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ABSTRACT

High-resolution phase-contrast wavefront sensors based on optically addressed phase spatial light modulators and
micro-mirror/LC arrays are introduced. Wavefront sensor efficiency is analyzed for atmospheric turbulence-induced phase
distortions described by the Kolmogorov and Andrews models. A nonlinear Zernike filter wavefront sensor based on an
optically addressed liquid crystal phase spatial light modulator is experimentally demonstrated. The results demonstrate
high-resolution visualization of dynamically changing phase distortions within the sensor time response of about 10 msec.
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1. INTRODUCTION

Wavefront phase sensing and spatial shaping (control) are important mutually related tasks. For most adaptive
optics applications, the spatial resolution for wavefront sensing and wavefront correction are expected to match. This balance
in resolution is easy to achieve in the case of low-resolution wavefront control systems. However, the situation is rapidly
changing with the upcoming new generation of wavefront compensation hardware: high-resolution liquid crystal (LC) spatial
phase modulators and micro-electromechanical systems (MEMS) containing large arrays of LC cells or micro*mirrors.
These new devices can potentially provide wavefront shaping with spatial resolution on the or8et@feléments. Such
resolution is difficult to match with the traditional wavefront sensors used in adaptive optics: lateral shearing
interferometer;® Shack-Hartmanh,curvature sensofs, etc. In these sensors the wavefront phase is reconstructed from
measurements of its first or second derivatives, which requires extensive calculations. When wavefront sensor resolution is
increased by a factor of 3a0®, implementing this approach will lead to an unacceptable increase of phase reconstruction
time, hardware complexity, and cost. Time-consuming calculations are also the main obstacle for wavefront sensors based
on focal plane techniques: phase retrieval from a set of the pupil and focal plane intensity distf{biitiphase
diversity*** and Schlieren techniqués!’ For these methods the dependence of wavefront sensor output intensity (sensor
output image) on phase is nonlinear, and phase reconstruction requires the solution of rather complicated inverse problems.

The problem of phase retrieval from high-resolution sensor data can to some degree be overcome by using a new
adaptive optics control paradigm that utilizes the wavefront sensor output image directly without the preliminary phase
reconstruction stage. This approach leads to high-resolution two-dimensional opto-electronic feedback adaptive system
architectures®®° In these systems a high-resolution wavefront corrector is interfaced with a wavefront sensor output camera,
either directly or through opto-electronic hardware performing basic image processing operations, with the wavefront sensor
output used “on-the-fly” and in parallel. The selection of the “right” wavefront sensor for such systems is a key problem.

High-resolution adaptive wavefront control and wavefront sensing are complimentary problems. When
compensating phase distortions with an adaptive system, the phase reconstruction problem is automatically solved, as
compensation results in the formation of a controlling phase matched to an unknown phase aberration (in the condition of
perfect correction). From this viewpoint, high-resolution adaptive systems can be considered and used as parallel opto-
electronic computational means for high-resolution wavefront phase reconstruction and analysis.

In Section 2, we describe new phase contrast sensor designs that can be used for high-resolution adaptive optics:
differential, nonlinear, and opto-electronic Zernike filters. The differential Zernike filter (DZF) can provide phase
visualization with increased contrast and accuracy. Standard phase visualization techniques are not effective for the analysis
of dynamical phase aberrations containing wavefront tilts, e.g., aberrations induced by atmospheric turbulence. The



nonlinear and opto-electronic Zernike filters we consider, which are based on optically addressed phase spatial light
modulators or on integrated micro-scale devices, are unresponsive to wavefront tilts and can be used for sensing dynamically
changing wavefront distortions typical of atmospheric turbulence conditions. Numerical results of wavefront sensor
performance analysis for the Kolmogorov and Andrews phase fluctuation spectra are discussed in Section 3. In Section 4 we
present experimental results of wavefront phase distortion visualization using a nonlinear Zernike filter with a specially
designed, optically addressed, nematic LC phase spatial light modulator.

2. HIGH-RESOLUTION PHASE VISUALIZATION WITH ZERNIKE FILTER AND SMARTT
INTERFEROMETER

2.1. Mathematical models

The schematic for a conventional wavefront sensor based on the Zernike phase contrast technique (Zernike filter) is
shown in Fig. la. It consists of two lenses with a phase-changing plate (Zernike phase plate) placed in the lenses’ common
focal plane. The phase plate has a small circular region (a dot) in the middle that introduces a pHaseatif2 radians

into the focused wave:® The radius of the dotap , is typically chosen to equal the diffraction-limited rad'mgf of a

focused, undistorted input wave.
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Fig. 1. Basic wavefront sensor schematics: (a) conventional; (b) differential; (c) nonlinear; and (d) opto-electronifili&esnike

In the case of the Smartt point-diffraction interferometer (PDI), the dot in the middle of the focal plane is absorbing.
The absorption of light results in attenuation by a fagtet of the input wave low-frequency spectral compon&fts.
Both wavefront sensors can be described using a complex transfer farfg)idor the focal-plane filter:

T(Q) =y e'% for [l < gy, andT(q) = 1 otherwise. 1)
The wave vectoq is associated with the focal plane radial vecprhroughq =T /(AF), whereF is the lens focal length,
Ais wavelength, andy = a /(AF) is the cutoff frequency corresponding to the dot aine For the sake of convenience,
consider the following variable normalization: the radial vectoms the sensor input/output plane a@dn the focal plane

are normalized by lens aperture radiushe wave vectoq by a*, and the lens focal length by the diffraction paramiesér
(wherek = 277X is the wave number). Correspondingly, in the normalized variablesF/(ZnF) andgg = a 1(21F) (where

the dot sizeaF is also normalized bg).

