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ABSTRACT

Title of Thesis: Admission Control and Routing Issues

in Data Networks
Ioannis E. Lambadaris, Doctor of Philosophy, 1991

Thesis directed by: Dr. Prakash Narayan
Electrical Engineering Department and

Systems Research Center

In modern telecommunication and computer networks, there is an increasing
demand to provide simultaneously a variety of services to heterogeneous traffic
types with diverse characteristics and performance requirements. This hasled to a
need for understanding the basic structure that characterizes policies for efficiently
allocating network resources, such as link capacity, to the various users. In this
dissertation, we address some aspects of admission control and routing — key issues
arising in the design and operation of integrated communication and computer
networks. We begin by considering the problem of optimal admission control of
messages arriving at a circuit-switched node. Next, the asymptotic behavior of
such networks is investigated when the arrival intensities and the capacities of
the network links are increasingly large. Finally a “combined” optimal admission-
routing scheme at a simple network node is presented. A description of these

problems is given below.

Two communication traffic streams with Poisson statistics arrive at a network
node on separate routes. These streams are to be forwarded to their destinations
via a common trunk. The two links leading to the common trunk have capacities
C1 and C; bandwidth units, respectively, while the capacity of the common trunk
is C bandwidth units, where C < C; + C». Calls of either traffic type that are not
admitted at the node are assumed to be discarded. An admitted call of either type

will occupy, for an exponentially distributed random time, one bandwidth unit on



its forwarding link as well as on the common trunk. Our objective is to determine
a scheme for the optimal dynamic allocation of available bandwidth among the
two traffic streams so as to minimize a weighted blocking cost. The problem is for-
mulated as a Markov decision process. By using dynamic programming principles,
the optimal admission policy is shown to be of the “bang-bang” type, characterized
by appropriate “switching curves.” The case of a general circuit-switched network,

as well as numerical examples, are also presented.

Markov decision processes arise in a natural way in the optimal control of
queuing systems in some of the problems considered in this thesis. In many cases
the convexity of an optimal discounted cost associated with such processes plays
a key role in the analysis. A method that ascertains the convexity of such op-
timal discounted costs is presented. The procedure relies on a straightforward
examination of all possible state transitions of the underlying Markov decision

process.

Next, the asymptotic behavior of circuit-switched networks is addressed. We
first consider a class of simple circuit-switched nodes in the limiting situation where
the link capacities and the offered traffic intensities are increased at the same rate.
We assume that an incoming message is given access to the network only if none
of the links constituting its route is saturated in capacity. The process of the
normailized number of messages on each route is shown to converge in probability
to a solution of a system of differential equations which possesses a unique stable
point. Next, the difficulties encountered in extending this method to arbitrary
circuit-switched networks are discussed. The usefulness of the method lies in its
ability to provide a transient analysis of the limiting network and to determine its
“most likely” steady state. A conjecture for a strong approximation concerning

the limiting behavior of an arbitrary circuit-switched network is also given.

Finally, a problem of determining simultaneously optimal admission and rout-
ing policies at a data network node is considered. Specifically, a message arriving

at the buffer of a node in a data network is to be transmitted over one of two



channels with different propagation times. Under suitably chosen criteria, two
decisions have to be made: whether or not to admit an incoming message into
the buffer, and under what conditions should the slower channel be utilized. A
discounted infinite-horizon cost as well as an average cost are considered which
consist of a linear combination of the blocking probability and the queuing delay

at the buffer.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The proliferation of digital communications traffic with increasingly diverse char-
acteristics, performance requirements, and grades of service has created a recent
surge of interest in the study of integrated networks capable of realizing an effi-
cient sharing of facilities such as transmission and switching. This phenomenon is
particularly evident in satellite and computer communication networks. Indeed 1t
is expected that in communication networks of the future, large integrated service
digital networks (ISDNs) will be designed to accommodate random demands for
bandwidth usage from a population of heterogeneous users (i.e., users with differ-
ent characteristics and performance requirements). This has led to an increasing
need for an understanding of the basic structure that characterizes policies effi-

ciently allocating various resources, such as link capacity, to the various users.

This thesis is concerned with some aspects of admission control and routing-
key issues arising in the design and operation of integrated communication and
computer networks — as is evident from the considerable literature in these areas.
From the plethora of available references, we cite below only those of direct rel-
evance to our work. In the realm of admission control, numerous proposals for
providing integrated service have appeared heretofore in the literature, most of
which concentrate on the the integration of two traffic types, namely voice and
data traffic. Furthermore, these proposals have assumed various forms, including
the use of circuit switching for voice and packet switching for data [81,82]. As
summarized in Konheim-Pickholtz [32], most of these schemes have focused on
time-division multiplexing implementations. Typically, a shared communication
resource, €.g., a trunk, is partitioned into frames of fixed duration (~125us). Each
frame, in turn, is partitioned into slots (~24 slots in a frame). Each slot can ac-

commodate a packet, which is the basic unit used for the transmission of both voice
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and data in these schemes. In a circuit-switched scheme, a certain number of slots
is allocated to a particular voice (or data) source during the entire duration of a
“call”. Here, the integrated multiplexer has a fized boundary; thus, voice packets
are transmitted only in those slots that occupy a prespecified part of the frame,
while the rest of the frame is used for the transmission of the data packets. In
effect, a fixed boundary scheme is a static one which divides the channel into two

independent subchannels.

Much work has also been done on dynamic bandwidth allocation to multiple
traffic types. The schemes proposed usually focus on two traffic types, viz., voice
and data, and employ a movable boundary. This scheme leads to an increased
efficiency of channel usage by allowing idle channel capacity to be dynamically re-
assigned from one type of traffic to the other; it is typified by the SENET network
as described by Coviello-Vena [10]. The movable boundary scheme, in its basic
form, employs the following format: a certain portion of each time-slotted frame
is allocated to voice traffic, while data can use all of the remaining frame capacity
including any unused voice capacity. Voice traffic on the other hand, cannot avail
of any unused data capacity and operates as a loss system, i.e., voice messages
which find no voice channels available upon arrival are assumed to be lost. Voice
traffic is given priority over data traffic, and data can be queued. Several ver-
sions of moving boundary techniques have been proposed and analyzed by several
authors, e.g., Fisher-Harris [11], and Leon-Garcia et al [83]. Gaver-Lehoczky [15]
deal with a rather extreme but realistic situation in which data arrives in packets
of short service duration , whereas voice traffic is less frequent but exhibits very
long holding times. Arthurs-Stuck [2] have analyzed the theoretical performance
limits of a variety of time-division multiplexing policies for models of synchronous
and asynchronous traffic. Konheim-Pickholtz [32] and Lee et al [40] have studied
various models for voice-data multiplexing when both voice and data are buffered.
Another approach to voice-data integration is motivated by the fact that voice
traffic is characterized by periods of silence, which constitute a significant per-

centage of the bandwidth allocated to it. Detection and utilization of such periods
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for the transmission of either voice or data would certainly improve the perfor-
mance of the network. The techniques of time-assignment speech interpolation,
time-assignment data interpolation, and their variations [72,83], are based on this

notion.

Kaufman [26] has studied the issue of blocking in a shared resource envi-
ronment. Foshcini-Gopinath [12] have determined an optimal coordinate convez
admission policy for a simple blocking node accommodating two different traf-
fic types with similar bandwidth requirements. They showed that the admission
strategy has a simple threshold structufe. Ross-Tsang [61, 75] have showed sim-
ilar results for traffic with different bandwidth requirements, and have devised

algorithms for evaluating the blocking costs in these cases.

Dynamic programming techniques have been used by Maglaris-Schwartz [49]
in attempting to derive a globally optimal policy for the control of a simple ISDN
node. Using the same framework as [49] Stidham [73] has considered admission
control policies for several simple queuing models. By using the theory of Markov
decision processes and dynamic programming, he has demonstrated that the op-
timal admission control policies for all these models share the characteristic that
they can be expressed in terms of a “switching curve”. Viniotis-Ephremides [79)
have demonstrated a similar characterization of the optimal admission strategy at
a simple ISDN node. Results in the same vein have been obtained by Christidou
et al [9] for a cyclic interconnection of two queues, and by Lambadaris et al [39]
for a circuit switched node. Hajek [16] has investigated the problem of optimally

controlling two interacting queues.

Turning next to the class of routing problems, Lin-Kumar [41] have considered
the task of routing messages arriving at a node among two channels (servers), one
faster than the other. By minimizing the average queuing delay at the node buffer,
they show that the optimal routing policy is characterized by a “threshold” on the
size of the queue. Rosberg-Makowski [58] have treated a similar problem involving

multiple servers under the assumption of light traffic. In a recent preprint [47], Luh
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-Viniotis claim the optimality of a policy determined by multiple thresholds for
the situation in [58] even with arbitrary arrival rates. Nain-Ross [53] consider the
optimal assignment of a single server to multiple classes of traffic. In doing so, they
minimize a linear combination of the average queue lengths of the various classes
of traffic while simultaneously constraining the average queue length of a specific
traffic class to lie below a specified value. Shwartz-Makowski [71] treat a similar
problem with two types of traffic. Both [53,71] show the optimal assignment
strategy to be a randomized one. Analogous constrained queuing optimization

problems are treated also in {1,48].

Finally the emergence of high-speed optical communication networks offering
access to a wide variety of very sophisticated and high-quality telecommunication
services, has provided impetus for a research effort of a different hue: This effort
concerns the development of approximate methods for the analysis and perfor-
mance evaluation of large networks. In such networks optimal admission control
and routing may not be the key issues because of the tremendous amounts of avail-
able bandwidth capacity. On the other hand, even the very light blocking exhibited
by such networks is of great practical significance since the loss of a single packet
during transmission may require a retransmission of an entire data stream-a pro-
cess that is costly and incurs considerable delays. Furthermore, current telephone
networks have become quite large and complex, and analytically intractable, lead-
ing to an increasing need for approximate analysis. For instance, the difficulty in
computing the normalization constant in the product-form distribution associated
with certain networks, has recently led to the use of integral transforms for ap-
proximating such normalizing constants [52]. A different approach due to Kelly
[27] involves a procedure for evaluating the blocking probability in large circuit-
switched networks. A similar study has been performed by Pittel [56]. Finally,
strong approximations for a closed network of queues have been performed by

Kogan et al in {30].



1.2 Organization of the Dissertation

This dissertation addresses certain issues relevant to a class of resource al-
location problems, namely admission control and routing, that arise in wideband
communication networks. We have selected specific problems which we hope will
serve as insightful paradigms of network situations under certain assumptions and
performance criteria. The initial concern is to understand the structural charac-
teristics of optimal policies for bandwidth allocation and routing for a few simple
analytical models. The optimal policies so obtained are described in qualitative
terms which are usually unamenable to simple practical implementation. They
are, however, useful in helping identify suboptimal yet efficient and potentially
implementable policies. For large networks, when exact analysis is rarely feasi-
ble, this qualitative understanding can often be helpful in inferring approximate
or asymptotic (with increasingly large arrival intensities and link capacities) be-
havior. Some work is presented on the asymptotic behavior of a network with a
large number of nodes, based on which a few conjectures are drawn when such a

network is circuit-switched.

In Chapter 2 we consider a circuit-switched node providing service to two
different message traffic streams. We assume that the two traffic types are trans-
mitted over two channels with capacities C; and C; frequency slots, and they
eventually merge on a common trunk of capacity C' en route their destination.
The messages arrive according to a Poisson distributions with means A; and ;.
Upon arrival of traffic-type 7 a slot is simultaneously allocated on the channel of
capacity C; and on the common trunk and the particular slot is occupied for a time
interval that is exponentially distributed with parameter p;, 1 = 1,2. Messages of
either traffic type that are not admitted at the node are assumed to be lost. Given
that a cost ¢; is incurred for each type-i message that is discarded, we seek an op-
timal admission strategy that minimizes an average rejection cost over an infinite
time horizon. Formulating the problem in terms of a two-dimensional Markov de-

cision process, we show by an application of dynamic programming principles that
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the optimal admission policy is characterized by monotone “switching curves” in
the state space of the system. Finally an extension is given to circuit-switched

networks with a specific structure.

In Chapter 3, we provide a criterion for the convexity of the optimal dis-
counted cost associated with a class of Markov decision processes; such processes
typically arise in the control of queuing systems, e.g., in Chapters 2 and 6. Specifi-
cally, for a Markov decision process with a given linear state evolution, the method
ascertains the convexity of an associated infinite horizon optimal discounted cost

by a straightforward examination of all possible state transitions of the process.

In Chapter 4, methods are presented for evaluating the blocking performance
of circuit-switched networks. We focus on methods that involve easy calculations
requiring minimal computing time. Next, simple bounds are derived for the block-
ing probability when the arrival intensities are small (light traffic). Such bounds,
albeit for small arrival intensities, can be significant, particularly for high-speed
optical networks where a loss by blocking is often costly. This chapter is not ex-
haustive and aims at introducing, rather than effectively solving, the problem of

approximating the blocking behavior of circuit-switched networks.

Chapter 5 addresses the asymptotic behavior of circuit-switched networks. We
first consider a class of simple circuit-switched nodes under the limiting situation
where the link capacities and the offered traffic intensities are increased at the
same rate. We assume an incoming message is given access to the network only if
none of the links constituting its route is saturated in capacity. The process of the
normalized number of messages on each route is shown to converge in probability
to a solution of a system of differential equations which possesses a unique stable
point. Next, the difficulties encountered in extending this method to arbitrary
circuit-switched networks are discussed. The usefulness of the method lies in its
ability to provide a transient analysis of the limiting network and to determine its
“most likely” steady state. A conjecture for a strong approximation concerning

the limiting behavior of an arbitrary circuit-switched network is given at the end
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of the chapter.

Finally, Chapter 6 deals with the problem of the joint optimal admission and
routing at a data network node. Specifically, a message arriving at the buffer of a
node in a data network is to be transmitted over one of two channels with different
propagation times. Under suitably chosen criteria, two decisions have to be made:
Whether or not to admit an incoming message into the buffer, and under what
conditions should the slower channel be utilized. A discounted infinite-horizon
cost as well as an average cost are considered. These costs consist of a linear

combination of the blocking probability and the queuing delay at the buffer.

We now provide a brief presentation of certain mathematical tools which are

frequently employed in the subsequent chapters.



1.3 Mathematical Preliminaries

In this section we provide a brief introduction to the notions of (semi)-Markov

decision processes and stochastic ordering. Our presentation is by no means com-
plete; the interested reader may consult [6,7,8,22,42,43,44,64,65,69] for further

details and proofs.
a) (Semi)-Markov decision processes

A semi-Markov decision process (SMDP) (z¢, t > 0) is characterized by
[42,43,64}:

e a state space § in which xy, t > 0 takes its values;

e an action space A = [I,cs Asy where A, is the set of actions that are

admissible at state s;
¢ a law of motion @Q;
¢ a transition time T;
e a cost C;

Hereafter we assume that S is countable and A, is finite. Whenever the system
represented by the process (z4, t > 0) is in state s and action a € A, is chosen,

the following occur:
1) The system moves to a new state selected according to the probability
distribution Q(-|s,a),

2) Conditioned on the event that the new state is s, the length of time it takes
the system to move to state s’ is a nonnegative random variable with probability
distribution T'(:|s,a, s'),

3) Conditioned on the event that the new state is s’ and the transition takes

t time units, a cost C(t|s,a,s’) is incurred immediately after the transition is

completed.

Remark: The cost C(-) need not be incurred all at once; it can be gradually

incurred during the course of the transition.
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A control strategy (CS) z is a sequence zj, 23, - - of decision rules where the
nth decision rule z, dictates how to select an action in A at the completion of the
n-1th transition. Precisely, z, is a conditional probability on A given the history of
the process h™ = (s1,a1,C1,t1,+* y8n~1,8n-1,Cn—1,tn—1,8x) up to and including
the time of the n-1th transition. Hence, given the the history of the process A"
up to the time of the n-1th transition, the nth action is chosen according to the
distribution z,(-|h™). A CS z is said to be stationary if it is invariant with time
and 1s always chosen with probability one, i.e., if the distribution z,(-|h™) is atomic

and hence, identically 1 for a fixed action in A.

With every semi-Markov decision process and a given CS z, we associate two
costs, namely a discounted and an average cost. Let V(z,s,t) denote the total
expected reward earned by time ¢ when starting from state s. For a discount

factor 6 > 0, the total é-discounted cost over an infinite time horizon associated

with a CS z is defined as
V¥(z,s) = / e~ dV (2, 5,1), (1.1)
0

while the average cost over an infinite time horizon is defined as

V(s,2) = limsup V—(if-’—t—)

t—oo

(1.2)

Finally, we define the optimal discounted and average costs V?¢(-) and V(-)
by,
Vi(s) = inf Vi(s, 2),

and,

V(s) = ix;fV(s, z).

If a policy exists which achieves either of the infima above, the policy is called
optimal for the associated costs. Criteria for the existence of an optimal policy

can be found in [42,69].



Costs similar to (1.1) and (1.2) can be defined for a finite horizon upto and in-
cluding the nth transition. We denote by V,9(-), § > 0, the é-discounted cost for a

finite horizon of upto the time of the nth transition.

Let

ﬂ(s,a,s')_é_/ e~ dT(t|s,a,s"),
0

c(s,a,s')é/ C(t|s,a,s")dT(t|s,a,s")
0

be the expected discount factor and expected cost per transition, respectively,

when action a is taken at state s leads to a transition to state s'.

Proposition 1.1: The cost functions V¢(:) and V,’(-) satisfy the following so

called dynamic programming equations (DPE):

Vi) = 1nf {Z c(s,a,s') + B(s,a,sYV(s")) Q(s'|s,a)},

s'€eS

Vii(s) = mf {Z c(s,a,8') + B(s,a,s ) VE(s")) q(s'|s,a)}.

8 ’ES

Remark: A considerable number of resource-allocation problems in queuing sys-
tems can be formulated using a cost per unit time (or instantaneous cost) while
at state s and following a strategy z. Such a cost, denoted by C(s, z), can be used
in lieu of C(-) introduced in the definition of a SMDP. Relations (1.1) and (1.2),

respectively, are now transformed into

Vé(s,z)zlEj/ e~ C(sy, 2)dt
0

and

V(s,z) = limsuplE:/ C—('Ec-ft—’-f—)-dtu
0

T 00
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In the special case when the time distribution T(-) between transitions is
exponential (memoryless), the associated process (z;, t > 0) is called a Markov
decision process (MDP). In our presentation heretofore, we have dealt with a
continuous time framework. In the study of MDP’s describing certain queuing
systems, it is often desirable to develop certain techniques that will convert a
continuous-time MDP to a discrete time MDP, the discrete-time instants being
the state transition times. Such a uniformization technique is illustrated in {38,
page 54], by which an equivalent state process (£, t > 0) is constructed on & such

that,

where T, and T, 4+; represent the transition times of a Poisson process with a
uniform rate and (z,, n = 0,1,---) is a suitable discrete time state process defined
on §. Moreover it can be shown that z;, t > 0 and #;, t > 0 are equivalent in the

sense that,

P(z: = y) = P(3: = y)
forally =1,2,.

