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Recognizing humans and their activities from images and video is one of the key goals

of computer vision. While supervised learning algorithms like Support Vector Machines

and Boosting have offered robust solutions, they require large amount of labeled data

for good performance. It is often difficult to acquire large labeled datasets due to the

significant human effort involved in data annotation. However, it is considerably easier

to collect unlabeled data due to the availability of inexpensive cameras and large public

databases like Flickr and YouTube. In this dissertation, wedevelop efficient machine

learning techniques for visual classification from small amount of labeled training data by

utilizing the structure in the testing data, labeled data ina different domain and unlabeled

data.

This dissertation has three main parts. In the first part of the dissertation, we consider

how multiple noisy samples available during testing can be utilized to perform accurate

visual classification. Such multiple samples are easily available in video-based recogni-

tion problem, which is commonly encountered in visual surveillance. Specifically, we

study the problem of unconstrained human recognition from iris images. We develop

a Sparse Representation-based selection and recognition scheme, which learns the un-

derlying structure of clean images. This learned structureis utilized to develop a quality

measure, and a quality-based fusion scheme is proposed to combine the varying evidence.

Furthermore, we extend the method to incorporate privacy, an important requirement in



practical biometric applications, without significantly affecting the recognition perfor-

mance.

In the second part, we analyze the problem of utilizing labeled data in a different domain

to aid visual classification. We consider the problem of shifts in acquisition conditions

during training and testing, which is very common in iris biometrics. In particular, we

study the sensor mismatch problem, where the training samples are acquired using a sen-

sor much older than the one used for testing. We provide one ofthe first solutions to

this problem, a kernel learning framework to adapt iris datacollected from one sensor

to another. Extensive evaluations on iris data from multiple sensors demonstrate that the

proposed method leads to considerable improvement in crosssensor recognition accu-

racy. Furthermore, since the proposed technique requires minimal changes to the iris

recognition pipeline, it can easily be incorporated into existing iris recognition systems.

In the last part of the dissertation, we analyze how unlabeled data available during training

can assist visual classification applications. Here, we consider still image-based vision ap-

plications involving humans, where explicit motion cues are not available. A human pose

often conveys not only the configuration of the body parts, but also implicit predictive

information about the ensuing motion. We propose a probabilistic framework to infer this

dynamic information associated with a human pose, using unlabeled and unsegmented

videos available during training. The inference problem isposed as a non-parametric

density estimation problem on non-Euclidean manifolds. Since direct modeling is in-

tractable, we develop a data driven approach, estimating the density for the test sample

under consideration. Statistical inference on the estimated density provides us with quan-

tities of interest like the most probable future motion of the human and the amount of

motion information conveyed by a pose. Our experiments demonstrate that the extracted

motion information benefits numerous applications in computer vision. In particular, the

predicted future motion is useful for activity recognition, human trajectory synthesis and

motion prediction. Furthermore, the estimated amount of motion information in a pose

provides a novel criteria for video summarization.
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Chapter 1

Introduction

1.1 Research Motivation

Supervised Learning techniques have made tremendous contributions to computer vision,

leading to the development of robust algorithms. Viola and Jones [4] developed a robust

framework for face detection through boosting-based cascade rejection classifier. Pedes-

trian detection was performed by Dalalet. al. [5] by classifying Histogram of Oriented

Gradients (HOG) features using Support Vector Machines (SVM). To model articulated

human poses, Felzenswabet. al.[6] developed discriminative part models based on Latent

SVMs. Pose estimation algorithms have been developed by Andriluka et. al. [7] using

part-based models. Robust algorithms have been proposed forhuman action recognition

using space time interest points and SVMs with Histogram Intersection kernels [8].

While these algorithms have advanced the state-of-the art significantly, their performance

is often limited by the amount of labeled training data available. Labeling is expensive

and time consuming due to the significant amount of human effort involved. However,

collecting unlabeled visual data is becoming considerablyeasier due to the availability of

low cost surveillance cameras and large Internet databaseslike Flickr and YouTube. This

leads us to an interesting question: Can unlabeled or weakly labeled data be used along

with small amount of labeled data to develop accurate visualclassifiers? We address this

question in this dissertation by developing semi-supervised algorithms for visual classifi-
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cation tuned to the application in hand.

1.2 Proposed Algorithms and their Contributions

In this section, we briefly describe the algorithms introduced in this dissertation and their

key contributions.

1. Secure and unconstrained iris recognition using Sparse Representations and

Random Projections:

In the first part of the dissertation, we consider how multiple noisy samples avail-

able during testing can be utilized to perform accurate visual classification. Specif-

ically, we study the problem of unconstrained human recognition from iris images.

In this problem, while the training images are clean iris templates of subjects, the

images during testing often have large amount of acquisition artifacts like motion

blur, occlusion, specular reflections and off angle rotation, due to the unconstrained

nature of acquisition. However, multiple samples are available as the test sub-

ject moves towards the sensor, which is normally part of an access control sys-

tem. Hence, we propose a Sparse Representation-based selection and recognition

scheme, which learns the underlying structure of clean images [9, 10]. The in-

troduced algorithm simultaneously selects the good iris sectors, recognizes them

separately and combines the numerous recognition results using a Bayesian Fu-

sion framework. Furthermore, we extend the method to incorporate privacy using

Random Projections [11], an important requirement in practical biometric systems,

without significantly affecting the recognition performance.
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Contributions: The proposed quality measure can handle wide variety of artifacts

like occlusion, blur, specular reflections and off angle rotations of the iris image.

The introduced quality based fusion scheme is found to produce state-of-the-art

results. We also introduce one of the early algorithms for iris recognition from

videos. The proposed cancelable scheme incorporates privacy without significantly

reducing the recognition accuracy, unlike existing algorithms for the same purpose.

2. Sensor Adaptation in Iris Recognition:

In the second part, we analyze how labeled data in a differentdomain can aid visual

classification. We consider the problem of shifts in acquisition conditions during

training and testing, which is very common in biometrics. With the development of

new sensors for iris recognition and the improvement of existing ones, enrollment

using one sensor and verification with another assumes greatrelevance. While ver-

ifying test samples using data enrolled from a different sensor can often lead to

lower accuracy, enrolling subjects every time a new sensor is deployed is expen-

sive and time consuming. We propose one of the first comprehensive solution to

this problem, a machine learning technique to efficiently mitigate the cross-sensor

performance degradation, by adapting the iris samples fromone sensor to another.

We developed a novel optimization framework for learning transformations on iris

biometrics. We then utilize this framework for sensor adaptation, by reducing the

distance between samples of the same class, and increasing it between samples of

different classes, irrespective of the sensors acquiring them. Extensive evaluations

on iris data from multiple sensors demonstrate that the proposed method leads to

considerable improvement in cross sensor recognition accuracy. Furthermore, since
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the proposed technique requires minimal changes to the irisrecognition pipeline, it

can easily be incorporated into existing iris recognition systems.

Contributions: The proposed method is one of the first comprehensive solution

for the sensor mismatch problem in iris biometrics. The introduced solution leads

to considerable improvement in cross-sensor matching. It is robust to alignment

errors, and can also handle real-valued feature representations. The proposed tech-

nique is fast, requiring limited changes to the existing iris recognition pipeline.

Hence, it can easily be incorporated into existing iris recognition systems. The

framework presented in this dissertation, for developing transformations of iris

codes having desired properties, can also be utilized for performing numerous tasks

in iris biometrics, such as max-margin classification, dimensionality reduction, and

metric learning.

3. Dynamic Inference from Single Images of Humans:

In the last part of the dissertation, we analyze how unlabeled data available dur-

ing training can assist visual classification applications. Here we demonstrate the

usefulness of unlabeled videos in still image-based visionapplications involving

humans. Our work is motivated by the observation that human pose often conveys

not only the configuration of the body parts but also possesses predictive informa-

tion about the ensuing motion. Image-based vision applications which lack explicit

motion information can benefit from this implicit information. However, computa-

tional algorithms to infer and utilize it in computer visionapplications are limited.

In this paper, we propose a probabilistic framework to inferthe dynamic infor-

mation associated with a human pose. The inference problem is posed as a non-
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parametric density estimation problem on non-Euclidean manifolds. Since direct

modeling is intractable, we develop a data driven approach,estimating the den-

sity for the test sample under consideration. Statistical inference on the estimated

density provides us with quantities of interest like the most probable future mo-

tion of the human and the amount of motion information conveyed by a pose. Our

experiments demonstrate that the extracted motion information benefits numerous

applications in computer vision. In particular, the predicted future motion is useful

for activity recognition, human trajectory synthesis and motion prediction. Fur-

thermore, the estimated amount of motion information in a pose provides a novel

criteria for video summarization.

Contributions: We explore the potential of the implicit dynamic information con-

veyed by a human pose. We develop a probabilistic framework to model it. Using

this framework, we estimate the amount of dynamic information conveyed by a

pose and predict the probable future motion. The proposed method requires lim-

ited manual supervision since it uses unlabeled and unsegmented human videos for

training, and can easily be implemented. We demonstrate theusefulness of the es-

timated dynamic information in a variety of vision applications like human motion

prediction, activity recognition and video summarization.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we present the unconstrained iris

recognition algorithm using Sparse Representations and Random Projections. Chapter 3

5



introduces sensor adaptation for iris recognition. Inference of motion information from

still images of humans is described in Chapter 4. We conclude the dissertation and discuss

future directions in Chapter 5.
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Chapter 2

Unconstrained Iris Recognition

Iris recognition is one of the most promising approaches forbiometric authentication [12].

Most existing algorithms rely on the fine texture features extracted from the iris for

recognition. Hence their performances degrade significantly when the image quality is

poor [12, 1]. This seriously limits the application of the iris recognition system in un-

constrained scenarios, where the acquired image could be oflow quality due to motion,

partial co-operation or the distance of the user from the scanner.

In this dissertation, we develop a framework for unconstrained iris recognition. When the

acquisition conditions are not constrained, many of the acquired iris images suffer from

defocus blur, motion blur, occlusion due to the eyelids, specular reflections and segmenta-

tion errors. Fig. 2.1 shows some of these distortions on images from the ICE2005 dataset

[1]. However, the images during enrollment are clean imageswith limited artifacts, since

they are acquired under controlled settings. Hence we need to develop a algorithms for

iris recognition using the small amount of labeled samples with limited distortions, to

handle test samples with significant acquisition artifacts. However, often multiple im-

ages of the subject are available during testing, as the subject moves towards the sensor.

This availability of multiple test images can be utilized toimprove the recognition per-

formance. In this work, we employ a sparse representation framework [13] to capture

the structure of the clean training images and utilize it to estimate the quality of the test
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samples. We then utilize a quality-based fusion framework,combine the results of the

individual sectors on the iris based on their quality. The proposed method is significantly

faster than the original sparse representation approach [13] as it facilitates parallelization

and reduces the size of the dictionary size, as will become apparent.

(a) (b) (c) (d)

Figure 2.1: Some poorly acquired iris images from the ICE dataset [1]. Note that image

(a) has specular reflections on the iris and is difficult to be segmented correctly due to the

tilt and non circular shape. Images (b) and (d) suffer from blurring, whereas image (c) is

occluded by the shadow of the eyelids.

The performance of most existing iris recognition algorithms depends strongly on the

effectiveness of the segmentation algorithm. Iris image segmentation normally involves

identifying the ellipses corresponding to pupil and iris, and detecting the region inside

these ellipses that is not occluded by the eyelids, eyelashes and specular reflections. Un-

fortunately, in unconstrained scenarios, correctly segmenting the iris images is extremely

challenging [14]. The proposed selection algorithm removes input images with poorly

segmented iris and pupil ellipses. Furthermore, since the introduced recognition scheme

is robust to small levels of occlusions, accurate segmentation of eyelids, eyelashes and

specular reflections are no longer critical for achieving good recognition performance.

Another important aspect in iris biometrics is security andprivacy of the users. When the

texture features of one’s iris are stored in a template dictionary, a hacker could possibly
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break into the dictionary and steal these patterns. Unlike credit cards, which can be re-

voked and reissued, biometric patterns of an individual cannot be modified. So, directly

using iris features for recognition is extremely vulnerable to attacks. To deal with this, the

idea of cancelable iris biometrics has been introduced in [15, 16, 17], which can protect

the original iris patterns as well as revoke and reissue new patterns when the old ones are

lost or stolen. In this paper, we introduce two methods for incorporating security into the

proposed iris recognition system, namely, random projections and random permutations.

Our methods can issue a different template for each application based on the original

iris patterns of the person, generate a new template if the existing one is stolen while

retaining the original recognition performance. The representation prevents extraction of

significant information about the original iris patterns from cancelable templates.

Organization of the Chapter: In Section 2.1, we discuss some of the existing algo-

rithms for iris image selection, recognition and cancelability. The theory of sparse rep-

resentation is summarized in Section 2.2. The Bayesian fusion framework for selecting

and recognizing iris images is described in 2.3. We extend our method to video-based

iris recognition in section 2.4 and discuss how to handle alignment in Section 2.5. Two

schemes for introducing cancelability into our framework are proposed in 2.6. Experi-

ments and results are presented on simulated and real iris images in Section 2.7.

2.1 Related Work

In this section, we briefly describe some of the existing methods for iris recognition,

image quality estimation and cancelability.
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Iris recognition: The first operational automatic iris recognition system wasdeveloped

by Daugman [18] in 1993, in which Gabor features were extracted from scale normalized

iris regions and quantized to form a 2K bit iris code. The normalized Hamming distance

between the iris code of the test and the training iris imageswas used for recognition.

Wildes [19] used Laplacian of a Gaussian filter at multiple scales to produce a template

and used the normalized correlation as the similarity measure. In recent years, researchers

have analyzed aspects like utilizing real valued features for recognition, developing alter-

nate ways of obtaining the binary codes and combining multiple features. See [12] for an

excellent survey of recent efforts on iris recognition.

Several studies have shown that accurate quality estimation can improve the performance

either by rejecting the poor quality images or by fusing the quality information during

matching [12, 20, 21]. Daugman used the energy of the high frequency components as

a measure of blur [18]. Proenca and Alexandre trained a neural network to identify com-

mon noise degradations in iris images [22]. Zhuet al. used the wavelet coefficients to

evaluate the quality of iris images [23]. The Fourier spectra of local iris regions was used

by Ma et al. to characterize blur and occlusion [24]. With the exceptionof Daugman’s

method, these algorithms are specialized for image selection, which requires a separate

method for recognizing iris images. Also, these algorithmsutilize some property of the

iris image to measure image quality and cannot handle the wide variety of common arti-

facts such as specular reflections and occlusion. In contrast to these methods, the image

quality measure introduced in this paper can handle segmentation errors, occlusion, spec-

ular reflections, and blurred images. The proposed method also performs both selection

and recognition in a single step.
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Iris Recognition from Videos : Though research in iris recognition has been extremely

active in the past decade, most of the existing results are based on recognition from still

iris images [25]. Multiple iris images have been used in the past to improve performance.

Du et al. [26] demonstrated higher rank one recognition rates by using three gallery im-

ages instead of one. Maet al. [27] also enrolled three iris images and averaged the three

Hamming distances to obtain the final score. Krischenet al. [28] used the minimum of

the three Hamming distance as the final score. Schmidet al. [29] demonstrated that fus-

ing the scores using log likelihood ratio gave superior performance when compared to

average Hamming distance. Liuet al. [30], Roy and Bhattacharya [31] used multiple iris

images for training classifiers.

The distortions common in iris image acquisition like occlusion due to eyelids, eye lashes,

blur, and specular reflections will differ in various framesof the video. So by efficiently

combining the different frames in the video, the performance could be improved. Tempo-

ral continuity in iris videos was used for improving the performance by Hollingsworthet

al. [25]. The authors introduced a feature level fusion by averaging the corresponding

iris pixels and a score level fusion algorithm combining allthe pairwise matching scores.

Though averaging reduces the noise and improves the performance, it required images to

be well segmented and aligned, which may often not be possible in a practical iris recog-

nition system. We will introduce a quality based matching score that gives higher weight

to the evidence from good quality frames, yielding superiorperformance even when some

video frames are poorly acquired.

Cancelable iris biometrics:The concept of cancelable biometrics was first introduced by

Rathaet al. in [16, 17]. A cancelable biometric scheme intentionally distorts the original
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biometric pattern through a revocable and non-invertible transformation. The objectives

of a cancelable biometric system are as follows [15]:

• Different templates should be used in different applications to prevent cross match-

ing.

• Template computation must be non-invertible to prevent unauthorized recovery of

biometric data.

• Revocation and reissue should be possible in the event of compromise, and

• Recognition performance should not degrade when a cancelable biometric template

is used.

In [32], Hash functions were used to minimize the compromiseof the private biometric

data of the users. Cryptographic techniques were applied in [33] to increase the security

of iris systems. In [34], error correcting codes were used for cancelable iris biometrics.

A fuzzy commitment method was introduced in [35]. Other schemes have also been

introduced to improve the security of iris biometric. See [15, 32, 33, 34, 35, 36] and the

references therein for more details.

The pioneering work in the field of cancelable iris biometricwas done by Zuoet al.

[37]. They introduced four non-invertible and revocable transformations for cancelabil-

ity. While the first two methods utilized random circular shifting and addition, the other

two methods added random noise patterns to the iris featuresto transform them. As noted

by the authors, the first two methods gradually reduce the amount of information available

for recognition. Since they are essentially linear transformations on the feature vectors,

they are sensitive to outliers in the feature vector that arise due to eyelids, eye lashes

and specular reflections. They also combine the good and bad quality regions in the iris
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image leading to lower performance. The proposed random projections based cancelabil-

ity algorithm works on each sector of the iris separately, sooutliers can only affect the

corresponding sectors and not the entire iris vector. Hence, it is more robust to common

outliers in iris data when compared to [37].

2.2 Sparse Representation Framework

Following [13], in this section, we briefly describe how to capture the underlying structure

in the clean training images using Sparse Representations and utilize it to estimate the

class and quality of the inidividual test samples.

Sparse Representations:Suppose that we are givenL distinct classes and a set ofn

training iris images per class. We extract anN-dimensional vector of Gabor features from

the iris region of each of these images. LetDk = [xk1, . . . ,xk j, . . . ,xkn] be anN×n matrix

of features from thekth class, wherexk j denote the Gabor feature from thejth training

image of thekth class. Define a new matrix or dictionaryD, as the concatenation of

training samples from all the classes as

D = [D1, ...,DL] ∈ R
N×(n.L)

= [x11, ...,x1n|x21, ...,x2n|......|xL1, ...,xLn].

We consider an observation vectory ∈ R
N of unknown class as a linear combination of

the training vectors as

y =
L

∑
i=1

n

∑
j=1

αi j xi j (2.1)
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with coefficientsαi j ∈ R. The above equation can be written more compactly as

y = Dα, (2.2)

whereα = [α11, ...,α1n|α21, ...,α2n|......|αL1, ...,αLn]
T and .T denotes the transposition

operation. We assume that given sufficient training samplesof thekth class,Dk, any new

test imagey ∈ R
N that belongs to the same class will lie approximately in the linear span

of the training samples from the classk. This implies that most of the coefficients not

associated with classk in (2.2) will be close to zero. Hence,α will be a sparse vector.

