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ABSTRACT

In this paper we provide an accurate analysis of the performance of a random-carrier
(RC) code-division multiple-access (CDMA) scheme recently introduced for use in high-
capacity optical networks. According to this scheme coherent optical techniques are employed
to exploit the huge bandwidth of single-mode optical fibers and are coupled with spread-
spectrum direct-sequence modulation in order to mitigate the interference from other signals
due to the frequency overlap caused by the instability of the carrier frequency of the laser, or
to the mistakes in the frequency coordination and assignment.

The average bit error probability of this multiplexing scheme is evaluated by using the
characteristic function of the other-user interference at the output of the matched optical filter,
Both phase noise and thermal noise (AWGN) are taken into account in the computation. Both
synchronous and asynchronous systems are analyzed in this context. The analysis is valid for
any spreading gain and any number of interfering users and makes very limited use of approxi-
mations. The performance evaluation of RC CDMA establishes the potential advantage in
employing hybrids of WDMA (wavelength-division multiple-access) and CDMA multiplexing
to combat inter-carrier interference in dense WDMA systems.
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1. Introduction

This paper is motivated by the recent work of [1], where a new random-carrier (RC)
code-division multiplexing (CDMA) scheme was introduced for use in high-capacity optical
networks. According to this scheme, coherent optical techniques are employed to exploit
the huge bandwidth (tens of thousands of GHz) of single-mode optical fibers. The inherent
instabilities of present-day semiconductor lasers are circumvented by coupling the optical
multiple-access system, which is assumed to place randomly the modulated carriers in
the available optical band, with CDMA. In particular, spread-spectrum direct-sequence
modulation is employed in order to mitigate the interference from other signals due to the

frequency overlap caused by the instability of the carrier frequency of the laser.

The transmitter/receiver model and a preliminary performance evaluation of this sys-
tem were provided in [1]. For the sake of simplifying the analysis, several assumptions were
made in [1] about the noise environment (for example, no thermal noise or phase noise
were included) and the key parameters of the system (such as spreading gain, number of
interfering users) were assumed infinitely large so that limiting theorems (e.g., the Central
Limit Theorem) could be used. Furthermore, the accuracy of the approximations used
was not justified for the range of the parameters of interest. In this paper, we extend and
validate the work of [1] by providing an exact evaluation of the performance of the RC
CDMA scheme without making all of the approximations and limiting assumptions made
there.

The following assumptions were made in [1]: (i) the number of interfering users was
taken to be infinite; (ii) the number of chips per bit (spreading gain) of the spread-spectrum
modulation was assumed to be very large so that the Central Limit Theorem can be
used; (iii) the error probability was not directly evaluated and the outage probability was
calculated in terms of the signal-to-noise ratio, which required the signals at the output of
the optical matched filter to be Gaussian in order to be valid; (iv) the time delays of the
various (possibly asynchronous) users did not enter in the evaluation of the performance;
and (iv) the effects of the phase noise and thermal noise on the system performance were

not taken into account. Item (iv) pertains not only to the effects of the phase noise on the
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single-user performance, but also to the effects of the phase noise on the CDMA system
performance caused by its effect on the interference terms due to the other users. Although
all of the above assumptions are relaxed in our paper, in the calculation of the characteristic
function of the multiuser interference, which is essential for the approach followed in our
paper, in one case the Central Limit Theorem is used and in the other case some other
approximation on the phase signature sequence is made.

Relaxing the above assumptions for the system of [1] is an important contribution,
necessary for validating the usefulness of CDMA in a variety of optical network config-
urations. Specifically, in some applications the number of interfering users is not large,
because only a small number of users occuping adjacent frequency bands cause interfer-
ence. Thus assumption (i) of the previous paragraph, which is critical for the analysis of
[1], need to be relaxed.

The analysis presented in our paper is valid for an arbitrary number of interfering
users and an arbitrary large number of chips per bit of the direct-sequence modulation;
moreover, it takes into account the time delays of the interfering users, as well as the
phase noise of the lasers (modeled as a Brownian motion process) and the thermal noise
present at the receiver model (modeled as additive white Gaussian noise [AWGN]). The
performance measure is the average probability of a bit error.

