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Directed By: Professor Ali Haghani, Department of Civil and 

Environmental Engineering  

Unexpected congestion due to incidents may cause a substantial delay for drivers and 

reduce the roadway safety.  Effective incident management relies on many tools to lessen the 

overall impact of crashes, road debris, and disabled vehicles.  Many urban areas have adopted 

freeway service patrol (FSP) programs that patrol the freeway network searching for incidents, 

providing aid to motorists, and assisting with incident management and clearance. 

FSP management must consider the beat configuration, fleet size, and fleet allocation.  

The beat configuration is how the network is divided into different parts for patrolling, and each 

part is called a beat.  The beat configuration, fleet size, and fleet allocation need to be determined 



 

 

for designing a network for FSP program.  However, the literature lacks profound analytical 

methodologies for this purpose, and a few previous models typically tried to design these 

elements distinctly while they are strictly interrelated.  Therefore, our research presents a 

comprehensive mixed-integer programming model to design the network for freeway service 

patrol programs.  This model aims to concurrently determine the beat structure, fleet size, and 

allocation of trucks to beats, to minimize incident delay while the operational cost is considered, 

as well.   

The research uses part of the Tarrant County Courtesy Patrol (CP) network in Texas as a 

numerical example to examine the model’s capability to address different issues in patrol 

programs and to determine the impact of each factor on the optimal design.  Also, to explore the 

problem with field data and real-size networks, the proposed model and developed heuristics are 

applied to part of the freeway network in Maryland covered by Coordinated Highways Action 

Response Team (CHART).  Results indicate that a joint model forms a better solution regarding 

incident delay reduction and operation costs. 
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Chapter 1: Introduction 

Non-recurring congestion due to incidents is a significant concern of all urban drivers.  

Unexpected incidents such as a stalled vehicle, a vehicle out of gas, or debris on the pavement 

cause large traffic delay to all drivers.  Quick removal of these incidents from the freeway is 

necessary to recover the network performance, and as a result, systematized procedures should 

be implemented to respond and clear incidents as soon as possible.  For this purpose, state 

agencies and transportation professionals have come up with several strategies and programs.  

Well-planned incident management programs can cause significant delay savings for users by the 

quick recovery of the freeway capacity.  The most important aspect of freeway incident 

management programs is the rapid removal of the incidents [1]. 

More than fifty percent of the non-recurring traffic delay caused in urban areas and nearly 

all incurred delay in rural areas are due to incidents [2].  The total delay incurred due to incidents 

includes Detection Time, Verification Time, Response Time, Clearance Time, and Recovery 

Time [3].  Response time is the time since the incident is detected until incident management 

team arrives at the location to remove the incident.  Clearance time starts when the aid process 

starts until the incident is removed from the freeway and is highly dependent on the incident 

type.  Response time and detection time compose a large part of the total delay but could be 

significantly decreased by using a proper strategy.  Traffic management uses different 

http://www.sciencedirect.com/science/article/pii/S0377221708001549#bib27
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approaches to quickly respond to unexpected incidents such as using variable message signs, 

ramp metering, temporary shoulder use or other strategies [4].  Many metropolitan areas 

implement freeway service patrol (FSP) programs that patrol the freeway network searching for 

incidents, providing aid to motorists, and assisting with incident management and clearance.  

This system is in use in many metropolitan regions such as Los Angeles, Chicago, and Dallas-

Fort Worth.  This incident management program has several benefits among which the most 

important ones to mention are the reduction in incident delays for traffic users, fuel consumption, 

air pollutant emissions, and incident response and clearance times [5].   

These elements are significantly decreased by implementing patrol programs, and they 

are usually used as measures of effectiveness to evaluate the performance of the patrol programs.  

There are additional benefits for patrol programs such as benefits to assisted motorists, benefits 

to the freeway operators, improved safety, improved average freeway travel speeds and freeway 

throughput, less number of secondary accidents, and better public perception [5].  According to 

the estimate reported by USDOT, about 14% to 18% of all crashes are caused because of an 

earlier incident [2].  The probability of occurring secondary incidents increases as the incident 

duration for the initial incident increases. Therefore, effective incident management can largely 

reduce the number of secondary crashes and improve the freeway safety [6].  Figure 1 

demonstrates how FSP programs can reduce the traffic delay.  In Figure 1, N is cumulative 

vehicle counts, V is vehicle thru-flow rate, Ti is the duration of the incident (with no FSP in 
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service), TFSP is the duration of the incident with FSP service provided on the beat, TNF is the 

duration of the incident-induced congestion, C is freeway’s (normal) capacity, and Ci is 

freeway’s capacity during the incident [5].  As shown, FSP service reduces the duration of the 

incident and, as a result, reduces the total incident-induced delay on the network.  

 

Figure 1 - Incident Delay Reduction by FSP Program [5] 
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The first patrol program started in Chicago, Illinois in 1960, and currently many 

metropolitan areas implement patrol programs among which there are:  

• H.E.L.P. (Highway Emergency Local Patrol; New York)  

• CHART (Coordinated Highways Action Response Team; Maryland) 

• HERO (Highway Emergency Response Operators; Georgia) 

• Hoosier Helper Program (Indiana) 

• Texas’s Courtesy Patrol  

• California’s Freeway Service Patrol 

Problem Statement 

In tackling FSP problems, three major issues need to be dealt with.  First is the beat 

configuration, which is how the network is divided into different parts for patrolling.  Each part 

is called a beat.  For this purpose, the freeway network should be segmented into different links 

and each link is assigned to at least one beat.  The second issue is the fleet size constraint, which 

determines the optimal number of trucks to fully cover the network while the cost associated 

with additional trucks is taken into account.  Finally, truck allocation, which determines how 

trucks need to be allocated to beats such that delay caused by incidents is minimized.  Patrol 

trucks become aware of an incident while patrolling on the beat and this procedure highly relies 

on the beat configuration, and the number of trucks on each beat, because larger headways will 
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increase mean detection-response times.  In this research, we propose a mixed-integer 

programming model to deal with all three major issues in patrol programs along with addressing 

several additional aspects of the program. 

Organization of the Dissertation 

The rest of the study is organized as follows.  First, in the literature review section, 

current studies are reviewed, and their contribution to the field is investigated.  The problem 

statement and model framework to tackle the problem are presented in the next section.  

Methodology section includes the steps to formulate the problem mathematically.  Then, the 

research uses part of the Tarrant County Courtesy Patrol (CP) network in Texas as a numerical 

example to verify the capabilities of the model.  Also, to explore the problem with field data and 

real-size networks, the proposed model and developed heuristics are applied to a subset of the 

freeway network in Maryland covered by Coordinated Highways Action Response Team 

(CHART).  In the last sections, the results and conclusions are presented.    
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Chapter 2: Literature Review 

Evaluation Studies 

FSP programs are proven to be economically advantageous.  Fenno and Ogden found that 

B/C ratios for FSP programs range from 2.1 to 36.2 nationwide [7].  Also, while incidents may 

be found via loop detectors or cellular phone calls, patrol trucks are typically closer to potential 

incident locations and may detect many of the incidents themselves which reduce detection time 

significantly; for instance, the San Francisco–Oakland FSP located 92% of all incidents itself [8].  

Another study by Nee and Hallenbeck [9] shows that for lane-blocking incidents in the Puget 

Sound region of Washington State, the average response time without FSP was 7.5 min while 

response time was reduced to 3.5 min with FSP in service.  They claim that the patrol programs 

reduce incident response times by 19% to 77%. 

Skabardonis and Mauch [5] proposed a model to estimate the benefit over cost ratio of 

providing FSP service using empirical data and an additional model was developed to predict the 

cost-effectiveness of proposed FSP beats which currently provide no FSP service.  According to 

the evaluation studies, patrol program is cost-effective based on MOEs before and after the 

implementation of the program; and benefits of the program depend on the beat’s geometric, 

traffic characteristics, and the frequency and type of assisted incidents [5].  Moore II et al. [10] 

claims that secondary incidents in Los Angeles freeways where FSP is implemented occur much 
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less frequent than suggested in the literature.  Also, it is shown that reduction in response time is 

associated with incident duration reduction; for example, Khattak et al. [11] found that a 1-min 

reduction in response time causes a 0.6- to a 1-min reduction in incident clearance time.  Overall, 

a significant number of studies and performance evaluation studies [12-16] have similarly 

confirmed the effectiveness of such incident management programs to mitigate incident-incurred 

congestion [17].  

Network Design  

Reviewing literature reveals that patrol programs have been explored in several studies.  

However, the majority of these studies intended to evaluate the overall performance of the 

program and determine the benefit over cost ratio after the program’s implementation, while only 

a limited number of studies aimed to propose a solid mathematical framework to design the 

network for patrol programs efficiently.  Although the deployment of the response patrol trucks 

is a critical aspect of the efficiency and performance of the program, the literature lacks profound 

analytical methodologies for this purpose [1].  Nevertheless, still, some ambiguous methods have 

been presented to improve the performance of the patrol programs [18].  In following, we review 

some of the general models for incident response programs, in addition to more particular 

models suggested for the patrol programs in the literature.    

http://www.sciencedirect.com/science/article/pii/S0377221708001549#bib34
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Sherali et al. [19]  formulated two mixed-integer models to determine the optimal 

assignment of multiple response units into multiple incidents considering operation and 

opportunity costs.  Kim et al. [20] developed an integer-programming model to minimize the 

total incident-incurred delay by optimizing the deployment locations of incident response units.  

Daskin [21] proposed a mixed-integer model to determine the dispatching policy and routing for 

incident response units.  These studies tried to determine optimal locations and dispatch policy of 

response units but did not consider patrolling of incident response units.  Two studies on 

Tennessee HELP program [22] and Maryland CHART program [23] are among the first 

programs that tried to reveal important locations that should be covered in their corresponding 

networks by using some traffic and incident indexes.  

Zografos et al. [1] proposed a districting model to minimize incident-induced delay by 

determining the optimal locations of emergency response units.  This study transforms freeway 

corridors into sections with the similar demand of incident service and assumes that demand of 

each section is concentrated at its centroid.  Zhu et al. [24] evaluated the performance of the 

incident response units based on three different strategies for allocation of incident response 

units.  These include whether to allocate response units near high-frequency incident locations, 

or distribute the units equally over the network, or place them at the traffic operation centers to 

dispatch to the incident location once an incident occurs.  Another study by Zhu et al. [25] 

developed a methodology to evaluate both patrolling and dispatching strategies for allocating 

http://www.sciencedirect.com/science/article/pii/S0377221708001549#bib39
http://www.sciencedirect.com/science/article/pii/S0377221708001549#bib12
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emergency response units based on field data from the I-495/I-95 Capital Beltway.  They claim 

better strategy depends on some critical factors such as incident frequencies, traffic 

characteristics, and available detection methods.   

Petty [3] planned a model based on traffic theory in combination with marginal benefit 

analysis, for determining where to place tow trucks to maximize the expected reduction in 

congestion.  Yin [26] proposed a minimax bi-level programming model to determine a fleet 

allocation that minimizes the maximum system travel time that may result from incidents.  These 

two studies presented two distinct strategies to allocate trucks by following two different 

objectives.  Our research is also providing a methodology for determining the best allocation of 

trucks by minimizing incident duration while operation cost is taken into account. 

Pal and Sinha [27] presented a simulation model to evaluate and improve the 

effectiveness of freeway service patrol programs regarding total vehicle-hours in the system.  

They presented a sensitivity analysis to show the possible improvements by showing the trend of 

FSP program performance after changing the fleet size or a minor change in current beat 

configurations.  They found fleet size, beat design; dispatch policies, patrol area, and hours of 

operation are parameters that can be changed to improve the performance of the program.  This 

study provided insight into our research on the appropriate parameters to investigate during the 

case study, and as a result, most of these parameters are carefully considered.  Pal and 
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Sinha [28] also proposed a mixed-integer programming model to determine the optimal locations 

of incident response units to minimize the operation cost. 

Khattak et al. [29] presented an approach to determine, evaluate, and compare the most 

beneficial locations among the candidate facilities to expand the FSP network by analysis of 

incident indexes (and incident type distribution and incident delay estimation) combined with 

spatial analysis and average hourly freeway traffic volumes.  They assume that high-priority 

locations are already covered.   They do not aim to design beats or allocate trucks and only rank 

the locations that FSP is more beneficial in case that expansion is desirable.  

Yin [30] formulated a model to allocate patrol trucks among beats by optimizing the 

performance of the FSP system.  A mixed integer nonlinear programming model is formulated to 

minimize the expected loss with respect to a set of high-consequence scenarios of incident 

occurrence.  Also, Daneshgar [31] presented a model based on two deterministic and 

probabilistic approaches to estimate the average response time to optimize patrol program 

performance by minimizing the total response time and determining the best beat configuration 

among existing beat structures in Tarrant County, Texas.  Also, as a base for our study, 

Daneshgar [32] developed a joint mixed-integer model to determine the beat configuration and 

fleet size assuming single depot and based on minimization of total response time without 

presenting a heuristic algorithm to solve the problem for large size networks.  Generally, one of 

the issues in several earlier studies [33-35] is that their methodologies only consider the major 
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incidents [17] while our proposed model can fairly consider incidents with different severities 

and approximately take the clearance time into account as a factor. 

Contribution 

Among few studies to design the network for patrol programs, nearly all of them attempt 

to either design the beats or allocate trucks into the pre-designed beats and perform these two 

steps separately while these are truly interrelated.  Therefore, our research aims to present a 

model to merge these problems and determine the beat configuration, fleet size, and truck 

allocation together.  According to the literature, only one study by Lou [36] attempted a similar 

strategy.  The current study aims to present an improved and comprehensive model, and as a 

result, here, we explain what is completed in Lou’s work and explain significant contributions 

that are made by the current study.  Lou presented a non-linear model to determine beat 

configuration and fleet allocation with the objective of minimizing the overall average incident 

response time.  However, in developing this non-linear model, many simplistic assumptions are 

made such as assuming the number of beats is given, or a total number of trucks (fleet size) is 

assumed.  They proposed a non-linear model [36] which aims to minimize only the response 

time as part of the total delay and does not consider truck’s expenses.  Our research aims to 

present a comprehensive mixed-integer programming model to design the network for freeway 

service patrol programs.  This model aims to concurrently determine the optimal beat 
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configuration along with the optimal fleet size and trucks allocation to minimize incident-

incurred delay while the operational cost is taken into account, as well.    
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Chapter 3: Model Framework  

Consider a directed graph, G(N,A), representing a network of freeways where N and L 

represent sets of nodes and links, respectively.  We assume tij is the travel time, and fij is the 

number of incidents during the planning horizon, for each link ij.  There are two major decision 

variables in the model that need to be determined. The first variable is 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏  which determines 

whether link ij is covered by beat b and the second decision variable is 𝑉𝑉𝑏𝑏 which determines the 

number of trucks that must be assigned to each beat b.  As a result, the fleet size can be 

determined, too.  The following notations are used in the model:  

𝐺𝐺(𝑁𝑁, 𝐿𝐿) =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  

𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐺𝐺 

𝐿𝐿 = 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐺𝐺  

𝐿𝐿𝐿𝐿 =  𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  
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𝐷𝐷 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏 𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏  

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏 =   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∶  𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏   

𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∶  𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏  

𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑  =   𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖  

𝑆𝑆𝑆𝑆𝑑𝑑𝑏𝑏   =  𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑 𝑡𝑡𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏 (𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑|𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏 = 1)   

𝑦𝑦𝑖𝑖𝑏𝑏 = �1          𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏
0                                                 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  

𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏 ,𝑍𝑍𝑒𝑒𝑏𝑏 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉𝑏𝑏 

𝑄𝑄𝑖𝑖𝑖𝑖𝑏𝑏  = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  ,𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ,𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖1 ,𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖2 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑆𝑆𝑖𝑖𝑖𝑖 
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ℎ𝑖𝑖𝑖𝑖𝑏𝑏 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Most of the papers in the literature assume that patrol trucks are immediately available 

and never busy on another case at the time of an incident occurring.  However, our research tries 

to capture this possible scenario fairly.  Here, Ps is defined as the probability that in a time of an 

incident, patrol trucks on the same beat could be busy in another case.  One way to calculate Ps is 

to explore the historical incident log data and determine the number of scenarios that the truck 

serving an incident was initially attending another case at the time of the subject incident 

occurrence.  This data may be available if patrol trucks record log data about incidents they 

serve.     

Patrolling Response Time 

Incidents usually cause a substantial delay for urban drivers and increase travel times.  