Sparse Recovery:In order to represent an observed vectory ∈ R
N as a sparse vectorα,

one needs to solve the system of linear equations (2.2). Typically L.n≫ N and hence the

system of linear equations (2.2) is under-determined and has no unique solution. It has

been shown that ifα is sparse enough andD satisfies certain properties, then the sparsest

α can be recovered by solving the following optimization problem [38] [39] [40]

α̂ = argmin
α ′

‖ α ′ ‖1 subject toy = Dα ′, (2.3)

where‖ x ‖1= ∑i |(xi)|. This problem is often known as Basis Pursuit (BP) and can

be solved in polynomial time [41]1. When noisy observations are given, Basis Pursuit

DeNoising (BPDN) can be used to approximateα

α̂ = argmin
α ′

‖ α ′ ‖1 subject to‖y−Dα ′‖2 ≤ ε, (2.4)

where we have assumed that the observations are of the following form

y = Dα +η (2.5)

1Note that theℓ1 norm is an approximation of the theℓ0 norm. The approximation is necessary be-

cause the optimization problem in (2.3) with theℓ0 norm (which seeks the sparsestα) is NP-hard and

computationally difficult to solve.
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with ‖ η ‖2≤ ε.

Sparse Recognition: Given an observation vectory from one of theL classes in the

training set, we compute its coefficientsα̂ by solving either (2.3) or (2.4). We perform

classification based on the fact that high values of the coefficientsα̂ will be associated

with the columns ofD from a single class. We do this by comparing how well the different

parts of the estimated coefficients,α̂ , representy. The minimum of the representation

error or the residual error is then used to identify the correct class. The residual error

of classk is calculated by keeping the coefficients associated with that class and setting

the coefficients not associated with classk to zero. This can be done by introducing a

characteristic function,Πk : Rn → R
n, that selects the coefficients associated with thekth

class as follows

rk(y) = ‖y−DΠk(α̂)‖2. (2.6)

Here the vectorΠk has value one at locations corresponding to the classk and zero for

other entries. The class,d, which is associated with an observed vector, is then declared

as the one that produces the smallest approximation error

d = argmin
k

rk(y). (2.7)

We now summarize the sparse recognition algorithm as follows:

Given a matrix of training samplesD ∈ R
N×(n.L) for L classes and a test sampley ∈ R

N :

1. Solve the BP (2.3) or BPDN (2.4) problem.

2. Compute the residual using (2.6).

3. Identifyy using (2.7).

Image quality measure: For classification, it is important to be able to detect and then
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reject the test samples of poor quality. To decide whether a given test sample has good

quality, we use the notion of Sparsity Concentration Index (SCI) proposed in [13]. The

SCI of a coefficient vectorα ∈ R
(L.n) is defined as

SCI(α) =

L.max‖Πi(α)‖1
‖α‖1

−1

L−1
. (2.8)

SCI takes values between 0 and 1. SCI values close to 1 correspond to the case where the

test image can be approximately represented by using only images from a single class.

The test vector has enough discriminating features of its class, so has high quality. If SCI

= 0 then the coefficients are spread evenly across all classes.So the test vector is not

similar to any of the classes and has of poor quality. A threshold can be chosen to reject

the iris images with poor quality. For instance, a test imagecan be rejected ifSCI(α̂)< λ

and otherwise accepted as valid, whereλ is some chosen threshold between 0 and 1.

2.3 Bayesian Fusion based Image Selection and Recognition

Different regions of the iris have different qualities [20]. So instead of recognizing the

entire iris image directly, we recognize the different regions separately and combine the

results depending on the quality of the region. This reducesthe computational complexity

of the above method as the size of the dictionary is greatly reduced, and the recognition

of the different regions can be done in parallel. Also, sinceocclusions affect only local

regions on the iris which can only lower the quality of certain regions, the robustness of

the recognition algorithm to occlusion due to eyelids and eye lashes is improved. A direct

way of doing this would be to recognize the sectors separately and combine the results

by voting [42]. This, however, does not account for the fact that different regions are
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recognized with different confidences. In what follows, we propose a score level fusion

approach for recognition where we combine the recognition results of different sectors

based on the recognition confidence using the correspondingSCI values. Fig. 2 illustrates

the different steps involved in the proposed approach.

Alignment
Estimation

Possible

Extraction

SegmentationIris Images
/ Video Gabor features

Rotated
Sparse

of Sectors
Representation

Image Selection

Bayesian Fusion

Iris Images
/ Video

Segmentation
and Unwrapping

Gabor Features
of Sectors

& Gabor Feature

Recognition

DictionaryVerification / Identification

Enrollment

Figure 2.2: A block diagram illustrating the Bayesian Fusionbased image selection and

recognition.

Consider the iris recognition problem withL distinct classes. LetC = {c1,c2, . . . ,cL} be

the class labels. Lety be the test vector whose identity is to be determined. Let us divide

the vectory into M̂ non-overlapping regions, each called a sector. Each of the sectors is

individually solved using the sparse representation-based recognition algorithm discussed

in section 2.2. The sectors with SCI values below the threshold are rejected. LetM be

the number of sectors retained, whereM ≤ M̂. Let d1,d2, . . . ,dM be the class labels of the
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retained sectors. Ideally, if the data is noise free, all thereturned labels will be equal to

the true labelc. That is,

d1 = d2 = . . .= dM = c.

However, in the presence of noise in the training and test iris images, the returned labels

will not necessarily be the same. LetP(di |c) be the probability of theith sector returns

a labeldi when the true class isc. It is reasonable to assume that the probability of the

recognition system returning the true labelc is high. But given the noise in the iris images,

all the classes other thanc will still have a low probability of being identified as the true

class. SCI is a measure of the confidence in recognition, so thehigher the SCI value, the

higher the probability that the true class will be the same asthe class suggested by the

recognition system. So a reasonable model for the likelihood is

P(di |c) =



















t
SCI(di )
1

t
SCI(di )
1 +(L−1).t

SCI(di )
2

i f di = c,

t
SCI(di )
2

t
SCI(di )
1 +(L−1).t

SCI(di )
2

i f di 6= c

(2.9)

wheret1 andt2 are positive constants such that

t1 > t2 > 1

The numerator gives a higher probability value to the correct class, and the denominator

is a normalizing constant. The condition (2.3) ensures thatthe probability of the true class

increases monotonically with the SCI value of the sector. Thus, this likelihood function

satisfies the two constraints mentioned above.

The maximum aposteriori estimate (MAP) of the class label given the noisy individual

sector labels is given by

c̃= argmax
c∈C

P(c|d1,d2, . . . ,dM) (2.10)
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Assuming the prior probabilities of the classes are uniform, we obtain

c̃= argmax
c∈C

P(d1,d2, . . . ,dM|c)

Conditioned on the true class, the uncertainty in the class labels is only due to the noise

in the different sectors, which are assumed to be independent of each other. So

c̃= argmax
c∈C

M

∏
j=1

P(d j |c)

= argmax
c∈C

t
∑M

j=1 SCI(d j ).δ (d j=c)
1 .t

∑M
j=1 SCI(d j ).δ (d j 6=c)

2 (2.11)

whereδ (.) is the Kronecker delta function. Sincet1 > t2, the solution to (2.11) is same as

c̃= argmax
c∈C

M

∑
j=1

SCI(d j).δ (d j = c) (2.12)

Let us define the Cumulative SCI (CSCI) of a classcl as

CSCI(cl ) =
∑M

j=1SCI(d j).δ (d j = cl )

∑M
j=1SCI(d j)

(2.13)

So

c̃= argmax
c∈C

CSCI(c) (2.14)

CSCI of a class is the sum of the SCI values of all the sectors identified by the classifier

as belonging to that class. Therefore, the optimal estimateis the class having the highest

CSCI.

2.4 Iris Recognition from video

In this section, we illustrate how our method can be extendedto perform recognition from

iris videos. LetY= {y1,y2, . . . ,yJ} be theJ vectorized frames in the test video. As before,
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each frame is divided intôM sectors and recognized separately by the sparse recognition

algorithm. LetMi be the number of sectors retained by the selection scheme in the ith

frame. Letyi
j be the jth retained sector in theith frame. Using a derivation similar to the

one given in Section 2.3, we can derive the MAP estimate as

c̃= argmax
c∈C

J

∑
i=1

Mi

∑
j=1

SCI(di
j).δ (c= di

j) (2.15)

wheredi
j is the class label assigned by the classifier toyi

j . (2.15) can be alternatively

written as

c̃= argmax
c∈C

CSCI(c) (2.16)

where CSCI of a classcl is given by

CSCI(cl ) =
∑J

i=1∑Mi
j=1SCI(di

j).δ (di
j = cl )

∑J
i=1∑Mi

j=1SCI(di
j)

. (2.17)

As before, the MAP estimate consists of selecting the class having the highest cumulative

SCI value, with the difference that the sectors of all the frames in the test video will be

used while computing the CSCI of each class. Note that unlike existing feature level

and score level fusion methods available for iris recognition, the CSCI incorporates the

quality of the frames into the matching score. Hence, when the frames in the video suffer

from acquisition artifacts like blurring, occlusion and segmentation errors, the proposed

matching score gives higher weights to the good frames, at the same time, suppressing

the evidence from the poorly acquired regions in the video.

The different modes of operation of the proposed algorithm are illustrated in Fig. 3. Both

the probe and the gallery can be separate iris images or iris videos. The iris images are

segmented and unwrapped to form rectangular images. The Gabor features of the different
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Figure 2.3: A block diagram illustrating the different modes of operation of the proposed

algorithm. Both the probe and the gallery can be individual iris images or iris video. Here,

S.R. stands for Sparse Representation.

sectors are computed, and sparse representation-based recognition algorithm described

in section 2.2 is used to select the good iris images. The goodsectors are separately

recognized and combined to obtain the class of probe image orvideo as described above.

2.5 Handling Alignment

Due to rotation of the head with respect to the camera, the captured test iris image may

be rotated with respect to the training images. To obtain a good recognition performance,

it is important to align the test images before recognition.In this section, we propose

a two stage approach for iris feature alignment. In the first stage, we estimate the best

K alignments for each test vector using matched filters and then obtain an alignment

invariant score function, based on the Bayesian fusion framework introduced above.
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2.5.1 Matched Filter Based Alignment Estimation

Let y be the test vector to be recognized. LetÂ be the number of possible alignments of

the test vector. A matched filter is designed for each alignment, whose impulse response

is equal to the corresponding shifted version ofy. Let hi be the impulse response of the

ith matched filter, andH be the set of all possible impulse responses.

H = {h1,h2, . . . ,hÂ} (2.18)

Let ei jk be the sum of squared error betweenith matched filter impulse response andjth

training image of thekth class.

ei jk = ‖hi −xk j‖2
2 (2.19)

The alignment error associated with theith alignment is computed as

ei = min
k=1,2,...L, j=1,2,...n

ei jk (2.20)

The topK alignments are selected as the ones producing the least alignment errorei.

2.5.2 Score Estimation Robust to Alignment Errors

From each test vectory, we can generateK new test vectors by shifting it according to

the corresponding alignments obtained from the method described above. So instead of

theJ original frames in the video, we now haveJK frames. Using arguments similar to

the ones in the previous section, we can obtain the CSCI of thel th classcl as

CSCI(cl ) =
∑JK

i=1∑Mi
j=1SCI(di

j).δ (di
j = cl )

∑JK
i=1∑Mi

j=1SCI(di
j)

. (2.21)

whereMi are the number of sectors retained in theith frame. The MAP estimate of the

output class is the one with the highest CSCI value. Note that this score estimation handles
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the global alignment errors and not the local deformations in the iris pattern. Since our

method weighs different sectors based on their quality, sectors having significant local

deformations will not have high influence on the final CSCI valuedue to their lower

quality.

2.6 Secure Iris Biometric

For a biometric system to be deployed successfully in a practical application, ensuring

security and privacy of the users is essential. In this section, we propose two cancelable

methods to improve security of our recognition system.

2.6.1 Cancelability through Random Projections

The idea of using Random Projections (RP) for cancelability inbiometrics has been pre-

viously introduced in [36], [43], [44]. In [36] and [43], RPs of discriminative features

were used for cancelability in face biometrics. RPs on different regions of the iris were

applied for cancelability in [44]. In what follows, we show how RPs can be extended into

the sparse representation-based approach for ensuring cancelability.

Let Φ be anm×N random matrix withm≤ N such that each entryφi, j of Φ is an in-

dependent realization ofq, whereq is a random variable on a probability measure space

(Ω,ρ). Consider the following observations:

a .
= Φy = ΦDα +η ′, (2.22)

whereη ′ = Φη with ‖ η ′ ‖2≤ ε ′. a can be thought of as a transformed version of the
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biometricy. One must recover the coefficientsα to apply the sparse recognition method

explained in section 2.2. Asm is smaller thanN, the system of equations (2.22) is un-

derdetermined and a unique solution ofα is not available. Given the sparsity ofα, one

can approximateα by solving the BPDN problem. It has been shown that for sufficiently

sparseα and under certain conditions onΦD, the solution to the following optimization

problem will approximate the sparsest near-solution of (2.22) [45]

α̂ = argmin
α ′

‖ α ′ ‖1 s. t. ‖a−ΦDα ′‖2 ≤ ε ′. (2.23)

One sufficient condition for (2.23) to stably approximate the sparsest solution of (2.22),

is the Restricted Isometry Property (RIP)[46, 40]. A matrixΦD satisfies the RIP of order

K with constantsδK ∈ (0,1) if

(1−δK) ‖ v ‖2
2≤‖ ΦDv ‖2

2≤ (1+δK) ‖ v ‖2
2 (2.24)

for any v such that‖ v ‖0≤ K. When RIP holds,ΦD approximately preserves the Eu-

clidean length ofK-sparse vectors. WhenD is a deterministic dictionary andΦ is a

random matrix, the following theorem on the RIP ofΦD can be stated.

Theorem 1. ([45]) Let D∈R
N×(n.L) be a deterministic dictionary with restricted isometry

constantδK(D),K ∈ N. Let Φ ∈ R
m×N be a random matrix satisfying

P
(

|‖Φv‖2−‖v‖2| ≥ ς‖v‖2)≤ 2e−cn
2ς2

, ς ∈ (0,
1
3
) (2.25)

for all v ∈ R
N and some constant c> 0 and assume

m≥Cδ−2(K log((n.L)/K)+ log(2e(1+12/δ ))+ t) (2.26)
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for someδ ∈ (0,1) and t> 0. Then, with probability at least1−e−t , the matrixΦD has

restricted isometry constant

δK(ΦD)≤ δK(D)+δ (1+δK(D)). (2.27)

The constant satisfies C≤ 9/c.

The above theorem establishes how the isometry constants ofD are affected by multipli-

cation with a random matrixΦ. Note that one still needs to check the isometry constants

for the dictionaryD to use this result. However, for a given dictionary,D, it is difficult to

prove thatD satisfies a RIP. One can alleviate this problem by using the phase transition

diagrams [47], [48]. See section VII-A for more details.

The following are some matrices that satisfy (2.25) and hence can be used as random

projections for cancelability.

• m×N random matricesΦ whose entriesφi, j are independent realizations of Gaus-

sian random variablesφi, j ∼ N
(

0, 1
m

)

.

• Independent realizations of±1 Bernoulli random variables

φi, j
.
=















+1/
√

m, with probability 1
2

−1/
√

m, with probability 1
2.

• Independent realizations of related distributions such as

φi, j
.
=































+
√

3/m, with probability 1
6

0, with probability 2
3

−
√

3/m, with probability 1
6.

• Multiplication of anym×N random matrixΦ with a deterministic orthogonalN×N

matrix D̃, i.e. ΦD̃.
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Figure 2.4: Block Diagram of the Random Projections based cancelable system.

Note that RPs meet the various constraints required for cancelability, mentioned in Sec-

tion 2.1. By using different RP matrices, we can issue different templates for different

applications. If a transformed pattern is compromised, we can reissue a new pattern by

applying a new random projection to the iris vector. The RIP properties together with

the sparsity ofα ensure that the recognition performance is preserved. In the application

database, only the transformed dictionaryΦD is stored. If a hacker illegally obtains the

transformed dictionaryΦD and the transformed iris patterns of the user,a, he or she will

have access to the person’s identity. However, it is extremely difficult to obtain the matrix

D from ΦD, and withoutD one cannot obtain the original iris patternsy. Hence, our

cancelable scheme is non-invertible as it is not possible toobtain the original iris patterns

from the transformed patterns. Furthermore, since our method is based on pseudo-random

number generation, we only consider the state space corresponding to the value taken by

the seed of the random number generator. Hence, instead of storing the entire matrix, one

only needs to store the seed used to generate the RP matrix.
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2.6.2 Cancelability through Random Permutations of dictionary columns

As explained in section 2.2, when the iris image has good quality, only the training images

corresponding to the correct class will have high coefficients. If the training images of

different classes are randomly arranged as columns of the dictionary, both the dictionary

and the order of the training images are required for correctrecognition. In this section,

we explain how this idea can enhance the security of our iris recognition system.

When a new user is enrolled, his training images are divided into sectors and placed

at random locations in the dictionary. In Fig. 2.5, we show the dictionary for a trivial

example of four users. Note that the different sectors of each training image of the user

are kept at different random locations in the dictionary. Without prior knowledge of these

locations, it is impossible to perform recognition.

A1

A1 A2

A2
B1 B2

C2
D2D1

C1

B1 B2
C1

D1 D2

S11 S12 S13 S14 S15 S16 S17 S18

S21 S22 S23 S24 S25 S26 S27 S28

C2

Application Database

Sector 1

Sector 2
S17,S25S14,S21

S13,S28 S15,S24

S12,S23 S18,S26

S11,S27 S16,S22

Value

Hash Table

Hash Code

A

B

C

D

Figure 2.5: Sample Dictionary and hash table for a four user example. The four users A,

B, C and D are indicated by colors green, blue, black and red, respectively. A1 and A2

are the two training images corresponding to the first user.Si j denote that thejth location

and theith sector.D1 atS14 means that the first sector of the user D is at locationS14.
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An array indicating the column numbers of the training images of the correct class is

generated for each user. This array is stored in a hash table,and the corresponding hash

code is given to the user during enrollment. During verification, the system acquires the

iris image of the person and extracts the features. For each sector of the iris vector, the

sparse coefficients are obtained using this shuffled dictionary, as explained in section 2.2.

The user also has to present the hash code to the system. Usingthe hash code, the indices

of training images are obtained from the hash table and the coefficients belonging to

different classes are grouped. Then, SCI is computed and usedto retain or reject the

images. If the image is retained, the CSCI values of the different classes are computed

and the class having the lowest CSCI value is assigned as the class label of the user, as

explained in section 2.3. A block diagram of the security scheme is presented in Fig. 2.6

Hash Code
Dictionary Index

Obtain Generate
Dictionary

Representation
Sparse

& Recognition
Image Selection

Extraction
Feature

User

Figure 2.6: Block Diagram of the proposed cancelability scheme using random permuta-

tions.

If the hash code presented is incorrect, then the obtained indices of the training images for

each class will be wrong. So the coefficients will be grouped in a wrong way, and all the

classes will have similar energy leading to a low SCI value andthe subsequent rejection

of the image. Even if by chance, one of the classes happened tohave high energy and

the image is retained, the probability of that class being the correct class is very low (1
N ).
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Thus, with high probability, the user will not be verified. Hence, if a hacker illegally

acquires the iris patterns of a legitimate user, without having the hash code, he or she

will not be able to access the system. Also, even if the hackerobtains the iris dictionary

stored in the application database, the iris patterns of theuser cannot be accessed without

knowing the correct hash codes, because different sectors of an iris patterns reside at

different random locations. If the hash code is compromised, the dictionary indices of

the user can then be stored at a new location, and a new hash code can be issued to the

user. Also, different applications can have different dictionaries. Thus, the user will have

a different hash code for each application, preventing cross matching.