For the evaluation of the bit error probability, we use the characteristic-function
method intoduced in [2] for radio-frequency (RF) CDMA communication systems. The
evaluation of error probability in [2] was carried out for arbitrary deterministic signature
sequences; in [3] the results of [2] were extended to CDMA systems employing random
signature sequences (i.e., mutually independent for different users i.i.d sequences that as-
sume the values +1 and —1 with equal probability). Random signature sequences are a
very useful model for (a) signature sequences, for which there is not much information
available, or (b) for situations characterized by a large number of potential users and a
small number of users that are active or are expected to cause interference. In that last
case, one can not assign orthogonal sequences to all users and thus needs a large num-
ber of sequences with reasonable crosscorrelation properties. Random sequences make the

performance evaluation of CDMA systems with very large populations feasible. In this
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paper, we analyze optical RC CDMA sytems with random signature sequences. In our
analysis, BPSK modulation, as well as On-Off keying modulation is used to modulate the
data bit stream, while MPSK modulation is employed for the signature sequence stream.
Electro-optical phase modulators [4] make these features feasible.

We evaluate the average bit error probability by averaging over the data streams,
signature sequences,carrier frequencies, phases of the interfering users, and time delays (for
asynchronous systems). This is accomplished by computing the characteristic function of
the interference due to the other users at the output of the optical filter matched to a
particular signal. The computational complexity remains linear in the number of users
and in the number of chips per bit (the spreading gain), as it was the case in [2] and [3].
The accuracy of this computational technique can be completely controlled by the user
and is determined by the accuracy of the integration routines invoked; as the the number
of points in the integration rule increases, the required computer CPU time increases. Any
desirable accuracy can be attained via this technique.

Complete numerical results describing the performance of the RC CDMA system will
be provided in the near future and will be reported in an expanded version of this report.
The tradeoffs between the various system parameters (processing gain, signal-to-AWGN
or signal-to-phase noise ratio, number of interfering users, and optical bandwidth) will
be illustrated and interpreted. Besides the average error probability as a function of the
system parameters, the maximum number of users that can be supported with this scheme
at a given error probability will be provided. A comparison with the results of [1] will be
carried out to examine the effect of the approximations and assumptions made in [1].

As a byproduct of our analysis, an exact expression for the error probability of a single
user coherent optical system (employing a spreader/despreader) disturbed by phase noise
and AWGN is derived. The performance of this system is also analyzed in detail in this
report and numerical results will be provided in the second version of the report for several
values of the parameters of interest.

The performance evaluation of RC CDMA will validate the potential advantage in em-
ploying hybrids of wavelength-division (WDMA) and code-division (CDMA) multiplexing

in high capacity optical networks. A scheme based on the principle of combining the best
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features of both FDMA and CDMA multiplexing schemes was proposed recently in [5].
This scheme uses primarily WDMA for providing multiple-access capability and employs
CDMA for protection against laser-frequency instabilities and mistakes in the frequency
coordination and assignment. This hybrid scheme shows great potential for application
to high-capacity optical networks. Our analysis can be extended to this hybrid scheme.
Finally, our analysis will enable us to compare the multiple-access capability of this hybrid
WDMA /CDMA scheme to that of a pure WDMA scheme without CDMA protection.
This paper is organized as follows. In section I, the mod:el and the receiver structure
are described. In section III, the single user performance for the BPSK and OOK
modulation is obtained. Section IV extends the analysis to the multiuser case in which
K active users share a common optical channel. The average bit error probability for
the intended user is obtained by using the characteristic functions of the interference and
AWGN. This section also contains a subsection for the computation of the characteristic
function of the other-user interference. Based on two different sets of assumptions , this
function is obtained for both BPSK and OOK modulation. In section V, the pdf of a
useful random variable which plays an important role in the analysis of both single user
and multiuser systems, is estimated. Section VI extends the analysis to the asynchronous

system, in which random delays are introduced to the signals of the interfering users.
I1. Model

There are K users which share a common optical channel in a multiaccess fashion.