They cause about 50% to 60% of the congestion in urbanized areas [11].  Delay experienced by 

urban drivers due to incidents may significantly decrease if incidents are identified, responded to 

and removed as soon as possible.  Response time reduction is highly dependent on incident 

management strategies.  Well-designed patrol programs can significantly reduce the response 

time and delay experienced by users.  As a result, considering the response time reduction in FSP 
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network design is a must.  Please note in patrol programs, response time typically includes 

detection and verification time when incidents are detected by patrol trucks themselves.  Given 

𝑉𝑉𝑏𝑏 as the number of patrol trucks allocated to each beat b, assuming that patrol trucks keep a 

constant headway, the average response time on each beat could be calculated as below: 

𝑅𝑅𝑏𝑏 =
∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

𝑏𝑏
𝑖𝑖𝑖𝑖∊𝐿𝐿

2𝑉𝑉𝑏𝑏
                                                                        (1) 

Where 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏determines whether link ij is included in beat b and 𝑉𝑉𝑏𝑏 is the number of trucks 

patrolling in beat b and 𝑡𝑡𝑖𝑖𝑖𝑖 is the average travel time on link ij.  For the purpose of having a 

linear term, response time could be re-calculated as follow: 

𝑅𝑅𝑏𝑏 =
∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

𝑏𝑏
𝑖𝑖𝑖𝑖∊𝐿𝐿

2𝑉𝑉𝑏𝑏
=  

∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖
𝑏𝑏

𝑖𝑖𝑖𝑖∊𝐿𝐿

2
 [1 −  ∑ ∑  ( 1

𝑒𝑒−1
𝑒𝑒=𝑉𝑉
𝑒𝑒=2 −  1

𝑒𝑒
)𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏𝑇𝑇

𝑚𝑚=1 ]                                           (2) 

Equation (2) initially calculates the average response time based on one truck on the beat 

(Vb =1) and reduces the response time for each additional truck assigned to the beat.  Given 

equation (2) we may calculate the following statement: 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏  𝑖𝑖𝑖𝑖∊𝐿𝐿 = ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏  ∑ 𝑡𝑡𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘
𝑏𝑏

𝑘𝑘𝑘𝑘∊𝐿𝐿
2

 �1 −  ∑ ∑  ( 1
𝑒𝑒−1

𝑒𝑒=𝑉𝑉
𝑒𝑒=2 −  1

𝑒𝑒
)𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏𝑇𝑇

𝑚𝑚=1 �𝑖𝑖𝑖𝑖∊𝐿𝐿 =
∑ ∑ 𝑡𝑡𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘

𝑏𝑏  𝑋𝑋𝑖𝑖𝑖𝑖
𝑏𝑏

𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿

2
−

 
∑ ∑ 𝑡𝑡𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘

𝑏𝑏  𝑋𝑋𝑖𝑖𝑖𝑖
𝑏𝑏

𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿

2
  ∑ ∑  ( 1

𝑒𝑒−1
𝑒𝑒=𝑉𝑉
𝑒𝑒=2 −  1

𝑒𝑒
)𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏𝑇𝑇

𝑚𝑚=1 =

0.5[∑ ∑ 𝑡𝑡𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏  𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿 −  ∑ ∑ ∑ ∑ ( 1
𝑒𝑒−1

𝑉𝑉
𝑒𝑒=2

𝑇𝑇
𝑚𝑚=1 −  1

𝑒𝑒
)𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿  𝑡𝑡𝑘𝑘𝑘𝑘  𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏  𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏 ]           (3) 
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             All variables are as defined before.  Note that each truck could be allocated only to one 

beat and for each beat 𝑉𝑉𝑏𝑏 =  ∑ ∑ 𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏𝑒𝑒𝑚𝑚 .  Equation (3) is presented to linearize the statement 

𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏  which will be applied in the objective function.  

Non-Patrolling Detection: Response Time  

The above calculations for the average response time are for the case once the incident is 

detected by patrol trucks while patrolling on their assigned beat on a regular route.  However, 

sometimes there are cases where other sources detect incidents and trucks are informed to 

respond.  As a result, patrol units do not need to follow the regular route to detect the incident 

and could respond to the incident in their assigned beat using the shortest path.  Table 1 lists the 

difference between patrolling detection and non-patrolling detection scenarios. Assuming that 

incidents are responded only by patrol trucks on the same beat, the average response time for 

non-patrolling, 𝑅𝑅𝑛𝑛𝑏𝑏, could be estimated similar to the patrolling response time but the average 

non-patrolling response time is roughly about half of the estimated average patrolling response 

time.  This happens because in the non-patrolling case the closest truck in the beat is sent to the 

location while in the patrol case trucks are not aware of the incident and need to detect the 

incident on their way ahead, as shown in Figure 2.     
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Table 1 - Patrolling vs. Non-Patrolling Detection  

 Detection Path to Incidents 

Patrolling Detection  Patrol Trucks Patrol Route 

Non-Patrolling Detection  Others Shortest Path 

 

Figure 2 - Patrolling vs. Non-Patrolling Detection Response 
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Given 𝑉𝑉𝑏𝑏 as the number of trucks allocated to each beat b, assuming the patrolling trucks 

keep a constant headway, and time spent to turn around is negligible, the average non-patrolling 

response time on each beat can be calculated as below: 

𝑅𝑅𝑛𝑛𝑏𝑏 =
∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

𝑏𝑏
𝑖𝑖𝑖𝑖∊𝐿𝐿

4𝑉𝑉𝑏𝑏
=  R

b

2
                                                      (4) 

Assume we have a beat with four trucks patrolling on.  As shown in Figure 3, once an 

incident occurs, depending on its location and how it is detected, one of the patrol trucks may 

respond to the incident.  Trucks 1 through 4 respond to the incidents in the red, green, blue, and 

yellow area, respectively.  Apparently, the coverage area for each unit is different depending on 

whether the incident is detected by patrol trucks or by other sources which informed the patrol 

trucks.  Please note these areas constantly change relevant to the location of patrol trucks, at the 

moment. 
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.  

Figure 3 - Truck Coverage for Patrolling Detection (Top) vs. Non-Patrolling Detection (Down) 
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Service Time 

Response time is dependent on the performance of incident management systems such as 

patrol programs.  On the other hand, clearance time is more dependent on the incident severity 

and the service provided at the incident scene.  However, designing the network for patrol 

programs solely based on the response time minimization, regardless of incidents severity, may 

not result in optimal performance.  Assume a network where a part of it typically has major 

severe incidents because of traffic characteristic and its geometric design, while the rest of the 

network may have the same number of incidents but with less severity.  It is obvious that more 

frequent patrolling is required on high-risk links although the distribution of incidents is similar.  

Exactly how an effective patrol program can reduce the clearance time is not a major focus of 

this study.  However, as will be explained subsequently, this study attempts to somehow consider 

the clearance time in the model such that areas with a higher likelihood of severe incidents are 

covered more frequently.  

For this purpose, here, service time is defined to be the time spent on the incident scene 

only by patrol trucks and does not include the time spent and service provided by the dispatch 

system or other emergency units such as fire trucks, ambulances, and police vehicles, to clear the 

incident.  It is reasonable to assume that increasing the number of patrol trucks may decrease the 

service time and as a result may reduce incident clearance time.  Service time is the same as 

clearance time if the incident is cleared only by patrol trucks.  Note that in many cases, 
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especially disabled vehicles or minor incidents, the incident is completely cleared by the patrol 

system.  Other emergency vehicles only assist in severe incidents and crashes.  According to the 

CHART’s performance evaluation report in 2012 [37], CHART (Coordinated Highways Action 

Response Team) responded to more than 63500 emergency cases while in about 65% of the 

cases, assistance was provided to disabled vehicles and only 35% of the cases were collisions. 

If we assume only one patrol truck stops at each incident and other patrol trucks continue 

their patrolling on the beat regardless of the current incident, then, service time is independent of 

the number of trucks on each beat.  However, typically each truck on its patrolling stop at the 

incident location, even if another truck is already there and that help from an additional truck 

may shorten the service time duration.  Reduction in service time by additional trucks depends 

on several factors such as incident severity and type of required service.  So, a comprehensive 

study may be required to determine the patrol program’s service time reduction by additional 

trucks.  However, it may be an acceptable assumption to consider that, for example, an incident 

that needs 18 minutes of service by a single truck may be cleared in 9 or 6 minutes, if there were 

two or three trucks available, respectively, providing the service at the same time.  If we assume 

that assist from each additional truck makes half the rest of the service time, then: 

𝑆𝑆𝑖𝑖𝑖𝑖𝑏𝑏 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏  ,  𝑚𝑚𝑚𝑚𝑚𝑚 ��
𝑆𝑆𝑖𝑖𝑖𝑖−0.5𝑘𝑘(𝑘𝑘−1)𝑅𝑅𝑖𝑖𝑖𝑖

𝑏𝑏

𝑘𝑘
� , 0�} +  𝑚𝑚𝑚𝑚𝑚𝑚[(

𝑆𝑆𝑖𝑖𝑖𝑖−0.5𝑉𝑉(𝑉𝑉−1)𝑅𝑅𝑖𝑖𝑖𝑖
𝑏𝑏

𝑉𝑉
),0]𝑘𝑘=𝑉𝑉−1

𝑘𝑘=1                      (5) 
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Figure 4 shows how additional trucks may reduce the service time.  First truck starts 

clearing the incident, and once the second truck gets there, the rest of the service is provided by 

two trucks which reduce the rest of the service time to half of what was in the case of only 

having one truck.  The same happens once the third truck or more arrive at the place.  This time 

is only the time that aid is provided by the patrol trucks and does not include any time spent by 

other systems to clear the incident.  In Figure 4, case (a) occurs when only one truck is at the 

incident scene while in case (b) a second truck and in case (c) a third truck joins the first truck to 

remove the incident.    

 

Figure 4 - Additional Trucks Reduce the Service Time 
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The contribution of service time and in general, clearance time in the model depends on 

the operational details and how additional trucks may reduce the rest of the service time.  

However, based on the operational conditions, the model could be updated accordingly.  

The above formulation in statement 5 is based on the fact that every additional truck may 

create an impact and reduce the service time while this may not be a practical assumption.  For 

different case studies and scenarios, we may come up with a maximum number of trucks that 

may impact the service time.  For example, assume that three trucks are the maximum number of 

trucks which can reduce the service time.  For this scenario, Table 2 represents the service time 

based on the incident type and number of trucks on the beat.  In Table 2, 𝑅𝑅 and 𝑉𝑉𝑏𝑏 are the 

average incident response time, and number of trucks on the beat, respectively.  Also,  𝑆𝑆𝑖𝑖𝑖𝑖 is the 

average service time for the incidents on link ij, assuming only one patrol truck provides the 

assist.  

Table 2 - Service Time for each Link ij in beat b: Additional Trucks Cause Service Time Reduction 

 𝑺𝑺𝒊𝒊𝒊𝒊 < 𝑹𝑹 𝑹𝑹 < 𝑺𝑺𝒊𝒊𝒊𝒊 < 𝟑𝟑𝟑𝟑 𝑺𝑺𝒊𝒊𝒊𝒊 > 𝟑𝟑𝟑𝟑 

𝑽𝑽𝒃𝒃 = 𝟏𝟏 𝑆𝑆𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖 

𝑽𝑽𝒃𝒃 = 𝟐𝟐 𝑆𝑆𝑖𝑖𝑖𝑖 
𝑆𝑆𝑖𝑖𝑖𝑖
2

+
𝑅𝑅
2

 
𝑆𝑆𝑖𝑖𝑖𝑖
2

+
𝑅𝑅
2

 

𝑽𝑽𝒃𝒃 ≥ 𝟑𝟑 𝑆𝑆𝑖𝑖𝑖𝑖 
𝑆𝑆𝑖𝑖𝑖𝑖
2

+
𝑅𝑅
2

 
𝑆𝑆𝑖𝑖𝑖𝑖
3

+ 𝑅𝑅 
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Please note that it has been claimed by some studies that reduction in response time 

generates a reduction in clearance time, as well.  Khattak et al. [8] found that a 1-min reduction 

in response time causes a 0.6 to a 1-minute reduction in incident clearance time.  Therefore, 

another approach to consider the impact of patrol programs on clearance time reduction, (and 

subsequently to include clearance time as part of the inputs into the model to design the 

network), is to estimate the average reduction in clearance time caused by reduction in incident 

response time and determine the savings regardless of the number of patrol units.  Although the 

number of patrol units in each beat, might seem an irrelevant factor in this approach, actually 

locations with more severe incidents (incidents which require longer clearance times) will be 

assigned more patrol trucks to reduce the response time further and as a result, reduce the 

clearance time.  As a result, locations with more severe incidents will be assigned an additional 

number of patrol trucks.  

Parameters 

It is necessary to convert benefits achieved by incident duration reduction, caused by the 

patrol program, into monetary value to have equivalent statements in the objective function.  For 

this purpose, first, the traffic delay avoided by the incident duration reduction through the patrol 

program (in veh-hrs) need to be determined.  Figure 1 shows how FSP programs save the 

incident delay.  
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A few approaches are presented in the literature to estimate delay savings.  Sun et al. [38] 

presented a method to estimate the total delay under traffic incident management (TIM) and non-

TIM, and, as a result, delay saving could be estimated.  This method requires input data on 

incident duration, volume, and reduced capacity.  Also, Khattak and Rouphail [39] developed a 

method to estimate delay savings as a function of volume-to-capacity ratio, knowing the area 

type, the number of blocked lanes, and estimated incident duration.   

Then, given the total delay avoided for the volume on the network and the value of time, 

the monetary value of incident duration reduction could be calculated.  The value of time 

multiplied by the total avoided delay for the traffic volume on the network determines the cost 

savings caused by the patrol program.  However, this approach may not be practical as it requires 

a comprehensive evaluation study for the subject network based on each scenario.  Then, the 

second approach is to rely on the value of delay avoided by incident duration reductions that are 

reported in the literature.  Referring to FSP program evaluation studies, the delay avoided by 

patrol programs could be obtained based on different scenarios of incident duration reduction, 

traffic volume, and incident types.  The avoided delay is mainly dependent on these factors, and 

as a result, a few different values for the parameter could be obtained based on different ranges 

of these influencing elements.  Then, the upper bound, lower bound, the average value or an 

appropriate value based on the subject scenario could be applied.  Mathematical details on how 

to calculate the parameter are provided in the numerical example section.  
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Importance Factor 

An importance factor, I, may be introduced for each link based on the road characteristics 

such as volume, capacity, road type, location, safety, and security.  The introduction of this 

factor helps to cover the roads with a higher priority more frequently.  Each of these 

characteristics could be categorized to a small set of standard ranges.  Then, a classification table 

is defined based on the combination of these categories of different characteristics, and each 

class is assigned an importance factor value.  Therefore, each road will be assigned an 

importance factor value based on its class.  For the objective function, we may need to normalize 

these importance factors such that for each link k:  

𝐼𝐼𝑘𝑘𝑛𝑛 =  𝑛𝑛𝐼𝐼𝑘𝑘∑ 𝐼𝐼𝑗𝑗𝑗𝑗
                                       (6) 

Objective Function 

In this research, we propose a mixed-integer programming model to determine the 

optimal beat configuration, fleet size, and allocation of patrol trucks to beats for patrol programs 

while incident delay, including response time and service time by the patrol program, plus the 

cost associated with the program is minimized.  Please note that in patrol programs incidents are 

typically detected by patrol units, and, as a result, response time simultaneously includes 
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detection and verification time.  The first term in the objective function, to minimize the 

response time and service time, starts as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑓𝑓𝑖𝑖𝑖𝑖(𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏 + 𝑆𝑆𝑖𝑖𝑖𝑖𝑏𝑏 + 𝑃𝑃𝑠𝑠
𝑆𝑆𝑖𝑖𝑖𝑖
𝑏𝑏

2
)𝑖𝑖𝑖𝑖∊𝐿𝐿

𝐵𝐵
𝑏𝑏=1                           (7) 

This term minimizes the total response and service time during the planning horizon.  

The statement in the parenthesis estimates the average response and service time for each link 

and this statement is multiplied by the number of incidents in each link during the horizon, fij, to 

calculate the total delay.  

The above objective function is non-linear and non-convex but could be linearized.  For 

this purpose, we make the following transformations.  First, as shown before, the response time 

and the service time can be transformed into linear expressions as shown below:  

∑ ∑ Xijbfij(Rij
b + Sijb + Ps

Sij
b

2
)ij∊L

B
b=1 =  ∑ ∑  XijbfijSijb(1 + Ps

2
)ij∊L

B
b=1 + ∑  ∑  Xijbfij Rij

b
ij∊L

B
b=1 =

∑ ∑  XijbfijSijb(1 + Ps
2

)ij∊L
B
b=1 +  0.5∑ ∑ ∑ fijtklXklb Xijbkl∊Lij∊L

B
b=1 −

 0.5∑ ∑ ∑ ∑ ∑ fijtkl(
1

e−1
V
e=2

T
m=1 −  1

e
)kl∊Lij∊L  Xklb XijbVmebB

b=1                  (8)
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Statement (8) is presented to linearize statement (7).  The first term in equation (8) 

estimates the total service time while the second and third terms calculate the total response time 

during the horizon.  See statement (3) for the response time calculation.  

