of the region

1
1
defined query region defined query range

Data that would be extracted Datathat would be extracted

(a) EOSrange query (b) Range query with data

chunking

Figure 4. Data read for a range query

within the file, because the geographic information for the
EOS datasets is not evenly distributed through the spatial
domain (i.e. it has spatial irregularity) [20]. Once aregion
is defined with the defboxregion function, the correspond-
ing extractregion function can be called to read the desired
sensor datafromthefile. It isan expensive operation to scan
al elementsin ageographic dataset, so HDF-EOS provides
several approximation options. First, an application can re-
trieve the set of scanlines that have any single element that
overlaps the query range. In this any-point mode, all geo-
graphic datamust still be searched. Second, if the mid-point
of a scanline overlaps the query range, that scanline can be
read in mid-point mode. In this mode, the defboxregion
function reads only one column of the geographic dataset
(the one for the middlie element in the scanline). Finally, if
both end points of a scanline overlap the query range, the
entire scanline will be read in end-point mode. Mid-point
and end-point selection are much faster than any-point se-
lection, but there is a tradeoff between response time and
accuracy in retrieving the desired data.

For our indexing library, creating the index requiresread-
ing all the geographicinformation for aswath to obtain min-
imum and maximum location (latitude/longitude) valuesfor
each logical/physical chunk.

For reading subsets of a dataset using the indexing li-
brary, al elementsin chunks that intersect the query range
areread, whilethe HDF-EOS library returns all elementsin
any scanline that overlaps the query range. Therefore the
number of elements read by the two libraries may be dif-
ferent. Figure 4 illustrates a simple example. The range
query functions return the query result in the form of a one
dimensional array of data elements, but with EOS data each
element in the array is associated with two-dimensional ge-
ographic coordinate information (latitude and longitude).
However, some of the returned elements may not be in the
query range, but the application cannot determine which el-
ements should be discarded without the geographic coordi-
nate information. Therefore the range query functionin the



indexing library returns the geographic information corre-
sponding to each sensor value. Using this geographicinfor-
mation, applications can filter out sensor values that do not
overlap the query range. If the chunk size is large, the R*-
tree search may end up reading more unnecessary data than
the HDF-EOS extractregion function, but it is much more
likely that the HDF-EOS function will read more unneces-
sary data.

3.3 Performanceevaluation

We evaluate performance for reading HDF-EOS datavia
range queries. We have implemented versions of the HDF-
EOS4 and HDF-EOSS range query APIs that call theindex-
ing library. The test datasets range in size from 16MB with
30 chunks, to 128M B with 800 chunks. In our experiments
we used H5Xread, described in Section 2.1, to read data
from the file, instead of the HDF library H5Dread, since it
provides better performance.

In the experiments, we have measured both the time to
create an R*-tree index file for various numbers of chunks,
and the time to perform range queries using the index. For
range query performance, we have measured the time to
read a subarray for three different shapes of the selected re-
gion within atwo-dimensional array. Thefirst query selects
aregion that spans many columns, but relatively few rows.
For thiskind of query, the HDF-EOS defboxregion function
reads the data that exactly matches the query range in any-
point or mid-point mode. However, our indexing library
read function may read extra elements that are not in query
range, but are in chunks that overlap the query range. The
second query selectsamostly square region from the 2D ar-
ray. The third query selects a region that spans many rows,
but relatively few columns. For the second and third query,
HDF-EQOS library will read many more elements than our
indexing library will. Since the HDF-EOS library reads al
the elements in any scanline (row) that overlaps the query
region,

All the results presented measure elapsed wall clock
time. The size of the test dataset for measuring range query
is 4000x1000, with each logical or physical chunk contain-
ing 100x100 elements of type double, for atotal of 80KB
per chunk. For measuring R*-tree index creation time, we
created logical and physical chunk sizes of 0.8KB, 80KB,
160K B, and 320K B. Because the HDF-EO$4 library does
not support data chunking, we measured performance only
with a contiguous storage layout, and partitioned the arrays
into logical chunks for indexing. The number of array ele-
ments requested for the first query is 200x900, for the sec-
ond query 1000x500, and for the third query 2000x200. We
ran the experiments on the same SunBlade 100 used for the
data chunking experimentsin Section 2.1.