The transmitted optical signal is denoted by S(¢) which is a complex signal in the form of
K .
S(t) =D VP by (t)am(t)eln om0l (1)
m=1

where associated parameters are as follow
- P 1s the transmitted signal power of each user.

- by (t) is the data stream of the m-th user given by

() = 3 WIp(t — nT)

n=—oo
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where b{™ denotes the n-th bit of the m-th user; bszm)e{——l, 1} for BPSK modulation and
bS,"‘)e{o, 1} for OOK modulation. p(t) is a pulse of unit amplitude in [0, T].

- @mpm(t) is the addressing function or signature sequence stream used by user m. That

18

am(t) = etm() — io: ePmnh(t — nT,)
where h(t) is a pulse of unit amplitude in [0, T¢c] and T = % is the chip duration where N
is the number of chips per bit. ¢mn is a phase taking values in [—m,7].

. Wy, is the carrier on which the m-th signal is sent. This value is randomly chosen by
the transmitter laser for (RC) CDMA, or is preassigned for hybrid WDMA /CDMA.

- O (1) is the phase noise associated with the mt? transmitter laser which is a Brownian
motion process with Lorentzian bandwidth 8. The mean of this process is zero and the
variance is 2r8t. At the k-th receiver, the optical signal S(t) is first de-spread by a}(t)
which is the complex conjugate of a(t) , and then homodyne-detected for the transmitted

signal from user k (see Fig. 1). The output of the photodetector is
!
r(t) = VP b(t)e2% O + 3" VP by (1) eilomt+Em (=0 (DFAIn D] 4 (1) (2)

where

AbBi(t) 2 05(t) — 01.(%)

Abp(t) 2 0, (t) — 01(t)

where 67,(t) is the phase noise of the local laser and n(t) is the complex AWGN process
with double-sided spectral density -]%Q . The receiver used is a correlation receiver which

is optimum for the single user case with no phase noise (see Fig. 2). The performance of
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this suboptimum receiver in the presense of phase noise and AWGN is obtained for the

single user and multiuser situations in the following sections.

ITI. Single User Analysis

In this section the performance of the system described in section I7 is evaluated in terms
of BER for the single user case. The real part of the output of of the integrator is denoted
by Y which is

Y =W XVP + VP (3)

where

T
= —11;/0 cos[Afx(t)]dt (4)

and 7 is a zero mean Gaussian random variable of variance 211\;07,. The probability of error

P,, for BPSK modulation is

P, = -;—Pr Y > pV/P{P = ~1] + %Pr [Y < pVPF =1 (5)
where p\/P is the threshold. Upon substitution for ¥ from (3)
1 1
Pe=—2—Pr[n>p+X]+§Pr[n<p~X] (6)

The random variable X takes values in [—1,1]. P, in (6) takes two possible forms depending

on the values of X

P_{%—%Pr[P—X<n<p+X/X>0] wp. p* = Pr(X >0 (1)
‘T )1
2

+1iPr[p+X <n<p—-X/X<0] wp ¢ 2Pr[X <0
Where "w.p.” means ”with probability”. Taking average of (7), we obtain
P, = —I—%—P’r[p—l-X <np<p-X/X <0

Prip—X <n<p+X/X >0 (8)
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We now find the two probabilities in (8). The first one is
1
E;Pr[p-i—X <n<p—-X,X <0

1 0
:—é-;/_lPr[p+X<n<p—X]fx($)de (9)

where fx(-) is the pdf of the random variable X. By using the functions ®(.) and Q(.) (9)

takes the form

= [@ (@—X) %) ((p+x> Qﬁf)—l} fx(@)dz  (10)

where Q(-) and ®(-) are related to the standard normal distribution as follow

I A S
Q)= [ o=

B(a) = / V_%e—ﬁ/z . dz

Similarly, the second integral in (8) is

1 [ 2PT 2PT

— 1-¢ - X + X

A G SR G
Upon substitution of (10) and (11) in (8) the final result is obtained as

((p+x> 2PT)+1¢((p x) 2§T> (12)

fx(z)dz (11)