In the second step to linearize the model, a new set of binary variables are introduced.  

The model is non-linear due to cross multiplication of some binary variables, but this non-

linearity could be resolved by introducing a new set of binary variables and replacing each cross 

product ∏ Xjj∊Q  by a new variable XQ such that [40]:  

𝑋𝑋𝑗𝑗 ≥  𝑋𝑋𝑄𝑄     𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎  𝑗𝑗 ∊ 𝑄𝑄                                  (9) 

So, the following changes are made in the model: 

𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏 𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏 = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏                                (10) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏 =  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏                                   (11) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏 =  𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏                                    (12) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑆𝑆𝑖𝑖𝑖𝑖𝑏𝑏 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑏𝑏                               (13) 

These dummy variables are introduced to linearize the model.  All variables are as 

defined before.   
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In the following, expression 14 is added up to the objective function to capture the 

operating costs during the planning horizon.  Also, to assign each beat to a depot, in case that 

multiple depots are available, statement 15 is suggested. 

∑ ∑ ∑ 𝐶𝐶𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏 ∗ (ℎ𝑟𝑟 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑)𝑉𝑉
𝑒𝑒=1

𝑇𝑇
𝑚𝑚=1

𝐵𝐵
𝑏𝑏=1                   (14) 

∑ ∑ 𝑆𝑆𝑆𝑆𝑑𝑑𝑏𝑏𝐵𝐵
𝑏𝑏=1

𝐷𝐷
𝑑𝑑=1                       (15) 

Statement 15 determines the total shortest distances between each beat b and its 

corresponding depot d; and, in the objective function, parameter β is added up to monetize this 

term.  Also, parameter 𝛼𝛼  is introduced to convert incident duration reduction and, as a result, 

traffic delay savings to monetary value.  Finally, importance factors are added up to take into 

account the road priorities based on influential characteristics.  So, the proposed formulation 

including the objective function and constraints forms as follows:  
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𝑀𝑀𝑀𝑀𝑀𝑀   

𝛼𝛼[∑  ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑏𝑏  𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛(1 + 𝑃𝑃𝑠𝑠
2

)𝑖𝑖𝑖𝑖∊𝐿𝐿  +𝐵𝐵
𝑏𝑏=1  0.5∑ ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝑘𝑘𝑘𝑘   𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑏𝑏
𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿

𝐵𝐵
𝑏𝑏=1 −

 0.5∑ ∑ ∑ ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝑘𝑘𝑘𝑘𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛( 1
𝑒𝑒−1

𝑉𝑉
𝑒𝑒=2

𝑇𝑇
𝑚𝑚=1 −  1

𝑒𝑒
)𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿  𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝐵𝐵

𝑏𝑏=1 ]  

+� � � 𝐶𝐶𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏 (ℎ𝑟𝑟 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑)
𝑉𝑉

𝑒𝑒=1

𝑇𝑇

𝑚𝑚=1

𝐵𝐵

𝑏𝑏=1
  

+ 𝛽𝛽∑ ∑ 𝑆𝑆𝑆𝑆𝑑𝑑𝑏𝑏𝐵𝐵
𝑏𝑏=1

𝐷𝐷
𝑑𝑑=1                 (16) 

Subject to:  

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏 ≤   𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏             𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿,𝑘𝑘𝑘𝑘 ∊ 𝐿𝐿,𝑚𝑚 = {1. .𝑇𝑇}, 𝑒𝑒 = {1. .𝑉𝑉}, 𝑏𝑏 = {1. .𝐵𝐵}      (17) 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏 ≤   𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏            𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿,𝑘𝑘𝑘𝑘 ∊ 𝐿𝐿,𝑚𝑚 = {1. .𝑇𝑇}, 𝑒𝑒 = {1. .𝑉𝑉},𝑏𝑏 = {1. .𝐵𝐵}      (18) 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏 ≤   𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏           𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑘𝑘𝑘𝑘 ∊ 𝐿𝐿,𝑚𝑚 = {1. .𝑇𝑇}, 𝑒𝑒 = {1. .𝑉𝑉}, 𝑏𝑏 = {1. .𝐵𝐵}       (19) 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏 ≤   𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏                           𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿,𝑘𝑘𝑘𝑘 ∊ 𝐿𝐿, = {1. .𝐵𝐵}         (20) 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏 ≤   𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏                          𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿,𝑘𝑘𝑘𝑘 ∊ 𝐿𝐿, = {1. .𝐵𝐵}         (21) 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏 ≥  𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏 + 𝑋𝑋𝑘𝑘𝑘𝑘𝑏𝑏 − 1       𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿,𝑘𝑘𝑘𝑘 ∊ 𝐿𝐿, = {1. .𝐵𝐵}         (22)    

𝑅𝑅𝑏𝑏 =  0.5 �∑ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖∊𝐿𝐿 −  ∑ ∑ ∑ ( 1
𝑒𝑒−1

𝑉𝑉
𝑒𝑒=2

𝑇𝑇
𝑚𝑚=1 − 1

𝑒𝑒
)𝑖𝑖𝑖𝑖∊𝐿𝐿 𝑡𝑡𝑖𝑖𝑖𝑖  𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏 �         (23) 

𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏  ≤   𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏              𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿,𝑚𝑚 = {1. .𝑇𝑇}, 𝑒𝑒 = {1. .𝑉𝑉}, 𝑏𝑏 = {1. .𝐵𝐵}        (24) 
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𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏  ≤   𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏                        𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿,𝑚𝑚 = {1. .𝑇𝑇}, 𝑒𝑒 = {1. .𝑉𝑉}, 𝑏𝑏 = {1. .𝐵𝐵}        (25) 

∑ ∑ 𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏𝑉𝑉
𝑒𝑒=1

𝐵𝐵
𝑏𝑏=1 ≤  1             𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑚𝑚            (26) 

∑ ∑ 𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏𝑉𝑉
𝑒𝑒=1

𝑇𝑇
𝑚𝑚=1 =  𝑉𝑉𝑏𝑏          𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑏𝑏            (27) 

∑ 𝑉𝑉𝑚𝑚𝑚𝑚𝑏𝑏𝑇𝑇
𝑚𝑚=1 =  𝑍𝑍𝑒𝑒𝑏𝑏                        𝑓𝑓𝑓𝑓𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒 = {1. .𝑉𝑉}, 𝑏𝑏 = {1. .𝐵𝐵}         (28)  

𝑍𝑍𝑒𝑒𝑏𝑏 ≥  𝑍𝑍𝑒𝑒+1𝑏𝑏                                 𝑓𝑓𝑓𝑓𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒 = {1. .𝑉𝑉},𝑏𝑏 = {1. .𝐵𝐵}         (29) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑏𝑏 ≤ 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏                                         𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵}         (30) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑏𝑏 ≥ 𝑆𝑆𝑖𝑖𝑖𝑖𝑏𝑏 −  𝑀𝑀(1 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏 )                 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵}         (31) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑏𝑏 =  ∑  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘=𝑉𝑉−1
𝑘𝑘=1  +  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉            𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵},𝑘𝑘 = {1. .𝑉𝑉}       (32) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≥ (𝑆𝑆𝑖𝑖𝑖𝑖−0.5𝑘𝑘(𝑘𝑘−1)𝑅𝑅𝑏𝑏

𝑘𝑘
)                 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵},𝑘𝑘 = {1. .𝑉𝑉}        (33) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≥ 0                                            𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵},𝑘𝑘 = {1. .𝑉𝑉}        (34) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≤  𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏                                         𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵},𝑘𝑘 = {1. .𝑉𝑉}        (35) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≤  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘                                        𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵},𝑘𝑘 = {1. .𝑉𝑉}       (36) 

𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏 −  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≤ 𝑀𝑀𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖1                         𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵},𝑘𝑘 = {1. .𝑉𝑉}       (37) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 −  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≤ 𝑀𝑀𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖2                       𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵},𝑘𝑘 = {1. .𝑉𝑉}       (38) 

𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖1 +  𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖2 = 1                             𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑘𝑘 = {1. .𝑉𝑉}         (39) 
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𝑆𝑆𝑆𝑆𝑑𝑑𝑏𝑏 ≥  𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏 ∗ 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑  −𝑀𝑀�1 − ℎ𝑖𝑖𝑖𝑖𝑏𝑏 �       𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵}         (40)            

∑ ℎ𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖∊𝐿𝐿 =  1                                      𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑏𝑏             (41) 

ℎ𝑖𝑖𝑖𝑖𝑏𝑏 ≤  𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏                                             𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿, 𝑏𝑏 = {1 …𝐵𝐵}         (42) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝐵𝐵
𝑏𝑏=1 =  1                        𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿               (43)          

𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏 = 𝑋𝑋𝑗𝑗𝑗𝑗𝑏𝑏                               𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿            (44) 

∑ 𝑦𝑦𝑖𝑖𝑏𝑏𝐵𝐵
𝑏𝑏=1 ≥ 1                        𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖 ∊ 𝑁𝑁            (45) 

𝑦𝑦𝑖𝑖𝑏𝑏 ≤ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑗𝑗∊𝑁𝑁,𝑖𝑖𝑖𝑖∊𝐿𝐿 +  ∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑏𝑏𝑗𝑗∊𝑁𝑁,𝑗𝑗𝑗𝑗∊𝐿𝐿  ≤ 𝑀𝑀𝑦𝑦𝑖𝑖𝑏𝑏            𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖 ∊ 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏        (46) 

∑ 𝑄𝑄𝑖𝑖𝑖𝑖𝑏𝑏𝑗𝑗∊𝑁𝑁,𝑖𝑖𝑖𝑖∊𝐿𝐿 −  ∑ 𝑄𝑄𝑗𝑗𝑗𝑗𝑏𝑏𝑗𝑗∊𝑁𝑁,𝑗𝑗𝑗𝑗∊𝐿𝐿  =  −𝑦𝑦𝑖𝑖𝑏𝑏           𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖 ∊ 𝑁𝑁, 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 = {1. .𝐵𝐵}      (47) 

𝑄𝑄𝑖𝑖𝑖𝑖𝑏𝑏 ≤  𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑏𝑏                         𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑖𝑖𝑖𝑖 ∊ 𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 = {1. .𝐵𝐵}          (48) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏 = 1𝑖𝑖𝑖𝑖∊(𝐿𝐿𝐿𝐿−𝐿𝐿)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑏𝑏 = {1. .𝐵𝐵}           (49) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖∊𝐿𝐿 ≤ 𝑀𝑀𝑉𝑉𝑏𝑏                𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑏𝑏 = {1. .𝐵𝐵}            (50) 
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In the above model, the objective function minimizes the monetized value of the total 

response and service time during the time horizon plus the costs associated with the program.  In 

the model, constraints 17 through 22 define a new set of binary variables to resolve the non-

linearity of the model as explained in the previous section.  Constraint 23 presents the average 

response time formulation, and constraint 24 and 25 define a binary variable, O, to linearize the 

formulation for average response time and are added to make sure of the value of this dummy 

variable.  The average response times are calculated based on the assumption that there is a 

constant headway between patrol units, and assuming an average patrolling speed.  Although 

patrol units may drive faster or slower depending on the traffic condition, we assume an average 

patrolling speed as the model is intended for planning purposes.  Besides, the network could be 

designed based on several average patrolling speeds for different traffic conditions (for example, 

peak hours vs. non-peak hours).  Also, please note that patrol units may use shoulders or other 

special access routes to avoid the potential congestion on their way to the incident scene.  

Constraint 26 makes sure that each vehicle is assigned not more than once; constraint 27 

calculates the total number of trucks in each beat, and constraints 28 and 29 are added to 

calculate number of patrol trucks in each beat, 𝑉𝑉𝑏𝑏.  Constraints 30 through 39 are added to 

estimate the average service time on each beat.  Please note that constraint 32 calculates the 

average service time and the rest of the constraints are added to linearize this calculation.  Please 

note the formulation to calculate the service time is a general formulation based on the 
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assumption of unlimited impact of additional trucks.  Constraints 40 through 42 are added to 

assign beats to depots and determine the shortest distance between depots and their 

corresponding beat to deal with multi-depot problem.  

The rest of constraints, constraint 43 through 50, are general constraints of the model.  

Constraint 43 ensures that exactly one beat covers each link.  This constraint could be modified 

depending on the practical implementations such that more than one beat could cover each link 

or the patrol system may not even cover some links that are served by the dispatch system. 

However, in practice, it is not common to cover links with several beats as it could cause 

disturbance for response units and requires additional coordination (although it may be beneficial 

hypothetically).  Also, all links must be covered by patrol units unless there is a dispatch system 

to cover links with low incident rates once an incident occurs.  Therefore, in the proposed model, 

since it is intended for patrolling purposes only, it is assumed that each link must be covered by 

exactly one beat.  In general, in patrol programs, emergency units are normally much closer to 

potential incident locations and may find and immediately respond to numerous incidents 

themselves which significantly reduces detection and response times while dispatch system 

could be used for low intensity links which continuous patrolling may not be beneficial.     

Constraint 44 ensures that link ij is covered by the same beat that covers link ji.  This 

constraint could also be relaxed such that links on different direction of the same segment are 

covered by different beats.  However, yet again in practice, there are many parts of the network 
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in which patrol units may be able to observe the other side while covering one side of the road.  

Therefore, to take advantage of this, and avoid confusion between patrol units on different beats, 

it is more beneficial to cover both sides of the road by the same beat and patrol crew.  Constraint 

45 ensures that at least one beat covers each node.  Constraint 46 states that if there is any link 

covered by beat b starting or ending at node i then node i is included in beat b. Constraints 47 

through 50 ensure connectivity of nodes covered by the same beat.  

In the above objective function, to take into account the number of incidents responded 

but not detected by patrol trucks, we may update the first and second terms in the objective 

function as below: 

𝛼𝛼[∑  ∑ (𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝 + 0.5𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑) 𝐶𝐶𝑖𝑖𝑖𝑖𝑏𝑏  𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛(1 + 𝑃𝑃𝑠𝑠

2
)𝑖𝑖𝑖𝑖∊𝐿𝐿  +𝐵𝐵

𝑏𝑏=1  0.5∑ ∑ ∑ (𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝 + 0.5𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑) 𝑡𝑡𝑘𝑘𝑘𝑘 𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑏𝑏
𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿

𝐵𝐵
𝑏𝑏=1 −

 0.5∑ ∑ ∑ ∑ ∑ �𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝 + 0.5𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑� 𝑡𝑡𝑘𝑘𝑘𝑘 𝐼𝐼𝑖𝑖𝑖𝑖𝑛𝑛( 1

𝑒𝑒−1
𝑉𝑉
𝑒𝑒=2

𝑇𝑇
𝑚𝑚=1 −  1

𝑒𝑒
)𝑘𝑘𝑘𝑘∊𝐿𝐿𝑖𝑖𝑖𝑖∊𝐿𝐿  𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝐵𝐵

𝑏𝑏=1 ]                    (51) 

The constraints are the same as before and only the constraint for the service time needs 

to be updated based on the non-patrolling detection response time.  Please note this formulation 

is based on the assumption that in the case of a reported incident, the incidents will be responded 

by trucks on the same beat.  In general, in the model, there are two sets of variables.  First stage 

variables are X and V which are main variables while the rest of the variables such as R, S, C, W, 

U are second stage variables.  Second stage variables are calculated based on scenarios and 

values for the first stage variables.  This study presents a comprehensive model that covers 



 

38 

 

important aspects of patrol programs and addresses issues as much as possible to optimize the 

performance of the FSP programs.  Part of the advantages of the current model compared to 

previous models in the literature is presented in Table 3. 

Table 3 - Advantages of the Proposed Model 

Proposed Model Previous Models 

Linear Non-Linear 

Convexity of Linear Relaxation Non-Convex 

Find Optimal Number of Beats Pre-specified Number of Beats 

Find Optimal Fleet Size Pre-specified Number of Total Trucks 

Clearance Time Considered Only Response Time 

Multi Depot Single Depot 

Individual Cost for Each Truck Only One Cost 

Trucks being Busy at the Time of Incident Not Considered 

Importance Factor Not Considered 
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Chapter 4: Numerical Example 

Study Area 

To verify the model’s capability, confirm the formulation accuracy, and evaluate the 

impact of different features of the model in the solution, the proposed model is applied to part of 

the Tarrant County Courtesy Patrol (CP) program in Dallas-Fort Worth metropolitan area, as a 

numerical example.  As a general rule, the study assumes that the probability of incident 

occurrence is uniform along each link because another freeway does not cross the link, and as a 

result, the traffic characteristics do not change significantly, though geometric conditions may 

change.  Importance factors are assumed to be identical for all links.  The network for the 

numerical example includes eight nodes and 11 links as illustrated in Figure 5. 

