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Abstract

This paper describes a methodology for the design of geared robotic mechanisms.
We have shown that certain gear-coupled manipulators can be designed to possess an
isotropic condition at a given end-effector position. For these gear-coupled manipulators,
the train values can be treated as a product of two-stage gear reductions. The second-stage
reduction can be uniquely determined from the kinematic isotropic condition, while the
first-stage reduction can be determined from dynamic consideration. This approach,
through proper choice of gear ratios, can provide these gear-coupled manipulators with

desired kinematic and dynamic characteristics.



1. Introduction

Various performance measures have been proposed for the evaluation of kinematic
and/or dynamic performance of a manipulator. Most of the kinematic performance
measures, such as the velocity ellipsoid (Asada and Cro Granlto, 1985; Dubey and Luh,
1986), the generalized velocity ratio (Asada and Cro Granlto, 1985; Dubey and Luh, 1986), the
manipulability measure (Yoshikawa, 1985a), and the condition number (Gosselin and
Angeles, 1988), are based on the relation between velocity vectors in the joint-space and end-
effector-space of an open-loop manipulator. As for the dynamic performance measure,
Yoshikawa (1985b) proposed a dynamic manipulability index which defines the relation
between joint torque and the end-effector acceleration. Since these performance measures
are based on the transformation between the joint-space and end-effector-space, they can be
used for the evaluation or design of direct-drive manipulators. However, they are not very
helpful in evaluating manipulators which use gear trains or other means for power
transmission.

For geared robotic mechanisms, the transformation between the actuator-space and
joint-space must also be taken into consideration. That is, the transformation has to be
extended from "end-effector-space to joint-space” to "end-effector-space to actuator-
space.” The structure matrix, defined by Chang and Tsai (1989), transforms the velocity
vector from the joint-space to the actuator-space while the Jacobian matrix transforms the
velocity vector from the joint-space to the end-effector-space. Together, they give the
overall transformation from the actuator-space to the end-effector-space.

In what follows, the definitions of various performance measures will be extended
from direct-drive manipulators to non-direct drive manipulators and, in particular, gear-
coupled manipulators. The necessary condition for kinematically isotropic
transformation will be derived. The performance evaluation problem will be extended to
design optimization problem. Finally, equations for train values determination will be

derived by taking both kinematics and dynamics into consideration.
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2. Kinematic Characteristics
2.1 Generalized Velocity Ratio

The velocity ratio and the mechanical advantage are the two most commonly used
criteria for evaluating the performance of a single-input and single-output mechanism
such as the four bar linkage. The velocity ratio is the ratio of output velocity to input
velocity and the mechanical advantage is the ratio of output torque to input torque at the
instant of interest. For n-D.O.F. (degree-of-freedom) mechanisms, the concept of velocity
ratio and mechanical advantage has been extended to that of generalized velocity ratio and
generalized mechanical advantage. Specifically, the magnitude of input velocity vector is

compared to that of the output velocity vector.

Figure 1 shows a geared robotic mechanism in conceptual form, where the inputs to
the mechanism are the actuators and the output is the end-effector. Let @, ®, and X be the
displacement vectors associated with the actuators, joints, and the end-effector. Let
P, 0, and X be the time derivatives of @, ®, and X. And let €, 1, and F be the generalized
force vectors in the actuator-space, joint-space and end-effector-space, respectively. Then,

the joint and output velocity vectors are related by the Jacobian matrix, J, as

X=J 0, (1)
and the joint torque and output force vectors are related by
T
t=dJd F (2)

where ()T denotes the transpose of ().

The actuator and joint velocity vectors are related by the structure matrix, A, as

. T,

©=A0O, (3)
and the joint and actuator torque vectors are related by

1= AE, (4)



where the elements of A are functions of gear ratios in a mechanism. The i-th row of the
structure matrix A describes how the resultant torque about joint "i" is effected by the input
actuators and, on the other hand, the j-th column of matrix A describes how the torque of an
input actuator "j" is transmitted to various joints of a mechanism. We note that the
velocity vector, X, in eq. (1) contains both linear and angular velocities of a point in the

end-effector. Similarly, the force vector, F, in eq. (2) contains both forces and couples

acting on a point in the end-effector.

In general, the elements in a velocity vector may have different units. Hence, it is
necessary to define a weighted norm for the magnitude of a velocity vector. In this paper,
the following quadratic forms are defined for the square of the norms:

.2 . T .
M =% w, X (5)

and
o) = o'W,

where Wy and Wy are diagonal, positive definite, weighting matrices.