Pe =

L\Dlr—a

The overlines in (12) indicate expectation with respect to the random variable X. Similarly,

for OOK modulation, P, is obtained as

P.-1Q W%) i 3o ((,, X) 2§T> (13)
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IV. Multiuser Analysis

A) BER Performance

In this section the performance of the system of section I7 is evaluated in terms of BER

for the multiuser case. The output of the integrator V is

!
V=6VPe + VP im+nV/P (14)

where
1 /T
m:T/O eiB0 (D gy, (15)
1 (7 g
I CO / il (O =Bk (D+80,0(D)] gy (16)
T Jo
and

1 T
"= / n(t)dt. (17)

To calculate the integral in (16), we make some assumptions. First assume the phase
addressing functions ¢, (¢) and ¢x(¢) in the chip interval ((n — 1) T, nT¢] take the values

Gmn and Prn in [—m, 7], respectively. Second, for large values of N, it is reasonable to

assume

Abp(t) = A (nTe) 2 b (n—1)T. < t < nT, (18)

where 0, is a zero mean Gaussian random variable of variance 4wf3nT, . Under these

assumptions

b(m) w, Tc N ; 6 ! T
im — 0 Sinc ( "é ) Z el[¢mn_¢kn+ mn+wm(n'—1/2) c]. (19)

n=1

By taking the real part of V in (14)

Y:(bék)-X+§,:Im+n>\/1—3 (20)
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where X and 7 are defined in (3) and (4) , and I,;, is

K™ (0! T o
I = i sznc( 5 );cos(an) (21)
where
Xmn =< ¢mn - ¢kn + mn +w;n(n - 1/2)Tc > (22)

In (22) < - > represents [-| mod.2w . To evaluate the bit error probability, let rewrite (20)

as
Y:(bg’“).x+1+n)ﬁ5 (23)
where
!
I=) In. (24)

The probability of error P., for BPSK modulation, can be obtained from (5)as follows. If
we replace “n” with “I+n” equations (6),(7) and (8) are still valid for multiuser case. The
first probability in (8) is

1
q—*Pr[p-I—X<I—|—n<p—X,X<O]

0
:l*/ Prip+X <I+n<p—X]fx(z)da (25)
7 Ja

Upon substitution for Pr[-] in (25) by an integral,

0 p—z
El;/—l dﬂ?fx(ﬁc)'/,ﬁr frn(y) dy, (26)

X

where fry,(-) is the pdf of I +5. Since the pdf fr4,(-) is a real function, it is easy to show

that

Frea(y) = % /OOO [Re {@14n(u)} - cos(yu) + Im {¢r4q(w)} sin(yu)] du (27)
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where Re{-} and Im{-} denote the real and imaginary parts, respectively, of their complex
arguments. Considering that I and n are independent and that ®;(u) turned out to be

real (see part B of this section),
1 oo
freq(y) = ;/ ®r(u) ®,(u) cos(yu)du (28)
0

Substituting (28) in (26) and performing the integration [ pp;;, the first probability in (8)
is

du
———/ ®r(u) ®,(u) cos(pu) [/ fx(z) sin(uz) dx] — (29)

Using the same procedure, the second probability in (8) is

2
Tp*

") @) costp) | [ (o) sintu) dz] 2 (30)

Combining (29) and (30) in (8), we obtain

1

P=3-2 [T a0 o cos(p) 22X 4,

(31)

where

sin(uX) = /—1 fx(z) sin(uz) dz.

To evaluate P, for OOK modulation, we follow the same method as before and obtain

Pomgog [ i) gy TR TN g, (32)

In order to put (31) in a more meaningful format and also to facilitate the computations,

we rewrite (31) as

P, = -;— 1 /000 a(u) cos(pu)

T

sm(uX )

sm(uX)

+- /Ooo (1~ ®1(u)) By (u) cos(pu) (33)
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The third term in (33) includes the contribution of the other-user interference in BER.