From (1), whery=1 and8 =772, we have a Zernike filter model, apetO corresponds to the PDI wavefront sensor.
Consider a simplified model corresponding to a focal plane filter affecting only the zero-spectral component. In this case we

haveT (0) = yeie andT(g)=1 for g#0. Assume an input waul,(r) = Ag(r) expli¢(r)] enters a wavefront sensor, where



lo(r)= A&(r) and@(r) are the input wave intensity and phase spatial distributions. The sensor’s front lens performs a Fourier
transform of the input wave. Within the accuracy of a phase faéta),= (27F)™" F [A,(r)], where F [ ] is the Fourier
transform operator and(q) is the spatial spectral amplitude of the input field (i.e., the field complex amplitude in the focal
plane)*® In normalized variables, the field intensity in the focal plane can be expressed as a function of spatial frequency:
g () = (2rF)? JA(q)P. The influence of the focal plane filter can be accounted for by multipi{ay by the transfer
functionT(q):

Aou@= A@[L- &a)] +v €° A@a), (2)
whereA,,{0) is the focal plane wave complex amplitude after passing through the spatial filté&gpisda delta-function.
The wavefront sensor output field can be obtained by taking the Fourier transform of (2):

Aout(r): Ain(r) - [1 -y eie] Z\, (3)
where A =J'An(r)d2r is the spatially averaged input field complex amplitude. For the sake of simplicity, we neglected the

180 rotation of the field performed by the wavefront sensor lens system.

Representy(r) as a sum of the mean phae and spatially modulated deviatigh(r : $(r) = § +@(r). In this
caseA = exp(d) Ay, where A, :IAO(r)expﬂfﬁ(r)]dzr . The value of fyf is proportional to the field intensity at the

center of the lens focal plang(g=0) = (2rF)? |,30|2 (intensity of the zero spectral component). The normalized value of

I£(0) is known as the Strehl ratit = [(0)/| ,9 , Where I,(:’ is the intensity of the zero spectral component in the absence of
phase aberrations. With the introduced notation, equation (3) reads:
Aoul1)= Ain(r) = [1 —y €°1 Agexp() . @)

As we see from (4), the output field is a superposition of the input and spatially uniform reference wave components.
Represent the complex valdg in the following form: ZO =| ZO |exp(A) = (2rF)I ,1:/2(0) exp(4) , wherel(0) andA are the
intensity and phase of the zero-order spectral component. The intensity distribution in the wavefront sensor output plane is
given by

lLout(r) = 1o(r) +(27F) 1 Q)L+ y? — 2y cosB) 4715/ 2 (1)1 £ 2 (O){cos[F (r) - 4] -y cos(r) - 461y (5)
The output intensity (5) is similar to the typical interference pattern obtained in a conventional interferometer witte referenc

wave — the intensity is a periodic function of the wavefront phase modulation. For the case of the point diffraction
interferometery=0 and:

Lout(r) = 1o(r) +(2rF)21 ¢ (0) - 4rF 1§ 2(r)1 ¥ 2 (0) cos (r) - 4] . (6)
For an ideal Zernike filteng1 and® = 172), from (5) we obtain:
Lout(r) = 1561 (r) = 1o(r) +221F) 1 £ (0) - 41§ 2(r)1F 2(0){cos[@(r) - 4] - sin[@ (r) - AT} . @)

2.2. Wavefront sensor performance metrics

An important characteristic of the wavefront sensor is the output pattern visibility defined as
I =(maxl gy —minl ) /(maxl gy + minlyyt) . For the point diffraction interferometer and Zernike filter we have:

Fppi (1) = 4718 2(N1E 2(0) /11 o(r) + (27F) 21 £ (0)], 8)

Izr (1) = 4215 201 20V [1o(r) +2(27F) 21 (0)]. (9)
In contrast with conventional interferometers, the visibility functions (8) and (9) are dependent on the input wave phase
modulation @ (r Xhrough the termiz(0). In adaptive optics the phase aberration amplitude is continuously changing. This

dependence may lead to negative effects, such as a continuous variation in the wavefront sensor output pattern contrast
Besides visibility, the contrast of the wavefront sensor output can be characterized using the aperture-averagey ofariance

the output intensity modulatidTgut(r) =1 out(r) — Tout:

o) =[S Tau(nd’r*'2, (10)



- . . 2.
wherel ,; is the aperture-averaged output intensity (DC component§am is the aperture area.