A study of (z¢, t > 0), thus is equivalent to the studying (2, t > 0), and
in particular of (z,, n = 0,1,---). An important consequence of the uniformiza-
tion is that the quantity ((s,a,s') becomes independent of actions and states
thus, thereby facilitating considerably the study of the dynamic programming
equation.Further details of this technique will be introduced as and when needed
during the course of the subsequent chapters; the interested reader may refer to

[38] for a comprehensive treatment.

b) Stochastic order relations

We now introduce the notion of the stochastic ordering of random variables.

Propositions are presented without proofs; for proofs and further details the reader

may consult [22,65].

Definition 1.1: A R-valued random variable X is said to be stochastically larger

11



than a R-valued random variable Y, denoted X >, Y, if
P(X >a)2 P(Y > a) (1.3)

for all ¢ in R. If X and Y have distribution functions F and G respectively, then
(1.3) is equivalent to

1— F(a) >1-G(a) & G(a) > F(a).

Proposition 1.2: The following equivalence is true:
X 24V & E(f(X)) 2 E(f(Y))

for all nondecreasing functions f : R — IR for which the expectations exist and

are finite.

The following proposition plays an useful role in stochastic comparisons.

Proposition 1.3: If X >,; Y, then there exist random variables X and Y defined
on a common probability space (2, F, P) with the same distribution as X and Y,

respectively, and such that

X>Y (P a.s.)

Remark: Proposition (1.3) is also valid for stochastic comparisons of processes,

1.e., the random variables in the proposition may be replaced by the processes

(X¢, t>0) and (Y3, t > 0), such that X; >4 Yy, t > 0.

In the course of our study, whenever we use stochastic ordering or coupling
arguments associated with certain random variables (processes), we shall always
tacitly refer to the random variables (processes) defined on a common probability

space in accordance with Proposition 1.3.
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CHAPTER 2

OPTIMAL ADMISSION CONTROL OF TWO TRAFFIC TYPES

AT A CIRCUIT-SWITCHED NETWORK NODE

2.1 Introduction

In modern telecommunication networks there is an increasing need to trans-
mit simultaneously heterogeneous traffic types with diverse characteristics, per-
formance requirements, and grades of service. This has resulted in a recent surge
of interest in the study of integrated systems capable of realizing an efficient shar-
ing of facilities such as transmission and switching. Indeed, it is expected that,
in communication networks of the future, large integrated service digital networks
(ISDN’s) will be designed to accommodate random demands for bandwidth usage

from a population of heterogeneous users.

Various schemes have been proposed to date for multiplexing several types of
traffic on the same channel. Much of the work has concentrated on two types of
traffic, namely voice and data [32]. Furthermore, the techniques addressed thus

far can be classified into three broad categories:

1)Complete Sharing Scheme: In this scheme a call of a particular traflic type
is always offered access to the network whenever sufficient bandwidth is available

to accommodate it.

2)Complete Partitioning Scheme: In this technique, the available channel
bandwidth at each node is partitioned and a portion of the bandwidth is dedicated
to each traffic type.

3)Moving Boundary Scheme [33,49,50]: This scheme applies to two traffic
types, namely voice calls and data packets. The total bandwidth is partioned into
two compartments. One compartment is typically allocated to voice traffic, while

data can use the remaining compartment as well as any unused slots in the voice
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compartment. On the other hand, voice traffic cannot use any unused data slots,
and operates as a loss system, i.e., voice calls that are not accepted upon arrival

are assumed to be lost.

In the schemes mentioned above, the customary objective is to control the
multiplexer so as to maximize channel utilization or minimize blocking probability.
Usually, the first call type, viz., voice, operates as a loss system while the second
call type, viz., data, is queued. Also, much of the work to date involves static
schemes for the control of the multiplexer, i.e., the allocation policy is chosen a
priori for all time, and its performance analyzed. Much less work is available
on dynamic control schemes, where the best allocation policy according to some
criterion may vary in time; such a policy may be stationary (deterministic) or

nonstationary.

In the study that follows, we consider the problem of allocating channel band-
width to two communication traffic streams that arrive at a network node on two
different routes and must be forwarded to their destinations via a common trunk.
Calls of either traffic type that are not given admission at the node are assumed
to be discarded. Our objective is to determine a scheme for the optimal dynamic
allocation of available bandwidth among the two traffic streams so as to minimize
a weighted blocking cost. The problem is formulated as a Markov decision process
where the control actions consist of accepting or discarding a call at the instant of
its arrival into the system. By using dynamic programming principles, we demon-
strate that the optimal admission policy is of the “bang-bang” type characterized

by two “switching-curves” in the state space of the system.

The current chapter is organized as follows. The control problem is formulated
in section 2.2. Section 2.3 considers the discounted cost case and establishes key
properties of the optimal discounted cost function; the associated optimal policy
for this case is characterized in section 2.4. The average cost problem is addressed
in section 2.5. Numerical results for a given link are given in section 2.6. Finally,

in section 2.7 we consider the optimal admission control problem for a general
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circuit-switched network.

2.2 A Description of the Problem

We consider an integrated scheme for providing service to two types of non-
queuing traffic (e.g., voice and video) with different statistics and requiring differ-
ent grades of service. We shall direct our attention to two traffic streams, one of
each type, arriving at nodes 1 and 2, respectively (see Figure 2.1), for transmission
to node 3 which subsequently directs the traffic onto a trunk. We assume that
nodes 1 and 2 are connected to node 3 by means of two links of capacities C;
and C; frequency slots, respectively, and that the trunk capacity is C slots. It is
further supposed that each call (i.e., voice call or video message) occupies exactly
one frequency slot on one of the two links and on the trunk.

When a call arrives at node 1 or 2, a decision is made at the node on either
accepting it or blocking it. If accepted, the call is granted a slot simultaneously on
the corresponding forwarding link as well as on the common trunk; if blocked it is
assumed to be lost. These decisions are based on minimizing appropriate blocking
costs associated with lost calls. We remark that deliberate blocking of a call of
one type may be advantageous for the following reason: It may be worthwhile
reserving an empty slot on the shared trunk for a call of the other type since

blocking the latter (at a later time) would incur a greater cost.

The following statistical assumptions are made on the arrival and service
times of the incoming traffic. Calls of type-i arrive in a Poisson stream of rate
Ai; their corresponding service times are i.i.d. exponential random variables with
mean p;, ¢ = 1,2. We shall assume without any loss of generality that g3 < po
and that all arrival and service processes are mutually independent. The state of
the system describing the distribution of the load at time ¢ > 0 is defined by the
two-dimensional vector x; = (z},z?)T where z} and z? denote the number of calls
in service of type-1 and type-2, respectively, such that z} < C;, 2? < C, and
z} + 22 < C. We further assume that C < Cy + C,. Then the state space of the

system (see Figure 2.2) is the set:

15



£ TR
C

Figure 2.1

n,an)l A0
Bl @ By (i+1) @
@ A (-2') Mz
Kl L 08

Y

Figure 2.2

16



X = {x; = (z},2%): z},2? € Z, 0<zl <0y, 02?2 <Cy, 7y +27 <C}.

Transitions among the states in X’ are described in terms of the operators A;

and D; representing, respectively, an arrival or a departure of a message of type

i, i =1,2. Thus, the operators 4; : X — X, D;: X — X,i=1,2, are defined by:

Ar(e,2?) = (2} +1)%,2?)
Ag(xl,mz) = (:I:l,(:ltz +1)%)
Di(z',2%) = ((z' - 1)*,2%)

Dy(z!,2?) = (z!,(z* - 1)T),

where

(! + 1), 2)_{(23 +1,22) ifal<Cy, 2t +22<C

otherwise,
and m* = max{0,m}.

At this point, we provide a heuristic motivation of the nature of the control
actions at nodes 1 and 2. Denoting by 2z} = z(x;) the probability of blocking an
incoming call of type-i, i = 1,2, arriving in the time interval [t, + dt), we must
suitably select this probability based on a knowledge of x;. We refer to zi as the
control action taken at time t. If a; > 0 is a blocking cost associated with the
type-i traffic, the total cost incurred during [t,t 4 dt) is Z;——l Xia;zi(x¢)dt. We
can then write the normalized cost per unit time at time ¢ with the system state
being Xy, as ¢i(x¢) = z} (x¢) + az?(x,), where a > 0 (assuming, of course, that
A > 0,1 =1,2).

Let § > 0 be the interest rate used for discounting future cost, i.e., the present
value of a cost a incurred at time ¢ is ae~%. Let J§(x) be the minimum “expected”
total discounted-cost with respect to zi(+), ¢ = 1,2, when the time horizon is
{t : t > 0} and the initial state is x = (z',2?). Then, dynamic programming

considerations
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lead to the following optimality conditions for J&(x):
Jopa(x) = mi odt + azddt
o+dt(X) 05:?,1:%51{20 + azpdi+

2
e (D (2N (%) + Xi(1 — 25) I (Aix)+

1=1
+ z'p; J8(Dix))dt

(1= (2 + 2 2)d)TE(x)} + old).
It readily follows that:

Jt6+dt(x) = Oénilrél{ztl)(l - 5—6dt)\1(Jf(A1X) - Jf(x))}“i'
S3S

+ i {230 = =07 (42x) — JE6)}

+ terms not depending on z},22.

Consequently 23(2) = 0 (ie., a type-1(2) call is accepted) if J&(A;(2)x) —
J(x) < e®(a)/Ay(2); otherwise 2(1,(2) = 1. Thus, we can associate with every
state x in X' a set of admissible actions D = {0,1}? with the understanding that

an admissible action z,(x) at state x and at time ¢ will have the form:

z¢(x) = (2 (%), 7/ (%))

where z: = 1 or 0 according to whether an arriving call of type-i is rejected or
accepted into the system. The action space is then defined as the product set D%,
and we represent an admissible control strategy (CS) as a D5-valued stochastic
process (z;,t > 0) where z; = (2z,(x),x € X). Hereafter, we shall use the abbrevi-
ated notation z for the C'S (2, t > 0). We denote by P the set of all admissible
control strategies. Further, for simplicity, we write 2} instead of z{(x;). Finally,
observe that ((x¢,2¢),t > 0) is a Markov decision process with transition rates

shown in Figure 2.2.
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At this juncture, it is convenient to relate the continuous time Markov chain
(x¢,t > 0) to a “suitable” discrete time chain by following the method of “uni-

formization” [44,77]. To this end, we first define the total event rate by:
p=2A+ A+ Cpu,.

Then, let 0 =t9 < t; <t3... <t, < ... be the transition epochs (due to arrivals
or departures) of the state process (x¢,t > 0). By suitably introducing “dummy”
transitions as in [59,44], it follows that the interepoch intervals are i.i.d random
variables with a common distribution determined by P(tg4+; —tx > t) = €=, t >
0, k =1,2... Then it can be easily shown [59,77] that the §-discounted expected

cost accrued up to time t,, upon starting with initial state x and following a policy

tn
E; (/ e (2l + aztz)dt),
0

is equal to a cost of the form:

n—1
E; (Z B*(zk + u) ,
k=0

z in P, viz.,

with z} 2 zi and B = p/(§ 4+ p) < 1. The last expectation is taken with respect
to the probability distribution associated with a discrete time Markov decision

process (X, k > 0) with transition probabilities:

(A if Xk41 = Alxk,z,lc =0
/\1 if Xk+1 = xk,z,lc =1
A2 if Xppy = Azxk,zi =0
P(Xk+1|xXk,28) - p = g if Xppq = xk,z,% =1 (2.1)
prz! if Xp41 = Dixyg
paz? if Xpq1 = DoXy
\Cug — 'y —2%py if Xpqy = zk,2 = 0.

Then for each initial state x in X, we can define,

T5(x) = min Ej (ij BY(zh +azz>) (2.2a)

k=0
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as the n-step optimal S-discounted expected cost. Further, we introduce the infi-

nite horizon optimal S-discounted expected cost:

00
JE(x) = Eréig E; (;;, B* (2L + azi)) < +o0. (2.2b)
Since the underlying state space S is finite, it can be shown [64] that
limy, — 0o J2(x) = JP(x); moreover for the infinite horizon problem an optimal pol-
icy exists and it is stationary, i.e., the minimizing CS 2 satisfies Z,(x:) = Z(x¢), X;
in&, t>0.

In terms of the discrete-time formulation, the Dynamic Programming equa-

tion can be written as follows (assume for simplicity that p = 1):

Jkﬂ_H(x) = {z'ngi?l} {2z} + az}
efo,

z(';=1 if z‘i=C;

or zl422=C, i=1,2}

+ B (1 = )T (Arx) + fhaz T (%) 03
2.
+BX2(1 — 28)TE (A2x) + Braz T (x)
+ Bprz! JE(D1x) + Buzz® J{ (D2x)
+B(Cpa — &'y — 22 p2) T (%)},
with x = (z!,z?) being the initial state and zJ, z2 the corresponding actions at

that state. Rearranging terms in (2.3), we get the following optimality criteria:

While at state x such that z! < C; (2% < C2), and z! + z* < C, an incoming

type-1(2) call is blocked, i.e., 23(2) =1,if
JE (A1 0y(x)) = JE(x) > 1(a)/BX 24
k (A1) (x)) = T ( ) 2 a)/Bhi). (2.4)

Furthermore, if 2'(? = Cy(y) or 2! + 2% = C, we set 23(2) =1.
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2.3 Properties of the Optimal Discounted Cost Function

We now derive a few properties of the optimal n-step f-discounted cost func-
tion J2(-) which will be employed in the next section to characterize the optimal
policy for call acceptance or rejection.

Proposition 2.1: For each ! > 0, 22 > 0, J4(.,.) is an increasing function of

z!, 22,

Proof: We will first show that
JE(e! +1,2%) 2 Ji(a*, 2%),

by using simple coupling arguments. We consider two identical systems starting
with initial conditions (¢! + 1,z?) and (z?, z?), respectively. We apply the same
control strategy to both systems, namely the one that is optimal for the n-step
cost problem with initial conditions (z! 4+ 1, 2?). Whenever the system with initial
condition (z! +1,2?) admits a new call then it is feasible for the system, starting

at (z',z?) to do so. Let x; denote the state trajectory of the first system, and let

o2 min(k : z; = 0). For n > o, the states of the two systems coincide. Since we
follow the same control strategy for both systems, elementary coupling arguments

provide that
JE(z' +1,2%) — JB(2*,2%) > 0.
In a similar manner we show that J2(z!,2? + 1) > J8(z!, 2?).

Proposition 2.2: For each 22 > 0, J#(.,z?) is a convex function, i.e.,
JB(2Y +1,22) = JB(2?,2?) > JB(2*,2?) - JB(2' - 1,27). (2.5)

A similar statement is true of J5(z!,-) for each 2! > 0.

Proposition 2.2 can be established using linear programming techniques and
duality theory in the manner of [59]. To this end, we shall need the following

definitions:
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A sample path w* (of arrivals and departures) is a sequence of k events,

k=1,2,---, defined by

wh = {wi,ws,...wi}, w; € {A1, A2, D1, Do}

j=1,...,k,

with j representing the jt' arrival or departure epoch, and A;, D; denoting re-
spectively an arrival or a departure of a type-i call, i = 1,2. We define the basic
sample space, Q¥ for the MDP to be the set of all sequences wk,

A transition & is specified by

(1,0) ifwr =4
fk(wk) _ (0,1) ifwr=A4

(-1,0) ifwp =D,
(0, —'1) if WE = Dz.
We can then express the evolution of the state trajectory corresponding to a policy
z in P, through the following recursive equation:
Xp =X
(2.6)
xk(w*) = ko1 (W) + £4(WF) - diag Ex(w")zr(w"),
where Xg is the initial state and diag £, (w*) is a 2x 2-diagonal matrix with diagonal

elements £, (w*). Solving the recursive state evolution equation (2.6), we obtain

that
k k
xp(w*) = x+ > €;w) = Y diag £;(w)z;(w).
j=1 Jj=1

The n-step S-discounted cost corresponding to a control policy z in P and with

initial condition x can be written as follows:

VA(x,2) = EX (i(ﬁk(zil(wk =A;) +azil(wg = A2)))

k=1

Y T e,

k=1wkeQk
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where 1(-) denotes the indicator function, and 7, (w*) = 8* (1(wr = A1), al(wy =
A2)) P(w*), with IP(w*) being the probability of the sample path wk.

The optimal n-step discounted cost (2.2a) then becomes

Bix) = min VO
Ja(x) = LoV (%, 2).

In an analogous manner, we define:

Bl — min VB
Wa(x) = o, Ve (x,2).

Then WP(x) is the (optimal) value function of a minimization problem of the

form:
WEx)= min > ) Yie(w*)za (W),
{zk(wk)}:=1 k=1 wkEQk
such that
1(2) Ey _ 0 lf wWE = A2(1) or D2(1),
z (W) = { € [0,1] otherwise. (LP)
w* e QF,
k=1,2,...n,

under the constraints
k k C
o) e (Vi) < (OO
0Sx+D 6 =D, dingg()a) < (¢,
1= i=

and

k k
(LD)(x+ Y €(w?) =) diag €5(w)z;(w’)) < C.
j=1 j=1

This is a linear program in the finite array of variables {z(w*),w* € Q¥,1 <k <
n}. Since X, the initial condition, enters linearly in the constraint equation, it can

be shown [77] that W5(-) is a convex function of x. Note that, W/(x) cannot as
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yet be associated with J5(x), since the variables zi(w*) in (LP) can take values in
the interval [0,1). We now proceed to prove that there exists a solution zs(wF), w*
in 25,1 < k < n, such that zx(w*) belongs to {0,1}2. We first derive the necessary
and sufficient conditions of optimality for the solutions of the linear program (LP).
By duality theory [77, p. 50], z* = {z}(w*),w* € QF,1 < k < n} is an optimal

solution of the (LP) above if and only if there exist nonnegative dual variables
rw*) e RE, pui(w*) eRE, vi(wF)eRy, 1<k <n, e F

such that (we drop in our notation the dependence of certain variables on w* to
make the presentation simpler):

1) z* is an optimal solution to the following unconstrained problem:

Z Y (et —Akx+25 ~Z diag ¢;z;)

l:;c(wl”)E[o A | k=1 wkenk
kenk

x+Z§ -Z diag £,z — (C1,C2)T)

=1

k k
+op((LD(x+ > &5 - Z diag ¢2;) — C)).