Figure5(a) showsthetimeto createthe R*-treeindex file
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Figure 5. Time to create an index file, varying the
chunk size and the data layout

for various dataset and chunk sizes. The figure shows that
the time to create the index depends linearly on the number
of chunks, which is determined by the chunk size for afixed
size dataset. The question to answer then, iswhat is the best
chunk size? Thereis atradeoff between index creation time
and disk accesstimefor range queries. When the chunk size
is small, the number of chunksis large and it takes a long
timeto create theindex, as seenin Figure 5(a). On the other
hand, a small chunk size will causes range queries to read
less extradata. When the chunk sizeislarge, so the number
of chunksis small, index creation does not take long but it
is necessary to read those large data chunks from disk and
filter out unnecessary data elements, which is an expensive
operation. The most important decision criterion is that the
index will be used for all searches, but once an index fileis
created it will not be changed unless the dataset is updated.
Although the index is not likely to change often, the time
to create the index file should not be ignored. For example,



when the number of chunks becomes very large, for exam-
ple 50,000, it takes several hours to create the index file on
the experimental machine. Most of time to create the in-
dex fileis spent building the R* -tree, performing operations
to maintain the desired tree properties. However when the
number of chunks is small, reading the geographic dataset
to producethe key valuesto insert into the R* -tree becomes
alarge fraction of thetime to build the tree. Also, as shown
in Figure 5(a), it is faster to create the index for a chun-
ked layout compared to a contiguous layout, because read-
ing the geographic dataset is more expensive for the logical
chunksin the contiguous layout.

For the experimental dataset, and for 800 chunks, the
R*-treelibrary® created a 73K B index file, while the size of
the dataset is 128MB. Also, an HDF file can contain several
swath structures, each with its own latitude, longitude and
time information, and a swath can contain several multi-
dimensional datasets with sensor values. An index is there-
foreneeded for each swath, not for every dataset. Therefore,
the index file does not require a significant amount of disk
storage compared to the size of the dataset it isindexing.

For a given set of keys (hyper-rectangles), the struc-
ture of an R*-tree is nondeterministic because changing the
order keys are inserted into the tree can change the tree
structure. To build better trees to achieve better query per-
formance, the R*-tree insertion a gorithm removes and re-
inserts keys from a node with more than the allowed max-
imum number of keys (an overflowing node), to keep the
bounding rectangle for the node small [2]. AsshowninFig-
ure 5(b), we evaluated the the tree creation algorithm using
different key insertion orderings, looking at a row major or-
dering, Hilbert curve ordering, and arandom ordering of the
keys. A Hilbert curveis a space filling curve that visits ev-
ery point in arectangular grid, preserves spatia locality in
multiple dimensions[13]. The results show that the Hilbert
ordering reduces the time needed to create the R*-tree. The
random ordering shows similar performance to the Hilbert
ordering for a chunked layout, however for a contiguous
layout the random ordering performsworse than the Hilbert
ordering, because it performs more disk seek operations.

We also measured the time to perform arange query with
the trees built from the three different insertion orderings.
Those results showed that al of the orderings produced
trees that took about the same amount of time to search,
and searches are very fast (at most a couple of msec), taking
much less than the time required to read the data specified
by the results of the R*-tree search.

Because the performance results were very similar for
both the HDF-EOS5 and HDF-EO$A libraries, we only
show results for the HDF-EOSS library. Figure 6 shows the
time to read a subset of the dataset for the three queries, us-

We employ the HnRStar library, version 1.0 available at
http://research.nii.ac.jpkatayama/homepage/research/srtree

ing both the indexing library range query function and the
HDF-EOSS standard range query functions. The time for
the indexing library includes both searching into the R*-
tree and reading the geographic and sensor value data from
disk. As we described earlier, the HDF-EOS library has
two separate functions to perform a range query, so there
are two barsin the graph for each data layout (contiguous
and chunked).

For a single query, the extractregion functions in HDF-
EOS5 and HDF-EO$4 read only a subset of the sensor value
dataset. But the corresponding defboxregion functions read
every element in the geographic datasets to determine the
file location information for the requested region in any-
point mode, and read either one or two columns of the geo-
graphic data in mid-point mode or end-point mode, respec-
tively. For the three queries in the experiments, the HDF-
EOS defboxregion function returns an empty region in end-
point mode, so no results are shown.