The first two terms are single user contributions. Therefore, by using (13) in (33)

P_ ((p+X) 2PT)+1¢((p )2P;Z’>

w2 [T a-eiw) By ) cos(p) 20K gy, (34)
Similarly for OO K modulation, P, is
1 2PT 1 2PT
Sy T e
b [ 0= 2w @2 =S B (35)
where
_ 0 2

B) Characteristic Function Computation

The computation of P, in (34) and (35) requires the characteristic function of the multiuser

interference, ®7(u) . This is defined as

. . ! b(m) . w'mTc N
1(u) = Ele’™]] = E | ™ 2um N0l 30, cos(Xomn) (37)

where X, is defined in (22) . Here, two approaches are followed for obtaining this
characteristic function.

According to the first approach, it is assumed that the carrier frequencies of the users
are randomly and wuniformly distributed in a bandwith of W. The choice of the phase
signature sequences distribution is arbitrary. This means that the sequence {¢,,} takes
values in [—m, 7] with arbitrary distribution.

In the second approach, it is assumed that the phase signature sequences are contin-

uous and uniformly distributed in [—7,7]. This approximates the case in which {¢..,}
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takes M distinct levels in [—m, 7] with probability % each, where the number of levels M

is large. In this case, the choice of the carrier frequencies distributions is arbitrary.

1.Assumption of Uniform Carriers

Let Xpmp in (37) be

Xmn =< Ymn + Bmn > (38)

where
Ymn = Pmn — Pkn + Omn (39)
Prn = wpn(n — 1/2)T (40)

{w!,} is assumed to be iid and uniformely distributed in a bandwidth W as big as 10
THZ . Therefore, {fBmn} for fixed n are iid and uniformly distributed in a bandwidth of
(n—1/2)W/(RN), where R is the data rate. For typical values of R and N this value is still
very large and it is reasonable to consider {< Bmn >} as iid random variables uniformly
distributed in [—7, 7] (see Appendix B). According to Appendix A , {X,,»} with respect

to m are iid and uniformly distributed in [~m, 7] . Therefore, (37) is expressed as

S ()

eiu (}V SZnC(fJan:_c_) Efj:l COS(an):l . (41)

o;(u)=[]E

This is independent of the index m . Hence

c by . wTe N X (K_l)
@I(u) — {E [ezuwsznc( > )anl cos( n)]} (42)

Assuming Y, 2 cos(X,), it is easy to show that the sequence {Y,} has zero mean and zero

correlation. Therefore, this sequence is a ”p — mizing” (See [6] and [7]) with p(n) =0 .
N

By using CLT for large N, the term —\/1—7 > cos(X,) in (42) can be replaced by ¢ , where
n=1

¢ is a Gaussian random variable of zero mean and variance % Therefore, (42) becomes

iu—?&—sinc(ﬂ%)C] }(K_l) . (43)

®r(u) = {E [e VN
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The expression above is the characteristic function of a Gaussian random variable. There-

fore,

B 1(u) = {E [e—u%"%(sind“’%)z} }(K_l) (44)

where the expectation is with respet to by and w. For BPSK, bye{—1,1}, consequently we

obtain
» — (K-1)
3 1(u) = { exp [—:_N (smc(“’2 : )) (45)
For OOK, boe{0,1}, consequently we obtain
(K-1)
Or(u) = -;— + %exp [—gv (smc(%Tc)) (46)

2. Assumption of Uniform Phase Signature Sequence

For the case in which the signature sequence phases are uniformly distributed in a set of
equally spaced discrete levels, if the number of levels in this set is reasonably large, this
discrete uniform distribution is approximated with a continuous unifom phase in [—m, 7] .

Let us express the characteristic function of the interference I as
®;(u) = By B Bx [e™] (47)

Where I is given by (24) and (21). Ew is the expectation with respect to the N(K — 1)

dimensional vector in {Xyn} . Ej-is the expectation with respect to the K —1 dimensional

vector in {bgm)}. Finally, E— is the expectation with respect to the K — 1 dimensional
vector w’ = (w},...,w). Since {¢ms} in (22) are iid and uniformly distributed in [—x, 7]
for all m and n , based on the result established in Appendix A, {X,,,} are also iid and

uniform in [—m, 7] for all m and n . Therefore,

! N i%b{™) sin c(-‘”-%lc—) c08(Xmn)
Or(u) = H E., Ebgm) H Ex... e . (48)
m n=1
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We use the identity