=1 j=1

(2.7a)

2) If by {xx(w,2*)}7_; we denote the state trajectory generated by z*
through (3.2), then

0 < xp(wk,z*) < (C1,Cy)T, xh(wk, 2%) +x3(wF,2*) < C.  (2.7b)

3) If Ai* > 0, then zi(wk,2*) =0, i=1,2.
If pi* > 0, then zi(w®,z*)=C;, i=1,2. (2.7¢)
If v > 0, then z}(w*,2z*) + 2k (wk,2*)=C

The term being minimized in (2.7a) can be written as:

Y (nw*) — er(@H)ar(wh) + K,

k=1 ke
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where K does not depend on z, and
ci(w*) = (Z(A;(wf> ) - v;(l,m) diag Ex(wb).
=k

Hence, condition 1 above can be written more conveniently as

2 P (wF) = 0 if wi = 4501 or Dy

otherwise,
. 1 if 73 (wk) — e} (w*) < 0
2w =1¢0 if '7,’?(wk) - cl_(wh) >0 (2.8)
€[0,1) if yi(w*)—ci(w?) =0
fori =1,2.

Lemma 2.1: Let X = {x: x = p1£(A1) + p2£(42), ;1 € (-%,3), ;2 € [-3, 1)}

Then
X — { diag¢(w) z | z € [0,1]*} C X U{X — £(w)},

w € {A1,42,D1,D,}.

Proof. The proof of the lemma is straightforward (see Figure 2.3).

Lemma 2.2: There is an integer-valued policy z = {zx(w*)lw* € ¥, 1 <k <n}

such that z(w*) = z}(w*) whenever the latter is integer-valued, and

A B (xp(w*, z*) — xp(w*, 2)) € X,

for all w* in Q%1 <k <n.

Proof. We use induction. Assume that Ay lies in X. Since:
Apgr = Dy — diag frpa(@)zg_; (W (W) + diag Lrpr (W )zia (W),

i Ap1 = & — diag §k+l(wk+l)zz+1(wk+l) lies in X, we choose 2i+1(wk+l) =

0, i =12 If Ay — diag bxt1(w* 1)z}, (wk?) lies in X — (wk*?), and if
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w1l = A,y (or Dy(z)), we choose zig(wk“) =1 and zig}l)(wk'*’l) = 0, and in

either case Ar41 belongs to X.

Remark: That 21(2)(wk) = 1 for wi = Dj(y) is not surprising. In this case we
“disable” dummy departures so that xx(w*) > 0 in order that the linear program
(LP) may have a “feasible” solution.

Proposition 2.3: The integer-valued policy {zx(w*)}7_, in Lemma 2.2 is an

optimal solution for the linear program (LP).

pod
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Proof: We show that the necessary conditions for optimality in (LP) are
satisfied by the integer-valued policy {zx(w*)}?_, in Lemma 2.2. Since zx(w*) is
integer-valued when z}(wF) is, relation (2.8) and hence the minimization of (2.7a),
automatically hold.

We now check the remaining two conditions of optimality, namely (2.7b) and
(2.7c). We first show that xx(w*, z) > 0. Suppose the opposite, and let 2} (wF, 2) <
0. Since z) (w*, z) is integer-valued, z}(w*, k) < —1 and from Lemma 2.2 we have
zp(wF,2*) = zl(w¥,2) + pi for a suitable p; in (—1,1]. Then, zj(w*,2*) <
—14 3 = —3 <0, a fact contradicting the feasibility of z}(w*, 2*), and hence the
optimality of z*.

In a similar manner, we show that x;(w¥,z) < (C;,C2)T. Assume that
23 (wf, z) > C1, whence z}(w*, 2) > C; +1; we then get zh(w*,2*) > C1+1-1 =
Ci + % > (1, which is again a contradiction. Further, m}c(wk,z) + mi(wk, 2) < C
since in the opposite case z}(w*,z*) + 2 (w*,2*) > C + 1 - -;— — 7 = C. Notice,
however, that the last argument relies heavily on the fact that p; liesin (—3, 1] and
p2 lies in [—%, -;—), i.e., p; and p; cannot equal % (or —--12-) simultaneously. Finally,
we check the conditions (2.7¢c). We prove first that v} > 0 implies z}(w*,z) +
z2(w’,2) = C. Since z* is an optimal solution of the linear program (LP), it is
enough to show that z}(w*, 2*)+2%(w¥, 2*) = C implies 7} (w*, 2) + 22 (w*,2) = C.

To this end, we observe by Lemma 2.2 that for a suitable choice of py, ps,

zi(w*, 2) + 2} (W, 2) =ah (0", 2%) + 2R (W, 2%) = p1 - o

1 1
=C-p-p €(C-5C+3)

and zl(w*,2) + 22(w¥,z) = C, since the sum is integer-valued. Similarly it can
be shown that A} > 0 implies zi(w*,2) = 0, and p¥* > 0 implies z}(w*,2*) =
C;,t = 1,2. Since the necessary and sufficient conditions of optimality for (LP)
are satisfied, the optimality of z = {z)(w*),1 < k < n,w* € O*} is now evident.

Proof of Proposition 8.2: Since there exists an integer-valued solution z =

{zk(wF),1 < k < n,w* € QF} for (LP), if the initial condition x is integer-valued,
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it follows that J2(x) = WE(x). Therefore, the convexity of W5(.) with respect to
x implies the same for J2(.).
Further, since W2() is the value function of a linear program, it is a piecewise

linear function of x [77, page 56], so that the following corollary holds:
Corollary 2.1: J#(.) is a piecewise linear function of x.

Proposition 2.4: For every x > 0, J5(-) is a “supermodular” function of x, i.e.,
JE + 1,22 + 1) = JB(2! +1,2%) > JA(2?, 2% + 1) — JB(a?, 2?).

Proof: The proposition is a direct consequence of Corollary 2.1 and Proposition

2.1. The proof is provided in the appendix.

2.4 Determination of the Optimal Strategy
We now show that the optimal policy for call allocation is of the “bang-bang”
type. Specifically we prove that for type-1 calls, there is a monotone switching
curve which partitions the state space into two regions. One of them is a blocking
region (i.e., blocking is optimal for all states belonging to the region) while the
other is nonblocking. Analogous results hold for type-2 calls also.

We begin by making the following assertions:

Assertion 1: Assuming that state (z!,2?) is a blocking state for type-1 calls,
all states (', z?) with ' > z! are also blocking states for type-1 calls.

Since the state (z',z?%) is a blocking state for type-1 calls, from the switch-
ing conditions (2.4) we have J8(2! 4+ 1,22) — JA(2! + 1,2%) > JP(2! + 1,22) -
JB(21,2?) > 1/B)\1, and as a consequence the state (z! +1, z?) is blocking thereby
validating the assertion. An analogous result for type-2 calls can be similarly

proved.

Assertion 2: Assuming that state (z!,z?) is a blocking state for type-1 calls,
all states (z1,T2) with T > z, are also blocking states for type-1 calls. The
assertion 1s proved in a similar manner as assertion 1 by using the supermolularity

property (Proposition 2.4) of J2(-).
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By combining assertions 1 and 2, we conclude that the optimal strategy mini-
mizing the B-discounted n-step blocking cost (2.2a) is characterized by two mono-
tone switching curves, one for each traffic type. Furthermore, since all the previous

arguments are valid in the limit as n — oo, we can assert:

Proposition 2.5: The optimal policy for the blocking system under study with
respect to an infinite horizon f-discounted blocking cost is characterized by two

monotone (decreasing) switching curves, one for each traffic type (Figure 2.4).

block

block

accept accept

¢

type-! type.2

Figure 2.4

2.5 The Average Cost Case

In this section, we determine the structure of the optimal stationary policy
with respect to an average cost criterion. To this end, we define the long-run

average cost associated with a policy z € P and starting with initial state x, as:

n

: 1,
V(x,z) = limsup =~ E; Z(zi +azi), a>0.

n=—o0 k=0
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The minimum long-run average cost then is:

Jav(X) = ‘3}:2 V(x,z),

and the policy that achieves the minimum is an average cost optimal strategy.

From {64, Thm. 2.1 and 2.2] we conclude the following: Since the state space of
our problem is finite for all discount factors 0 < 8 < 1, the difference |J?(z!, z?)—
J#(0,0)| is bounded. It follows that the average cost J,,(x) is independent of
the initial state x and Ju, = limg_;(1 — 8)J#(0,0). Furthermore, there exists
a bounded function h(z',z?) and a sequence of discount factors 8, — 1 with
h(z1,2?) = limp—oo(hP"(z!,2%) — hP»(0,0)), and satisfying the following DP-
equation for the average cost:

Jaoth() = min {2k + azi

zi:l if z'.=Cl
or zl422=C}

+ A1(1 = zp)h(A1%) + A\ zph(x)
+ A2(1 = 28)h(A9x) + A22fh(x)
+ 2! h(Dy,x) + uga:?h(Dgx)

+(Cp — &' 1 — 2°p2 (%)}

Furthermore, there exists a stationary policy z that is average cost optimal and is
the minimizer of the right side of the equation above. Obviously, A(-) has the same
properties as JA(.) for 0 < B < 1, i.e., it is increasing, convex and supermodular.
Switching conditions similar to (2.4) may be derived for h(-), and using the same
arguments as for the discounted cost case, it can be shown that the average cost

optimal strategy has the form of two monotone switching curves.

2.6 The Case of a Single Link

Similar results as before hold true for the problem associated with the opti-

mal admission of two traffic types arriving at a common link having capacity C
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frequency slots (i.e., when C; > C and C; > C in the model studied previously).
Figure 2.5a illustrates the optimal admission policy for the 3-discounted cost with
AL =10, A2 =100, pg =5, g2 =5, C =10, f = 0.99. In this example, the
dynamic programming recursion (2.3) was iterated 200 times till the 3-discounted
cost converged. Then the optimal policy was evaluated through relations (2.4). In
this particular case, and in many other similar ones, we observed from the com-
putations that the traffic with the highest cost was never blocked (except on the
boundaries of the state space). We were not able to provide a formal proof of this

rather intuitively evident fact through dynamic programming equations.

We can gain some insight into the optimal admission policy for the simple
link problem by examining the associated linear program (LP). Assuming that
A1 < a2, and by the symmetry with respect to the variables z}:(wk), zz(wk)
of the constraint associated with the capacity C of the link, we conclude that
if 2](A;1) = 0 then 22(A;) = O since, in the opposite case, i.e. if zZ(Ay) =
0, we can interchange the values of z!, 2% while still satisfying the constraint
and simultaneously achieving a smaller increase in the cost function of the linear
program. In a similar manner we can show that 22(A;) = 1 (call type-2 is blocked)
implies z1(A;) = 1 (call type-1 is blocked) also. We have been yet unable to relate
the optimal policy derived from the switching conditions (2.4) to the solution of
the linear program (LP). Therefore, no valid conclusions about the the optimal

policy can be derived by simply examining the behavior of the solution of (LP).

Another case of interest is the optimal admission policy when the traffic
streams have different bandwidth requirements. Computations were performed
for two streams arriving at a common link. In this case it is computationally
demonstrated that the optimal policy for the §-discounted cost (Figure 2.5b) is
not necessarily characterized by two monotone switching curves. As a consequence,

the B-discounted cost may not be convex.
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2.7 The Optimal Admission Control Problem for a General
Circuit Switched Network
We consider a circuit-switched network providing service to different traffic
(call) types. The links between the nodes are labeled j = 1,2,...J, and each
link j comprises C; circuits (channels). Each call upon admission to the network
is forwarded to its destination through a prespecified set of interconnected links
which constitute a route. Let R be the set of all routes in the network. We define

the matrix A = (ajr,j = 1,2,...J, 7 € R), where

e — { 1 if a message on route r uses a circuit of link 3
r .
’ 0 otherwise.

Assume that the calls requesting route r arrive according to a Poisson process with
intensity Ar. Moreover, the service time of each call (i.e., the time during which it
is forwarded through route r) is exponentially distributed with parameter p,.. A
call requesting admission on route r is discarded if at least one link on the route
r is saturated, i.e., has no free slots. We denote by C the capacity vector, 1.e.,
C = (C4,...C;)T. Observe that the problem formulated in section 2.2 is a special

case of the general problem with matrix A and capacity vector C of the form:

1 0 ¢y
a=(01).c=(a).
11 C

We study the equivalent discrete-time problem. As before, we define the state of
the system at time instant k to be xx = (z},r € R) where z}, denotes the number
of calls forwarded on route r at that time instant. Obviously, Ax; < C, and we
define the state space of the system to be X = {x: Ax < C,x > 0}. Recall that
the time instants at which the system is observed correspond to state transition
epochs (i.e., arrivals or departures). Given that a cost a, is incurred for each call
that is not given access to the network on route r, we seek an optimal admission

strategy (in the same spirit as for the simple problem of section 2.2) minimizing
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an infinite horizon (n step) B-discounted cost of the form:

oo(n)

E; Zﬁkazk ,
k=1

where a = (a,,r € R), ax > 0, z; = (2}, € R) and 2}, = 1(0) if an incoming call
on route r is blocked (accepted).
We define the total event rate (i.e., the “uniformization” rate) out of a state

to be:
p= Zx\r+i-u,

where 1 = (¢i,t € R) and X is a solution to the following Linear Program:
max px,
x
such that:

Ax<C,x > 0.

After normalizing all rates with respect to p (equivalently assuming p = 1), we can
write the dynamic programming equation associated with the optimal n-step -
discounted cost J2(x). To this end we denote by e, the column-vector (e;,i € R),
with e; = 0 for ¢ # r and e, = 1. Moreover, we define the arrival and departure

operators A,, D, : X — X as follows:
A (x)=(x+e.)", Do(x)=(x—e)",
where

(X+er)*={§+er if A(x+e)<C. (x—e,.)+={x"e'" ifz, >1

. . b
otherwise X otherwise

for 7 in R. Then we can write:

Jo(x) = min (azi + 8 Y (1= 2\ TE(Arx) + A2 (%)
{z}€lo1}reR
:T=1 07 A(x+er)>C} TER

+ :tru,Jf(DrX) + (X, — xr)#r']l?(x))),
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and the following criterion for admission can be obtained:
If A(x + e,;) < C then an incoming call to route r is blocked (2] = 1) if:

ar

B —JB
Jn (A"x) Jn (X) Z 'BAT'

Unfortunately the convexity and supermodularity properties (cf. Propositions 2.2
and 2.4) for J2(-) cannot be derived for an arbitrary network topology. This is
due to the fact that an integer-valued solution to an associated linear program
similar to (LP) cannot be found. For example, Proposition 2.3 fails to hold if we
have a constraint of the form zl(w¥) + z%(w¥) + 23(w*) < C for a system with 3
routes. As a consequence, the optimal strategy for the general problem cannot be
shown to have a “switching” surface structure. Nevertheless, for the case where

the matrix A has the simple form,

(T )

11
11
11

\ o/

it can be easily verified that all the proofs of convexity and supermodularity of

the optimal B-discounted cost hold true. In this case, the optimal admission
strategy has a structure of a “monotone” switching surface, i.e., if z7(x) = 1 then
2"(x+e;) =1for7in R and x + e; in X'. Furthermore, similar results are also
true for the long-run average cost problem.

A network with matrix A having the simplified form, as well as the associated

switching surface for type-1 calls is shown in Figure 2.6.
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Appendix 2.1

Proof of Proposition 2.4: In this section we prove that JZ(-) is a “supermod-
ular” function. Specifically, we prove that a piecewise linear increasing function

W(-) is supermodular, i.e.,
W' +1,22 +1) -~ W(z! +1,2%) > W(z!,22 + 1) - W(z!, z?), (A.1)

for z >0, 22 > 0.

Figure 2.7

The proof consists of the following cases:

Case 1: Refer to Figure 2.7. Since W{(-) is piecewise linear, its graph con-
sists of intersecting planes. Assume that the points (z!,z% W(z!,2?)) and
(z',2? + 1,W(z?,2? + 1)) belong to plane (1), while the other two points, i.e.,
(z' + 1,22, W(z? +1,2?%)) and (2! + 1,22 + 1, W(z! + 1,2% + 1)) belong to plane
(2). We now make a projection on the (z?,z%)-plane. The line [ is the projection
of the intersection of the planes (1) and (2) (Figure 2.7). Since W(.) is piecewise
linear, we set W(z!,2?) = Ajz! + Biz? + C;, W(a! 4+ 1,2%) = Aa(z' + 1) +
Baz? + Cy, W(zl,2? 4+ 1) = A12? + By(22 + 1) + Cy, and W(z! + 1,22 + 1) =
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Az(z! +1) + By(2? + 1) + C3, where the subscript ¢ in the group of coefficients
(Ai, B, C;) refers to plane ¢ = 1,2. Direct substitution in (A.1) gives A2 > A1, a

valid fact due to the increasing nature of W(.).

For all subsequent cases, the reader is referred to Figure 2.8.

Case 2: By direct substitution in (A.1) we get:
Am:l + lez +C 2 A21:1 + B2:I‘2 + C,.

This inequality is true due to the increasing property of W(-).

Case §: By substitution in (A.1) we get :
Ay(z' +1) 4 Ba(2? + 1)+ C2 > As(2' + 1) + Bi(2® +1) + Cy,

in a manner similar to case 2.

Case 4: Inequality (A.1) is established since By > Bj, similar to case 1.

In cases (5)-(9) we consider the intersection of 3 planes.

Case 5: By direct substitution in (A.1) we get,
Aa(a' 4+ 1) + By(2? + 1) + C; — As(a' + 1) — By(2® + 1) — Cs + A3 2> Ay,

since A3 > A; and Ay(z! + 1)+ Ba(z? + 1)+ Cp > As(z! + 1) + Bs(2? + 1) + Cs.

Cases (6) — (9) (see Figure 2.8) can be established in a similar manner. The
case of four intersecting hyperplanes can easily be reduced to any of the previous

cases.

Remark: For the proof of “supermodularity ”, only the increasing nature and

the piecewise linearity of W(-) are used; the convexity property is not needed.
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CHAPTER 3

THE CONVEXITY OF OPTIMAL DISCOUNTED COSTS
FOR CERTAIN CLASSES OF MARKOV
DECISION PROCESSES

3.1 Introduction

In many problems of optimal control of queuing networks, the convexity of the
optimal discounted cost associated with an underlying Markov decision process
plays a key role. A typical example is the simple blocking network studied in
the preceding section. It is, therefore, desirable to investigate the possibility of
devising a procedure that ascertains the convexity of an optimal discounted cost
associated with an MDP mainly from the “macroscopic” properties of the process.
To this end, we provide a brief study of the convexity property exhibited by the
discounted optimal cost (over either a finite or an infinite time horizon) associated
with a class of Markov decision processes. A key intermediate step relies on certain
facts concerning linear programs and integral polytopes. We commence with a few

relevant definitions and propositions.