As an extension, the square of the generalized velocity ratio K, is defined as the

ratio of the two quadratics:

D] Q)

Substituting egs. (1) and (3) into (5) and (6), we obtain

12 AR .
K -6 J'w, Jb
To-r T ~-T.
o AT TW JA e )
and
o o' Aw A"®
= 0 (9)

where ()] denotes the inverse of (), and ( )T the inverse of ()T.

From eqs. (6), (7), (8) and (9), we obtain



.T- —-T.
: o AT W, A e

K, = .
W, 0 (10)
or
T .7 .
2 O IwW, 6
vz LT T.
®AW¢A ® an

Equations (10) and (11), are known as Rayleigh's quotient. The value of K, depends on the
position as well as direction of motion of the end-effector. The extreme values of K, are the

square root of the eigenvalues of the following eigenvalue problem (Strang, 1980):

-1, -1 .7 -T. - .
(W, A I W, JA =20 (12)

or
T . T,

(J W, J)@-X(AW¢A YO (13)
Equations (12) and (13) have the same eigenvalues, A's, and their eigenvectors are

related by eq. (3). Hence, the eigenvalues of eq. (12) or (13) completely characterize the

kinematic performance of a manipulator at a given end-effector position.

22 TIsotropic Condition

Equations (12) or (13) can also be used for design optimization. Suppose the
kinematic structure of a manipulator has already been selected and the problem is to
define the gear ratios such that the generalized velocity ratio is less directional sensitive.
This problem can be solved by minimizing the difference between the maximum and
minimum eigenvalues of eq. (12) or (13). Equation (12) contains both Jacobian and
structure matrices on the left-hand-side of the equation, while (13) contains the Jacobian
matrix on the left-hand-side and the structure matrix on the right-hand-side. The
separation of Jacobian matrix from structure matrix makes it more convenient to use eq.
(13) for the purpose of design optimization. For eq. (13) to have nontrivial solutions, the

following condition must be satisfied:



T T
det {(J W, J)—K(AWQA )}=det(P-AQ)=0 (14)

where P = JTW,J and Q = A W, AT.

Since both P and Q are positive definite matrices, the eigenvalues, A's, are all
positive real numbers. For A to be a r-fold root, all the principal minors of (P-AQ) starting
from order n to order n-r+1 must vanish (Jeffreys, 1956, Goldstein, 1981). If A is an n-fold
root, then the mechanism is said to be kinematically isotropic at the given end-effector
position. Under this condition the generalized velocity ratio, Ky = \/_7:, is independent of the
direction of motion. For A to be an n-fold root, the following proportional condition must be

satisfied

, .
(I W, d), =A (AW, A ), 05

where (); j denotes the (i, j) element of the matrix enclosed in the parenthesis.

2.3 Individual Joint-Drive Manipulators

If every moving link in a manipulator is driven by an actuator mounted on its
preceding link through a gear-reduction unit such as the one shown in Fig. 2, then the joint
motions are independent of each other. We call this type of manipulators individual joini-
drive manipulators. The structure matrix for an individual joint-drive manipulator has the

following form:

Zn (16)

where g;, is the gear reduction for the i-th actuator. Hence,
W, 8
w 9 g 9

AW, A" =

WnEh (17)



where w; is the (i,i) element of W,

At a given end-effector position, the product of Jacobian matrix can be written as

11 Y12 %10
T 12 Eog 0 €y
Jd W, d= )

€1,€0pn - Enn (18)

Substituting egs. (17) and (18) into (15), yields

" 0, 1#] (19)

It is obvious that eq. (19) can not be satisfied by any choice of g;, unless ¢;; = 0 for all i not
equal to j which requires special link and joint parameters. This leads to the following
theorem.

Theorem 1. Individual joint-drive manipulators can not possess an isotropic property

unless JT W, J is a diagonal matrix at the position of interest.

24 Gear-Coupled Manipulators

If some of the links in a manipulator are driven by actuators mounted on links
other than their preceding links through the use of gear trains, then the joint motions are
coupled. We call this type of mechanisms gear-coupled manipulators.

