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Recognizing humans and their activities from images andovid®ne of the key goals
of computer vision. While supervised learning algorithrke ISupport Vector Machines
and Boosting have offered robust solutions, they requirgelamount of labeled data
for good performance. It is often difficult to acquire largdéled datasets due to the
significant human effort involved in data annotation. Hoeret is considerably easier
to collect unlabeled data due to the availability of inexgiea cameras and large public
databases like Flickr and YouTube. In this dissertation,deeelop efficient machine
learning techniques for visual classification from smalbamt of labeled training data by
utilizing the structure in the testing data, labeled data different domain and unlabeled

data.

This dissertation has three main parts. In the first part efdissertation, we consider
how multiple noisy samples available during testing cantilzed to perform accurate
visual classification. Such multiple samples are easilylava in video-based recogni-
tion problem, which is commonly encountered in visual sillasgce. Specifically, we

study the problem of unconstrained human recognition frosmimages. We develop
a Sparse Representation-based selection and recognitiemsg¢ which learns the un-
derlying structure of clean images. This learned struatitgilized to develop a quality
measure, and a quality-based fusion scheme is proposethturm®the varying evidence.

Furthermore, we extend the method to incorporate privatygortant requirement in



practical biometric applications, without significantlffexting the recognition perfor-

mance.

In the second part, we analyze the problem of utilizing lebelata in a different domain
to aid visual classification. We consider the problem oftshii acquisition conditions
during training and testing, which is very common in iris toietrics. In particular, we
study the sensor mismatch problem, where the training sssgok acquired using a sen-
sor much older than the one used for testing. We provide orbeofirst solutions to
this problem, a kernel learning framework to adapt iris datected from one sensor
to another. Extensive evaluations on iris data from mudtggnsors demonstrate that the
proposed method leads to considerable improvement in s&ssor recognition accu-
racy. Furthermore, since the proposed technique requinenal changes to the iris

recognition pipeline, it can easily be incorporated intsg®g iris recognition systems.

In the last part of the dissertation, we analyze how unlabedg¢a available during training
can assist visual classification applications. Here, waicen still image-based vision ap-
plications involving humans, where explicit motion cues aot available. A human pose
often conveys not only the configuration of the body parts,dtso implicit predictive
information about the ensuing motion. We propose a proistibiframework to infer this
dynamic information associated with a human pose, usingb@hd and unsegmented
videos available during training. The inference problenpased as a non-parametric
density estimation problem on non-Euclidean manifoldsac&idirect modeling is in-
tractable, we develop a data driven approach, estimatmgiéimsity for the test sample
under consideration. Statistical inference on the eséthdénsity provides us with quan-
tities of interest like the most probable future motion of tuman and the amount of
motion information conveyed by a pose. Our experiments desinate that the extracted
motion information benefits numerous applications in cotapuision. In particular, the
predicted future motion is useful for activity recognitjdruman trajectory synthesis and
motion prediction. Furthermore, the estimated amount afionanformation in a pose

provides a novel criteria for video summarization.
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Chapter 1
Introduction

1.1 Research Motivation

Supervised Learning techniques have made tremendoustdiains to computer vision,
leading to the development of robust algorithms. Viola amake3$ [4] developed a robust
framework for face detection through boosting-based aesogjection classifier. Pedes-
trian detection was performed by Daktl al.[5] by classifying Histogram of Oriented
Gradients (HOG) features using Support Vector MachinedB\Mo model articulated
human poses, Felzensweth al.[6] developed discriminative part models based on Latent
SVMs. Pose estimation algorithms have been developed byil&ka et. al.[7] using
part-based models. Robust algorithms have been proposediftan action recognition
using space time interest points and SVMs with Histogramrggction kernels [8].

While these algorithms have advanced the state-of-thegmifisantly, their performance
is often limited by the amount of labeled training data aali. Labeling is expensive
and time consuming due to the significant amount of humarrteffeolved. However,
collecting unlabeled visual data is becoming considerabkier due to the availability of
low cost surveillance cameras and large Internet dataliiiedslickr and YouTube. This
leads us to an interesting question: Can unlabeled or weakbld¢d data be used along
with small amount of labeled data to develop accurate viclaakifiers? We address this

guestion in this dissertation by developing semi-supen/egorithms for visual classifi-



cation tuned to the application in hand.

1.2 Proposed Algorithms and their Contributions

In this section, we briefly describe the algorithms intragtho this dissertation and their
key contributions.
1. Secure and unconstrained iris recognition using Sparse Regsentations and

Random Projections:
In the first part of the dissertation, we consider how mudtipbisy samples avail-
able during testing can be utilized to perform accuratealislassification. Specif-
ically, we study the problem of unconstrained human redegnfrom iris images.
In this problem, while the training images are clean irispéates of subjects, the
images during testing often have large amount of acqumséitifacts like motion
blur, occlusion, specular reflections and off angle rotgtdue to the unconstrained
nature of acquisition. However, multiple samples are awdd as the test sub-
ject moves towards the sensor, which is normally part of aress control sys-
tem. Hence, we propose a Sparse Representation-basedosesewt recognition
scheme, which learns the underlying structure of clean @sdg, 10]. The in-
troduced algorithm simultaneously selects the good iritoss, recognizes them
separately and combines the numerous recognition ressiltg & Bayesian Fu-
sion framework. Furthermore, we extend the method to imm@te privacy using
Random Projections [11], an important requirement in pcatbiometric systems,

without significantly affecting the recognition perforntan



Contributions: The proposed quality measure can handle wide variety daetsi
like occlusion, blur, specular reflections and off angletions of the iris image.
The introduced quality based fusion scheme is found to prediiate-of-the-art
results. We also introduce one of the early algorithms figr iecognition from
videos. The proposed cancelable scheme incorporatesyruthout significantly
reducing the recognition accuracy, unlike existing aldnnis for the same purpose.
. Sensor Adaptation in Iris Recognition:

In the second part, we analyze how labeled data in a diffel@miin can aid visual
classification. We consider the problem of shifts in acdigisiconditions during
training and testing, which is very common in biometricstiW¢he development of
new sensors for iris recognition and the improvement oftexgsones, enroliment
using one sensor and verification with another assumes igleaance. While ver-
ifying test samples using data enrolled from a differentssercan often lead to
lower accuracy, enrolling subjects every time a new sersdeployed is expen-
sive and time consuming. We propose one of the first compeareesolution to
this problem, a machine learning technique to efficientlfigate the cross-sensor
performance degradation, by adapting the iris samples &noensensor to another.
We developed a novel optimization framework for learnirapgformations on iris
biometrics. We then utilize this framework for sensor ad#ph, by reducing the
distance between samples of the same class, and increbbetgveen samples of
different classes, irrespective of the sensors acquihiegit Extensive evaluations
on iris data from multiple sensors demonstrate that theqeeg method leads to

considerable improvement in cross sensor recognitionracguFurthermore, since
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the proposed technique requires minimal changes to theezagnition pipeline, it
can easily be incorporated into existing iris recognitigstems.

Contributions: The proposed method is one of the first comprehensive solutio
for the sensor mismatch problem in iris biometrics. Theodticed solution leads
to considerable improvement in cross-sensor matchings folust to alignment
errors, and can also handle real-valued feature repregergaThe proposed tech-
nique is fast, requiring limited changes to the existing mecognition pipeline.
Hence, it can easily be incorporated into existing iris gggtion systems. The
framework presented in this dissertation, for developiramgformations of iris
codes having desired properties, can also be utilized fdopeing numerous tasks
in iris biometrics, such as max-margin classification, disienality reduction, and
metric learning.

. Dynamic Inference from Single Images of Humans:

In the last part of the dissertation, we analyze how unlabdkta available dur-
ing training can assist visual classification applicatioHere we demonstrate the
usefulness of unlabeled videos in still image-based visipplications involving
humans. Our work is motivated by the observation that huneese pften conveys
not only the configuration of the body parts but also possesssictive informa-
tion about the ensuing motion. Image-based vision apphicatvhich lack explicit
motion information can benefit from this implicit informati. However, computa-
tional algorithms to infer and utilize it in computer visiapplications are limited.
In this paper, we propose a probabilistic framework to irtfex dynamic infor-
mation associated with a human pose. The inference proldgrosed as a non-
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parametric density estimation problem on non-Euclideanifolas. Since direct
modeling is intractable, we develop a data driven approastimating the den-
sity for the test sample under consideration. Statistitf@rence on the estimated
density provides us with quantities of interest like the tqm®bable future mo-
tion of the human and the amount of motion information coeeelpy a pose. Our
experiments demonstrate that the extracted motion infoomaenefits numerous
applications in computer vision. In particular, the préedcfuture motion is useful
for activity recognition, human trajectory synthesis andtion prediction. Fur-
thermore, the estimated amount of motion information in seporovides a novel
criteria for video summarization.

Contributions: We explore the potential of the implicit dynamic informatioon-
veyed by a human pose. We develop a probabilistic frameveonkddel it. Using
this framework, we estimate the amount of dynamic infororattonveyed by a
pose and predict the probable future motion. The proposdbadeequires lim-
ited manual supervision since it uses unlabeled and unsggcheuman videos for
training, and can easily be implemented. We demonstrataedétilness of the es-
timated dynamic information in a variety of vision applicets like human motion

prediction, activity recognition and video summarization

1.3 Organization

This dissertation is organized as follows. In Chapter 2, ves@nt the unconstrained iris

recognition algorithm using Sparse Representations anddraiutojections. Chapter 3



introduces sensor adaptation for iris recognition. Infeszof motion information from
stillimages of humans is described in Chapter 4. We concheldissertation and discuss

future directions in Chapter 5.



Chapter 2

Unconstrained Iris Recognition

Iris recognition is one of the most promising approachebi@metric authentication [12].
Most existing algorithms rely on the fine texture featuretramted from the iris for
recognition. Hence their performances degrade significaviten the image quality is
poor [12, 1]. This seriously limits the application of thé&irecognition system in un-
constrained scenarios, where the acquired image could logvajuality due to motion,
partial co-operation or the distance of the user from tharsea

In this dissertation, we develop a framework for unconsgdiiris recognition. When the
acquisition conditions are not constrained, many of theumed iris images suffer from
defocus blur, motion blur, occlusion due to the eyelidscsfa reflections and segmenta-
tion errors. Fig. 2.1 shows some of these distortions on @adigpm the ICE2005 dataset
[1]. However, the images during enroliment are clean imag#slimited artifacts, since
they are acquired under controlled settings. Hence we reeddvelop a algorithms for
iris recognition using the small amount of labeled samplék Wimited distortions, to
handle test samples with significant acquisition artifad#®wever, often multiple im-
ages of the subject are available during testing, as thesuirjoves towards the sensor.
This availability of multiple test images can be utilizedimaprove the recognition per-
formance. In this work, we employ a sparse representatemdwork [13] to capture

the structure of the clean training images and utilize itstneate the quality of the test



samples. We then utilize a quality-based fusion framewooknbine the results of the
individual sectors on the iris based on their quality. Thepmsed method is significantly
faster than the original sparse representation approa&ttaglit facilitates parallelization

and reduces the size of the dictionary size, as will becorparant.

L‘\ !
i /

(@) (b) (€) (d)

Figure 2.1: Some poorly acquired iris images from the ICEskitfl]. Note that image
(a) has specular reflections on the iris and is difficult todggnsented correctly due to the
tilt and non circular shape. Images (b) and (d) suffer froorirg, whereas image (c) is

occluded by the shadow of the eyelids.

The performance of most existing iris recognition algarithdepends strongly on the
effectiveness of the segmentation algorithm. Iris imaggrsntation normally involves
identifying the ellipses corresponding to pupil and irisdaletecting the region inside
these ellipses that is not occluded by the eyelids, eyetaashé specular reflections. Un-
fortunately, in unconstrained scenarios, correctly sedimg the iris images is extremely
challenging [14]. The proposed selection algorithm rersamput images with poorly
segmented iris and pupil ellipses. Furthermore, sincerttieduced recognition scheme
is robust to small levels of occlusions, accurate segmentaff eyelids, eyelashes and
specular reflections are no longer critical for achievingadyoecognition performance.
Another important aspect in iris biometrics is security angacy of the users. When the

texture features of one’s iris are stored in a templateaheitiy, a hacker could possibly



break into the dictionary and steal these patterns. Unlikditcards, which can be re-
voked and reissued, biometric patterns of an individuahoabe modified. So, directly
using iris features for recognition is extremely vulneeatol attacks. To deal with this, the
idea of cancelable iris biometrics has been introduced5n 16, 17], which can protect
the original iris patterns as well as revoke and reissue rateqms when the old ones are
lost or stolen. In this paper, we introduce two methods foorporating security into the
proposed iris recognition system, namely, random prayastand random permutations.
Our methods can issue a different template for each apiicétased on the original
iris patterns of the person, generate a new template if tistiyx one is stolen while
retaining the original recognition performance. The regpregation prevents extraction of
significant information about the original iris patterngrfr cancelable templates.
Organization of the Chapter: In Section 2.1, we discuss some of the existing algo-
rithms for iris image selection, recognition and canceiigbiThe theory of sparse rep-
resentation is summarized in Section 2.2. The Bayesianridsionework for selecting
and recognizing iris images is described in 2.3. We exterrdhmethod to video-based
iris recognition in section 2.4 and discuss how to handignatient in Section 2.5. Two
schemes for introducing cancelability into our framewor& proposed in 2.6. Experi-

ments and results are presented on simulated and real agesrin Section 2.7.

2.1 Related Work

In this section, we briefly describe some of the existing méshfor iris recognition,

image quality estimation and cancelability.



Iris recognition: The first operational automatic iris recognition system degeloped
by Daugman [18] in 1993, in which Gabor features were exéafitom scale normalized
iris regions and quantized to form a 2K bit iris code. The nalieed Hamming distance
between the iris code of the test and the training iris imagas used for recognition.
Wildes [19] used Laplacian of a Gaussian filter at multiplalss to produce a template
and used the normalized correlation as the similarity nreadno recent years, researchers
have analyzed aspects like utilizing real valued featuresgcognition, developing alter-
nate ways of obtaining the binary codes and combining malfgatures. See [12] for an
excellent survey of recent efforts on iris recognition.

Several studies have shown that accurate quality estimeéin improve the performance
either by rejecting the poor quality images or by fusing toh@liy information during
matching [12, 20, 21]. Daugman used the energy of the higfuelecy components as
a measure of blur [18]. Proenca and Alexandre trained a heetaork to identify com-
mon noise degradations in iris images [22]. Ztual. used the wavelet coefficients to
evaluate the quality of iris images [23]. The Fourier speecfrlocal iris regions was used
by Maet al. to characterize blur and occlusion [24]. With the exceptdaugman’s
method, these algorithms are specialized for image selecwhich requires a separate
method for recognizing iris images. Also, these algorithrtisze some property of the
iris image to measure image quality and cannot handle the wadety of common arti-
facts such as specular reflections and occlusion. In cdntrdsese methods, the image
guality measure introduced in this paper can handle se@tiemerrors, occlusion, spec-
ular reflections, and blurred images. The proposed mettsadp@Erforms both selection

and recognition in a single step.
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Iris Recognition from Videos : Though research in iris recognition has been extremely
active in the past decade, most of the existing results agedban recognition from still
iris images [25]. Multiple iris images have been used in thst po improve performance.
Du et al.[26] demonstrated higher rank one recognition rates byguiree gallery im-
ages instead of one. Mat al.[27] also enrolled three iris images and averaged the three
Hamming distances to obtain the final score. Krischeal.[28] used the minimum of
the three Hamming distance as the final score. Sclatad. [29] demonstrated that fus-
ing the scores using log likelihood ratio gave superior grenfince when compared to
average Hamming distance. Lat al. [30], Roy and Bhattacharya [31] used multiple iris
images for training classifiers.

The distortions common in iris image acquisition like ocitun due to eyelids, eye lashes,
blur, and specular reflections will differ in various franwghe video. So by efficiently
combining the different frames in the video, the perforneacculd be improved. Tempo-
ral continuity in iris videos was used for improving the merhance by Hollingswortlet

al. [25]. The authors introduced a feature level fusion by aye@the corresponding
iris pixels and a score level fusion algorithm combiningtlaé pairwise matching scores.
Though averaging reduces the noise and improves the pexfamenit required images to
be well segmented and aligned, which may often not be pessila practical iris recog-
nition system. We will introduce a quality based matchingrechat gives higher weight

to the evidence from good quality frames, yielding supgwenformance even when some
video frames are poorly acquired.

Cancelable iris biometrics: The concept of cancelable biometrics was first introduced by

Rathaet al. in [16, 17]. A cancelable biometric scheme intentionallstdits the original
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biometric pattern through a revocable and non-invertitdagformation. The objectives
of a cancelable biometric system are as follows [15]:
¢ Different templates should be used in different applicagito prevent cross match-
ing.
e Template computation must be non-invertible to prevenuthmaized recovery of
biometric data.
e Revocation and reissue should be possible in the event of rconige, and
e Recognition performance should not degrade when a canedlaiyhetric template
is used.
In [32], Hash functions were used to minimize the compronoilsthe private biometric
data of the users. Cryptographic techniques were appliegBijitp increase the security
of iris systems. In [34], error correcting codes were usedémcelable iris biometrics.
A fuzzy commitment method was introduced in [35]. Other sohe have also been
introduced to improve the security of iris biometric. Seg,[32, 33, 34, 35, 36] and the
references therein for more details.
The pioneering work in the field of cancelable iris biometnias done by Zueet al.
[37]. They introduced four non-invertible and revocabknsformations for cancelabil-
ity. While the first two methods utilized random circular $im§ and addition, the other
two methods added random noise patterns to the iris featesnsform them. As noted
by the authors, the first two methods gradually reduce thesatrad information available
for recognition. Since they are essentially linear tramsfttions on the feature vectors,
they are sensitive to outliers in the feature vector thateadue to eyelids, eye lashes
and specular reflections. They also combine the good and dedygregions in the iris

12



image leading to lower performance. The proposed randofagiions based cancelabil-
ity algorithm works on each sector of the iris separatelypgtliers can only affect the
corresponding sectors and not the entire iris vector. Hahisemore robust to common

outliers in iris data when compared to [37].

2.2 Sparse Representation Framework

Following [13], in this section, we briefly describe how tgtare the underlying structure
in the clean training images using Sparse Representatiahstdize it to estimate the
class and quality of the inidividual test samples.

Sparse Representations:Suppose that we are givendistinct classes and a set of
training iris images per class. We extractNudimensional vector of Gabor features from
the iris region of each of these images. Dgt= [Xk1,...,Xkj, - - ., Xkn| D& @anN x n matrix

of features from thé&!" class, where; denote the Gabor feature from thi® training
image of thek!" class. Define a new matrix or dictionaBy, as the concatenation of

training samples from all the classes as
D =[Dq,...,D] € RN*(L)
= [Xll,...,Xln’XZl,...,X2n‘ ...... |X|_1,...,X|_n].

We consider an observation vectoe RN of unknown class as a linear combination of

the training vectors as

n
y=>% > dijxij (2.1)
=i



with coefficientsaijj € R. The above equation can be written more compactly as
y=Da, (2.2)

wherea = [011, ..., 010|021, ..., O2p|...... laLy,...,an]" and.T denotes the transposition
operation. We assume that given sufficient training sangflése ki class,Dy, any new
testimagey € RN that belongs to the same class will lie approximately in thedr span

of the training samples from the claks This implies that most of the coefficients not
associated with cladsin (2.2) will be close to zero. Hence, will be a sparse vector.
Sparse Recovery:n order to represent an observed vegtar RN as a sparse vectar,

one needs to solve the system of linear equations (2.2)caljpL.n>> N and hence the
system of linear equations (2.2) is under-determined aschbaunique solution. It has
been shown that ifr is sparse enough am2lsatisfies certain properties, then the sparsest

a can be recovered by solving the following optimization peni [38] [39] [40]
& =argmin| a’ |1 subjecttoy =Da’, (2.3)
al

where || x ||1= Yi|(X)|. This problem is often known as Basis Pursuit (BP) and can
be solved in polynomial time [41] When noisy observations are given, Basis Pursuit

DeNoising (BPDN) can be used to approximate
& =argmin|| a’ |1 subject to|ly —Da’||z < &, (2.4)
a/
where we have assumed that the observations are of the fiofjdorm

y=Da+n (2.5)

INote that the/; norm is an approximation of the thg norm. The approximation is necessary be-

cause the optimization problem in (2.3) with thenorm (which seeks the sparses}t is NP-hard and

computationally difficult to solve.
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with || n ||2< &.

Sparse Recognition: Given an observation vectgr from one of theL classes in the
training set, we compute its coefficierdsby solving either (2.3) or (2.4). We perform
classification based on the fact that high values of the @ieffisd will be associated
with the columns oD from a single class. We do this by comparing how well the dfe
parts of the estimated coefficients, represeny. The minimum of the representation
error or the residual error is then used to identify the ctrobass. The residual error
of classk is calculated by keeping the coefficients associated wahdlass and setting
the coefficients not associated with cl&s® zero. This can be done by introducing a
characteristic functior]l, : R" — R", that selects the coefficients associated withdhe

class as follows
re(y) = [ly = DN(a)|]2. (2.6)

Here the vectofly has value one at locations corresponding to the dtaasd zero for
other entries. The clasd, which is associated with an observed vector, is then dedlar

as the one that produces the smallest approximation error
d=arg rrll(inrk(y). (2.7)

We now summarize the sparse recognition algorithm as fatiow
Given a matrix of training samplds ¢ RN*("L for L classes and a test samgle RN :
1. Solve the BP (2.3) or BPDN (2.4) problem.
2. Compute the residual using (2.6).
3. Identifyy using (2.7).
Image quality measure: For classification, it is important to be able to detect arahth
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reject the test samples of poor quality. To decide whethavengest sample has good
guality, we use the notion of Sparsity Concentration Indelj$roposed in [13]. The

SCI of a coefficient vecton € R(M is defined as

LmaxMi(@)ls 4

SCl(a) = ““L”l_ — (2.8)

SCl takes values between 0 and 1. SCI values close to 1 corgtsptire case where the
test image can be approximately represented by using ordgesfrom a single class.
The test vector has enough discriminating features of@ss;lso has high quality. If SCI
= 0 then the coefficients are spread evenly across all clasg@she test vector is not
similar to any of the classes and has of poor quality. A thokesban be chosen to reject
the iris images with poor quality. For instance, a test imeaagebe rejected BCI(a) < A

and otherwise accepted as valid, wharis some chosen threshold between 0 and 1.