3.2 When does a Linear Program have an Integer-Valued

Optimal Solution? — A Sufficient Condition

Definition 3.1: A vector or matrix with elements in IR is called integral if its

entries are all integers.

Definition 3.2: A set P C R" is called a polyhedron if
P={x:Ax <b},

where A is a matrix and b a vector both of suitable dimensions and consisting of

R-valued elements.

Definition 3.3: The integer hull P; of a polyhedron P is defined as the convex
hull of all integral vectors in P. If P; = P then P is called an integral polyhedron.
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It follows that every face (and every corner) of an integral polyhedron contains

integral vectors.

Definition 3.4: A real matrix A is called totally unimodular if each subdetermi-
nant of A is 0,1 or -1. In particular, each entry of a totally unimodular matrix is
0,1, or -1.

The following propositions are stated sans proofs, which can be found in [68].

Proposition 3.1: If A is a totally unimodular matrix and b is an integral vector,

then the polyhedron P = {x : Ax < b} is integral.
The following corollary is a direct consequence of the proposition.

Corollary 3.1: Let A be a totally unimodular matrix and b an integral vector.
Then the linear program min {cx : Ax < b}, where ¢ is a real valued vector of

appropriate dimension, has integral optimal solutions.

The next proposition provides a sufficient condition for a matrix A to be

totally unimodular.

Proposition 3.2: A matrix A with entries 0, +1, -1 is totally unimodular if any
arbitrary collection of columns of A can be split into two parts so that the sum
of the columns in one part minus the sum of the columns in the other part is a

vector with entries 0, +1 or -1.

Remark: 1t is evident from Proposition 3.2 that the following procedure can be
adopted to determine if a matrix A is totally unimodular. This procedure will be
employed in the analysis below.

1) Any given collection of columns of A is split into subgroups.

2) The columns in each subgroup are signed and then added.

3) The resulting columns from the subgroups are again signed and added.

4) The resulting column from step (3) is a vector with entries 0, +1, or -1.

Steps (1)-(4) will be the key point of the analysis that follows.
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3.3 Linear Programming Formulation of
Markov Decision Processes
We consider a “discrete” set of events Q@ = {E1, E, ..., Ep} along with a prob-
ability mass function p;,1 = 1,..., L, i.e., P(E;) = p;; clearly p; > 0, Zf___l pi = 1.
Let QF be the k' cartesian product of €, i.e., F = {wF : WF = (w1, wa,...,wk),

w; € 2,1 =1,2,...k}. We then assume the induced probability mass function on
k

QF will be given by P(w*) = [] P(ws),w; € Q. We can now define the following
=1

stochastic processes:
e A transition process (£;,7 = 1,2,...), with Z;(w*') = Z;(w;) and E; being
an N X M matrix with entries 1, 0 or -1’s.
o A process (z;,i =1,2,...), with z;(w') = z;(w;) taking values in {0,1}"
(feasibility constraint).
e A process (u;,t = 1,2,...), with u;(w?) = u;(w;), where u; is an N-
dimensional integral vector.

We now define an N-dimensional integral vector-valued “state” process

(xx(w*), k =1,2,...) according to the following recursion:

Xp = X;
(3.1)
X1 (@) = x4 (0F) + B (@ D zeg 1 (W) F upga (W'

such that
0<x(wf)<b  k=0,1,... (3.2)

where x the initial “state” is assumed to be integral, and b is a given N-dimension-

al integral vector.

Remarks: We stress that the processes (Ex, k = 1,2,---) and (ux, k£ =1,2,---)
are completely determined by w*, k = 1,2,--- and their role is to potentially alter
the state process (xx, £ = 1,2,.-.). We, therefore, refer to (Ex, £ = 1,2,---)
and (ux, £ = 1,2,-.-) as transition processes. While u; is uncontrolled, = is

“modulated” by z;. We refer to (zx, k = 1,2,--.) as the control process (or
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simply control) and taking values in {0,1}, i.e., z; enables (or disables) E;. For
all possible w41 in €2, we can then easily determine a transition probability law
(induced by IP(-)) of the state x41 given X, and the value of the control z;y;,
so that the feasibility constraint (3.2) is met. In order to simplify the notation,
we denote this transition probability by P(xx+1|xk,2). Obviously ((xk,zk), k =
1,2,...) is a Markov decision process (MDP) . We assume that an instantaneous
cost of the form

C(xx,2zr) = cTxx +dTzx, ¢>0,d >0 (3.3)

is incurred at each time instant k. We note here that ¢ > 0, d > 0 mean componen-
twise positivity. As previously in Chapter 2, section 2.3, an optimal 3-discounted

cost over an infinite (finite) horizon, starting at x can be defined as:

oo(n)
Jo (%) = min > BEC(xk,71) (3.4)

k=0
where the minimization is performed with respect to the controls zy € {0,1}*
under the constraint (3.2). The expectation in (3.4) is defined with respect to the
stationary probability distribution of the MDP induced by the transition proba-

bility P(xx+1|xk, 2).

Given that all the necessary and sufficient conditions for J#(-) to exist [42,43)]

are satisfied by the MDP (x4,k = 1,2,...) in (3.4) we claim the following:

Proposition 3.3: For the MDP (xx,k = 1,2,...) with incurred per stage cost
C(-,-) (38.3), let Z be the matrix of the concatenation of columns of (E(w), w € Q),
such that no column is repeated (either with a positive or negative sign), and with
no all-zero column. If a permanent sign assignment can be made to each column
of E such that the column formed by adding any arbitrary collection of signed

columns contains -1, 0 or 1’s, then J(ﬁn)(~) 1s convex.

Proof: Following the approach of the previous section we formulate the mini-
mization in (3.4), for a finite horizon of n-steps in terms of a linear program.

For simplicity we omit the feasibility constraints on zx(w*) as also the constraint
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x < b; the only constraint assumed to be xp(w*) > 0, w* € QF, k =1,2,...n.

Hence, the linear program has the form:

n
mn 3 ST (@h)e(wt)
e, o S

k=1,2,...n
such that :
Wk e QF

k
> Ei(@zi(w’) 2 x = 3 uj(w)

J=1

(LP)

(3.5)

where 77 (-) is a suitable vector not depending on zx. Note that the LHS of (3.5) is

an integral vector (assuming that x is integral). If the linear program (LP) were to

accept an integral optimal solution, then since x enters linearly in the constraint

equations (3.5), it would easily follow [77] that J?(.) is convex; Proposition 3.3

would then be valid. To check if (LP) accepts an integral solution, we rewrite the

constraint equation (3.4) in matrix form as

Az > b.

Since b is integral, we concentrate on the structure of matrix A. The matrix A

has the form:

[ Ay |
Ay Ay

A= |A31 A3z Az

L-‘Anl An2 Q] An—l,n Ann-

where
A, = diag [E(Ey)...E(EL)],
Ak_1,0-1
Ar 1,641

Age = . k times

Ak_10-1

’
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[ E(Er) }
: L* times
E(E1)
E(E;)
A : L* times
k1= _
' E(E2)
E(EL)

: L¥ times

! E(EL) ]

In Figure 3.1, the matrix A is illustrated for L = 3,n = 3.

We now prove that the matrix A is totally unimodular and hence (LP) accepts
an integer-valued solution. To this end, we observe that any column of A comprises
once (or more than once) the same column of E with the rest of the entries being
0’s. Moreover if A.;, A.; are two columns of A with ¢ < j and both containing a
common column of &, then A.; has no more nonzero elements than A.;. Assuming
that 2 is an N x M matrix and given a collection of columns of A, we can form
the subcollection Cy,...,Cx,k < M, so that C; contains columns comprising a
column £¢; of E, and 0’s. It is obvious that by adding or subtracting suitably
the columns in each collection C;, we can eventually end up with a column vector
c¢; containing the column ¢; and 0’s. By assigning to c¢; the signs for €; given in
Proposition 3.3, the sum of ¢;’s will contain 1,0 or -1’s, thus asserting that A is a

totally unimodular matrix according to Proposition 3.2 (via steps 1-4).

45



By
By
Eey

2y
E(Ey
=(Ey
A}
E(E)
E(Ey
ey
Z(ey
E(ey

Z(Ep
=(Ep
=y
=(Ep
E(Ep
Z(Ey
E(Ep
Z(EY
S
ey
=y
(e
E(Ep
Z(Ep
E(ep
AL
=(ep
¢ E(ey

Z(Ey
S(Ey
ey
Sy
Sty
Z(Ey

Z(E)

=y

Z(Ey
2
Z(Ey
=3

Ziey,
=y
=y

CE(EY

=y
cA{ 3]

S(Ey .

=(Ey
=(Ey
()
S(E2
=(Ep
Egy
Sy
E(Ey
E(Ey
=y
=&y
S (E)
2y
(g3
Z(ey
S (Ey
E(ey

Figure 3.1

46



Remark: If the feasibility constraint for the control is included, 1.e., 0 < zj <

1, then similar arguments as above hold true for the system of constraints of the

form:
A b
I |z> 0o |,
-1 -1

where I is a suitable unit matrix. Using analogous arguments, constraints of the
form a < xk(wk) < b, for suitable vectors a,b can also be handled. If in addition,
constraints of the form ¢ < Bxy(w*) < d for given (integral) vectors c¢,d and an
integral matrix B are imposed, then the criterion of Proposition 3.3 should also

be checked for the matrix BE.

3.4 Applications and Conclusions

For the simple blocking network of Chapter 2 studied previously we have:

1 0
a:[[l) ?}:1, B={0 1
11

Then BE = B and Proposition 3.3 (along with the subsequent remark) is satisfied
by assigning the sign (+) to the first column of and the sign (-) to the second

column of B. Observe that for a matrix B of the form:

(11
1
1
11
B=|...
1
1
1
! 1 ]

47



1

the same result is true, while for B = , Proposition 3.3 fails and the

1
111

convexity of J(ﬁn)(') cannot be guaranteed. These results can be contrasted with

the geometric approach used for proving the convexity of J(ﬂn)(-) in the previous

chapter.

Remark: It appears that Proposition 3.3 is rather restrictive since its hypothesis
fails to hold whenever the matrix E (or BE) has more than two 1’s as entries in
the same row. Nevertheless, in a considerable number of problems associated with
simple queuing networks, Proposition 3.3 holds true. Unfortunately, it seems that
whenever Proposition 3.3 fails so too do the geometric methods used in chapter
2 to show the existence of integer-valued optimal policies. This is most probably
due to the close connection between the region X of Lemma 2.1 used in and the
structure of matrix =. In such cases, the proof of the convexity of J (ﬁ; )() (if true)

1s an open problem.
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CHAPTER 4

UPPER BOUNDS FOR LINK BLOCKING PROBABILITIES
IN CIRCUIT-SWITCHED NETWORKS

4.1 Introduction

Our studies thus far have focused mainly on determining the structural char-
acteristics of optimal admission and resource allocation policies in a class of sim-
ple circuit-switched networks. A knowledge of the structure of the optimal policy
provides qualitative information on system behavior. It can also serve as a use-
ful guide in devising efficient (but suboptimal) resource allocation schemes which
afford simple implementation. However, this structural information does not sug-
gest any efficient computational procedure for a quantitative characterization of
the optimal performance of the associated network. Furthermore, as seen in Chap-
ter 2, for more complex network models even the structure of an optimal strategy
can be difficult to characterize. Finally, it would be desirable to evaluate the per-
formance of networks providing service to traffic types with different bandwidth

requirements, e.g., ordinary voice calls and high quality video messages.

In this chapter, we consider a simple computational technique for evaluating
upper bounds on the blocking probability associated with the links and routes of

a simple circuit-switched network.

4.2 Description of the Problem

We consider a circuit-switched network with fixed routing. Let R = {1,2,---,
R} be the set of all possible routes and let £ = {1,2,---,L} be the set of the
network links. We assume that link £ has a capacity of C; frequency slots, ¢ =

1,2,.--,L, and let C = (C1,Cq,---,CL) be the vector of link capacities. The
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topology of the network is characterized by the L x R-matrix A, where:

A 0, if link £ does not lie on route r;
(A)er = agr = { number  of slots used by a message on link ! while
traversing route r.
The following statistical assumptions are made. Arrivals at the network for trans-
mission on route r are assumed to be Poisson with parameter A,. An arriving
message 1s simultaneously granted ay, slots on each link ¢ belonging to route r; if
at least one such link is full when a message arrives then the message is blocked and
assumed lost. Each message on route r has a random propagation time distributed

according to a general distribution with mean y,, r =1,2,---, R.

An appropriate state description for the network at steady state is the vector
X = (1,22, -,z ) where z, denotes the number of messages on route r at steady
state. Let 7(C) = {x: Ax < C, x >0}. Then it is well-known [28] that at steady
state, the stationary probability distribution of x is given by,

1 pEr
Pix) = —— T 2=~ 41
(x) K© 1o (4.1)

where,

KE(C)= Y H-’;—, (4.2)

zeJ(C)rerR "

and p, = -;\;fis the traffic load on route r. Straightforward calculations [27] show

that a message arriving for transmission on route r is blocked with probability
1- K(C—-e)K~}(C), (4.3)

where e, is the unit vector having a “1” as its rth entry and of “0” elsewhere.

Although (4.3) defines a conceptually easy procedure for evaluating the block-
ing probability associated with each route in a circuit-switched network, it is com-

putationally demanding especially when the network becomes large (i.e., when a
large number of traffic types are forwarded in large capacity links). For large net-

works a measure of the blocking experienced on each route can be derived from
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a knowledge of the blocking associated with the individual links constituting the
route. If we denote by g¢(j) the steady-state probability that the carried traffic on
link £ occupies j slots then the blocking probability due to this link of a message
traversing on route r is simply Zfécl_a“ qi(7). By assuming that in relatively
large networks, the links block almost independently [28], we can estimate the

blocking probability of a message designated for route r by

Ce
1- I] (1= > «()]- (4.4)
Casr #0 1=C¢—ayr

Motivated by this fact we attempt to provide computational procedures for
deriving bounds on the link blocking probability. We first present a few results on
the blocking probability of a single link.

4.3 Upper Bounds on the Blocking Probability of a Single Link

We assume that R different traffic types pass through a single link with ca-
pacity C slots. (Note that for a single link, the R different routes of the previous
section correspond naturally to R different traffic types). Let U be the random
variable corresponding to the number of occupied slots in the channel at steady
state. We refer to U as the carried traffic and set P(U = y) = ¢(y),y =0,1,---,C.

In [26,21] the following recursion for ¢(-) is shown to be true:

R

yq'(y) = D arprd'(y — ar), (4.5)

r=1

where p, = %f is the load offered by traffic type r, with Eyczl ¢'(y) = 1 and
¢'(y) = 0 for y < 0. As observed in [26], (4.5) defines a straightforward one-
dimensional recursion. Moreover it is shown in {21] that (4.5) is satisfied in general

by processes with stationary probability distributions of the form (4.1).

We define W = Zil X, and temporarily assume that C = oo, 1.e., none of

the arrivals ever blocked. If puw(s) denotes the log-moment generating function of
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the random variable W, i.e.,

pw(s) = In (Z P(W = y)e*y) ,

y=0

then it can be shown [20,21] that,

R
pw(s) = prar(e’ —1). (4.6)

We refer to W as the offered traffic.

Since the probability mass functions of both W and U satisfy the same re-
cursion (4.5) it follows that the quantities P(W < y) and P(U < y) must be
proportional for y = 0,1,2,--.,C. Using (4.5) and an initial condition ¢'(0) we
can then determine the proportionality constant as the ratio

20 4'(¥) 1

ZC—_—U q'(y) _ Y @Y’
’ ! '2. ,=0 I
where it follows that

PU<y)=(1~P(W>C))™" P(W<y).

for y = 1,2,---,C. By assuming that we have a light traffic situation, i.e.,
Ei] arpr << C we can disregard the term P(W > (') as being close to 0
and claim P(U < y) ~ P(W < y). The following light traffic bounds are derived
in [20,21}:

P(U >y)= P(W > y) < e ¥ymrw(sT) (4.7)

-1
d - *
< (s*\IZwE—/AW(s*)> e ymrw(sT) - (48)
S

where s* satisfies the equation y = ;id—s;uw(s) = Zil pra et
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Relation (4.7) is the well-known Chernoff bound, while (4.8) is an improved
sharpened version of (4.7). The bounds (4.7) and (4.8) were first used for the
analysis of blocking communication switches in [20,21]. Setting y = C — a,, a
bound is obtained for the blocking probability of a message of the rth traffic type
on a single link, r = 1,2,.--, R.

4.4 Bounds on the Link Blocking Probabilities in a
Circuit Switched Network

In this section we apply the computational procedures described above to
the calculation of an upper bound on the link blocking probability in a circuit-
switched network whose topology is characterized by a matrix A introduced in
section 4.2. We could begin by deriving a relation for a general circuit-switched
network similar to (4.5). This derivation is performed in Appendix 4.1; however,
this recursion is rather complicated and untractable. We can circumvent this

difficulty by obtaining approximations via the following heuristic reasoning,.

It is intuitively clear that the blocking associated with a given link in a circuit-
switched network would be less severe than the blocking due to the same link if it
were to constitute the whole network. Thus, the blocking probability due to each
link in the network is bounded above by the blocking probability of the same link if
it constituted a “single-link network.” In the later case, traffic type-r is forwarded
through the link £ if as. # 0, offers a load of p, = 7’}:—, and requires ag, slots per
message. The recursion (4.5) can be used to calculate g¢(-), which serves as an
upper bound to the link probability distribution of the number of occupied slots
on link £ when it belongs to the network. In the case of light traffic, the bounds
(4.7) and (4.8) can then be calculated easily. In the case of heavy traffic, i.c.,

when Zil prair >> C; a fluid approximation may be utilized, i.e., a blocking

probability of 1~ agrp,Cg(Zf;l agr-pr)”! is experienced by each traffic type r that
is transmitted through link £.

In closing this section, we reiterate that the method developed above has the
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advantage of computational simplicity. The reader however, is cautioned that this
approach is heuristic and should not expected to work efficiently (i.e., provide
sharp bounds) in all cases. Therefore, its usefulness may be restricted only to the

purpose of evaluating first approximations of the link blocking probabilities.

4.5 A Computational Example and Conclusions.

The methods developed above for the evaluation of blocking probabilities are
applied to the elementary network depicted in Fig. 4.1. For the sake of simplicity,
we assume that each traffic-type requires one frequency slot on each link in its
route. The traffic load is varied on the segment AD, and we assume throughout
p1 = p2 = p. For 0 < p <3, ie., between points A and B in Fig. 4.1, we pro-
vide the exact blocking associated with links 1,2 and 3, derived directly according
to (4.3). Next, we compute the approximate blocking probabilities using the re-
cursive approximation (4.5) by computing ¢(C,) as well the improved Chernoff
bound (4.8). The results are plotted and compared in Fig. 4.2. We observe that
the recursive approximation (4.5) agrees reasonably well with the exact blocking
probabilities whereas the improved Chernoff bound gives acceptable tight values

for very light traffic with p < 0.7 approximately.