It should be noted that the additional security and privacy introduced by these techniques

come at the expense of storing additional seed values. In applications requiring higher se-

curity, this can be stored with the user, so that a hacker willnot get the original templates

even if he gets hold of the cancelable patterns in the template database. For applica-

tions with greater emphasis on usability, the seed can be stored securely in the template

database, so that the user will not have to carry it.

2.7 Results and Discussion

In the following subsections, we present iris image selection, recognition and cancelabil-

ity results on the ICE2005 dataset [1], ND-IRIS-0405 (ND) dataset [49] and the MBGC

videos [50]. The ND dataset is a superset of the ICE2005 and ICE2006 iris datasets. It

contains about sixty five thousand iris images belonging to three hundred and fifty six

persons, with a wide variety of distortions, facilitating the testing and performance evalu-
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ation of our algorithm. In all of our experiments, we employed a highly efficient algorithm

suitable for large scale applications, known as the Spectral Projected Gradient (SPGL1)

algorithm [51], to solve the BP and BPDN problems.

2.7.1 Empirical verification ofℓ0/ℓ1 equivalence

Our sparse recognition algorithm’s performance depends oncertain conditions on the dic-

tionary such as incoherence and RIP. However, as stated earlier, it is very difficult to prove

any general claim thatD, GD, ΦD, orΦGD satisfies a RIP or an incoherence property. To

address this, one can use the phase transition diagrams [47]. A phase transition diagram

provides a way of checkingℓ0/ℓ1 equivalence, indicating how sparsity and indeterminacy

affect the success ofℓ1 minimization [47, 48].

Phase Transition Diagram
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Figure 2.7: Phase transition diagrams corresponding to thecase when the dictionary is

(a) GD and (b)ΦGD, whereG is the Gabor transformation matrix andΦ is the random

projection matrix for cancelability. In both figures, we observe a phase transition from

lower region where theℓ0/ℓ1 equivalence holds, to the upper region, where one must use

combinatorial search to recover the sparsest solution.

Let δ = M
N be a measure of undersampling factor, andρ = K

M be a measure of sparsity.
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A plot of the pairing of the variablesδ andρ describes a two-dimensional phase space

(δ ,ρ)∈ [0,1]2. The values ofδ andρ ranged through 40 equispaced points in the interval

[0,1] andN = 800. At each point on the grid, we recorded the mean number of coordi-

nates at which original and reconstruction differed by morethan 10−3, averaged over 20

independent realizations (see [47, 48] for more details).

In Fig. 2.7 (a) and (b), we show the phase transition diagramscorresponding to the case

when the dictionary isGD and ΦGD, respectively. Here,G is the Gabor transforma-

tion matrix andΦ is anm×N matrix whose entriesφi, j are independent realizations of

Gaussian random variablesφi, j ∼ N
(

0, 1
m

)

. For each value ofδ , the values ofρ below

the curve, are the ones where theℓ0/ℓ1 equivalence holds. As can be observed, for most

values ofδ , there is atleast one value ofρ below the curve, satisfying the equivalence. So

the vectorα can be recovered if it is sparse enough and enough measurements are taken.

2.7.2 Image Selection and Recognition

In this section, we evaluate our selection and recognition algorithms on ND and ICE2005

datasets. To illustrate the robustness of our algorithm to occlusion due to eyelids and

eyelashes, we perform only a simple iris segmentation scheme, detecting just the pupil

and iris boundaries and not the eyelids and eye lashes. We usethe publicly available code

of Maseket al. [52] for detecting these boundaries.
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2.7.2.1 Variation of SCI with common distortions during image acquisi-

tion

To study the variation of SCI in the presence of common distortions during image acqui-

sition like occlusion and blur, we simulate them on the cleaniris images from the ND

dataset.

Description of the Experiment: We selected fifteen clean iris images of the left eye

of eighty persons. Twelve such images per person formed the gallery and distortions

were simulated on the remaining images to form the probes. Weconsider seven different

levels of distortion for each case, with level one indicating no distortion and level seven

indicating maximum distortion. We obtain the dictionary using the gallery images, and

evaluate the SCI of the various sectors of the test images.

Fig. 2.8 shows some of the simulated images from the ND dataset. The first column

includes images with distortion level one (no distortion).The middle column contains

images with distortion level three (moderate distortions). The right most column contain

images with distortion level five (high distortion). The first row contains images with blur

while the second contains images with occlusion. Images with simulated segmentation

error and specular reflections are shown in the third and fourth rows respectively.

Fig. 2.9 (a) illustrates the variation of SCI with the common acquisition distortions. It can

be observed that good images have high SCI values whereas the ones with distortion have

lower SCI values. So by suitably thresholding the SCI value of the test image, we can

remove the bad images before the recognition stage. The relative stability in SCI values

with occlusion and specular reflection demonstrates the increased robustness attained by
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our algorithm, by separately recognizing the individual sectors and combining the results,

as mentioned in section 2.3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.8: Simulated Distortions on the images from the ND dataset. The detected pupil

and iris boundaries are indicated as red circles.

2.7.2.2 Image Selection results on the ND dataset

In this section, we illustrate the performance of our image selection algorithm on images

from the ND dataset.

Description of the Experiment:We selected the left iris images of eighty subjects that

had sufficiently large number of iris images with different distortions like blur, occlusion

and segmentation errors. Fifteen clean images per person were hand chosen to form the
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Figure 2.9: (a) Plot of the variation in SCI values with commondistortions in iris image

acquisition. Note that the SCI falls monotonically with increasing levels of blur and seg-

mentation errors in the iris images. It is also robust to occlusions and specular reflections.

(b) Plot of the recognition rate versus the number of sectors. Observe the significant im-

provement in the results as the number of sectors is improvedfrom one to eight. (c) Plot of

the recognition rate versus the number of training images. Note that the recognition rate

increases monotonically with the number of training images. Also, sectoring achieves the

same recognition rate as the case without sectoring using far fewer training images.
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gallery. Up to fifteen images with blur, occlusion and segmentation errors were also

selected. As mentioned before, we perform a simple segmentation scheme, retaining

possible occlusion due to eyelids and eyelashes in the iris vector. The Gabor features

of the iris vector form the input. Our algorithm creates the dictionary, finds the sparse

representation for each test vector, evaluates the SCI of thesectors, and rejects the images

for which all the sectors have SCI value below a threshold of 0.6.

Measure the selection performance :The quality of the input iris feature vector should

be a function of the performance of the recognition algorithm on that sample [12]. An

ideal image selection algorithm should retain images, which can be correctly recognized

by the recognition algorithm, and reject the ones on which the subsequent recognition

algorithm will perform poorly. To measure it, we define the Modified False Positive Rate

(MFR) and a Modified Verification Rate (MVR) as follows. Modified False Positive rate

is the fraction of the test vectors retained by the image selection algorithm, which are

wrongly classified by the subsequent recognition algorithm. Modified Verification Rate

is defined as the fraction of the images correctly classified by the recognition algorithm,

which are retained by the selection scheme. To obtain these values, we find the CSCI

for each test sample and also the class assigned to the samples by our algorithm. We

obtain the Receiver Operating Characteristics (ROC) of the image selection algorithm by

plotting MVR versus MFR for different values of threshold. Note that this measures the

performance of the quality estimation stage and is different from the ROC curve of the

recognition algorithm.

MFR=
No of Images selected and wrongly classified

No of images selected
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MVR=
No of Images selected and correctly classified

No of images correctly classified

Fig. 2.10(a) shows the ROC of our image selection algorithm (black), compared to that

using directly the Hamming distance based on the publicly available iris recognition sys-

tem of Maseket al. [52] (red), when the probe images are blurred. Since the datahas

occlusion, direct application of Masek’s algorithm performed poorly. For a fair compari-

son, we modified the algorithm, recognizing the different sectors of the iris separately and

fusing the results through voting. Note that our ROC curve issignificantly sharper than

that of the Masek’s recognition system indicating superiorperformance.

The effects of occlusion in iris images due to eyelids, eye lashes and specular reflec-

tions are illustrated in Fig. 2.10(b). Images with occlusion were obtained for each of the

eighty classes under consideration and used as probes. The ROC curve of our algorithm

is shown in black and that of Masek’s system appears in red. Note that for the same

MFR, the proposed image selection scheme has a higher MVR. Thisindicates that the

proposed selection method retains more images that will be correctly classified by the

subsequent recognition algorithm and rejects more images that will be wrongly classified

by the recognition algorithm.

To study the effects of segmentation error, the gallery images were verified to be well

segmented. Up to fifteen images with segmentation errors were chosen for each person

under consideration, which formed the probes. Fig. 2.10(c)shows the ROC curves of

our method (black) and the Masek’s one (red) in case of wrongly segmented images.

Again, using our image selection algorithm improves the performance of the system even

with wrongly segmented images, a feature lacking in many existing quality estimation
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methods.
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Figure 2.10: Comparison of the ROC curves of the proposed image selection algorithm

(CSCI Based) and one using Hamming distance as the quality measure(Hamming Dis-

tance Based) using clean iris images in the gallery and probe images containing (a) Blur-

ring (b) Occlusions and (c) Segmentation Errors. Note that CSCI based image selec-

tion performs significantly better than Hamming distance based selection when the image

quality is poor.

2.7.2.3 Recognition Results on images from the ND dataset

In this section, we illustrate the performance of our recognition algorithm on images from

the ND dataset.

Performance on clean images - Description of the Experiment: Eighty subjects were

selected from the dataset. Fifteen clean images of the left iris were hand selected for

each person. Of these fifteen images per person, twelve were randomly selected to form

the gallery and the remaining three images per person were used as probes. No image

selection is performed because we want to evaluate the performance of the recognition
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algorithm separately.

We compare our algorithm to a nearest neighbor based recognition algorithm (NN) that

uses the Gabor features and the Masek’s implementation. Since we use tough segmenta-

tion conditions retaining the eyelids and eye lashes in the iris vector, direct application of

NN and Masek’s method produced poor results. For a fair comparison, we divided the iris

images into different sectors, obtained the results using these methods separately on each

sectors and combined the results by voting. We obtained a recognition rate of 99.15%

when compared to 98.33% for the NN and 97.5% for the Masek’s method.

Performance on poorly acquired images - Description of the Experiment- To evaluate

the recognition performance of our algorithm on poorly acquired images, we hand picked

images with blur, occlusion and segmentation errors as explained in the previous section.

Fifteen clean images per person were used to form the gallery. Probes containing each

type of distortion were applied separately to the algorithm. We perform image selection

followed by recognition. The recognition rates are reported in Table. 2.2.

Table 2.1: Recognition Rate On ND Dataset

Image Quality NN Masek’s Implementation Proposed Method

Good 98.33 97.5 99.15

Blurred 95.42 96.01 98.18

Occluded 85.03 89.54 90.44

Seg. Error 78.57 82.09 87.63

In Fig. 2.11, we display the iris images having the least SCI value for the blur, occlusion
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and segmentation error experiments performed on the real iris images in the ND dataset

as mentioned above. As can be observed, images with low SCI values suffer from high

amounts of distortion.

(a) (b) (c)

Figure 2.11: Iris images with low SCI values in the ND dataset.Note that the images

in (a), (b) and (c) suffer from high amounts of blur, occlusion and segmentation errors

respectively .

2.7.2.4 Recognition Performance on the ICE 2005 Dataset

In this section, we compare the performance of our algorithmwith the existing results on

the ICE 2005 dataset corresponding to Experiment 1. Experiment 1 has 1425 iris images

corresponding to 120 different classes.

Description of the Experiment :We have used ten images per class in the gallery and

remaining iris images as the test vectors. We perform segmentation using Masek’s code

and apply the Gabor features of the segmented iris images to our recognition algorithm.

No image selection was performed. We compare our performance with existing results

in Table 2.2, where the verification rates are indicated at a false acceptance rate of 0.001.

The results of the existing methods are obtained from [53].
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Table 2.2: Verification rate at an FAR of 0.001 on the ICE 2005 dataset

Method Verification Rate (%)

Pelco 96.8

WVU 97.9

CAS 3 97

CAS 1 97.8

CMU 99.5

SAGEM 99.8

Proposed Method 98.13

2.7.2.5 Dependence of recognition rate on the number of sectors

Fig. 2.9 (b) plots the variation of the recognition rates forthe proposed method with

changes in the number of sectors. As can be observed, the performance of the recognition

system improves significantly as the number of sectors is increased from one to eight.

Beyond eight, the recognition rate does not increase significantly.

2.7.2.6 Effect of the number of training images on performance

In this section, we study the effect of the number of trainingimages on recognition rate

of our algorithm. We vary the number of training images from one per class to eleven

per class on the ND dataset. The test images consisting of three iris images per person

are used to test each of these cases. The variation of recognition rate is plotted in Fig. 2.9
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(c) for the case of no sectoring and sectoring with eight sectors respectively. As can be

observed, recognition performance increases with the number of training images. This

is hardly surprising as our assumption that the training images span the space of testing

images becomes more valid as the number of training images increases. In unconstrained

iris recognition systems which we are interested in, this isnot a bottle neck because we can

obtain a significant number of iris images from the incoming iris video. Also, sectoring

achieves the same recognition rate as the non-sectoring case with a much lower number

of training images.

2.7.2.7 CSCI as a measure of confidence in recognition

We have empirically observed that the higher the CSCI value forthe test image, the higher

the probability that it is correctly classified. This is illustrated in Fig. 2.12 (a). This

observation is expected as high CSCI means that the reconstructed vector in most of the

sectors will be sparse. If the training images span the spaceof possible testing images,

the training images of the correct class will have high coefficients. So the only possible

sparse vector is the one in which the correct class has high coefficients and others have

zero coefficients, which will be correctly classified by our algorithm.

2.7.3 Cancelability Results using Random Projections

We present cancelability results on the clean images from the ND dataset obtained as ex-

plained in Section 2.7.2.3. The iris region obtained after segmentation was unwrapped

into a rectangular image of size 10×80. The real parts of the Gabor features were ob-
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Figure 2.12: (a) Plot of the CSCI values of test images for a random trial on the ND

dataset. Red dots indicate the wrongly classified images. Observe that the wrongly clas-

sified images have low CSCI values and hence the corresponding vectors are not sparse.

(b) ROC characteristics for the ND dataset. The Same Matrix performance is close to the

performance without cancelability . Using different matrices for each class gives better

performance. (c) Comparison of the distribution of the Genuine and Impostor normalized

Hamming distances for the original and transformed patterns.
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tained and concatenated to form an iris vector of length 800.We used the random Gaus-

sian matrix in our experiments, though other random matrices mentioned in Section 2.6.1

also gave similar results. In [44], it was shown that separate application of the random

projections performed better when compared to the application of a single random pro-

jection on the entire iris vector. So we vectorized the real part of the Gabor features of

each sector of the iris image, applied the random projections, and then concatenated the

random projected vectors to obtain our cancelable iris biometric. We applied either the

same random Gaussian matrix for all the users or different random matrices for differ-

ent users to obtain the RP “Same Matrix” and “Different Matrix” vectors, respectively.

Having obtained the random vectors from the Gabor features of the iris image, we per-

formed the sparsity-based recognition algorithm described in Section 2.2. We present the

Receiver Operating Characteristic (ROC) curves and the Hamming distance distributions

in the subsections below.

2.7.3.1 Recognition Performance

Fig. 2.12(b) plots the ROC characteristics for the iris images in the ND dataset for the

original and transformed iris patterns. As demonstrated, using different matrices for each

class performs better than using the same matrix for all classes. In the “Different Matrix”

case, we assumed that the user provided the correct matrix assigned to him. So the per-

formance exceeds even the original performance as class specific random projections in-

creases the interclass distance, still retaining the original intra-class distance. In Fig. 2.12

(c), we compare the distribution of the genuine and impostornormalized Hamming dis-
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tance for the original and transformed iris patterns. We canobserve that the distribution of

the genuine Hamming distance remains almost the same after applying the random pro-

jections. The original and Same Matrix cases have similar impostor Hamming distance

distributions. However the Different Matrix case has an impostor distribution that is more

peaked and farther from the genuine distribution, indicating superior performance.

2.7.3.2 Normalized Hamming distance comparison between the original

and the transformed patterns

In this section, we quantify the similarity between the original and the random projected

iris vectors. From the original and transformed iris vectors, iris codes are computed by

allocating two bits for each Gabor value. The first bit is assigned one if the real part of

the Gabor feature is positive and zero otherwise. The secondbit is assigned a value of

one or zero in a similar manner based on the imaginary part of the Gabor feature. The

normalized Hamming distance between the iris codes is used as the measure of similarity.

In Fig. 2.13(a), we plot the normalized Hamming distance between the iris codes of the

original and the transformed iris vectors for the “Same Matrix” and “Different Matrix”

cases, respectively. Ideally we want the two iris codes to beindependent, hence the

normalized Hamming distance should be 0.5. The figure shows that the histogram of

the Hamming distance peaks at 0.5, empirically verifying that the random projected iris

vectors are significantly different from the originals ones. Hence it is not possible to

extract the original iris codes from the transformed version, thereby proving the non-

invertibility property of our transformation.
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Figure 2.13: (a) Plot of the histograms of the Normalized Hamming Distance between

the original and transformed vectors. Note that the histogram peaks around 0.5 indicating

that the original and transformed iris codes are significantly different. (b) Plot of the

recognition rate with dimension reductions for the ND dataset. Note that the performance

remains the same up to 30% of the original dimension. (c) ROC plots for video based

iris recognition. Method 1 treats each frame in the video as adifferent probe. Method 2

averages all the frames in the probe video. Methods 3 and 4 usethe average and minimum

of all the pair wise Haming distance between the frames of theprobe and gallery videos

respectively. The Proposed Method uses CSCI as the matching score. Note that the

introduced quality based matching score outperforms the existing fusion schemes, which

do not incorporate the quality of the individual frames in the video.
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Table 2.5 provides the statistics of the normalized Hammingdistance between the original

and the transformed iris vectors. As can be seen, the mean of the normalized Hamming

distance is very close to 0.5 with a very low standard deviation.

Table 2.3: Statistics Of The Normalized Hamming Distance.

Methods Mean Standard Deviation

Without RP 0 0

Same Matrix 0.5002 0.0123

Different Matrix 0.4999 0.013

Dictionary Permutations 0.4913 0.0254
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Figure 2.14: (a) Gabor features of the original iris image. (b) Gabor features of the recov-

ered iris image from the cancelable patterns in the dictionary and a randomly generated

projection matrix.

2.7.3.3 Non-Invertibility Analysis of Cancelable Templates using Ran-

dom Projections

In this section, we consider the recovery of original iris patterns from the cancelable

templates, using varying levels of information about the dictionary and the projection

matrix Φ. We consider two methods, one based on minimizing the squared error and the
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other based on compressive sensing techniques. As before, we consider eighty classes

from the ND-IRIS-0405 dataset with fifteen images per class. Twelve images per person

for the training set and the remaining for the test vectors. We apply the same random

projectionsΦ for each class with a dimension reduction of 40% to form the cancelable

patterns. Hence, we have thea = ΦDy, wherea is the cancelable template andy is the

original iris pattern. We consider two methods for reconstructing the original patterns

from cancelable patterns. They are explained below.

1. Least Square solution - From equation (2.22) in the presence of additive noise, the

original template can be recovered by minimizing the following squared error.

ŷ = argmin
y

‖a−Φy‖2
2

2. Compressive Sensing based solution - SinceΦ is a random Gaussian matrix having

good RIP, one possible way of reconstructing the iris patterns is by solving the

following L1 minimization problem.