Another important wavefront sensor characteristic is the sensor’s nonlinearity; that is, the nonlinearity of the phase-
intensity transformation,, , [¢] performed by the wavefront sensor. A desirable (ideal) wavefront sensor should provide

both high output pattern contrast and a linear dependence between the output intensity and indyf{hasex ¢ (r) +
I out» Wherex is a coefficient. Wavefront sensor nonlinearity can be characterized by the correlation between tfrphase )

and the output intensity modulatioFbut(r). As a nonlinearity metric, define the following phase-intensity correlation

coefficient ol -

Co.1 _S s Itf(r)lout(r)d r, wheregy =[S~ I(f a2 o

For the ideal wavefront sensop,| =1. Note that strong wavefront sensor nonlinearity (a low value of the correlation

coefficient) does not mean that the wavefront sensor can not be used for high-resolution wavefront analysis and adaptive
control. Examples of high-resolution adaptive systems based on highly nonlinear wavefront sensors are the adaptive
interferometers'*#*and diffractive-feedback adaptive systefis. Nevertheless, “weak nonlinearity” offers an easier way

to use a wavefront sensor for both wavefront analysis and wavefront control, providing for more efficient system
architectures. For wavefront reconstruction methods based on iterative techniques, “quasi-linear” wavefront sensor output can
be used as an initial wavefront phase approximation resulting in fast iterative process converdgancadaptive optics

“weak nonlinearity” allows implementation of simple feedback control architectures when sensor output intensity is directly
used to drive a high-resolution phase modulator.

Both characteristics of wavefront sensor performance — the correlation coeffigienand the standard deviation

of the sensor output; normalized byi,,; — can be combined into a single wavefront sensor performance metric

Qp =Cp,1 O} Moyt = I&(r)lout(r)d r. (12)

outS

2.3. Differential Zernike filter

The visibility of the ideal Zernike filter output pattern can be significantly increased by using a focal phase plate
with controllable phase shift switching between two stéles772 and6 = —72 (or 8 = 3772). For a phase shift &= -2
(or 6 = 3r72), the output intensity distribution (5) reads:

Lout(r) = 1 5oh(r) = 1o(r) + 2(21F) 21 £ (0) - 4F15 2(r)1 E 2(0){cos[@ (r) - A] +sin[F (r) - A} . (13)
The difference between the intensity distributions (7) and (13),
it (1) =150 (r) =1 5k (r) = 8aF1 § 21 2(0)sin[@ (r) - 4] , (14)

does not contain a DC term. The visibility of the output pattern (14) is higher than what can be obtained using a conventional
Zernike filter, and is limited only by the noise level. The “price” paid for this visibility increase is that additional
computations should be performed using two output images. The differential Zernike wavefront sensor can be built using a
controllable phase-shifting plate containing a single LC or MEMS actuator interfaced with the output photo-array and image
subtraction system, as shown in Fig. 1b. Output intensity registration and processing (subtraction) capabilities can be
integrated in a specially designed VLS| imaging ¢hifs

2.4. Nonlinear Zernike filter

Both the Zernike filter and point diffraction interferometer are not efficient in the presence of significant amplitude
wavefront tilts, e.g., in the presence of atmospheric turbulence-induced phase distortions. Wavefront tilts cause displacement
of the focused wave with respect to the filter's phase-shifting (absorbing) dot. When displacements are large enough, the
focused beam can miss the dot.

To remove dependence of the phase visualization on wavefront tilts, the position of the phase shifting dot in the
Zernike filter should adaptively follow the position of the focal field intensity maximum (focused beam center). This self-



adjustment of phase dot position can be achieved in the nonlinear Zernike filter proposed by IvanBv/rethalnonlinear
Zernike filter the phase shifting plate is replaced by an optically addressed phase spatial light modulator (OA phase SLM), as
shown in Fig. 1c. The phase SLM introduces a phase&luipendent on the focal plane intensity distributjea), i.e., 6

= 08(Ig). Inthe simplest case the dependefice 8(I) is linear:8 = a |, wherea is a phase modulation coefficient. A

linear dependence between phase shift and light intensity is widely known in nonlinear optics as Kerr-type noHlinearity.
Correspondingly, the influence of the OA phase SLM on the transmitted (or reflected) wave is similar to the influence of a
thin layer of Kerr-type nonlinear material (Kerr sli¢é)For the nonlinear Zernike filter, the spectral amplitude of the field in
the lens focal plane (after passing the OA phase SLM) reads:

Aou @)= Aq) explia I(q)], wherel (6)= (27F)* | Aq) F. (15)
The optically addressed phase SLM in the nonlinear Zernike filter causes a phase shift of all spectral components. For small
amplitude phase distortions, phase shifts of higher-order components are smaller than the phase shift of the zero component
which has a much higher intensity level. In this case the nonlinear Zernike filter behaves similar to the conventional Zernike
wavefront sensor with a phase-shifting dot. In the nonlinear Zernike filter a “phase dot” is created at the currentflocation o
the focused beam center, and follows the focused beam displacement caused by wavefront tilts. The effective “dot size” in
the nonlinear Zernike filter is dependent on the intensity distribution of low spectral components. The phase modulation
coefficienta in (15) can be optimized to provide a maximum phase shift m2&or the central spectral componeé,,, =

alg(g) = amaxlig(g)] U 2. In the case of the liquid crystal light valve (LCLV) SLM described in Section 4, the
coefficienta can be adjusted by controlling the voltage applied to the phase*$LMLike the conventional Zernike filter,

the nonlinear Zernike filter suffers from the problem of a strong dependence of the output pattern contrast on phase
modulation amplitude.