For 3 < p £ 7.5, we do not plot the improved Chernoff bound since we
expect that in this case the bound is not tight enough (Fig. 4.3). The recursive
approximation gives reasonably tight bounds except in the case of link 2, but the
blocking probability associated with this link is considerably less compared with
the ones for links 1 and 3. Consequently the estimates on the blocking probabilities
for each of the routes 1 and 2, will not be significantly affected when computed
by using (4.4). Finally for 12 < p < 30, i.e., when p varies on the segment CD
in Fig. 1, we use the recursive approximation and the fluid approximation for the
blocking probabilities, and compare again with the exact values; the bounds are

observed not to be reasonably tight (Fig. 4.4).
We conclude with the following remarks.
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1) The Chernoff bound approximation may be useful for very small traffic
loads, e.g., for 1% — 5% of the capacity of the link under consideration. While
blocking under such small traffic loads is highly unlikely, i.e., blocking becomes a
rare event, it is important for modern very high speed optical networks that the
associated probability be kept below a certain threshold. A reason for this is that
blocking, and the subsequent loss of a single packet during a data transmissionin a
fast network may require retransmission of a complete data stream - a process that
is costly and time consuming, especially when compared with the fast propagation

times in an optical network.

2) Bounds for moderate traffic may be computed relatively easily by using

the recursive approximation method.
3) Heavy traffic bounds for link blocking may not be tight enough.

4) We expect the tightness of the Chernoff bound to improve as the network
becomes larger, i.e., the link capacities and the number of traffic types are increased
suitably. Furthermore, techniques from the Theory of Large Deviations might be
applied and sharper bounds may be obtained for link blocking for the case of light
traffic.
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Appendix 4.1

We now prove the analog of relation (4.5) for a general circuit-switched network.

Define
@(y,C)= ), P

x: xe:/(C)}
Ayx=y

where A represents the £th row of matrix A. We first prove the following technical

lemma.

Lemma A4.1: Foreachr € R, € L and y < (¢,
qu(y - CL[T,C - Aer) = ]E[.’ITT‘X € J(C)’ Aix = y]qe(y,C)

Proof: Since J(C) is a coordinate convex [26] set the rate balance equations

for the associated Rth dimensional Markov birth-death process can be written as
pryr(x)P(x —e,) =z,P(x), TETR (A4.1)

where,

(x) = 1 iz, 21,
mME=10 ifz, = 0.

Defining the set
Se(y,C) = {x: x € J(C),Aex =y},

we easily get from (A4.1) that

pr > WX)Px-e)= ) 2P (A4.2)

x€S,(y,C) x€S¢(y,C)

We now simplify the left-side of (A4.2) as follows:

Pr Z r(x)P(x ~ e;) = pr Z P(x —e,). (44.3)

x€5,(y,c) XES((y,c)n{n,>1}
Since,

Se(y,C) = {x: A¢(x ~e,)=y—ap,A(x~-€ )=C— Aer,z, > 1,2, > 0,2 # 1}
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the transformation

T 1#ET
fi=(x~e )= 2, -1 i=r 221 i=12,.--,R,
0 t=r, z,=0;

yields in (4A.3) that,

Pr Z P(x —er) =

x€S(y,e)n{n, 21}

= pr Z = qe(y — ar, C — Aer)
x€ES((y~arr,C—Ae,)

forr=1,2,---,R, £=1,2,--., L and g¢(x,-) = 0 for x < 0.
We now simplify the right-side of (A4.2). Observe that,

P(x|y slots are occupied in link €) = P(x|x € S¢(y, C)

P
- { ek x €5y, C);
0 otherwise.

This leads to the following equality:

E IETP(X) = Z (ZE,—P(XlX € Sl(y,c))Q[’(y, C)

x€5,(y,0) x€5:(y,C)
= Elz,[x € Se(y, Clge(y, C)-
The assertion of the lemma is established by (A4.4) and (A4.5).
The following lemma provides an analog of (4.5).

Lemma A4.2: For each £ € £ and y < C¢, it holds that

Y aeepeqe(y = aer, C — Aer) = yqe(y, C)
TER

with ge(x,-) = 0 for x < 0.

Proof: From Lemma A4.1 we have

3" aerpraely — aer, € — Ae;) = E[ Y aerzrx € Se(y, C)lae(y, C)

réER reR
= yql(ya C)a

which completes the proof.
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CHAPTER 5

ASYMPTOTIC APPROXIMATIONS FOR
CIRCUIT-SWITCHED NETWORKS

5.1 Introduction

In this chapter, we are concerned with strong approximations of the stochastic
processes characterizing the states of certain blocking networks. The difficulty in
computing the normalization constant in the product form distributions associated
with certain networks has recently led to the investigation of asymptotic methods
that describe, within a good approximation, the behavior of such “large” networks.
For instance, in [29], approximations are provided for the blocking probabilities
associated with a circuit-switched network. In [52], approximations involving in-
tegral transforms are given for certain closed Jackson networks; a similar study is

performed in [56]. Finally, more general approximation methods are presented in

30,37].

Our analysis is performed for the case of a circuit-switched node similar to
that introduced in Chapter 2, in the limiting regime where the link capacities and
the offered traffic intensities increase at the same rate. Then the process of the
normalized state (the state of the node was introduced earlier in Chapter 1) is
shown to converge in probability to the solution of a system of ordinary differen-
tial equations. Furthermore, this system of ordinary differential equations has a
unique equilibrium point whose stationary probability is maximal, i.e., it consti-
tutes the “most likely state” of the system. In this respect, our work is strongly
correlated with that of Kelly [28], who investigated the problem of blocking in a
large general circuit-switched network. However, we have been unable to gener-
alize our results to the arbitrary circuit-switched networks of [28]. Based on our

results for simple circuit-switched networks (nodes), we have made an intuitively
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appealing conjecture for the solution of the general case, but a formal proof is
yet unavailable. Further, the analysis in this chapter provides an answer to the

problem of describing the (approximate) transient behavior of a large system.

The work in the sections that follow was largely influenced by {29]. We com-

mence with a few relevant mathematical preliminaries.

5.2 Mathematical Preliminaries

In this section, a brief collection of useful mathematical facts is presented.

Proofs are omitted; the interested reader may consult [46,70] for further details.

All stochastic processes in this chapter are defined on a complete probability
space (£, F,P), supplied with a family F = (F;, t > 0) of increasing, right-

continuous sub-o-algebras of F (augmented by sets of measure 0) i.e.:

(Fre F, 120), (t>s=F, CF)and ([ | Fs = F).
s>t
@

Let T = (7, n 2 1) be a sequence of stopping times with respect to the system

F = (F,t > 0) with the following properties: 11 > 0 (IP a.s.), Tn41 > 7o (P as.).

Definition 5.1: A random process (Ny, t > 0) is a counting or point process if

Ne=Y 1(ra <t), t20,

n>1

where 7, 1s in T, and 1(-) denotes indicator function.

Remark: Often the sequence T of stopping times is said to be a random point

process; both definitions are obviously equivalent.
Theorem 5.1 (Doob-Meyer decomposition): A point process N = ({ Ny, Fy),
t > 0), admits the unique (within stochastic equivalence) decomposition

Nt =my + Ai’
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where m = ((my,F;), t > 0) is a martingale and A = ((A;,F), t > 0) is an

increasing process.

We say that a random process m = (my,Fy), t < o, where ¢ is a stopping time
with respect to F, is a ¢-local martingale if there exists an increasing sequence of
stopping times 0,,n > 1, such that P(o, < op41 < 0) = 1, P(limpaon = 0) =
1, and for each n the sequence (Mmpin(t,0,) t < o) forms a uniformly integrable
martingale. For more details on this subject the interested reader is referred to

[46,70).

Remark: Set 7o, = limp—oo 7n. Then a more precise statement of Theorem 5.1

[46, vol. 2] requires that m = ((my, Fy), t > 0) be a 7o0-local martingale.

Ezample 5.1: Let 7 = (7, F[),t > 0, be a Poisson Process with parameter A > 0.

Here, 7 = o(ms, s < t)is referred to as the natural filtration of (my, t > 0). It

can be shown that ((m, — At), F]") is a martingale, and as a consequence m; =

T — M, Ay = M.

Remark: Similar results apply to the case where the parameter A is replaced

by A; being a function of time or even a stochastic process. In this case: m; =

Ty — fot Aods, Ay = fot Asds.

Definition 5.2: The increasing process A = ((A:, Fi),t > 0), appearing in the
decomposition of Theorem 5.1 is called the compensator of the point process N =

((Ne, Fr),t 2 0).

Definition 5.3: For each square integrable martingale X = ((Xy, F),t > 0) there
exists a unique (to within stochastic equivalence) increasing process < X >=

((< X >¢,F1), t 2 0) such that
th =+ < X >,

where ((pg, F),t > 0) is a2 martingale. < X >, is called the quadratic variation of

the process X.
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In a similar manner, for two square integrable martingales we have the following

definition.

Definition 5.4: For the square integrable martingale X = ((X¢,F1), t >0),Y =
((Yy, Ft), t > 0), there exists a unique (up to stochastic equivalence) process <
XY >, which is the difference between two increasing processes, and a martingale

((e, Ft), t 2 0), such that:
X;}Q==}H%-<:)(Y'>t.
We call < XY >, the quadratic cross-variation of the processes X, Y.

Theorem 5.2: (Lenglart’s inequality){70]: For the square-integrable martingale
M = (M., Fy), t 2 0), with quadratic variation < M >= ((< M >, Fy), t > 0),
for any stopping time 7 adapted to F' = (F;, t > 0) and positive constants a, b,

the following inequality is true:

P( iug |IM(t)] > a) <ba”? +P(< M >,>b). (5.1)
0<t<r

5.3 Asymptotic Approximations for a Single Link

We begin our analysis by presenting a simple case of strong approximation
techniques for a single link comprising C circuits (slots) and being fed by two
traffic-streams. We assume that the traffic streams arrive according to a Poisson
process with parameters A;, ¢+ = 1,2, while their propagation time on the link
are exponentially distributed with the same parameter (being set equal to 1 for
convenience). We further assume that each traffic type occupies one circuit slot
during transmission on the link. We shall consider the asymptotic regime where
the arrival rates of the calls and the link capacities increase to infinity at the same
rate, i.e., the parameters A = (A1, A;) and C, are replaced by AN = (AN, A\}') and

CN, respectively, where:

.1 N :
A}E.noo-ﬁ)\ =) t=12,
lim ~CY=C
NEBn]V -
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We denote by x¥ the state vector of the system at time ¢ (in the same manner as
we did in Chapter 2, section 2.1), where x:’N represents the number of messages

of traffic type 7, ¢ = 1,2, that are transmitted on the link at time t.

Then the evolution of the state of the system can be written in terms of the

following relation:
. . t t .
N = 20N 4 A,'(A,N/ 1{z}N 422N < C} ds) - D;(/ 22N ds), (5.2)
0 0

for 1 = 1,2, where mé’N is an initial condition and A4;(-), D;(-), ¢ = 1,2 are inde-
pendent Poisson point process representing the arrivals to and departures from the
system. We remind the reader that these processes are defined on a common prob-
ability space (2, F,P), as introduced in the previous section. The notation A(v;)
defines a Poisson process with rate vy; since v, may itself be a random process, we
often refer to A(v;) as a doubly stochastic Poisson process [5]. Normalizing the
state vector as in [37]:

1
2 = —xV.

N

Our goal is to approximate z)¥ as N — oo. In particular, we would like to find a

deterministic function z, which is a solution to a suitable integral equation, i.e.,

z; 1s of the form:

t
Z; = Zo +/ f(Zs)dS,
0

where z; is an initial condition; f : R? — IR? a piecewise continuous function;

and the following relation is valid, namely

P( sup |z’ =z >6) — 0, (5.3)
OSiST N—oo
for any given time T, § > 0, and for a suitable metric || - ||. Relation (5.3) requires

that as N — oo, with high probability almost all the sample paths z"(-) will be

arbitrarily close to the deterministic trajectory z(-).

66



Let S = {x : x > 0,z' + 22 < C}, assume that A\ + Xy > C, and let
2,N

N =inf{t: 2}V + z;"" = C}. The following proposition is true:

Proposition 5.1: If z)Y,z, belong to int S and are such that

N P
Zy — Zo,

then for § > 0, and ¢t > 0,

P( sup |z} —z] >6) — 0.
N—oc

0<s<t A Y

where ||x|| = |z!|+|z?| for x in R? and z is the solution to the ordinary differential
equation

Zy = A — 2;, with initial condition z;.

Proof: The evolution equation (5.2) can be written in terms of z™V(-) as:
Ni_ Ni, 1 1 LN
Zy =2 + 'NA,(N)\,t) — YV—D,(N | zg’ dS),

for0<t< TCN . We define the compensators of the Poisson point processes as
lii’N = N\,
and
~ t -
DN = N/ N ds, i=1,2,
0

(see also example 5.1 in previous section).

Then
MAN = 4(NXt) — AVY

1 R
MPN = DN / Nids) - DIV, =12,
0
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are square-integrable martingales relative to (Fy, t > 0) with quadratic variations:

< MAWN 5 = XNt
t

< MPoN 5 = N/ 2Nids, 1=1,2,
0

while for the cross-quadratic variations, we have

< MANMDIHN 5 =0, i,7=1,2
< MACNMAZN 5 =0

< MPuN DN 5 0,

since we have assumed that all processes 4;(), D;(+), 7 = 1,2 are mutually inde-

pendent.
For the sake of convenience, define U: N 2 4N — 2 =12
Then
W _ 1 aN g
Uyt = N - 2
1 ; ‘ ) t
== (4,»” + MAN — PN AN -/ 2oN ds
0
t .
—2p — A,t +/ 2; dS)
0
i 1 : : -
=Uy" + (MY ~ MPoT) —/ UsN ds.
N 0
Let

1
el =UY + (MY - M),
where it follows that,
t
Xl < el -+ [ jodias
or

UM< sup el + [ U
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By applying the Bellman-Gronwall inequality to (5.3) we immediately get,

UM < sup fleflle,
0<s<t

and as a consequence, for o > 0, it holds that

{ sup (UM 20} C{sup llellle 20}
ogsst A 7N 0<s<t

Therefore

P( sup [JUN| 2 8) <P(sup |led'l] 2 6¢7). (5.4)
OSsSt/\'rgv 0<s<t

For the RHS of the inequality (5.4) above, it follows easily that

1 -
(§3J8W>6e9<P%?%{mef”—M?W@+wuﬁnz&‘)

1
~P(UN| + sup — (MY — MPON |+ M - MD2N|} > §et)
o<s<t V
stUu>—fm+Puw L AN _ pPoN
<t N

MA2 N MDz,Nl > '6-6 )

+ sup 5

0<s<t N |

)
<P(JUsll 25 ")+P(O's<ugt—|MA"Nl> —e™")
s

1 6
+IP( s — Mf”N > -t
(0;:1; Nl |27 )

6
+ IP( sup |MD"N|>-6— "')+]P( sup ——|MD’N|>-—e Y.
o<s<t N <tN

P
Since zN " zo we trivially have that
0 N—oo

(UL 2 3¢ 0.
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Moreover by Lenglart’s inequality (5.1), we conclude:

P( sup | MEN| > T < b

+]P( < MAN S >
0<s<t PJ2 ’

Since w7y < MAN 5= NzAit, we can choose b suitably so that the
quantity %-?-62‘ becomes arbitrarily small; can simultaneously choose N large
enough so that -ﬁ-;)\,'t < b. Similar arguments can be applied to the terms
P(supp<y<t FIMPoN| > ;‘:-e“), t = 1,2. The proof of Proposition 5.1 is now

evident.

Proposition 5.1 provides an approximation of the trajectory zg\f) up to time

N

7N ie., when z; Ny z, = C. In the next proposition, we analyze the case where

P
-— (. Precisely we have:
N—oo

N +_Z§JV
Proposition 5.2: If zy is such that z} + z2 = C, and
Zy —£+Zo,
then for 6 > 0,and t > 0,

—

P( sup [z} —z]| > ) — 0
0<s<t N
where z(.y is the solution to the equation

2= A — z;, with initial condition zg.

<
[[A]
Proof: As in the proof of Proposition 5.1 we have:
~s t
AN = N/ Mi1{zPN 4+ 22N < C}) ds,
0

and

t
mW=N/4W¢,
0
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for ¢ = 1,2. Defining the martingales M,A"’N,M,D"’N, i = 1,2, and U} as previ-

ously, it follows

1 t
U < U311+ UM I+IMP]) + II/\/0 HzpV + 20N < CYds

(5.5)
A+ [ s
DA S
We now show that
‘ 1,N 2,N C
11z, lds T —— . 5.6
[ et — (5)

By a simple change of the variable of integration, we get

i 1
1,N 2,N N
/0 H{zp" +20" < Clds= e / 1{ s/n s/n < C"}ds

1 Nt N N
= — d
Nt/ﬂ 1{y, <C"}ds,

where
N 2N 1 an 1 2N
(s) = zt/N + zt/N Nxt/N + ﬁxt/N'

We can claim the following;:

Lemma 5.1: Fort > 0,

1 Nt N C
m/o 1{y, =C'}d.st°0 (1— ™ +/\2)t=7rc

Proof: The birth-death process (y), ¢t > 0) has its state space the set
{0,-117,%,.. ,C - lW,C} (i.e., the total number of states is NC + 1). In order
to simplify the presentation we rename the state space of (y{¥,t > 0) backwards,

ie., {C,C - . N’ +,0}, and we prove that

— 1 =0}ds — (1~ t.
N/o {y,” =0}ds ™ ( Y +,\2)
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The rates of (y,t > 0) and the rearranged state space are shown in Fig. 5.1a.

We now consider the birth death process (v)¥,t > 0) with an infinite state
space, death rates equal to A = A; + A, and birth rate equal to C (fig. 5.1b).
Trivialy we get

N N
Yy <st Yy

and as a consequence,

1 Nt N 1 Nt N
li — = > h —_— = = T-
am /0 1{y, =0}ds > A}g’noo N /0 1{v, =0}ds=n

For any € > 0, we choose C' > 0 such that
e < et < e + €.