ŷ = argmin
y

‖ y ‖1 s. t. ‖a−Φy‖2 ≤ ε ′. (2.28)

We computed the error in reconstruction of the original patterns and the recognition rate

on the reconstructed patterns for different levels of information known about the cance-

lable template dictionary and the random projection matrixΦ. The results are shown in

Table 2.5. As can be observed, the recognition performance is close to chance when ei-

ther the random matrix or the dictionary entries are not known. Even when the random

matrix and the dictionary entries are fully known, the recognition performance on the re-

constructed template is significantly lower than that on theoriginal iris templates. This
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result empirically verifies that it is difficult to extract significant information about the

original iris templates from the cancelable ones.

Table 2.4: Reconstruction Error and Recognition Rate knowing the exact cancelable tem-

plate and fraction of entries in the projection matrix

Method Metric %
Fraction Of Correct Values

0 .2 .4 .6 .8 1

LS
Recon. Error 50 49 49 49 49 49

Recog. Rate 2.9 2.08 2.08 .42 .83 .83

CS
Recon. Error 49 46 42 38 32 22

Recog. Rate 1.67 2.08 3.33 7.92 24.58 59.17

In Fig. 2.14, we display the Gabor features of one of the iris images in the dictionary and

the corresponding recovered pattern. As can be observed, the recovered pattern appears

as random noise and does not contain any of the information inthe original iris pattern.

2.7.3.4 Effect of dimension reduction

In Fig. 2.13(b), we demonstrate the robustness of random projections to reduction in the

original dimension of the feature vector. The random projected vectors retain their orig-

inal performance for up to 30% reduction in the original dimension for both the same

and different matrix cases. Dimension reduction further strengthens the non-invertibility

of our transformation as there will be infinite possible irisvectors corresponding the re-

duced dimension random vectors obtained by RP.
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Table 2.5: Reconstruction Error and Recognition Rate knowing the exact projection ma-

trix and fraction of entries in the cancelable template

Method Metric (%)
Fraction Of Correct Values

0 .2 .4 .6 .8 1

LS
Recon. Error 49 49 49 49 49 49

Recog. Rate 1.25 2.08 1.25 .83 1.25 2.5

CS
Recon. Error 49 48 46 43 38 22

Recog. Rate 1.25 1.67 1.25 1.67 9.17 57.50

2.7.3.5 Comparison with Salting

In Table. 2.6, we present the recognition rates and the corresponding mean Hamming dis-

tance for the salting method proposed in [37] for various noise levels. The best recognition

rate and the best Hamming distance for the Salting method are96.6% and 0.494 respec-

tively. For RP Same Matrix case, we obtained a recognition rate of 97% at a Hamming

distance of.497. Thus both the recognition performance and security (non-invertibility)

are higher for RP when compared to the Salting method.

2.7.4 Cancelability Results using Random Permutations

To evaluate the performance of the proposed cancelable method using dictionary permu-

tations, we consider the three possible scenarios on the clean images from the ND dataset.

In the first case, the user provides the iris image and the correct hash code. In this case, the
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Table 2.6: Comparison with Salting method. The Recognition Rate(RR) and mean Ham-

ming Distance (HD) are provided for the Salting and SRP methods. The recognition rate

obtained using SRP is higher than that of the Salting method. Also SRP gives mean

Hamming distance closer to .5 when compared to the Salting method.

Quantity Salting Same Different Permutations

RR(%) 94.2 96.6 94.0 97 100 100

HD 0 .491 .494 .497 .50 .483

recognition performance was the same as that of the originalmethod on the ND dataset,

which is 99.17%. In the second case, the user provides the iris image but a wrong hash

code. Here the recognition performance dropped to 2%, whichis only slightly better than

chance. This is equivalent to the case when a hacker illegally obtains the iris image of a

valid user and tries to gain access into the system with a guess about the hash code. The

low recognition performance clearly reflects the additional security introduced by the per-

mutations, as a hacker needs to now have not only the iris image but also the hash code

of a valid user to gain access. In the third experiment, we found the closeness between

the Gabor features of the original iris images and the new feature vectors obtained by per-

mutations of the Gabor features in the dictionary. As before, the normalized Hamming

distance between the iris codes obtained from these vectorsis used as the measure of sim-

ilarity. We plot the histogram of the normalized Hamming distance between the original

and the randomly permuted iris vectors in Fig. 2.13(a). The mean and standard deviation

of the Hamming distance histogram are indicated in the last row of the Table. 2.5. Note

that the mean is close to.5, indicating that the permutations differ significantly different
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from the original iris images. Even if a hacker can use the dictionary from the application

database, he or she will be unable to extract information about the original iris images

without knowing the hash code of each user.

2.7.5 Results on Iris Videos

In this section, we present the results on the MBGC videos [50]. Given the thirty classes,

we used twenty eight classes that contained atleast five goodimages in our experiments.

We hand picked five clean images from the iris videos in the training set which formed

the dictionary. In the test videos, batches of five frames were given as a probe to our

algorithm. Using twenty eight available videos and sixty frames from each test video,

we could form three hundred and thirty six probes. We did onlya basic segmentation of

the iris and pupil using the Masek’s code, as before. Also, wedid not remove the poorly

segmented iris images manually before performing the recognition algorithm.

We compare the performance of our algorithm with four other methods. The ROC plots

for the different methods are displayed in Fig. 2.13(c). In Method 1, we consider each

frame of the video as a different probe. It gave the worst performance, indicating that

using multiple frames available in a video can improve the performance. Method 2 aver-

ages the intensity of the different iris images. Though it performs well when the images

are clean, a single image which is poorly segmented or blurred could affect the entire av-

erage. In Methods 3 and 4, all possible pair wise Hamming distances between the video

frames of the probe videos and the gallery videos belonging to the same class are com-

puted. Method 3 uses the average of these Hamming distance asthe score. In Method 4,
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the minimum of the pairwise Hamming distance was used as the score. In the proposed

method, the CSCI values were computed for each class for each probe video and the

probe video is assigned to the class having the highest CSCI value. For a fair comparison

of the proposed quality measure in videos, we did not reject any of the frames. Observe

that our method performs better than other methods. One of the reasons for the superior

performance could be the fact that we are incorporating the quality of the different frames

while computing the CSCI. Frames which are poorly segmented orblurred will have a

low SCI value and hence will not affect the score significantly. In all the other methods,

the image quality was not effectively incorporated into thematching score, so all frames

are treated equally irrespective of their quality.
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Chapter 3

Sensor Adaptation in Iris Recognition

As explained in Chapter 2, iris recognition is one of the most popular approaches for non-

contact biometric authentication [12]. Over the past decade, sensors for acquiring iris

patterns have undergone significant transformations: existing ones have been upgraded

and new ones have been developed [54]. These transformations pose new challenges

to iris recognition algorithms. Due to the large number of users, possibly in millions,

enrollment is expensive and time-consuming. This makes it infeasible to re-enroll users

every time a new sensor is deployed. In practice, one often encounters situations where

iris images for enrollment and testing are acquired by different sensors.

Recent studies in iris biometrics illustrate that cross-sensor matching, where different sen-

sors are employed for enrollment and testing, often lead to reduced performance [55]. We

illustrate this using the LG2200 and LG4000 sensors in Figure 3.1. As can be observed,

the receiver operating characteristics (ROC) curve of cross-sensor matching is inferior

to that of same-sensor matching. We refer to this performance drop due to the differ-

ence in the sensors used for enrollment and testing as the “sensor mismatch” problem in

iris recognition, and techniques to alleviate it as “sensoradaptation” methods. While the

sensor mismatch problem has been empirically illustrated by [55] and [56], research in

algorithms for sensor adaptation specific to iris biometrics has been limited in the litera-

ture.

53



0 0.5 1 1.5

x 10
−3

0.85

0.9

0.95

1

False Accept Rate (FAR)

T
ru

e 
A

cc
ep

t R
at

e 
(1

−
F

R
R

)

ROC

 

 

Sensor1: TAR at FAR=0.1% : 97.7753%
Sensor2: TAR at FAR=0.1% : 99.5208%
Cross−sensor: TAR at FAR=0.1% : 94.1252%

Cross−sensor performance drop

Figure 3.1: ROC curves for the same-sensor and the cross-sensor case, collected under

similar acquisition conditions. Observe that the black curve corresponding to cross-sensor

matching is significantly lower than the same-sensor matching curves in red and green,

indicating the performance drop caused by sensor mismatch.

In this chapter, we first present a novel optimization framework for learning transfor-

mations of iris biometrics having the desired properties. These transformations can be

concisely represented using kernel functions. The proposed framework is then utilized

for sensor adaptation, by constraining the samples from different sensors to behave in a

similar manner in the transformed domain. Specifically, we enforce the following con-

straints on the transformation. In the transformed space, the distances between iris sam-

ples belonging to the same class should be small, irrespective of the sensor used for their

acquisition. Furthermore, those between samples of different classes should be large.

These constraints ensure that the sensor mismatch problem is alleviated, when cross-

sensor matching is performed in the transformed domain.

While the original optimization problem is convex and has a global optimum, it needs to

be performed every time a test sample is acquired. Hence, it is computationally expensive.

By rewriting the optimization problem, an efficient solutionis obtained using Bregman
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projections. This solution involves estimating the adaptation parameters during the train-

ing stage. During testing, the test iris samples are transformed using these parameters.

Cross-sensor matching is then performed using the transformed iris samples. Since the

learned transformation alleviates the sensor mismatch problem, cross-sensor matching in

the transformed domain leads to significant improvements inaccuracy.

Contributions: The main contributions of this work are:

1. The proposed method is one of the first comprehensive solution for the sensor mis-

match problem in iris biometrics.

2. The introduced solution leads to considerable improvement in cross-sensor match-

ing. It is robust to alignment errors, and can also handle real-valued feature repre-

sentations.

3. The proposed technique is fast, requiring limited changes to the existing iris recog-

nition pipeline. Hence, it can easily be incorporated into existing iris recognition

systems.

Organization of the chapter: The relevant literature in iris recognition and machine

learning is described in Section 3.1. In Section 3.2, a similarity measure is developed

for iris codes and its properties are analyzed. A general optimization framework for

learning kernel functions for iris codes is introduced in Section 3.3. The sensor mismatch

problem is formulated as a kernel learning problem in Section 3.4. By reformulating this

optimization problem using the similarity measure introduced in Section 3.2, an efficient

solution is developed in Section 3.5. The proposed method isevaluated on iris data from

multiple sensors in Section 3.6.
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3.1 Related Work

3.1.1 Iris Recognition

The main components in an iris recognition system are image acquisition, iris segmenta-

tion, feature extraction, and template matching [12]. Please refer to the ‘Related Work’

section in Chapter 2 for a detailed description of the existing literature on iris recognition.

3.1.2 Iris Acquisition Systems

Iris image acquisition systems differ mainly in the type andlocation of the illumination

they use, the type of sensor, and the presence of additional optical elements [54]. Due to

the different design possibilities and significant commercial interests in iris recognition,

numerous iris acquisition systems are available, with the potential for many more. Some

of the popular systems are LG2200, LG4000, Iris on the Move portal system by Sarnoff,

Combined Face And Iris Recognition System (CFAIRs) by Honeywell, HBOXTM system

by Global Rainmakers Inc., and Eagle-EyesTM system by Retica. Interested readers are

referred to [54] for a detailed review of these systems.

3.1.3 Sensor Interoperability

Owing to the large number of iris recognition systems currently available and the con-

tinuous improvement of existing systems, the inter-operability of iris systems become

extremely important. In the past, several works have addressed the problem of biomet-

ric interoperability for fingerprint sensors [57] [58], or multibiometric systems [59]. In
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iris biometrics, this problem was first investigated by Bowyer et. al [55] using two iris

sensors. Their work demonstrated that the older of the two sensors provided less desir-

able match score distributions. Furthermore, the cross-sensor performance was inferior

to that of either sensors tested individually. Cross-sensoriris recognition was further ex-

plored by Connaughtonet. al [56], who experimented with three commercially available

iris sensors. These methods clearly demonstrate the need for improving the cross-sensor

recognition performance.

3.1.4 Kernel Methods in Machine Learning

Since we follow a kernel-based approach for sensor adaptation, a brief introduction to

kernel methods in machine learning is provided in this section. Interested readers are re-

ferred to [60] for an extensive description of the topic. To capture non-linear relationships,

kernel methods project the data into a higher dimensional space and fit linear models in

the projected space. Data appear in computation only in the form of inner products, which

can be performed without explicit projection into the high dimensional space, using kernel

functions. Boseret. al [61] introduced kernels into mainstream machine learning litera-

ture by combining kernel functions and maximum margin hyperplanes, leading to nonlin-

ear support vector machines (SVM). Kernels have also been used for metric learning [62],

domain adaptation [63], and dictionary learning [64]. Specialized kernel functions have

been developed for different applications, such as text categorization [65] and scene anal-

ysis [66]. Furthermore, kernel functions have also been developed in an optimization

framework, where desired properties are enforced by the chosen constraints [67]. This
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framework is explained in detail in Section 3.3.

3.2 Similarity Measure

In this section, a similarity measure is introduced for irissamples and its properties are

analyzed. This measure will play an important role in developing an efficient sensor

adaptation algorithm in Section 3.5.

Notations: We first introduce the notations used in the paper. LetBD = {0,1}D be the

space of all binary vectors of lengthD. Let the iris samples available during training be de-

noted byL = {θ1,θ2, . . . ,θN}. Here, theith iris sampleθi ∈ B2D,θ T
i =

[

xT
i mT

i

]

, where

xi ∈ BD is theith iris code andmi ∈ BD, the corresponding mask. Letyi ∈ {1,2, . . .Nc}

denote the class label of theith iris sample andsi ∈ {1,2, . . . ,Ns} denote the sensor from

which it was acquired. Here,N denotes the number of training samples,D the dimension

of the iris codes,Nc the number of subjects enrolled, andNs the number of sensors used

for acquisition. We denote thej th bit in the ith iris code byxi( j). xi( j) is called a “valid”

bit if the corresponding masking bitmi( j) = 1. Furthermore, let∧,⊕ and¬ denote the

logical AND, XOR and NOT operations, respectively.

The normalized Hamming distanceH (θi ,θ j) between two iris samplesθi andθ j is de-

fined as the fraction of the valid bits that disagree [68]. So

H (θi ,θ j) =
∑D

l=1{mi(l)∧mj(l)∧ (xi(l)⊕x j(l))}
∑D

l=1{mi(l)∧mj(l)}
. (3.1)
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3.2.1 Definitions

Given two iris samplesθi andθ j , we define the joint agreementηA(θi ,θ j) as the number

of valid bits that agree betweenθi andθ j . Similarly, the joint disagreementηD(θi ,θ j)

is defined as the number of valid bits that disagree betweenθi andθ j . The joint length

η(θi ,θ j) is the number of bits which are valid in bothθi andθ j . Hence,

ηA(θi ,θ j) =
D

∑
l=1

{mi(l)∧mj(l)∧¬(xi(l)⊕x j(l))}.

ηD(θi ,θ j) =
D

∑
l=1

{mi(l)∧mj(l)∧ (xi(l)⊕x j(l))}.

η(θi ,θ j) =
D

∑
l=1

(mi(l)∧mj(l)). (3.2)

The joint agreement, the joint disagreement and the joint length are related by

ηA(θi ,θ j)+ηD(θi ,θ j) = η(θi ,θ j). (3.3)

3.2.2 Deriving a Similarity Measure

The normalized Hamming distanceH (θi ,θ j) between two iris samplesθi andθ j can be

expressed in terms of the joint agreement and joint disagreement as

H (θi ,θ j) =
1
4
+

1
4
−2

{ηA(θi ,θ j)−ηD(θi ,θ j)}
4η(θi ,θ j)

. (3.4)

Observe that the third term in the last equation given above,{ηA(θi ,θ j )−ηD(θi ,θ j )}
η(θi ,θ j )

is the

difference between the fraction of valid bits that agree andthe fraction of valid bits that

disagree. This provides a meaningful similarity measure between two iris codesθi and
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θ j . Therefore, we define the similarity measure between iris samplesθi andθ j as

F (θi ,θ j) =
ηA(θi ,θ j)−ηD(θi ,θ j)

4η(θi ,θ j)
. (3.5)

The scalar 4 in the denominator is just a scale factor to simplify our equations, as will

become clear later.

Property: H (θi ,θ j) andF (θi ,θ j) are related by

H (θi ,θ j) = F (θi ,θi)+F (θ j ,θ j)−2F (θi ,θ j). (3.6)

3.3 Framework for Kernel Learning

In this section, we develop a framework for learning transformations of iris biometrics

having desired properties. These transformations can be represented using kernel func-

tions, and hence such techniques are called kernel learningmethods [67]. The space of

allowable transformations for iris biometrics and the constraints they should satisfy are

described below.

3.3.1 Space of Transformations for Iris Biometrics

As discussed in Section 3.1.1, popular iris recognition techniques perform verification by

matching the binary iris codes. Hence, we first need to fix the set of allowable transfor-

mations for iris codes. Boolean transformations, such as permutations, map one binary

vector to another. However, learning boolean transformations satisfying desired con-

straints is difficult. So the class of transformationsφ : B2D → R
M, mapping iris codes

to real-valued vectors (of some dimensionM) is chosen here. The corresponding kernel
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function [69] is given by

K (θi ,θ j) = φ(θi)
Tφ(θ j). (3.7)

Let K ∈ R
N×N denote the kernel matrix, whose(i, j)th entry is the kernel function be-

tweenθi andθ j . In other words,Ki j = K (θi ,θ j). Since the transformed feature vectors

are real-valued, the squared Euclidean distanceζe(·, ·) is used as the distance metric in

the transformed space. It is related to the kernel function by

ζe(φ(θi),φ(θ j)) = ‖φ(θi)−φ(θ j)‖2

= φ(θi)
Tφ(θi)+φ(θ j)

Tφ(θ j)

−2φ(θi)
Tφ(θ j)

= Kii +K j j −2Ki j . (3.8)

For notational simplicity, let us denoteζe(φ(θi),φ(θ j)) by ζi j .

3.3.2 Constraints to be Satisfied

In this section, the constraints that the transformed samples must satisfy are described.

Distance preserving constraints:For the learned transformation to perform well on the

test samples, the squared Euclidean distance in the transformed space should capture the

distance relationships between the original iris samples.Learning transformations pre-

serving the local distances in the original and transformedspaces is a well explored area

in machine learning, called manifold learning [70, 71]. These methods are restricted to

constraining the local distances, since distances betweennon-local points are often dif-

ficult to compute. However, since the normalized Hamming distance is a good distance

measure for iris codes, we impose that the distances betweenall the training samples
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should be preserved by the learned transformation. This canbe achieved by constrain-

ing the squared Euclidean distance between the transformedvectors to be close to the

normalized Hamming distance between the original vectors.

ζi j ≈ H (θi ,θ j). (3.9)

Application-specific constraints: Often, application -specific constraints need to be in-

troduced into the optimization framework to obtain the desired results. For example,

Weinbergeret. al. [67] learned transformations maximizing the variance between sam-

ples. Maximum Mean Discrepancy (MMD) constraints were usedfor transfer learning by

Panet. al.[72]. Let the application specific constraints to be satisfied by the learned trans-

formation be denoted byC (φ) ≤ 0, where the functionC (·) depends on the constraints

being imposed.