™
Ean [eiucos(an)] — 2i/ elucosT | g0
™

-7

w/2
= —/0 cos(ucosz)de = Jo(u) (49)

where Jo(-) is the Bessel function of the first kind. Using (49), the inner expectation in

(48) becomes Jy (b((,m) - % -sinc (“’;"QTc)), which is independent of n. Also using the fact

that Jo(a) = Jo(—a), we obtain for BPSK

Ejym) {jjl Ex,. [.]} = [Jo (%Sinc (“’%T°>)]N. (50)

Moreover, assuming that the sequence {wy,} is 7d, (50) will be independent of the index

m and (48) becomes

®r(u) = { [Jo (—J’%sz‘nc (“’g))] N}H (51)

where the overline is the expectation with respect to the generic w scattered in the band-

width of the channel. Similarly , for OOK modulation, ®r(u) is obtained as

k-1

o= {3+ 5[ (Fone (52))] ] o

V. PDF of X

The pdf of X which is defined in (4), depends on ST'; where 28 is the Lorentzian bandwidth
of the Brownian motion process Afi(t) . In order to obtain this pdf through Monte Carlo

simulation, (4) is written as

F né
X=2 / cos (ABk(t)) dt (53)



where F' is the number of divisions of T into smaller portions of size §, where § = %; . For

F' large enough, let
Ab(t) = Abr(n§) 26, (n—1)6<t<né (54)

Upon substitution of (54), (53) becomes

F

X = %; cos(8,,) (55)
where {6,,} is a sequence of zero mean Gaussian random variables of variance 47(né and
correlation 47 B6 min(m,n) . The statistics of X is estimated through the generation of
the random sequence {#,} in a computer by using (55). The accuracy of this estimate is
limitted by the statistical fluctuations in this simulation. More specifically, the accuracy

of the estimate probability of a quantile ¢ , obtained with M independet simulation trials,
is approximately , /ﬁi . For more details, the study of a similar problem in [8] is helpful.

In order to generate {6,}, the iteration below will provide the required properties for

this sequence.
01 ="
{enzon_1+vn 2<n<F (56)

where {v,} is a sequence of iid zero mean Gaussian random variables of varience 47 (5. It

is easy to show that the sequence {6,,} has the required properties.

VI. Asynchronous System

In this section of this paper, the model and the analysis which was developed for the
synchronous system in the previous sections, is extended to the asynchronous case. The
transmitted optical signal; S(t), is given in (1), where t is replaced by t—7,,. The time delay
Tm is considered to be a uniformly distributed random variable in [0, T'] which represents
the m-th user’s time delay. At the k-th receiver, the matched filter is synchronized with the
k-th signal, i.e. 7x = 0. Therefore, equation (23) is still valid and the average probability of
error is given in (34) and (35) for BPSK and OOK modulation, respectively. Evaluation
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of the characteristic function of the multiuser interference for the asynchronous case follows

next. Let us write 7, as

Tm = b Te + 71 (57)
where
Tm
bm = |75
The counterpart of (16) becomes
T
i %/ bt — 7)€l T G (=) =9 (D4 20,(1)] (58)
0

The integral in (58) can be written as

[=1"L =)

where
T Zil /(n—l)Tc-i-rln £, nT,
- +> (60)
A n=1 Y {n—1)T. nzz:l (n—1)Te+7!,
T N (n=1)T.+7,, N nT,
[= % -y o
Tm n=~€p,+2 (n_l)TC n=~¢0,+1 (n'—l)Tc'!'T,’rn

By using (59), (60) and (61) in (58), 7, becomes

1 N (n—1)Tetr,, + nT, o
I = Al Z et . /( eImn . dt + e;m/ e"Imn . dt (62)
n—=1 n—1)T. (n—=1)Tc+7},

where
A
gg;n = w;nt - w:nTm + ¢m(n—l) - ¢’kn + Omn (63)
- A /
Imn = wmt Wy Tm + ¢mn - ¢kn + 9mn (64)
A m
efin 20U 10 41y (n) + 05 - Lo, 42wy () (65)
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- A (m m
emm = 0 11 0,1 (0) + 85 - 11011, (R) (66)

Al 1<n<y
Liagm={, 3= (67)

The counterpart of (21) is obtained as

N
1
Ry — + ot + 4o 0 cos X
I, = R{im} = T ; [emnam cos X, +er. a. cos Amn] (68)
where
! !

ot 2 ) sinc (wszm) (69)

! _ ]
o 2 (T, — 7, )sinc [w_m(zfﬂl} (70)

! !
X:;n é< w:n(n - 1)TC + wm27-m - OJ;nTm + ¢m(n—1) - ¢kn + Omn > (71)
! !