Tarrant County CP maintains a log during each shift for each truck.  The crew records the 

incident location and type, as well as the time that assistance was provided.  In this study, we 

investigate their logs for October 2010 since October represents a typical month regarding traffic 

volume (i.e., there are no significant holidays).  For this case, travel times are calculated based 

on the standard patrolling speed of 55 MPH for the Tarrant County CP.    
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Figure 5 - Schematic Diagram of the Numerical Example’s Network 

Another issue to deal with in traffic incident management programs is to find the ideal 

location for the depot to minimize travel for response units between the depot and potential 

incident locations.  In patrol program, trucks keep patrolling on the network and only need to 

travel between the depot and their assigned beat twice per each shift: once from the depot to the 

beat to start the shift and once from their beat to the depot at the end of the shift.  Patrol 

programs are not that much dependent on the location of depots like dispatch case (where, upon 

incident detection, trucks are sent to the incident location directly from depots, for each 

incident).  However, the performance of the patrol programs could be improved (decrease in 
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operation cost) by optimally assigning beats to available depots.  Therefore, in the case that there 

are multiple choices available for the depot, it needs to be determined how depots should cover 

beats.  Figure 6 shows two locations of Texas Department of Transportation from which patrol 

trucks could be sent off.   

 

Figure 6 - Tarrant County’s Courtesy Patrol Depots 
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Parameters Calculation 

Parameter α was calculated based on findings of an earlier evaluation study [41] on 

H.E.L.P. (Highway Emergency Local Patrol) program, and details are presented below in Table 

4.  Five scenarios of response time reduction (RTR) are investigated.  Each scenario is based on 

three different types of incident (shoulder blocked, one lane blocked, two lanes blocked) and four 

categories of hourly traffic volumes.  Thus, each scenario is based on 12 categories of incident 

type and traffic volume.  As discussed before, α is highly dependent on traffic volume and 

incident type.  Parameter α is calculated based on each scenario and listed in Table 4.  Parameter 

α approximately ranges between 10 to 15, and these values are used as the upper and lower 

bounds in this case.   

For the H.EL.P network, there were 693 incidents assisted by the program.  In Table 4, 

VEH-HR refers to the vehicle-hour unit, and RTR refers to the average response time reduction 

caused by the patrol program.  For the numerical example, the value of time is assumed to be 15 

dollars per hour.  
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Table 4 - Calculation of Parameter α 

Scenario RTR  
(min) 

VEH-HR 
Saving 

VEH-HR Saving  
Per 1-min RTR 

VEH-HR Saving Per 
Incident Per 1-min RTR 

Avg. Cost Saving  
Per 1-min RTR (α) 

1 5 2558 512 0.738 11.1 

2 10 5429 543 0.783 11.8 

3 15 8633 576 0.83 12.5 

4 20 12182 609 0.879 13.2 

5 25 16804 672 0.97 14.5 

Value of Time = 15 & Number of Incidents = 693 
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Moreover, another parameter, β, is defined to convert non-serving time spent by patrol 

trucks, to/from depots from/to their assigned beats to monetary value, as below:   

β = (number of shifts per day)*(number of trips per each shift)*(number of working days during 

the planning horizon)*(hourly cost per each truck) / (travel speed)           (52) 

This parameter is introduced to assign each beat to a depot, in case that multiple depots 

are available, by minimizing the non-serving travel times between beats and depots at the start 

and end of each shift.  In other words, this parameter is added up to assign each beat to the 

closest depot.  For our network parameter β is estimated to be about 75. This estimate is based on 

two working shifts per day and two trips per each shift for one single truck, and assuming truck’s 

hourly cost of $50, 21 working days per planning horizon (October 2010), and travel speed of 55 

MPH.  

Analysis 

In this section, the proposed model is applied to a set of different scenarios to evaluate 

the impact of different features of the model in the solution.  First, the proposed model is applied 

to a base case scenario given the following assumptions:  

• Number of beats: Two  

• Only response time is considered 
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• Fleet size: 10 Trucks 

• Single Depot 

As mentioned, there are 11 links in this numerical study.  The number of incidents, f, and 

the average travel time, t, for each of these links are listed in Table 5.  

Table 5 - Base Case Inputs 

NO Links f t 

1 1--2 23 3 

2 2--3 133 12 

3 3--4 81 17 

4 4--5 81 5 

5 5--6 79 5 

6 6--7 306 16 

7 7--1 127 9 

8 8--2 174 9 

9 8--3 196 6 

10 8--5 342 14 

11 8--7 136 5 
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Given the above assumptions and the input data in Table 5, the optimal beat 

configuration is determined and shown in Figure 7, and the truck allocation is presented in Table 

6.  The commercial optimization package FICO Xpress is used to solve the problem.   

Table 6 - Truck Allocation for the Base Case 

Total Response Time = 271 hours Number of Vehicles (V) 

Beat 1 (Blue) 7 

Beat 2 (Red) 3 

 

 

Figure 7- Beat Configuration for the Base Case 
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As shown, to minimize the total response time during the time horizon, October 2010, 

seven trucks should be allocated to the first beat while three trucks need to patrol on the other 

beat.  The total response time (responding to 1678 incidents) experienced during the time 

horizon, in this case, is estimated to be 271 hours.   

The problem is solved for another scenario which is similar to the base scenario with the 

difference that hypothetical service times are added to the objective function, as well, to find out 

the impact of this term on the solution.  In this scenario, for all links, service times are assumed 

to be equal to 20 minutes (in case that only one truck removes each incident).  This is to 

demonstrate that even in such a case that incident severity is similar for all links; clearance times 

could still have an impact on the result.  The optimal beat configuration for this case is shown in 

Figure 8, and the truck allocation is presented in Table 7.   

Table 7 - Truck Allocation (Service Time Added) 

Total Response and Service Time = 938 (hrs.) Number of Vehicles (V) 

Beat 1 (Blue) 8 

Beat 2 (Red) 2 
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Figure 8 - Beat Configuration (Service Time Added) 

As shown, the optimal beat configuration is similar, but the truck allocation has changed.  

The optimal solution indicates that eight patrol trucks must be allocated to the first beat, and only 

two trucks need to patrol on the second beat, now.  Compared to the base case, one more truck 

needs to be allocated to the first beat reducing one truck from the second beat.  Again, this 

assumes that all links have the same type of incidents regarding the average severity.  Although 

the service times are assumed equal, the truck allocation is different than the base case which 

emphasizes the impact of clearance time on determining the optimal network.  Apparently, this 

impact would be even larger because roads are likely different regarding average incident 

severity.  Assuming the beat configuration and truck allocation in the base case solution, total 
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response and service time would be 946 hours which is decreased to 938 hours in the solution 

which considers the service time in the objective function.  

Now, the proposed model (not including the service time) is applied to the network 

without assuming pre-determined values as the number of beats and fleet size.  All inputs and 

assumptions are presented in the Tables 8 and 9.  The network has eight nodes and 11 links with 

two available depots.  It is assumed that the maximum fleet size is 30 and the maximum number 

of trucks allowed to be allocated to each beat is 25.  The number of incidents and travel times for 

each link plus distances from both depots to each link are provided in Table 8.  The hourly cost 

of each truck is assumed to be $50 per hour.  Assuming 21 working days in a month, and 16 

operation hours per day, the total cost during the time horizon could be calculated.  Finally, as 

discussed in the previous section, parameter α (based on an earlier FSP evaluation study) and 

parameter β were estimated.  Based on the input and the above assumptions for this scenario, the 

optimal beat configuration is determined and shown in Figure 9.  
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Table 8 - Case Study Inputs 

NO Links f t r1 r2 

1 1--2 23 3 7 30 

2 2--3 133 12 11 17 

3 3--4 81 17 17 4 

4 4--5 81 5 24 7 

5 5--6 79 5 18 13 

6 6--7 306 16 4 20 

7 7--1 127 9 1 25 

8 8--2 174 9 10 20 

9 8--3 196 6 10 17 

10 8--5 342 14 10 11 

11 8--7 136 5 4 20 
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Table 9 - Parameters 

Parameters Value 

B 8 

Cm 50 

α 10-15 

β 75 

T 30 

V 25 

D 2 

h 16 

day 21 

 

Figure 9 - Optimal Beat Configuration 
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The optimal fleet allocation based on α = 10 and α = 15 are presented in Tables 10 and 

11, respectively.  As listed in these tables, the total cost, including program’s operation costs plus 

the cost associated with the incident delay (monetized loss caused by incident delay) is estimated 

to be around $332,300 to $409,200 for the subject network.   

Table 10 - Truck Allocation Based on α = 10 

Total Cost = $332300 Number of Vehicles (V) 

Beat 1 (Green) 1 

Beat 2 (Purple) 4 

Beat 3 (Red) 1 

Beat 4 (Orange) 1 

Beat 5 (Blue) 3 

Beat 5+ NA 

Total 10 
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Table 11 - Truck Allocation Based on α = 15 

Total Cost  = $409200 Number of Vehicles (V) 

Beat 1 (Green) 1 

Beat 2 (Purple) 5 

Beat 3 (Red) 1 

Beat 4 (Orange) 1 

Beat 5 (Blue) 3 

Beat 5+ NA 

Total 11 

Average response times for all beats are presented in Tables 12 and 13 for both cases of 

α=10 and α=15, respectively.  Also, total estimated response times during October 2010 are 

presented.  Allocation of beats to depots is determined as well.  
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Table 12 - Average Response Times for α = 10 

Beat Depot Number of Trucks Avg. Response Time (min) 

1 1 1 12 

2 2 4 8.5 

3 2 1 17 

4 1 1 12 

5 1 3 8.7 

Total Response Time 266 hours 

Table 13 - Average Response Times for α = 15 

Beat Depot Number of Trucks Avg. Response Time (min) 

1 1 1 12 

2 2 5 6.8 

3 2 1 17 

4 1 1 12 

5 1 3 8.7 

Total Response Time 244 hours 
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As mentioned, the total cost for the subject network is estimated to be $332,300 assuming 

α = 10 and $409,200 assuming α = 15.  Please note that the total cost for the solution in the base 

case, for the same period, based on α = 10 and α = 15, would have been $334,400 and $415,600, 

respectively.   

As shown, the optimal beat configuration includes five beats.  For this beat configuration, 

given ten available trucks (similar to the base case), the optimized total response time, 

responding to 1678 incidents, found to be 266 hours during one month of operation.  Therefore, 

the total response time during the time horizon is less compared to the optimal base case (271 

hours).   

Based on the comparisons above, we can claim that instead of assuming a predetermined 

number of beats, the optimal number of beats needs to be determined to improve the 

performance of the patrol programs.  Furthermore, all other factors mentioned in the contribution 

need to be considered, and this example indicates their impact on designing the optimal network.  

Thoughtful consideration of all factors reduces the incident-incurred delay and yet decrease the 

cost associated with the patrol programs.  
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Chapter 5: Heuristic Algorithms 

A heuristic algorithm is required to solve the problem for large size networks.  This 

section presents a few different approaches to solve the problem.  These approaches could be 

used individually or in combination with each other to form a heuristic algorithm which can 

generate close to optimal solutions.    

Network Decomposition 

For the first strategy, if applicable, we categorize the network based on dense parts and 

connection areas.  For the connection areas, there is only one link entering and leaving at each 

node, and the main question is where to break the road to separate beats.  If a network contains 

no specific connection area, the network still could be decomposed into a few sub-networks to 

continue the process.  This is discussed further in the next section.   

For now, to illustrate the network decomposition strategy, part of the Maryland's freeway 

network is presented in Figure 10 (this network will be used in our case study).  The network 

consists of three major dense parts and three connection roads as shown in Figure 10.  These 

dense parts are connected to each other through connection roads.  The only way that, for 

example, one link in part 1 is in the same beat as a link in part 2 is that the whole connection 

road in between is in the same beat which may not be justified depending on the fleet size and 

incident distribution.  Here, the strategy is to solve the model for each dense part separately and 
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afterward, given the output from step 1, solve it for the whole network to determine the beat 

structure for the connection areas, and subsequently for the whole network.  This approach is 

perfect for the networks with long roads and separate dense areas, such as the one here, but this 

also works for grid networks as explained in the following section.  We do not count on this 

approach as a single heuristic algorithm, and as will be described in next sections, this approach 

is mainly used to generate a solid initial solution for another heuristic algorithm.    

 

Figure 10 – Sub-networks 
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General Network Decomposition 

In general, for any network, first, we need to decompose the network into a few sub-

networks that are small enough so that the optimization problem can be solved easily.  Please 

note that we do not need to assign every link to a sub-network.  Those un-assigned links will be 

dealt with once the problem is solved for the whole network.  However, if all links are assigned 

to sub-networks, then, we do not need to solve the problem for all sub-networks.      

To generate sub-networks, if the network includes separate dense parts and connection 

areas, each of those dense parts will be a sub-network.  Otherwise, if dealing with a grid 

network, we divide the network to a few relatively similar size sub-networks.  For grid networks, 

sub-networks could be selected by clustering based on the number of incidents.  Even sub-

networks with different size and incident densities could be selected.  An algorithm to generate 

sub-networks is presented at the end of this section.   

Now, we solve the problem for sub-networks.  Possibly, solving only for a few dense 

sub-networks should suffice.  Then, given the results in the first step, we solve it for the whole 

network.  We determine the result for connection areas or links that were not initially assigned to 

a sub-network in this step. 

Please note that the number of beats and fleet size for each separate sub-network is 

determined individually by the model depending on the operation cost and incident density for 
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that part.  That’s why the approach can offer a solid solution regardless of the size of each sub-

network.  This approach generates a decent solution that depending on the shape of the network 

may generate a very solid initial solution (close to the final solution) for another algorithm such 

as a neighbor search algorithm which is described in the next section. 

Generating Sub-Networks 

The steps below could be followed to generate sub-networks: 

Step 1: Determine the maximum size or a limit for the size of sub-networks (number of links 

that are assigned to each sub-network).  This limit should be selected such that each subnetwork 

is small enough to solve the optimization problem.  

Step 2: Determine the total number of links that we would like to assign to sub-networks.  

As mentioned before, we do not need to assign each link to a sub-network since un-

assigned links will be assigned to a beat once solving the problem for the whole network.  

Therefore, assuming the maximum size of each sub-network to be n and the total number of links 

in the network to be 𝑚𝑚𝑚𝑚 + 𝑑𝑑 (1 ≤ 𝑑𝑑 ≤ 𝑛𝑛), then at least m sub-networks is needed and d links do 

not need to be assigned to any subnetwork.    

Step 3: Assign a degree to each node such that the degree of each node represents the number of 

links that meet the node.   
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Step 4: Assign each node with degree 1 (endpoints) to a different subnetwork.  

Step 5: For each sub-network, start to add links to it, one by one, until we get to a node with a 

degree more than one or once the size of the sub-network reaches the limit.   

At this point, we have identified all branches of the network by assigning them in 

different sub-networks.  Now, we need to check if any of these sub-networks are terminated at a 

common node such that they can be merged.   

Step 6: For any pair of sub-networks that meet at the same node:  

- If the sum of their sizes does not exceed the limit, merge them, and continue extending the 
merged sub-network until we get to a node with a degree more than one or once the size of 
the merged sub-network reaches the limit.  

- If the sum of their sizes exceeds the limit, we assume the sub-network with the largest size is 
a final sub-network and will remove it from the network and continue with the other sub-
network until it reaches a node with a degree more than one or its size reaches the limit.  

If a sub-network is finalized (when its size reaches the limit or further extension or merge 

is not possible) and removed, the degree of nodes will be updated based on the updated network.  

We continue this process until no further changes in sub-networks could be made, meaning that, 

sub-networks cannot be merged or extended and no other sub-network can be generated as there 

are no more un-assigned nodes with a degree of one.  

Step 7: For each sub-network, extend it by adding all neighbor links (which are not already 

assigned) to the sub-network.  If the sub-network has no un-assigned neighbor links, check to see 
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if it could be merged with its neighbor sub-network and continue this process for all sub-

networks until the size of each sub-network reaches the limit, or the total number of links 

assigned to all sub-networks reaches to the target number (in step 2).  

Once a subnetwork is finalized, we remove it from the network and continue the process 

with the rest of the network.  If at any point, all the generated sub-networks are finalized and 

removed from the network, and the network has no more nodes with a degree of one (for 

example, all sub-networks are removed, and we are left with a total grid network), then assuming 

we have already extracted k sub-networks we can select m-k random nodes and extend them to 

generate sub-networks by repeating step 7.   