3.3.3 Kernel Learning

Having specified the space of allowable transformations andthe constraints they should

satisfy, the kernel learning problem can be expressed as

φ∗(·) = argmin
φ :B2D→RM

∑
θi ,θ j∈L

ζd(ζi j ,H (θi ,θ j)) (3.10)

subject to the constraintsC (φ) ≤ 0, whereζi j = ζe(φ(θi),φ(θ j)), ζd(·, ·) is a suitable

distance measure between the squared Euclidean distance inthe transformed space and

the normalized Hamming distance in the original space of iris codes, andφ∗(·) is the

optimal mapping.
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3.4 Sensor Adaptation

Having developed a general framework for learning kernel functions for iris biometrics,

we now describe how it can be utilized for sensor adaptation.A sensor adaptation algo-

rithm should reduce the sensor mismatch problem and improvethe verification perfor-

mance when the sensor used for enrollment differ from that used for testing. Since the

algorithm has to be incorporated into existing recognitionsystems, it should be fast and

introduce minimal changes to the existing recognition pipeline.

Let the enrollment samples be acquired using sensor S1 and testing samples using sensor

S2, where S1 differs from S2 in the sensor technology or the location or type of illumi-

nation. We assume that iris samples acquired by both sensorsare available for a small

number of subjects. By considering the samples acquired by S2as the target domain and

those enrolled by S1 as the source domain, this becomes the standard domain adaptation

problem in machine learning [73]. However, existing algorithms for domain adaptation

are typically based on real-valued features. One possible solution is to convert the orig-

inal iris codes from binary to real values, use an existing domain adaptation algorithm

and quantize the adapted features to obtain the final iris codes for matching. However,

this could lead to reduced performance due to quantization,and also lead to significant

changes in the existing iris recognition systems.

Instead, we transform the binary iris codes to real-valued features using the kernel-learning

framework introduced in Section 3.3. Matching is then performed using the transformed

iris samples. In addition to the distance preserving constraints, the application specific

constraints are incorporated for sensor adaptation, as explained below.
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Inter-sensor constraints: To test samples accurately from S2 using samples enrolled

by S1, the samples of S2 should be close to same-class samplesin S1. Furthermore, they

should be far from samples in S1 belonging to different classes. Therefore, we require that

the transformation should bring samples of the same class acquired by different sensors

closer, and move those from different classes farther in thetransformed space [63]. These

constraints are given by

ζi j ≤ du, if yi = y j , si 6= sj . (3.11)

ζi j ≥ dl , if yi 6= y j , si 6= sj .

Intra-sensor constraints: Often sensors available for iris acquisition differ greatly in

accuracy. Usually iris samples will be enrolled using an older sensor. This will have an

accuracy much lower than that of the newer sensor acquiring the test samples for verifica-

tion [55]. Hence, the cross-sensor performance can be limited by that of the older sensor.

To handle the varying accuracies of the two sensors, additional intra-sensor constraints

are introduced. For each individual sensor, they impose that the distance between same-

class samples should be small, and the distance between different class samples should

be large. These constraints have been used in Metric Learning [62], and will improve the

performance of the older sensor. These constraints are given by

ζi j ≤ du, if yi = y j , si = sj . (3.12)

ζi j ≥ dl , if yi 6= y j , si = sj .

Transform Learning: We can now express the transform learning problem as

φA(·) = argmin
φ :B2D→RM

∑
θi ,θ j∈L

ζd
(

ζi j ,H (θi ,θ j)
)

(3.13)
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subject to the constraints

ζi j ≤ du, if yi = y j

ζi j ≥ dl , if yi 6= y j .

whereζi j = ζe(φ(θi),φ(θ j)), ζd is a suitable distance measure between the Euclidean

distance in the transformed space and the normalized Hamming distance in the original

space of iris codes, andφA(·) is the optimal transformation for sensor adaptation.

At this point, we could have specified a parametric model forφ and learned its parameters

by solving the optimization problem. However, it is not clear what would be a good

model for φ , and bad choices could affect the classification performance. So, instead

of a parametric approach, the optimization problem is expressed in terms of the kernel

functions and the optimal kernel function is computed.

By substituting (3.8), the optimization problem can be rewritten in terms of the kernel

matrix as

K
A = arg min

K ∈S
∑

θi ,θ j∈L

ζd(Kii +K j j −2Ki j ,H (θi ,θ j)) (3.14)

subject to the constraints,∀θi ,θ j ∈ L

Kii +K j j −2Ki j ≥ du, if yi = y j

Kii +K j j −2Ki j ≤ dl , if yi 6= y j .

whereK A(θi ,θ j) = φA(θi)
TφA(θ j) is the adapted kernel matrix corresponding to the

optimal transformation, andS is the space of all positive semi definite matrices.

Direct solution: Whenζd(., .) is the Euclidean distance, the optimization problem above

becomes convex, because it involves the minimization of a quadratic cost function subject
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to linear constraints, and the global minimum can be obtained. To perform verification,

the kernel function between the test samples and the training samples can be obtained

by solving the problem above. Distances in the transformed space can be computed us-

ing (3.8) and used for matching, as explained in Section 3.5.3.

However, in practical applications, test iris samples are acquired at various times. Solving

the optimization problem for each test sample is computationally inefficient. In the next

section, we develop an efficient solution to this optimization problem based on Bregman

projections [74], utilizing the similarity measure developed in Section 3.2.

3.5 Efficient solution

Substituting (3.6) in the optimization problem (3.14), thecost function to be minimized

becomes

∑
θi ,θ j∈L

ζd(Kii +K j j −2Ki j ,H (θi ,θ j))

= ∑
θi ,θ j∈L

ζd(Kii +K j j −2Ki j ,Fii +F j j −2Fi j ).

Observe that the cost function given above can be minimized by minimizing the distance

between the Kernel matrixK and the similarity matrixF . A suitable distance measure

between the two matrices is the logDet divergence. The logDet divergence between two

positive semi-definite matricesK1,K2 ∈R
n×n is defined asζl (K1,K2) = χ(K1)−χ(K2)−

tr(▽χ(K2)
T(K1−K2)) [74], whereχ(K1) = −∑i,λi>0 logλi , λi is the ith eigen value of

K1, tr(·) is the matrix trace operator and▽(·) is the gradient operator. When the masks

are identical, the similarity measure is a kernel function,and hence the corresponding

similarity matrixF will be positive semi-definite. In other cases, we empirically verify
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in Section 3.6.10 that the similarity matrixF is positive semidefinite.

The modified optimization problem is given by

K
A = arg min

K ∈S
ζl (K ,F ) (3.15)

subject to the constraints,∀θi ,θ j ∈ L

Kii +K j j −2Ki j ≥ du, if yi = y j

Kii +K j j −2Ki j ≤ dl , if yi 6= y j .

whereS is the space of all positive semi-definite matrices,F is the similarity matrix

obtained from the training samples,K A is the adapted kernel matrix andζl (·, ·) is the

logDet divergence.

The optimization problem formulated above is convex as before and has a global min-

imum. Furthermore, the cost is a Bregman divergence [74]. An optimization problem

consisting of the minimization of a Bregman divergence subject to linear inequality con-

straints can be solved efficiently using Bregman projections[75]. Bregman projections

choose one constraint per iteration and perform a Bregman projection so that the current

solution satisfies the chosen constraint. This process is repeated in a cyclic manner un-

til convergence. Under mild conditions, it has been shown that the Bregman projection

technique converges to the globally optimal solution [75].Furthermore, as will become

evident later, the optimization problem (3.15) need not be solved every time a new test

sample is acquired, as is the case for (3.14).

Observe that every constraint is obtained by selecting two training samples and constrain-

ing the kernel function between them. LetC = {(i, j)} be the set of all constraints used
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for sensor adaptation, where(i, j) corresponds to a constraint imposed between training

samplesθi andθ j . Let the constraint chosen after thet th iteration be formed using the

t th
i and thet th

j data samples. Furthermore, leteti ∈ R
N be a vector with value 1 at thet th

i

location and 0 otherwise. At the(t +1)th iteration, the Bregman update is given by [74]

K
t+1 = K

t +βt+1K
teti e

T
t j
K

t . (3.16)

whereK 0 = F , eT
t j

is the transpose of the vectoret j , and the scalarβt+1 is computed at

each iteration, as explained in [74].

3.5.1 Learning Adaptation Parameters

Since only a finite number of constraints exist, and Bregman projections cyclically select

each constraint for updating the kernel, the same constraint is chosen multiple times dur-

ing optimization. Due to the linearity of the kernel update equation (3.16), the contribu-

tion of each constraint to the final solution can be expressedas the sum of its contribution

to each iteration of the algorithm. Letτ be the total number of iterations for convergence

during adaptation. Then

K
A = K

τ = K
0+

τ

∑
t=1

βtK
t−1eti e

T
t j
K

t−1

= K
0+ ∑

(i, j)∈C

σi j K
0eie

T
j K

0. (3.17)

whereσi j , called the adaptation parameters, represent the contribution made by the(i, j)th

constraint to the adapted kernel. These parameters can be estimated using just the training

samples during the learning stage, irrespective of testingsamples.

Let Σ∈R
N×N be the adaptation matrix, whose(i, j)th entry gives the adaptation parameter
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σi j . (3.17) can be written using the matrix notation as

K
A = K

0+K
0ΣK

0.

Hence,Σ can be computed as

Σ = (K 0)−1(K A−K
0)(K 0)−1

= (F )−1(K A−F )(F )−1. (3.18)

3.5.2 Sensor Adaptation during Testing

Given a testing sampleθt , its adapted kernel function is first evaluated with all the training

samplesK A(θt ,θ),θ ∈ L , using the adaptation parametersΣ and similarity measure

F (θt ,θ) using (3.17) as

K
A(θt ,θ) = F (θt ,θ)+∑

i j
σi j F (θt ,θi)F (θ j ,θ). (3.19)

Observe that the adapted kernel computation does not involve solving the optimization

problem (3.15) for each test sample, which makes it extremely efficient.

3.5.3 Iris Matching

Given a test iris sampleθt , its adapted kernel function valuesK A(θt ,θ),θ ∈ L with all

the training samples are first obtained as explained above. The squared Euclidean distance

in the transformed space is then computed using (3.8) as

ζe(φA(θt),φA(θ)) = K
A(θt ,θt)+K

A(θ ,θ)

−2K
A(θt ,θ),∀θ ∈ L . (3.20)
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Figure 3.2: A diagram illustrating the sensor adaptation method for iris biometrics.

Verification or identification is performed as required by the application using this dis-

tance. For instance, if the squared Euclidean distance between the test sample and the

sample corresponding to the claimed identity is less than a predefined threshold in the

transformed space, the test sample is verified as genuine. Wesummarize the major steps

in the proposed solution in Figure 3.2 and in Algorithms 1 and2.

3.5.4 Extensions for Practical Systems

In this section, we describe how the proposed algorithm can handle alignment errors in

iris templates, and work on non-binary features. Observe from (3.18) and (3.19) that

the proposed algorithm requires only a similarity functionF , which satisfies (3.6). To

apply the proposed sensor adaptation algorithm, we need to develop similarity functions

satisfying relevant constraints for these scenarios.

Handling registration errors in iris templates: In-plane rotation in test iris samples

is normally handled during matching by rotating one of the iris templates by different
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possible values, computing the normalized Hamming distance for different rotations, and

computing the effective matching distance between the two templates as the minimum

of these distances. In other words, given the set of possiblerotationsR between two

iris templatesθ1 and θ2, the effective matching distance is computed asHr(θ1,θ2) =

minr∈R H (θ1, r(θ2)), where the functionr(·) represents a rotation of the iris template by

a fixed angle. The corresponding similarity function can easily be derived asFr(θ1,θ2) =

maxr∈R F (θ1, r(θ2)). Hence, given two iris samples, we rotate one of the iris sample by

possible rotations, compute the similarity measure for each rotation, and take its maxi-

mum as the effective similarity measure. Sensor adaptationis then performed using this

similarity measure.

Real-valued feature representation:For real-valued features, a popular distance mea-

sure for iris recognition is the Euclidean distance. For twofeaturesθi ,θ j ∈ R
D, the

squared Euclidean distance is given byζe(θi ,θ j) = ‖θi − θ j‖2 = θ T
i θi + θ T

j θ j −2θ T
i θ j .

Hence, a similarity function satisfying (3.6) is the inner product functionF (θi ,θ j) =

θ T
i θ j .

3.6 Experiments

In this section, we evaluate the proposed algorithm for sensor adaptation on data from two

sensors, namely LG2200 and LG4000. These sensors are chosenin our experiments, since

they form a real case where an older iris sensor (LG2200) was upgraded to a newer one

(LG4000). The data and the implementation details are first explained. The performance

of the proposed sensor adaptation algorithm is then evaluated for cross-sensor matching.
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Algorithm 1: Algorithm for learning adaptation parameters.

Input : Training iris samplesL = {θ1, . . . ,θN},{y1, . . . ,yN},{s1, . . . ,sN}

Output : Adaptation parameters{σi j ,(i, j) ∈ C }

1. Similarity Measure Computation: Compute the similarity measures

F (θi ,θ j), ∀ θi ,θ j ∈ L using (3.5) and form the initial matrixK 0 = F .

2. Kernel Learning: Until convergence, update the kernel matrix using (3.16) to form the

final kernel matrixK A.

3. Learning Adaptation Parameters: Using the initial similarity matrixF and the final

matrixK A, compute the adaptation parameters{σi j ,(i, j) ∈ C } using (3.18).

Algorithm 2: Algorithm for sensor adaptation during testing.

Input : Training iris samplesL = {θ1, . . . ,θN}, adaptation parameters{σi j ,(i, j) ∈ C }, test

sampleθt

Output : Adapted kernel matrixK A

1. Similarity Measure Computation: ComputeF (θt ,θi), ∀ θi ∈ L using (3.5) and form the

test matrixK 0 = F .

2. Sensor Adaptation:Adapt the test kernel matrix using the initial test matrix and the

adaptation parameters by (3.19).
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Robustness of the algorithm to variations in parameters is studied. Furthermore, cross-

sensor matching is performed using real-valued features. Finally, the similarity matrixF

is empirically verified to be positive semidefinite, ensuring that the logDet divergence is

a good distance measure between kernel matrixK andF .

3.6.1 Iris Dataset

The iris dataset used in our experiments is the BTAS 2012 Cross-sensor Iris Competition

dataset, referred to as the ND dataset, collected at the University of Notre Dame [76].

This database has iris images acquired with two sensors, namely LG2200 and LG4000. It

contains about 104 Giga Bytes of iris data, collected across 27 sessions with 676 unique

subjects. There are 29,939 images from the LG4000 and 117,503 original images from

the LG2200. The LG2200 system has near-IR LEDs at the top, lower left, and lower

right, and captures one iris at a time. The LG4000 system has near-IR LEDs on the left

and right, and can image both irises of a person at the same time. The initial images

taken from both sensors are of size 640 by 480 pixels. However, for the LG2200 sensor,

the original images have been stretched vertically by 5% to compensate for the non-unit

aspect ratio in the LG2200 acquisition system [76]. Hence, the images from the LG2200

sensor are of size 640 by 504 pixels.
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3.6.2 Implementation Details

3.6.2.1 Segmentation and Feature Extraction

Iris image segmentation and feature extraction were performed using the Video-based

Automated System for Iris Recogniton(VASIR) [77], an open source iris segmentation

and recognition system. Evaluations on ICE 2005 and MBGC dataset have shown that

VASIR can be used as a state-of-the-art baseline for still image-based iris recognition [78].

It uses contour processing and circular Hough Transform to detect the inner and outer

boundaries of the iris respectively. Two ellipses are then fitted to approximate the edges

of the upper and lower eyelids. The iris region is then resampled using a polar structure

and mapped to a 20× 240 rectangular grid. Features are then extracted by convolving

it with a 1D Log-Gabor filter. The real and imaginary components of the filter response

are binarized and concatenated to form a 9600 dimensional feature vector (20×240×2).

Furthermore, for each of the feature dimension, a mask bit iscomputed, whose value is

one if the corresponding rectangular grid point is inside the iris region, and zero otherwise.

Hence, a 9600 dimensional mask vector is obtained to mask pixels corresponding to non

iris regions like eyelids.

3.6.2.2 Evaluation Setup

Unless otherwise mentioned, for each sensor, we selected three images of both eyes from

thirty subjects (180 images in total) at random to form the training data. The cross-

sensor recognition performance was evaluated on the remaining subjects. Observe that

this experimental setup evaluates subjects not seen duringtraining, and hence evaluates
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the generalization properties of the algorithm to unseen subjects. Furthermore, multiple

images are required to be enrolled only for subjects used in training. For subjects used in

the testing phase, only one image is assumed to be enrolled. To handle registration errors

in iris templates, for every pair of templates, we rotate thesecond template two bits along

the horizontal (left or right) and one bit along the vertical(upwards or downwards), as

done in the VASIR system. The highest similarity value between the two templates after

rotation is taken as the similarity measure, as explained insection 3.5.4.

3.6.2.3 Sensor Adaptation

During training, the adaptation parameters were computed from the training images using

Algorithm 1. At first, the similarity matrix was built from all the training data using (3.5).

The intra-sensor and inter-sensor constraints were then imposed, as explained in Sec-

tion 3.4. The final kernel matrix was obtained using (3.16). Using the initial and final

kernel matrix, the adaptation parameters were obtained using (3.18).

Parameters:Recall that the parameterdu is the upper bound on the same class distances.

Similarly dl is the lower bound on the different class distances. In our experiments,du was

chosen as the 20th percentile of the same-class distances of the LG2200 samples. dl was

chosen as the 85th percentile of the different-class distances between the LG2200 samples.

The parameterγ was set as 0.1 in all our experiments. We evaluate the performance of

the sensor adaptation algorithm to variations in these parameters in Section 3.6.8.

Testing: Testing was performed using Algorithm 2. For the test samples, the adapted

kernel matrix was obtained using (3.19) and the squared Euclidean distance in the trans-
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formed space was computed using (3.20). Verification was performed using this distance.

3.6.3 Cross-sensor iris recognition on the entire ND dataset.

TAR (%) at FRR=0.1% EER (%)

LG2200 LG4000

Cross-sensor

LG2200 LG4000

Cross-sensor

NA Adapted NA Adapted

86.74 91.39 84.34 87.82 6.06 5.22 7.19 6.09

Table 3.1: Cross-sensor matching results for Non-Adapted (NA) case and after adaptation

on the entire ND dataset.

In this section, we evaluate the proposed method on the entire ND dataset. As explained

in Section 3.6.2.2, we select three images from thirty subjects in both sensors to form

the training set. The training data for different sensors were chosen from the same ses-

sion in this experiment. We analyze the effect of session variation on performance in

Section 3.6.6. We perform pairwise matching using the learned adaptation parameters

on the entire dataset. The ROC curves and the Hamming distance distributions for the

non-adapted and adapted cases are shown in Figure 3.3(a) andFigure 3.3(b) respectively.

Observe that the cross-sensor recognition performance is noticeably improved by adapta-

tion, and is even better than the same sensor LG2200 results.The True Acceptance Rate

(TAR) at the False Acceptance Rate (FAR) of 0.1% after adaptation is 1.08% better than

the same sensor LG200 results and 3.48% better than the cross sensor performance be-
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fore adaptation. Furthermore, sensor adaptation moves thegenuine and impostor distance

distributions apart. We attribute the performance improvement to the intra-sensor and

inter-sensor constraints imposed by the proposed algorithm. The intra-sensor constraints

reduce the intra-class variations between samples, and increases the inter-class variations

in the transformed space, leading to better verification. The inter-sensor constraints bring

the testing samples from the LG4000 sensor closer to the sameclass samples from the

LG2200 sensor in the transformed space, improving the cross-sensor matching.
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Figure 3.3: Results on the entire ND dataset. (a) The ROC curvefor the adapted and

non-adapted cases. (b) The Hamming distance distribution for the genuine and impostor

matching before and after adaptation.