X S wh(n—1/2)T, + wszm — W T + Pmn — Pkn + O > (72)

At this point, similar to the synchronous case, we make two assumptions as follows.

1. Assumption of Uniform Carriers

As before, we observe that, in this case {X;},,} and {X_, .} with respect to m are iid and

uniformly distributed in [—7, w|. Therefore,

!

(I)](U) _ H E [6]% (a; Zx=1 ein cos X,tn-i—a;l Zi\;l €,y COS X;m)] (73)

m

This is independent of index m. Hence
u _ _ B (K-1)
o= B[ et L o) -

The sequences {e}f cos X;F'} and {e; cos X} are “p — mizing” sequences. Therefore

®r(u) = {E [eju%ﬁ(a+n++a‘n—)} }(K_l) (75)
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where nt and = are zero mean Gaussian random variables of variance % for BPSK and i
for OOK modulation. Moreover, since n and 5~ are uncorrelated, they are independent.

Therefore
®;(u) = {E [ej%‘/]v"’] }(K_I) (76)

where 7 is a conditionally zero mean Gaussian random variable of variance —%— [(a"’ )2 + (a~ )Z]I

for BPSK and ; [(a*)? 4+ (a™)?] for OOK modulation. Finally, for BPSK

2

Bi() = ""p{“fﬁ (1 = 7 )Psine(w(T, - )/2) + (T)n (‘_"21)]}

(77)
where the expectation is with respect to w and 7. As before w is uniformly distributed in
the bandwidth W and 7 is uniformly distributed in [0,7;.]. For OOK modulation, only
4N should be replaced by 8N in (77).

2. Assumption of Uniform Phase Signature Sequence

Since the two sequences {¢;,(n—1)} in (71) and {¢mn} in (72) are iid and uniformly
distributed in [, 7] for all m and n, then, the two sequences {X}, } and {X 1} are also
iid and uniformly distributed in [—=, 7] for all m and n. This validates equation (73) for
this case. Moreover, the two sequences {X;t .} and {X} are independent of each other.
To prove this we need to show that the two random variables Xt = and X ;; are independent
for all m,n,? and j. For all cases, except the case in which ¢ = m and 7 = n — 1, the
iid and uniform phase sequences {¢m(n—1)} in (71) and {¢i;} in (72) provide the proof
in a straightforward manner. For the case m = ¢ and j = n — 1, X} and X;; are still

independent, because ¢i, and @y(,—1) are independent and uniform for this case. Using

these facts
! N - )
@I(U) — HEm {H EX:;" [e%ameiln COSX;‘)I;n] . EX;,,n [e%ar_ne;tn COSX?:IH} } (78)
m n=1

where the expectation E,, is with respect to the all random variables with index m. Upon
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substitution from (49)

By (u) = ];IEm{H To (gatieha) Jo (50 e;m)} (79)

For BPSK modulation e}, and e,,, belong to {—1,1}. Therefore, the inner product is

independent of n and (79) becomes

®(u) = ﬁEm [JO (%a;) T, (_,’-I‘,-a;)] v (80)

Moreover, assumming that the sequences {w,,} and {7} are iid, the expectation above
will be independent of the index m and finally, the characteristic function of the multiuser

interference for BPSK modulation is obtained as

(K—1)
B () = {[JO (% . Tlc.smc [“’;D To (N (1 - TT—) sinc [#D]N} I (81)

where the expectation in (81) is with respect to w and 7, which are distributed in [-W/2, W/2]]]
and [0, 7.}, respectively.
The evaluation of the characteristic function of the multiuser interference for OOK in

this case, is more tedious than for BPSK. We know that £, is a uniform discrete random

variable which takes values in {0,1,..., N —1}. By assuming
em 2 To(zh b)) oY) (82)
dm 2 To(mak ™) Jo(= (7 ab{™) (83)
vm 2 Jo(=al b)) Jo(=ar bS™) (84)