2.5. Opto-electronic Zernike filters

Both high sensitivity to wavefront tilts and the strong dependence of phase visualization contrast on aberration
amplitude can be reduced by using the opto-electronic Zernike filter shown in Fig. 1d. The wavefront sensor consists of a
high-resolution phase SLM, for example a LC-on-silicon chip phase ‘Smd, a photo-array optically matched to the phase
modulator in the sense that both devices have the same size and pixel geometry. The beam splitter in Fig. 1d provides two
identical focal planes. The photo-array interfaces with the phase SLM to provide programmable feedback. Depending on the
complexity of the feedback computations, signal processing may be performed directly on the imager chip using very large
system integration (VLSI) micro-electronic systeth®. In this case the VLSI imager system can be coupled directly to the
phase SLM.

The VLSI imager chip interfaced to the phase SLM can track the location of the focused beam center and shift the
phase of the central spectral component in the SLM plar@2oy The opto-electronic Zernike filter operates similar to the
conventional Zernike filter with the phase-shifting dot, except that it is not sensitive to wavefront tilts. The programmable
feedback between the imager chip and phase SLM can be used to design an opto-electronic nonlinear Zedvwkerlfijer (
or provide an even more complex dependence of the phase shift on the focal intensity disé@idg). This processing
may include, for example, intensity thresholdifig= 772 for all spectral componentgfor which I () = e max[l¢ (g)] and

6=0 otherwise, where @<1 is a coefficient. Using advanced optical MEMS, LC SLM, and VLSI technologies, the opto-
electronic Zernike wavefront sensor can potentially be implemented as an integrated device. To increase the sensor’s output
pattern contrast, the opto-electronic Zernike filter can be incorporated with the differential wavefront sensor scheme
described above.

3. WAVEFRONT SENSOR PERFORMANCE ANALYSIS FOR ATMOSPHERIC TURBULENCE-
INDUCED DISTORTIONS

3.1. Numerical model

We compared the performance of the wavefront sensors described here using the Koffhagdrandrew?'
models for atmospheric turbulence-induced phase fluctuation power spectra:

G (4) = 2m0.0331.68/15)> 3q71Y/3, (16a)
G, (q) = 2m0.0331.68/19)%3(q” + q2) Y ®expt-q? /92) [1+1.80Zq/ q,) —0.254q/ q,)"'®]. (16b)



Herer, is the Fried parameté?rgA=2n/ lout » andqa =27, wherely, andl;, are the outer and inner scales of turbulence. In

the Andrews model, the large and small scale phase distortion contributions are dependent on the outer and inner scale
parameters. In comparison with the Andrews spectrum, in the Kolmogorov model low spatial frequencies are more
dominant.

Simulations were performed for an input wave having a uniform intensity distridg(igs 1o and random phase
¢(r) determined inside a circular aperture of diam@&er For the phase aberratioggr) we used an ensemble of 200
realizations of a statistically homogeneous and isotropic random fungfigrwith zero mean and spatial power spectra
(16). The numerical grid was 28&56 pixels with a wavefront sensor aperture corresponding to 0.85 of the grid size. In the
Andrews model we useld,; =1.2D andl;, was equal to the grid element size. The input wavefront phase distortions were
characterized by both the standard deviation of the phase fluctuations averaged over the aperture

Oip =<0y >= <[S_1f$2(r) d2r]1’2 >, and the averaged Strehl rati§t< calculated with wavefront tilts removed, where

< > denotes ensemble averaging over the phase distortion realizations.
3.2. Numerical analysis: phase aberration visualization

Consider first the results of the numerical analysis performed for a single realization of the phase alpérjation
corresponding to the Andrews model (16b), for different values of the Fried parage@utput intensity patterns for the
opto-electronic Zernike filter are shown in Fig. 2. The opto-electronic Zernike filter providi® phase shift for the
spectral component having the highest intensity level independent of the current location of this component. In this way, the

effects of wavefront tilts are removed. For relatively small amplitude phase distortigns0(4 rad. andSt-0.85), the
sensor’s intensity pattern is similar to the phase distribufifr), which suggests that the dependehgg @] is “quasi-

linear”. In this regime the wavefront sensor provides good quality visualization of the phase distortion, as seen in Fig. 2a-c
When the phase distortion amplitude increases X1.5 rad.,.St0.1), the match between output intensity and input phase

vanishes, indicating a highly nonlinear phase-intensity transformijjge] performed by the wavefront sensor (Fig. 2d).
In this regime the contrast of the output pattern is also decreased.