The structure matrix for gear-coupled manipulator is no-longer diagonal (Chang
and Tsai, 1989). For an n-D.O.F. gear-coupled manipulator, eq. (15) yields n(n+1)/2
nonlinear equations. However, the number of unknowns contained in eq. (15) depends on
the arrangement of transmission lines, i.e. the number of non-zero elements in the
structure matrix. It is essential that the number of unknowns is not less than the number of
equations, If the number of unknowns is less than the number of equations, then special
linkage geometry is required to yield an isotropic condition. If the number of unknowns is
greater than the number of equations, then there exist some free choices among the non-

zero elements in the structure matrix. This leads to our second theorem.



Theorem 2. Gear-coupled manipulators can be designed to possess an isotropic property at a
given end-effector position if and only if the number of non-zero element in the structure

matrix is equal to or greater than n(n+1)/2.

2.5 Example:

Figure 3 shows a two-D.0O.F. planar manipulator with both actuators mounted on
the ground. There are two transmission lines. The first transmits an actuator torque
through the (N4, No) gear pair. The second transmits another actuator torque through the

(N5, Ng), (Ng, N7) and (N7, N3) gear pairs. The structure matrix is given by

g, g }_{g,ng
0 £,84,8, 0 e (20)

where gj= No/Ny, go= Ng/Ns, g3= N7/Ng, ga= N3/N7, and e = g9 g3 g4, and where N;

A=

denotes the number of tooth on gear 7.
Assuming at a given end-effector position, the product of Jacobian matrix takes the

following form:

J W_J- {a b}
b ¢ (21)
and Wy is an identity matrix, then it follows from egs. (15), (20) and (21) that
K (g +g2)=a
, (g% + g% (22a)
2
Kvg,e=b (291)
2
K, e‘=c (22¢)
Solving eqs. (22a)-(22¢), we obtain
Lo e \/[(ac— bZ)/ ¢
g, = K,
Ig2 l=b/(\/¢ K ) (23)

lel:\/E/KV

and where the signs of g g2 and e in A can have one of the following combinations:



N
N

sl Jorly Forly el ]

Hence, a sign change along any transmission line does not change the isotropic condition.

Equation (23) can be written in the following form:

(24a)
g,= Bk (24b)
g,g =elg =c/b (24¢)

where

o (ac=b")/ ¢ ~ cilet(JTWX J)
- o K B

LK, aK.\¢ (25a)
B=bo/ ac—b =baly/ det(J W J) (25)

We note that o can be chosen arbitrarily. But, once o is chosen, § is determined by

eq. (25b). [t follows from eqgs. (24) and (25) that k, which is inversely proportional to the
generalized velocity ratio Ky, can be considered as a scaling factor and the train value for
each transmission line can be thought of as a product of two-stage gear reductions as shown
in Fig. 4. The first-stage gear reduction, k, which is common to all transmission lines,
provides the desired overall reduction while the second-stage gear reduction provides the

necessary condition for an isotropic transformation.

For the manipulator shown in Fig. 4, it can be shown that the Jacobian matrix is
given by

Md:isIZ ~d281 - d:;SJ‘z
dzzclz+d2C1 d:sclz

J:
(26)

where dy = 22.86 cm, d3 = 17.78 ¢m are the lengths of link 2 and link 3, respectively, and
where S;, C;, Si3, and Cy2 denote sin(0;), cos(9;), sin(01+0,), and cos(61+07), respectively.

Hence, with the end-effector positioned at [Xy, Y11= [22.86, 0], we have
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J{ 0 16.38}
12286 6.91 (27)

Assuming Wy and Wy are both identity matrices, we have

W J:{ 522.58 157.96}
157.96 316.05 (28)
Substituting eq. (28) into (24) and (25), we obtain
k=21.063/ (K, ) (29a)
B= 0.422 o (29b)
g,8,=2 (290)

For example, we can choose o.= 1 and g4 = 1, then = 0.422 and gz= 2. Hence, a designer
can finalize the second-stage gear reduction without concerning the generalized velocity

ratio, K,.

3. Dynamic Characteristics
In the previous section, we have shown that infinite many sets of gear ratios can be
used to produce a kinematically isotropic condition for those gear-coupled manipulators

which satisfy theorem 2. This leaves additional room for dynamic optimization.

3.1 Principle of Inertia Match and Acceleration Capacity
For a one-D.O.F. geared mechanism as shown in Fig. 5a, the equation of motion

can be written as

2 N
(JL—*_g Ji)q”g&]’ (30)

where J| denotes the load inertia, J; the rotor inertia of input actuator, &; the input torque, q
the angular displacement of the output shaft, and g = N7/N| the gear ratio.
It has been shown that, given &;, Ji and J;, there exists an optimum gear ratio which

yields a maximum output acceleration. Fig. 5b shows the relation between the output



acceleration 9 and the gear ratio g. At the optimum design, the output acceleration and the

gear ratio are given by

. E‘;]
q)max =
JLJi (831a)
2 JL
S =5,

i (31b)

This is known as the principle of inertia match (Stockdale, 1968).