2.3 Bayesian Fusion based Image Selection and Recognition

Different regions of the iris have different qualities [2(0 instead of recognizing the
entire iris image directly, we recognize the different caw separately and combine the
results depending on the quality of the region. This redtleesomputational complexity
of the above method as the size of the dictionary is greatlyaed, and the recognition
of the different regions can be done in parallel. Also, siacelusions affect only local
regions on the iris which can only lower the quality of certeegions, the robustness of
the recognition algorithm to occlusion due to eyelids argllaghes is improved. A direct
way of doing this would be to recognize the sectors sepgratedl combine the results
by voting [42]. This, however, does not account for the faett tdifferent regions are
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recognized with different confidences. In what follows, wepgmse a score level fusion
approach for recognition where we combine the recognitesults of different sectors
based on the recognition confidence using the corresposfihgalues. Fig. 2 illustrates

the different steps involved in the proposed approach.

Enrollment

Segmentation > |Gabor Feature
/ Video and Unwrapping of Sectors

Verification / Identification @"E

Possible
Alignment
Estimation

l

Iris Images Segmentation Sparse
& Gabor Featurg bROt?th ™| Representation
Extraction Gabor features of Sectors

l

Image Selection

Bayesian Fusio

Recognition

Figure 2.2: A block diagram illustrating the Bayesian Fudiased image selection and

recognition.

Consider the iris recognition problem withdistinct classes. Le = {c3,Cp,...,CL} be
the class labels. Latbe the test vector whose identity is to be determined. Letvidal
the vectory into M non-overlapping regions, each called a sector. Each ofati®s is
individually solved using the sparse representation-thessognition algorithm discussed
in section 2.2. The sectors with SCI values below the threshe rejected. Lel be

the number of sectors retained, whte< M. Letdy, do, . .. ,dwv be the class labels of the
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retained sectors. Ideally, if the data is noise free, allréterned labels will be equal to
the true labet. That s,

d]_:dz:...:dM:C.

However, in the presence of noise in the training and testrimages, the returned labels
will not necessarily be the same. LBtd;|c) be the probability of thé" sector returns

a labeld; when the true class is It is reasonable to assume that the probability of the
recognition system returning the true labé&s high. But given the noise in the irisimages,
all the classes other tharwill still have a low probability of being identified as theu&
class. SCl is a measure of the confidence in recognition, soiginer the SCI value, the
higher the probability that the true class will be the saméhasclass suggested by the

recognition system. So a reasonable model for the liketiiso

(Scld)
L if d=c
tSCI(di)+ L_1) 50 i )
SCICES S 2.9
2

_ ~ if di#¢c
tlsCKd')Jr(L—l).tzSC'(d') i #

wheret; andt, are positive constants such that
1>t >1

The numerator gives a higher probability value to the cartkss, and the denominator
is a normalizing constant. The condition (2.3) ensuresttteaprobability of the true class
increases monotonically with the SCI value of the sector.sTlhis likelihood function
satisfies the two constraints mentioned above.

The maximum aposteriori estimate (MAP) of the class labetmgithe noisy individual
sector labels is given by

= arg(r:re}gﬂ(c|d1,d2,...,d|v|) (2.10)
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Assuming the prior probabilities of the classes are unifome obtain
€ =argmaxP(dy,dy, ...,dw|c)
ceC

Conditioned on the true class, the uncertainty in the cldssdas only due to the noise

in the different sectors, which are assumed to be indepemdeach other. So

M
€= argmax| | P(dj|c)
ceC =1
M1 SCl(d)).8(dj=c) M, SCI(d)).o(dj#c)

= arg Crggxl 15 (2.11)

whered(.) is the Kronecker delta function. Sinte> t,, the solution to (2.11) is same as

M

¢=argmax) SCI(dj).5(dj =c) (2.12)
ceC =1

Let us define the Cumulative SCI (CSCI) of a clasas

~ >M4SCI(d)).5(dj =)
CSClc) = >\, SCl(d))

(2.13)

So

¢=arg EQ%)CSC (9 (2.14)

CSCI of a class is the sum of the SCI values of all the sectorsifahby the classifier
as belonging to that class. Therefore, the optimal estimsates class having the highest

CSCl.

2.4 Iris Recognition from video

In this section, we illustrate how our method can be extend@erform recognition from
iris videos. Lety = {y',y?,...,y’} be thel vectorized frames in the test video. As before,
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each frame is divided intM sectors and recognized separately by the sparse recagnitio
algorithm. LetM; be the number of sectors retained by the selection scheneif't
frame. Lety} be thej'" retained sector in thi" frame. Using a derivation similar to the
one given in Section 2.3, we can derive the MAP estimate as

J M ) )
E=argmaxy % SCl(dj).6(c=dj) (2.15)

ceC & =1
wheredij is the class label assigned by the classifieyijto (2.15) can be alternatively
written as

¢=arg EQ%)CSC Ic) (2.16)

where CSCI of a clasg is given by

I sMosodl).od =
CSC|(C|):2|_1XJJ:1 M-( J) (.J Cl).
i1 21 SCI(d})

(2.17)

As before, the MAP estimate consists of selecting the clagmp the highest cumulative
SCI value, with the difference that the sectors of all the #anm the test video will be
used while computing the CSCI of each class. Note that unliketieg feature level
and score level fusion methods available for iris recognitithe CSCI incorporates the
guality of the frames into the matching score. Hence, wherfrlimes in the video suffer
from acquisition artifacts like blurring, occlusion andysgentation errors, the proposed
matching score gives higher weights to the good frames,easdime time, suppressing
the evidence from the poorly acquired regions in the video.

The different modes of operation of the proposed algorithenllustrated in Fig. 3. Both
the probe and the gallery can be separate iris images ond&ns. The iris images are

segmented and unwrapped to form rectangular images. Thear @atbures of the different
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Representation
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Gabor Gabor Gabor Gabor
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| Recognition |

Figure 2.3: A block diagram illustrating the different msd# operation of the proposed
algorithm. Both the probe and the gallery can be individusiimages or iris video. Here,

S.R. stands for Sparse Representation.

sectors are computed, and sparse representation-basephitesn algorithm described
in section 2.2 is used to select the good iris images. The gectbrs are separately

recognized and combined to obtain the class of probe imageleo as described above.

2.5 Handling Alignment

Due to rotation of the head with respect to the camera, theumzghtest iris image may
be rotated with respect to the training images. To obtainaa gecognition performance,
it is important to align the test images before recognitiém.this section, we propose
a two stage approach for iris feature alignment. In the fiefje, we estimate the best
K alignments for each test vector using matched filters and tieain an alignment

invariant score function, based on the Bayesian fusion fwasrieintroduced above.
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2.5.1 Matched Filter Based Alignment Estimation

Lety be the test vector to be recognized. Bebe the number of possible alignments of
the test vector. A matched filter is designed for each aligrtpvehose impulse response
is equal to the corresponding shifted versioryot et h; be the impulse response of the

it" matched filter, andl be the set of all possible impulse responses.
H={hg,hy,...,hz} (2.18)

Let ek be the sum of squared error betwaéBrmatched filter impulse response ajil
training image of thé" class.

&k = /i — il (2.19)

The alignment error associated with iffealignment is computed as

& 8ijk (2.20)

= min
k=12,.L,j=12,...n

The topK alignments are selected as the ones producing the leastradig errore .

2.5.2 Score Estimation Robust to Alignment Errors

From each test vectgr, we can generatié new test vectors by shifting it according to
the corresponding alignments obtained from the methodritbestabove. So instead of
the J original frames in the video, we now hay& frames. Using arguments similar to

the ones in the previous section, we can obtain the CSCI dftotasse as
2y scid)).o(di =a)
i - :
7 3121 SCl(d))

whereM; are the number of sectors retained in tfeframe. The MAP estimate of the

CSCiq) = (2.21)

output class is the one with the highest CSCl value. Note tigstiore estimation handles
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the global alignment errors and not the local deformationdhe iris pattern. Since our
method weighs different sectors based on their qualitytosedaving significant local
deformations will not have high influence on the final CSCI vatiue to their lower

quality.

2.6 Secure Iris Biometric

For a biometric system to be deployed successfully in a jacpplication, ensuring
security and privacy of the users is essential. In this sectve propose two cancelable

methods to improve security of our recognition system.

2.6.1 Cancelability through Random Projections

The idea of using Random Projections (RP) for cancelabilityiametrics has been pre-
viously introduced in [36], [43], [44]. In [36] and [43], RP$ discriminative features
were used for cancelability in face biometrics. RPs on dfféregions of the iris were
applied for cancelability in [44]. In what follows, we showW RPs can be extended into
the sparse representation-based approach for ensuringlahitity.

Let ® be anm x N random matrix withm < N such that each entrg j of ® is an in-
dependent realization @f whereq is a random variable on a probability measure space

(Q,p). Consider the following observations:

a=®dy=oDa+n’, (2.22)

wheren’ = ®n with || n’ ||2< €'. a can be thought of as a transformed version of the
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biometricy. One must recover the coefficierttsto apply the sparse recognition method
explained in section 2.2. Asis smaller tharN, the system of equations (2.22) is un-
derdetermined and a unique solutioncofs not available. Given the sparsity af one
can approximater by solving the BPDN problem. It has been shown that for sufiiitye
sparsex and under certain conditions @D, the solution to the following optimization

problem will approximate the sparsest near-solution &Zp[45]

& =argmin||a’||; s.t. ||a—®Da’|, < €. (2.23)
a/

One sufficient condition for (2.23) to stably approximate #parsest solution of (2.22),
is the Restricted Isometry Property (RIP)[46, 40]. A mathi® satisfies the RIP of order

K with constantgx € (0,1) if
(1= ) || v[I5<]| @Dv[[5< (1+ ) || v 13 (2.24)

for any v such that|| v [[o< K. When RIP holds®D approximately preserves the Eu-
clidean length ofK-sparse vectors. Whel is a deterministic dictionary an® is a
random matrix, the following theorem on the RIP®D can be stated.

Theorem 1. ([45]) Let D e RN*("L) be a deterministic dictionary with restricted isometry

constantd (D),K € N. Let® € R™N pe a random matrix satisfying
D2 1
P(ll|ovi®—Ivl[%| > ¢|IvI’) <267, ¢« (O,g) (2.25)

for all v e RN and some constante 0 and assume

m>C3d 2 (Klog((n.L)/K) +log(2e(1+12/5)) +t) (2.26)
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for somed € (0,1) and t> 0. Then, with probability at least — e™t, the matrix®D has

restricted isometry constant
X (®PD) < (D)+0(1+(D)). (2.27)

The constant satisfies€9/c.
The above theorem establishes how the isometry constabtsad affected by multipli-
cation with a random matri$. Note that one still needs to check the isometry constants
for the dictionaryD to use this result. However, for a given dictiondbyiit is difficult to
prove thatD satisfies a RIP. One can alleviate this problem by using theegtransition
diagrams [47], [48]. See section VII-A for more details.
The following are some matrices that satisfy (2.25) and bezan be used as random
projections for cancelability.

e mx N random matrice® whose entrieg j are independent realizations of Gaus-

sian random variableg ; ~ N (0, 1).

¢ Independent realizations afl Bernoulli random variables

+1/,/m,  with probability 3
Q=
—1/,/m, with probability 3.

¢ Independent realizations of related distributions such as

++/3/m,  with probability 3

@j=4 0, with probability 3

—+/3/m, with probability .
\
e Multiplication of anymx N random matrix with a deterministic orthogon&l x N

matrix D, i.e. ®D.
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Figure 2.4: Block Diagram of the Random Projections basedatable system.

Note that RPs meet the various constraints required for ¢anitiy, mentioned in Sec-
tion 2.1. By using different RP matrices, we can issue diffetemplates for different
applications. If a transformed pattern is compromised, are reissue a new pattern by
applying a new random projection to the iris vector. The RI&pprties together with
the sparsity ofx ensure that the recognition performance is preserved.elapiplication
database, only the transformed diction&@® is stored. If a hacker illegally obtains the
transformed dictionargpD and the transformed iris patterns of the usehe or she will
have access to the person’s identity. However, it is exthgditficult to obtain the matrix
D from ®D, and withoutD one cannot obtain the original iris pattems Hence, our
cancelable scheme is non-invertible as it is not possibddtain the original iris patterns
from the transformed patterns. Furthermore, since ouroddthbased on pseudo-random
number generation, we only consider the state space condsy to the value taken by
the seed of the random number generator. Hence, insteaarivigsthe entire matrix, one

only needs to store the seed used to generate the RP matrix.
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2.6.2 Cancelability through Random Permutations of dictionary columns

As explained in section 2.2, when the iris image has goodtguahly the training images
corresponding to the correct class will have high coeffienf the training images of
different classes are randomly arranged as columns of thiewiary, both the dictionary
and the order of the training images are required for conemgnition. In this section,
we explain how this idea can enhance the security of ouragsgnition system.

When a new user is enrolled, his training images are dividéea sectors and placed
at random locations in the dictionary. In Fig. 2.5, we show dlictionary for a trivial
example of four users. Note that the different sectors ol égining image of the user
are kept at different random locations in the dictionarythdfiut prior knowledge of these

locations, it is impossible to perform recognition.

Application Database

Hash Table
Hash Code Value

Sector 1

A S11,S27 S16,S22

B S12,523 S18,526

C S$13,528 S15,524

c1 D S14,521 S17,525
Sector 2

Figure 2.5: Sample Dictionary and hash table for a four usamgle. The four users A,
B, C and D are indicated by colors green, blue, black and repectively. A1 and A2
are the two training images corresponding to the first i¢idenote that th¢'" location
and thei' sector.D1 atS14 means that the first sector of the user D is at loca®ich
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An array indicating the column numbers of the training ingegé the correct class is
generated for each user. This array is stored in a hash taidethe corresponding hash
code is given to the user during enroliment. During verifaatthe system acquires the
iris image of the person and extracts the features. For esatbrsof the iris vector, the

sparse coefficients are obtained using this shuffled diatigras explained in section 2.2.
The user also has to present the hash code to the system.tbisingsh code, the indices
of training images are obtained from the hash table and tledficents belonging to

different classes are grouped. Then, SCI is computed andtasedain or reject the

images. If the image is retained, the CSCI values of the difteclasses are computed
and the class having the lowest CSCI value is assigned as @®lalzel of the user, as

explained in section 2.3. A block diagram of the securityesoh is presented in Fig. 2.6

Obtain
» ererate
Dictionary Index Dictionary

User ¢
o
w Featqre Sparse _
. . Extraction Representation

Image Selection
& Recognition

> Hash Code [—>»|

Figure 2.6: Block Diagram of the proposed cancelability seheising random permuta-

tions.

If the hash code presented is incorrect, then the obtairtkces of the training images for
each class will be wrong. So the coefficients will be grouped wrong way, and all the
classes will have similar energy leading to a low SCI value thedsubsequent rejection
of the image. Even if by chance, one of the classes happenealvohigh energy and

the image is retained, the probability of that class beirgcibrrect class is very Iovq%().
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Thus, with high probability, the user will not be verified. he, if a hacker illegally
acquires the iris patterns of a legitimate user, withoutifgathe hash code, he or she
will not be able to access the system. Also, even if the hagk&ins the iris dictionary
stored in the application database, the iris patterns afiskee cannot be accessed without
knowing the correct hash codes, because different sectan ois patterns reside at
different random locations. If the hash code is compromisieel dictionary indices of
the user can then be stored at a new location, and a new hasltande issued to the
user. Also, different applications can have differentiditaries. Thus, the user will have
a different hash code for each application, preventingscnoatching.

It should be noted that the additional security and privatsoduced by these techniques
come at the expense of storing additional seed values. Iicappns requiring higher se-
curity, this can be stored with the user, so that a hackematliget the original templates
even if he gets hold of the cancelable patterns in the templatabase. For applica-
tions with greater emphasis on usability, the seed can bedssecurely in the template

database, so that the user will not have to carry it.

2.7 Results and Discussion

In the following subsections, we present iris image sebectiecognition and cancelabil-
ity results on the ICE2005 dataset [1], ND-IRIS-0405 (ND) datd49] and the MBGC
videos [50]. The ND dataset is a superset of the ICE2005 and0Q&Ris datasets. It
contains about sixty five thousand iris images belongindhted hundred and fifty six

persons, with a wide variety of distortions, facilitatiriggttesting and performance evalu-
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ation of our algorithm. In all of our experiments, we empldygehighly efficient algorithm
suitable for large scale applications, known as the Speetmected Gradient (SPGL1)

algorithm [51], to solve the BP and BPDN problems.

2.7.1 Empirical verification ofy/¢1 equivalence

Our sparse recognition algorithm’s performance depenadain conditions on the dic-
tionary such as incoherence and RIP. However, as statedrediis very difficult to prove
any general claim thda?, GD, ®D, or ®GD satisfies a RIP or an incoherence property. To
address this, one can use the phase transition diagramsA4tase transition diagram
provides a way of checking,/¢1 equivalence, indicating how sparsity and indeterminacy
affect the success @i minimization [47, 48].

Phase Transition Diagram " X
Phase Transition Diagram

0.8
0.8 0.8

06 . ‘ 06

04 4 , 04

0.2 A7 02
0.2 ¢

4
02 04 60.6 0.8 02 04 6OAG 0.8

(a) (b)
Figure 2.7: Phase transition diagrams corresponding tedke when the dictionary is
(a) GD and (b)®GD, whereG is the Gabor transformation matrix addis the random
projection matrix for cancelability. In both figures, we ebge a phase transition from
lower region where théy/ /1 equivalence holds, to the upper region, where one must use

combinatorial search to recover the sparsest solution.

Letd = % be a measure of undersampling factor, ang % be a measure of sparsity.
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A plot of the pairing of the variabled andp describes a two-dimensional phase space
(8,p) € [0,1]2. The values o andp ranged through 40 equispaced points in the interval
[0,1] andN = 800. At each point on the grid, we recorded the mean number of ¢oord
nates at which original and reconstruction differed by ntbem 102, averaged over 20
independent realizations (see [47, 48] for more details).

In Fig. 2.7 (a) and (b), we show the phase transition diagreanesponding to the case
when the dictionary i$5D and ®GD, respectively. Here( is the Gabor transforma-
tion matrix and® is anmx N matrix whose entrieg j are independent realizations of
Gaussian random variables; ~ N (0, 1). For each value 08, the values ofp below

the curve, are the ones where ¢/, equivalence holds. As can be observed, for most
values ofd, there is atleast one value pfoelow the curve, satisfying the equivalence. So

the vectora can be recovered if it is sparse enough and enough measuseanenaken.

2.7.2 Image Selection and Recognition

In this section, we evaluate our selection and recognitigorahms on ND and ICE2005
datasets. To illustrate the robustness of our algorithmctdusion due to eyelids and
eyelashes, we perform only a simple iris segmentation sehéetecting just the pupil
and iris boundaries and not the eyelids and eye lashes. Waeaipeblicly available code

of Maseket al.[52] for detecting these boundaries.
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2.7.2.1 Variation of SCI with common distortions during image acquisi-
tion

To study the variation of SCI in the presence of common distestduring image acqui-
sition like occlusion and blur, we simulate them on the cle@nimages from the ND
dataset.

Description of the Experiment: We selected fifteen clean iris images of the left eye
of eighty persons. Twelve such images per person formed dherg and distortions
were simulated on the remaining images to form the probescafsider seven different
levels of distortion for each case, with level one indicgtito distortion and level seven
indicating maximum distortion. We obtain the dictionaryngsthe gallery images, and
evaluate the SCI of the various sectors of the test images.

Fig. 2.8 shows some of the simulated images from the ND datalee first column
includes images with distortion level one (no distortioffie middle column contains
images with distortion level three (moderate distortioi$)e right most column contain
images with distortion level five (high distortion). The firsw contains images with blur
while the second contains images with occlusion. Imagels gihulated segmentation
error and specular reflections are shown in the third andHaouoivs respectively.

Fig. 2.9 (a) illustrates the variation of SCI with the commanquisition distortions. It can
be observed that good images have high SCI values whereasdhlevith distortion have
lower SCI values. So by suitably thresholding the SCI valueheftest image, we can
remove the bad images before the recognition stage. Thvesttiability in SCI values

with occlusion and specular reflection demonstrates threased robustness attained by
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our algorithm, by separately recognizing the individuaitees and combining the results,

as mentioned in section 2.3.

@) (k) 0]
Figure 2.8: Simulated Distortions on the images from the MEaget. The detected pupil

and iris boundaries are indicated as red circles.

2.7.2.2 Image Selection results on the ND dataset

In this section, we illustrate the performance of our imaglection algorithm on images
from the ND dataset.

Description of the Experiment:We selected the left iris images of eighty subjects that
had sufficiently large number of iris images with differergtdrtions like blur, occlusion
and segmentation errors. Fifteen clean images per persanhaed chosen to form the
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Figure 2.9: (a) Plot of the variation in SCI values with comnalistortions in iris image
acquisition. Note that the SCI falls monotonically with ieasing levels of blur and seg-
mentation errors in the iris images. Itis also robust towsidns and specular reflections.
(b) Plot of the recognition rate versus the number of sectOlzserve the significant im-
provement in the results as the number of sectors is improgedone to eight. (c) Plot of
the recognition rate versus the number of training imagexe khat the recognition rate
increases monotonically with the number of training imagédso, sectoring achieves the

same recognition rate as the case without sectoring usirfigvieer training images.
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gallery. Up to fifteen images with blur, occlusion and segragon errors were also
selected. As mentioned before, we perform a simple segt@mtscheme, retaining
possible occlusion due to eyelids and eyelashes in thee@gsov The Gabor features
of the iris vector form the input. Our algorithm creates th&idnary, finds the sparse
representation for each test vector, evaluates the SCI sEitters, and rejects the images
for which all the sectors have SCI value below a threshold@f O.

Measure the selection performanc&he quality of the input iris feature vector should
be a function of the performance of the recognition algamithn that sample [12]. An
ideal image selection algorithm should retain images, Wwhemn be correctly recognized
by the recognition algorithm, and reject the ones on whigghbsequent recognition
algorithm will perform poorly. To measure it, we define thedifeed False Positive Rate
(MFR) and a Modified Verification Rate (MVR) as follows. ModifiedlBe Positive rate
is the fraction of the test vectors retained by the imagecsele algorithm, which are
wrongly classified by the subsequent recognition algoritivodified Verification Rate
is defined as the fraction of the images correctly classifiethb recognition algorithm,
which are retained by the selection scheme. To obtain thalses, we find the CSCI
for each test sample and also the class assigned to the sabyptaur algorithm. We
obtain the Receiver Operating Characteristics (ROC) of thgésalection algorithm by
plotting MVR versus MFR for different values of thresholdotd that this measures the
performance of the quality estimation stage and is diffefiemm the ROC curve of the

recognition algorithm.