Neighbor Search  

As a complement to the network decomposition approach, given an initial solution from 

the above algorithm, for each beat, we evaluate all neighbor links to see if removing them from 

their current beat and adding them to the subject beat will result in a better solution.  After re-

assigning the link, we may let the model re-calculate the fleet allocation based on the updated 

configuration.  Now, if a better solution is obtained, the current solution will be the new best 

solution.  If removing a link from its current beat results in a disconnected beat, we allow the 

model to break that beat into two separate beats, in case that the new configuration generates 

better results.  In neighbor search method, after each step, we may let the model update the fleet 
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allocation for involving beats (beat that the link is added to and beat that the link is eliminated 

from).  Obviously, this may change the fleet size, too.   

Heuristic Algorithm: General Network Decomposition plus Neighbor Search 

The combination of general network decomposition and neighbor search algorithms 

generates a decent heuristic algorithm which could be summarized in following steps.  Please see 

above sections for further details on each step.       

Step 1: Divide the network into a few sub-networks, which are small enough to solve.  The 

process on how to generate sub-networks is explained in general network decomposition section.    

Step 2: Solve the problem for sub-networks.   

Step 3: Given the results from each sub-network, solve the problem for the whole network.   

Now we have a very solid initial solution.  Choose this solution as the current best 

solution and continue to step 4.  Please note that step 1 through step 3 only aims to generate a 

solid initial solution.      

Step 4: Select each beat one by one, and for each beat, evaluate all neighbor links to see if 

removing them from their current beat and adding them to the subject beat will improve the 

solution.  If a better solution is obtained, update the best solution.  Continue the process for all 

neighbor links for every beat.      
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Step 5: Stop if, in step 4, after checking all neighbor links for every beat in the best current beat 

configuration, no better solution is found.  

Step 6: Save the latest result including beat configuration, fleet size, and fleet allocation as the 

final solution.    

The heuristic algorithm described above is summarized and illustrated in a flowchart 

shown in Figure 11.  The circle part briefly explains the process in neighbor search approach.  

Two other algorithms, Model Decomposition, and Beat Merge are also presented in the 

following sections.  

Model Decomposition 

Another algorithm is to decompose the problem into two sub-problems:  

1. Determine the beat structure given the fleet size and fleet allocation  

2. Determine the fleet size and fleet allocation given the beat structure   

This heuristic algorithm could be summarized in following steps: 

Step 1: Set k = 0  

Step 2: Choose a sensible number as the maximum possible number of beats.   

Step 3: Set Vb = 1 for all beats as the current fleet allocation (assign only one truck to each beat)  
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Figure 11 - Heuristic Algorithm 
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Step 4: Solve the problem to determine the beat configuration based on the current fleet 

allocation.  Save the solution as the current beat configuration and update the objective function. 

Please note that, in the first sub-problem, we let the model revise the number of beats by 

assigning no link to a hypothetical beat number and removing the cost associated with assigned 

trucks to that beat.  This way the number of beats may reduce if a better solution found with a 

smaller number of beats.  Please note that it still may be difficult to solve the first sub-problem 

for very large networks optimally.  Therefore, general network decomposition strategy, again, 

may be applied for this algorithm to tackle the problem, if necessary. 

Step 5: Given the beat configuration from the previous step, solve the problem to determine the 

optimal fleet size and fleet allocation.  Save the solution as the current fleet allocation and update 

the objective function   

Please note that the second sub-problem is a simple assignment problem and could be 

solved using available commercial solvers.   

Step 6: Set k = k + 1  

Step 7: Stop if the solution in step 4 is close enough to the solution in step 5 OR k >= M (the 

maximum number of runs); Otherwise go back to step 4  

Step 8: Save the latest result including beat configuration, fleet size, and fleet allocation as the 

final solution 
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Beat Merging  

For this algorithm, first, we determine the beat structure based on the assumption of one 

truck per beat.  Then, we need to see if merging neighbor beats and having two trucks for the 

combined beat will improve the solution.  This algorithm could be summarized in following 

steps: 

Step 1: Set Vb = 1 for all beats as the current fleet allocation (assign only one truck to each beat)  

Step 2: Solve the problem to determine the beat configuration based on the current fleet 

allocation.  Save the solution as the current beat configuration and update the objective function 

Step 3: For the current solution, for each beat i (Vi trucks assigned to beat i), see if merging the 

beat to the neighbor beat j (Vj trucks assigned to beat j) to create a combined beat with Vi+Vj 

trucks in the beat will improve the solution.  If a better solution is obtained change the current 

beat solution to the new solution. 

Step 4: Stop if checking all beats (to merge with their neighbor beats) in step 3 does not generate 

a better solution anymore 

Step 5: Save the latest result including beat configuration, fleet size, and fleet allocation as the 

final best solution 
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Comparison  

The problem to determine the beat configuration, fleet size and fleet assignment for the 

numerical example network is solved applying each of these three algorithms described above.  

To solve the problem using the network decomposition plus neighbor search algorithm, 

first, the algorithm for generating sub-networks is applied to determine sub-networks.  For this 

purpose, assume we would like to have up to 5 links per each sub-network.  Therefore, we need 

two sub-networks for the subject network.  Since no node with degree one exists, we start at two 

random nodes 1 and 2 to generate two sub-networks.  Then, two sub-networks are generated 

labeled as sub-network 1 including links 1-2, 1-7, 5-6, 6-7, and 7-8, and sub-network 2 including 

links 2-3, 2-8, 3-4, 3-8, and 5-8, while link 4-5 is not assigned to any sub-network.  The problem 

is solved for both of these sub-networks, and then the problem is solved for the whole network to 

determine the beat for un-assigned link 4-5 as well as the fleet size and fleet allocation for the 

whole network.  Afterward, the neighbor search algorithm is applied to find the solution.  Also, 

the model decomposition approach is applied by starting with six beats and one vehicle per beat.  

The problem is solved using the Beat Merge algorithm, too.   

The result based on each algorithm is listed in Table 14.  Also, beat configurations based 

on the algorithms are presented in Figure 12 through Figure 14.  According to the testing of 

different algorithms, it appears that the network decomposition plus neighbor search algorithm 
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provides a more promising solution.  Also, although the other two algorithms can improve the 

solution process, in general, they are based on the assumption that solving the problem for the 

beat structure, given the fleet size and fleet allocation, is achievable.  However, for large 

networks, even determining the beat structure alone becomes pretty difficult and requires an 

algorithm.  Therefore, the network decomposition plus neighbor search heuristic is the main 

heuristic that is used to solve the problem for the case study and, as will be presented, works 

pretty well in creating good solutions for the problem.   

Table 14 - Algorithms Comparison 

Beat Network Decomposition 
plus Neighbor Search Model Decomposition Beat Merge 

Beat 1 (Green) 1 2 3 
Beat 2 (Purple) 4 2 3 

Beat 3 (Red) 1 1 1 

Beat 4 (Orange) 1 2 1 

Beat 5 (Blue) 3 2 1 

No. of Beats 5 5 5 

Fleet Size 10 9 9 

Objective Value $332300 $334000 $334700 
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Figure 12 - Beat Configuration Based on Network Decomposition plus Neighbor Search Algorithm 

 

Figure 13 - Beat Configuration Based on Model Decomposition Algorithm 
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Figure 14 - Beat Configuration Based on Beat Merge Algorithm 
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Chapter 6: Coordinated Highways Action Response Team   

Overview 

State of Maryland operates a patrol program which is implemented by the Coordinated 

Highways Action Response Team (CHART).  CHART works in partnership with the Maryland 

State Highway Administration (SHA), Maryland Department of Transportation (MDOT), 

Maryland Transportation Authority (MDTA), and the Maryland State Police (MSP) [42].  

 

Figure 15 - Coordinated Highways Action Response Team (CHART) 



 

72 

 

CHART uses Emergency Traffic Patrols (ETP) to provide emergency motorist assistance 

and to relocate disabled vehicles out of travel lanes.  CHART Emergency Traffic Patrols uses 

three different types of response vehicles to deal with the incidents: 

• CHART Custom Response Vehicle – CRV 

• CHART Heavy-Duty Utility Truck 

• CHART Tow Truck 

These response units are shown in Figures 16 through 18, respectively.  These units are 

equipped with tools and devices to remove incidents from the roadway, provide assistance for 

motorists, and warn the traffic of incidents and possible actions they need to make.  

 

Figure 16 - CHART Custom Response Vehicle – CRV 
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Figure 17 - CHART Heavy-Duty Utility Truck 

 

Figure 18 - CHART Tow Trucks 
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CHART operates with five depots and seven Traffic Operation Centers (TOC).  Three of 

these TOCs are permanent while the others are seasonal.  The network permanently covered by 

CHART is shown in Figure 19 including Western, Baltimore, and National Capital region 

patrols.   

 

Figure 19 - Statewide Patrol Routes 
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CHART field patrol routes operate based on the following regions [43]: 

National Capital Region (NCR): 

The following routes within Prince George’s, Montgomery, and Southeastern Howard Counties: 

I-95 from Woodrow Wilson Bridge to MD 32 (Exit 38), I-270, I-495, US 50, MD 5, and MD 295 

Baltimore: 

The following routes within Baltimore, Anne Arundel Counties and Northeastern Howard 

Counties: 

I-70 from US 29 to Security Blvd, I-83, I-95 from MD 32 to Caton Ave (Exit 50), I-97, I-795, 

US 50, MD 100, and MD 295 

Western: 

The following routes within Carroll, Frederick, Washington and Western Howard Counties: 

I-70 from US 29 to the area of Hancock, I-81, I-270, US 15, US 340, and MD 140 from 

Baltimore/Carroll County line to MD 31 

The proposed model is applied to part of the Maryland's freeway network which is 

covered by CHART.  CHART patrol units operate 24/7 in Baltimore and National Capital 

regions while the Western region is covered each day from 5 AM to 9 PM [44].    
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Study Area 

As indicated, the proposed model is applied to part of the Maryland's freeway network 

and data.  Incident data during the year of 2015 is investigated to determine the optimal design.  

Based on the historic log data, the number of incidents that are detected and responded by 

CHART (not necessarily CHART units) in the above network is estimated to be more than 

11,000 incidents during the year of 2015.  Please note that this dataset includes incidents that 

occurred on CHART patrol coverage routes or in the vicinity of 10 miles from patrol routes and 

does not include incidents that are responded by CHART units outside this limit.  Incidents that 

did not occur on the patrol routes (still in 10 miles vicinity) are assigned to the closest patrol 

route to the incident location.  Obviously, that may increase the number of incidents assigned to 

the patrol boundary routes.  It is assumed that CHART patrol units detected all of these incidents.   

For the analysis, the CHART network is divided into 119 two-way segments, as partially 

shown in Figure 20.  Each number in Figure 20 represents one segment.  These segments, which 

are called links in this study, are separated by 116 nodes.  Details about the exact location of 

these 116 nodes and 119 links are summarized in Appendix A and Appendix B, respectively.  

Nodes are typically chosen at the major interchanges where re-routing for patrol units is possible.  

Also, some nodes are designated to specify the boundaries of CHART current coverage area on 

different routes.  A few other nodes are also designated just to separate different paths.
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Figure 20 - Network Links 
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For this case, importance factors are assumed to be identical for all roads.  Also, service 

time is not included in the analysis, and we aim to minimize the total patrolling response time 

(including detection and verification times) considering the operation cost.  For this purpose, it is 

assumed that the maximum number of trucks which could be assigned to a single beat is two 

trucks.  Furthermore, the hourly cost of each truck including the driver’s wage and vehicle costs 

are estimated to be about 50 dollars per hour.  The vehicle cost includes items such as fuel, 

maintenance, and supplies plus other costs associated with the patrol trucks.  Also, the CHART 

network is assumed to have one depot only (no beat to depot assignment is needed) and total 

costs in results do not include the minor costs associated with deadhead times spent by patrol 

trucks between depots and beats.  In general, this deadhead cost is trivial for networks where 

depot locations are not far from the network and may be ignored.     

CHART patrol trucks run under three different shifts during weekdays including the 

morning shift, afternoon shift, and night shifts.  CHART patrol trucks also operate during 

weekends.  Night and weekend shifts typically have lower traffic volume and less number of 

incidents compared to the morning and afternoon shifts during weekdays.  Because of the lower 

traffic volume, patrol units can travel faster in their assigned beats during the night and weekend 

shifts.  Therefore, different patrolling speeds could be assumed for different shifts.   

As revealed, CHART patrol trucks cover the network permanently throughout the year by 

operating in a number of shifts during different times of the day and the week.  Night and 
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weekends are similarly low regarding traffic volume and incident density and could be treated in 

the same way.  Therefore, the problem is solved for three separate cases as below: 

1. Weekday Mornings (5 AM- 1 PM) 

2. Weekday Afternoons (1 PM – 9 PM) 

3. Weekday Nights (9 PM – 5 AM) and Weekends 

Now, assuming 52 weeks per year, the number of working hours for the morning and 

afternoon shifts during weekdays is estimated to be 2080 hours for one year of operation.  

Furthermore, the number of working hours during the night and weekend shifts is estimated to be 

4576 hours per year.  Travel times are calculated based on the average patrolling speed of 40 

MPH for the morning and afternoon shifts during weekdays, while for the night and weekend 

shifts travel time is estimated based on the standard patrolling speed of 55 MPH.   

The input for the model, including the travel time and the number of incidents for each 

link, during the weekday morning shift, weekday afternoon shift, and the night and weekend 

shifts are listed in Tables 15 through 17, respectively.  Also, the sub-network to which each link 

belongs is listed.  
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Table 15 - Input: Weekday Morning  

Link Travel 
Time (min) 

No. of 
Incidents Sub-network Link Travel 

Time (min) 
No. of 

Incidents Sub-network 

1 1.8 21 3 31 4.8 6 2 
2 12.9 41 3 32 5.9 10 2 
3 24.2 25 3 33 6.9 32 2 
4 17.7 20 3 34 4.3 16 2 
5 30.8 33 3 35 5.7 11 2 
6 30.6 26 3 36 2.9 21 2 
7 28.2 64 3 37 5.6 41 2 
8 2.6 8 3 38 6.6 35 2 
9 2.6 15 5 39 4.2 68 2 
10 25.9 39 5 40 2.1 57 2 
11 15.2 11 5 41 4.7 13 2 
12 16.4 45 5 42 5.9 58 2 
13 9.5 8 5 43 2.2 2 2 
14 11 20 5 44 6.5 60 2 
15 21.1 36 5 45 3.7 28 2 
16 13.9 9 1 46 7.9 71 2 
17 5.9 21 1 47 3 27 2 
18 3.9 15 6 48 5 21 2 
19 15.3 34 6 49 5.2 37 2 
20 10.4 13 6 50 12 40 2 
21 12.3 8 6 51 10.4 60 2 
22 8.4 4 6 52 8.9 49 2 
23 4 6 6 53 4.6 15 2 
24 1.5 4 6 54 4.2 26 2 
25 7.4 14 6 55 4.2 6 2 
26 6 21 6 56 8.3 17 2 
27 9 74 6 57 4 7 2 
28 3.6 25 6 58 3.6 13 2 
29 7.9 25 6 59 2.2 3 2 
30 2.4 14 2 60 16.8 45 2 
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Link Travel 
Time (min) 

Number of 
Incidents Sub-network Link Travel 

Time (min) 
Number of 
Incidents Sub-network 

61 4.2 22 2 91 1.9 9 1 
62 3.8 42 2 92 3.9 30 1 
63 4.4 14 2 93 3.3 49 1 
64 14 27 2 94 4.1 51 1 
65 16.8 35 2 95 12.6 64 1 
66 10.3 26 2 96 4.1 12 1 
67 5.4 23 2 97 9 42 1 
68 1.2 5 1 98 5 11 1 
69 8 6 1 99 16.3 79 1 
70 4.9 7 1 100 4.2 8 1 
71 7.7 78 1 101 2.5 19 1 
72 8.7 12 1 102 2.8 9 1 
73 7.1 32 1 103 1.5 3 1 
74 6.8 61 1 104 3.4 6 1 
75 11.2 35 4 105 1.5 0 1 
76 9.2 26 4 106 3.2 16 1 
77 11 36 4 107 2.9 13 1 
78 8.6 21 4 108 1.9 15 1 
79 8 7 4 109 3.4 6 1 
80 17.6 59 4 110 9.2 36 1 
81 6 17 1 111 27.1 35 1 
82 2.6 13 1 112 3.7 1 1 
83 2.1 0 1 113 26.7 21 1 
84 8.8 2 1 114 39 61 1 
85 10.2 2 1 115 9 23 1 
86 3.4 1 1 116 24.5 40 3 
87 8.8 11 1 117 9 14 3 
88 3.9 1 1 118 4.9 0 2 
89 14.6 273 1 119 26.7 77 1 
90 15.4 188 1     
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Table 16 - Input: Weekday Afternoon  

Link Travel 
Time (min) 