Fig. 2. Output intensity patterns for the opto-electronic Zernike filter corresponding to the input phase reaitbafiodrews
spectrum (a) for dif'feren¢t7¢J values; (b)0¢J =0.23rad., (c)0¢ =0.41; and (d)a¢J =2.45.

Output pattern contrast can be increased using the opto-electronic Zernike filter with the intensity thresholding
described earlier. The sensor output pattern in Fig. 3b corresponds to intensity thresholding, where the phase was shifted by
6= m2 for all spectral componentpsatisfyingl(q) = 0.75max[lz(q)]. The increase in output pattern visibility does not

result in linearization of the wavefront sensor output: for large phase distortion amplitudes the depgpfi¢hcemains
highly nonlinear.

Samples of output intensity patterns for the nonlinear Zernike filter are presented in Fig. 4. Optimization of the
phase modulation coefficientin (15) allowed us to obtain good quality visualization of phase distortions in the range up to

0y (1.0 rad. $t[0.3). With further phase distortion amplitude increase, degradation of both the sensor output contrast and

correlation betweeh, , and¢ were observed (Fig. 4d).



Fig. 3. Contrast enhancement in the opto-electronic Zernike filter with intensity thresholding. Output intensity pattezns for t
opto-electronic Zernike filter without (a) and with (b) intensity thresholdéng@.75) corresponding to the input phase
realization with Andrews spectrum shown in Fig. 2(a). In both cases the standard deviation for the aperture-averaged phase

deviation isa¢ =1.48 rad. $t=0.1).

Fig. 4. Output intensity patterns for the nonlinear Zernike filter corresponding to the input phase realization with Andrews
spectrum (a) foor =0.571/ | ,c:) and dif'ferenta(,,J 1 (b) 04=0.23 rad., (c)a¢ =0.72 rad. and (d)I¢ =1.48 rad. The valudag

is the zero spectral component intensity in the absence of phase aberrations.

In contrast with the Zernike filter, the dependehgg ¢] for the point diffraction interferometer is nonlinear even

for phase distortions with small amplitudes. This means that the use of the point diffraction interferometer for phase analysi
and adaptive wavefront control requires additional processing of the sensor output.

3.3. Numerical analysis: phase aberration visualization

Statistical analysis of wavefront sensor efficiency was performed for the following wavefront sensors: opto-
electronic Zernike filter, point diffraction interferometer, nonlinear Zernike filter having different values of the phase
modulation coefficientr , and opto-electronic Zernike filter with intensity thresholding. To analyze the impact of phase
distortion amplitude on wavefront sensor performance, the Fried paragit€ 6) was varied fromy = 1.9 tory = 0.1D.

Correspondingly, for each value of, two hundred phase distortion realizations were generated. Wavefront sensor
performance was evaluated using the standard deviation of the output interfd@y, the phase-intensity correlation
coefficientcy ; (11), and the wavefront sensor performance mé;tg;i¢12). Values ofo , ¢y andQ¢ calculated for each of

200 random phase screen realizations were averaged to obtain an approximation of the corresponding ensemble average!
parametersoy ;= <0, /lgy> C=< Cyp, >, andQ :<Q¢>, presented in Figs. 5 and 6 as functions of the input phase
standard deviatiouin.

The standard deviation of wavefront sensor output intensity fluctuadigg, shown in Fig. 5 (left), characterizes

the contrast of the sensor output image. All curves in Fig. 5 (left) decay for both small and large amplitude phases distortio
with maximum contrast corresponding to the regj%rto.s — 0.7 rad. The highest phase visualization contrast was observed

for the nonlinear Zernike filter, the lowest one for the point diffraction interferometer.



The phase-intensity correlation coefficients presented in Fig. 5 (right) characterize the similarity between the
sensor’s input phase and output intensity. The phase aberration ranges;(0 gai?]) corresponding to a correlation
coefficient value near unityQ( > C;) specifies the quasi-linear regime of wavefront sensor operation. For the opto-electronic
Zernike filter and sensor with intensity thresholding, @y =0.9, the quasi-linear operational range corresponded to

cri?] [0.66 rad. §t [D.64). In the case of the nonlinear Zernike filter wathr 0.57T/I,9, this range was extended up
toai?1 (1.0 rad. 6t [0.33). The differential Zernike filter has the widest quasi-linear range, due to the cancellation of

second-order nonlinear terms by the image subtractlﬁ@htp -1 Q)(cp) .
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Fig. 5. (Left) Standard deviation of output intensity fluctuationg,; for different wavefront sensor types vs. input phase
standard deviatiog;, (Andrews spectrum). Dashed curves correspond to the following opto-electronic wavefront sensor
configurations: point diffraction interferometer (PDI), Zernike filter (ZF), and opto-electronic Zernike filter with intensity
thresholding (Th) foe = 0.5. Solid curves correspond to nonlinear Zernike filter with0.5r7/ | ,(:) (NZF1) anda =/ | ,(:)

(NZF5). Numbers in brackets correspond to Strehl ratio val@sfer g;,,. (Right) Phase-intensity correlation coefficieGts

vs. input phase standard deviatigy (Andrews spectrum). Solid curve with dots corresponds to the differential Zernike filter
(DZF).