No of Images selected and wrongly classified

MFR= -
No of images selected
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MV R— No of Images selected and correctly classified
B No of images correctly classified

Fig. 2.10(a) shows the ROC of our image selection algorithlack), compared to that
using directly the Hamming distance based on the publichfiable iris recognition sys-
tem of Maseket al. [52] (red), when the probe images are blurred. Since the lizda
occlusion, direct application of Masek’s algorithm penfi@d poorly. For a fair compari-
son, we modified the algorithm, recognizing the differemtses of the iris separately and
fusing the results through voting. Note that our ROC curvagsificantly sharper than
that of the Masek’s recognition system indicating supgpenformance.

The effects of occlusion in iris images due to eyelids, eywhdés and specular reflec-
tions are illustrated in Fig. 2.10(b). Images with occlusweere obtained for each of the
eighty classes under consideration and used as probes. Gec&ve of our algorithm
is shown in black and that of Masek’s system appears in rede Mat for the same
MFR, the proposed image selection scheme has a higher MVR.iAdthsates that the
proposed selection method retains more images that willobectly classified by the
subsequent recognition algorithm and rejects more imageaill be wrongly classified
by the recognition algorithm.

To study the effects of segmentation error, the gallery iesagere verified to be well
segmented. Up to fifteen images with segmentation errore wlewsen for each person
under consideration, which formed the probes. Fig. 2.18ows the ROC curves of
our method (black) and the Masek’s one (red) in case of wyoeggmented images.
Again, using our image selection algorithm improves thégrarance of the system even

with wrongly segmented images, a feature lacking in mangteg quality estimation

36



methods.

Blurred Images Occluded Images ROC Curve With Wrongly Segmented Images

I e ===~ ==

Qoo et Qoo enmnn T Qo9

IS I S

X o8 X 08 X 0.8]

S o7 - S o7 S o7

-% " '|---cscl Based -,% -% :

© 81" | —Hamming Distance Based 0oos 00

£ o5, T 05 T os

9 | o (] '

> 04 > o4 > o04r ok

o ° o N

D 03 D03 QD o03r

S o2 T2 ---CSCl Based S 02t ---CSCl Based

= 2. —Hamming Distance Based =™ : —Hamming Distance Based
o 0 ‘ 0
(] 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Modified False Positive Rate Modified False Positive Rate Modified False Positive Rate

Figure 2.10: Comparison of the ROC curves of the proposedematgction algorithm
(CSCI Based) and one using Hamming distance as the quality ne¢sunming Dis-
tance Based) using clean iris images in the gallery and probges containing (a) Blur-
ring (b) Occlusions and (c) Segmentation Errors. Note thafldssed image selec-
tion performs significantly better than Hamming distancedobselection when the image

quality is poor.

2.7.2.3 Recognition Results on images from the ND dataset

In this section, we illustrate the performance of our redtigmalgorithm on images from

the ND dataset.

Performance on clean images - Description of the Experimé&ighty subjects were

selected from the dataset. Fifteen clean images of therlsfivere hand selected for
each person. Of these fifteen images per person, twelve wedemly selected to form
the gallery and the remaining three images per person wewet as probes. No image

selection is performed because we want to evaluate therpafawe of the recognition
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algorithm separately.

We compare our algorithm to a nearest neighbor based reamgaigorithm (NN) that
uses the Gabor features and the Masek’s implementatione 8ia use tough segmenta-
tion conditions retaining the eyelids and eye lashes inrieevéctor, direct application of
NN and Masek’s method produced poor results. For a fair coisqa we divided the iris
images into different sectors, obtained the results usiage methods separately on each
sectors and combined the results by voting. We obtained@néton rate of 99.15%
when compared to 98.33% for the NN and 97.5% for the Masekthode

Performance on poorly acquired images - Description of tlxpdfiment- To evaluate
the recognition performance of our algorithm on poorly amiimages, we hand picked
images with blur, occlusion and segmentation errors asaéxgd in the previous section.
Fifteen clean images per person were used to form the galRngbes containing each
type of distortion were applied separately to the algoritivife perform image selection

followed by recognition. The recognition rates are repbiteTable. 2.2.

Table 2.1: Recognition Rate On ND Dataset

Image Quality| NN | Masek’s Implementation Proposed Method
Good 98.33 97.5 99.15
Blurred 95.42 96.01 08.18
Occluded | 85.03 89.54 90.44
Seq. Error || 78.57 82.09 87.63

In Fig. 2.11, we display the iris images having the least SGleséor the blur, occlusion
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and segmentation error experiments performed on the isairiages in the ND dataset
as mentioned above. As can be observed, images with low SGéwauffer from high

amounts of distortion.

(@) (b) (€)

Figure 2.11: Iris images with low SCI values in the ND datagétte that the images
in (a), (b) and (c) suffer from high amounts of blur, occlusend segmentation errors

respectively .

2.7.2.4 Recognition Performance on the ICE 2005 Dataset

In this section, we compare the performance of our algorithtn the existing results on
the ICE 2005 dataset corresponding to Experiment 1. Expetithbas 1425 iris images
corresponding to 120 different classes.

Description of the Experiment We have used ten images per class in the gallery and
remaining iris images as the test vectors. We perform setatien using Masek’s code
and apply the Gabor features of the segmented iris imageasrteeoognition algorithm.

No image selection was performed. We compare our perforenauitt existing results

in Table 2.2, where the verification rates are indicated atsefacceptance rate aD01.

The results of the existing methods are obtained from [53].
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Table 2.2: Verification rate at an FAR of@D1 on the ICE 2005 dataset
Method Verification Rate (%)
Pelco 96.8
WVU 97.9
CAS 3 97
CAS 1 97.8
CMU 99.5
SAGEM 99.8
Proposed Methoc 98.13

2.7.2.5 Dependence of recognition rate on the number of sectors

Fig. 2.9 (b) plots the variation of the recognition rates floe proposed method with
changes in the number of sectors. As can be observed, ttaparice of the recognition
system improves significantly as the number of sectors iseased from one to eight.

Beyond eight, the recognition rate does not increase signifig

2.7.2.6 Effect of the number of training images on performance

In this section, we study the effect of the number of trainimgges on recognition rate
of our algorithm. We vary the number of training images frone ger class to eleven
per class on the ND dataset. The test images consistingex s images per person

are used to test each of these cases. The variation of rélcograte is plotted in Fig. 2.9
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(c) for the case of no sectoring and sectoring with eightaseatespectively. As can be
observed, recognition performance increases with the eumbtraining images. This
is hardly surprising as our assumption that the traininggesaspan the space of testing
images becomes more valid as the number of training imagesases. In unconstrained
iris recognition systems which we are interested in, thimisa bottle neck because we can
obtain a significant number of iris images from the incoming video. Also, sectoring
achieves the same recognition rate as the non-sectoriegngdsa much lower number

of training images.

2.7.2.7 CSCI as a measure of confidence in recognition

We have empirically observed that the higher the CSCI valuthfotest image, the higher
the probability that it is correctly classified. This is slwated in Fig. 2.12 (a). This
observation is expected as high CSCI means that the recoestrerector in most of the
sectors will be sparse. If the training images span the spapessible testing images,
the training images of the correct class will have high coefits. So the only possible
sparse vector is the one in which the correct class has higffidents and others have

zero coefficients, which will be correctly classified by olgaithm.

2.7.3 Cancelability Results using Random Projections

We present cancelability results on the clean images frenNID dataset obtained as ex-
plained in Section 2.7.2.3. The iris region obtained afegmsentation was unwrapped

into a rectangular image of size ¥B0. The real parts of the Gabor features were ob-
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Figure 2.12: (a) Plot of the CSCI values of test images for aoanttial on the ND
dataset. Red dots indicate the wrongly classified imageser@bshat the wrongly clas-
sified images have low CSCI values and hence the corresponeatgrs are not sparse.
(b) ROC characteristics for the ND dataset. The Same Magéfopmance is close to the
performance without cancelability . Using different meé#s for each class gives better
performance. (c) Comparison of the distribution of the Geaw@nd Impostor normalized

Hamming distances for the original and transformed padgtern
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tained and concatenated to form an iris vector of length 8@®used the random Gaus-
sian matrix in our experiments, though other random matmgentioned in Section 2.6.1
also gave similar results. In [44], it was shown that segaagiplication of the random
projections performed better when compared to the apmitatf a single random pro-
jection on the entire iris vector. So we vectorized the reat pf the Gabor features of
each sector of the iris image, applied the random projestiand then concatenated the
random projected vectors to obtain our cancelable iris bioin We applied either the
same random Gaussian matrix for all the users or differemdam matrices for differ-
ent users to obtain the RP “Same Matrix” and “Different Mdtrnectors, respectively.
Having obtained the random vectors from the Gabor featuréisearis image, we per-
formed the sparsity-based recognition algorithm desdrib&ection 2.2. We present the
Receiver Operating Characteristic (ROC) curves and the Hagndistance distributions

in the subsections below.

2.7.3.1 Recognition Performance

Fig. 2.12(b) plots the ROC characteristics for the iris iemgn the ND dataset for the
original and transformed iris patterns. As demonstratethgudifferent matrices for each
class performs better than using the same matrix for alselmdn the “Different Matrix”
case, we assumed that the user provided the correct masignasl to him. So the per-
formance exceeds even the original performance as clasgispandom projections in-
creases the interclass distance, still retaining thermalgntra-class distance. In Fig. 2.12

(c), we compare the distribution of the genuine and impostomalized Hamming dis-

43



tance for the original and transformed iris patterns. Weateserve that the distribution of
the genuine Hamming distance remains almost the same aftgfrzg the random pro-
jections. The original and Same Matrix cases have similgostor Hamming distance
distributions. However the Different Matrix case has anastpr distribution that is more

peaked and farther from the genuine distribution, indigauperior performance.

2.7.3.2 Normalized Hamming distance comparison between the original

and the transformed patterns

In this section, we quantify the similarity between the ovéy and the random projected
iris vectors. From the original and transformed iris vestaris codes are computed by
allocating two bits for each Gabor value. The first bit is gsed one if the real part of
the Gabor feature is positive and zero otherwise. The sebiinsl assigned a value of
one or zero in a similar manner based on the imaginary patieof3abor feature. The
normalized Hamming distance between the iris codes is ustteaneasure of similarity.
In Fig. 2.13(a), we plot the normalized Hamming distancevieen the iris codes of the
original and the transformed iris vectors for the “Same Matand “Different Matrix”
cases, respectively. Ideally we want the two iris codes tandependent, hence the
normalized Hamming distance should b&.0 The figure shows that the histogram of
the Hamming distance peaks ab0empirically verifying that the random projected iris
vectors are significantly different from the originals onddence it is not possible to
extract the original iris codes from the transformed vaersithereby proving the non-

invertibility property of our transformation.
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Figure 2.13: (a) Plot of the histograms of the Normalized Hang Distance between
the original and transformed vectors. Note that the histogpeaks around®indicating
that the original and transformed iris codes are signifigadifferent. (b) Plot of the
recognition rate with dimension reductions for the ND datahlote that the performance
remains the same up to 30% of the original dimension. (c) RO ffor video based
iris recognition. Method 1 treats each frame in the video dsfarent probe. Method 2
averages all the frames in the probe video. Methods 3 andtheseerage and minimum
of all the pair wise Haming distance between the frames optbbe and gallery videos
respectively. The Proposed Method uses CSCI as the matchimg. stNote that the
introduced quality based matching score outperforms tisieg fusion schemes, which

do not incorporate the quality of the individual frames ia thdeo.
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Table 2.5 provides the statistics of the normalized Hamrdiaance between the original
and the transformed iris vectors. As can be seen, the medre afdrmalized Hamming

distance is very close ta®with a very low standard deviation.

Table 2.3: Statistics Of The Normalized Hamming Distance.

Methods Mean | Standard Deviation
Without RP 0 0

Same Matrix 0.5002| 0.0123

Different Matrix 0.4999| 0.013

Dictionary Permutations 0.4913| 0.0254
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(a) (b)
Figure 2.14: (a) Gabor features of the original iris imad@.Gabor features of the recov-
ered iris image from the cancelable patterns in the dictypaad a randomly generated

projection matrix.

2.7.3.3 Non-Invertibility Analysis of Cancelable Templates using Ran-

dom Projections

In this section, we consider the recovery of original irist@ans from the cancelable
templates, using varying levels of information about thetidhary and the projection
matrix ®. We consider two methods, one based on minimizing the sduarer and the
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other based on compressive sensing techniques. As beferepmsider eighty classes
from the ND-IRIS-0405 dataset with fifteen images per claggelVe images per person
for the training set and the remaining for the test vectore apply the same random
projections® for each class with a dimension reduction of 40% to form thecekable
patterns. Hence, we have the= ®Dy, wherea is the cancelable template agds the
original iris pattern. We consider two methods for recamnging the original patterns
from cancelable patterns. They are explained below.

1. Least Square solution - From equation (2.22) in the pasehadditive noise, the

original template can be recovered by minimizing the follogvsquared error.
y = argminja— dy|3

2. Compressive Sensing based solution - Sfhég a random Gaussian matrix having
good RIP, one possible way of reconstructing the iris pastésrby solving the

following L1 minimization problem.
9:argr9in||y]|1 s. t. [[a—dy|, < €. (2.28)

We computed the error in reconstruction of the originalgratt and the recognition rate
on the reconstructed patterns for different levels of imfation known about the cance-
lable template dictionary and the random projection matrixThe results are shown in
Table 2.5. As can be observed, the recognition performanckse to chance when ei-
ther the random matrix or the dictionary entries are not kmotven when the random
matrix and the dictionary entries are fully known, the reatign performance on the re-

constructed template is significantly lower than that ondhginal iris templates. This
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result empirically verifies that it is difficult to extractgsiificant information about the

original iris templates from the cancelable ones.

Table 2.4: Reconstruction Error and Recognition Rate knowiagekact cancelable tem-

plate and fraction of entries in the projection matrix

Fraction Of Correct Values
Method | Metric %

Recon. Errorn 50 49 49 49 49 49
LS

Recog. Rate| 2.9 | 2.08| 2.08| .42 | .83 .83

Recon. Errorn 49 46 42 38 32 22

CS
Recog. Rate| 1.67| 2.08| 3.33| 7.92| 24.58| 59.17

In Fig. 2.14, we display the Gabor features of one of the images in the dictionary and
the corresponding recovered pattern. As can be obsernedetlovered pattern appears

as random noise and does not contain any of the informatitreioriginal iris pattern.

2.7.3.4 Effect of dimension reduction

In Fig. 2.13(b), we demonstrate the robustness of randofegirons to reduction in the
original dimension of the feature vector. The random praewectors retain their orig-
inal performance for up to 30% reduction in the original dinsien for both the same
and different matrix cases. Dimension reduction furtheergithens the non-invertibility
of our transformation as there will be infinite possible wrextors corresponding the re-
duced dimension random vectors obtained by RP.
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Table 2.5: Reconstruction Error and Recognition Rate knowiegekact projection ma-

trix and fraction of entries in the cancelable template

Fraction Of Correct Values
Method | Metric (%)

Recon. Error| 49 49 49 49 49 49

LS
Recog. Rate| 1.25| 2.08| 1.25| .83 | 1.25| 2.5

Recon. Error| 49 48 46 43 38 22
CS

Recog. Rate| 1.25| 1.67| 1.25| 1.67| 9.17 | 57.50

2.7.3.5 Comparison with Salting

In Table. 2.6, we present the recognition rates and the ooreling mean Hamming dis-
tance for the salting method proposed in [37] for variousedvels. The best recognition
rate and the best Hamming distance for the Salting metho8G686 and 0.494 respec-
tively. For RP Same Matrix case, we obtained a recognitiom 0807% at a Hamming
distance 0f497. Thus both the recognition performance and securitg-{neertibility)

are higher for RP when compared to the Salting method.

2.7.4 Cancelability Results using Random Permutations

To evaluate the performance of the proposed cancelableocheing dictionary permu-
tations, we consider the three possible scenarios on tha aieages from the ND dataset.

In the first case, the user provides the iris image and theconash code. In this case, the
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Table 2.6: Comparison with Salting method. The Recognitiorf®R) and mean Ham-
ming Distance (HD) are provided for the Salting and SRP methdte recognition rate
obtained using SRP is higher than that of the Salting metholdo SRP gives mean

Hamming distance closer to .5 when compared to the Saltinode

Quantity Salting Same| Different | Permutations
RR(%) | 94.2| 96.6| 94.0| 97 100 100
HD 0 491 .494 | .497 | .50 483

recognition performance was the same as that of the origietthod on the ND dataset,
which is 99.17%. In the second case, the user provides theriege but a wrong hash
code. Here the recognition performance dropped to 2%, whichly slightly better than
chance. This is equivalent to the case when a hacker iliegbtiains the iris image of a
valid user and tries to gain access into the system with asgatesut the hash code. The
low recognition performance clearly reflects the additi@egurity introduced by the per-
mutations, as a hacker needs to now have not only the irisdrbagalso the hash code
of a valid user to gain access. In the third experiment, waddie closeness between
the Gabor features of the original iris images and the newfeaectors obtained by per-
mutations of the Gabor features in the dictionary. As beftire normalized Hamming
distance between the iris codes obtained from these vastosed as the measure of sim-
ilarity. We plot the histogram of the normalized Hammingtdisee between the original
and the randomly permuted iris vectors in Fig. 2.13(a). Tleamand standard deviation
of the Hamming distance histogram are indicated in the tagtaf the Table. 2.5. Note

that the mean is close 8, indicating that the permutations differ significantlyfelient
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from the original iris images. Even if a hacker can use thaathary from the application
database, he or she will be unable to extract informatioutatiee original iris images

without knowing the hash code of each user.

2.7.5 Results on Iris Videos

In this section, we present the results on the MBGC videos [B8jen the thirty classes,
we used twenty eight classes that contained atleast five igtagks in our experiments.
We hand picked five clean images from the iris videos in thiaitrg set which formed
the dictionary. In the test videos, batches of five framesevwgven as a probe to our
algorithm. Using twenty eight available videos and sixignfies from each test video,
we could form three hundred and thirty six probes. We did enbasic segmentation of
the iris and pupil using the Masek’s code, as before. Alsodigenot remove the poorly
segmented iris images manually before performing the mr@tiog algorithm.

We compare the performance of our algorithm with four othethads. The ROC plots
for the different methods are displayed in Fig. 2.13(c). lethbd 1, we consider each
frame of the video as a different probe. It gave the worstgreréince, indicating that
using multiple frames available in a video can improve thégueance. Method 2 aver-
ages the intensity of the different iris images. Though rfqens well when the images
are clean, a single image which is poorly segmented or ldwoeld affect the entire av-
erage. In Methods 3 and 4, all possible pair wise Hammingudests between the video
frames of the probe videos and the gallery videos belongirthe same class are com-

puted. Method 3 uses the average of these Hamming distarthe asore. In Method 4,
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the minimum of the pairwise Hamming distance was used ascibre sIn the proposed
method, the CSCI values were computed for each class for eatie pideo and the
probe video is assigned to the class having the highest CS@# v&abr a fair comparison
of the proposed quality measure in videos, we did not rejegtod the frames. Observe
that our method performs better than other methods. Oneesafeidisons for the superior
performance could be the fact that we are incorporating tiadity] of the different frames
while computing the CSCI. Frames which are poorly segmentdadusred will have a
low SCI value and hence will not affect the score significanityall the other methods,
the image quality was not effectively incorporated into th&ching score, so all frames

are treated equally irrespective of their quality.

52



Chapter 3

Sensor Adaptation in Iris Recognition

As explained in Chapter 2, iris recognition is one of the magiytar approaches for non-
contact biometric authentication [12]. Over the past de¢cagnsors for acquiring iris
patterns have undergone significant transformationstiegi®nes have been upgraded
and new ones have been developed [54]. These transforrmgimse new challenges
to iris recognition algorithms. Due to the large number aérgs possibly in millions,
enrollment is expensive and time-consuming. This makedetsible to re-enroll users
every time a new sensor is deployed. In practice, one oftenleriers situations where
iris images for enrollment and testing are acquired by chffé sensors.

Recent studies in iris biometrics illustrate that crossseematching, where different sen-
sors are employed for enrollment and testing, often leaddaceed performance [55]. We
illustrate this using the LG2200 and LG4000 sensors in [ei@ut. As can be observed,
the receiver operating characteristics (ROC) curve of esessor matching is inferior
to that of same-sensor matching. We refer to this performainop due to the differ-
ence in the sensors used for enrollment and testing as thedsenismatch” problem in
iris recognition, and techniques to alleviate it as “serastaptation” methods. While the
sensor mismatch problem has been empirically illustratefbb] and [56], research in
algorithms for sensor adaptation specific to iris biomethas been limited in the litera-

ture.
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Figure 3.1: ROC curves for the same-sensor and the crossisease, collected under
similar acquisition conditions. Observe that the blackewrorresponding to cross-sensor
matching is significantly lower than the same-sensor matchurves in red and green,

indicating the performance drop caused by sensor mismatch.

In this chapter, we first present a novel optimization framewfor learning transfor-
mations of iris biometrics having the desired propertiebese transformations can be
concisely represented using kernel functions. The prapérsenework is then utilized
for sensor adaptation, by constraining the samples frofardifit sensors to behave in a
similar manner in the transformed domain. Specifically, wiorce the following con-
straints on the transformation. In the transformed sp&eedistances between iris sam-
ples belonging to the same class should be small, irrespeafithe sensor used for their
acquisition. Furthermore, those between samples of difteclasses should be large.
These constraints ensure that the sensor mismatch problafteviated, when cross-
sensor matching is performed in the transformed domain.

While the original optimization problem is convex and hasabgl optimum, it needs to
be performed every time a test sample is acquired. Hense;aimputationally expensive.

By rewriting the optimization problem, an efficient soluti@nobtained using Bregman
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projections. This solution involves estimating the adapteparameters during the train-
ing stage. During testing, the test iris samples are tramsfd using these parameters.
Cross-sensor matching is then performed using the transtbins samples. Since the
learned transformation alleviates the sensor mismatdblgmg cross-sensor matching in
the transformed domain leads to significant improvemendsauracy.

Contributions: The main contributions of this work are:

1. The proposed method is one of the first comprehensiveieolar the sensor mis-
match problem in iris biometrics.

2. The introduced solution leads to considerable improvenmecross-sensor match-
ing. It is robust to alignment errors, and can also handlevaaed feature repre-
sentations.