Fix a number k£ > 0, and take C — Iki > C' for suitably large M. Consider the
following birth-death processes with death rate A = A1 + Aq:
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o (yM,t > 0), with state space {C,C — +7-+-,1,0}, and birth rate at state ¢
being C — ﬁ (fig. 5.1c);

. (y,M’k,t > 0), with state space {{7, 5;71—,. .., 37,0}, and birth rate at state :

being C — % (fig. 5.1d);
o (wf,t > 0), with state space {4, 57%,..., #,0}, and birth rate C' (fig. 5.1e).
By using straightforward coupling arguments, we get
th 2 st th’k 2 st wf’
so that

1 M1 M 1 M1 r
i — = < i —_— = Y .
im /0 1{y, = 0}ds < A}Enw A /0 1{ws =0}ds Vk>0

Taking k — oo we get for every € > 0 that

1 Nt
lim N/ 1{yY = 0}ds < 7t < (7 + €)t,
0

N—oo

so that the lemma (as well as (5.6)) is proved.

From (5.6) we have

c

— 0.
v

t
[I/\(/ 1{z1N 422N < C}ds -
0

All the remaining terms in (5.5) are treated similarly as in the proof of Propo-
sition 1. The proof of Proposition 5.2 is thus complete. In fig. 5.2, the phase plane
of the deterministic equation for z; is shown; there is one stable equilibrium point,

c
namely )‘A1+A:‘
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5.4 Asymptotic Approximations for a Simple Network

We now extend the results of the previous section to the simple circuit-
switched network studied earlier in Chapter 2 (fig. 2.1). In this case, we also
assume that the capacities of the links, and the arrival rates, increase at the
same rate as done previously, while 4 = pY = 1. The notation is identical
to that of section 5.3. We assume that the initial condition zy 1s such that
2y < Cy, 22 < Ca, 2} + 22 < C and also z¥ L, 2. Then, for the period
during which the process is in the interior of the convex set characterizing the

state space, the differential equation for z, is:
Z; = A — z;,with initial condition zg.

We now consider the following cases (assuming that time is initialized, i.e.,

t=0):
Case 1: (A1, A2) is such that Ay > C, Ay < C — C; (fig. 5.3a):

It can be proved using identical techniques as in the proof of Proposition 5.2 that

z; moves from point A to point B according to equation:
=) -2 22 =0,

with initial condition (-f\%C'l,C).
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For t — 00,z; — 2 = (A1, C;) which is a unique stable equilibrium point.

Case 2: (A1, Az) satisfies A} > C — Cy, 52 ’\ > —J— (fig. 5.3b):

The equations describing the motion of z, from point A to point B are:

.1 1
2= A1 — 2

# =0,

with initial condition (-;%Cl, C). The final stable equilibrium point of z; is point
B with coordinates (C — Cs, C»).

Case 3: (A1, ) satisfy 2 > 55—, 32 < 5% (fig. 5.3¢):

The results are identical to those derived for the case of a single link in section

5.3.

Remarks: 1) The hitting time 7 introduced in section 5.3 can be estimated from
the differential equation describing the motion of z(¢). For the case of the simple
network of section 5.4, similar estimates can be drawn; moreover the order with

which each link saturates can be determined.

2) Unfortunately for ul¥ # u&, the technique applied for the proof of Proposition
5.2 is not applicable. Nevertheless, Proposition 5.1 is true for u¥ # pl¥ with slight
modifications on the differential equation for z(t). The complete analysis of this

case is an open problem.

3) We focus attention at the original processes x¥. At steady state, this process

possess a stationary probability mass function of the familiar product form:

1,N

c O ()T

1,N 2N
P(z™",25%) = LN T L2,N)

As in [29], we would like to compute the state which carries the highest probability

at steady state, i.e., the “most likely state.” To this end, we maximize the logarithm

of P(z»N,22N) and use Stirling’s formula: logn! ~ nlogn — n. The problem of
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finding the most likely state for the case of a single link reduces to the following

nonlinear maximization:

2
max Z(zi’Nln AN _ 28N gV 4 28N

i=1
such that: "V >0 =12,
2

in’N <CN.

=1
Letting y > 0,z > 0 the associated Lagrangian is

2

(ML)

2
L(xN,z,y) = Z(mi’N In AN — 28N nghN 4 20Ny 4 y(CN - Z N — z),)
1=

i=1
for 1 = 1,2. We now consider the Lagrangian (dual) problem:

max L(x",z,y)

such that : x” > 0.

(L)

The solution of problem (L) depends on y, z. Here y is a Lagrange multiplier while

z 1s a slack variable.

The dual problem (L) will provide a solution X" which is optimal for the original

problem (M L) when the following complementary slackness conditions are satisfied

y >0,
y-z=0 (CS)

z=C— (e +z2M)>0.

By differentiating the Lagrangian, we can trivially show that the solution of the

program (L) (and hence (M L)) has the form:
gV = ANemv,
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The unique stable equilibrium point of the equation characterizing the motion of
z, in Proposition 5.2 is
x C

==N A Tw

We now prove that xX is a “most likely state”. The complementary slackness

variable y is found to be

C
A1+ Ag

y:—-lTl >0.

Moreover, L,V + 23N = CN = 2 = 0 = y - z = 0, showing that xY is indeed a
most likely state. In a similar manner, the stable equilibria found in cases (1-3) in
Section 5.4 (figure 5.3) may be shown to be “most likely states” for the respective

two-dimensional Markov processes.

4) As a last remark, we would like to mention that the same equilibria (or “most
likely states”) for the systems studied heretofore are given by a differential inclu-

sion of the form [3].

2, € () @ f(2(t) + €B), (5.7)

>0

where B is the unit ball in R?, f(2(t)+ €B) is the function giving all the directions
for 2, in a neighborhood of z; (at time t), and o denotes closure of the convex
hull. Hence, if z; is the interior of the convex set characterizing the state space,
the only direction given by f(-) is A — 2, and the inclusion is identical to the
differential equation in Proposition 5.1. Further, if z; is on the boundary of the
state space, certain components of the vector ) are disabled. As an example, if the
component disabled is A}, the directions provided by f(-) will be A—z,,(0, A2) —2,.
Unfortunately, we have been unable to determine a closer relation between the

solutions of the differential inclusion (5.7), and the process z™ ().

5.5 A Conjecture for a General Network

The problem of asymptotic approximations for the case of a general circuit-

switched network, whose topology is characterized by a routing matrix A (section
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2.7), is not fully solved. Nevertheless, some observations from the cases already
studied suggest an intuitively appealing conjecture for the solution of the general

problem.

We focus attention on the simple network studied in section 5.4, and consider
the case depicted in figure 5.3b. Assuming that z; = 0, the differential equation
describing the motion of z; up to point A when link 2 saturates, is z; = A — z,
i.e., z; is attracted by the point A, which can trivially be shown to be the “most
likely state” for the unconstrained process zl¥ (see fig. 5.4). When z, reaches the
boundary for which 22 = Cj, it is then attracted by the point (C2, A;) which is the
“most likely state” for the process z/¥ if only the constraint associated with link
2 were present. The differential equation for z, is given by: 2} = A\ — z;,27 =0,
with initial condition being the point A with coordinates (%CQ,CQ). When z,
reaches point B it remains there, and it can be shown that point B is the “most
likely state” for zN if the constraints associated with the links of capacities C;
and C alone are present. The previous observation suggests the following method
for deriving the differential equation characterizing the motion of z; for the case
of an arbitrary circuit switched network. Assuming that z is in the interior of
the set § = {x : Ax < C,x > 0}, the differential equation for z; up to the first
time it hits the boundary of § is z; = A — z. Assuming that z; meets the faces of
S associated with the constraints for links 4;;, 4,9, ... £k, we determine the “most
likely state” of z¥, denoted by Z, as if only links £;;,. .. £;x were constituting the
network. The differential equation for z; is then z, = Z — z; up to the point
where a new constraint is saturated and a new “most likely state” is computed.
This argument proceeds inductively, and the final “most likely state” of z]¥ is
achieved in finite time. One important issue that remains to be proved is that
if z, saturates a certain number of constraints, then all these constraints will be
saturated in the future. This simply means that if z; ends up at the intersection

of certain hyperplanes that constitute faces of S, then it will never escape from

this intersection. This claim remains an open problem.
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CHAPTER 6

JOINTLY OPTIMAL ADMISSION AND ROUTING CONTROL
AT A NETWORK NODE

6.1 Introduction

Admission control and routing are key issues arising in the design and oper-
ation of communication and computer networks, and have received considerable
attention in recent years. The admission control problem entails a determination
of efficient policies for allowing incoming messages to gain access to network fa-
cilities. The routing problem involves selecting paths from several alternatives in
the network along which accepted messages can be efficiently forwarded to their

destinations.

Numerous studies of admission control and routing problems at a single node
or at several nodes of a network can be found in the literature. Decisions for
allowing messages into a network have customarily been based on an appropriate
minimization of a blocking cost in conjunction with a cost for queuing delays in the
buffers at the nodes. Routing strategies, on the other hand, have typically been
determined using the queuing delays at the buffers as the measure of performance.
We cite below some of the studies relevant to our work; this list 1s by no means

exhaustive.

Stidham [74] has considered admission control policies for several simple queu-
ing models. The optimal admission control policies for all these models share
the characteristic that they can be expressed in terms of a “switching curve.”
Viniotis-Ephremides [79] have demonstrated a similar characterization of the opti-
mal admission strategy at a simple node in an Integrated Services Digital Network
(ISDN). Results in the same vein have been obtained by Christidou et al [9] for
a cyclic interconnection of two queues, and by Lambadaris et al [39] for a circuit-

switched node. Hajek [16] has investigated the problem of optimally controlling
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two interacting queues.

In the realm of relevant routing problems, Lin-Kumar [41] have considered
the task of routing messages arriving at a node among two channels (servers), one
faster than the other. By minimizing the average queuing delay at the node buffer,
they show that the optimal routing policy is characterized by a “threshold” on the
size of the queue. Rosberg-Makowski [58] have treated a similar problem involving
multiple servers under the assumption of light traffic. In a recent preprint, Luh
-Viniotis [47] claim the optimality of a policy determined by multiple thresholds
for the situation in (58] even with arbitrary arrival rates. Nain-Ross [53] consider
the optimal assignment of a single server to multiple classes of customers. In doing
so, they minimize a linear combination of the average queue lengths of the various
classes of customers while simultaneously constraining the average queue length
of a specific customer class to lie below a specified value. Shwartz-Makowski [71]
treat a similar problem with two types of customers. Both [53,71] show the optimal
assignment strategies to be randomized.

In what follows, we combine the elements of the admission control and routing
problems at a simple node of a communication network similar to that studied in
Lin-Kumar{41]. To our knowledge, this is the first determination of simultaneously
optimal policies for flow control and routing. In our model, a message arriving at
a buffer is to be transmitted over one of two channels with different propagation
times. Under suitably chosen criteria, two decisions have to be made: whether
or not to admit an incoming message into the buffer, and under what conditions
should the slower channel be utilized. A discounted infinite-horizon cost as well
as an average cost are considered which consist of a linear combination of the
blocking probability and the queuing delay at the buffer.

Beginning with the discounted cost case, we formulate the optimal control
task as a Markov Decision problem. It is first shown from Lippman [42, 43] that
an optimal policy exists for admission and routing which is stationary in nature.
Next, properties of the optimal cost function are derived using arguments which

rely heavily on sample path methods {80], as well as on the techniques introduced
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in chapter 3. The said properties are then used to demonstrate that the optimal
admission and routing strategies are characterized almost completely by “switching
curves.” Finally, we show that the average-cost problem also yields similar results,

by following the approach of Sennott [69].

The remainder of this chapter is organized as follows. The problem is formu-
lated in section 6.2. Section 6.3 considers the discounted cost case and establishes
key properties of the optimal discounted cost function. The associated optimal
policy for this case is characterized in section 6.4; to do so, we need some convex-
ity properties of the optimal discounted cost which are established in section 6.5.

Finally, the average cost problem is addressed in section 6.6.

85



6.2 Problem Statement and Preliminaries

The model under consideration is shown in Figure 6.1. We focus our attention
on a single node of a communication network providing service to a stream of
message packets that arrive according to a Poisson distribution with parameter A
The packets (customers) are stored in a buffer (queue), and subsequently are to
be routed through one of channels (servers) 1 or 2 which have propagation times
that are exponentially distributed with parameters p;, = 1,2. We assume that
propagation over channel 1 is faster than that over channel 2, i.e., 3 > p2, and
that channel 1 is non-idling. Furthermore, in order to ensure that the number
of packets in the buffer remains bounded we shall assume the standard stability

condition, A < pj + f2.

—O- 1t )

Figure 6.1

The objective is the following: We wish to simultaneously control the admis-
sion of packets to the buffer, as well as their subsequent allocation to the two
channels; this will be done in such a way as to minimize a weighted sum of the
probability of rejecting admission of an arriving packet to the buffer and the delay
experienced by the packets in the queue. This problem can be precisely formulated

in terms of a Markov Decision Process (MDP) [17,38,64] as follows.
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The state of the system at time t,t > 0, is defined by a stochastic process
(x¢, t > 0), describing the evolution of the total load of the system as well as of
the status of the slower channel, where x; = (z}, z?) takes values in the state space
S =(0,00U(Z* x {0,1}), with

z; = total number of packets in the system (including the two channels) ,

2 _
Ty =

0 if channel 2 is empty of packets
1 if channel 2 is forwarding a packet,

at time t. Observe that the process (x¢,t > 0) is piecewise constant; next, we
associate with each state x in S a set of admissible actions D = {0,1}?. Thus, an

admissible action z,(x) in state x at time ¢, with values in D will have the form

z¢(x) = (21(x), 2/ (x))

where z! = 1 or 0 according to whether an arriving packet is accepted into the
buffer or is rejected, and 22 = 1 or 0 according to whether or not the slower
channel 2 is activated.

Defining the action space to be the product set A = D, we can now represent
an admissible control strategy (CS) as an .A-valued stochastic process (z;, t 2> 0),
where 2z, = (z,(x), x € §). Hereafter, we shall use the abbreviated notation z for
the CS (2, t > 0). Let P denote the set of all admissible control strategies.

A law of motion corresponding to a CS z is specified by a transition probability
P(x'|x,z), x,x' € S, t > 0, denoting the conditional probability that the system
moves to state X/ at time ¢ when the action z:(x) is applied to it at time ¢ while
in state x.

Our objective is to find a CS z in P minimizing the following cost:

1 T
limsup E; (T/ (1 — 2z (%) + 'yx%)dt) , v>0, (P1)
0

T—o0

where IE denotes expectation with respect to the probability measure induced by
the CS z on the process (x;, t > 0) with initial state x at ¢ = 0. If such a mini-
mizing CS exists, we shall refer to it as the optimal strategy for the unconstrained

average cost problem (P1).
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A key step involves the discounted cost problem associated with (P1). Namely
we wish to find a CS z in P for which the following discounted cost [17,64] is
minimized:

T—oo

T
limsup EZ </ e (1 — 2} (x¢) + vz}) dt) , 6>0, v>0. (P2)
0

If such a minimizing CS exists, it is called the optimal strategy for the discounted
cost problem (P2).

We conclude this section by introducing two special classes of relevant CS’s.
An admissible CS which is an i.i.d. stochastic process will be called a stationary
randomized strategy (SRS). Furthermore, if the common distribution of the SRS 2
has all its mass concentrated at some point in 4, we shall refer to it as a stationary
strategy (SS). Let Ps C P denote the set of all SS’s.

We shall see below that problems (P1) and (P2) are closely related. We
consider first the discounted cost problem (P2).

6.3 The Discounted Cost Problem: Existence of a Stationary
Optimal Policy
We begin our treatment of the discounted cost problem (P2) by asserting that
an optimal CS exists which, furthermore, is stationary. The assertion is made upon
verifying the conditions in the hypothesis of Lippman [43, p.1238]. To this end,
first observe that the cost incurred in state x; = (z!,2?) at time t has at most a

linear growth with respect to z?, i.e.,
1—z{(x¢) + 7z} <14 7z;. (6.1)

Next, the inter-arrival and inter-departure times of the packets are exponentially
distributed. Furthermore, the action set D is finite. The assumptions of [43, Thm.
1 p. 1239) are thereby satisfied, leading to the following.

Theorem 6.1: (Lippman) [43] An optimal strategy for the discounted problem

(P2) exists, and furthermore, is stationary.
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In the sequel we replace z,(x;) by z, for notational convenience. Furthermore,
in view of Theorem 6.1, we restrict attention to stationary CS’s and define the

6-discounted cost starting with initial state x associated with the problem (P2) by

J7(x) & min E: ( /0 e ft(1-21 + 7x})dt> , 6>0, y>0. (6.2

The minimum cost in (6.2) can be expressed in an alternative form which facilitates
further analysis. To thisend let 0 = ¢y < t; <t < --- < t,--- be the (random)
instants in time denoting transition epochs of the system state (x;, t > 0), where
each transition epoch represents either an arrival of a packet into, or a departure
of a packet from, the system. It is convenient to introduce at this point the é-
discounted expected cost over the time-horizon [0,%,), with initial state x, and

following a control strategy z in Pgs, namely,

tn
Vd(x,z) & EZ ( / e~t(1 -zl + 7x1)dt> : (6.3)

0

Let

Jg’é(x) = zlg’g.ls Vn‘y,é(x’ Z), n= 03 1,-- i)
JXA(x) = lim JY4(x).
We now show that the minimum cost in (6.2) has the alternative expression
I7(x) = J2A() (6.4)

for every initial state x. First observe from [43, Theorem 1], that J7%(.) is the

unique solution to the following functional Dynamic Programming equation:

JV¥(x) = min (1 — 2 (x) + 42’ + Z ﬂa(x,z,x')J""s(x')Pr(x'Ix,z)) , (6.5)

2€Ps x'eS
where x = (2!, z2), and Bs(x, z,x') is an expected discount factor of the form

Bs(x,2,x') = / AT (€], 2,X'),
0
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with T'(:|x, z,x') denoting the probability distribution function of the random time

it takes the system to go from state x to x’ under the CS z.

Next, using Dynamic Programming arguments, it can be easily shown that

J15(.) satisfies the following recursion:

IV (x) = Iz%iqral (1 —2Y(x) + vz + Z ﬂg(x,z,x')J,?"s(x')Pr(x'lx,z)) . (6.6)
x'€S

Since J,:’fl(-) > JY4(.), we have that J2(x) = limp_ e J%(X) exists. Moreover
J2%(x) is the unique solution to the contraction mapping (6.6). This observation,
together with the fact that J¥%(x) is the unique solution to the same contraction
mapping (6.5), yields that J%%(x) = J7(x).

We now derive a few properties of the cost functions J*5(-) and J2;%(-) which
will be employed in the next section to characterize the optimal policy for the
discounted cost problem (P2). In order to avoid repetition, the notation JJ'’()
will be used to represent JY%(-), n =0,1,--., as well as J%%(-), as appropriate.