(79) becomes

1] f o)

n=1 =£{,+2

@s(u) = [[ Em {
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Since ¢y, , dip and vy, are independent of n, then
!
®;(u) = HE’m {vmcf,;"d%_em—l} . (86)
m

Performing the expectation above with respect to ¢,,, yields

[ N-1
Or(u) = Im] Em {%_"1 Z cindf,i-l—i} . (87)

=0

By taking expectation with respect to (b(_”ll), b((,m)) and rearranging the terms, the final

result is

Dr(u) = {i— + %[R(w,T)R(w,Tc - T)]N

1
+ -

AN [R(wJT) + R(W:TC - T))

(K~1)
1 — [R(w, 7)R(w, T, — )]~ (&8)
[R(wa T)R(wa TC - T)]

where

R(w) = %Tsinc(%z). (89)
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Appendix A

In this appendix , we show that if a sequence of #id random variables, which are uniformly
distributed in [—, 7], are added to any other sequence of random variables with arbitrary
distribution, the resultant sequence mod.27 is also #2d and uniformly distributed in [—m, 7.
To show this, let

Xp =< ¢n+ An > (A1)

where {¢,} is assumed to be iid and uniform in [~, 7] for all n, and {/\n} is a sequence

of random variables with arbitrary distribution. Here we establish two claims:
Claim 1: X,, and ¢, have the same distribution.

Proof : It is a known fact that

Xnlgiven A = én (A2)

The pdf of Xn is obtained as
Fra@) = [ Fainn @, ()N (43)

By usin (A2), (A3) becomes
Fra@) = [ £au @0 = Fou (o) (A4)

Claim 2: {X n} are independent for all n.

Proof : We show that any two random variables X,, and X; (n # [) are independent. To

show this, it suffices to show that for any function g(-)

Elg(Xn)g(X1)] = Elg(Xn)]E[g(Xi)] (45)

Given A, and A\; in (A1), the first side of (A5) conditioned on these values is

Elg(< ¢n + An >).9(< ¢+ A >)|An, Al (A6)
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Since ¢, and ¢ are independent, (A6) becomes
Elg(< én + An >)Aal - Elg(< dr+ A >)|Ad] (A7)

or

Elg(Xn)|An] - Elg(Xn)IAl- - (48)

From Claim 1:

Xa 4 X, |given An,

X; £ X;|given A1 (A9)
Therefore, (A8) is
Elg(Xa)] - Elg(X0)l- (A10)
This means that
Eg(Xa)g(X0)n, M) = Elg(Xn)] - Elg(X0)] (A11)

Taking expectation respect to the A, and A gives (A5) and this completes this proof.

Appendix B

In this appendix, the distribution of a random variable which is obtained as the mod.2m
of a uniform random variable is derived. Let assume X to be a random variable which is
uniformly distributed in the bandwidth [0, W]. We are interested to know the distribution

of the random variable ¥~ which is defined as
Y=<X>. (B1)
The random variable Y is expressed in terms of some disjoint intervals as follows

X —2nm if onr < X <2(n+1)m 0<n<M

Y:{X—2M7r if 2Mr<X<W (B2)

where

M = |W/2n]

22



For «e[0,27], the event (Y < a) is expressed as

M-1
U (X — 2nrw < a, 2n7r<X<2(n+1)7r)U(X—2M7r§a, 2nt < X < W) (B3)

n=0

The probability of (B3) is the summation of the probabilities of the indivitual events in
(B3). By using the conditional probability and after some simplifications, Fy(a) ; the

cummulative distribution function of Y, is

a|W/2r| +min(a , W —2x|W/2x])

Fy(a) = 7

(B4)

For 21[/7; >> 1, this distribution approaches to a uniform one.
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