3. The proposed technique is fast, requiring limited charigehe existing iris recog-
nition pipeline. Hence, it can easily be incorporated intstng iris recognition
systems.

Organization of the chapter: The relevant literature in iris recognition and machine
learning is described in Section 3.1. In Section 3.2, a sintyl measure is developed
for iris codes and its properties are analyzed. A generamigdation framework for
learning kernel functions for iris codes is introduced ict8® 3.3. The sensor mismatch
problem is formulated as a kernel learning problem in Secid. By reformulating this
optimization problem using the similarity measure introgd in Section 3.2, an efficient
solution is developed in Section 3.5. The proposed methedakiated on iris data from

multiple sensors in Section 3.6.
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3.1 Related Work

3.1.1 Iris Recognition

The main components in an iris recognition system are imagaisition, iris segmenta-
tion, feature extraction, and template matching [12]. Sdeefer to the ‘Related Work’

section in Chapter 2 for a detailed description of the exggliterature on iris recognition.

3.1.2 Iris Acquisition Systems

Iris image acquisition systems differ mainly in the type dochtion of the illumination
they use, the type of sensor, and the presence of additiptiahbelements [54]. Due to
the different design possibilities and significant comrariniterests in iris recognition,
numerous iris acquisition systems are available, with ttential for many more. Some
of the popular systems are LG2200, LG4000, Iris on the Movéapsystem by Sarnoff,
Combined Face And Iris Recognition System (CFAIRs) by HoneywIOX™ system

by Global Rainmakers Inc., and Eagle-Ey8ssystem by Retica. Interested readers are

referred to [54] for a detailed review of these systems.

3.1.3 Sensor Interoperability

Owing to the large number of iris recognition systems cutyeavailable and the con-
tinuous improvement of existing systems, the inter-opétalof iris systems become
extremely important. In the past, several works have addrkethe problem of biomet-

ric interoperability for fingerprint sensors [57] [58], orultibiometric systems [59]. In
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iris biometrics, this problem was first investigated by Bowge al [55] using two iris
sensors. Their work demonstrated that the older of the twems provided less desir-
able match score distributions. Furthermore, the crossesgperformance was inferior
to that of either sensors tested individually. Cross-semsorecognition was further ex-
plored by Connaughtoet. al[56], who experimented with three commercially available
iris sensors. These methods clearly demonstrate the needgmving the cross-sensor

recognition performance.

3.1.4 Kernel Methods in Machine Learning

Since we follow a kernel-based approach for sensor adaptadi brief introduction to
kernel methods in machine learning is provided in this sectinterested readers are re-
ferred to [60] for an extensive description of the topic. @pture non-linear relationships,
kernel methods project the data into a higher dimensioradesnd fit linear models in
the projected space. Data appear in computation only irotime 6f inner products, which
can be performed without explicit projection into the higimensional space, using kernel
functions. Boseet. al[61] introduced kernels into mainstream machine learniiegé-
ture by combining kernel functions and maximum margin hpf@eres, leading to nonlin-
ear support vector machines (SVM). Kernels have also besshfos metric learning [62],
domain adaptation [63], and dictionary learning [64]. Sakzed kernel functions have
been developed for different applications, such as texgaization [65] and scene anal-
ysis [66]. Furthermore, kernel functions have also beereld@ed in an optimization

framework, where desired properties are enforced by theerhoonstraints [67]. This
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framework is explained in detail in Section 3.3.

3.2 Similarity Measure

In this section, a similarity measure is introduced for g@énples and its properties are
analyzed. This measure will play an important role in depiElg an efficient sensor
adaptation algorithm in Section 3.5.

Notations: We first introduce the notations used in the paper. #8t= {0,1}° be the
space of all binary vectors of lengih Let the iris samples available during training be de-
noted by.Z = {61, 65,...,6n}. Here, the™ iris sampleg, € 20,67 = [x| m'], where

x € AP is thei" iris code andm € #P, the corresponding mask. Lgte {1,2,...N¢}
denote the class label of tfif€ iris sample and; € {1,2,...,Ns} denote the sensor from
which it was acquired. Heré& denotes the number of training sampliBghe dimension
of the iris codesN; the number of subjects enrolled, aNgthe number of sensors used
for acquisition. We denote thg¢ bit in thei" iris code byx;(j). xi(j) is called a “valid”
bit if the corresponding masking hiti(j) = 1. Furthermore, let\, & and— denote the
logical AND, XOR and NOT operations, respectively.

The normalized Hamming distancé’(6;, 8;) between two iris sample and 6; is de-

fined as the fraction of the valid bits that disagree [68]. So

(.6) — ZealmOAm(1 A 05 ©%(1)) o)

Saf{m() Amy()}
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3.2.1 Definitions

Given two iris sample§ and6;, we define the joint agreemeni(6;, 6;) as the number
of valid bits that agree betweeh and 6;. Similarly, the joint disagreememip (6;, ;)
is defined as the number of valid bits that disagree betveand 6;. The joint length

n (6, 6;) is the number of bits which are valid in bothand6;. Hence,

D
Na(6, 6;) =I;{M(UAmj(')/\ﬂ(xi(l)@xj(m}-

D
Mo (6, 0j) = lzl{m(U/\mJ'(U/\(Xi(|)@xj(|))}-

D
'7(9|791)=IZ(M(|)AmJ(|))- (3.2)
=1

The joint agreement, the joint disagreement and the jongtleare related by

na(6:.6;) +no(8,6;) =n(6,6;). (3.3)

3.2.2 Deriving a Similarity Measure

The normalized Hamming distanc&’ (6, 8;) between two iris sample® and 6 can be

expressed in terms of the joint agreement and joint disaggaeas

1,1 ,1NA(8,6)) —no(6:,6))}

H(0,0) =4+~ 4n (8, 6;)

(3.4)

Observe that the third term in the last equation given abé¥ 9’2"()972)3(9"6")} is the
difference between the fraction of valid bits that agree tedfraction of valid bits that

disagree. This provides a meaningful similarity measutevéen two iris code$; and
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8j. Therefore, we define the similarity measure between ingpdas6, and6; as

. Na(6,6;) —np(6,8;)
7(6:,6)) = 4,‘,(&9]) . (3.5)

The scalar 4 in the denominator is just a scale factor to siynplr equations, as will
become clear later.

Property: J7(8,6;) and.# (8, 6;) are related by

A (6,6)) =7 (8,6)+7(6;,0;) - 27(6,6)). (3.6)

3.3 Framework for Kernel Learning

In this section, we develop a framework for learning transiations of iris biometrics

having desired properties. These transformations cangregented using kernel func-
tions, and hence such techniques are called kernel leanmétigods [67]. The space of
allowable transformations for iris biometrics and the d¢oaists they should satisfy are

described below.

3.3.1 Space of Transformations for Iris Biometrics

As discussed in Section 3.1.1, popular iris recognitiohmépues perform verification by
matching the binary iris codes. Hence, we first need to fix gte@tallowable transfor-
mations for iris codes. Boolean transformations, such astions, map one binary
vector to another. However, learning boolean transfomnatisatisfying desired con-
straints is difficult. So the class of transformatiaps 2°° — R, mapping iris codes

to real-valued vectors (of some dimensid is chosen here. The corresponding kernel
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function [69] is given by

A (8.6) = 0(6)" o(6)). (3.7)
Let 2z € RN*N denote the kernel matrix, whogg j)™ entry is the kernel function be-
tween6; and;. In other words % = ¢ (6;, 6;). Since the transformed feature vectors
are real-valued, the squared Euclidean distafa¢e-) is used as the distance metric in

the transformed space. It is related to the kernel function b

Ze(0(6),9(6))) = | 0(8) — 9(6))|?
= 0(6)"9(6) +9(6)" 9(6;)
—2¢(6)" 9(6;)

= Jii + Hjj — 2. (3.8)

For notational simplicity, let us denotg(¢(6), ¢(6;)) by djj.

3.3.2 Constraints to be Satisfied

In this section, the constraints that the transformed sesnplust satisfy are described.
Distance preserving constraints:For the learned transformation to perform well on the
test samples, the squared Euclidean distance in the tramsfiospace should capture the
distance relationships between the original iris sample=arning transformations pre-
serving the local distances in the original and transforsptes is a well explored area
in machine learning, called manifold learning [70, 71]. $&enethods are restricted to
constraining the local distances, since distances betwee+ocal points are often dif-
ficult to compute. However, since the normalized Hammingadise is a good distance
measure for iris codes, we impose that the distances betaledme training samples

61



should be preserved by the learned transformation. Thideaachieved by constrain-
ing the squared Euclidean distance between the transfovetdrs to be close to the

normalized Hamming distance between the original vectors.
ij = (8, 6;). (3.9)

Application-specific constraints: Often, application -specific constraints need to be in-
troduced into the optimization framework to obtain the desiresults. For example,
Weinbergeret. al.[67] learned transformations maximizing the variance leetvsam-
ples. Maximum Mean Discrepancy (MMD) constraints were Usetransfer learning by
Panet. al.[72]. Let the application specific constraints to be satisifig the learned trans-
formation be denoted by’ (¢) < 0, where the functior¥'(-) depends on the constraints

being imposed.

3.3.3 Kernel Learning

Having specified the space of allowable transformationstaactonstraints they should

satisfy, the kernel learning problem can be expressed as

¢*(-)= argmin ; Ca(&ij, (6, 6;)) (3.10)
(PL@ZD%RM&,’ jef

subject to the constrain’(¢) < 0, wheredi; = {e(@(8),9(6;)), {q(-,-) is a suitable
distance measure between the squared Euclidean distatioe ransformed space and
the normalized Hamming distance in the original space efdddes, and*(-) is the

optimal mapping.
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3.4 Sensor Adaptation

Having developed a general framework for learning kernetfions for iris biometrics,
we now describe how it can be utilized for sensor adapta#osensor adaptation algo-
rithm should reduce the sensor mismatch problem and impreveerification perfor-
mance when the sensor used for enrollment differ from thedl disr testing. Since the
algorithm has to be incorporated into existing recognigsgatems, it should be fast and
introduce minimal changes to the existing recognition fiee

Let the enrollment samples be acquired using sensor S1 stigtsamples using sensor
S2, where S1 differs from S2 in the sensor technology or tbation or type of illumi-
nation. We assume that iris samples acquired by both seasp@vailable for a small
number of subjects. By considering the samples acquired las32e target domain and
those enrolled by S1 as the source domain, this becomesatigastt domain adaptation
problem in machine learning [73]. However, existing altoris for domain adaptation
are typically based on real-valued features. One possihlgi@n is to convert the orig-
inal iris codes from binary to real values, use an existingaio adaptation algorithm
and quantize the adapted features to obtain the final irieséal matching. However,
this could lead to reduced performance due to quantizatiod,also lead to significant
changes in the existing iris recognition systems.

Instead, we transform the binary iris codes to real-valeatlires using the kernel-learning
framework introduced in Section 3.3. Matching is then pemnied using the transformed
iris samples. In addition to the distance preserving cairgs, the application specific

constraints are incorporated for sensor adaptation, daiaggd below.
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Inter-sensor constraints: To test samples accurately from S2 using samples enrolled
by S1, the samples of S2 should be close to same-class samf@l&sFurthermore, they
should be far from samples in S1 belonging to different das3herefore, we require that
the transformation should bring samples of the same clagsrad by different sensors
closer, and move those from different classes farther itrémessformed space [63]. These

constraints are given by

Gij < dy, ifyi=vyj, s #s;. (3.11)

Gij = d, ifyi #Yj. s #sj.

Intra-sensor constraints: Often sensors available for iris acquisition differ great
accuracy. Usually iris samples will be enrolled using areolskensor. This will have an
accuracy much lower than that of the newer sensor acquinmtest samples for verifica-
tion [55]. Hence, the cross-sensor performance can beslihiiy that of the older sensor.
To handle the varying accuracies of the two sensors, additintra-sensor constraints
are introduced. For each individual sensor, they imposkthieadistance between same-
class samples should be small, and the distance betweenediffclass samples should
be large. These constraints have been used in Metric Legf®#), and will improve the

performance of the older sensor. These constraints ara give
Gij < du, ifyi=yj,s=sj (3.12)
Gj > d, ifyi #yj, s=sj.

Transform Learning: We can now express the transform learning problem as

@*(-) = argmin ; 2a (G, #(8,6)) (3.13)
€2

@:#DRM g
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subject to the constraints

Gij < dy, ifyi=y;

Gij > di, if yi #j.

wheredij = {e(@(6),9(6;)), {q is a suitable distance measure between the Euclidean
distance in the transformed space and the normalized Hagndnstance in the original
space of iris codes, angf'(-) is the optimal transformation for sensor adaptation.

At this point, we could have specified a parametric modegfand learned its parameters
by solving the optimization problem. However, it is not ¢leehat would be a good
model for ¢, and bad choices could affect the classification performaro, instead

of a parametric approach, the optimization problem is esged in terms of the kernel
functions and the optimal kernel function is computed.

By substituting (3.8), the optimization problem can be ré&en in terms of the kernel

matrix as
" =arg min La( i+ A5 — 24, (8, 6)) (3.14)
HedS G.,ﬂzef

subject to the constraintgf, 6; € .

i + Hjj — 2 > dy, if yi =i

Hhi + A — 27 < dy, it yi # Yj.
where #A(6;,0;) = ¢*(6)T ¢*(6;) is the adapted kernel matrix corresponding to the
optimal transformation, and’ is the space of all positive semi definite matrices.
Direct solution: Whend{q(.,.) is the Euclidean distance, the optimization problem above

becomes convex, because it involves the minimization ofatic cost function subject
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to linear constraints, and the global minimum can be obthii® perform verification,
the kernel function between the test samples and the tcpgamples can be obtained
by solving the problem above. Distances in the transfornpage can be computed us-
ing (3.8) and used for matching, as explained in Sectior83.5.

However, in practical applications, test iris samples apiaed at various times. Solving
the optimization problem for each test sample is computatlg inefficient. In the next
section, we develop an efficient solution to this optimizatproblem based on Bregman

projections [74], utilizing the similarity measure deveal in Section 3.2.

3.5 Efficient solution

Substituting (3.6) in the optimization problem (3.14), thest function to be minimized

becomes
; La( S5 + A5 — 2.4, (8,6)))
6.0jcZ

= ; {i( i+ A — 226, Fi + Fj — 2Fi)).
6.6jc’

Observe that the cost function given above can be minimigaedihimizing the distance
between the Kernel matri#” and the similarity matrix#. A suitable distance measure
between the two matrices is the logDet divergence. The logivergence between two
positive semi-definite matricé§ , Ko € R""is defined ag) (K1,Kz) = x (K1) — x(K2) —
tr(vx(K2)T (K1 — K2)) [74], wherex (K1) = — 3 ~0l0gA;, Aj is theit" eigen value of
Ky, tr(+) is the matrix trace operator ang(-) is the gradient operator. When the masks
are identical, the similarity measure is a kernel functiangd hence the corresponding
similarity matrix.# will be positive semi-definite. In other cases, we empiticaérify
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in Section 3.6.10 that the similarity matrix is positive semidefinite.

The modified optimization problem is given by
A _ H ar 1
A arglgne{ga (A, F) (3.15)
subject to the constraintgf, 8; € .

i + Hjj — 27 > dy, ifyi =y

i+ K55 — 25 < d, it yi £ j.

where.¥ is the space of all positive semi-definite matricgs,is the similarity matrix
obtained from the training samplest” is the adapted kernel matrix ardg-, ) is the
logDet divergence.

The optimization problem formulated above is convex as fieeémd has a global min-
imum. Furthermore, the cost is a Bregman divergence [74]. punozation problem
consisting of the minimization of a Bregman divergence sttlifelinear inequality con-
straints can be solved efficiently using Bregman project{@d$ Bregman projections
choose one constraint per iteration and perform a Bregmgaghian so that the current
solution satisfies the chosen constraint. This procesg&ated in a cyclic manner un-
til convergence. Under mild conditions, it has been shovat the Bregman projection
technique converges to the globally optimal solution [#jrthermore, as will become
evident later, the optimization problem (3.15) need notdieexl every time a new test
sample is acquired, as is the case for (3.14).

Observe that every constraint is obtained by selecting tarnihg samples and constrain-

ing the kernel function between them. L%t= {(i, j)} be the set of all constraints used
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for sensor adaptation, whefe j) corresponds to a constraint imposed between training
samplest and 6;. Let the constraint chosen after tH@ iteration be formed using the
ti" and thet!" data samples. Furthermore, &te RN be a vector with value 1 at th§

location and 0 otherwise. At thg+ 1)1 iteration, the Bregman update is given by [74]
A= A+ B e e A (3.16)

where7 0 = .7, etTJ. is the transpose of the vectey, and the scalgf; ;1 is computed at

each iteration, as explained in [74].

3.5.1 Learning Adaptation Parameters

Since only a finite number of constraints exist, and Bregmajeptions cyclically select
each constraint for updating the kernel, the same constsathosen multiple times dur-
ing optimization. Due to the linearity of the kernel updatgiation (3.16), the contribu-
tion of each constraint to the final solution can be expreasdte sum of its contribution
to each iteration of the algorithm. Letbe the total number of iterations for convergence

during adaptation. Then
T
AR =T =0+ Zm%thi e
t=

=%+ Y oy lee °. (3.17)
MEG

whereagjj, called the adaptation parameters, represent the cotdribmade by thei, j)th
constraint to the adapted kernel. These parameters catimates! using just the training
samples during the learning stage, irrespective of test@amgples.

Let> € RN*N be the adaptation matrix, who&ej)™" entry gives the adaptation parameter

68



gij. (3.17) can be written using the matrix notation as
VAR AR oW A

Hence,> can be computed as

= (Z) Y (AP —7) (7)1 (3.18)

3.5.2 Sensor Adaptation during Testing

Given a testing sampl@, its adapted kernel function is first evaluated with all tizéning
samples#7”(&,0),0 € £, using the adaptation paramet&sand similarity measure

F(&,0) using (3.17) as
AN 6,0) =7 (6,0)+ 0j.F (6,6)7(6;,6). (3.19)
1]

Observe that the adapted kernel computation does not engaiving the optimization

problem (3.15) for each test sample, which makes it extrgmi@icient.

3.5.3 Iris Matching

Given a test iris sampl@,, its adapted kernel function valugg” (&, 0),0 € . with all
the training samples are first obtained as explained abdwesduared Euclidean distance

in the transformed space is then computed using (3.8) as

Ze(0™(&),0M(0)) = "6, 6) +.2(6,6)

—24N6,0),¥0 € £. (3.20)

69



Enrollment

m_, - Iris Code Sensor 1 | __ . ___.___.
' ‘ - Extraction Database

ot
Input Eye Sensor 1

[ Learning Adaptation Parameters ]

Iris Code
Extraction

b

Learning
Adaptation
Parameters

Adaptation
Parameters

Similarity
Measure
Computation

&

TestEye  Sensor 2

Figure 3.2: A diagram illustrating the sensor adaptatiothme for iris biometrics.

Verification or identification is performed as required by tipplication using this dis-
tance. For instance, if the squared Euclidean distancedestthe test sample and the
sample corresponding to the claimed identity is less tharedgfined threshold in the
transformed space, the test sample is verified as genuinsukimarize the major steps

in the proposed solution in Figure 3.2 and in Algorithms 1 &hd

3.5.4 Extensions for Practical Systems

In this section, we describe how the proposed algorithm eartle alignment errors in
iris templates, and work on non-binary features. Obseromf(3.18) and (3.19) that
the proposed algorithm requires only a similarity functign which satisfies (3.6). To

apply the proposed sensor adaptation algorithm, we neeeMiap similarity functions

satisfying relevant constraints for these scenarios.

Handling registration errors in iris templates: In-plane rotation in test iris samples

is normally handled during matching by rotating one of the iemplates by different
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possible values, computing the normalized Hamming digtdmicdifferent rotations, and
computing the effective matching distance between the amaptates as the minimum
of these distances. In other words, given the set of possitégions% between two
iris templatesf; and 6, the effective matching distance is computed/&5 6., 6>) =
mincc4 7€ (61,1 (62)), where the functiom(-) represents a rotation of the iris template by
afixed angle. The corresponding similarity function canlgée derived as?, (6, 62) =
max 4 -7 (01,r(62)). Hence, given two iris samples, we rotate one of the iris sauop
possible rotations, compute the similarity measure foheatation, and take its maxi-
mum as the effective similarity measure. Sensor adaptaitren performed using this
similarity measure.

Real-valued feature representation:For real-valued features, a popular distance mea-
sure for iris recognition is the Euclidean distance. For featuresé;, 6; < RP, the
squared Euclidean distance is givendy8, 6;) = |6 — 6;(|> = 67 & + 6 6; — 267 6.
Hence, a similarity function satisfying (3.6) is the innepguct function.7 (8, 6;) =
676;.

3.6 Experiments

In this section, we evaluate the proposed algorithm for@esdaptation on data from two
sensors, namely LG2200 and LG4000. These sensors are ¢hasgexperiments, since
they form a real case where an older iris sensor (LG2200) wgsaded to a newer one
(LG4000). The data and the implementation details are fustaéned. The performance

of the proposed sensor adaptation algorithm is then eeduat cross-sensor matching.
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Algorithm 1: Algorithm for learning adaptation parameters.
Input: Training iris samples? = {6,...,6n},{y1,--- YN}, {S1,---, SN}

Output: Adaptation parametefssj, (i, j) € ¢’}

1. Similarity Measure Computation: Compute the similarity measures

7(6,6)), ¥ 8,0; € £ using (3.5) and form the initial matrix ® = .7.

2. Kernel Learning: Until convergence, update the kernel matrix using (3.16) to form the
final kernel matrixz 2.

3. Learning Adaptation Parameters: Using the initial similarity matrix% and the final

matrix %A, compute the adaptation parametgog, (i, j) € ¢’} using (3.18).

Algorithm 2: Algorithm for sensor adaptation during testing.
Input: Training iris samples? = {6,..., 6y}, adaptation paramete{sj, (i, j) € ¢}, test

samplet

Output: Adapted kernel matrixz
1. Similarity Measure Computation: ComputeZ (&, 6), V 6 € . using (3.5) and form the
test matrix. 7 © = .7,
2. Sensor Adaptation: Adapt the test kernel matrix using the initial test matrix and the

adaptation parameters by (3.19).

72



Robustness of the algorithm to variations in parametersuies. Furthermore, cross-
sensor matching is performed using real-valued featuiieally; the similarity matrix%
is empirically verified to be positive semidefinite, ensgrthat the logDet divergence is

a good distance measure between kernel maifiand.# .