3.6.4 Cross-sensor recognition on a well segmented subset of ND dataset

We observed that the VASIR results had segmentation errors,which reduced the same

sensor recognition results of the LG2200 and LG400 sensors.In this section, we eval-

uate the cross-sensor recognition performance on a subset of the ND dataset, which is

manually verified to be free of segmentation errors. Hence, this experiment analyzes the
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behavior of the algorithm on well segmented iris data, avoiding biases due to segmenta-

tion errors. This smaller dataset consists of the left and right iris images of 123 users,

thereby forming 246 unique iris signatures. For sensor LG2200, 5 images per eye were

used from the same session. For sensor LG4000, two differentsubsets were used. The

first subset was collected in the same session as the images acquired with LG2200, and

consists of 246 unique irises with 3 images per eye. The second subset contained 186

unique irises and 3 images per iris. They were acquired between a month and a year after

those in the LG2200 subset.

We followed the same experimental setup in Section 3.6.2.2.The ROC curves correspond-

ing to same-session and different-session matching for thenon-adapted and adapted cases

are shown in Figure 3.4(a). In Table 3.2, the results are presented in the form of the Equal

Error Rate (EER) and the True Verification Rate (TAR), at a False Rejection Rate (FRR)

of 0.1%. Observe that the same sensor performance is better on this subset, since it does

not have segmentation errors. As before, we observe that sensor adaptation improves the

cross-sensor recognition performance. After adaptation,the TAR improves by 1.6% for

the same-session matching, and by 1.85% for the different-session matching. For the case

of matching across sessions, the cross-sensor accuracy is even better than the same sensor

LG2200 accuracy. Moreover, the Hamming distance distributions in Figure 3.4(b) illus-

trate that adaptation moves the genuine and impostor distributions apart, leading to better

discrimination between the genuine and impostor pairs. These results clearly demonstrate

the performance improvement achieved by the proposed method.
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Figure 3.4: (a) The ROC curve for the adapted and non-adaptedsituations on the subset of

ND dataset. (b) The Hamming distance distribution for the genuine and impostor match-

ing before and after adaptation on the subset of ND dataset. (c) Adaptation performance

using real-valued features.

3.6.5 Effect of intra-sensor and inter-sensor constraints.

In this section, we evaluate the relative importance of intra-sensor and inter-sensor con-

straints on the entire ND dataset. As before, we followed theevaluation setup in Sec-

tion 3.6.2.2. We present the ROC curves for cross-sensor recognition in Figure 3.5 (a).

Equal Error Rate (EER) and the True Verification Rate (TAR), at a False Rejection Rate

(FRR) of 0.1% are provided in Table 3.3. The results demonstrate that inter-sensor con-

straints contribute significantly to performance improvement. This is expected, as inter-
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TAR (%) at FRR=0.1% EER (%)

Session LG2200 LG4000

Cross-sensor

LG2200 LG4000

Cross-sensor

NA Adapted NA Adapted

Same 97.78 99.52 94.13 95.73 1.46 0.36 2.85 2.26

Diff. 93.53 97.61 91.93 93.78 3.04 1.32 3.56 2.87

Table 3.2: Cross-sensor matching results on the subset of ND dataset for the Non-Adapted

(NA) and Adapted cases.

sensor constraints are responsible for reducing the variations between the sensors. Fur-

thermore, combining the inter-sensor and intra-sensor constraints gave the highest accu-

racy.

3.6.6 Effect of session variations.

If the training data from different sensors are collected indifferent sessions, it is possi-

ble that the proposed method will learn the session variations too, along with the sensor

variations. To evaluate the effect of these session variations, we used training data for

each sensor from a different session. We then evaluated the cross-sensor performance on

new sessions unseen during training. All other evaluation settings were identical to that in

Section 3.6.3. We present the ROC curves in Figure 3.5 (b) andthe corresponding results

in Table 3.4. As expected, when the training data for each sensor is chosen from a differ-
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Figure 3.5: (a) Results of intra-sensor and inter-sensor constraints. (b) Effect of session

variations on cross sensor recognition. (c) Effect of training size on cross sensor recogni-

tion.

ent session, the true acceptance rate after adaptation is reduced from 87.82% to 86.87%.

However, this accuracy is still better than that of the LG2000 same sensor recognition ac-

curacy of 86.81% and the non adapted cross sensor accuracy of 84.27%. This experiment

demonstrates that the proposed method generalizes across unseen sessions.

3.6.7 Number of subjects during training.

In this section, we analyze the effect of the size of trainingdata on cross-sensor recogni-

tion accuracy. We plot the True Acceptance Rate (TAR) at a FalseAcceptance Rate(FAR)
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TAR (%) at FRR=0.1% EER (%)

NA

Adapted

NA

Adapted

Intra-sensor Inter-sensorBoth Intra-sensor Inter-sensorBoth

84.34 84.90 87.73 87.82 7.19 7.19 6.14 6.09

Table 3.3: Effect of intra-sensor and inter-sensor constraints on cross-sensor recognition

for the Non-Adapted (NA) and adapted cases with intra-sensor, inter-sensor and their

combination.

of 0.1% with varying number of subjects for training in Figure 3.5(c). All other evalu-

ation settings are identical to those explained in Section 3.6.2.2. Observe that even with

ten subjects, the cross-sensor recognition accuracy afteradaptation is better than that of

the non-adapted case. Furthermore, the cross-sensor recognition accuracy improves with

more training data. This is expected as more constraints areavailable for learning as

training data increases.

3.6.8 Robustness to Parameters

The parameters of the proposed algorithm are the parameterγ, the number of iterationsτ

of the Bregman update, and the distance thresholddu anddl . We analyze the robustness

of the sensor adaptation algorithm to variations in these parameters in this section. In

Figure 3.6(a), the EER corresponding to different values ofthe parameterγ is shown.

While the best performance is obtained usingγ = 0.1, the proposed algorithm improves
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TAR (%) at FRR=0.1% EER (%)

LG2200 LG4000

Cross-sensor

LG2200 LG4000

Cross-sensor

NA Adapted NA Adapted

86.81 91.39 84.27 86.87 6.04 5.22 7.55 6.89

Table 3.4: Cross-sensor matching results on unseen sessionsfor the Non-Adapted(NA)

and adapted cases.

the equal error rate for a wide range ofγ, illustrating its robustness to the parameter.

We refer to performing Bregman projections over all the constraints once as an “iteration

cycle”. Figure 3.6(b) shows the variation in EER for different number of iteration cycles

in the training stage. It indicates that the proposed algorithm converges quickly after all

the constraints have been visited once, and further update does not change the perfor-

mance. Furthermore, we observed little variation in cross-sensor matching performance

with significant variations in the distance thresholdsdu anddl .
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Figure 3.6: Variation of verification accuracy during testing with (a) parameterγ and (b)

number of iteration cycles in the learning algorithm.
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3.6.9 Incorporating Real-valued Features

In this section, we evaluate the cross-sensor recognition performance using real-valued

features on the entire ND dataset. Phase of the 1D Log-Gabor features was used as the

real-valued feature in our experiment, since it can be obtained directly from the VASIR

system. However, the proposed algorithm can be applied to other features also, as ex-

plained in section 3.5.4. After performing iris segmentation and unwrapping, the 1D

Log-Gabor filter was applied and the phase of the filter outputat each pixel was com-

puted. The kernel computation was performed using the linear kernel function, as ex-

plained in Section 3.5.4. Squared Euclidean distance between the transformed features

was used for matching. The ROC curves are presented in Figure3.4 (c), and a summary

of the results appear in Table 3.5. As in the case of binary features, sensor adaptation

improves the cross-sensor matching accuracy significantly. Also, the true acceptance rate

after adaptation is better than the LG2200 same sensor recognition performance.

TAR (%) at FRR=0.1% EER (%)

LG2200 LG4000

Cross-sensor

LG2200 LG4000

Cross-sensor

NA Adapted NA Adapted

79.59 87.50 78.14 82.89 7.4 5.55 8.55 7.57

Table 3.5: Cross-sensor matching results using real-valuedfeatures on the entire ND

dataset for the Non-Adapted(NA) and Adapted cases.
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3.6.10 Empirical Verification of Positive Semidefiniteness of the Simi-

larity Measure

To use the logDet divergence in Section 3.5, the similarity matrix F should be positive

semidefinite. To verify this empirically, one could check whether the eigen values of the

similarity matrix are non-negative. However, eigen value computation of large matrices is

often imprecise due to numerical errors. Hence, we adopt thePrincipal Minor Test [79].

By definition, thekth principal minors of a matrix are the determinants of the submatrices

formed by deleting anyn− k rows and the corresponding columns of that matrix. By

the Principal Minor Test, a necessary and sufficient condition for a matrix to be positive

semidefinite is that all possible principal minors of the matrix are non-negative.

Using 1,622 iris samples acquired in both LG2200 and LG4000 sensors, as explained in

Section 3.6.4, we construct the similarity matrix corresponding to the fixed mask, varying

mask due to occlusion and the rotation cases. For a given matrix with n rows and a partic-

ular submatrix dimensionk, there are
(n

k

)

principal minors, which increases exponentially

with k. Given the large number of possible minors, for each submatrix dimension, we

randomly choose a fixed number of principal minors (chosen as100 in our experiments)

and compute their determinant. We plot the minimum of the randomly chosen minors in

Figure 3.7. While there are 1,622 submatrix dimensions, we show the initial 100 dimen-

sions in Figure 3.7 for clarity. The minimum of the chosen minors were non-negative for

each submatrix dimension, indicating that all the chosen minors are non-negative. This

empirically verifies that the similarity matrixF is positive semidefinite.
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Figure 3.7: Plot of the minimum principal minor for each submatrix dimension of the

similarity matrix, for the (a) fixed mask, (b) occlusion and (c) rotation cases. Observe that

the minimum principal minors are non-negative for all submatrix dimensions, empirically

verifying that the similarity matrix is positive semidefinite.

3.6.11 Hardware and Computational Complexity

In the proposed sensor adaptation method, we have to find the squared Euclidean distance

between each test sample and the enrolled samples in the transformed space during test-

ing. The additional steps introduced are the computation ofthe initial kernel using (3.6),

the adaptation of the kernel using (3.19), and the calculation of the adapted Hamming dis-

tance using (3.20). However, observe that these three stepsare simple linear operations,

and introduce limited overhead to the original iris recognition system. Furthermore, the

only additional components required in the system are adders and multipliers, and can

easily be incorporated into existing systems.

Non-adapted Adapted

Time(s) 25.5 27.9

Table 3.6: Comparison of the testing time for the non-adaptedand adapted cases.
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Asymptotic Analysis: We analyze the computational complexity of the proposed method

during testing below. LetD be the dimension of iris samples, andNTr be the number of

training samples. In one-versus-one verification case, thetest sample has to be matched

with a single enrolled sample. In this case, non-adapted method requires the computation

of a single normalized Hamming distance, which is anO(D) operation. For the adapted

algorithm, similarity measure has to be computed between the testing sample and all the

training samples. Furthermore, these values have to be combined with the adaptation

parameters using Equation (3.19). So the total computational complexity of the proposed

method isO(D ∗NTr +NTr). Since template dimension and training samples are fixed,

both the methods run in constant time asymptotically.

Now let us consider the case, when the test sample has to be matched withNE samples

in the gallery. NormallyNE ≫ NTr. The computational complexity of the non-adapted

algorithm isO(DNE), since it has to compute the normalized Hamming distance of the

test sample withNE enrolled samples. For the proposed method, similarity measures be-

tween the enrolled samples and the training samples can be precomputed, along with the

adaptation parameters. So the computational complexity during testing is due to the com-

putation of similarity measures between the test samples and theNTr training samples,

and their combination with the adaptation parameters. So the total complexity during

testing for sensor adaptation isO(DNTr +NENTr) = O(NENTr). Hence, when a query

image has to be compared with multiple enrolled samples, thecomputational complexity

of both the non-adapted and adapted methods vary linearly with the number of enrolled

samples.

Empirical Evaluation: In this section, we compare the testing time for the non-adapted
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and adapted cases on an Intel Dual Core 2.33GHz processor. In the non-adapted case, for

each LG4000 sample, we record the time for iris image segmentation, feature extraction,

and matching with all the samples in the LG2200 dataset. In the adapted case, along

with the segmentation and feature extraction times, the time for computing the squared

Euclidean distance in the transformed domain and matching with the LG2200 samples

are included. The experiment is run 10 times and the average testing times are reported

in Table 3.6. As can be observed, the sensor adaptation algorithm leads to only a small

increase in the execution time.
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Chapter 4

Temporal Inference from Human Pose

4.1 Introduction

Automatic analysis of visual data involving humans is an important area in computer

vision [80], which is useful in entertainment, human computer interaction and security.

Since traditional applications like people tracking [81] and activity recognition [82] are

video-based, motion cues plays an important part in these applications. However, with

the availability of personal photo collections and sports images, analysis of humans in

still images is gaining importance recently. These image-based applications do not have

explicit motion cues, and are currently limited to using just the appearance cues [83, 84].

This leads us to an interesting question: Can implicit motioncues be extracted from still

images of humans, and used to aid visual analysis?

Estimating motion without multiple images seems impossible at first. However, exten-

sive studies in psychology have shown that information about posture of the human body

plays a vital role in biological motion perception [85, 86].Experiments of Hiraiet al.[87]

demonstrated that destroying the body structure led to a higher reduction in motion per-

ception in humans when compared to destroying the temporal structure of motion. Fur-

thermore, humans can easily anticipate the future motion ofactors from their current body

configuration [88]. As an example, consider predicting the future motion of humans from

their current poses in Figure 4.1. In the first case, one can easily infer the future motion of
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the human, namely, the right hand moving forward with the left hand moving backward,

and the legs moving in the opposite direction. In the second case, we expect the hands to

move and other parts to remain still. However, predicting the exact motion of the human

is not easy. Two possible future motions corresponding to the same current human pose

is shown in the right in case 2. Thus, the first pose conveys more information about the

future trajectory of motion compared to the second. In this work, we refer to this informa-

tion conveyed by humans poses about their future motion as the “dynamic information”

in the pose. Furthermore, estimation of motion informationfrom still images of humans

is termed as “dynamic inference”.

Figure 4.1: Consider predicting the future motion of the human from the current poses

given in the left, for each case above. In case 1, the future motion can be easily predicted.

However, the exact future motion is not obvious in case 2. Possible future motions are

shown in the right.

Dynamic information in human poses can aid computer vision systems in multiple ways.
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Similar to biological systems, vision systems can utilize this information to efficiently

predict the future motion of human users. Human motion prediction is also useful in

robotics. For instance, in robotic applications like “assistance to manipulation”, robots

often assist humans or manipulate the same object as humans.In such applications, accu-

rate prediction of human motion can improve robotic performance, as empirically verified

by Jarrasseet al. [89]. Dynamic information in poses can also improve activity recogni-

tion from still images and aid the synthesis of realistic human motion. The latter is useful

in applications involving humanoid robots and animation. Additionally, poses with high

dynamic information also reveal the “story” in a large number of adjacent frames, mak-

ing them ideal candidates for key-frames in video summarization applications. This idea

of using human poses to convey the “story” has been exploitedby artists in paintings

and sculptures. Japanese Manga images in Figure 4.2 is a casein point, where Hokusai

pioneered the technique of conveying motion using physically unstable human configura-

tions.

Motivated by the above, we develop a computational model to infer the “next move” from

still images of humans. Our goal is to predict the future motion of a human given a single

pose and quantify the extent to which it is constrained by a given pose. We emphasize

that the input to our algorithm is just a single human image and the final goal is to predict

the motion of the human and not the type of action performed.

Contributions: We make the following contributions in this work. We explorethe po-

tential of the implicit dynamic information conveyed by a human pose. We develop a

probabilistic framework to model it. Using this framework,we estimate the amount of

dynamic information conveyed by a pose and predict the probable future motion. The
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Figure 4.2: Database of 45 Hokusai Manga Images. The functional Magnetic Resonance

Imaging (fMRI) studies by Osakaet al. [2] illustrated that the dancer images on the left

in unstable poses activated the motion sensitive visual cortex in humans, indicating that

humans can perceive the implied motion in these images. However, the priest images on

the right in stable poses elicited low responses of implied motion in humans. We use this

dataset to validate the proposed computational model. in our experiments.

proposed method requires limited manual supervision sinceit uses unlabeled and unseg-

mented human videos for training, and can easily be implemented. We demonstrate the

usefulness of the estimated dynamic information in a variety of vision applications like

human motion prediction, activity recognition and video summarization.

Organization of the chapter: A brief review of related works is presented in Section 4.2.

The proposed framework for extracting dynamic informationin human pose is introduced

in Section 4.3. Computer vision applications which benefit from the extracted dynamic

information are enumerated in Section 4.4. We empirically evaluate the proposed tech-

nique in Section 4.5.
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4.2 Related Work

Visual analysis of humans from images and video is one of the central problems in com-

puter vision [80]. Some of the tasks associated with it are human detection, recogni-

tion, tracking, articulated pose estimation and activity recognition. In applications in-

volving videos like human tracking, motion cue plays an important part [81]. However,

still image-based applications like analysis of commercial photographs, sports images or

newspaper images lack such motion cues, making them more challenging. In this work,

we focus on such applications, where no explicit motion cue is available.

For still images, two problems which have received a great deal of attention in recent

years are human detection and articulated pose estimation.Below, we briefly describe

some of the popular methods. Numerous works have looked at finding pictures of hu-

mans [90], localizing people in still images [91], and pedestrian detection [92]. Dalal

and Triggs proposed the Histogram of Oriented Gradients (HOG) [5], a popular gradi-

ent based feature for human detection. Zhuet al. [93] advanced HOG descriptors by

combining HOG and AdaBoost to select the most suitable block for detection. Tuzelet

al. [94] developed the covariance descriptor for human detection. Felzenswabet al. [95]

developed discriminatively trained part-based models forhuman detection, using latent

SVMs. For 2D pose estimation of humans, Ramananet al. [96] presents an iterative pars-

ing process for pose estimation of articulated objects. Andriluka et al. [7] developed a

general framework-based on pictorial structures for humandetection and 2D pose esti-

mation. Bourdev and Malik [97] developed poselets capturingthe 2D appearance and 3D

joint position of humans, which has been utilized for human detection, segmentation and
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pose estimation.

Recently, researchers have recognized that still images of humans contain not only in-

formation about the configuration of body parts, but also higher level information like

the action being performed. This has led to the development of action recognition algo-

rithms from still images. Thurauet al. [83] recognized human actions from still images

and video, by representing actions as a histogram of pose primitives, and using histogram

matching for recognition. Ikizleret al. [98] represented the human pose using histogram

of rectangular regions and used SVMs for classification. [99] used oriented rectangular

patches extracted from the human silhouette to represent the action and histogram match-

ing for recognition. Human pose in the query image was considered as a latent variable

in [100]. Latent SVM was used for recognizing activities in this work. However, these

techniques are often applicable only for simple actions, since complex activities cannot

always be captured by a single pose. Nevertheless, even poses belonging to complex ac-

tivities often provide information about the local motion trajectory. For instance, consider

the poseπ2 in Figure 4.3. While it is easy to infer that the person is bending down, it is

difficult to predict the subsequent activity (for example sitting down or picking up a ball).