No. of 
Incidents Sub-network Link Travel 

Time (min) 
No. of 

Incidents Sub-network 

1 1.8 23 3 31 4.8 23 2 
2 12.9 31 3 32 5.9 38 2 
3 24.2 33 3 33 6.9 37 2 
4 17.7 50 3 34 4.3 21 2 
5 30.8 63 3 35 5.7 22 2 
6 30.6 47 3 36 2.9 51 2 
7 28.2 88 3 37 5.6 48 2 
8 2.6 5 3 38 6.6 56 2 
9 2.6 18 5 39 4.2 37 2 
10 25.9 62 5 40 2.1 22 2 
11 15.2 20 5 41 4.7 53 2 
12 16.4 43 5 42 5.9 3 2 
13 9.5 9 5 43 2.2 90 2 
14 11 27 5 44 6.5 37 2 
15 21.1 52 5 45 3.7 79 2 
16 13.9 8 1 46 7.9 50 2 
17 5.9 19 1 47 3 25 2 
18 3.9 19 6 48 5 55 2 
19 15.3 45 6 49 5.2 62 2 
20 10.4 6 6 50 12 61 2 
21 12.3 13 6 51 10.4 42 2 
22 8.4 11 6 52 8.9 6 2 
23 4 7 6 53 4.6 11 2 
24 1.5 1 6 54 4.2 11 2 
25 7.4 15 6 55 4.2 16 2 
26 6 35 6 56 8.3 8 2 
27 9 53 6 57 4 21 2 
28 3.6 24 6 58 3.6 18 2 
29 7.9 37 6 59 2.2 42 2 
30 2.4 21 2 60 16.8 23 2 
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Link Travel 
Time (min) 

Number of 
Incidents Sub-network Link Travel 

Time (min) 
Number of 
Incidents Sub-network 

61 4.2 18 2 91 1.9 2 1 
62 3.8 47 2 92 3.9 21 1 
63 4.4 9 2 93 3.3 34 1 
64 14 30 2 94 4.1 82 1 
65 16.8 55 2 95 12.6 94 1 
66 10.3 12 2 96 4.1 13 1 
67 5.4 28 2 97 9 51 1 
68 1.2 2 1 98 5 24 1 
69 8 4 1 99 16.3 101 1 
70 4.9 1 1 100 4.2 11 1 
71 7.7 75 1 101 2.5 48 1 
72 8.7 15 1 102 2.8 12 1 
73 7.1 38 1 103 1.5 11 1 
74 6.8 95 1 104 3.4 23 1 
75 11.2 38 4 105 1.5 3 1 
76 9.2 49 4 106 3.2 23 1 
77 11 37 4 107 2.9 13 1 
78 8.6 16 4 108 1.9 14 1 
79 8 12 4 109 3.4 11 1 
80 17.6 56 4 110 9.2 68 1 
81 6 28 1 111 27.1 41 1 
82 2.6 12 1 112 3.7 1 1 
83 2.1 1 1 113 26.7 13 1 
84 8.8 6 1 114 39 63 1 
85 10.2 3 1 115 9 12 1 
86 3.4 3 1 116 24.5 50 3 
87 8.8 12 1 117 9 24 3 
88 3.9 5 1 118 4.9 2 2 
89 14.6 337 1 119 26.7 110 1 
90 15.4 149 1     
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Table 17 – Input: Night and Weekend 

Link Travel 
Time (min) 

No. of 
Incidents Sub-network Link Travel 

Time (min) 
No. of 

Incidents Sub-network 

1 1.3 17 3 31 3.5 3 2 
2 9.4 49 3 32 4.3 10 2 
3 17.6 5 3 33 5.0 19 2 
4 12.8 5 3 34 3.1 26 2 
5 22.4 40 3 35 4.1 9 2 
6 22.2 56 3 36 2.1 21 2 
7 20.5 122 3 37 4.0 72 2 
8 1.9 11 3 38 4.8 61 2 
9 1.9 13 5 39 3.1 74 2 
10 18.9 80 5 40 1.5 55 2 
11 11.0 39 5 41 3.4 18 2 
12 11.9 50 5 42 4.3 65 2 
13 6.9 9 5 43 1.6 3 2 
14 8.0 23 5 44 4.8 81 2 
15 15.4 45 5 45 2.7 30 2 
16 10.1 18 1 46 5.7 73 2 
17 4.3 19 1 47 2.1 29 2 
18 2.8 23 6 48 3.7 26 2 
19 11.1 74 6 49 3.8 65 2 
20 7.6 27 6 50 8.7 61 2 
21 8.9 22 6 51 7.6 77 2 
22 6.1 8 6 52 6.5 35 2 
23 2.9 11 6 53 3.4 10 2 
24 1.1 0 6 54 3.0 22 2 
25 5.4 14 6 55 3.1 8 2 
26 4.4 19 6 56 6.0 21 2 
27 6.6 40 6 57 2.9 10 2 
28 2.6 11 6 58 2.6 9 2 
29 5.7 10 6 59 1.6 9 2 
30 1.8 14 2 60 12.2 39 2 
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Link Travel 
Time (min) 

Number of 
Incidents Sub-network Link Travel 

Time (min) 
Number of 
Incidents Sub-network 

61 3.1 17 2 91 1.4 6 1 
62 2.7 17 2 92 2.8 17 1 
63 3.2 11 2 93 2.4 26 1 
64 10.2 33 2 94 3.0 33 1 
65 12.2 37 2 95 9.2 104 1 
66 7.5 14 2 96 3.0 34 1 
67 3.9 28 2 97 6.5 59 1 
68 0.9 2 1 98 3.6 20 1 
69 5.8 4 1 99 11.9 110 1 
70 3.5 2 1 100 3.1 11 1 
71 5.6 70 1 101 1.8 33 1 
72 6.3 12 1 102 2.0 9 1 
73 5.2 29 1 103 1.1 7 1 
74 5.0 82 1 104 2.5 18 1 
75 8.2 60 4 105 1.1 1 1 
76 6.7 46 4 106 2.3 25 1 
77 8.0 29 4 107 2.1 18 1 
78 6.3 7 4 108 1.4 21 1 
79 5.9 8 4 109 2.5 9 1 
80 12.8 56 4 110 6.7 42 1 
81 4.3 17 1 111 19.7 47 1 
82 1.9 14 1 112 2.7 0 1 
83 1.5 0 1 113 19.4 27 1 
84 6.4 3 1 114 28.4 50 1 
85 7.4 0 1 115 6.5 29 1 
86 2.4 2 1 116 17.8 4 3 
87 6.4 1 1 117 6.6 2 3 
88 2.8 3 1 118 3.6 3 2 
89 10.6 112 1 119 19.4 68 1 
90 11.2 86 1     
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Incident Duration Reduction Savings   

As presented before, to monetize the savings that result from incident duration 

reduction, the parameter α for the numerical example was estimated assuming the value of time 

of 15 dollars per hour based on different scenarios of average response time reduction.  Now, to 

re-calculate the parameter for the CHART network, we need to determine the value of time and 

estimate the average response time reduction caused by the CHART patrol program.   

As for the value of time, there are different values recommended from different sources.  

Department of Transportation (DOT) has provided recommended values of travel time (VOTT) 

for 2009 [45] and 2012 [46] based on two types of intercity and local trips for surface modes.  

The values for the intercity trip are listed in Table 18, and the values for the local trip are listed 

in Table 19.  According, to these recommended values for 2009 and 2012, values of travel 

times for 2015 are extrapolated and added up to the tables, too.  

Table 18 - Recommended Hourly Values of Travel Time Savings for Intercity Trips 

Category 2009 2012 2015 

Personal $16.7 $17.2 $17.7 

All Purposes $18.0 $18.7 $19.4 
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Table 19 - Recommended Hourly Values of Travel Time Savings for Local Trips 

Category 2009 2012 2015 

Personal $12 $12.3 $12.6 

All Purposes $12.5 $12.8 $13.1 

According to the US DOT report, the value of travel time for “All Purpose” category is 

estimated based on the weighted averages, using distributions of travel by trip purpose in 

various modes.  The distribution for the intercity travel by conventional surface modes is 

reported to be 78.6% personal and 21.4% business.  Also, the distribution for the local travel by 

surface modes is reported to be 95.4% personal and 4.6% business [46].  

Another study [47] by Center for Advanced Transportation Technology (CATT), at the 

University of Maryland, recommends a more specific value of travel time for Maryland 

freeway users by particularly analyzing major high-volume freeways in Maryland around areas 

of Baltimore and National Capital.  This study exclusively investigates on sections of I-95, I-

495, I-270, MD 295, and US 29 corridors in Maryland, as shown in Figure 21.  They 

recommend a value of time of 29.82 dollars per hour for passengers while values of 45.4 and 

20.21 dollars per hours are suggested for cargo and truck drivers, respectively.   
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Figure 21 - Corridors Analyzed [47] 

As it appears, different values are recommended depending on the trip purpose, trip 

mode, type of vehicle, type of trip, and other relevant factors.  However, as provided by CHART 

officials, the average value of time used in this study is 20 dollars per hour for the subject 

network.  
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Now, we need to estimate the average response time reduction caused by the CHART 

patrol program.  For this purpose, we may refer to the existing results reported by the CHART 

evaluation studies.  According to the CHART evaluation reports [48-50], the average incident 

duration with CHART response is about 10 minutes less compared to incidents without an 

assist from CHART.  Therefore, we may assume that the average response time is reduced 

about 5 minutes to less than 10 minutes by the CHART patrol program.  Therefore, similar to 

the calculation for the numerical example, the parameter is estimated based on possible 

scenarios of response time reduction and results are listed in Table 20.  Based on this, 

parameter α is estimated to be about 15 for the subject network.  

  Table 20 - Parameter α Estimated for the CHART Network 

Scenario 
RTR  

(min) 

VEH-HR 

Saving 

VEH-HR Saving  

Per one min RTR 

VEH-HR Saving Per 

Incident Per 1 min RTR 

Avg. Cost Saving 

Per 1 min RTR (α) 

1 5 2558 512 0.738 14.76 

2 10 5429 543 0.783 15.66 

Value of Time  = 20 & Number of Incidents = 693 
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Results 

For the subject network here, the combination of network decomposition and neighbor 

search algorithms presented in the preceding section is applied to solve the problem.  

Therefore, first, based on the network decomposition algorithm, the model is solved for three 

individual sub-networks (dense parts), and given these results, the problem is solved to 

determine a decent solution for the full network.  Afterward, this result is improved through the 

neighbor search algorithm which means for each beat, all of its neighbor links are examined 

individually to explore if adding them to the subject beat and removing them from their current 

beat may introduce a better solution.  This process continues until no better solution is found.     

The problem is solved for three cases and beat configuration for the weekday morning, 

weekday afternoon, and night and weekend shifts are displayed in Figure 22 through Figure 24, 

respectively.  Also, the result of the fleet size and fleet allocations for each case are listed in 

Tables 21 through 23.  According to the results, 15 patrol trucks are needed to patrol on 13 

designed beats for the weekday morning shift.  Two beats are assigned double trucks while the 

other beats are assigned one truck each.  The beat configuration for the weekday afternoon shift 

has 13 beats, similar to the weekday morning shift, but requires 17 patrol trucks.  For the 

weekday afternoon shift, four beats are assigned double trucks, and the other beats are assigned 

one truck each.  As anticipated, the night and weekend shifts require less number of patrol 

trucks compared to the weekday morning and afternoon shifts.  Eight patrol trucks need to 
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patrol on ten designed beats for the night and weekend shifts.  For these shifts, two beats are 

assigned double trucks, and six beats are assigned single truck.        

 

Figure 22 – Beat Configuration for the Weekday Morning Shift 
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Table 21 – Fleet Size and Allocation for the Weekday Morning Shift  

Beat Number of Trucks 

1 2 

2 1 

3 2 

4 1 

5 1 

6 1 

7 1 

8 1 

9 1 

10 1 

11 1 

12 1 

13 1 

Fleet Size 15 
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Figure 23 - Beat Configuration for the Weekday Afternoon Shift 
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Table 22 – Fleet Size and Allocation for the Weekday Afternoon Shift 

Beat Number of Trucks 

1 2 

2 2 

3 1 

4 1 

5 1 

6 1 

7 1 

8 1 

9 1 

10 2 

11 2 

12 1 

13 1 

Fleet Size 17 
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Figure 24 – Beat Configuration for the Night and Weekend Shift 
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Table 23 – Fleet Size and Allocation for the Night and Weekend Shift 

Beat Number of Trucks 

1 1 

2 2 

3 1 

4 2 

5 1 

6 1 

7 1 

8 1 

Fleet Size 10 
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Major characteristics and performance measures of the designed program are summarized 

in Table 24.  The result of each shift and total results are all provided.  According to the 

outcomes, the total operating cost is estimated to be $5,616,000 for one year of full-time 

operation.  Also, the total patrolling response time, including the detection and verification times, 

for the designed network is estimated to be 5898 hours for responding to 11,805 incidents during 

one year of operation.  Therefore, the average patrolling response time is estimated to be less 

than 32 minutes.  Please note that this time includes detection and verification time, as well.  As 

a result, on average, incidents are responded in about half an hour from the time they actually 

occur on the network.   

As presented, the optimal beat configuration, fleet size, and fleet allocation could 

significantly change based on the time of the day.  This happens as incident densities and 

possibly travel times are different during the day.  Therefore, to optimize the performance of the 

program, while the operating cost is minimized, it is beneficial to design different configurations 

for each part of the day.  The same reasoning applies to justify designing separate networks for 

weekdays and weekends.  Furthermore, since incidents density and traffic volume may vary 

during the year, a seasonal or monthly based design could generate a more specific solution for 

each part of the year.       

Once again, results confirm the importance of determining the fleet size and number of 

beats instead of simply assuming predetermined numbers.  Furthermore, it is determined that 
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efficiency of the patrol program is significantly dependent on the beat configuration and fleet 

allocation.  Finally, for the optimal performance of the program, it is necessary to design the 

network with all major issues taken into account in a combined model, which considers all 

relevant factors together, instead of dealing with each issue separately.   

Table 24 - Performance Measures 

Description 
Weekday 

Morning 

Weekday 

Afternoon 

Night and 

Weekend 

 

Total 

Shift Duration (hours per year) 2080 2080 4576 8736 

Average Patrolling Response Time 

[including detection and verification 

  

31.7 28.1 36.4 31.9 

Number of Incidents 3426 4109 3550 11085 

Total Patrolling Response Time [including 

detection and verification times] (hours) 
1810 1929 2159 5898 

Operation Cost ($1000) 1,560 1,768 2,288 5,616 

Objective Value ($1000) 3,189 3,505 4,231 10,925 
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Sensitivity Analysis 

To design the network for patrol programs, first, we need to determine the input and 

possibly make some assumptions about the program.  However, sometimes we are not sure about 

the exact value of some of the inputs because of the varying nature of the input or simply 

because the data is not available.  Therefore, in this section, sensitivity analysis is performed to 

determine the impact of these varying parameters on the beat configuration, fleet size, and fleet 

allocation.  In the following sections, a few influential parameters are investigated, and their 

impact on the optimal design is determined.  

Value of Time Parameter 

For the main results, we used the value of time of $20 per hour.  However, different 

values of time are recommended by different sources.  These values are different depending on 

the trip purpose, trip mode, type of vehicle, type of trip, and other relevant factors.  As 

mentioned, one study [47] by Center for Advanced Transportation Technology (CATT), at the 

University of Maryland, recommends a more specific value of travel time for Maryland freeway 

users by particularly analyzing major high-volume freeways in Maryland.  The recommended 

value of time by CATT is about $30 per hour for traveling on some of the major freeways in 

Maryland.  Therefore, below a few additional scenarios are solved assuming the value of time of 

$30 per hour.  The beat configuration for the weekday morning and weekday afternoon shifts, 
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based on the value of time of 30 dollars per hour, are shown in Figure 25 and Figure 26, 

respectively.  Also, fleet size and fleet allocation results, based on the value of time of 30 dollars 

per hour, for the weekday morning and weekday afternoon shifts are listed in Table 25 and Table 

26, respectively.   

Results indicate that increasing the value of time from $20 per hour to $30 per hour 

causes the fleet size to increase.  Fleet size for the weekday morning shift increases from 15 to 

18 patrol units and for the weekday afternoon increases from 17 to 22 patrol units.  This is 

reasonable because the higher value of time requires reduced incident duration and as a result, 

additional patrol units are needed.    