3.6.1 Iris Dataset

The iris dataset used in our experiments is the BTAS 2012 Gesser Iris Competition
dataset, referred to as the ND dataset, collected at theetsny of Notre Dame [76].
This database has iris images acquired with two sensorglpd®2200 and LG4000. It
contains about 104 Giga Bytes of iris data, collected acr@sse2sions with 676 unique
subjects. There are 29,939 images from the LG4000 and 13 p/8@inal images from
the LG2200. The LG2200 system has near-IR LEDs at the toperid@ft, and lower
right, and captures one iris at a time. The LG4000 system dasIR LEDs on the left
and right, and can image both irises of a person at the sange tifhe initial images
taken from both sensors are of size 640 by 480 pixels. Howéwethe LG2200 sensor,
the original images have been stretched vertically by 5%otopensate for the non-unit
aspect ratio in the LG2200 acquisition system [76]. Hertoe jinages from the LG2200

sensor are of size 640 by 504 pixels.
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3.6.2 Implementation Details

3.6.2.1 Segmentation and Feature Extraction

Iris image segmentation and feature extraction were pmddrusing the Video-based
Automated System for Iris Recogniton(VASIR) [77], an openrseuris segmentation
and recognition system. Evaluations on ICE 2005 and MBGC datas/e shown that
VASIR can be used as a state-of-the-art baseline for stg@abased iris recognition [78].
It uses contour processing and circular Hough Transformeteal the inner and outer
boundaries of the iris respectively. Two ellipses are thiéedito approximate the edges
of the upper and lower eyelids. The iris region is then resadpsing a polar structure
and mapped to a 2@ 240 rectangular grid. Features are then extracted by cangpl
it with a 1D Log-Gabor filter. The real and imaginary compatsent the filter response
are binarized and concatenated to form a 9600 dimensioatalrievector (26 240x 2).
Furthermore, for each of the feature dimension, a mask loibmsputed, whose value is
one if the corresponding rectangular grid point is insi@eitis region, and zero otherwise.
Hence, a 9600 dimensional mask vector is obtained to magksptorresponding to non

iris regions like eyelids.

3.6.2.2 Evaluation Setup

Unless otherwise mentioned, for each sensor, we seleateelithages of both eyes from
thirty subjects (180 images in total) at random to form thening data. The cross-
sensor recognition performance was evaluated on the rergasabjects. Observe that

this experimental setup evaluates subjects not seen dnaiming, and hence evaluates
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the generalization properties of the algorithm to unsedsests. Furthermore, multiple
images are required to be enrolled only for subjects usaa@inimhg. For subjects used in
the testing phase, only one image is assumed to be enrotidthridle registration errors
in iris templates, for every pair of templates, we rotatesbeond template two bits along
the horizontal (left or right) and one bit along the verti¢apwards or downwards), as
done in the VASIR system. The highest similarity value betw#e two templates after

rotation is taken as the similarity measure, as explainsgation 3.5.4.

3.6.2.3 Sensor Adaptation

During training, the adaptation parameters were compugtad the training images using
Algorithm 1. At first, the similarity matrix was built from Ethe training data using (3.5).
The intra-sensor and inter-sensor constraints were th@oded, as explained in Sec-
tion 3.4. The final kernel matrix was obtained using (3.16%ing the initial and final
kernel matrix, the adaptation parameters were obtainex{8i18).

Parameters: Recall that the parametdy, is the upper bound on the same class distances.
Similarly d, is the lower bound on the different class distances. In opegmentsd, was
chosen as the ¥0percentile of the same-class distances of the LG2200 santpleas
chosen as the 85percentile of the different-class distances between th2208 samples.
The parametey was set as Q in all our experiments. We evaluate the performance of
the sensor adaptation algorithm to variations in thesenpaters in Section 3.6.8.

Testing: Testing was performed using Algorithm 2. For the test samplee adapted

kernel matrix was obtained using (3.19) and the squareddaasi distance in the trans-
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formed space was computed using (3.20). Verification wa®pred using this distance.

3.6.3 Cross-sensor iris recognition on the entire ND dataset.

TAR (%) at FRR=0.1% EER (%)
Cross-sensor Cross-sensor
LG2200 LG4000 LG2200 LG4000
NA  Adapted NA Adapted
86.74 91.39 84.34 87.82 6.06 5.22 7.19 6.09

Table 3.1: Cross-sensor matching results for Non-Adaptéd gase and after adaptation

on the entire ND dataset.

In this section, we evaluate the proposed method on theeddbir dataset. As explained
in Section 3.6.2.2, we select three images from thirty stibjen both sensors to form
the training set. The training data for different sensorsewehosen from the same ses-
sion in this experiment. We analyze the effect of sessiorattan on performance in
Section 3.6.6. We perform pairwise matching using the lediadaptation parameters
on the entire dataset. The ROC curves and the Hamming destéistributions for the
non-adapted and adapted cases are shown in Figure 3.3(Bjgamd 3.3(b) respectively.
Observe that the cross-sensor recognition performanagiceably improved by adapta-
tion, and is even better than the same sensor LG2200 reShksTrue Acceptance Rate
(TAR) at the False Acceptance Rate (FAR) di% after adaptation is.Q8% better than
the same sensor LG200 results andl8%6 better than the cross sensor performance be-
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fore adaptation. Furthermore, sensor adaptation movegetingne and impostor distance
distributions apart. We attribute the performance impnogst to the intra-sensor and
inter-sensor constraints imposed by the proposed algoriffhe intra-sensor constraints
reduce the intra-class variations between samples, arebises the inter-class variations
in the transformed space, leading to better verificatiore ifker-sensor constraints bring
the testing samples from the LG4000 sensor closer to the stasg samples from the

LG2200 sensor in the transformed space, improving the @essor matching.

ROC Match Score Distribution
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L P’
- == Non-adapted genuine .l.
[| = = = Non—adapted impostor .-' H
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= Adapted impostor

. - .* -
.’ ===LG 2200 0.15f
08 — LG 4000
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Figure 3.3: Results on the entire ND dataset. (a) The ROC dorvthe adapted and
non-adapted cases. (b) The Hamming distance distribubiothé genuine and impostor

matching before and after adaptation.

3.6.4 Cross-sensor recognition on a well segmented subset of ND dataset

We observed that the VASIR results had segmentation emdrieh reduced the same
sensor recognition results of the LG2200 and LG400 sendorthis section, we eval-
uate the cross-sensor recognition performance on a subt®t /D dataset, which is
manually verified to be free of segmentation errors. Heris,experiment analyzes the
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behavior of the algorithm on well segmented iris data, angidiases due to segmenta-
tion errors. This smaller dataset consists of the left aghtrris images of 123 users,
thereby forming 246 unique iris signatures. For sensor LlGB23 images per eye were
used from the same session. For sensor LG4000, two diffetdrgets were used. The
first subset was collected in the same session as the imageseacwith LG2200, and
consists of 246 unique irises with 3 images per eye. The sksohset contained 186
unique irises and 3 images per iris. They were acquired letwanonth and a year after
those in the LG2200 subset.

We followed the same experimental setup in Section 3.6Th8.ROC curves correspond-
ing to same-session and different-session matching fardheadapted and adapted cases
are shown in Figure 3.4(a). In Table 3.2, the results arespted in the form of the Equal
Error Rate (EER) and the True Verification Rate (TAR), at a Falsed@ien Rate (FRR)

of 0.1%. Observe that the same sensor performance is bettersosutbset, since it does
not have segmentation errors. As before, we observe thabsadaptation improves the
cross-sensor recognition performance. After adaptatie TAR improves by 5% for
the same-session matching, and 8526 for the different-session matching. For the case
of matching across sessions, the cross-sensor accuragnibetter than the same sensor
LG2200 accuracy. Moreover, the Hamming distance distiobgtin Figure 3.4(b) illus-
trate that adaptation moves the genuine and impostorllisns apart, leading to better
discrimination between the genuine and impostor pairssé&hesults clearly demonstrate

the performance improvement achieved by the proposed mhetho
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Figure 3.4: (a) The ROC curve for the adapted and non-adaftetions on the subset of
ND dataset. (b) The Hamming distance distribution for theuyee and impostor match-
ing before and after adaptation on the subset of ND datasefdaptation performance

using real-valued features.

3.6.5 Effect of intra-sensor and inter-sensor constraints.

In this section, we evaluate the relative importance ofhstensor and inter-sensor con-
straints on the entire ND dataset. As before, we followedeWeduation setup in Sec-
tion 3.6.2.2. We present the ROC curves for cross-sensogng&mon in Figure 3.5 (a).
Equal Error Rate (EER) and the True Verification Rate (TAR), atlag/Rejection Rate
(FRR) of Q1% are provided in Table 3.3. The results demonstrate thetggnsor con-

straints contribute significantly to performance improesm This is expected, as inter-
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TAR (%) at FRR=0.1% EER (%)

Cross-sensor Cross-sensor
Session LG2200 LG4000 LG2200 LG4000
NA  Adapted NA Adapted
Same 97.78 99.52 94.13 95.73 1.46 0.36 285 2.26
Diff. 93.53 97.61 91.93 93.78 3.04 1.32 3.56 2.87

Table 3.2: Cross-sensor matching results on the subset o&it3et for the Non-Adapted

(NA) and Adapted cases.

sensor constraints are responsible for reducing the w@rgabetween the sensors. Fur-
thermore, combining the inter-sensor and intra-sensostcaints gave the highest accu-

racy.

3.6.6 Effect of session variations.

If the training data from different sensors are collectedifferent sessions, it is possi-
ble that the proposed method will learn the session vanatioo, along with the sensor
variations. To evaluate the effect of these session vangtiwe used training data for
each sensor from a different session. We then evaluateddks-sensor performance on
new sessions unseen during training. All other evaluatdiirg)s were identical to that in

Section 3.6.3. We present the ROC curves in Figure 3.5 (bjlendorresponding results

in Table 3.4. As expected, when the training data for eackmaa chosen from a differ-
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Figure 3.5: (a) Results of intra-sensor and inter-sensostcaints. (b) Effect of session
variations on cross sensor recognition. (c) Effect of trajrsize on cross sensor recogni-

tion.

ent session, the true acceptance rate after adaptatioduseae from 8782% to 8687%.
However, this accuracy is still better than that of the LG268me sensor recognition ac-
curacy of 8681% and the non adapted cross sensor accuracy.®7®# This experiment

demonstrates that the proposed method generalizes acrgssusessions.

3.6.7 Number of subjects during training.

In this section, we analyze the effect of the size of trairdata on cross-sensor recogni-

tion accuracy. We plot the True Acceptance Rate (TAR) at a Padseptance Rate(FAR)
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TAR (%) at FRR=0.1% EER (%)

Adapted Adapted
NA NA
Intra-sensor Inter-sensorBoth Intra-sensor Inter-sensorBoth
84.34 84.90 87.73 87.82 7.19 7.19 6.14 6.09

Table 3.3: Effect of intra-sensor and inter-sensor coimgga@n cross-sensor recognition
for the Non-Adapted (NA) and adapted cases with intra-senster-sensor and their

combination.

of 0.1% with varying number of subjects for training in Figure 8. All other evalu-
ation settings are identical to those explained in Sectiér2®. Observe that even with
ten subjects, the cross-sensor recognition accuracyadtgstation is better than that of
the non-adapted case. Furthermore, the cross-sensonrgco@ccuracy improves with
more training data. This is expected as more constrainta\aiable for learning as

training data increases.

3.6.8 Robustness to Parameters

The parameters of the proposed algorithm are the parampetex number of iterations
of the Bregman update, and the distance threstglhdd,. We analyze the robustness
of the sensor adaptation algorithm to variations in thegarpaters in this section. In
Figure 3.6(a), the EER corresponding to different valuethefparametey is shown.

While the best performance is obtained usjng 0.1, the proposed algorithm improves
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TAR (%) at FRR=0.1% EER (%)

Cross-sensor Cross-sensor
LG2200 LG4000 LG2200 LG4000

NA  Adapted NA Adapted
86.81 91.39 84.27 86.87 6.04 5.22 7.55 6.89

Table 3.4: Cross-sensor matching results on unseen se$siahe Non-Adapted(NA)

and adapted cases.

the equal error rate for a wide rangeyofllustrating its robustness to the parameter.
We refer to performing Bregman projections over all the a@msts once as an “iteration
cycle”. Figure 3.6(b) shows the variation in EER for diffiet@umber of iteration cycles
in the training stage. It indicates that the proposed allgariconverges quickly after all
the constraints have been visited once, and further upasgs dot change the perfor-
mance. Furthermore, we observed little variation in cig=ssor matching performance

with significant variations in the distance threshalgsndd,.

EER vs. Gamma EER vs. Number of Iteration Cycles
2

2.4

=== Non-adapted|
—e-Adapted

EER(%)
e e
EER(%)

5 -1 -05 0 05
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log, ,(Gamma) Number of Iteration Cycles
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Figure 3.6: Variation of verification accuracy during tagtwith (a) parametey and (b)

number of iteration cycles in the learning algorithm.

83



3.6.9 Incorporating Real-valued Features

In this section, we evaluate the cross-sensor recognigofopnance using real-valued
features on the entire ND dataset. Phase of the 1D Log-Gabtures was used as the
real-valued feature in our experiment, since it can be obthdirectly from the VASIR
system. However, the proposed algorithm can be appliedhter deatures also, as ex-
plained in section 3.5.4. After performing iris segmemtatand unwrapping, the 1D
Log-Gabor filter was applied and the phase of the filter ougtigach pixel was com-
puted. The kernel computation was performed using the likemel function, as ex-
plained in Section 3.5.4. Squared Euclidean distance legtiee transformed features
was used for matching. The ROC curves are presented in Fsgdife), and a summary
of the results appear in Table 3.5. As in the case of binarjufes, sensor adaptation
improves the cross-sensor matching accuracy significahldp, the true acceptance rate

after adaptation is better than the LG2200 same sensormiticogperformance.

TAR (%) at FRR=0.1% EER (%)
Cross-sensor Cross-sensor
LG2200 LG4000 LG2200 LG4000
NA  Adapted NA Adapted
79.59 87.50 78.14 82.89 7.4 5.55 855 7.57

Table 3.5: Cross-sensor matching results using real-vdiegtires on the entire ND

dataset for the Non-Adapted(NA) and Adapted cases.
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3.6.10 Empirical Verification of Positive Semidefiniteness of the Simi-
larity Measure

To use the logDet divergence in Section 3.5, the similariatrir . should be positive
semidefinite. To verify this empirically, one could checketlirer the eigen values of the
similarity matrix are non-negative. However, eigen valamputation of large matrices is
often imprecise due to numerical errors. Hence, we adog®timeipal Minor Test [79].
By definition, thek™ principal minors of a matrix are the determinants of the saitives
formed by deleting any — k rows and the corresponding columns of that matrix. By
the Principal Minor Test, a necessary and sufficient comalitor a matrix to be positive
semidefinite is that all possible principal minors of the nxadre non-negative.

Using 1,622 iris samples acquired in both LG2200 and LG4@0Bars, as explained in
Section 3.6.4, we construct the similarity matrix corresgiag to the fixed mask, varying
mask due to occlusion and the rotation cases. For a giverxmatin n rows and a partic-
ular submatrix dimensiok, there are(E) principal minors, which increases exponentially
with k. Given the large number of possible minors, for each subxndimension, we
randomly choose a fixed number of principal minors (choset0@sn our experiments)
and compute their determinant. We plot the minimum of theloamly chosen minors in
Figure 3.7. While there are 1,622 submatrix dimensions, veeghe initial 100 dimen-
sions in Figure 3.7 for clarity. The minimum of the chosen ongwere non-negative for
each submatrix dimension, indicating that all the chosemonsi are non-negative. This

empirically verifies that the similarity matris# is positive semidefinite.
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Figure 3.7: Plot of the minimum principal minor for each swirnx dimension of the
similarity matrix, for the (a) fixed mask, (b) occlusion am (otation cases. Observe that
the minimum principal minors are non-negative for all submalimensions, empirically

verifying that the similarity matrix is positive semidetiei
3.6.11 Hardware and Computational Complexity

In the proposed sensor adaptation method, we have to fingjtizeed Euclidean distance
between each test sample and the enrolled samples in tisamared space during test-
ing. The additional steps introduced are the computatighefnitial kernel using (3.6),

the adaptation of the kernel using (3.19), and the cal@raif the adapted Hamming dis-
tance using (3.20). However, observe that these three atesmple linear operations,
and introduce limited overhead to the original iris recdigni system. Furthermore, the
only additional components required in the system are adaled multipliers, and can

easily be incorporated into existing systems.

Non-adapted Adapted

Time(s) 25.5 27.9

Table 3.6: Comparison of the testing time for the non-adaptetadapted cases.
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Asymptotic Analysis: We analyze the computational complexity of the proposedhotet
during testing below. LeD be the dimension of iris samples, aNg, be the number of
training samples. In one-versus-one verification casetestesample has to be matched
with a single enrolled sample. In this case, non-adaptetdadetequires the computation
of a single normalized Hamming distance, which is@{D) operation. For the adapted
algorithm, similarity measure has to be computed betweenetsting sample and all the
training samples. Furthermore, these values have to beinechtwith the adaptation
parameters using Equation (3.19). So the total computatmomplexity of the proposed
method is&'(D « Nty 4+ Nrr). Since template dimension and training samples are fixed,
both the methods run in constant time asymptotically.

Now let us consider the case, when the test sample has to lohedawithNg samples
in the gallery. NormallyNg > Nt,. The computational complexity of the non-adapted
algorithm is¢’(DNg), since it has to compute the normalized Hamming distancheof t
test sample witiNg enrolled samples. For the proposed method, similarity orease-
tween the enrolled samples and the training samples careberpputed, along with the
adaptation parameters. So the computational complexripgltesting is due to the com-
putation of similarity measures between the test sampldglaNy, training samples,
and their combination with the adaptation parameters. 8$ddtal complexity during
testing for sensor adaptation d8(DNrt; + NeNt) = &(NeNyr). Hence, when a query
image has to be compared with multiple enrolled samples;dhgutational complexity
of both the non-adapted and adapted methods vary lineatlytive number of enrolled
samples.

Empirical Evaluation: In this section, we compare the testing time for the non-tathp
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and adapted cases on an Intel Dual Core 2.33GHz processbe hoh-adapted case, for
each LG4000 sample, we record the time for iris image segatient feature extraction,
and matching with all the samples in the LG2200 dataset. énatltapted case, along
with the segmentation and feature extraction times, the fion computing the squared
Euclidean distance in the transformed domain and matchitigtive LG2200 samples
are included. The experiment is run 10 times and the aveesgieg times are reported
in Table 3.6. As can be observed, the sensor adaptationtalgdeads to only a small

increase in the execution time.
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Chapter 4
Temporal Inference from Human Pose

4.1 Introduction

Automatic analysis of visual data involving humans is an amg@nt area in computer
vision [80], which is useful in entertainment, human congpunteraction and security.
Since traditional applications like people tracking [8hHaactivity recognition [82] are
video-based, motion cues plays an important part in thepkcaions. However, with
the availability of personal photo collections and spomsges, analysis of humans in
still images is gaining importance recently. These imaggel applications do not have
explicit motion cues, and are currently limited to using jine appearance cues [83, 84].
This leads us to an interesting question: Can implicit motioes be extracted from still
images of humans, and used to aid visual analysis?

Estimating motion without multiple images seems impossddl first. However, exten-
sive studies in psychology have shown that information aiposture of the human body
plays a vital role in biological motion perception [85, 8&kperiments of Hiraet al.[87]
demonstrated that destroying the body structure led to lzehigeduction in motion per-
ception in humans when compared to destroying the tempttaitsre of motion. Fur-
thermore, humans can easily anticipate the future motiactoirs from their current body
configuration [88]. As an example, consider predicting titarfe motion of humans from

their current poses in Figure 4.1. In the first case, one caityeafer the future motion of
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the human, namely, the right hand moving forward with thehehd moving backward,
and the legs moving in the opposite direction. In the secase cwve expect the hands to
move and other parts to remain still. However, predictirgggkRact motion of the human
is not easy. Two possible future motions correspondingecstime current human pose
is shown in the right in case 2. Thus, the first pose convey®nméormation about the
future trajectory of motion compared to the second. In traskwwe refer to this informa-
tion conveyed by humans poses about their future motioneasdymamic information”
in the pose. Furthermore, estimation of motion informafram still images of humans

is termed as “dynamic inference”.

Case 1 — Future Motion Highly Predictable
Current Pose

Case 2 - Future Motion Less Predictable
Future Motion

Current Pose

Figure 4.1: Consider predicting the future motion of the harfram the current poses
given in the left, for each case above. In case 1, the fututeomoan be easily predicted.
However, the exact future motion is not obvious in case 2.sitesfuture motions are

shown in the right.

Dynamic information in human poses can aid computer visystesns in multiple ways.
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Similar to biological systems, vision systems can utiliaes information to efficiently
predict the future motion of human users. Human motion ptexh is also useful in
robotics. For instance, in robotic applications like “atsnce to manipulation”, robots
often assist humans or manipulate the same object as humangh applications, accu-
rate prediction of human motion can improve robotic perfance, as empirically verified
by Jarrasset al.[89]. Dynamic information in poses can also improve acjivécogni-
tion from still images and aid the synthesis of realistic lammmotion. The latter is useful
in applications involving humanoid robots and animatiordAionally, poses with high
dynamic information also reveal the “story” in a large numbkadjacent frames, mak-
ing them ideal candidates for key-frames in video summaoaapplications. This idea
of using human poses to convey the “story” has been expldiyedrtists in paintings
and sculptures. Japanese Manga images in Figure 4.2 is ingasiat, where Hokusai
pioneered the technique of conveying motion using phylsicaistable human configura-
tions.

Motivated by the above, we develop a computational modeifey the “next move” from
still images of humans. Our goal is to predict the future mobtf a human given a single
pose and quantify the extent to which it is constrained byargpose. We emphasize
that the input to our algorithm is just a single human imagetae final goal is to predict
the motion of the human and not the type of action performed.