Note that these properties are valid for every v > 0, § > 0.
Proposition 6.1: For each z2, JJ'’(-, z2) is nondecreasing.

Proof: We shall first prove that JY*(z! +1,22) > JY%(z?, z?) for all ! using the
following coupling argument. Consider two similar systems starting with initial
conditions (z',z%) and (z' + 1,z?%), respectively. Couple the arrival and service
processes of both systems; further, in both cases, follow the optimal CS for the
latter system starting with initial state (z! 4+ 1,z2). Denoting this strategy by
z = (z1,2%), let (%X,;) and (x,), 0 < t < t,, be the corresponding trajectories of the
systems starting at (z!,z?) and (2! + 1, 2?%), respectively. Define a stopping time

by 7 = [min(t : x; = X;)] A t,. We see that

tn i, r
/ et (1 = z§ + yz})dt — / e~% (1= 2} +v&})dt > / ~e~®dt > 0
0 0 0
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so that

tn
Jro(2! +1,22) = ]E(zz1+1,,z)‘/ e (1 — 2z} + ~yz})dt
0

tn
> lE(zzl,xz)/O e~%(1 — 2} 4 y2})dt

> Ir0(at,2),
The proof of the claim is completed by letting n — oo, when it readily follows
that JL0(z! +1,22) > JL8(a!, 2?).
Proposition 6.2: For every 6§ > 0, there exists an integer T = T(6) such that:
JV8(z,0) > J74(T,1). (6.7)
Proof: Suppose that for some é > 0 and for all z the reverse inequality holds, i.e.,
J78(z,0) < J78(z,1).
We shall show that this supposition leads to a contradiction. The proof employs
coupling arguments ¢ la Walrand [80]. Consider a system with initial state (z,0),
where z is a positive integer. Consider a second system which is similar but has
initial state (z,1). Couple the arrival and service processes of the two systems,
and apply to each the optimal strategy, denoted z = (2!, 22), associated with the
first system (i.e., with initial state (z,0)). Let (x;) and (X) respectively represent
the corresponding state trajectories. By the supposition above, observe that in

view of the stationarity of z, the first system never forwards a message through

the slower channel.

Letting V7%(z,1) = Ef, ) (f;° e (1~ 2} +v&})dt), it is clear that
JV8(2,1) < V¥¥(z,1). Let 7 = min(t : z} = 0) and let o be an exponential
random variable with mean p;? which represents the packet propagation time on

the slower channel. Then

JV8(z,0) = JV8(z,1) > J7¥(z,0) — V7¥(z,1)
= 1E (e < 7] / e~*dt — 1[0 > 7] /0 e="'dt)

2 o(z,6).
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Next consider an M|M|1 system starting with z initial packets, with no arrivals,
and with the service time distribution being exponential with parameter y;. Let

7 denote the time at which this system empties. Define

#(2,8) = vEQlo < 7] [

o

e Stdt — 1[0 > %]/ e~Stdt).
0

Since 7 >4 7, it is clear that ¢(z,8) > @(z,6) for all z. Then our supposition
is contradicted if we show that @(z,§) is non-negative for some z suitably large.
To this end, we observe that as z increases ¥ increases stochastically, so that
1[o < 7] increases while 1[¢ > 7] decreases, both in the stochastic sense. Noting
that P(0 > 7) = 1 —IP(0 < 7) goes to 0 as z increases, it is clear that there exists

an integer T = F(6) such that @(z,6) > 0.
Proposition 6.3: For each z, JJ'’(z,0) < JX%(z + 1,1).
Proof: The proof is similar to that of the previous proposition. Let z be the

optimal policy associated with the system starting with initial condition (z+1,1).

If 0 is an exponential random variable with mean u; 1. we easily get:
TNz +1,1) - J3¥(,0) > 71ng+],1)/ e=5tdt > 0
0

where 7 = min(t,,0). Similar arguments hold true for the case n — oc.
Proposition 6.4: J)'%(1,1) > JT(1,0).

Proof: We use the same argument as in [80, p. 133]). Let o; and 02 be random
variables representing the propagation times of a packet on the fast and slow
channels respectively. Clearly, we can choose 02 = 411 o1. Consider two similar
systems, the first starting with initial condition (1,1), and the second with initial
condition (1,0). Denote by z the optimal policy associated with the first system.
For the second system, we follow the policy Z constructed as follows: Whenever
z activates the fast channel (i.e., accepts messages in the system), Z enables the

slower channel.
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We need only consider two cases. In the first case, the fast channel of the
second system is transmitting, and hence, so is the slow channel of the first sys-
tem. Then the strategies z and %, as defined above, will result in the same state
trajectories for the two systems, and hence, the two systems will incur identical
costs. In the second case, the fast channel of the second system is idle while the
slow channels of both systems are busy. By introducing a dummy packet on the
fast channel of the second system, the system states are coupled. As the dummy

packet incurs no cost, the assertion is established in this case too.

Finally, we introduce two more propositions. Their proofs are more involved
than those of the previous propositions, and will be provided in section 6.5 below.
Proposition 6.5(Convezity): For eachn >0, § >0, and 22 = 0,1, J2°(-,z?) is

a convex function, i.e.,
J7o(z + 1,22) — JP¥(2t,2?) > TXO(2?, 2?) — TP (! — 1,27) (6.8)

for all z! > 1.

Proposition 6.6: Foreachn >0, 6§ >0,
JIt +1,1) = J (2, 0) > TP(at,1) — I — 1,0) (6.9)

for all ! > 1.

6.4 An Optimal Policy for the Discounted Cost Problem

In this section we derive the form of the optimal strategy associated with the
B-discounted cost problem (P2). This is done below in two steps.

The first step entails converting the original continuous-time problem (P2)
into its discrete-time equivalent by the standard procedure of “uniformization”
[38,59]. We recall from section 3 that 0 = t; < t; < t < .-+ < t,--- are the
(random) instants in time denoting transition epochs of the system state. By
suitably introducing dummy departures as in [12,17], the inter-epoch intervals are

seen to be i.i.d. random variables with distribution
Pltis1 —tx > t] = e~ t(A+u1+p2) (6.10)
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for k = 0,1,.--. Consider the discrete time system obtained as in [38,59] by

sampling the original continuous-time system at its transition epochs. To this

end, we introduce the notation x; 2 Xy, and zx 2 z(xy, ) and define

A+ py + po
Atpy +pz+ 6’

8= (6.11)

whence 0 < § < 1. The B-discounted cost incurred by the n-step discrete time
system for the CS z is defined [38,59] as

n-—1
ViP(x,2) 2 EL Y A1 - 24 + y2).
k=0

It then follows that (cf. (6.4))

- B

Vrb(x,z2) = 6

—L VB (x,2). (6.12)

Let
V8(x,2) 2 lim V2A(x,2).
n—oo

We can now state the minimization problem (P2) in terms of a discrete-time
problem of equivalent cost as follows. Define the minimum A-discounted-cost for

the n-step and infinite horizon discrete-time systems, respectively, by

(x) mlg V1A(x,2) (6.13)
and
Jv ﬂ(x) mlg VA(x,2). (6.14)
Letting
J1A(x) & lim JP(x) (6.15)

it can be easily deduced, as in section 6.3, that

J&(x) = J7(x)
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for every initial condition x. Finally, the equivalence, in the sense of optimal
discounted cost, between (P2) and the discrete-time formulation above follows

readily from (6.12) and (6.15) by noting that

JY(x) = 1 ; p JrB(x). (6.16)

Thus, 1t suffices to restrict attention hereafter to the discrete-time S-discounted

cost problem defined by (6.14).

We can now proceed to the second step associated with problem (P2) by
developing the Dynamic Programming equations for the problem in (6.14). The

notation is considerably simplified by introducing the following quantities:
Ai = A8 (J”*ﬂ(i +1,0) = j"’ﬂ(z’,O)) ~1, i>0
By =2 (J78(i,1) - J7%(5,0)) + By (7% - 1,0) - F#( - 1,0)), i>2
By =8 (J77(1,1) - 7#(1,0)),
B, =0,
Ci= )3 (j"fﬂ(i +1,1) — J1B@ +1,0) + JA(i,0) — TG, 1)) L i>1
Co = A3 (f"’ﬂ(l, 1) — Jv»ﬂ(1,0)) ,
Di = \B (f"’ﬂ(i +1,1) = JA(, 1)) -1, i>1
E; = Buz (f“”ﬂ(i ~1,1) = MG — 1,0)) , i>2
E =0

Furthermore, the following observations are be useful:

(i) A; and D; are increasing functions of 7, ¢ > 0, by the convexity of

J78(.,z%) (cf. Proposition 6.5 and (6.16)).

(i1) For every i > 1, A4; + C; = D;. This follows directly from the definition
of A;, B;, C;.
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(iii) For i > 1, 4; < D;41. This follows from Proposition 6.6 and (6.16), since

JY8( +1,1) = J7A(,0) > JA(i,1) - JP(i - 1,0),

or

JTPG+2,1) = JVP(G +1,1) > JVP(5 + 1,0) — JV8(3,0),
whence the assertion results.

Referring to the state transition diagram in Figure 6.2, the Dynamic Program-

ming equations can now be written as follows:

Figure 6.2

For:>1:

j'r,ﬂ(z',()) =1++i+ min {2'A;+2°B;+ 22201+

z1,22€{0,1)

+8 (u;j"’ﬂ(z' ~1,0)+ MM, 0) + uz.f”’g(i,O))
(6.17)
j ’ﬂ y — y 3 1 . 2 .
JYP(4,1) =14+ yi + zrznex?o,l}{z D, + z*E; }+

zi,
+ 8 (pe ™8 ~ 1,0) + p F7A( = 1,1) + ATV, D).
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For: =1, we get:

J(1,0) =1+~ + I2nin0 1}{21A1 +2°By + 2122 Ci )+

1,22

+ 8 (11 J#(0,0) + AJ#(1,0) + 2 J77(1,0)) 5

JYA(1,1) =1+ v+ zlrerl{i&}{lel} + B (pzf%ﬂ(o,()) + AJ7A(1,1) (019
+ ulj%/’(1,1)) .
Finally, for ¢ = 0, we have:
J7P0,0) =1+ 21,292?071]{z1A0 + 212200} 4+ BT P(0,0). (6.19)

The optimal control actions taken at states (¢,0) and (7, 1), respectively, can
be seen from (6.17) — (6.19) to be determined by the minimization with respect

to (2!, 2?) of the functions:
FO2t, 22 2 2 A + 22 B+ 2'22Cy, i >0, (6.20)

and

U, 22 2D+ 2B, i> 1 (6.21)

Before proceeding with the minimization, it is instructive to consider the nature
of the optimal cost functions J78(.,0) and J"#(-,1). From propositions 6.1-6.6
it is evident that the forms and relative values of these two cost functions will
be as depicted in Figure 6.3a; furthermore, they will intersect at most at two
points. Consider first the case where they intersect at one point (Figure 6.3a).
(Subsequently, in this section it will be shown that J7#(-,0) and J¥#(-,1) cannot
intersect at more than one point).

We commence with the actions taken at state (z,0). There are four cases to

be considered.
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Case (1): i <1—1 (see Figure 6.3a). The values of f?(z!,2?) for the four possible

choices of (21, 22) are:

0 for 2! =0,2%2 =0;
A;for 2t =1,22 = 0;
B for 2! = 0,22 = 1;

Ai+ B;+Cifor 2! =1,2% = 1.

Since in this case B; > 0 and B; + C; > 0, the choice is between (2! = 0,2% =
0) and (2! = 1,2 = 0) according to whether A; > 0 or A; < 0. Thus, the
optimal strategy disables the slower channel and accepts (resp. blocks) an incoming

message at the buffer if 4; < 0 (resp. 4; > 0).

Case (ii): © > 1: In this case it is easily verified that B; < 0 and B; + C; < 0, so
that the choice is between (2! = 0,22 = 1) and (2! = 1,2? = 1), the corresponding
values of f2(z!,2%) being B; and A; 4+ B; + C;, respectively. Thus, the optimal
policy keeps the slower channel active and accepts (resp. blocks) an incoming

message if 4; + C; < 0 (resp. 4; + C; > 0).

Case (#1i): i = i—1. Since B; > 0,C; > 0, the possible choices are (2! = 0, 2% = 0),
(2! = 1,22 =0) and (2! = 1,2? = 1), with the corresponding values of f?(z',2?%)
being 0, A;, and A; + B; + C;, respectively. Hence, if 4; < 0, then 2! =1 (i.e., the
optimal policy accepts an incoming message), while 22 = 1 (resp. 0) if B;+C; <0
(resp. B; + C; > 0). Finally, if 4; > 0, then the action pair (2! = 0,2% = 0)
is optimal if A4; + B; + C; > 0, while the pair (z! = 1,22 = 1) is optimal if
A; + B; + Ci < D (so that A; + C; < 0).

Case (w): i = 1. Here, all four combinations of the action pairs are possible.
The optimal control actions taken at states (z,1) are easily determined in a
similar manner by the signs of D; and E;. If D; < 0 (resp. > 0), E; < 0 (resp. > 0),

then (2! =1,z = 1) (resp. (2! = 0,22 = 0)) minimize (2!, 22).
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We are now in a position to characterize the optimal admission policy at the

buffer; this is done in Propositions 6.7-6.10.

Proposition 6.7: The optimal admission policy is characterized by a switching
curve (see Figure 6.3b).
Proof: We first show 2!(4,0) = 1 = 21(¢/,0) = 1 for all ¢’ < 1, i.e., if the optimal
policy admits an incoming message into the buffer at state (z,0), it must also do
so at states (i',0), ¢' < i. Suppose ¢ > ¢ (cf. case (ii) above). If 2'(i,0) = 1, then
A; + C; < 0. From the convexity of J*#(-,0), it follows that for all 7 < ' < 1,
AL+ C! <0, so that 2!(',0) = 1. Moreover, for ¢’ < 7, A} < 0 (by observation (iii)
earlier in this section). It is then evident that A; or A;+ B;+C5 will be the possible
minima of f2(z!,2?), so that z'(z,0) = 1. Next, 4;_, < 0 so that 2z -1,0)=1
(cf. case (iii)). Finally for i’ <% — 1, again Ay < 0, whence 2?(¢,0) = 1 (cf. case
(i)). Similar arguments show that z1(z,0) = 1 for ¢ < 7 would imply 2'(:',0) =1
for all ¢/ < 1.

Lastly, it follows in a straightforward manner that z'(z,1) = 1 implies
21(#',1) = 1 for ¢' < i. Indeed, if 2!(¢,1) = 1, then D; < 0 whence Dy < 0
for ¢! < i by the convexity of J¥5(-,1); consequently, 2*(i',1) = 1.

Proposition 6.8: If the optimal policy accepts an incoming message at state (7, 1),

then it also does so at states (¢',0),¢ < i, i.e., 2}(¢,1) = 1 implies z'(,0) = 1.

Proof: Since z1(3,1) = 1, it follows that Dy < 0 and A < 0 for all #' <z, so that
21(#',0) = 1.

Proposition 6.9: For i >z, z!(i,1) = 0 iff 2!(4,0) = 0.

Proof: The proof is obvious by the fact that D; = A; + C; < 0.
Next, we characterize the optimal routing strategy, governing the activation

of the slower channel.

Proposition 6.10: For all states (,1) with i > 7 (resp. ¢ < ¢), the optimal routing
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strategy yields z%(i,1) = 1 (resp. 0). Furthermore, for all states (¢,0) with ¢ > 7
(resp. i < 7 — 1), it provides that 22(z,0) = 1 (resp. 0) (Figure 6.3c).

Proof: The proof is immediate from cases (i) and (ii).

Finally, we show that the discrete-time optimal costs J18(.,0) and J7O(-,1)
do not intersect at more than one point. We provide the proof in continuous time
for the optimal costs J7%(-,0) and J¥%(-,0) but the result is obviously true for

the discrete time costs as well by virtue of (4.7).

Proposition 6.11: For every § > 0, there exists T = T(6) such that
JV(z,0) > J10(z,1) (6.22)

for z > T.

Proof: We assume that the proposition is not true and show that this leads to
a contradiction. Because J7%(.,2?) is increasing and convex, there exists ¥ > T
such that J4(z,0) < J7¥(z,1) for all z > 7.

By using the same argument as in case (i) above, we can show that for all
z > T the optimal policy keeps the slower channel idle. As in Proposition 6.2 of
section 6.3, we consider two identical systems starting with initial conditions (z,0)
and (z,1), respectively. Let o be an exponential random variable with mean p; 1
For both systems we follow the optimal policy associated with that starting at

(z,0). The following cases are of interest:

a) If the optimal policy employs the second channel at time 7 = min (¢ : 22(x4) =

1), then

oo
J718(z,0) — J7(2,1) > yE(1[o < T]/ e~ 5dt) > 0

[

which contradicts our assumption.

b) If the optimal policy never uses the slower channel, the same approach as in

proposition 6.2 results in a contradiction if z is chosen large enough.

6.5 Convexity of the Optimal Cost
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We now provide a proof of Proposition 6.5 dealing with the convexity of
J1P(x). In view of (6.4), it suffices to show that for each n > 0, 8 < 1, and
2?2 =0,1

TYA(xt +1,2%) — JPA(al,2?) > JrA(at, %) — J1P(2! — 1,2%)

for all ! > 1. In order to do so we shall use the techniques introduced in chapter

3 (namely Proposition 3.3).

Let A, D,, and D, represent respectively the events of an arrival of a packet
at the buffer, and the departures of a packet on channels 1 and 2. Next, let
QF = {w*(wy,...,wi) s w; € {A,D1D3}}, k=1,2,---,n, represent the collection
of all events corresponding to arrivals and departures of packets at the transition

epochs during the interval [0,¢;]. On Q; we define the following transition matrix:

(1) (1’ g] ifwp = A
_ (—1 0 0 .
Er(wk) = ¢ o 1 0 if we = D,
-1 0 0] .
0 1 _J if wy = Ds.
\ L

We can then write the evolution of the state of the system as follows:

1 (k) 1/, .k zi+1(wk+l)
zp,(w ri(w —_ :
[ §+1 k41 ]'—’[ ég k;} +:k+l(wk+]) z%+1(wk+l) )
Tipq (@) Tplw 3 k+1
Zrgr (W)
for k = 0,1,---, where z}(w*) and z%(w*) correspond respectively, as in section

6.2, to the actions of admission of a message into the system and the activation of
channel 2 at transition epoch t5; 23(w*) takes the value 1 or 0 at t; according to
whether or not a “dummy” departure {6,12,17] occurs on channel 2. We can easily
see that the matrix = of Proposition 3.3 in Chapter 3 is a 2 x 2-unit matrix. As a
result, the requirements of Proposition 3.3 are trivially satisfied and the convexity
of J1P(-,2%) (as well as JJ'®(-,2?)) follow. Another proof of the convexity of the

aforementioned costs is provided in Appendix 6.1.
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6.6 The Average Cost Problem
The average cost problem (P1) entails a minimization of the expected aver-
age cost per unit time [19,57,69,74]. In this section, we determine the optimal
stationary policy for the average cost problem (P1) by associating it with the dis-
counted cost problem (P2). Moreover, the optimal average cost for problem (P1)
can be expressed as follows by using the standard procedure of uniformization

earlier employed in section 6.4; thus

Jan(x) = m1n V(x,2)

and

V(x,z) _hmsup ! EZ (Zl — zj(xx) +7xk>

where, with a slight abuse of notation, z denotes a policy that is not necessarily

stationary.