Summarized results for the wavefront sensor quality mérére presented in Fig. 6 (left). The best performance
metric value was achieved by using the nonlinear Zernike filter mi#w/l,? . The opto-electronic Zernike filter with
intensity thresholding had the widest operational range. The quality n@etincthe form (12) is not applicable for the
differential Zernike filter because the aperture-averaged outpufl2) equals zero — a result of the DC component

subtraction. In the absence of noise, the phase-intensity correlation coe@iciamtbe considered as a performance quality
metric for the differential Zernike filter.

The corresponding results for wavefront sensor performance metrics obtained for the Kolmogorov phase fluctuation
spectrum are presented in Fig. 6 (right). They are similar to the Andrews model except the operational range for Kolmogorov
turbulence is wider. Results of calculations for both the Kolmogorov and Andrews models show that the wavefront sensors
can provide effective visualization of phase distortions over a wide range of phase distortion amplitudes. By using the
differential scheme as well as the nonlinear Zernike filter with an adaptively changing phase modulation coefficient, sensor
operational range can be further extended.
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Fig. 6. (Left)wavefront sensor performance metiws. input phase standard deviatigp (Andrews spectrum). Notations
are the same as in Fig. 5. (Rigfdavefront sensor performance metiws. input phase standard deviatigp
(Kolmogorov spectrum).

4. WAVEFRONT SENSING WITH NONLINEAR ZERNIKE FILTER: EXPERIMENTAL RESULTS
4.1. Liquid crystal light valve phase modulator for nonlinear Zernike filter

The key element of the nonlinear Zernike filter shown in Fig. 1c is an optically addressed phase spatial light
modulator. For the nonlinear Zernike filter used in the experiments described here, a specially designed optically addressed
liquid crystal light valve was manufactured. The schematic of the LCLV is shown in Fig. 7. The LCLV is based on parallel-
aligned nematic LC with high refractive index anisotropy, and a transmissive, highly photo-sensitive, amorphous
hydrogenated silicon carbide SiC:H film with diameter 12 mm and thickness nearmi. The photo-conductive film was
fabricated by PeterLab Inc. (St. Petersburg, Russia). The nematic LC has low viscosity and an effective birefringence
=0.27 forA= 0.514um. The thickness of the LC layer is Ju.
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Fig. 7. Modulation characteristics of the LCLV: (1), (2) andA4)0.514um; and (3) A= 0.63um. Applied voltage amplitudes
are: (1)v=8.5 Volts, (2)v=13 Volts, (3)V=8.5 Volts, and (4y=16 Volts. The schematic for the LCLV is shown at top left.

The intensity distribution on the LCLV photo-conductor film is transferred to an appropriate spatial distribution of
the voltage applied to the LC layer. This results in a corresponding spatially distributed change of the LC molecule



orientation from planar to homeotrogi€® The LCLV is transmissive and operates in a pure phase-modulation mode when
linearly polarized light with polarization axis parallel to the LC molecule director passes through the LC layer. The phase
change8 = (2rr/A) dAn introduced by the LCLV is determined by the LC layer thickréssd wavelengti, and the

effective LC birefringence\n, dependent on such characteristics as the LC type, applied voltage, wavelength of the incident
light, and temperature. Because the light-generated voltage pattern on the LC layer is dependent on the intensity distribution
on the photo-conductor filnn is a function of both the intensity on the LCLV photo-conductor layer and the amplitude

of the sine wave voltagé applied to the LCLV electrodes.

Dependence of the phase slitlibn the light intensity and amplitudé of the applied voltage are shown in Fig. 7
(modulation characteristics). Ne@r=772, the phase modulation characteristics can be approximated by the linear function
6=a I + ¢, wherec is a constant. The functiam= a(V, A) characterizes the slope of the phase modulation characteristic,

and can be controlled by changing the voltage applied to the LCLV. The characteristic time response of the LCLV was about
10 msec.

4.2. Nonlinear Zernike filter parameter optimization

We can estimate the requirements for the wavefront sensor input intensitjplevr the lens of a given sensor

with focal lengthL and wavelengtiA we obtainly = (A F/S)ZI £ .'° For fixedlF andA, the input intensity levdly can be

decreased by choosing a lens with a short focal length. The focal length decrease is limited by the spatial resolution of the
LCLV. Denoter g as a characteristic spatial scale limited by the LCLV resolution. For the nonlinear Zernike {ilter,

should be smaller than the diffraction-limited focal spot aEif ~AF/a. This gives a rough estimate for both the minimal

focal lengthF i, = r.&/A and the minimum input intensity level mig= [rresl(rla)]2 lg. For the LCLV used here, = 8

um. The spatial resolution was estimated from measurements of the LCLV diffractive efficiency. For a characteristic
aperture radius i = 1 cm,A = 0.5um, and LCLV optimal focal plane intensity levigl 05 mW/cnf, we obtainF,,;, = 16

cm and minlg = 0.3 nW/cm. Thus the nonlinear Zernike filter based on the optically controlled LC phase SLM can
potentially perform high-resolution wavefront analysis under conditions of rather low input light intensity level.