Contributions: We make the following contributions in this work. We expldhe po-
tential of the implicit dynamic information conveyed by anhan pose. We develop a
probabilistic framework to model it. Using this frameworxke estimate the amount of

dynamic information conveyed by a pose and predict the fmebfature motion. The
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Figure 4.2: Database of 45 Hokusai Manga Images. The furatidagnetic Resonance
Imaging (fMRI) studies by Osaket al. [2] illustrated that the dancer images on the left
in unstable poses activated the motion sensitive visuaéxan humans, indicating that
humans can perceive the implied motion in these images. awehe priest images on
the right in stable poses elicited low responses of implietion in humans. We use this

dataset to validate the proposed computational model.nexperiments.

proposed method requires limited manual supervision stneges unlabeled and unseg-
mented human videos for training, and can easily be impléadenNe demonstrate the
usefulness of the estimated dynamic information in a waieétvision applications like
human motion prediction, activity recognition and videonsoarization.

Organization of the chapter: A brief review of related works is presented in Section 4.2.
The proposed framework for extracting dynamic informatiohuman pose is introduced
in Section 4.3. Computer vision applications which beneditfrthe extracted dynamic
information are enumerated in Section 4.4. We empiricalluate the proposed tech-

nique in Section 4.5.
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4.2 Related Work

Visual analysis of humans from images and video is one of &méral problems in com-
puter vision [80]. Some of the tasks associated with it an@dru detection, recogni-
tion, tracking, articulated pose estimation and activagagnition. In applications in-
volving videos like human tracking, motion cue plays an im@ot part [81]. However,
still image-based applications like analysis of commémietographs, sports images or
newspaper images lack such motion cues, making them mollerfiag. In this work,
we focus on such applications, where no explicit motion sevailable.

For still images, two problems which have received a great deattention in recent
years are human detection and articulated pose estimaBielow, we briefly describe
some of the popular methods. Numerous works have lookeddihdjrpictures of hu-
mans [90], localizing people in still images [91], and pddas detection [92]. Dalal
and Triggs proposed the Histogram of Oriented GradientsGH[5], a popular gradi-
ent based feature for human detection. &tuwal. [93] advanced HOG descriptors by
combining HOG and AdaBoost to select the most suitable blockiétection. Tuzeét
al. [94] developed the covariance descriptor for human detectelzenswabkt al. [95]
developed discriminatively trained part-based modelshfonan detection, using latent
SVMs. For 2D pose estimation of humans, Ramaetaad. [96] presents an iterative pars-
ing process for pose estimation of articulated objects. riduch et al. [7] developed a
general framework-based on pictorial structures for huchetection and 2D pose esti-
mation. Bourdev and Malik [97] developed poselets captuttieg?D appearance and 3D

joint position of humans, which has been utilized for humatedtion, segmentation and
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pose estimation.

Recently, researchers have recognized that still imagesimfhs contain not only in-
formation about the configuration of body parts, but alsdargevel information like
the action being performed. This has led to the developmieatt@mn recognition algo-
rithms from still images. Thuraat al. [83] recognized human actions from still images
and video, by representing actions as a histogram of posgtpes, and using histogram
matching for recognition. Ikizleet al.[98] represented the human pose using histogram
of rectangular regions and used SVMs for classification] {&@d oriented rectangular
patches extracted from the human silhouette to represemiction and histogram match-
ing for recognition. Human pose in the query image was cemsitias a latent variable
in [100]. Latent SVM was used for recognizing activities lmstwork. However, these
techniques are often applicable only for simple actionsesicomplex activities cannot
always be captured by a single pose. Nevertheless, even pek®ging to complex ac-
tivities often provide information about the local motioajectory. For instance, consider
the posern in Figure 4.3. While it is easy to infer that the person is bagdiown, it is
difficult to predict the subsequent activity (for exampliiisg down or picking up a ball).
In this work, we focus on estimating this motion informat@ssociated with the human
pose in still images.

Another line of research which motivated our work is motigtireation from still images
of natural scenes. Roth and Black [101] learned the prior fmtityeof motion fields from
still images of natural scenes using a Markov random field ehod@heir experiments
demonstrated that the learned motion prior capture the gjpatial structure found in

natural scenes, and can also improve motion estimationmaogin test videos. Liet.
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al [102] proposed SIFT flow, a method to densely align scene@wnag matching densely
sampled pixel-wise SIFT features, while preserving carityn Motion of pixels in query
images were then predicted by transferring SIFT flow fromlgintraining images. Yuen
and Torralba [103] learned the probability density of logadtion trajectories in a non-
parametric manner at each pixel location, and used samplesthe density to estimate
the motion trajectories in query scene images. These metbapture only the local
structure of the scene, and not the influence of the globalesoa the ensuing motion.
Hence, they are not directly applicable to human motioniptih, where future motion
is dependent on the global pose of the human. On the other hendirectly model the
relationship between the human pose and the future motidgheohuman body in this

work.

4.3 Dynamic inference from a human pose

Before developing a computational model, we first analyzepthysical evidence for the
existence of dynamic information in this section. Start@ particular pose, the future
motion of the human body is constrained by numerous factbin® mechanics of body
joints prevent arbitrary motion of the body. Laws of phydike gravity and momentum
also limit the future moves of the human. Furthermore, eveayistic pose is part of a
human activity with a well defined objective. These constsaon the future motion of
the human body are responsible for the dynamic informatssoeiated with a particular
pose. Furthermore, the set of possible future motions vaaglwbetween different hu-

man poses, as can be observed from Figure 4.1. Here, in cdsefliture motion of the
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human is highly constrained. However, in case 2, numerowsd€unotions are possible
starting at the same pose. Hence, poses differ in the ambdghamic information they
possess.

To model the relationship between human pose and the enswitign, we have to decide
the representation for the pose, the future motion and theespf allowable models. For
pose representation, a popular choice is the articulatedkhi@], which represents the
human body as collection of parts and learns the appearaadelrfor each part. This
model however has an explicit training stage and is not iidbumseen poses. Hence, we
choose the simpler HOG-based model [83], representinguh®ah pose using the HOG
features extracted from the bounding box. This avoids tleslrier training models for
pose estimation, can generalize to new poses and is robesbis in the estimated pose
parameters.

Given a human pose, there is a set of possible motion trajestoriginating from it, and
the exact future motion is uncertain. This is evident in cage Figure 4.1, where two
possible future motions starting from the same pose arershothie right. To capture this
uncertainty, we develop a probabilistic framework, estingathe conditional probability
distribution of subsequent human motion given a pose. Ghisalistribution is obtained,
one can compute different statistics, which ultimatelyldsequantities of interest. For
instance, two useful statistics are the mode of the dididbuand its entropy. Given a
single pose, the mode of the conditional distribution gieshe most probable temporal
evolution of poses. The entropy of this distribution measuthe uncertainty in these
future sequences. The work of Kerzel [104] shows that theettainty (unpredictability)
provides a measure of the amount of dynamic informationgyesd by humans in a pose.
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The higher the predictability of motion from a pose, the leigthe dynamic information
it conveys.

To develop a probabilistic model, we first need to define tleespf predictions. Firstly,
from a stable pose such as case 2 in Figure 4.1, the set obfmbsiman motions that
can follow is extremely large. Further, even for predictapbses where the set of fu-
ture motions is potentially constrained, there is an edeinae class of future motions
differing only in the rate of execution. Hence, we need aeasentation of motion in-
variant to the rate of execution. Considering the above, wéfilodel human activities
as a sequence of movements called action segments, sejpayataallistic” boundaries
[105]. These movements are natural units of human actigpscally comprising an
initial acceleration of limbs towards a target followed lscdleration to stop the move-
ment. Figure 4.3 shows a simple illustration of the batlisibundaries. Here, the ballistic
boundaries highlighted in red separate the “picking upioscinto two action segments,
namely the “bending down” action segment and the “gettingagtion segment. Vita-
ladevuniet al. [105] have been developed computational models to autoailgtextract
ballistic motion boundaries from videos. By viewing acti@ssseparated by ballistic mo-
tion boundaries, we can restrict the scope of the motionigtied problem to predicting
statistics over future action segments, which are shanteluration. In addition, since
ballistic boundaries are robust to the rate of executioa,gtimated statistics become
invariant to the rate of execution of the action.

Before developing the model, we first introduce the notatioth @ements of our frame-
work. Let 77 represent thé" pose and1 = {r5,i = 1,...M} be the set of all possible
human poses. Similarly, let represent thé" action segment and = {@,i =1...N}
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a test pose.

Picking up action o
A

~_ N
] To T3 T4 75 T6 T7
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Action Segment ¢1 Action Segment P2

Figure 4.3: lllustration of ballistic boundaries for thei¢king up” action. The three

ballistic boundariess, Ty and s, highlighted in red, divide the actiom into two action

be the set of all possible action segments. Any aatios a temporally ordered sequence
of action segment%cpal, . ~%rt(a>]’ where each action segmeqt is itself a temporally
ordered sequence of individual pos 1,...71;(‘(@}. We illustrate these notations for
the simple action of picking up a ball in Figure 4.3. This aotor consists of two ac-
tion segmentsq, @]. Action segmentp, is a temporally ordered sequence of poses

[Th, TR, T8, TR). Similarly, action segmeng;, is a temporally ordered sequence of poses

Nearest Neighbor
Poses Nearest Neighbor Action Segments

RN A — w:‘.

Figure 4.4: Nearest neighbor poses and the associated aegyments corresponding to

Let &2 (¢@|m) denote the conditional probability that a given p@seccurred in an action
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segmentp . As discussed earlier, the uncertainty in the temporalutimi of poses
starting fromrt is low, if it has high dynamic information. In an informatidheoretic
framework, this uncertainty can be measured by the entgéfiy| ) of the conditional

distribution of an action segment given a pose.

Ao =~ [ 2(@mlog(#(olm)dg @)
This motivates our measure, Degree of Dynamic InformatiaiIf of a pose, which can

be computed as

DDI(m) = exp—7(¢|m)] (4.2)

where the negative exponent captures the inverse relatpbhstween uncertainty in the
temporal evolution of poses starting framand the amount of dynamic informationin
Another piece of valuable information that can be immedyadbtained fromZ?(¢|n) is
the most probable action segmenthat contains the pose

@(mm) = argmaxZ(q|n) 4.3)
ped

Similarly, given a start posg and an end posg., we can obtain the most probable pose

trajectory as

A

@(76, Te) = arg rgaxe@(cvlns, Te) (4.4)
[0S
P=[T&,...,Te]
Having defined the two terms using’ (| ), the question now turns to the estimation

of this density. Explicitly modeling this density and estitimg its parameters from finite
training data is extremely difficult and prone to overfittidge to the large variations in
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humans poses and future motions in unconstrained settiigsce, we adopt the data-
driven approach, which has become very popular in recensyj@é82, 106, 107]. This
approach advocates transferring information from a riaming database to the specific
guery under consideration, instead of learning a genenatiion applicable to all queries.
Such methods have shown significant promise in solving wfiserdifficult tasks such
as scene alignment [102], geo-localization [106], scemaptetion [108], scene pars-
ing [107] and object matching [109].

Given a test posis, we estimate”?(¢|1g) directly from the training data. This estimate
is then used to compute the amount of associated dynamieriafmon DDI(7%) and the

most probable action segmefr(trrs). We explain this approach in detail below.

4.3.1 Estimation of Conditional Distribution

Instead of developing a functional form fo? (| %), we compute this probability when-
ever we encounter a test posge Our training data consist of videos of human actions.
Let 2 denote the database of all the poses, which are extractedtfrese videos. By
applying the temporal segmentation algorithm of Vitaladeet al. [105], these videos
are divided into action segments separated by ballistintates. Given a test posg,

we find all the instances of the pose in the dataliassd denote this set byz.. In our
experiments, nearest neighbors of the test pgse the databas& are used to form the
set. /. Note that every posg € Z is a part of an action segmegte ®. This implies
that every poset € ./ has an associated action segme(W; ). Let 1) be the set

of action segments corresponding to the posedjn We illustrate the nearest neighbor
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poses and the associated action segments for a test poggiie Bi4.

No(w) = 1@(1), T € N7} can be considered as samples from the densttyy|7s).
Hence, sample-based density estimation techniques casolpéea to estimate” (| %)
given 44 r,). However, such techniques cannot be applied directly osjthee of action
segmentsb due to two reasons. First of all, action segments can difféhe number of
frames. Hence, a direct representation in terms of the eged@ixels lead to vectors of
different dimensionality. Secondly, this direct repredsdéion in terms of the associated
pixels is high dimensional. Learning models from higher ensional data is often im-
practical, and has lead to the development of alternate lovemkional representations
for the data [110]. Hence we adopt a parametric approachrenhe action segments are
compactly represented by a low dimensional dynamical model

Modeling Action Segments: In this work, we employ the Linear Dynamical System
(LDS) [111], a popular dynamical model in computer visiorhiSrmodel has been suc-
cessfully used to represent actions, dynamic textures anghh joint angle trajectories.
However, it is important to note that the proposed framewadrédynamic inference is a
general one, and can be applied to other models also. Fortian saegmentp, the LDS

model is described by

Zp(t+ 1) = A(@)2(t) +Vo(t) V(t) ~ N(0.5) (4.5)

Yo(t) = C(@)Zp(t) +Wq(t), We(t) ~ N(0,0)

wherez,(t) € RP is the hidden state vector for the frame in the action segment,
Yo(t) € RY are the features extracted frdathframe,A(p) € RP*P is the transition matrix,

C(@) € R¥P is the measurement matrixvy(t) andwy(t) are the noise components,
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which are modeled as Gaussian with mean zero and covariarenes® respectively.
A(@) is constrained to have eigen vectors inside the unit civdiéle C( @) is constrained
to be orthonormal. Hence, the parameters of the LDS modelehg A(@),C(¢)) do not
lie on the Euclidean space. For comparison of actions, a amynused distance metric
is the subspace angles between the column spaces of thepmrding observability

matrices. The ‘observability’ matrix of an action segmerns given by

Q' ()= [C(@) . C@AD) ... COAQ™ ...

It is an infinite dimensional matrix, which can be approxiathby the finite matrix

Note thatQ" (¢) € R™9 wheren = mp Hence the column space &' () is ad-
dimensional subspace IR", which constitute the Grassmann maniféfgy. For nota-
tional simplicity, we denote the observability matrid@&p), Q(@) andQ(¢;) by Q, Q;
andQ;j respectively. Then a natural distance metric between thetsen segmentq and
@ is given by [112].

7%(Qi,Q)) =d—tr(Q]QiQ1 Q)) (4.6)
Density Estimation on the Grassmann Manifold: Using .44, the set of samples
from 22(¢|1%), we now estimate the conditional density using non paramdénsity

estimation techniques [113], as
~ _1 T T _1
Z(¢|me) =1 ; WM72(lg — Q' QQ Q))M™2) (4.7)
AN o(rs)

whereW(T) = exp(tr(—T)) for T € R9¥9, tr() is the matrix trace operatdy) € R9*9 is
a smoothing matrix and; is a normalization factor.
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4.3.2 Statistical Inference on the Estimated Density

Having formulated the conditional density for the actiogreent given the test pose, we
now estimate statistics of interest from it. The block demgrof the proposed method in

shown in Figure 4.5, and the details are explained in AlgariB.

Database of
Action Segments Testing
ﬂ é Nearest Associated Estimation
Ballistic L Neighbor T Action
= HOQ > Boundary = H Poses Segments Entropy
Extraction E . . — Estimation
Xtraction =
% Test Image
Frames o

Future
Motion

DDI

Figure 4.5: Block diagram demonstrating the various stepisarproposed method.

Mode Estimation: Given a poset, the likely future motion can be predicted by finding
the most probable action segmeri( 1), which is the mode of the distributiof? (¢| 7%).
Non-parametric techniques have been recently developeaidde seeking on analytic
manifolds [114, 115]. In particular, Cetingul and Vidal [1X®mputes the mode on the
Grassmann manifold using iterative optimization. It insically locates the modes of the
distribution via consecutive evaluations of a mapping. Goassmann manifold, these
evaluations constitute an efficient gradient ascent schesmieh avoids the computation
of expensive exponential mappings. However, this algoritill only compute the LDS
parameters of the most probable action segment. It is naildedo generate the frames
of the action segment from the LDS parameters. Hence, incgpioins where a valid

action segment with high probability of occurrence is reggj a more efficient scheme
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is to directly select the action segment with the highestit@mnal density from 45, ).

@(T5) = argmax (¢| ) (4.8)
AN (re)

By similar analysis, we can also obtaix(]rrs, k), the most probable pose trajectory given
a start poseg and an end posg, by using the samples fromy . ). Here, 4y n)
denote the set of training action segments, whose startrahpases are nearest neighbors

of 15 and g respectively.

N

O(T6,Te) = argmax 2(q|Te, Te) (4.9)
AENp(1s,7)

Entropy Estimation: To estimate the entropy o#(¢| 1) from the samplesty, ), we

use the resubstitution estimate of entropy [116] as follows

A (Q|TE) =

1 R
- log 7 (@ %) (4.10)

where@(qq\rrs) is obtained from Equation (4.7). Under mild conditionssthstimate

has been proved to be consistent in the first and second oeterafi116].

4.4 Applications

In this section, we briefly enumerate applications whichdfieéfrom the dynamic infor-

mation associated with human pose.

4.4.1 Human Motion Prediction from still images

The proposed method can be used to predict future human gssesa start pose or a

combination of start and end poses. We represent the futsespn terms of a sequence
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Algorithm 3: Algorithm for finding the most probable future motion and tlegree of

dynamic information in a test pose.
Input: Test poset, database of training poses and the associated action segme

7 ={(m ()}

Output: Most probable action segmeqﬁ(rrs), amount of dynamic information DDit)

1. Sample Computation:Compute the set of nearest neighbor poggsof the test

posers. Obtain. /), set of action segments associated with the posefin

2. Conditional Density Estimation: Using the action segments it ) as samples,
obtain the conditional density using non parametric dgrestimation, as given by

Equation (4.7).
P(9Ts) = 1 ; WM (lg—Q QT Q)M 3)
AESo(re)
3. Mode Estimation: Obtain the most probable action segment using Equatioi. (4.9

¢(T5) = argmax (| &)
AENp(re)

4. DDI Estimation: Compute DD(7%) using Equations (4.10) and (4.2).

A (p|TE) = —

log 2 (| %)

DDI(78) = exp|— 2 (¢|T5)]
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of images of humans, as shown in Figures 4.6 and 4.7. Thisubogpresentation is
general, and is independent of the application utilizirgektimated future motion. One
can easily apply a pose estimation algorithm [7] on our outppresentation to obtain
the 2D or 3D pose of humans, as required by the application.

Predicting future motion given a start pose:In many robotic applications like rehabili-
tation, surgical gesture assistance and telemanipulatdots assist humans or manipu-
late the same object as humans. Such applications are téasgstance to manipulation”
applications. Jarrassd al. has verified that human motion prediction can significantly
improve the performance of the robot in these applicati88% [Motion prediction is also
useful in detecting gait anomalities in medical applicasi@and analyzing movements in
sports videos. Given a test pose, the most probable actgmesd is obtained, as ex-
plained in Section 4.3.2. The poses associated with thisrasegment represents the
predicted future motion. Unlike model-based approachemfation prediction, the pro-
posed prediction is not restricted to a particular model eaual easily incorporate new
training data.

Generating realistic human motion trajectories: Creating realistic human motion is an
important requirement in applications like humanoid rotbesign and animation. Given
the current pose of the robat and the final poseg, such motion can be obtained by
finding the most probable action segment starting franand ending atg using the

proposed method, as explained in Equation 4.4.
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4.4.2 Semi-supervised still image action recognition

As explained in Section 4.2, action recognition from stilages has recently gained
attention in computer vision literature, with applicaom action image retrieval and
action recognition from personal photo collections, spamages and newspaper im-
ages [99, 100]. Most existing methods assume the preserabedéd action images for
training. Labeling requires human supervision, and is egpe and time consuming.
However, one can easily collect unlabeled images and vifteospublic databases like
Flickr and YouTube. This has lead to the development of saipervised algorithms
in computer vision [117, 118]. See [119] for an excellentveyrof recent efforts on
semi-supervised learning. For still image-based acti@ogeition, Cinbiset al. [99]
developed a semi-supervised method by querying the webttanoadditional training
images. However, due the large variation of images in trermet, the additional images
used to learn the classifier often differ widely from the iestges, leading to lower per-
formance. Another source of training data which is ofteryeéasacquire in applications
like surveillance is unlabeled and unsegmented actiorogidé¢ humans. In this section,
we describe how such videos can be utilized for semi-supedvéction recognition using
the proposed method.

Since the proposed method for predicting action segmenteticequire activity labels,
it can act as a natural way of propagating labels from theldéabiaining images to the
unlabeled video data. For each labeled training pose, wettiimanost probable action
segments from the unlabeled video data, as explained ino8eti3.2. If the original

training poses are discriminative, the retrieved actiaysents will belong to the same
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action. Hence, we add these action segments as additi@mainty samples, thereby
increasing the diversity of the training data. Additiogatine could use DDI to propagate

labels from just the informative training poses.

4.4.3 Video Summarization

Recent deluge in multimedia content has necessitated tredogenent of algorithms to

concisely represent a video. The goal of video summarizatido capture the relevant
information in a video using a fixed number of frames callel kiey-frames. Numer-
ous criteria have been proposed in the literature for salgthe key-frames in a video.
Two popular ones are representation and diversity [3]. Regmtation criteria prefers the
selection of key-frames which are similar to the frames i ¥ideo. Diversity favors

the selection of key-frames which are not redundant. In #se ©f videos of humans,
the amount of dynamic information in a pose has not yet baépadt for summarization.

Since frames with high dynamic information convey the motdthe human over a large
number of adjacent frames, they are potential candidaté®feframes. Hence, DDI can

also be used for key-frame selection in video summarizatplications.

4.5 Experiments

We empirically evaluate the proposed method on action detad varying complexity,
namely the Weizmann activity dataset [120] with clean baokgd and fixed view point,
INRIA XMAS (IXMAS) dataset [121] where actors freely chandeeir orientation and

the UCF Sports Activity dataset [122] with large changes engcand view points. To
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Figure 4.6: Motion prediction using the proposed methot iliteresting to note that the

predicted motion is performed by a different subject, sithee is no overlap between

training and testing subjects.

perceptually evaluate the DDI measure obtained by the gpepmethod, we predict the
amount of dynamic information in the Hokusai Manga imageke IMRI experiments
by Osakeet al.[2] on these images had demonstrated that the dancer imagesigher
dynamic information compared to the priest images. Funtioee, to evaluate the method
under large variations in training and testing conditioms perform a cross dataset exper-
iment using unlabeled videos from the Weizmann datasetestdmages from the CMU

action dataset [123].

4.5.1 Implementation Details

The proposed method is illustrated in Figure 4.5, and desaé provided in Algorithm 3.