However, the following lemma proposes a stationary policy which is a candi-
date for average-cost optimality. Furthermore, this stationary policy will be seen
to arise as a limit of optimal policies associated with the discounted cost problem

(P2). The lemma can be found in [19] and [69].

Lemma 6.4: Let {$,}52, be a sequence of discount factors converging to 1.
Let {zg,}22, be the associated sequence of (stationary) optimal policies for the
discounted-cost problem. Then there exists a subsequence {f,s} and a stationary
policy z which is the limit point of z3_,.

Although the lemma has been proved in [19,69], for the sake of completeness

we present a brief proof below along with some observations.

Proof of Lemma 6.4: The finiteness of the action set D = {0,1}? enables it to be
viewed as a compact topological space with a discrete topology, where every subset
of D is simultaneously open and closed. Further, the associated topological basis
formed by these open sets is finite. By the Tychonoff theorem [67], the countable

product space A = D is also compact under the product discrete topology. Since
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the basis for A under the same topology is countable and since A is normal [67], it is
also metrizable by Uryshon’s lemma [7]. Consequently, A is sequentially compact,
i.e., every sequence {zg,} (of stationary policies) has a convergent subsequence
{2p,,} converging to a stationary policy z in the following sense: for every x in §
there exists an integer N(x) such that zg ,(x) = z(x) for n' > N(x).

Next, we establish that the stationary policy z of the previous lemma will have

the form derived in section 6.4. In particular, we show that z*(z’

, %) = 0 implies
21(2',2%) = 0 for ' > 2!. If this were not true, suppose that z?(z!,z?) = 1 for
z! > z'. Then since zg_, — z, we conclude that there exist N(z!,2?), N(z!,2?)
such that zj (2',2%) = 0 for all n' > N, and 25 (z',2%) = 1 for all n' > N.
By choosing k = maz{N, N} we see that zj (z',2%) = 0 and 2}, (z',2%) = 1 for
z' > z! which contradicts Proposition 6.7 of section 6.4. A similar argument can

be applied to the routing control z2.

It only remains to establish the optimality of the stationary policy z of Lemma
6.4 for the average cost problem. To this end, we consider the following two cases

determined by the nature of the admission control 2.

1) Assuming that z'(z',2?) = 0 for some finite z!, we conclude that the un-
derlining Markov Decision Process is “essentially” a finite, irreducible chain and,
hence, ergodic. If p,(x) is the associated stationary probability distribution un-
der the policy z we obviously have 3 s p.(x)(1 — z!(x) + v2') < co. More-

over, since J78(z!, 2?) is increasing in !, 22 (Propositions 6.1,6.3), we have that
JVP(zt 2%) — J1P(0,0) > 0 for all B, v, z', z2. Hence the following theorem
from [69] follows:

Theorem 2: The policy z from lemma 4 is optimal for the average cost problem

(P1). Furthermore the average cost is given by:
Jov = [13iml(1 - ﬂ)jﬂ;y(x)’

not depending on the initial state x.
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2) Assuming that z!(z?,z?) = 1 for all z!, the problem reduces to that studied
by Lin and Kumar [10], where the routing control is shown to be of the threshold

type.

6.7 Concluding Remarks

In studying the problem of simultaneous admission and routing at a network
node, it has been assumed that if the system is nonempty, then the faster channel
is nonidle. This assumption is intuitively appealing and might even be “optimal”

for the costs under consideration.

A harder and as yet unsolved problem appears to be that which seeks a
minimal blocking probability under an explicit constraint on the average delay in
the system. On the basis of Ross [19], it seems reasonable to conjecture that the

optimal policy will no longer be stationary but rather a randomized one.
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Appendix 6.1
In this section we establish Propositions 6.5 and 6.6 (cf. section 6.3). In order
to do so, we shall employ a technique introduced in [59], wherein the discounted-
cost, discrete time problem is first suitably transformed into a Linear Program.
We begin by artificially “enlarging” the state space of the system, redefining the
state at instant k (corresponding to the transition epoch t;) in terms of a triple

Xk = (z},z%,23) where

z; = number of packets in the buffer and on channel 1 at the transition epoch
tr (and not the total number in the system, as defined earlier);

2 = number of packets transfered from the buffer to channel 2 upto transition
epoch tg;

z3 = number of packets that have departed on channel 2 upto transition epoch
tr.

This new state description is intended solely for the proofs at this section, and

should cause no confusion. It subsumes the state description of section 4, since

the total number of messages in the systen at time instant k is given by z1 +22% —z3

while the condition of the second channel is simply z2 — z3. Clearly, z} > 0 and

2% — 23 belongs to {0,1}. In terms of the new state description, the n-step §-

discounted cost for the discrete-time problem with initial state  corresponding to

a CS z in P is given by
_ n-—1
V2(x,2) = E; ) B* (1 - 7)) + 1(eh () + 2} (wh) - aR(w"),  (46.1)
k=0

and the corresponding optimal cost by

JYA(x) = min VIA(x,z2). (A6.2)

Let A, Dy, D, represent, respectively, the events of an arrival of a packet at

the buffer, and the departures of a packet on channels 1 and 2. Next, let Q% =

106



{wF(wi,...,wi) s w; € {4,D1D,}}, k=1,2,---,n represent the collection of all
events corresponding to arrivals and departures of packets at the transition epochs

during the interval [0,%x]. On Qi we define the following transition matrix:

([1 -1 0
0 1 0 fwr=A
0 0 0
(-1 -1 0
Ek(wk) = { 0 1 0 if wp = Dy
0 0 0
0 -1 0
0 1 0 if wp = Ds.
({0 0 1

We can then write the evolution of the system state as

e (@) [2h(w?) 2ha (@)
e (W) | = mzc(w’;) + Brpr (@) | 22 (WH) | (A6.3)
g1 (W) zi(w") 23 (W)

for k =0,1,---, where z}c(wk) and z2(w*) correspond, respectively (as in section

6.2), to the actions of admission to the buffer, and the activation of channel 2, at
transition epoch tx, and zi(wk) takes the value 1 or 0 at t; according to whether
or not a “dummy” departure [38,43,59] occurs on channel 2. Equation (A6.3) can

be solved recursively to yield
k . .
xi(Wh) = x+ ) Ej(w))z;(w’), (5.4)
j=1

where the notation z(w*), k= 1,2,..., is obvious. We can now rewrite (A6.1)

as
n-—1
V2% 2) = B Y B4 (Iwh = A)1 = ) +9(eh + 2k~ 21)
k=0

Upon substituting (A6.4) in the equation above, we get

TP =3 Y chlot)eb(wh) + chwh)dwh) + o

k=1 Wk Enk
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where

ck(w®) = P(w*)B* [ER!( ")725] I(w* = 4)),

I=k
() = — PHBEP W S,
J_.

and
n n
= /\Zﬂk + Z'yﬂk[ml + 2% — 23],
k=1 k=1

The minimization problem (A6.2) can now be transformed into the following Lin-

ear Program:

n

Wa)=  min 30 3 eh@h)sh(wh) + cwh)sdw) + o,

{ze(w*)}2_, k=1 wkgwk
such that for each w* in Q, and k =1,2,---,n

zi(w*) € [0,1], i =1,2,3 (feasibility constraint) (LP)
k - .

2!+ Y = (w)zi(w) 2 0
j=1

and
k

0<z?—23+ Z(:j )(w’) - :g )(w’))z]-(aﬂ) <1
i=1

where Egi)(wj) denotes the ith row of the matrix =;(w).

Remark: The first constraint is associated with the feasibility of the control actions.
The second and third constraints, respectively, imply that the number of packets
in the buffer and on the slow channel should be nonnegative, and, moreover, that
the second channel cannot forward more than one packet at any time.

Lemma A6.1: For 0 < 8 <1, n =0,1,---, W5(.) is a convex piecewise linear

function.

108



Proof: Since the quantity x enters linearly in the constraints of (LP), the lemma

follows directly from the theory of Linear Programming [77, page 56].

Lemma A6.2: The Linear Program (LP) accepts an integer solution, i.e., zj(w*)

belongs to {0,1}, :=1,2,3 for every k =1,2,---,n

Proof: We denote by 2* the optimal strategy that solves the linear program (LP).
By using duality theory [77, page 50] as it applies to linear programming, we
conclude that z* is an optimal solution for (LP) iff there exist suitable vector-
valued variables A\}(w*) in R? such that Af(w¥) > 0 (componentwise), and the
following conditions are satisfied for k = 1,2,...,n, w* in QF: (We drop below

the dependence of certain variables on w¥ to make the presentation simpler.)

cl) z* is a solution to the following program:
n
min > (ckzi + ekl — Alek = AP ek — 2) + )k 2k - 1))
k=1 Wk

c2) The state trajectory generated by z*, denoted x(2z*), should satisfy,

z3(z*) 20 and 0<zi(z*)—z}(z*) <1

c¢3) If Af! > 0, then z} = 0. Further, if )\*2(3) > 0 then 2% + 2} = 0(1).

The cost function in c1) can be transformed (after a simple change of the variables

of summation) to:

n n
. 1
min E E izl + k2l — E /\;-‘1 _g o
F4
k wk 1=k

+(Z(/\;3 )\*2) '—(2) H(s))zk + terms independent of 2
p

n
= mzin Z Z di(ck,Ax,wk)zk + terms independent of z
k=1 wk

where di(ck, A%, wk) is defined in an obvious manner.
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We then conclude immediately that

_ 1 if di(ck,g’,’c,wk) <0
2z} =¢ 0 if d;‘c(ck,éz,wk) >0 :=1,2,3. (A6.5)
€ [0,1] if d}(ck,Axwi) =0

Henceforth, suppose that the initial condition x is integer-valued. For k =
1,2,---,n let 2*, \* satisfy the optimality conditions c1), ¢2) and ¢3). We shall
use z* to construct an integer-valued policy z that is optimal, i.e., satisfies the

abovementioned conditions. To this end, we provide the following lemma.

Lemma A6.3: Consider the following region in R3:

11

X = {plﬁl + p2e2 + p3es, p; € (—57'2'} },

where 3 = (1,0,0)T,e2 = (=1,+1,0)7,e3 = (0,0, -1)T. Let £*(w),i = 1,2,3 be

the 7th column of the matrix Z(w). Then

(X +Ew)z, z€[0,1} c XU U X+6w+8w

i,7€{1,2,3},i#j
we{A,Dy,Dy}

Proof: The proof is straightforward and, hence, omitted.

Proposition A6.1: There is an integer-valued (i.e., {0,1}-valued) policy z =
(zk(w*),k =1,2,...n) such that z}(w*) = zx(w¥), where the latter is integer-

valued, and for all w* in QF and k > 1, it holds that

Ay 2 (xk(wk,z*) — xk(wk,z)) € X.

Proof: The proof is by induction. Suppose for some k > 0 that A i1sin X.

Then, it follows that

A1 = Bk + B (0" )2i g (W) = B (0 Dz (W),
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If z; . (w**!) is integer-valued, then obviously z},; = zi41. Else, by lemma A6.1,

either (A + Zg41(w*?)zk41(w 1)) isin X, so that we set 2z}, =0 (i = 1,2,3),
or (Ag + Zgg1(wF ) zp41 (WHH1)) isin (X + & (W) + §£+1(wk+1)), when we

choose z};+1 = zi_ﬂ = 1 and zﬁ_H =0, £+#1,j. In either case Aryy belongs to
X.

Proposition A6.2: The integer-valued policy z constructed above is optimal,
i.e, it satisfles conditions c1), ¢2) and c3).

Proof: Condition cl) is trivially satisfied, since zi(w*) = z}*(w*) whenever z}' is
integer valued. We now check the feasibility conditions ¢2). We wish to show that
2} > 0 and 22 — 23 > 0. Suppose this were not true. Then, since 2}, 2%, 23 equal 0
or 1, we clearly have :10}c < —1 and a:?c + a:i < —1. Since Ay lies in X, we conclude
that z}! =zl +p; — p2 for p1,p2 in ( — -;—,-;— J. Hence, a§' < =141+ 1 =0, which

is clearly a contradiction since z}' is known to be optimal (and hence feasible).

Similarly, since Ay belongs to X, we readily see that:

2 % 11
(wk2»mk3) = (mi,mi) + (p2,p3) p1,p2e( — PR ]
and
*2 *3 1 1
Ty — Ty §—1+P2“P3<—1+§+§:0,

which again lead to a contradiction.

Next, we must show that z2 — k3 < 1. As before, if this were not true we must
have z2 — z3 > 2. Using the same arguments as before, z}? — z}> > 2+ p; — p3 >

2 - % — % > 1, clearly a contradiction.

Finally, we establish the complementary slackness conditions ¢3). It is enough to
show that if z}' = 0 then z} = 0. In a similar way we must show that z}% — z}% =
0(1) implies 2% + 2} = 0(1). As before, we have that 1 = z}! —(p1 —p2) = p2 — 11
belongs to (—1,1) so that #} = 0, since ] is integer-valued. All other cases in ¢3)

can be treated in a similar manner.
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At this point, the proof of Proposition A6.5 is evident. Returning to the old
state description of the system, if x = (z!,z?) is a point with integer coordinates,
then since z, the solution of the linear program (LP), is integer-valued, i.e., belongs

to {0,1}, and J57(z?,z?) is unique for each n, we conclude that:
Izt 2?) = Wy(z! — 2?,2%,0),

for £! > 1, and z? in {0, 1}; furthermore, J#7(z!, 2?) inherits the convexity (with
respect to the argument z!) of Wy(z! — 22, 22,0) for every n. Hence, J57(z!,2?)
is also convex with respect to .

Next, from [77, page 56] we have that W#7(2!,22,0) is a piecewise linear
function. Furthermore, by using arguments similar to those in Proposition 1, it

can be shown that it is an increasing function in 2! and z?%, and hence it holds

that
Wa(z! +1,1,0) = Wy(z' +1,0,0) > Wy(2?,1,0) — Wyo(z',0,0). (A6.6)

Proposition A6.2 now follows immediately. Property (A6.6) is known as “super-

modularity”; a detailed proof of (A6.6) can be found in Appendix 2.1.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

This thesis has been motivated by the advent of large-scale Integrated Service
Digital Networks (ISDN’s), and has focussed on the study of a class of admission
control and routing problems. Specifically, we addressed two problems in the
general area of optimal control of queuing systems. The structure of an optimal
admission control scheme was derived for a simple blocking node carrying two
different traffic types in an ISDN environment. A generalization for certain circuit-
switched networks was also proposed. Further, a jointly optimal admission and
routing scheme was studied for the case of a network node carrying queuable
traffic. These problems were modeled by suitably employing the theory of Markov
decision processes, incorporating discounted and average costs that consisted of a

blocking penalty in conjunction with cost for queuing delay.

The convexity property of the aforementioned discounted costs — a key issue
in the study of such problems — was established by using certain facts from the
theory of Linear Programming. Furthermore, a procedure was developed that
ascertains the convexity property of discounted costs associated with a class of
Markov decision processes that often arise in optimization problems in the context

of queuing systems.

Next, we investigated simple numerical procedures for quantifying the block-
ing behavior of circuit-switched networks. Namely, we developed bounds for the
blocking probability associated with each link of the network. Particular attention
was given to the case of light traffic — a situation that assumes a special significance

in high speed optical networks.

Finally, we focused on the asymptotic behavior of certain circuit-switched

nodes and derived strong approximations of the state trajectory of the node when
the arrival intensities and the capacities of the links are increasingly large. A

conjecture for an arbitrary circuit-switched network was also given.
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We conclude this thesis with various possible applications, as well as some

directions for future research.

Our analyses in the area of optimal routing and resource allocation problems
have thus far have made the simplifying assumption that the imposed costs are
weighted sums comprising a blocking penalty or a queuing delay. In practice,
however, constrained problems are of particular interest; for instance, the min-
imization of an average blocking cost is desired under the additional constraint
that the average queuing delay does not exceed a prespecified value. We conjec-
ture that optimal control schemes for such cases comprise suitably randomized
policies. In a similar vein, modern ISDN’s must be capable of handling traffic
with dissimilar bandwidth requirements. Computations (fig. 2.5) show that in
this case the optimal resource allocation strategy will no longer be characterized
by switching curves. It may be possible though, to derive optimal randomized
policies of a particularly simple form. For example, a candidate strategy would be
a threshold policy along with an appropriate randomization imposed on its bound-
ary. Further extensions include problems incorporating deadlines on the walting
time of messages in the buffer; messages that are queued for duration exceeding a
prespecified amount of time are assumed to be lost, incurring at the same time a

suitable cost. Simple situations of this sort are studied in [4].

From a practical viewpoint, it is of interest to enlarge the scope of the afore-
mentioned problems by also allowing sub-optimal control policies. Sub-optimal
policies are often simple to implement and relatively efficient. Important intuition
for devising such policies may be may be obtained from the structural studies of
optimal control of the simple queuing systems in Chapters 2 and 6 respectively.
Furthermore, it would be of practical interest to consider situations where some
parameters of the system under control are unknown and possibly time-varying
(e.g., arrival or service rates). In these situations, the theory of estimation and

adaptive control may prove useful in determining certain control strategies.
An important and different class of problems that naturally arise at this point
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concern the study and appropriate use of efficient numerical methods for evaluat-
ing and comparing the performance of specific queuing systems operating under
various control regimes. In some instances a queuing network may operate under
limiting regimes, for example, in the regime of very small arrival rates (e.g., opti-
cal high speed networks), or large arrival rates (e.g., congested networks). Some
computational techniques for such cases were presented in Chapters 4 and 5 and
many interesting extensions are possible. For example, it would be desirable to
attempt to characterize the manner of blocking in high speed optical networks
(i.e., under the assumption of very light traffic), and also to determine relatively
sharp upper and lower bounds on the blocking probabilities of the various routes
comprising such a network. Techniques from the theory of Large Deviations seem
to offer hope in these cases. Finally the conjecture for a strong approximation of
the state process of an arbitrary circuit-switched network (cf. section 5.5) is still

an open and challenging problem.
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