 

101 

 

 

Figure 25 - Beat Configuration for the Weekday Morning Shift - VOT=30$/hr 
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Table 25 – Fleet Size and Allocation for the Weekday Morning Shift - VOT=30$/hr 

Beat Number of Trucks 

1 1 

2 1 

3 1 

4 1 

5 1 

6 1 

7 1 

8 1 

9 1 

10 2 

11 1 

12 1 

13 1 

14 1 

15 1 

16 1 

17 1 

Fleet Size 18 
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Figure 26 - Beat Configuration for the Weekday Afternoon Shift - VOT=30$/hr 
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Table 26 - Fleet Size and Allocation for the Weekday Afternoon Shift - VOT=30$/hr 

Beat Number of Trucks 

1 2 

2 2 

3 1 

4 1 

5 1 

6 1 

7 2 

8 1 

9 1 

10 2 

11 1 

12 2 

13 1 

14 1 

15 1 

16 1 

17 1 

Fleet Size 22 
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Maximum Number of Trucks per Beat 

In the main analysis, the maximum number of patrol units per beat is assumed to be two.  

In general, assigning a large number of patrol units to one beat may not be practical as keeping a 

relatively constant headway between all trucks may not be easy (please note that constant 

headway between trucks is assumed to calculate the average response time).  However, in this 

section, two different scenarios of maximum possible number of patrol units per beat are 

assumed to determine the network design.  Here, two additional scenarios of one truck per beat 

and three trucks per beat are considered.  

The beat configuration for the weekday morning and weekday afternoon shifts, based on 

one truck per beat, are presented in Figure 27 and Figure 28, respectively.  Also, the beat 

configuration for the weekday afternoon shift based on the maximum number of three trucks per 

beat is shown in Figure 29.  Furthermore, fleet size and fleet allocation result for the weekday 

afternoon shift, based on the maximum number of three trucks per beat, is provided in Table 27.  

The beat configuration, fleet size, and fleet allocation, based on the maximum number of three 

trucks per beat, did not change for the weekday morning shift compared to the main results.  

Objective values for three different scenarios of the maximum number of trucks per beat are 

presented in Table 28.  Obviously, increasing the maximum number of trucks per beat allows the 

model to choose a higher fleet size for a specific beat if it produces a better solution.  However, 

as observed in Table 28, although there is a considerable improvement, the difference in 
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objective values is not significantly high.  This happens as the model can create extra beats with 

a smaller number of units per each beat instead of one large beat with more number of patrol 

units.  However, the breakdown of the network to links that are sufficiently small is needed. 

 

Figure 27 - Beat Configuration for the Weekday Morning Shift – One Truck per Beat 
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Figure 28 - Beat Configuration for the Weekday Afternoon Shift – One Truck per Beat 
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Figure 29 - Beat Configuration for the Weekday Afternoon Shift – Maximum Three Trucks per Beat 
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Table 27 - Fleet Size and Allocation for the Weekday Afternoon Shift – Maximum Three Trucks per Beat 

Beat Number of Trucks 

1 3 

2 1 

3 2 

4 1 

5 1 

6 1 

7 1 

8 1 

9 3 

10 1 

11 1 

12 1 

13 1 

Fleet Size 18 
 

Table 28 - Maximum Number of Trucks per Beat 

 
Weekday Morning Weekday Afternoon 

Max. 1 truck/beat - Objective Value 3282 3547 
Max. 2 truck/beat - Objective Value 3189 3505 

Max. 3 truck/beat - Objective Value 3189 3500 
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Standard Patrolling Speed 

One of the most influential parameters in designing the network for freeway service 

patrol programs is the standard patrolling speed of patrol units.  Therefore, one additional 

scenario of the standard patrolling speed of 55 MPH is considered for the weekday morning and 

weekday afternoon shifts.  The beat configuration for the weekday morning and weekday 

afternoon shifts, based on 55 MPH standard patrolling speed, are shown in Figure 30 and Figure 

31, respectively.  Also, the fleet size and fleet allocation for the weekday morning and weekday 

afternoon shifts are listed in Table 29 and Table 30, respectively.   

According to the result, for weekday morning shift, increasing the standard patrolling 

speed from 40 MPH to 55 MPH reduces the number of required patrol units from 15 to 14.  

Similarly, for the weekday afternoon shift, increasing the standard patrolling speed from 40 

MPH to 55 MPH causes the fleet size to decrease from 17 to 15 patrol units.  Therefore, smaller 

fleet size is required if emergency response units can patrol faster on their assigned beats.         
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Figure 30 - Beat Configuration for the Weekday Morning Shift - 55 MPH 
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Table 29 - Beat Configuration for the Weekday Morning Shift - 55 MPH 

Beat Number of Trucks 

1 1 

2 2 

3 2 

4 1 

5 1 

6 1 

7 2 

8 1 

9 1 

10 1 

11 1 

12 1 

Fleet Size 14 
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Figure 31 - Beat Configuration for the Weekday Afternoon Shift - 55 MPH 
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Table 30 - Beat Configuration for the Weekday Afternoon Shift - 55 MPH 

Beat Number of Trucks 

1 1 

2 1 

3 1 

4 2 

5 1 

6 1 

7 2 

8 1 

9 1 

10 2 

11 1 

12 1 

Fleet Size 15 
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Non-Patrolling Detection: Result 

 As already discussed, based on the historic log data, the number of incidents that are 

both detected and responded by CHART (not necessarily CHART patrol units) in the network is 

estimated to be more than 11,000 incidents during the year of 2015.  We assumed that CHART 

patrol units detected all of these incidents.  However, in addition to the above dataset, we are 

provided with a larger set of incident data, too.  This larger dataset includes all incidents that 

CHART units responded to but did not necessarily detect.  According to this dataset, there are 

more than 30,000 incidents, during the year of 2015, which occurred on CHART patrol coverage 

routes or in the vicinity of 10 miles from patrol routes.  For this larger incident dataset, since a 

significant majority of the incidents are not detected by CHART and also details on incident 

detection by CHART patrol units is not available, we assume incidents are detected by other 

sources rather than patrol units and, as a result, non-patrolling detection response time method is 

applied.  Also, for this dataset, as advised by CHART officials, we assume that only one 

response unit is assigned to each beat.  Other assumptions are similar to the assumptions made 

for the previous dataset.         

Based on the non-patrolling detection dataset, again, the problem is solved for three 

cases and beat configurations for the weekday morning, weekday afternoon, and night and 

weekend shifts are presented in Figure 32 through Figure 34, respectively.  Also, for each shift, 

the details regarding links covered by each beat are presented in Tables 31 through 33.  Please 
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see Appendix B for the exact location of the links.  According to the results, 17 patrol units are 

needed to patrol during the weekday morning shift, and 19 units are needed to patrol during the 

weekend afternoon shift.  As expected, the night and weekend shift require less number of 

patrol units, compared to the weekday morning and weekday afternoon shifts, because of lower 

incident frequencies.  Eleven patrol units are needed to patrol during the night and weekend 

shift.  Please note that, for each shift, the number of incidents per each beat is provided in 

Tables 31 through 33.  Details regarding the number of incidents per each link, during each 

shift, are also presented in Appendix C.  This information could be useful to determine where 

to assign additional units during each shift.         

Major characteristics and performance measures of the designed program are 

summarized in Table 34.  The result for each shift including fleet size, shift duration and 

number of incidents during one year, average response time, total response time, and operations 

costs are provided in Table 34.  According to the result, the total operating cost is estimated to 

be $6,261,000 for one year of full-time operation.  Also, the total response time for the 

designed network is estimated to be about 6930 hours for responding to 30,162 incidents during 

one year of operation.  The average response time for each shift is estimated and presented in 

the table.  Please note the average and total response times are based on the assumed average 

response speeds (40 MPH for the weekday morning and weekday afternoon shifts, and 55 MPH 

for the night and weekend shifts) and obviously will decrease if patrol units can drive faster. 
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Figure 32 - Non-Patrolling Detection: Beat Configuration for the Weekday Morning Shift  
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Table 31 - Non-Patrolling Detection: Beat Configuration for the Weekday Morning Shift  

Beat Covered Links Number of Incidents 

1 99, 115, 119 483 

2 89, 90, 91 867 

3 11, 12, 13, 14, 15, 16, 83, 84, 85, 86, 87, 88 357 

4 74, 82, 92, 93, 94 1035 

5 100, 101, 102, 103, 104, 105, 106, 112, 113, 114 478 

6 17, 81, 95, 96, 97, 98 508 

7 107, 108, 109, 110, 111 1010 

8 68, 69, 70, 71, 72, 73, 78, 79, 80 469 

9 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 118 682 

10 49, 50, 51, 52, 53, 54, 55 605 

11 56, 57, 58, 63, 64, 65, 66, 67 365 

12 45, 46, 47, 48, 59, 60, 61, 62 597 

13 41, 42, 43, 44, 75, 76, 77 645 

14 3, 4, 5, 116, 117 279 

15 1, 2, 6, 7 550 

16 8, 9, 10, 18, 19, 20 490 

17 21, 22, 23, 24, 25, 26, 27, 28, 29, 32 509 
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Figure 33 - Non-Patrolling Detection: Beat Configuration for the Weekday Afternoon Shift  
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Table 32 - Non-Patrolling Detection: Beat Configuration for the Weekday Afternoon Shift  

Beat Covered Links Number of Incidents 

1 100, 101, 102, 112, 113, 114, 115 419 

2 98, 99, 119 521 

3 103, 104, 105, 106, 107, 108, 109, 110, 111 1129 

4 89, 90, 91 939 

5 68, 69, 70, 71, 72, 79, 80, 81 438 

6 73, 74, 92, 93 962 

7 13, 14, 15, 16, 83, 84, 85, 86, 87, 88 283 

8 17, 82, 94, 95, 96, 97 729 

9 48, 49, 50, 51, 52, 53, 54, 55 548 

10 56, 57, 58, 63, 64, 65, 66, 67 398 

11 30, 31, 36, 37, 38, 39, 40, 41, 42 720 

12 45, 46, 47, 59, 60, 61, 62 609 

13 27, 28, 29, 32, 33, 34, 35, 118 527 

14 3, 4, 116, 117 252 

15 1, 2, 7 546 

16 5, 6, 8, 18 354 

17 9, 10, 11, 12 409 

18 43, 44, 75, 76, 77, 78 527 

19 19, 20, 21, 22, 23, 24, 25, 26 397 
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Figure 34 - Non-Patrolling Detection: Beat Configuration for the Night and Weekend Shift  
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Table 33 - Non-Patrolling Detection: Beat Configuration for the Night and Weekend Shift  

Beat Covered Links Number of 

 1 98, 99, 100, 112, 113, 114, 115, 119 795 

2 74, 82, 89, 90, 91, 92, 93, 94 1693 

3 16, 17, 69, 70, 71, 72, 73, 81, 83, 84, 85, 86, 87, 88, 95, 

  

893 

4 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111 1321 

5 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 898 

6 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 118 1210 

7 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 671 

8 1, 3, 4, 5, 6, 7, 116, 117 371 

9 2, 8, 9, 10, 11, 12, 13, 14, 15, 18 497 

10 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 671 

11 68, 75, 76, 77, 78, 79, 80 506 



 

123 

 

Table 34 - Non-Patrolling Detection: Performance Measures 

Description 
Weekday 

Morning 

Weekday 

Afternoon 

Night & 

Weekend 

Fleet Size 17 19 11 

Shift Duration (hours/year) 2080 2080 4576 

Avg. Response Time (min) - 40 MPH 13.7 12.4 - 

Avg. Response Time (min) - 55 MPH - - 15.4 

Number of Incidents 9929 10707 9526 

Total Response Time (hours) - 40 MPH 2267 2220 - 

Total Response Time (hours) - 55 MPH - - 2443 

Operation Cost ($1000) 1,768 1,976 2,517 
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Non-Patrolling Detection: Sensitivity Analysis 

Now, sensitivity analysis is performed for the non-patrolling detection dataset to 

determine the impact of varying parameters on the beat configuration and fleet size.  One 

parameter that is investigated is the average response speed of emergency units to arrive at the 

incident location once they are informed of the incident occurrence.  Please note that this speed 

could be different than standard patrolling speed (discussed for the previous dataset) because 

units are already informed of the incidents and may be able to drive faster.   

Here, two additional scenarios of the average response speed of 55 MPH and 65 MPH are 

considered for the weekday morning and weekday afternoon shifts.  Also, the problem is solved 

for one additional scenario for the night and weekend shifts assuming the average response speed 

of 65 MPH.  The beat configuration for the weekday morning (based on 55 MPH average 

response speed), weekday afternoon (55 MPH), weekday morning (65 MPH), weekday afternoon 

(65 MPH), and night and weekend (65 MPH) shifts are illustrated in Figures 35 through 39, 

respectively.    

Performance measures for the sensitivity analysis results, based on the mentioned average 

response speeds for each shift, are summarized in Table 35.  Results include the fleet size, the 

average response time, and total response time based on each of the speed scenarios for each 

shift.  According to the result, for both weekday morning and weekday afternoon shifts, 
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increasing the speed from 40 MPH to 55 MPH, and from 55 MPH to 65 MPH, reduces the 

number of required patrol units while the average response time decreases, too.  Then, as far as 

safety concerns are observed, the higher response speed is desired.  However, it is obvious that 

increasing speed may not be possible as there are safety concerns.  Also, traffic volumes, 

especially during peak hours, may force the patrol units to slow down.   
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Figure 35 – Non-Patrolling Detection: Beat Configuration for the Weekday Morning Shift – 55 MPH 
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Figure 36 - Non-Patrolling Detection: Beat Configuration for the Weekday Afternoon Shift – 55 MPH 
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Figure 37 - Non-Patrolling Detection: Beat Configuration for the Weekday Morning Shift – 65 MPH 
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Figure 38 - Non-Patrolling Detection: Beat Configuration for the Weekday Afternoon Shift – 65 MPH 
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Figure 39 - Non-Patrolling Detection: Beat Configuration for the Night and Weekend Shift – 65 MPH 
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Table 35 - Non-Patrolling Detection Sensitivity Analysis: Performance Measures  

Description 
Weekday 

Morning 

Weekday 

Afternoon 

Night & 

Weekend 

Fleet Size 55 MPH 15 15 11 

Fleet Size 65 MPH 14 14 9 

Shift Duration (hours/year) 2080 2080 4576 

Avg. Response Time (min) - 55 MPH 11.5 11.7 - 

Avg. Response Time (min) - 65 MPH 10.6 10.5 16.2 

Number of Incidents 9929 10707 9526 

Total Response Time (hours) - 55 MPH 1901 2088 - 

Total Response Time (hours) - 65 MPH 1756 1874 2572 
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Although the proposed model can determine the optimal beat configuration and number 

of beats, it is also possible to design the beat configuration based on a pre-specified number of 

beats.  This approach may be needed as sometimes enough resources are not available and we 

may prefer to design the network based on the maximum available number of patrol units.  This 

means that we need to adjust the number of beats according to the available fleet size.  For 

example, if there are a maximum ten patrol units available, the maximum possible number of 

beats is ten beats.  This happens as we need to assign at least one patrol unit to each beat.       

Therefore, as part of the sensitivity analysis for the non-patrolling detection dataset, we 

assume a fixed number of beats and design the network based on 11 beats.  The beat 

configuration for the weekday morning and weekday afternoon shifts, based on 11 beats, are 

shown in Figure 40 and Figure 41, respectively.   
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Figure 40 – Non-Patrolling Detection: Beat Configuration for the Weekday Morning Shift – Pre-Specified 11 Beats
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Figure 41 - Non-Patrolling Detection: Beat Configuration for the Weekday Afternoon Shift: Pre-Specified 11 Beats 
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As shown in the last result, assuming a given fleet size, optimal beat configurations for 

different shifts are determined.  On the other hand, sometimes we may be interested in 

determining the fleet size and fleet allocation for a given beat configuration.    

Therefore, the problem is solved based on the current CHART operating beat 

configuration which includes 11 beats, as shown in Figure 42, to determine the optimal fleet size 

and fleet allocation among these beats.  Results on the fleet size and fleet allocations, based on 

each shift, are presented in Table 36.  These results are based on assuming constant headway 

between patrol units on the same beat.  



 

136 

 

 

Figure 42 – CHART Current Beat Configuration 
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Table 36 – Fleet Size and Allocation Based on the Current Beat Configuration 

Beat Weekday Morning Weekday Afternoon Night and Weekend 

1 2 2 1 

2 2 2 1 

3 2 2 1 

4 1 1 1 

5 2 2 1 

6 2 2 1 

7 2 2 1 

8 2 2 1 

9 2 3 1 

10 1 1 1 

11 1 1 1 

Fleet Size 19 20 11 
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Chapter 7: Summary, Conclusion, and Direction for Future Research 

Summary 

Freeway service patrol programs are proven to be one of the most beneficial and 

economic incident management strategies.  This system is being widely used in many major 

metropolitan areas.  The main issues that need to be addressed, to plan the patrol program for a 

given network, are determining the fleet size, determining the beat structure, and determining the 

fleet allocation.  These issues could be dealt with individually, but they are interrelated.  