Ballistic boundaries are extracted from unlabeled actide®s using [105]. Sequence of
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Start End Motion Trajectory

At-11n
n

Figure 4.7: Generating trajectories using the proposetioadet

poses within adjacent ballistic boundaries form the actiegments. A gallery of human
poses along with their associated action segménts {(T, (1))} is then created from
the training videos. The poses are represented by HOG [&]rfeg and action segments
by the finite observability matri®/, in the LDS model. Closed form expressions exist
for the computation of2}, from the action segments, as derived in [111]. Given a test
posers, 475, is created by identifying thk nearest neighbors in the HOG feature space
from the gallery. Using the corresponding action segmensamples, mode and entropy
of Z(¢|m) are computed as explained in Algorithm 3. Instead of usirgitbrative
optimization algorithm in [115], we compute the most prdeadiction segment directly
using (4.9). Unless specified, we fixkdh all our experiments to the average number of
repetitions of actions in the unlabeled videos, which igidy the number of subjects in
the unlabeled videos. Our experiments suggest that th@peolpmethod works well over

a wide range ok. The bin size and cell size of the HOG features are both setwoti®

2 x 2 cells forming a block.
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Highest DDI
Pose

Figure 4.8: The priest and dancer images in the Hokusai Meaaljgction are displayed
in the increasing order of their DDI, with the indices in tleeted order indicated in the
top left of each pose. Here, index 1 (top left pose) has the$dpMdDI and index 45
(bottom right pose) has the highest DDI. The priest imageshaarked in red, and the
dancer images having the most unstable poses, where thenhssianding on a single
leg are marked in blue. Observe that most of the priest imhges lower DDI values,
while most of the dancer images in unstable poses (in blugd hagher DDI values,

providing a computational explanation for the results ih [2

4.5.2 Perceptual Evaluation on Manga Images

In this section, we estimate the amount of dynamic inforaratn the Hokusai Manga
image database shown in Figure 4.2. This database cont#simages belonging to
two groups namely the priests and the dancers. The sameiss@és had been used by
Osakeet al.[2] in their experiments, which reported that the unstalolegs in the dancer
images activated the motion sensitive regions of the visoidéx, while the priest images

did not. This indicates that the dancer images have highsardyc information compared
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to the priest images.

Since the Manga images have wide variations in human posesse/the SFU skating
dataset [124] for training, as explained in section 4.5dr.dach Manga testimage, we do
a simple thresholding to obtain a binary image and extracH®G features. Using the
SFU training data, we obtain the DDI values for each Mangayend he Manga images
are then sorted in the increasing order of DDI and are digplay Figure 4.8. The priest
images are highlighted in red. As can be observed, mosttpnegjes have low DDI
values indicating low amounts of implied motion. Furthersy@mong the dancer images,
the most unstable poses are the ones where the human isngtaomdione leg. Such
images are highlighted in blue. Based on the studies in [2]) sunstable poses should
have higher implied motion. These images come towards teethe sorted order in
Figure 4.8, indicating that the DDI values are higher in théFhus, most of the stable
poses have lower DDI values, and most of the unstable ones ligiier DDI values,

there by empirically verifying that the proposed measueiseptually meaningful.

4.5.3 Human Motion Prediction from still images

We performed motion prediction given a single pose on the R8wataset. We used the
first nine subjects in the first view as the training data amdljoted the future motion for

each pose of the last subject. The predicted motion of sontteedest poses are shown
in Figure 4.6. It can be observed that the predicted motiostipagrees with the ones
expected by humans.

To evaluate the prediction accuracy, we used the motiorigired error, which is defined
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as the difference between the true action segments for eatframe and the predicted
action segment. We use the distance metric between actiomeses defined in (4.6). We
plot this error for the proposed method for different valoé& in Figure 4.9. The base
line method (NN-Based) consists of using the mean oktredrieved action segments as
the predicted motion. Using the first nearest neighbor agitédiction motion, the pre-
diction error is 047. The proposed method decreases this prediction errcidsrably
achieving an error of @9 using 6 nearest neighbors. Also, the simple baselineatf av
aging the retrieved nearest neighbor action segments teddgher prediction error for
higher values ok. We attribute the improvement in performance to the foltoyvi Due
to errors in pose matching, the nearest neighbor poses airdagsociated motion are
often erroneous. These erroneous motion normally formeyatand do not contribute to
the most probable motion. Since mean is not robust to oslereraging the retrieved
action segments lead to poor performance. However, the msoue sensitive to outliers.
Hence, by finding the mode of the nearest neighbor action setgthe proposed method
improve the robustness of the motion prediction algoritbrartors in pose matching.
Furthermore, we predicted the probable human trajectgies a start and end pose on
the Weizmann dataset. We used two subjects for testing andimeng for training. We
illustrate the probable trajectories in Figure 4.7. It iglewnt that the predicted trajectories

are close to the ones expected by humans.
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Figure 4.9: Motion prediction error in IXMAS dataset usingetnearest neighbor-
based(NN-Based) and the proposed method. Due to outlidre metarest neighbor poses,
the NN-Based method lead to lower performance with more seagghbors. However,
since the proposed method of mode computation is inseadiivoutliers, the motion

prediction error is reduced with more nearest neighborfibyptoposed method.

4.5.4 Semi-Supervised Single Image Action Recognition

In this section, we evaluate the label propagation tectaiguplained in Section 4.4 for
semi-supervised activity recognition from a single imagece activity recognition from
single images arises mainly in sports and newspaper imagassed the UCF Sports Ac-
tivity dataset in our experiments. We considered nine oth@thirteen actions, avoiding
the classes differing only in motion. Action classes whidified only in their motion
signature cannot be distinguished in still images, evenwydns. Hence, they are not
considered for evaluating still image action recognititgoathms in the literature [99],
for a fair comparison of the algorithms. The classes usediregperiments are listed in
Figure 4.11. We used 2 subjects for training, 2 for testind)&ias unlabeled data. There
is no overlap between the subjects in training, testing artabeled data. We chose 8 im-

ages at random of the 2 training subjects to form the traidaig. No labels or temporal
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Example1

Example3 Example2

Example4

Figure 4.10: For each test image, the nearest neighborgmebtasing the supervised

method and the proposed method are shown. Erroneous rasagcircled in red.

segmentation is assumed for the unlabeled data. We usedXGeféhtures for represent-
ing human poses and the nearest neighbor classifier fortgeteognition, similar to the
approach introduced in [83].

We compared the proposed method of label propagation wéthélarest neighbor classi-
fier using the labeled data alone (referred as supervisedthign) and three popular semi-
supervised algorithms namely Self-Training [119], Semp&vised SVM (S3VM) [125]
and Single View CoTraining [126]. In Self-Training, the dd&r trained on the labeled
data is applied on the unlabeled data and lthgixed as 20 in our experiments) most
confident images are added to the training set as additiabaldd data, using the pre-

dicted labels. Test samples are classified using this estetrdining set. Since S3VM
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and Single View CoTraining were originally developed for tetass problems, we used
one-versus-all classification for multi-class classifmat S3VM utilizes unlabeled data
by constraining the classifier decision boundary to passitiir low density data regions.
We used the Multiple Switching algorithm in [125], whichridively labels the unlabeled
data and switches the labels to reduce the optimization 8aste this algorithm has mul-
tiple regularization parameters to be tuned, we computegbegnition accuracy over a
wide range of these parameters and report the best resutteedest data. The Single
View CoTraining algorithm automatically splits the featwextors into two views, and
uses the most confident samples in one view to retrain the wibe. It has achieved
state of the art results for semi-supervised object retiognjl26]. We observed the al-
gorithm to converge in ten iterations and the learned diassvas used for recognition.
In the proposed method for label propagation, for each ¢éabghage, we added tHe
most probable action segments from the unlabeled data hetdraining set. We used
k = 8 in our experiments, since unlabeled data contained eawnaoughly 8 times,
performed by each of the 8 subjects. Recognition of test sssnpére done as before
using the extended training set.

The recognition accuracies using 8 action segments arersimovable 4.1 . We include
the corresponding confusion matrices in Figure 4.11. Tlpgsed method provides a
significant improvement of .8%, compared to the supervised algorithm. Also confu-
sion with wrong classes is considerably reduced. We shovesuthe test images and
the nearest neighbors obtained by the supervised algostiirthe proposed method in
Figure 4.10. Furthermore, we plot the variation in accunady the number of action
segments added in Figure 4.13. As can be observed, the agéncaeases with action
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Method Accuracy (%)

Supervised 49.3

Self-Training 51.9

Semi-Supervised SVM  51.7

Single View CoTraining 53.5

Proposed Method 57.9

Table 4.1: Activity Recognition accuracy on the UCF dataset.

segments till 9 (close to 8, the average number of repesitiorthe unlabeled data) and
then falls gradually.

Additional insight into performance improvement: We attribute the performance im-
provement of the proposed method to the following. While taxis semi-supervised
algorithms use unlabeled samples having similar pose asrtég in training, they do
not explicitly incorporate the motion information contadchin these poses. Since the
proposed method models this dynamic information, it is alsie to utilize poses in the
unlabeled data, which are different from the labeled tragyrsamples. This improves
the diversity of the training samples and lead to supericiop@mance. Furthermore, the
proposed method is insensitive to errors in pose matching.

To gain further insight, we display the nearest neighborepaand the most probable

action segment for two labeled images, belonging to thendiand swing actions re-
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Predicted Action
1-Diving-Side 2-Golf-Front 3-Golf-Side
4-Kicking 5-Riding-Horse 6-Run-Side
7-Swing-Bench 8-Swing-Side 9-Walk

Figure 4.11: Confusion matrices for action recognition on Wakset shows significant
improvements. In the proposed method, confusion remaimndyrizetween Golf Side and
Kicking which have similar leg poses (legs far apart), andagwalk, run and kicking,

which differ mainly in the rate of execution of the action.

spectively in Figure 4.12. Due to errors in pose matchingesof the nearest neighbors
belong to different actions. Since self training adds tressaples into training with the
wrong label, it corrupts the training data and leads to lgwesformance. However, since
the action segments corresponding to the wrongly retripeses differ widely, they usu-
ally form outliers during density estimation. The corrgatétrieved action segments,
whose poses are highlighted in red act as inliers since treegimilar to one another.
Hence, the most probable action segment belongs to thedtiom asince it is supported
by these inlier action segments. Since the proposed metidsilaghly probable action
segments, it is more robust to pose matching errors. Funtbrey, poses in the added ac-
tion segment are significantly different from the query labdemage, there by increasing

the diversity of the training data.
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4.5.5 Cross-Dataset Dynamic Inference

In applications like surveillance, the unlabeled and unsaged videos required for dy-
namic inference can often be acquired in conditions clogbhdse during testing. How-
ever, this is not possible in applications like activity@gaition from newspaper images
using unlabeled YouTube videos for label propagation. Hie acquisition conditions
of the newspaper images are very different from that of theTdbe videos. To further
evaluate the robustness of the proposed method, we coniselecenario where the test
pose whose motion is to be inferred, is significantly différeom the unlabeled videos
available for learning the conditional density. Specificalve picked poses from the
CMU dataset [123] and learned conditional density using tleos from the Weizmann
dataset. We then propagated action segments from the Wetizdadaset into the training
set as explained before. Test poses in the CMU dataset wergniged using this ex-
tended training set. We chose these datasets since theyamamon actions and differ
widely in their acquisition conditions. Out of the four amts in the CMU dataset which
are also present in the Weizmann dataset, we use “jumpirkg, jaane handed wave”
and “pickup” for our experiment. We avoid the fourth actiolmely, the “two handed
wave”, since it closely resembles jumping jack in still i,reag Such actions, which can-
not be distinguished from still images merely increase thraplexity of the still image
action recognition problem and make a fair comparison obratigms difficult. Hence,
they are normally removed in the literature [99]. The enfifeizmann dataset is used for
learning the conditional density, without assuming anyelely or temporal segmenta-

tion. We emphasize that this is a very difficult testing ctindidue to the large variations
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in acquisition conditions between the datasets, heavyeclut the CMU dataset and the

presence of 7 distractor actions in the Weizmann dataset.

Method Accuracy (%)
Supervised 44.0
Self Training 44.8

Semi-Supervised SVM  45.9

Single View CoTraining 45.2

Proposed Method 50.5

Table 4.2: Activity Recognition accuracy on the CMU dataset.

We picked one image per action for training from the CMU datasel tested on im-
ages from the remaining videos. For each training image, ddecthe most probable
action segments for the Weizmann dataset. To reduce the-dedaset variations, before
recognition, we learned a Partial Least Squares(PLS) skspsing the training samples
from the CMU dataset and the added action segments from themnaan dataset. PLS-
based latent spaces have been effectively used in thetlitereo handle cross-dataset
and cross-model recognition [127]. Interested readersedegred to [127] for further
details. We observed the method to be robust to the subsjraeasion and chose half
the original feature dimension in our experiments. Othateation details were similar

to those for the action recognition experiment on the UCFgsgdthefore. We present
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the recognition accuracies in Table 4.2, and plot the pevéorce with varying number of
nearest neighbork) in Figure 4.14. The results demonstrate that the propossttod
consistently improves the recognition accuracy, even Vaitge variations between the

unlabeled gallery and the testing samples.

4.5.6 Video Thumbnailing

We evaluated the proposed dynamic information measuradeovhumbnailing. In this
problem, the most representative frame in the test videtiosen as the video thumb-
nail. Our method consists of selecting the image with thédmsg dynamic information.
We compared the proposed scheme with the exemplar seledgiorithm called Manifold
Précis [3]. We used this method for comparison since it usesah® LDS representation
for actions and also achieved state-of-the-art performaiée randomly chose two sub-
jects from the Weizmann dataset for testing and the remgisijects as the unlabeled
gallery. We chose the Weizmann dataset in this experimene & consists of short clips
of human actions, a setting where thumbnailing becomesaaet problem. Both struc-
ture and motion-based features were used for the Manif@di®method. HOG features
of the pose were used to capture the structure. LDS featoraputed from a small mo-
tion clip centered at each frame were used to capture theomait is important to note
the proposed method does not use motion information in stevtdeo unlike the Man-
ifold Préecis. However, it does require unlabeled and unsegmentiedsiin the gallery,
which are not required in [3].

We show some of the selected key-frames in Figure 4.15. Adearbserved, often the
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Method Accuracy(%)

Manifold Piécis 85

Proposed Method 90

Table 4.3: Nearest neighbor recognition accuracy of thefiayes selected by Manifold

Précis and the proposed method.

key frames obtained using the proposed method are moreseyetive of the underly-
ing action. To quantitatively evaluate the two methods, westdered recognizing the
action from just the key-frames selected by both the methésused images from four
subjects, non-overlapping with the test ones to form thaitrg data. The nearest neigh-
bor classifier on HOG features was used for recognition. €gegnition accuracies are
shown in Table 4.3. The improvements in the obtained acguraticate the superior
representative properties of the key frames retrieved &ptbposed method. In practice,
one could combine DDI with existing measures for summanrdike representation and

diversity [3] to obtain better results.
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Labeled Pose Nearest Neighbor Poses (Poses added by Self-Training)
Kicking

D|V|ni Runmni D|V|ni D|V|nE Wa|k|ni

Most Probable Action Segment (Poses added by the proposed method)

Nearest Nelghbor Poses (Poses added by Self-Training)

Rldlng Swmi Walklng Swing

Poses added by the proposed method differ from the labeled ones, thus improving training data diversity.

Figure 4.12: Example illustrating the working of the propd$abel propagation approach
for semi-supervised action recognition, for two labeledgmin training belonging to the
diving and swing actions respectively. The correctly eteid nearest neighbor poses are
highlighted in red. While some of the nearest neighbors lgetorincorrect activities due
to errors in pose matching, the most probable action segosomgs to the correct class.
Furthermore, the poses added by the proposed method arly el different from the
test pose. Hence, the training set is greatly enriched byitbposed label propagation

method.
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Figure 4.13: Variation of recognition accuracy with the rognof action segments added

per training image.
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Figure 4.14: Variation of recognition accuracy with the menof nearest neighbors in

the CMU cross-dataset experiment.
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Similar key frames for dlfferent actions

Bend Jump PJump Run  Side ‘Skm Walk Wave1 Wave2 Jack

Leg motion more perceivable in key-frame of proposed method.

Proiosed Precis

Figure 4.15: Key-frames selected by Manifol@Bis [3] and the proposed method. Poses
retrieved by [3] for “jump” and “skip” actions are similar. I#o motion of legs, which
differentiates “jack” from “two handed wave” is more penale in the key-frame of the

proposed method, as legs are not far apart in the normalistapdse.
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Chapter 5
Conclusion and Directions for Future Work

5.1 Summary

In this dissertation, we developed efficient machine legyechniques for visual classi-
fication, when labeled data is limited in number. These algms used unlabeled data
available during testing, or during training and also labedlata in different domain. In
particular we discussed three problems namely:

1. Unconstrained iris recognition, where the training dat the clean iris images,
which do not capture all the possible variations duringingst Testing samples
have large amount of artifacts due to the unconstrained@aatuacquisition, but
are large in number. Hence we proposed a Sparse Represeitased selection
and recognition scheme, which learns the underlying straaif clean images. The
introduced algorithm simultaneously selects the goodseigors, recognizes them
separately and combines the numerous recognition resiltg a Bayesian Fusion
framework. Furthermore, we demonstrate how to performododased recognition
and incorporate privacy using Random Projections withdettihg the recognition
performance.

2. Sensor Adaptation, where most of the enrolled data aregyusidifferent sensor
than the one used for testing. We provide an efficient salutbothis problem, a

machine learning technique to adapt iris data collectenh fooe sensor to another.
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We provide one of the first solutions to this problem, a keleaining framework
to adapt iris data collected from one sensor to another.rnskte evaluations on iris
data from multiple sensors demonstrate that the propos#ubehéeads to consid-
erable improvement in cross sensor recognition accuragsth&more, since the
proposed technique requires minimal changes to the iregraton pipeline, it can
easily be incorporated into existing iris recognition syss.

3. Dynamic Inference from human pose, where unlabeled gide® available during
training. We utilize these unlabeled videos to extract inipmotion information
present in human poses. We pose the inference of this impiaion information
from still images as a hon parametric density estimatioblera on non-Euclidean
manifolds. Statistical inference on the estimated demsityide us with quantities
of interest like the most probable future motion of a humasepand how infor-
mative the given pose is. Our experiments demonstrate hiagxtracted motion
information benefits a variety of applications in computeron like activity recog-

nition, motion prediction and video summarization.

5.2 Future Work

Several directions of research are possible for the prabkemad solutions considered in

this dissertation. We discuss some of them below.
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5.2.1 Semi-supervised algorithms for video-based applications

Visual classification in videos is one of the core problemsamputer vision with appli-
cations like activity recognition and event classificatibmthe future, we plan to analyze
how unlabeled or weakly labeled data can be utilized forghiblem. Labeling in videos
is harder due to the inherent ambiguities about the begirauird ending of activities and
the need to segment both spatially and temporally. Howelten weak labeling informa-
tion is available with movie and sports videos like scrigts) titles and audio. Analyzing
these weak labeling information and utilizing them for \&@bkalassification is a challeng-

ing and relevant problem along the lines of the work preskmi¢his dissertation.

5.2.2 Novel cues for video summarization

In the third part of the dissertation, we demonstrated holaheied training videos can
be used to aid summarization in text videos. This was basedtibzing the inherent
motion information in human poses. However, there are otberces of information
that can be extracted from an image containing a human l&eesproperties [128], and
the presence and location of objects [84]. The proposeddinark can be extended to
capture the influence of these sources on the dynamic infammeonveyed by the human

pose, which can in turn lead to novel cues for video summtioiza

5.2.3 Weak labeling for 3D Reconstruction

In the future, we plan to utilize unlabeled data for estimgtscene geometries in indoor

images. While 3D reconstruction from single image is ill phsene could use strong
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prior in indoor scenes like the “Indoor World” model and thgpaarance and location
of furniture [129]. We will explore how such priors can be dmped efficiently from

unlabeled indoor images.

129



Bibliography

[1] Elaine M. Newton and P. Jonathon Phillips. Meta-analysi third-party evalua-
tions of iris recognition.IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 39(1):4-11, 2009.

[2] N. Osaka, D. Matsuyoshi, T. Ikeda, and Osaka M. Impliediomobecause of in-
stability in hokusai manga activates the human motionigeagxtrastriate visual
cortex: an fmri study of the impact of visual aNeuroreport 21(4), 2010.

[3] Nitesh Shroff, Pavan Turaga, and Rama Chellappa. Mangédis: An annealing
technique for diverse sampling of manifolds.Neural and Information Process-
ing System<2011.

[4] Paul A. Viola and Michael J. Jones. Rapid object deteatising a boosted cascade
of simple features. ICVPR (1) pages 511-518. IEEE Computer Society, 2001.

[5] N. Dalal and B. Triggs. Histograms of oriented gradiemmisHuman detection. In
IEEE Conference on Computer Vision and Pattern Recognif665.

[6] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient rniaitg of pictorial structures.
In IEEE Conference on Computer Vision and Pattern Recogni6ao0.

[7] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Piabstructures revisited:
People detection and articulated pose estimatiotelHE Conference on Computer
Vision and Pattern Recognitip2009.

[8] Ivan Laptev and Tony Lindeberg. Space-time intereshfilnICCV, pages 432—
439. IEEE Computer Society, 2003.

[9] Jaishanker K. Pillai, Vishal M. Patel, and Rama Chellap@aparsity inspired
selection and recognition of iris images. Pmoceedings of the 3rd IEEE inter-
national conference on Biometrics: Theory, applicationsl &ystemsBTAS’09,
pages 184-189, Piscataway, NJ, USA, 2009. IEEE Press.

[10] Jaishanker K. Pillai, Vishal M. Patel, Rama Chellappal Malini K. Ratha. Secure
and robust iris recognition using random projections arasp representations.
IEEE Trans. Pattern Anal. Mach. Intell33(9):1877-1893, 2011.

[11] J.K. Pillai, V.M. Patel, R. Chellappa, and N.K. Ratha. $eetl random projections
for cancelable iris biometrics. Imternational Conference on Acoustics, Speech
and Signal Processingages 1838 —1841, 2010.

[12] Kevin W. Bowyer, Karen Hollingsworth, and Patrick J. Rty Image understand-
ing for iris biometrics: A survey. Computer Vision and Image Understanding
110:281-307, May 2008.

[13] John Wright, Allen Y. Yang, Arvind Ganesh, Shankar S.tBasnd Yi Ma. Robust
face recognition via sparse representati&tE Trans. Pattern Anal. Mach. Intell.
31(2):210-227, 2009.