In this work, we focus on estimating this motion informationassociated with the human

pose in still images.

Another line of research which motivated our work is motion estimation from still images

of natural scenes. Roth and Black [101] learned the prior probability of motion fields from

still images of natural scenes using a Markov random field model. Their experiments

demonstrated that the learned motion prior capture the richspatial structure found in

natural scenes, and can also improve motion estimation accuracy in test videos. Liuet.
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al [102] proposed SIFT flow, a method to densely align scene images by matching densely

sampled pixel-wise SIFT features, while preserving continuity. Motion of pixels in query

images were then predicted by transferring SIFT flow from similar training images. Yuen

and Torralba [103] learned the probability density of localmotion trajectories in a non-

parametric manner at each pixel location, and used samples from the density to estimate

the motion trajectories in query scene images. These methods capture only the local

structure of the scene, and not the influence of the global scene on the ensuing motion.

Hence, they are not directly applicable to human motion prediction, where future motion

is dependent on the global pose of the human. On the other hand, we directly model the

relationship between the human pose and the future motion ofthe human body in this

work.

4.3 Dynamic inference from a human pose

Before developing a computational model, we first analyze thephysical evidence for the

existence of dynamic information in this section. Startingat a particular pose, the future

motion of the human body is constrained by numerous factors.The mechanics of body

joints prevent arbitrary motion of the body. Laws of physicslike gravity and momentum

also limit the future moves of the human. Furthermore, everyrealistic pose is part of a

human activity with a well defined objective. These constraints on the future motion of

the human body are responsible for the dynamic information associated with a particular

pose. Furthermore, the set of possible future motions vary widely between different hu-

man poses, as can be observed from Figure 4.1. Here, in case 1,the future motion of the
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human is highly constrained. However, in case 2, numerous future motions are possible

starting at the same pose. Hence, poses differ in the amount of dynamic information they

possess.

To model the relationship between human pose and the ensuingmotion, we have to decide

the representation for the pose, the future motion and the space of allowable models. For

pose representation, a popular choice is the articulated model [7], which represents the

human body as collection of parts and learns the appearance model for each part. This

model however has an explicit training stage and is not robust to unseen poses. Hence, we

choose the simpler HOG-based model [83], representing the human pose using the HOG

features extracted from the bounding box. This avoids the need for training models for

pose estimation, can generalize to new poses and is robust toerrors in the estimated pose

parameters.

Given a human pose, there is a set of possible motion trajectories originating from it, and

the exact future motion is uncertain. This is evident in case2 in Figure 4.1, where two

possible future motions starting from the same pose are shown in the right. To capture this

uncertainty, we develop a probabilistic framework, estimating the conditional probability

distribution of subsequent human motion given a pose. Once this distribution is obtained,

one can compute different statistics, which ultimately yields quantities of interest. For

instance, two useful statistics are the mode of the distribution and its entropy. Given a

single pose, the mode of the conditional distribution givesus the most probable temporal

evolution of poses. The entropy of this distribution measures the uncertainty in these

future sequences. The work of Kerzel [104] shows that this uncertainty (unpredictability)

provides a measure of the amount of dynamic information perceived by humans in a pose.
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The higher the predictability of motion from a pose, the higher the dynamic information

it conveys.

To develop a probabilistic model, we first need to define the space of predictions. Firstly,

from a stable pose such as case 2 in Figure 4.1, the set of possible human motions that

can follow is extremely large. Further, even for predictable poses where the set of fu-

ture motions is potentially constrained, there is an equivalence class of future motions

differing only in the rate of execution. Hence, we need a representation of motion in-

variant to the rate of execution. Considering the above, we first model human activities

as a sequence of movements called action segments, separated by “ballistic” boundaries

[105]. These movements are natural units of human actions, typically comprising an

initial acceleration of limbs towards a target followed by deceleration to stop the move-

ment. Figure 4.3 shows a simple illustration of the ballistic boundaries. Here, the ballistic

boundaries highlighted in red separate the “picking up” action into two action segments,

namely the “bending down” action segment and the “getting up” action segment. Vita-

ladevuniet al. [105] have been developed computational models to automatically extract

ballistic motion boundaries from videos. By viewing actionsas separated by ballistic mo-

tion boundaries, we can restrict the scope of the motion prediction problem to predicting

statistics over future action segments, which are shorter in duration. In addition, since

ballistic boundaries are robust to the rate of execution, the estimated statistics become

invariant to the rate of execution of the action.

Before developing the model, we first introduce the notation and elements of our frame-

work. Let πi represent theith pose andΠ = {πi , i = 1, . . .M} be the set of all possible

human poses. Similarly, letφi represent theith action segment andΦ = {φi , i = 1. . .N}
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Figure 4.3: Illustration of ballistic boundaries for the “picking up” action. The three

ballistic boundariesπ1,π4 andπ7, highlighted in red, divide the actionα into two action

segmentsφ1 andφ2.

be the set of all possible action segments. Any actionα is a temporally ordered sequence

of action segments
[

φα1, . . .φαt(α)

]

, where each action segmentφk is itself a temporally

ordered sequence of individual poses
[

πk1, . . .πkt(k)

]

. We illustrate these notations for

the simple action of picking up a ball in Figure 4.3. This action α consists of two ac-

tion segments[φ1,φ2]. Action segmentφ1 is a temporally ordered sequence of poses

[π1,π2,π3,π4]. Similarly, action segmentφ2 is a temporally ordered sequence of poses

[π4,π5,π6].

Figure 4.4: Nearest neighbor poses and the associated action segments corresponding to

a test pose.

Let P(φ |π) denote the conditional probability that a given poseπ occurred in an action
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segmentφ . As discussed earlier, the uncertainty in the temporal evolution of poses

starting fromπ is low, if it has high dynamic information. In an informationtheoretic

framework, this uncertainty can be measured by the entropyH (φ |π) of the conditional

distribution of an action segment given a pose.

H (φ |π) =−
∫

φ∈Φ
P(φ |π) log(P(φ |π))dφ (4.1)

This motivates our measure, Degree of Dynamic Information (DDI) of a pose, which can

be computed as

DDI(π) = exp[−H (φ |π)] (4.2)

where the negative exponent captures the inverse relationship between uncertainty in the

temporal evolution of poses starting fromπ and the amount of dynamic information inπ.

Another piece of valuable information that can be immediately obtained fromP(φ |π) is

the most probable action segmentφ̂ that contains the poseπ.

φ̂(π) = argmax
φ∈Φ

P(φ |π) (4.3)

Similarly, given a start poseπs and an end poseπe, we can obtain the most probable pose

trajectory as

φ̂(πs,πe) = argmax
φ∈Φ

φ=[πs,...,πe]

P(φ |πs,πe) (4.4)

Having defined the two terms usingP(φ |π), the question now turns to the estimation

of this density. Explicitly modeling this density and estimating its parameters from finite

training data is extremely difficult and prone to overfittingdue to the large variations in
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humans poses and future motions in unconstrained settings.Hence, we adopt the data-

driven approach, which has become very popular in recent years [102, 106, 107]. This

approach advocates transferring information from a rich training database to the specific

query under consideration, instead of learning a general function applicable to all queries.

Such methods have shown significant promise in solving otherwise difficult tasks such

as scene alignment [102], geo-localization [106], scene completion [108], scene pars-

ing [107] and object matching [109].

Given a test postπs, we estimateP(φ |πs) directly from the training data. This estimate

is then used to compute the amount of associated dynamic information DDI(πs) and the

most probable action segmentφ̂(πs). We explain this approach in detail below.

4.3.1 Estimation of Conditional Distribution

Instead of developing a functional form forP(φ |πs), we compute this probability when-

ever we encounter a test poseπs. Our training data consist of videos of human actions.

Let D denote the database of all the poses, which are extracted from these videos. By

applying the temporal segmentation algorithm of Vitaladevuni et al. [105], these videos

are divided into action segments separated by ballistic boundaries. Given a test poseπs,

we find all the instances of the pose in the databaseD and denote this set byNπs. In our

experiments, nearest neighbors of the test poseπs in the databaseD are used to form the

setNπs. Note that every poseπ ∈ D is a part of an action segmentφ ∈ Φ. This implies

that every poseπr ∈ Nπs has an associated action segmentφ(πr). Let Nφ(πs) be the set

of action segments corresponding to the poses inNπs. We illustrate the nearest neighbor
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poses and the associated action segments for a test pose in Figure 4.4.

Nφ(πs) = {φ(π),π ∈ Nπs} can be considered as samples from the densityP(φ |πs).

Hence, sample-based density estimation techniques can be adopted to estimateP(φ |πs)

givenNφ(πs). However, such techniques cannot be applied directly on thespace of action

segmentsΦ due to two reasons. First of all, action segments can differ in the number of

frames. Hence, a direct representation in terms of the associated pixels lead to vectors of

different dimensionality. Secondly, this direct representation in terms of the associated

pixels is high dimensional. Learning models from higher dimensional data is often im-

practical, and has lead to the development of alternate low dimensional representations

for the data [110]. Hence we adopt a parametric approach, where the action segments are

compactly represented by a low dimensional dynamical model.

Modeling Action Segments: In this work, we employ the Linear Dynamical System

(LDS) [111], a popular dynamical model in computer vision. This model has been suc-

cessfully used to represent actions, dynamic textures and human joint angle trajectories.

However, it is important to note that the proposed frameworkof dynamic inference is a

general one, and can be applied to other models also. For an action segmentφ , the LDS

model is described by

zφ (t +1) = A(φ)zφ (t)+vφ (t),vφ (t)∼ N(0,Ξ) (4.5)

yφ (t) =C(φ)zφ (t)+wφ (t),wφ (t)∼ N(0,Θ)

wherezφ (t) ∈ R
p is the hidden state vector for thetth frame in the action segmentφ ,

yφ (t)∈R
d are the features extracted fromtth frame,A(φ)∈R

p×p is the transition matrix,

C(φ) ∈ R
d×p is the measurement matrix.vφ (t) and wφ (t) are the noise components,

101



which are modeled as Gaussian with mean zero and covariancesΞ andΘ respectively.

A(φ) is constrained to have eigen vectors inside the unit circle,whileC(φ) is constrained

to be orthonormal. Hence, the parameters of the LDS model, namely (A(φ),C(φ)) do not

lie on the Euclidean space. For comparison of actions, a commonly used distance metric

is the subspace angles between the column spaces of the corresponding observability

matrices. The ‘observability’ matrix of an action segmentφ is given by

Ω⊤(φ) =
[

C(φ)⊤,(C(φ)A(φ))⊤, . . . ,(C(φ)A(φ)m−1)⊤, . . .
]

It is an infinite dimensional matrix, which can be approximated by the finite matrix

Ω̂⊤(φ) =
[

C(φ)⊤,(C(φ)A(φ))⊤, . . . ,(C(φ)A(φ)m−1)⊤
]

Note thatΩ̂⊤(φ) ∈ R
n×d,wheren = mp. Hence the column space ofΩ̂⊤(φ) is a d-

dimensional subspace inRn, which constitute the Grassmann manifoldGn,d. For nota-

tional simplicity, we denote the observability matricesΩ̂(φ), Ω̂(φi) andΩ̂(φ j) by Ω, Ωi

andΩ j respectively. Then a natural distance metric between theseaction segmentsφi and

φ j is given by [112].

ζ 2(Ωi ,Ω j) = d− tr(ΩT
j ΩiΩT

i Ω j) (4.6)

Density Estimation on the Grassmann Manifold: Using Nφ(πs), the set of samples

from P(φ |πs), we now estimate the conditional density using non parametric density

estimation techniques [113], as

P̂(φ |πs) = c1 ∑
φi∈Nφ(πs)

Ψ(M− 1
2(Id −Ω⊤

i ΩΩ⊤Ωi)M
− 1

2) (4.7)

whereΨ(T) = exp(tr(−T)) for T ∈ R
d×d, tr(.) is the matrix trace operator,M ∈ R

d×d is

a smoothing matrix andc1 is a normalization factor.
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4.3.2 Statistical Inference on the Estimated Density

Having formulated the conditional density for the action segment given the test pose, we

now estimate statistics of interest from it. The block diagram of the proposed method in

shown in Figure 4.5, and the details are explained in Algorithm 3.

Figure 4.5: Block diagram demonstrating the various steps inthe proposed method.

Mode Estimation: Given a poseπs, the likely future motion can be predicted by finding

the most probable action segmentφ∗(πs), which is the mode of the distributionP(φ |πs).

Non-parametric techniques have been recently developed for mode seeking on analytic

manifolds [114, 115]. In particular, Cetingul and Vidal [115] computes the mode on the

Grassmann manifold using iterative optimization. It intrinsically locates the modes of the

distribution via consecutive evaluations of a mapping. ForGrassmann manifold, these

evaluations constitute an efficient gradient ascent scheme, which avoids the computation

of expensive exponential mappings. However, this algorithm will only compute the LDS

parameters of the most probable action segment. It is not possible to generate the frames

of the action segment from the LDS parameters. Hence, in applications where a valid

action segment with high probability of occurrence is required, a more efficient scheme
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is to directly select the action segment with the highest conditional density fromNφ(πs).

φ̂(πs) = argmax
φi∈Nφ(πs)

P̂(φi |πs) (4.8)

By similar analysis, we can also obtainφ̂(πs,πe), the most probable pose trajectory given

a start poseπs and an end poseπe, by using the samples fromNφ(πs,πe). Here,Nφ(πs,πe)

denote the set of training action segments, whose start and end poses are nearest neighbors

of πs andπe respectively.

φ̂(πs,πe) = argmax
φi∈Nφ(πs,πe)

P̂(φi |πs,πe) (4.9)

Entropy Estimation: To estimate the entropy ofP(φ |πs) from the samplesNφ(πs), we

use the resubstitution estimate of entropy [116] as follows

Ĥ (φ |πs) =− 1
|Nφ(πs)|

∑
φi∈Nφ(πs)

logP̂(φi |πs) (4.10)

whereP̂(φi |πs) is obtained from Equation (4.7). Under mild conditions, this estimate

has been proved to be consistent in the first and second order means [116].

4.4 Applications

In this section, we briefly enumerate applications which benefit from the dynamic infor-

mation associated with human pose.

4.4.1 Human Motion Prediction from still images

The proposed method can be used to predict future human posesgiven a start pose or a

combination of start and end poses. We represent the future poses in terms of a sequence
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Algorithm 3: Algorithm for finding the most probable future motion and thedegree of

dynamic information in a test pose.
Input : Test poseπs, database of training poses and the associated action segments

D = {(π,φ(π))}

Output : Most probable action segmentφ̂(πs), amount of dynamic information DDI(πs)

1. Sample Computation:Compute the set of nearest neighbor posesNπs of the test

poseπs. ObtainNφ(πs), set of action segments associated with the poses inNπs.

2. Conditional Density Estimation: Using the action segments inNφ(πs) as samples,

obtain the conditional density using non parametric density estimation, as given by

Equation (4.7).

P̂(φ |πs) = c1 ∑
φi∈Nφ(πs)

Ψ(M− 1
2(Id −Ω⊤

i ΩΩ⊤Ωi)M
− 1

2)

3. Mode Estimation: Obtain the most probable action segment using Equation (4.9).

φ̂(πs) = argmax
φi∈Nφ(πs)

P̂(φi |πs)

4. DDI Estimation: Compute DDI(πs) using Equations (4.10) and (4.2).

Ĥ (φ |πs) =− 1
|Nφ(πs)|

∑
φi∈Nφ(πs)

logP̂(φi |πs)

DDI(πs) = exp[−Ĥ (φ |πs)]
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of images of humans, as shown in Figures 4.6 and 4.7. This output representation is

general, and is independent of the application utilizing the estimated future motion. One

can easily apply a pose estimation algorithm [7] on our output representation to obtain

the 2D or 3D pose of humans, as required by the application.

Predicting future motion given a start pose:In many robotic applications like rehabili-

tation, surgical gesture assistance and telemanipulation, robots assist humans or manipu-

late the same object as humans. Such applications are termed“assistance to manipulation”

applications. Jarrasseet al. has verified that human motion prediction can significantly

improve the performance of the robot in these applications [89]. Motion prediction is also

useful in detecting gait anomalities in medical applications and analyzing movements in

sports videos. Given a test pose, the most probable action segment is obtained, as ex-

plained in Section 4.3.2. The poses associated with this action segment represents the

predicted future motion. Unlike model-based approaches for motion prediction, the pro-

posed prediction is not restricted to a particular model andcan easily incorporate new

training data.

Generating realistic human motion trajectories: Creating realistic human motion is an

important requirement in applications like humanoid robotdesign and animation. Given

the current pose of the robotπs and the final poseπe, such motion can be obtained by

finding the most probable action segment starting fromπs and ending atπe using the

proposed method, as explained in Equation 4.4.
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4.4.2 Semi-supervised still image action recognition

As explained in Section 4.2, action recognition from still images has recently gained

attention in computer vision literature, with applications in action image retrieval and

action recognition from personal photo collections, sports images and newspaper im-

ages [99, 100]. Most existing methods assume the presence oflabeled action images for

training. Labeling requires human supervision, and is expensive and time consuming.

However, one can easily collect unlabeled images and videosfrom public databases like

Flickr and YouTube. This has lead to the development of semi-supervised algorithms

in computer vision [117, 118]. See [119] for an excellent survey of recent efforts on

semi-supervised learning. For still image-based action recognition, Cinbiset al. [99]

developed a semi-supervised method by querying the web to obtain additional training

images. However, due the large variation of images in the internet, the additional images

used to learn the classifier often differ widely from the testimages, leading to lower per-

formance. Another source of training data which is often easy to acquire in applications

like surveillance is unlabeled and unsegmented action videos of humans. In this section,

we describe how such videos can be utilized for semi-supervised action recognition using

the proposed method.

Since the proposed method for predicting action segments donot require activity labels,

it can act as a natural way of propagating labels from the labeled training images to the

unlabeled video data. For each labeled training pose, we findthe most probable action

segments from the unlabeled video data, as explained in Section 4.3.2. If the original

training poses are discriminative, the retrieved action segments will belong to the same
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action. Hence, we add these action segments as additional training samples, thereby

increasing the diversity of the training data. Additionally, one could use DDI to propagate

labels from just the informative training poses.

4.4.3 Video Summarization

Recent deluge in multimedia content has necessitated the development of algorithms to

concisely represent a video. The goal of video summarization is to capture the relevant

information in a video using a fixed number of frames called the key-frames. Numer-

ous criteria have been proposed in the literature for selecting the key-frames in a video.

Two popular ones are representation and diversity [3]. Representation criteria prefers the

selection of key-frames which are similar to the frames in the video. Diversity favors

the selection of key-frames which are not redundant. In the case of videos of humans,

the amount of dynamic information in a pose has not yet been utilized for summarization.

Since frames with high dynamic information convey the motion of the human over a large

number of adjacent frames, they are potential candidates for key-frames. Hence, DDI can

also be used for key-frame selection in video summarizationapplications.

4.5 Experiments

We empirically evaluate the proposed method on action datasets of varying complexity,

namely the Weizmann activity dataset [120] with clean background and fixed view point,

INRIA XMAS (IXMAS) dataset [121] where actors freely change their orientation and

the UCF Sports Activity dataset [122] with large changes in scene and view points. To
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Figure 4.6: Motion prediction using the proposed method. Itis interesting to note that the

predicted motion is performed by a different subject, sincethere is no overlap between

training and testing subjects.

perceptually evaluate the DDI measure obtained by the proposed method, we predict the

amount of dynamic information in the Hokusai Manga images. The fMRI experiments

by Osakaet al. [2] on these images had demonstrated that the dancer images have higher

dynamic information compared to the priest images. Furthermore, to evaluate the method

under large variations in training and testing conditions,we perform a cross dataset exper-

iment using unlabeled videos from the Weizmann dataset and test images from the CMU

action dataset [123].