Therefore, it is much more appealing to investigate all issues simultaneously in a joint model 

instead of dealing with each issue separately.  So, this study presented a comprehensive mixed-

integer programming model to design the network for patrol programs by dealing with these 

issues concurrently while all important factors such as operating costs are taken into account.  

The problem is solved using the combination of network decomposition and neighbor search 

algorithms.  The proposed heuristic works well in generating close to optimal solutions 

promptly.  

Conclusions 

The result indicates that the approach to design the network based on the joint model can 

significantly improve the solution to optimize the efficiency of the freeway service patrol 

program.  Furthermore, the result specifies that considering each of the involving factors in the 



 

139 

 

model can elevate the performance of the patrol program, too.  Especially, the number of beats, 

beat configuration, fleet size, and fleet allocation among other elements in the model need to be 

determined and should not be simply assumed.   

As proven by the result, to optimize the performance of the program while operating 

costs are minimized, it is important to consider several configurations based on different times of 

the day, week, or year as there could be dissimilar incident densities for the same network during 

different periods.  However, we do not require designing the network for every single period.  

Data processing and statistical analysis on incident data may reveal periods that may require 

individual design.  In this study, the network is designed based on the weekday morning, 

weekday afternoon, and night and weekend shifts, as official CHART shifts.  Additional 

scenarios could focus on designing for the peak and non-peak hours.  Also, seasonal or monthly 

based designs could be helpful.         

Sensitivity analysis shows that varying parameters such as the value of time and 

emergency trucks’ average response speed or standard patrolling speed have a significant impact 

on the optimal beat configuration, fleet size, and fleet allocation.  Then, these values need to be 

carefully chosen and inserted into the model.  In the case of uncertainty, a range of values could 

be chosen to design the network based on, and the impact on the solution should be determined.  

Also, increasing the maximum number of patrol units per beat has an impact on the optimal 

solution.  However, the difference in objective values is not significantly high as the model can 
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create extra beats with a smaller number of units per each beat instead of one large beat with 

more patrol units.  Though, for this purpose, the network should be broken down into sufficiently 

small links.  

Results indicate that increasing the value of time from $20 per hour to $30 per hour 

causes the fleet size to increase significantly for each shift.  This result is sensible because when 

the value of time is higher, the model tries to reduce the total incident duration further and, as a 

result, additional patrol units are assigned to accomplish that.   

According to the result, as patrol units’ average response speed or standard patrolling 

speed increases, less number of patrol units is needed to cover the network even though the 

average response time may reduce, too.  However, it is obvious that increasing speed may not be 

possible as there are safety concerns.  Also, typically traffic volumes, especially during peak the 

morning and afternoon hours, may force the patrol units to slow down.  

Although the proposed model can determine the optimal beat configuration and number 

of beats, it is also possible to design the beat configuration based on a pre-specified number of 

beats.  This approach is interesting especially when the available fleet size is limited.  As an 

example, the beat configuration is determined based on assuming pre-specified 11 beats.  

Furthermore, fleet size and fleet allocation could be determined for any given beat configuration 

assuming constant headway between patrol units in the same beat.   
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Based on the results, for each shift, it is found that Baltimore and National Capital 

regions need more patrol units than the Western region.  This outcome makes sense because the 

Western region has a lower number of incidents compared to Baltimore and National Capital 

regions.  Moreover, the Baltimore region may need one or two more patrol units than the 

National Capital region during different shifts. 

For the planning purpose, upon data availability, it is advantageous to classify incidents 

based on detection method and design the network considering both classes in the same model.  

This classification is needed because the average response time is different based on the 

patrolling and non-patrolling detection methods. 

Agencies can follow a few basic guidelines for operating patrol programs without fully 

implementing models such as the one proposed in this dissertation.  In general, frequency of 

coverage for different segments of the network should be approximately related to the number of 

incidents on those segments.  Also, the overall fleet size can be roughly estimated based on total 

number of incidents and an acceptable average response time assuming one beat only 

configuration.  Also, proper fleet size and beat configuration should be considered for different 

shifts based on their incident frequencies.  Then, the overall fleet size could be split between 

shifts based on the number of incident in each shift.  Also, for existing configurations, a few 

small sensitivity analyses could be applied by, for example, swapping links between beats or 

removing one link and adding it to the neighbor beat and evaluating the new configuration.  
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Similarly, for existing configurations, a simple fleet size increase or decrease for each beat could 

be evaluated to determine the benefit or loss of any change in fleet size.                

As urban freeway networks continue to become more congested, well-planned patrol 

programs offer significant potential for reducing the network delay and thus require profound 

procedures to maximize their impacts.  Our proposed model and developed algorithms can assist 

officials to plan and design patrol programs that are very efficient regarding reducing incident-

incurred delay and operation cost. 

Future Research 

Future research may investigate to fully capture and directly reflect the impact of 

additional factors such as traffic volume, incident type and severity, and road characteristic into 

the model.  Also, another study may try to address additional issues such as considering several 

types of trucks with different operating costs and different capabilities regarding incident 

response time and clearance time reduction.   

Furthermore, future research may focus to minimize total incident duration including 

recovery time, clearance time, response time, detection time, and verification time.  For this 

purpose, additional inputs such as incident types, traffic volumes, and geometry of the roads 

need to be considered and inserted into the analysis.   



 

143 

 

An important question for incident management officials is to determine where patrol 

units are required and where other strategies such as dispatch response are sufficient.  Therefore, 

the future study may focus to determine the patrol coverage area, for a given transportation 

network, by taking into account elements such as incident frequency, operating costs, average 

patrolling and dispatch response times.  Determining the patrol coverage area and the non-

patrolling area can save operating costs by avoiding non-necessary patrolling in the areas with 

low incident density.   

Although sometimes we are better off not patrolling low-incident rate areas, at some 

other times, it could be even beneficial to cover some routes by more than one beat.  This could 

be due to high incident rates for those specific routes or just as a matter of geometric design.  For 

this purpose, the future study will need to redefine the average response time for those specific 

routes as they will be covered by more than one beat, and those routes benefit from a reduced 

average response time.   

Another possibility for future work is to develop a dynamic model framework to update 

the designed network immediately upon each incident occurrence to instantly change routing and 

assignment of patrol trucks.  However, there could be implementation difficulties to adjust routes 

and relocate patrol units immediately.  Then, to build a dynamic model, practical facts should be 

carefully considered.  
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Also, a stochastic planning model could be developed to take into account the uncertainty 

associated with inputs such as incident numbers or travel times.  This is particularly important as 

the incident data is very uncertain and roads do not necessarily have similar incident rates as the 

previous year.  Therefore, considering a range of incident frequencies for each road and 

developing a stochastic model based on that may provide a more reliable solution.      

Finally, although the proposed model is developed to design the network for incident 

response patrol units, the model could be modified and customized to solve similar patrolling 

problems such as designing the patrol routes for police cars.  For example, with a similar strategy 

for a different application, Shafahi and Haghani developed an integer model to determine the 

routing for police patrols to cover high-crime areas more often [51].  Meter reading and snow 

plowing problems are among other arc routing problems that could be similarly solved.      
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Network Nodes 
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Node Patrol highway Interchange with Node Patrol highway Interchange with 

1 I-70 I-81 31 I-495 MD 5 
2 I-70 US 40 32 I-495 MD 210 
3 I-70 MD 17 33 I-495 MD 414 
4 I-70 MD 85 34 I-495 I-295 
5 I-70 MD 75 35 I-495 MD 97 
6 I-70 MD 27 36 I-495 MD 193 
7 I-70 MD 94 37 I-495 MD 650 
8 I-70 MD 97 38 I-95 MD 212 
9 I-70 MD 32 39 I-95 MD 200 
10 I-70 US 29 40 I-95 MD 216 
11 I-70 Endpoint 41 I-95 MD 175 
12 I-270 MD 85 42 I-695 I-83 
13 I-270 MD 80 43 I-695 MD 45 
14 I-270 MD 109 44 I-695 MD 146 
15 I-270 MD 121 45 I-695 MD 542 
16 I-270 MD 118 46 I-695 MD 147 
17 I-270 MD 119 47 I-695 MD 43 
18 I-270 MD 124 48 I-695 US 1 
19 I-270 I-370 49 I-695 US 40 
20 I-270 MD 28 50 I-695 Endpoint 
21 I-270 MD 189 51 I-695 I-97 
22 I-270 MD 187 52 I-695 MD 648 
23 I-495 US 29 53 I-695 MD 295 
24 I-495 US 1 54 I-695 I-895 b 
25 I-495 MD 201 55 I-83 MD 439 
26 I-495 MD 295 56 I-83 MD 137 
27 I-495 MD 202 57 US 50 Endpoint 
28 I-495 MD 450 58 US 50 MD 202 
29 I-495 MD 214 59 US 50 MD 410 
30 I-495 MD 4 60 US 50 MD 704 
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Node Patrol highway Interchange with Node Patrol highway Interchange with 

61 US 50 MD 197 91 I-83 Endpoint 
62 US 50 MD 3 (US 301) 92 I-695 Providence Road 
63 MD 295 MD 450 93 I-695 MD 139 
64 MD 295 Endpoint 94 I-695 Endpoint 
65 MD 295 MD 32 95 I-695 Endpoint 
66 MD 295 MD 175 96 Cabin John Pkwy Endpoint 
67 MD 295 MD 100 97 I-97 Endpoint 
68 US 29 US 40 98 I-95 MD 32 
69 US 29 MD 108 99 I-495 MD 185 
70 US 29 MD 175 100 I-495 MD 187 
71 US 29 MD 32 101 I-495 MD 190 
72 US 29 MD 216 102 I-270 MD 27 
73 I-97 MD 3 103 I-695 Perring Pkwy 
74 I-95 Endpoint 104 I-495 Endpoint 
75 MD 295 Endpoint 105 I-270 I-70 
76 I-83 Endpoint 106 I-270 I-270 spur 
77 US 29 Endpoint 107 I-495 I-270 spur 
78 MD 295 Endpoint 108 I-695 I-795 
79 US 50 Endpoint 109 I-695 I-83 
80 I-795 Endpoint 110 I-95 I-195 
81 I-83 Endpoint 111 I-70 I-695 
82 I-70 Endpoint 112 I-195 MD 295 
83 US 15 Endpoint 113 I-95 I-495 
84 US 340 Endpoint 114 I-95 I-695 
85 I-83 Endpoint 115 I-70 US 15 
86 US 340 Endpoint 116 I-270 US 15 
87 I-695 MD 26    
88 I-495 MD 355    
89 I-495 MD 704    
90 I-695 US 40    
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Appendix B: 

Network Links 
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Link Between Nodes On Road  Link Between Nodes On Road 

1 116 115 US-15  31 22 88 I-270 
2 115 84 US-15  32 107 106 I-270 spur 
3 82 1 I-70  33 76 101 I-495 
4 1 2 I-70  34 101 107 I-495 
5 2 3 I-70  35 107 100 I-495 
6 3 115 I-70  36 100 88 I-495 
7 83 116 US-15  37 88 99 I-495 
8 115 105 I-70  38 99 35 I-495 
9 105 4 I-70  39 35 23 I-495 

10 4 5 I-70  40 23 36 I-495 
11 5 6 I-70  41 36 37 I-495 
12 6 7 I-70  42 37 113 I-495 
13 7 8 I-70  43 113 24 I-495 
14 8 9 I-70  44 24 25 I-495 
15 9 10 I-70  45 25 26 I-495 
16 10 111 I-70  46 26 28 I-495 
17 111 11 I-70  47 28 89 I-495 
18 105 12 I-270  48 89 27 I-495 
19 12 13 I-270  49 27 29 I-495 
20 13 14 I-270  50 29 30 I-495 
21 14 15 I-270  51 30 31 I-495 
22 15 102 I-270  52 31 33 I-495 
23 102 16 I-270  53 33 32 I-495 
24 16 17 I-270  54 32 34 I-495 
25 17 18 I-270  55 34 104 I-495 
26 18 19 I-270  56 57 58 US-50 
27 19 20 I-270  57 58 59 US-50 
28 20 21 I-270  58 59 89 US-50 
29 21 106 I-270  59 89 60 US-50 
30 106 22 I-270  60 60 61 US-50 
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Link Between Nodes On Road  Link Between Nodes On Road 

61 61 62 US-50  91 51 52 I-695 
62 62 79 US-50  92 52 53 I-695 
63 57 63 MD-295  93 53 54 I-695 
64 63 26 MD-295  94 54 114 I-695 
65 26 78 MD-295  95 114 90 I-695 
66 78 64 MD-295  96 90 111 I-695 
67 64 65 MD-295  97 111 87 I-695 
68 95 110 I-195  98 87 108 I-695 
69 110 112 I-195  99 108 42 I-695 
70 112 94 I-195  100 42 109 I-695 
71 66 67 MD-295  101 109 93 I-695 
72 67 112 MD-295  102 93 43 I-695 
73 112 53 MD-295  103 43 44 I-695 
74 53 75 MD-295  104 44 92 I-695 
75 113 38 I-95  105 92 45 I-695 
76 38 39 I-95  106 45 103 I-695 
77 39 40 I-95  107 103 46 I-695 
78 40 98 I-95  108 46 47 I-695 
79 98 41 I-95  109 47 48 I-695 
80 41 110 I-95  110 48 49 I-695 
81 110 114 I-95  111 49 50 I-695 
82 114 74 I-95  112 91 55 I-83 
83 77 72 US-29  113 55 56 I-83 
84 72 71 US-29  114 56 109 I-83 
85 71 70 US-29  115 42 81 I-83 
86 70 69 US-29  116 85 1 I-81 
87 69 68 US-29  117 1 86 I-81 
88 68 10 US-29  118 96 101 Cabin John Pkwy 
89 97 73 I-97  119 80 108 I-795 
90 73 51 I-97      



 

151 

 

 

 

 

 

 

 

 

Appendix C: 

Non-Patrolling Detection: Number of Incident per Link 
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Link Weekday 
Morning 

Weekday 
Afternoon 

Night & 
Weekend Link Weekday 

Morning 
Weekday 
Afternoon 

Night & 
Weekend 

1 60 77 22 31 24 38 29 
2 153 152 85 32 33 39 28 
3 45 58 18 33 66 94 87 
4 55 81 19 34 47 70 61 
5 92 131 57 35 29 42 29 
6 124 158 75 36 44 56 59 
7 213 317 152 37 89 103 144 
8 23 28 13 38 95 101 147 
9 40 62 20 39 159 128 157 
10 174 216 102 40 95 83 122 
11 55 61 48 41 61 58 66 
12 74 70 65 42 145 116 158 
13 23 27 23 43 9 12 13 
14 41 50 38 44 139 168 146 
15 84 103 81 45 62 74 50 
16 20 26 44 46 144 144 137 
17 50 58 41 47 43 74 55 
18 29 37 22 48 35 43 44 
19 173 152 103 49 61 85 89 
20 51 42 31 50 95 113 117 
21 24 33 44 51 183 139 179 
22 18 32 34 52 134 85 105 
23 33 28 26 53 36 15 18 
24 10 2 3 54 61 39 58 
25 30 36 29 55 35 29 46 
26 69 72 60 56 43 52 49 
27 155 149 148 57 30 30 27 
28 56 48 37 58 38 49 23 
29 81 78 68 59 76 80 76 
30 24 37 31 60 72 71 90 
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Link Weekday 
Morning 

Weekday 
Afternoon 

Night & 
Weekend Link Weekday 

Morning 
Weekday 
Afternoon 

Night & 
Weekend 

61 84 90 88 91 4 11 11 
62 81 76 77 92 61 50 54 
63 45 43 37 93 73 64 49 
64 66 68 80 94 80 108 59 
65 46 60 44 95 210 270 267 
66 50 36 36 96 17 33 19 
67 47 60 44 97 121 124 153 
68 2 9 2 98 39 71 46 
69 22 19 22 99 212 219 219 
70 31 21 15 100 25 30 26 
71 134 137 143 101 56 79 76 
72 19 15 21 102 25 28 24 
73 64 99 65 103 18 29 18 
74 662 749 782 104 39 56 44 
75 92 82 120 105 9 10 3 
76 93 104 102 106 35 61 60 
77 106 93 98 107 48 37 49 
78 46 68 24 108 66 45 64 
79 32 31 30 109 50 44 37 
80 119 127 130 110 247 352 350 
81 71 79 57 111 599 495 596 
82 159 136 170 112 2 4 7 
83 6 12 15 113 47 44 70 
84 12 12 7 114 222 188 168 
85 10 16 12 115 74 46 78 
86 3 7 4 116 64 74 21 
87 26 28 7 117 23 39 7 
88 3 2 1 118 10 7 21 
89 518 633 319 119 197 231 181 
90 345 295 249     
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