[14] H. Proena and L. Alexandre. Iris segmentation methagipfor non-cooperative
recognition. IEE Proceedings Part-I: Vision, Image and Signal Procegsin
153(2):199-205, April 2006.

[15] Anil K. Jain, Karthik Nandakumar, and Abhishek NagaroBietric template secu-
rity. EURASIP J. Adv. Sig. Prg2008, 2008.

[16] Ruud M. Bolle, Jonathan H. Connell, and Nalini K. Ratha. Bitmeeperils and

130



patchesPattern Recognition35(12):2727-2738, 2002.

[17] Nalini K. Ratha, Jonathan H. Connell, and Ruud M. Bolle. Hrdag security
and privacy in biometrics-based authentication system@V Systems Journal
40(3):614-634, 2001.

[18] John Daugman. High confidence visual recognition okpes by a test of statis-
tical independencelEEE Trans. Pattern Anal. Mach. Intell15(11):1148-1161,
1993.

[19] R.P. Wildes. Iris recognition: an emerging biometrichteology. Proceedings of
the IEEE 85(9):1348 —1363, sep 1997.

[20] Yi Chen, Sarat C. Dass, and Anil K. Jain. Localized iris gaajuality using 2-d
wavelets. In Zhang and Jain [130], pages 373-381.

[21] N. D. Kalka, V. Dorairaj, Y. N. Shah, N. A. Schmid, and B. Gakimage quality
assessment for iris biometric. Proceedings of the 241h Annual Meeting of the
Gesellschafi flit Klassifikatigrpages 445—-452. Springer, 2002.

[22] Hugo Proenca and Luis A. Alexandre. A method for the tdimation of noisy re-
gions in normalized iris images. FProceedings of the 18th International Confer-
ence on Pattern Recognition - Volume 08PR '06, pages 405-408, Washington,
DC, USA, 2006. IEEE Computer Society.

[23] Xiao-Dong Zhu, Yuan-Ning Liu, Xing Ming, and Qing-lignCui. A quality eval-
uation method of iris images sequence based on waveletaeatt in "region of
interest”. InProceedings of the The Fourth International Conference on @ider
and Information Technolog¥IT '04, pages 24-27, Washington, DC, USA, 2004.
IEEE Computer Society.

[24] LiMa, Tieniu Tan, Yunhong Wang, and Dexin Zhang. Peedadentification based
on iris texture analysis.IEEE Trans. Pattern Anal. Mach. Intell25(12):1519—
1533, 2003.

[25] Karen Hollingsworth, Kevin W. Bowyer, and Patrick J. Rty Image averaging for
improved iris recognition. In Massimo Tistarelli and MarkNixon, editors|CB,
volume 5558 ofLecture Notes in Computer Sciengages 1112-1121. Springer,
20009.

[26] Y. Du. Using 2d log-gabor spatial filters for iris recagon. SPIE Biometric
Technology for Human Id entificatip6202, 2006.

[27] Li Ma, Tieniu Tan, Yunhong Wang, and Dexin Zhang. Effiti&is recognition by
characterizing key local variationdkeEE Trans. on Image Processint3:739-750,
2004.

[28] Emine Krichen, Loéne Allano, Sonia Garcia-Salicetti, and Bernadette Darizzi
Specific texture analysis for iris recognition. In Takeo Ede, Anil K. Jain, and
Nalini K. Ratha, editorsAVBPA volume 3546 ol_ecture Notes in Computer Sci-
ence pages 23-30. Springer, 2005.

[29] Natalia A. Schmid, Manasi V. Ketkar, Harshinder Singhd Bojan Cukic. Per-
formance analysis of iris-based identification system atrttatching score level.
IEEE Transactions on Information Forensics and Secufif®):154-168, 2006.

[30] Chenggiang Liu and Mei Xie. Iris recognition based onadldn Pattern Recog-
nition, 2006. ICPR 2006. 18th International Conference wslume 4, pages 489
-492, 0-0 2006.

131



[31] Kaushik Roy and Prabir Bhattacharya. Iris recognitiothvaupport vector ma-
chines. In Zhang and Jain [130], pages 486—492.

[32] George I. Davida, Yair Frankel, and Brian J. Matt. On dimgpsecure applica-
tions through off-line biometric identification. IHEEE Symposium on Security
and Privacy pages 148-157. IEEE Computer Society, 1998.

[33] Feng Hao, Ross Anderson, and John Daugman. Combiningoomh biometrics
effectively. IEEE Trans. Computer$5(9):1081-1088, 2006.

[34] Sanjay Ganesh Kanade, Dijana Petrovska-Détaer and Bernadette Dorizzi.
Cancelable iris biometrics and using error correcting cadegduce variability
in biometric data. I'CVPR pages 120-127. IEEE, 20009.

[35] Ari Juels and Martin Wattenberg. A fuzzy commitment esgte. INACM Con-
ference on Computers and Communications Segypages 28-36. ACM Press,
1999.

[36] Andrew Teoh Beng Jin, Alwyn Goh, and David Ngo Chek Ling. Bam multi-
space quantization as an analytic mechanism for biohastibgpmetric and ran-
dom identity inputs.IEEE Trans. Pattern Anal. Mach. Intell28(12):1892-1901,
2006.

[37] Jinyu Zuo, Nalini K. Ratha, and Jonathan H. Connell. Caaddel iris biometric.
In ICPR pages 1-4, 2008.

[38] D.L. Donoho and X. Huo. Uncertainty principles and ib@@mic decomposition.
Information Theory, IEEE Transactions of/(7):2845 —2862, nov 2001.

[39] David L. Donoho and Michael Elad. On the stability of thasis pursuit in the
presence of noiseSignal Process86(3):511-532, March 2006.

[40] D. Needell and R. Vershynin. Signal recovery from incéetg@and inaccurate mea-
surements via regularized orthogonal matching purssetected Topics in Signal
Processing, IEEE Journal p#(2):310 —316, april 2010.

[41] Scott Shaobing Chen, David L. Donoho, Michael, and A.riskus. Atomic de-
composition by basis pursuitSIAM Journal on Scientific Computing0:33—-61,
1998.

[42] J.K. Pillai, V.M. Patel, and R. Chellappa. Sparsity imsgiselection and recogni-
tion of iris images. IrBiometrics: Theory, Applications, and Systems, 2009. BTAS
'09. IEEE 3rd International Conference ppages 1 —6, sept. 2009.

[43] A. Beng Jin Teoh and Chong Tze Yuang. Cancelable biomat@ization with
multispace random projectionSystems, Man, and Cybernetics, Part B: Cybernet-
ics, IEEE Transactions qr37(5):1096 —1106, oct. 2007.

[44] J.K. Pillai, V.M. Patel, R. Chellappa, and N.K. Ratha. $eetl random projec-
tions for cancelable iris biometrics. Wcoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference @ages 1838 —1841, march
2010.

[45] H. Rauhut, K. Schnass, and P. Vandergheynst. Compresssihg and redundant
dictionaries. Information Theory, IEEE Transactions 084(5):2210 —2219, may
2008.

[46] E.J. Candes, J. Romberg, and T. Tao. Robust uncertaimigiples: exact signal
reconstruction from highly incomplete frequency inforioat Information Theory,
IEEE Transactions orb2(2):489 — 509, feb. 2006.

132



[47] David L. Donoho. High-dimensional centrally-symmetpolytopes with neigh-
borliness proportional to dimension. Technical report, @amGeometry, (online)
Dec, 2005.

[48] Jeffrey D. Blanchard, Coralia Cartis B, Jared Tanner B, andréw Thompson B.
Phase transitions for greedy sparse approximation algosit submitted, 2009.

[49] K. W. Bowyer and P. J. Flynn. The nd-iris-0405 iris imageabet. Notre Dame
CVRL Technical Repart

[50] P. Jonathon Phillips, Patrick J. Flynn, J. Ross BeveridjeTodd Scruggs, Al-
ice J. O'Toole, David Bolme, Kevin W. Bowyer, Bruce A. Draper,dgEl. Givens,
Yui Man Lui, Hassan Sahibzada, Joseph A. Scallan, lii, anchugh Weimer.
Overview of the multiple biometrics grand challenge Pimoceedings of the Third
International Conference on Advances in Biometri3B '09, pages 705-714,
Berlin, Heidelberg, 2009. Springer-Verlag.

[51] Ewout van den Berg and Michael P. Friedlander. Probimgghreto frontier for
basis pursuit solutionsSIAM J. Sci. Comput31(2):890-912, November 2008.

[52] L. Masek and P. Kovesi. Matlab source code for a bioroedientification system
based on iris patterng.he University of Western Austra}ia003.

[53] P Jonathon Phillips Nist. Frgc and ice workshégcesspage 34, 2006.

[54] James R. Matey and Lauren R. Kennell. Iris recognitionyoe one meter. In
Massimo Tistarelli, Stan Z. Li, and Rama Chellappa, editetandbook of Re-
mote BiometricsAdvances in Pattern Recognition, pages 23-59. Springetdgn
20009.

[55] Kevin Bowyer, Sarah Baker, Amanda Hentz, Karen Hollinget, Tanya Peters,
and Patrick Flynn. Factors that degrade the match diskoitbunh iris biometrics.
Identity in the Information Societp:327-343, 2009.

[56] Ryan Connaughton, Amanda Sgroi, Kevin W. Bowyer, and &atli Flynn. A
cross-sensor evaluation of three commercial iris cameanagié biometrics. In
IEEE Computer Society Workshop on Biometr¥11.

[57] A. Ross and A. K. Jain. Biometric sensor interoperahility case study in fin-
gerprints. Ininternational ECCV Workshop on Biometric Authenticatipages
134-145, 2004.

[58] F. Alonso-Fernandez, R.N.J. Veldhuis, A.M. Bazen, J.rfeeAguilar, and
J. Ortega-Garcia. Sensor interoperability and fusion igdiprint verification: A
case study using minutiae-and ridge-based matcheisitdmational Conference
on Control, Automation, Robotics and Visjgages 1-6, 2006.

[59] F. Alonso-Fernandez, J. Fierrez, D. Ramos, and J. Ger#bdriguez. Quality-
based conditional processing in multi-biometrics: Apgiion to sensor interoper-
ability. IEEE Transactions on Systems, Man and Cybernetiog5):1168—-1179,
2010.

[60] Thomas Hofmann, Bernhard Sikopf, and Alexander J. Smola. Kernel methods
in machine learningAnnals of Statistics36(3):1171-1220, 2008.

[61] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik.tr&ning algorithm
for optimal margin classifiers. I@onference on Learning Thegqnyages 144-152,
1992.

[62] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Srag &mderjit S. Dhillon.

133



Information-theoretic metric learning. limternational Conference on Machine
Learning pages 209-216, 2007.

[63] K. Saenko, B. Kulis, M. Fritz, and T.J. Darrell. Adaptiagual category models to
new domains. lficuropean Conference on Computer Visipages 213-226, 2010.

[64] H. Van Nguyen, V. M Patel, N.M. Nasrabadi, and R. Chellapgparnel dictionary
learning. Ininternational Conference on Acoustics, Speech and Sigreld3sing
2012.

[65] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nellgt@mini, and Christo-
pher J. C. H. Watkins. Text classification using string kesn&burnal of Machine
Learning Researci2:419-444, 2002.

[66] S. V. N. Vishwanathan, Alexander J. Smola, and &¥fidal. Binet-cauchy ker-
nels on dynamical systems and its application to the argbfsilynamic scenes.
International Journal of Computer Visioid3(1):95-119, 2007.

[67] Kilian Q. Weinberger, Fei Sha, and Lawrence K. Saul.rbeay a kernel matrix for
nonlinear dimensionality reduction. Rroceedings of the twenty-first international
conference on Machine learningCML '04, pages 106—, New York, NY, USA,
2004. ACM.

[68] John Daugman. High confidence visual recognition obpes by a test of statis-
tical independencelEEE Transactions on Pattern Analysis and Machine Intelli-
gence 15(11):1148-1161, 1993.

[69] Christopher M. BishopPattern Recognition and Machine Learning (Information
Science and Statisticsppringer, 1 edition, 2007.

[70] Mikhail Belkin and Partha Niyogi. Laplacian eigenmapglapectral techniques
for embedding and clustering. Bdvances in Neural Information Processing Sys-
tems 14 pages 585-591. MIT Press, 2001.

[71] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimengigneeduction by
locally linear embeddingSCIENCE 290:2323-2326, 2000.

[72] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiéaigg. Domain adapta-
tion via transfer component analysis. Pnoceedings of the 21st international jont
conference on Artifical intelligenc@JCAI'09, pages 1187-1192, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[73] Hal Daure lll and Daniel Marcu. Domain adaptation for statisticasdifiers.
Journal of Artificial Intelliegence26:101-126, 2006.

[74] Brian Kulis, Mtys Sustik, and Inderjit Dhillon. Learrgiow-rank kernel matrices.
In International Conference on Machine Learnjqmages 505-512, 2006.

[75] L.M. and Bregman. The relaxation method of finding the owin point of convex
sets and its application to the solution of problems in cepregramming. USSR
Computational Mathematics and Mathematical Phy,sr¢8):200 — 217, 1967.

[76] Amanda Sgroi, Kevin Bowyer, and Patrick Flynn. Cross semss recognition
competition. INIEEE International Conference on Biometrics: Theory, Apgli
tions and System&012.

[77] Yooyoung Lee, R.J. Micheals, and P.J. Phillips. Improeats in video-based
automated system for iris recognition (vasir). Workshop onMotion and Video
Computing pages 1-8, 20009.

[78] Yooyoung Lee, R.J. Micheals, and P.J. Phillips. Robustrgcognition baseline

134



for the grand challenge. INational Institute of Standards and Technology Intera-
gency/Internal Repoy2011.

[79] J. E. Prussing. The principal minor test for semidefimtatrices. Journal of
Guidance, Control, and Dynamic8(1):121-122, 1986.

[80] Thomas B. Moeslund, Adrian Hilton, Volker Kger, and Leonid Sigal, editors.
Visual Analysis of Humans - Looking at Peap&pringer, 2011.

[81] Alper Yilmaz, Omar Javed, and Mubarak Shah. Objectkirag: A survey. ACM
Computing Survey88(4), 2006.

[82] J. K. Aggarwal and M. S. Ryoo. Human activity analysis: eéview. ACM Com-
puting Surveys43(3), 2011.

[83] Christian Thurau and &clav Hlavac. Pose primitive based human action recogni-
tion in videos or stillimages. ITEEE Conference on Computer Vision and Pattern
Recognition2008.

[84] Bangpeng Yao and Li Fei-Fei. Modeling mutual context ezt and human pose
in human-object interaction activities. IEEE Conference on Computer Vision
and Pattern Recognitiqr2010.

[85] Lorella Battelli, Patrick Cavanagh, and lan M. Thorntéterception of biological
motion in parietal patientdNeuropsychologiad1(13), 2003.

[86] Joachim Lange, Karsten Georg, and Markus Lappe. Viseiaeption of biological
motion by form: a template-matching analysisurnal of vision 6(8), 2006.

[87] Masahiro Hirai and Kazuo Hiraki. The relative importanof spatial versus tem-
poral structure in the perception of biological motion: Areet-related potential
study. Cognition 99(1), 2006.

[88] Zoe Kourtzi and Nancy Kanwisher. Activation in human/mmst by static images
with implied motion.Journal of Cognitive Neuroscienc&2(1), January 2000.

[89] N. Jarrasse, J. Paik, and G. Morel. Can human motion @iediincrease trans-
parency? Irinternational Conference on Robotics and AutomatRe08.

[90] Sergey loffe and David Forsyth. Learning to find picaio people. IlNeural and
Information Processing Systeyi$998.

[91] Ankur Agarwal and Bill Triggs. Recovering 3d human posanfrmonocular im-
ages. |IEEE Transactions on Pattern Analysis and Machine Inteltige 28(1),
2006.

[92] Duan Tran and David Forsyth. Configuration estimategowp pedestrian finding.
In Neural and Information Processing Syste@807.

[93] Qiang Zhu, Shai Avidan, M. Yeh, and K. Cheng. Fast humaea®n using a
cascade of histograms of oriented gradients.IHEE Conference on Computer
Vision and Pattern Recognitip2006.

[94] Oncel Tuzel, Fatih Porikli, and Peter Meer. Human diébecvia classification
on riemannian manifolds. ItEEE Conference on Computer Vision and Pattern
Recognition2007.

[95] Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAkesand Deva Ra-
manan. Object detection with discriminatively trainedtgeased modelsIEEE
Transactions on Pattern Analysis and Machine Intelliger3&9), 2010.

[96] Deva Ramanan. Learning to parse images of articulateliebo InNeural and
Information Processing Systen2906.

135



[97] Lubomir Bourdev and Jitendra Malik. Poselets: Body patiedtors trained us-
ing 3d human pose annotations. IEEE International Conference on Computer
Vision, 2009.

[98] Nazli Ikizler, Ramazan Gokberk Cinbis, Selen Pehlivarg Rinar Duygulu. Rec-
ognizing actions from still images. International Conference on Pattern Recog-
nition, 2008.

[99] Nazli Cinbis, Ramazan Cinbis, and Stan Sclaroff. Learm@iagons from web. In
IEEE International Conference on Computer Visi@009.

[100] Weilong Yang, Yang Wang, and Greg Mori. Recognizing Baractions from still
images with latent poses. IEEE Conference on Computer Vision and Pattern
Recognition2010.

[101] Stefan Roth and Michael J. Black. On the spatial staisii optical flow. Inter-
national Journal of Computer Visioir4(1), 2007.

[102] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Der®rrespondence across
scenes and its applicationEEEE Transactions on Pattern Analysis and Machine
Intelligence 33(5), 2011.

[103] J. Yuen and A. Torralba. A data-driven approach fom¢yeediction. InEuropean
Conference on Computer Visia?010.

[104] D. Kerzel. A matter of design: No representational neatam without predictabil-
ity. Visual Cognition 9(1-2), 2002.

[105] S. N. P. Vitaladevuni, V. Kellokumpu, and L. S. Davisctin recognition using
ballistic dynamics. INEEE Conference on Computer Vision and Pattern Recogni-
tion, 2008.

[106] James Hays and Alexei Efros. Im2gps: estimating ggalyc information from a
single image. INEEE Conference on Computer Vision and Pattern Recognition
2008.

[107] Ce Liu, Jenny Yuen, and Antonio Torralba. Nonpararsetdene parsing: Label
transfer via dense scene alignment.IEEE Conference on Computer Vision and
Pattern Recognition2009.

[108] James Hays and Alexei A. Efros. Scene completion usiiigons of photographs.
Communications of the ACN61(10), 2008.

[109] J. Sivic and A. Zisserman. Video Google: A text retakapproach to object
matching in videos. IREEE International Conference on Computer Visi@003.

[110] Soren Hauberg and Kim Steenstrup Pedersen. Praglartilculated human motion
from spatial processefternational Journal of Computer Visio84(3), 2011.

[111] S. Soatto, G. Doretto, and Y. N. Wu. Dynamic textures.lHEE International
Conference on Computer Visio?2001.

[112] Pavan Turaga, Ashok Veeraraghavan, and Rama Chell§patstical analysis on
stiefel and grassmann manifolds with applications in cowmpuision. InIEEE
Conference on Computer Vision and Pattern Recogni2®08.

[113] Yasuko ChikuseStatistics on Special ManifoldSpringer-Verlag, 2003.

[114] O. Tuzel, R. Subbarao, and P. Meer. Simultaneous nheilig motion estimation
via mode finding on lie groups. IFEEE International Conference on Computer
Vision, 2005.

[115] E. Cetingul, H. and R. Vidal. Intrinsic mean shift for staring on stiefel and grass-

136



mann manifolds. IHEEE Conference on Computer Vision and Pattern Recogni-
tion, 2009.

[116] I. Ahmad and P. Lin. A nonparametric estimation of timerepy for absolutely
continuous distributiondEEE Trans. on Information Theorg22(3), 1976.

[117] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. riiegrObject Categories
from Google’s Image Search. IEEE International Conference on Computer
Vision, 2005.

[118] Lixin Duan, Dong Xu, Ivor Wai-Hung Tsang, and Jiebo Ludsual event recog-
nition in videos by learning from web datlEEE Transactions on Pattern Analysis
and Machine Intelligence34(9), 2012.

[119] Olivier Chapelle, Bernhard Schlkopf, and AlexandenZi8emi-supervised learn-
ing. Adaptive computation and machine learning. MIT Pressg200

[120] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Bashictions as space-
time shapes.|lEEE Transactions on Pattern Analysis and Machine Intelige
29(12), 2007.

[121] D. Weinland, R. Ronfard, and E. Boyer. Free viewpointactiecognition using
motion history volumesComputer Vision and Image Understandini@4(3), 2006.

[122] Mikel D. Rodriguez, Javed Ahmed, and Mubarak Shah. dgkctnach: a spatio-
temporal maximum average correlation height filter for@actiecognition. IHEEE
Conference on Computer Vision and Pattern Recogni2008.

[123] Yan Ke, Rahul Sukthankar, and Martial Hebert. Evenedibn in crowded videos.
In IEEE International Conference on Computer Visi@d07.

[124] Y. Wang, H. Jiang, M/ S. Drew, Z.-N. Li, and G. Mori. Unsrvised discovery of
action classes. IfEEE Conference on Computer Vision and Pattern Recognition
2006.

[125] Vikas Sindhwani and S. Sathiya Keerthi. Large scamisipervised linear svms.
In International SIGIR Conference on Research and Developmdnformation
Retrieva) 2006.

[126] Minmin Chen, Kilian Q. Weinberger, and Yixin Chen. Autatit feature decompo-
sition for single view co-training. linternational Conference on Machine Learn-
ing, 2011.

[127] Abhishek Sharma and David W. Jacobs. Bypassing syisthels for face recogni-
tion with pose, low-resolution and sketch.IEEE Conference on Computer Vision
and Pattern Recognitiqr2011.

[128] Antonio Torralba. Contextual priming for object deten. International Journal
of Computer Vision53(2):169-191, 2003.

[129] Varsha Hedau, Derek Hoiem, and David A. Forsyth. Rexpgehe spatial layout
of cluttered rooms. IhWCCV, pages 1849-1856. IEEE, 2009.

[130] David Zhang and Anil K. Jain, editorAdvances in Biometrics, International Con-
ference, ICB 2006, Hong Kong, China, January 5-7, 2006, Piogs volume
3832 ofLecture Notes in Computer ScienS&pringer, 2006.

137