For an n-D.0O.F. geared robotic mechanism, the equations of motion can be written

in the joint-space as

MO+6 CO+G=AL 32)
where M is an n by n inertia matrix, @TC O is the generalized inertia force contributed by
the coriolis and centrifugal effects, and G is the generalized active force contributed by
gravitational effect and/or external loads (Chen, et al., 1990).

In what follows, we shall neglect the coriolis and centrifugal effects, and we shall
also assume that there are no gravitational forces and external loads. Then, eq. (32) can

be simplified as

MB=A¢ (33)

Differentiating eq. (1) and neglecting the coriolis and centrifugal accelerations, we

obtain

X=dJ® (34)

Eliminating Ofrom eqs. (33) and (34), yields

-1 -1 0
A MJ X=¢ (35)

11



Equation (35) provides a torque transformation from the end-effector-space to the actuator-
space. In this paper, the following quadratic forms are defined for the square of the norm of

the input torque and end-effector acceleration.

2 T
4 =2 We s (362)

. 2 .. T .o
X% w, X (36b)
where We is a diagonal, positive definite, weighting matrix. In general, W is chosen as
the inverse of Wy i.e. Weg Wy = 1.
Substituting eq. (35) into (36a), we obtain
g T o -1 1
ld =x g'M'ATTW_ ATTMIT X |
3 (37)
Hence, at a given posture, 1§12 =1 yields an acceleration ellipsoid in the end-effector-space

as shown in Fig. 6. The acceleration capacity, A.C., is defined to be proportional to the

volume of the ellipsoid, i.e.

A.C.=1/( Iglﬂ/ui)
i=1 (38)

where u;, 1 =1, 2, 3, ..., n, are the eigenvalues of the following eigenvalue problem:

(Wla "M AW, ATM g X=p X
13 (39)

It can be shown that (Strang, 1980) the acceleration capacity, A.C., is equal to onc over the

square root of determinant of the matrix, i.e.

AC=1/ et W TMTATTW AT M g

[det(J" W, Ddet(aW, A"

det(M) (40)

Substituting eq. (15) into (40), we obtain

i
AL et Wi d)

K> det (M) (41)



The acceleration capacity, A.C., can be used as an index to indicate the ability of a
manipulator to respond to a given set of input torques. The larger the acceleration capacity,
the more responsive the system is. At a given end-effector position the determinant of the
product of Jacobian matrix, det(JT W J), is a constant while the determinant of inertia
matrix, det(M), is function of gear ratios. Hence, the unknown gear ratios can then be

used to optimize the acceleration capacity.

3.2 Acceleration Capacity Optimization
Taking the manipulator shown in Fig. 4 as an example, the mass matrix M can be

written as

M:NI(1+MII]

(42)

Let J; be the axial moment of inertia of gear i, Py = [ p2x, p2y 1T position vector of the
combined mass center of link 2 and gear 7 expressed in the link 2 coordinate system, Py = |
P3x, Pay 1T position vector of link 3 expressed in the link 3 coordinate system, mo the
combined mass of link 2 and gear 7, mg the mass of link 3, I, the combined moment of
inertia of link 2 and gear 7 about the Z;-axis, I3, the moment of inertia of link 3 about Z3-

axis. Then, it can be shown that

2
m =myr,+ I, +m(ry+2d,(p,, +d)C,+d)+ 1, +dJ (432)
m = mry+d,(p,, +d)C)+1, +dg, g, (43b)
2 2
Mo Ml Isz+ JG(g3g4) * J7g4 {43¢)
and
5 8
ot [28]
2 3 (44)
where
2 2
Ty = Py, 2d2 Pyt d2 (45a)

(45b)



2
_ 2
(=d, 0" +d.p

(45¢)
2
6,=Jd;Beg,g, (45d)
2
8, =d;(Pgyg,) (45€)

In what follows, we shall assume that adjusting a gear ratio does not have significant
effect on the mass and moment of inertia of the gear pair. Note that the contribution of
axial moment of inertias of gears 6 and 7 to the overall inertia can be neglected due to the
low gear ratios selected for the second-stage gear reduction. However, the rotor incrtias Jy4
and Js5 can have significant effect on the overall inertia due to the k2 term in eq. (44).