4.3. Experimental results

The schematic of the experimental setup for the nonlinear Zernike wavefront sensor system is shown in Fig. 8. A
laser beam from an Argon£0.514um) or He-Ne §=0.63um) laser was expanded to a diameter of 20 mm and then passed
through a multi-element LC HEX127 phase modulator from Meadowlark Optics, Inc. The LC modulator was used to
introduce piston-type phase distortiopi$r). This phase modulator has 127 hexagonal-shaped LC cells controlled by a
personal computer (PC). Each cell is 1.15 mm in diameter witin88pacing. To create phase distortions we also used an
adaptive mirror (diameter 60 mm) from Xtics, Inc. This mirror has 37 control electrodes and Gaussian-type influence
functions, with a mechanical stroke of aboyt. Dynamical phase aberrations were generated using an electrical heater
with fan.

Distorted
Wavefront

P

Input
Wave

Phase /

SLM
(HEX-127) Heater & fan

Fig. 8. Experimental setup of the LCLV based nonlinear Zernike filter with photo of the LCLV.



The focal length of the nonlinear Zernike filter front lens Was 30 cm. The second lens had a focal length,of

=10 cm. The LCLV was placed in the common focal plane of ldnsasdL>. The CCD camera (Panasonic CCTV) with

771X 492 pixels was placed in the rear focal plane of thellensThe registered intensity, (r) was digitized and displayed
on the PC monitor. The input wave intensity was hgar3 nw/cnd.

Results of nonlinear Zernike wavefront sensor operation are shown in Fig. 9. In the experiments with the HEX127
phase modulator, the phase distortions were introduced into the input laser beam by applying randomwpltagds}27
phase-modulator elements. The random values had a uniform probability distribution. The applied voltages caused random
piston-type input wave phase shiftg.§ leading to wavefront distortion. The typical sensor output intensity pattern shown
Fig.9a corresponds to a wavefront distortion peak-to-valley amplitude of Ris output has good contrast and a high phase-
intensity correlation coefficient valuecf | = 0.87). The correlation coefficient was calculated using the measured phase

modulation characteristic of the HEX127 (dependence of the phase,shiitthe applied voltage,).

Large amplitude aberrations @um) were introduced using the Xjtics mirror with 100 volts applied to its central
electrode. The resulting output intensity pattern is shown in Fig. 9b. The sensor’s output image is quite different from the
Gaussian-type function of the introduced phase aberration. The output pattern displays nonlinearity of the wavefront sensor
occurring in the presence of large amplitude phase distortions. The nonlinear Zernike sensor was also used to visualize
dynamical phase distortions created by a heater and fan. The dynamical pattern of the air flows was clearly seen despite the
presence of large amplitude random tilts. A typical sensor output image is shown in Fig. 9c. The measured time response of
the wavefront sensor was near 10 msec.

Fig. 9. Output patterns for the nonlinear Zernike filter with LCLV: left M¥® Volts; right ronV=8.5 Volts. Visualization of
phase distortions generated by: (a) HEX127 LC phase SLM; (lg}i¥srmirror; and (c) heater and fan. Picture (b) corresponds
to A= 0.63um, and the others td= 0.514um.

5. CONCLUSION

Advances in micro-electronics have made high-resolution intensity (imaging) sensors widely available. The
situation is rather different for the sensing of spatial distributions for two other optical wave components: wavefront phase
and polarization, for which sensors with spatial resolution and registration speed comparable to that of imaging sensors do
not exist. For a number of applications the spatial distribution of the phase (phase image) is the only available and/or the
only desirable information, and the demand for high-resolution, fast, inexpensive “phase imaging” cameras is continuously
growing. Three requirements important for such “phase imaging” cameras are resolution, measurement accuracy, and speed
Until now we have had to choose between these requirements. High speed and measurement accuracy can be achieved usir
low-resolution wavefront sensors such as Shack-Hartmann and curvature sensors. On the other hand, high-resolution
wavefront imaging sensors such as interferometers, phase contrast sensors, etc. are well known and widely used, but only for
the registration and reconstruction of static or quasi-static phase images, as they do not provide sufficiently highloperationa
speeds.

How is it possible to combine speed, accuracy and resolution in a single phase imaging camera? In this paper we
have addressed this issue through an approach based on merging traditional phase contrast techniques with new wavefron
sensor architectures that are based on micro-scale opto-electronic and computational technologies such as high-resolutior



optically addressed phase SLMs, optical micro-mirror and LC arrays, and VLSI parallel analog computational electronics.
This may potentially result in “phase imaging” cameras that provide high-resolution and high-speed wavefront sensing. The
accuracy or linearity of the phase-intensity transformation performed by the wavefront sensor is the next challenge.
Linearization of high-resolution wavefront sensor output can be achieved by incorporating high-resolution wavefront sensing
and adaptive optics techniques.