4.5.1 Implementation Details

The proposed method is illustrated in Figure 4.5, and details are provided in Algorithm 3.

Ballistic boundaries are extracted from unlabeled action videos using [105]. Sequence of
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Figure 4.7: Generating trajectories using the proposed method.

poses within adjacent ballistic boundaries form the actionsegments. A gallery of human

poses along with their associated action segmentsD = {(π,φ(π))} is then created from

the training videos. The poses are represented by HOG [5] features, and action segments

by the finite observability matrixΩ⊤
m in the LDS model. Closed form expressions exist

for the computation ofΩ⊤
m from the action segments, as derived in [111]. Given a test

poseπs, Nπs is created by identifying thek nearest neighbors in the HOG feature space

from the gallery. Using the corresponding action segments as samples, mode and entropy

of P(φ |π) are computed as explained in Algorithm 3. Instead of using the iterative

optimization algorithm in [115], we compute the most probable action segment directly

using (4.9). Unless specified, we fixedk in all our experiments to the average number of

repetitions of actions in the unlabeled videos, which is roughly the number of subjects in

the unlabeled videos. Our experiments suggest that the proposed method works well over

a wide range ofk. The bin size and cell size of the HOG features are both set to 8, with

2×2 cells forming a block.
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Figure 4.8: The priest and dancer images in the Hokusai Mangacollection are displayed

in the increasing order of their DDI, with the indices in the sorted order indicated in the

top left of each pose. Here, index 1 (top left pose) has the lowest DDI and index 45

(bottom right pose) has the highest DDI. The priest images are marked in red, and the

dancer images having the most unstable poses, where the human is standing on a single

leg are marked in blue. Observe that most of the priest imageshave lower DDI values,

while most of the dancer images in unstable poses (in blue) have higher DDI values,

providing a computational explanation for the results in [2].

4.5.2 Perceptual Evaluation on Manga Images

In this section, we estimate the amount of dynamic information in the Hokusai Manga

image database shown in Figure 4.2. This database consists of 45 images belonging to

two groups namely the priests and the dancers. The same set ofimages had been used by

Osakaet al. [2] in their experiments, which reported that the unstable poses in the dancer

images activated the motion sensitive regions of the visualcortex, while the priest images

did not. This indicates that the dancer images have higher dynamic information compared
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to the priest images.

Since the Manga images have wide variations in human poses, we use the SFU skating

dataset [124] for training, as explained in section 4.5.1. For each Manga test image, we do

a simple thresholding to obtain a binary image and extract the HOG features. Using the

SFU training data, we obtain the DDI values for each Manga image. The Manga images

are then sorted in the increasing order of DDI and are displayed in Figure 4.8. The priest

images are highlighted in red. As can be observed, most priest images have low DDI

values indicating low amounts of implied motion. Furthermore, among the dancer images,

the most unstable poses are the ones where the human is standing on one leg. Such

images are highlighted in blue. Based on the studies in [2], such unstable poses should

have higher implied motion. These images come towards the end of the sorted order in

Figure 4.8, indicating that the DDI values are higher in them. Thus, most of the stable

poses have lower DDI values, and most of the unstable ones have higher DDI values,

there by empirically verifying that the proposed measure isperceptually meaningful.

4.5.3 Human Motion Prediction from still images

We performed motion prediction given a single pose on the IXMAS dataset. We used the

first nine subjects in the first view as the training data and predicted the future motion for

each pose of the last subject. The predicted motion of some ofthe test poses are shown

in Figure 4.6. It can be observed that the predicted motion mostly agrees with the ones

expected by humans.

To evaluate the prediction accuracy, we used the motion prediction error, which is defined
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as the difference between the true action segments for each test frame and the predicted

action segment. We use the distance metric between action segments defined in (4.6). We

plot this error for the proposed method for different valuesof k in Figure 4.9. The base

line method (NN-Based) consists of using the mean of thek retrieved action segments as

the predicted motion. Using the first nearest neighbor as theprediction motion, the pre-

diction error is 0.47. The proposed method decreases this prediction error considerably

achieving an error of 0.39 using 6 nearest neighbors. Also, the simple baseline of aver-

aging the retrieved nearest neighbor action segments leadsto higher prediction error for

higher values ofk. We attribute the improvement in performance to the following. Due

to errors in pose matching, the nearest neighbor poses and their associated motion are

often erroneous. These erroneous motion normally form outliers and do not contribute to

the most probable motion. Since mean is not robust to outliers, averaging the retrieved

action segments lead to poor performance. However, the modeis not sensitive to outliers.

Hence, by finding the mode of the nearest neighbor action segments, the proposed method

improve the robustness of the motion prediction algorithm to errors in pose matching.

Furthermore, we predicted the probable human trajectoriesgiven a start and end pose on

the Weizmann dataset. We used two subjects for testing and remaining for training. We

illustrate the probable trajectories in Figure 4.7. It is evident that the predicted trajectories

are close to the ones expected by humans.
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Figure 4.9: Motion prediction error in IXMAS dataset using the nearest neighbor-

based(NN-Based) and the proposed method. Due to outliers in the nearest neighbor poses,

the NN-Based method lead to lower performance with more nearest neighbors. However,

since the proposed method of mode computation is insensitive to outliers, the motion

prediction error is reduced with more nearest neighbors by the proposed method.

4.5.4 Semi-Supervised Single Image Action Recognition

In this section, we evaluate the label propagation technique, explained in Section 4.4 for

semi-supervised activity recognition from a single image.Since activity recognition from

single images arises mainly in sports and newspaper images,we used the UCF Sports Ac-

tivity dataset in our experiments. We considered nine out ofthe thirteen actions, avoiding

the classes differing only in motion. Action classes which differ only in their motion

signature cannot be distinguished in still images, even by humans. Hence, they are not

considered for evaluating still image action recognition algorithms in the literature [99],

for a fair comparison of the algorithms. The classes used in our experiments are listed in

Figure 4.11. We used 2 subjects for training, 2 for testing and 8 as unlabeled data. There

is no overlap between the subjects in training, testing and unlabeled data. We chose 8 im-

ages at random of the 2 training subjects to form the trainingdata. No labels or temporal
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Figure 4.10: For each test image, the nearest neighbors obtained using the supervised

method and the proposed method are shown. Erroneous resultsare encircled in red.

segmentation is assumed for the unlabeled data. We used the HOG features for represent-

ing human poses and the nearest neighbor classifier for activity recognition, similar to the

approach introduced in [83].

We compared the proposed method of label propagation with the nearest neighbor classi-

fier using the labeled data alone (referred as supervised algorithm) and three popular semi-

supervised algorithms namely Self-Training [119], Semi-Supervised SVM (S3VM) [125]

and Single View CoTraining [126]. In Self-Training, the classifier trained on the labeled

data is applied on the unlabeled data and theL (fixed as 20 in our experiments) most

confident images are added to the training set as additional labeled data, using the pre-

dicted labels. Test samples are classified using this extended training set. Since S3VM
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and Single View CoTraining were originally developed for twoclass problems, we used

one-versus-all classification for multi-class classification. S3VM utilizes unlabeled data

by constraining the classifier decision boundary to pass through low density data regions.

We used the Multiple Switching algorithm in [125], which iteratively labels the unlabeled

data and switches the labels to reduce the optimization cost. Since this algorithm has mul-

tiple regularization parameters to be tuned, we compute therecognition accuracy over a

wide range of these parameters and report the best results onthe test data. The Single

View CoTraining algorithm automatically splits the featurevectors into two views, and

uses the most confident samples in one view to retrain the other view. It has achieved

state of the art results for semi-supervised object recognition [126]. We observed the al-

gorithm to converge in ten iterations and the learned classifier was used for recognition.

In the proposed method for label propagation, for each labeled image, we added thek

most probable action segments from the unlabeled data into the training set. We used

k = 8 in our experiments, since unlabeled data contained each action roughly 8 times,

performed by each of the 8 subjects. Recognition of test samples were done as before

using the extended training set.

The recognition accuracies using 8 action segments are shown in Table 4.1 . We include

the corresponding confusion matrices in Figure 4.11. The proposed method provides a

significant improvement of 8.6%, compared to the supervised algorithm. Also confu-

sion with wrong classes is considerably reduced. We show some of the test images and

the nearest neighbors obtained by the supervised algorithmand the proposed method in

Figure 4.10. Furthermore, we plot the variation in accuracywith the number of action

segments added in Figure 4.13. As can be observed, the accuracy increases with action
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Method Accuracy (%)

Supervised 49.3

Self-Training 51.9

Semi-Supervised SVM 51.7

Single View CoTraining 53.5

Proposed Method 57.9

Table 4.1: Activity Recognition accuracy on the UCF dataset.

segments till 9 (close to 8, the average number of repetitions in the unlabeled data) and

then falls gradually.

Additional insight into performance improvement: We attribute the performance im-

provement of the proposed method to the following. While existing semi-supervised

algorithms use unlabeled samples having similar pose as theones in training, they do

not explicitly incorporate the motion information contained in these poses. Since the

proposed method models this dynamic information, it is alsoable to utilize poses in the

unlabeled data, which are different from the labeled training samples. This improves

the diversity of the training samples and lead to superior performance. Furthermore, the

proposed method is insensitive to errors in pose matching.

To gain further insight, we display the nearest neighbor poses and the most probable

action segment for two labeled images, belonging to the diving and swing actions re-
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Figure 4.11: Confusion matrices for action recognition on UCFdataset shows significant

improvements. In the proposed method, confusion remains mainly between Golf Side and

Kicking which have similar leg poses (legs far apart), and among walk, run and kicking,

which differ mainly in the rate of execution of the action.

spectively in Figure 4.12. Due to errors in pose matching, some of the nearest neighbors

belong to different actions. Since self training adds thesesamples into training with the

wrong label, it corrupts the training data and leads to lowerperformance. However, since

the action segments corresponding to the wrongly retrievedposes differ widely, they usu-

ally form outliers during density estimation. The correctly retrieved action segments,

whose poses are highlighted in red act as inliers since they are similar to one another.

Hence, the most probable action segment belongs to the true action, since it is supported

by these inlier action segments. Since the proposed method adds highly probable action

segments, it is more robust to pose matching errors. Furthermore, poses in the added ac-

tion segment are significantly different from the query labeled image, there by increasing

the diversity of the training data.
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4.5.5 Cross-Dataset Dynamic Inference

In applications like surveillance, the unlabeled and unsegmented videos required for dy-

namic inference can often be acquired in conditions close tothose during testing. How-

ever, this is not possible in applications like activity recognition from newspaper images

using unlabeled YouTube videos for label propagation. Here, the acquisition conditions

of the newspaper images are very different from that of the YouTube videos. To further

evaluate the robustness of the proposed method, we considerthe scenario where the test

pose whose motion is to be inferred, is significantly different from the unlabeled videos

available for learning the conditional density. Specifically, we picked poses from the

CMU dataset [123] and learned conditional density using the videos from the Weizmann

dataset. We then propagated action segments from the Weizmann dataset into the training

set as explained before. Test poses in the CMU dataset were recognized using this ex-

tended training set. We chose these datasets since they share common actions and differ

widely in their acquisition conditions. Out of the four actions in the CMU dataset which

are also present in the Weizmann dataset, we use “jumping jack”, “one handed wave”

and “pickup” for our experiment. We avoid the fourth action,namely, the “two handed

wave”, since it closely resembles jumping jack in still images. Such actions, which can-

not be distinguished from still images merely increase the complexity of the still image

action recognition problem and make a fair comparison of algorithms difficult. Hence,

they are normally removed in the literature [99]. The entireWeizmann dataset is used for

learning the conditional density, without assuming any labeling or temporal segmenta-

tion. We emphasize that this is a very difficult testing condition due to the large variations
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in acquisition conditions between the datasets, heavy clutter in the CMU dataset and the

presence of 7 distractor actions in the Weizmann dataset.

Method Accuracy (%)

Supervised 44.0

Self Training 44.8

Semi-Supervised SVM 45.9

Single View CoTraining 45.2

Proposed Method 50.5

Table 4.2: Activity Recognition accuracy on the CMU dataset.

We picked one image per action for training from the CMU dataset and tested on im-

ages from the remaining videos. For each training image, we added the most probable

action segments for the Weizmann dataset. To reduce the cross-dataset variations, before

recognition, we learned a Partial Least Squares(PLS) subspace, using the training samples

from the CMU dataset and the added action segments from the Weizmann dataset. PLS-

based latent spaces have been effectively used in the literature to handle cross-dataset

and cross-model recognition [127]. Interested readers arereferred to [127] for further

details. We observed the method to be robust to the subspace dimension and chose half

the original feature dimension in our experiments. Other evaluation details were similar

to those for the action recognition experiment on the UCF dataset before. We present
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the recognition accuracies in Table 4.2, and plot the performance with varying number of

nearest neighbors (k) in Figure 4.14. The results demonstrate that the proposed method

consistently improves the recognition accuracy, even withlarge variations between the

unlabeled gallery and the testing samples.

4.5.6 Video Thumbnailing

We evaluated the proposed dynamic information measure for video thumbnailing. In this

problem, the most representative frame in the test video is chosen as the video thumb-

nail. Our method consists of selecting the image with the highest dynamic information.

We compared the proposed scheme with the exemplar selectionalgorithm called Manifold

Pŕecis [3]. We used this method for comparison since it uses thesame LDS representation

for actions and also achieved state-of-the-art performance. We randomly chose two sub-

jects from the Weizmann dataset for testing and the remaining subjects as the unlabeled

gallery. We chose the Weizmann dataset in this experiment, since it consists of short clips

of human actions, a setting where thumbnailing becomes a relevant problem. Both struc-

ture and motion-based features were used for the Manifold Précis method. HOG features

of the pose were used to capture the structure. LDS features computed from a small mo-

tion clip centered at each frame were used to capture the motion. It is important to note

the proposed method does not use motion information in the test video unlike the Man-

ifold Précis. However, it does require unlabeled and unsegmented videos in the gallery,

which are not required in [3].

We show some of the selected key-frames in Figure 4.15. As canbe observed, often the
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Method Accuracy(%)

Manifold Pŕecis 85

Proposed Method 90

Table 4.3: Nearest neighbor recognition accuracy of the key-frames selected by Manifold

Pŕecis and the proposed method.

key frames obtained using the proposed method are more representative of the underly-

ing action. To quantitatively evaluate the two methods, we considered recognizing the

action from just the key-frames selected by both the methods. We used images from four

subjects, non-overlapping with the test ones to form the training data. The nearest neigh-

bor classifier on HOG features was used for recognition. The recognition accuracies are

shown in Table 4.3. The improvements in the obtained accuracy indicate the superior

representative properties of the key frames retrieved by the proposed method. In practice,

one could combine DDI with existing measures for summarization like representation and

diversity [3] to obtain better results.
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Figure 4.12: Example illustrating the working of the proposed label propagation approach

for semi-supervised action recognition, for two labeled poses in training belonging to the

diving and swing actions respectively. The correctly retrieved nearest neighbor poses are

highlighted in red. While some of the nearest neighbors belong to incorrect activities due

to errors in pose matching, the most probable action segmentbelongs to the correct class.

Furthermore, the poses added by the proposed method are clearly very different from the

test pose. Hence, the training set is greatly enriched by theproposed label propagation

method.
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Figure 4.13: Variation of recognition accuracy with the number of action segments added

per training image.
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Figure 4.14: Variation of recognition accuracy with the number of nearest neighbors in

the CMU cross-dataset experiment.
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Figure 4.15: Key-frames selected by Manifold Précis [3] and the proposed method. Poses

retrieved by [3] for “jump” and “skip” actions are similar. Also motion of legs, which

differentiates “jack” from “two handed wave” is more perceivable in the key-frame of the

proposed method, as legs are not far apart in the normal standing pose.
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Chapter 5

Conclusion and Directions for Future Work

5.1 Summary

In this dissertation, we developed efficient machine learning techniques for visual classi-

fication, when labeled data is limited in number. These algorithms used unlabeled data

available during testing, or during training and also labeled data in different domain. In

particular we discussed three problems namely:

1. Unconstrained iris recognition, where the training dataare the clean iris images,

which do not capture all the possible variations during testing. Testing samples

have large amount of artifacts due to the unconstrained nature of acquisition, but

are large in number. Hence we proposed a Sparse Representation based selection

and recognition scheme, which learns the underlying structure of clean images. The

introduced algorithm simultaneously selects the good irissectors, recognizes them

separately and combines the numerous recognition results using a Bayesian Fusion

framework. Furthermore, we demonstrate how to perform video-based recognition

and incorporate privacy using Random Projections without affecting the recognition

performance.

2. Sensor Adaptation, where most of the enrolled data are using a different sensor

than the one used for testing. We provide an efficient solution to this problem, a

machine learning technique to adapt iris data collected from one sensor to another.
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We provide one of the first solutions to this problem, a kernellearning framework

to adapt iris data collected from one sensor to another. Extensive evaluations on iris

data from multiple sensors demonstrate that the proposed method leads to consid-

erable improvement in cross sensor recognition accuracy. Furthermore, since the

proposed technique requires minimal changes to the iris recognition pipeline, it can

easily be incorporated into existing iris recognition systems.

3. Dynamic Inference from human pose, where unlabeled videos are available during

training. We utilize these unlabeled videos to extract implicit motion information

present in human poses. We pose the inference of this implicit motion information

from still images as a non parametric density estimation problem on non-Euclidean

manifolds. Statistical inference on the estimated densityprovide us with quantities

of interest like the most probable future motion of a human pose and how infor-

mative the given pose is. Our experiments demonstrate that the extracted motion

information benefits a variety of applications in computer vision like activity recog-

nition, motion prediction and video summarization.

5.2 Future Work

Several directions of research are possible for the problems and solutions considered in

this dissertation. We discuss some of them below.
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5.2.1 Semi-supervised algorithms for video-based applications

Visual classification in videos is one of the core problems incomputer vision with appli-

cations like activity recognition and event classification. In the future, we plan to analyze

how unlabeled or weakly labeled data can be utilized for thisproblem. Labeling in videos

is harder due to the inherent ambiguities about the beginning and ending of activities and

the need to segment both spatially and temporally. However,often weak labeling informa-

tion is available with movie and sports videos like scripts,sub titles and audio. Analyzing

these weak labeling information and utilizing them for visual classification is a challeng-

ing and relevant problem along the lines of the work presented in this dissertation.

5.2.2 Novel cues for video summarization

In the third part of the dissertation, we demonstrated how unlabeled training videos can

be used to aid summarization in text videos. This was based onutilizing the inherent

motion information in human poses. However, there are othersources of information

that can be extracted from an image containing a human like scene properties [128], and

the presence and location of objects [84]. The proposed framework can be extended to

capture the influence of these sources on the dynamic information conveyed by the human

pose, which can in turn lead to novel cues for video summarization.

5.2.3 Weak labeling for 3D Reconstruction

In the future, we plan to utilize unlabeled data for estimating scene geometries in indoor

images. While 3D reconstruction from single image is ill posed, one could use strong
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prior in indoor scenes like the “Indoor World” model and the appearance and location

of furniture [129]. We will explore how such priors can be developed efficiently from

unlabeled indoor images.
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