From eqs. (45¢-45¢) and (42), the determinant of inertia matrix can be written as

det(M) = det(M )+ k' p, + k' p,

(46)
where
Pr=m 08y —2m 8, +m 48, (47a)
2
[)'226183~ 5, (47h)
Substituting eqs. (25a) and (46) into (41), we obtain
det(M ) 2 ~1
AC=co®[———+p +k p,]
k (48)

It follows from eq. (48) that, for a given manipulator posture, the acceleration capacity is a
function of the first-stage gear reduction, k. Taking the derivative of eq. (48) with respect

to k and equating the resulting equation to zero, we obtain

4
ko= det(M )/ p, (49)

Equation (49) provides the optimum condition for maximum acceleration capacity. At the

optimum condition, the acceleration capacity is given by

. T
AC) g =col [p,+2,/p, det(M,) ] 50)

14
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Assuming that mp = 2.6 kg, m3 = 1.156 kg, pax = -12.872 c¢m, p3x = -10.201 cm, I, =
142.9 kg-cm?, Is, = 40.94 kg-em?2, J4 = J5 =8.79%10-2 kg-cm?, for the manipulator shown in

Fig. 4, then with the end-effector positioned at [X;, Y1] = [22.86, 0], My, is given by

M =

m

{ 958 29.4

ko— 2
2.4 107} (kg= cm®)

(51)
Substituting egs. (51) into (49), and with o= 1, f = 0.422, g4 = 1, and g3= 2, we obtain k = 65.54
as the first-stage gear reduction. Hence, the generalized velocity ratio is given by Ky =

0.32136 cm.

Since the Jacobian matrix and the inertia matrix are position dependent, the
isotropic property and maximum acceleration capacity obtained above are only local
conditions. Usually, a reference position within the workspace is selected for design
optimization. The performance of a manipulator will then vary from position to position.
Hence, the reference position must be chosen carefully in order to achieve a good
compromise between extreme positions. It seems that this can only be accomplished by an
iterative process.

Figure 7 shows the workspace of the manipulator shown in Fig. 4. Since the
Jacobian matrix and inertia matrix are symmetric about the first joint axis, it is only
necessary to investigate the kinematic and dynamic performance along the Xj-axis. As a
first approximation, the middle point of the workspace is chosen as the reference position
for design optimization. Figure 8 shows the variation of the kinematic condition number
( m) and dynamic condition number ( mn—) as functions of the end-
effector position. Since Xj = 22.86 ¢m is chosen as the reference position, the global
minimum kinematic condition number occurs at this reference position. However, the
global minimum dynamic condition number does not occur at the reference position.
Figure 9 shows the variation of the determinants of M and JTJ, and the variation of the

acceleration capacity, A.C., as functions of the end-effector position. As can be seen from



Fig. 9, the global maximum acceleration capacity occurs at Xj= 29.53 cm, instead of the
reference position. This is due to the influence of the determinant of the product of the
Jacobian matrix, JTJ. Note that the maximum value of det(JTJ) occurs at X1=29.53 cm

coincidently.

Summary

We have derived a methodology for the determination of train values in geared
robotic mechanisms. It is shown that certain gear-coupled manipulators can be designed
to possess an isotropic condition at a given end-effector position. The train values of these
gear-coupled manipulators can be thought of as a product of two-stage gear reductions. The
second stage-gear reduction can be determined by the kinematic isotropic condition while
the first-stage gear reduction can be determined by the maximum acceleration capacity
condition. This approach can provide these gear-coupled manipulators with desired

kinematic and dynamic characteristics.
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Figure Captions

Iig. 1: Conceptual block diagram of a geared robotic mechanism.

Fig. 2: Schematic diagram of a two-D.O.F. planar individual joint-drive manipulator.
Fig. 3: Schematic diagram of a two-D.O.F. planar gear-coupled manipulator.

Fig. 4: Illustration of two-stage gear reductions of the manipulator shown in Fig. 3.

Fig. 5(a): A one-D.O.F. geared mechanism.

Fig. 5(b): Variation of output acceleration vs. gear ratio.

Fig. 6: Transformation between actuator-space and end-effector-space.

Fig. 7: Workspace of the manipulator shown in Fig. 4.

Fig. 8. Performances indices vs. end-effector position.

Fig. 9: Acceleration capacity (A.C.) vs. end-effector position.
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