The indexing library range query function reads the R*-
tree index file (if the index has not aready been read into
memory), and the chunks of the sensor value and geo-
graphic dataset returned by the R*-tree search. The geo-
graphic data can be used to filter the sensor data that is
returned, but does not lie in the query range. As seen in
Figure 6, the time to perform the extractregion operationin
the HDF library isless than the indexing library query time
in most cases, but that is because the extractregion function
only reads data from the sensor value dataset, and does not
read the geographic information. The location information
to determinewhich sensor valuesto read is computed by the
defboxregionfunction, and when welook at thetimeto exe-
cute that function, we see that using theindex library to per-
form the range query providesenormous performance bene-
fits. Comparing thetimeto read the datain HDF-EOS5 any-
point mode to that of the indexing library, for the 200x900
guery the time for the indexing library was less than 3% of
the HDF-EOS5 defboxregion time, for the 1000x500 query
theindexing library time was less than 5% of the defboxre-
gion time, and for the 2000x200 query the indexing library
time was less than 7% of the defboxregiontime. If the HDF
library is used to select aregion in mid-point mode, the per-
formanceis about the same or somewhat worse than that of
the indexing library, but the indexing library should return
a better approximation to the data that actually falls within
the query range. Also, the indexing library is guaranteed
to return all data elements that fall within the query region,
but the HDF-EOS library in mid-point mode will not return
ascanline with amid-point element that does not fall within
the query range.

As Figure 6(a) show, the performance of the indexing li-
brary for reading aregion with many columnsand relatively
few rows decreases as the chunk size grows, because the
indexing library range query function reads more unneeded
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datafromdisk. For thiskind of query, the contiguouslayout
performs best because it does not cause many disk seeks,
so gives about the same or even dlightly better 1/0 perfor-
mance than a chunked layout. The defboxregion function
reads the geographic dataset one scanline (row) at a time,
and that is very inefficient, especially when the dataset is
stored with a chunked layout, since it will cause many disk
seek operations to read each scanline. Therefore defining a
region takes much longer with a chunked layout than a con-
tiguous layout for this type of range query. For this type of
guery, the number of extracted elementsisthe samefor both
theindexing library range query function and the HDF-EOS
query function.

We see from Figure 6(b) that for the second query that
coversamostly square region, the performance of the HDF-
EOS extractregion function is worse than for the first query
with many columns and few rows, because extractregion
reads the entire scanline for every one that overlaps the
query range, not just the elementsin the query range.

For the third query with many rows and few columns, we
see from Figure 6(c) that as the chunk size grows the time
to read data for the indexing library decreases, because of
fewer disk seek operations. In the best case, even though

the indexing library function must also read the geographic
dataset, which is done by the defboxregion function in the
HDF-EOS library, the indexing library function takes about
the same time as extractregion for a chunked layout. This
is because extractregion reads a large amount of unneeded
data, as was the case for the second query. For the third
query, the amount of unneeded dataread by extractregionis
even larger than for the second query.

Even though the amount of unneeded data read by the
indexing library is usualy less than for the HDF-EOS li-
brary, it is still necessary to filter the unneeded data. When
the size of the chunks is small, filtering is not expensive,
but the R*-tree search time will belong because of the large
number of leaf nodes in the tree. However, R*-tree search
timeis very small compared to the time to read the datasets
from disk.

In our experiments, as the chunk size grows larger, per-
formance decreases because the indexing library reads extra
data that is outside of the query range. And if the chunk
size is too small, performance also decreases because of
additional disk seeks. However, overal the indexing li-
brary shows much higher performancethan HDF-EOS any-
point mode, and better performance than mid-point mode



for many queries, despite the indexing library performing
the filtering needed to remove unnecessary data using ge-
ographic information, which is not provided by the HDF-
EOS library.

4 Conclusion

We have shown that 1/O performance can be improved
with the use of both semantic indexing structures and data
chunking, for navigating through multi-dimensional self-
describing scientific datasets. However, for many scientific
data formats no semantic indexing library has yet been de-
veloped. In the near future, we plan to extend our generic
indexing library to work with various other self-describing
scientific data formats, such as netCDF [17]. Our ultimate
goal isto automate the process of generating indexing struc-
tures for various self-describing scientific datasets, using
meta-information that can be automatically extracted from
the metadata within the datasets, augmented with semantic
information provided by devel opersor users of the scientific
datafile formats.
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