ACKNOWLEDGEMENTS

We thank P.S. Krishnaprasad for helpful discussions, G. Carhart for assistance with the computer simulations, and J.
C. Ricklin for technical and editorial comments. Work was performed at the Army Research Laboratory’s Intelligent Optics
Lab in Adelphi, Maryland and was supported in part by grants from the Army Research Office under the ODDR&E MURI97
Program Grant No. DAAG55-97-1-0114 to the Center for Dynamics and Control of Smart Structunegh(tHesvard
University), and the contract DAAL 01-98-M-0130 supported by the Air Force Research Laboratory, Kirtland AFB, NM.

REFERENCES

1. U. Efron, Ed.Spatial Light Modulator Technology: Materials, Devices, and Applicatidtescel Dekker Press, New York (1995).
2. M. C. Wu, “Micromachining for optical and opto-electronic systefsic. of the IEEE85, 1833 (1997).

3. G. V. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicéypplied Optics34, 2968-2972 (1995).

4. S. Serati, G. Sharp, R. Serati, D. McKnight and J. Stookley, “128x128 analog liquid crystal spatial light mo8&#HEa249Q 55
(1995).

5. J.W. Hardy, J.E. Lefebvre and C. L. Koliopoulos, “Real-time atmospheric compensat@pt’ Soc. Am67, 360-369 (1977).

6. D.G. Sandler, L. Cuellar, J.E. Lefebvre, et al, “Shearing interferometry for laser-guide-star atmospheric corregedrat,fas.
Opt. Soc. Am11, 858-873 (1994).

7. J.W. Hardy, “Active Optics: a New Technology for the Control of Lightdc. of the IEEE66, 651-697 (1978).

8. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive Apt€pt., 27, 1223-1225 (1988).

9. G. Rousset, “Wavefront sensors, Adaptive Optics in Astronomgd. F. Roddier, 91- 130, Cambridge University Press (1999).
10. R.W. Gerchberg and W. O. Saxon, “A practical algorithm for the determination of phase from image and diffractiortyrlesié pic
Optik, 35, 237-246 (1972).

11. J.R. Fienup, “Phase retrieval algorithms: a compariggi, Opt.,21, 2758-2769 (1982).

12. V.Yu. lvanov, V.P. Sivokon, and M.A. Vorontsov, "Phase retrieval from a set of intensity measurements: theory andgXgerime
Opt. Soc. Am9(9), 1515-1524 (1992).

13. R.A. Gonsalves, “Phase retrieval from modulus datadpt. Soc. Am66, 961-964 (1976).

14. R.G. Paxman and J.R. Fienup, “Optical misalignment sensing and image reconstruction using phase di@psitgdc. Am5,
914-923 (1988).

15. F. Zernike, “How | Discovered Phase ContraStiencel21, 345-349 (1955).

16. J.W. Goodman|fitroduction to Fourier Optics McGraw-Hill (1996).

17. S.A. Akhmanov and S. Yu. NikitinPhysical Optics Clarendon Press, Oxford (1997).

18. V.P. Sivokon and M.A. Vorontsov, “High-resolution adaptive phase distortion suppression based solely on intensitginfarmat
Opt. Soc. Am. ALY(1), 234-247 (1998).

19. M.A. Vorontsov, “High-resolution adaptive phase distortion compensation using a diffractive-feedback system: expesoiental
J. Opt. Soc. Am. A 6(10), 2567-2573 (1999).

20. R. Dou, M.A. Vorontsov, V.P. Sivokon, and M.K. Giles, “Iterative technique for high-resolution phase distortion coompansati
adaptive interferometersQpt. Eng, 36(12), 3327-3335 (1997).

21. R.N. Smartt, and W.H. Steel, “Theory and application of point-diffraction interferondatpasiese Journal of Applied Physi232-
278 (1975).

22. Selected Papers on Interferomet®. Hariharan, Editor, Optical Engineering Press (1991).

23. R. Angel, “Ground-based imaging of extrasolar planets using adaptive dgdtios;g 368 203-207 (1994).

24. K. Underwood, J.C.Wyant and C.L. Koliopoulos, “Self-referencing wavefront seRsoc,' SPIE 351, 108-114 (1982).

25. A.D. Fisher and C. Warde, “Technique for real-time high-resolution adaptive phase comper@gtidrett 87, 353-355 (1983).
26. M.A. Vorontsov, A.F. Naumov and V.P. Katulin, "Wavefront control by an optical-feedback interfero®gieiComm71(1-2), 35
(1989).

27. Learning on Siliconeds. G. Cauwenberghs and Magdy A. Bayoumi, Kluwer Academic, Boston, Dordrecht, London (1999).
28. A.G. Andreou, and K.A. Boahefinalog Integrated Circuits and Signal Processiggl41 (1996).

29. V.G. ChigrinovLiquid Crystal Devices: Physics and ApplicatioAstech House, Boston (1999).

30. J.W. Goodmargtatistical OpticsWiley, New York (1985).

31. L.C. Andrews, “An analytic model for the refractive index power spectrum and its application to optical scintillakiens in
atmosphere,J. Mod. Opt39, 1849-1853 (1992).

32. D.L. Fried, “Statistics of a Geometric Representation of Wavefront Distorfio®fit. SocAm.,55, 1427-1435 (1965).



