
ABSTRACT

Title of Dissertation: Distributed Topology Organizationand Transmission

Scheduling in Wireless Ad Hoc Networks

Theodoros Salonidis, Doctor of Philosophy, 2004

Dissertation directed by: Professor Leandros Tassiulas

Department of Electrical and Computer Engineering

A wireless ad hoc network is a set of nodes that form an all-wireless infrastructure

without the aid of any centralized administration. In this dissertation, we study two

fundamental distributed resource allocation problems that arise in the ad hoc network

setting: topology organization and transmission scheduling.

Topology organization is studied in the first part of the dissertation. We consider ad

hoc networks where multiple channels are available and defined by distinct frequency

hopping sequences. Multi-channel systems can increase throughput by assigning simul-

taneous co-located transmissions to different communication channels. However, hosts

must first synchronize their frequency hopping and transmission/reception patterns be-

fore any communication can take place. Due to this lack of initial synchronization,

neighborhood discovery and network formation become non-trivial and time-consuming

processes. To address these issues, we first devise a symmetric technique where two

nodes use a randomized schedule to synchronize and establish a link in minimum time.

This method forms the basis of a distributed topology construction protocol that starts

with a set of non-synchronized nodes and quickly forms a multi-channel ad hoc network

satisfying certain connectivity or throughput requirements.

The second part of this dissertation introduces a novel distributed transmission schedul-

ing framework for provision of Quality of Service (QoS) guarantees in wireless ad hoc

networks. Due to the multi-access nature of the wireless medium, the perceived QoS

in ad hoc networks depends heavily on the underlying medium access protocol. Such

a protocol must use local information and coordinate transmissions so that bandwidth

is shared in a controlled fashion. Fulfilling both requirements is a well-known prob-

lem with no satisfactory solutions to date. Random access methods-like that used in

the 802.11 standard-use local information at the expense ofunpredictable transmission

conflicts and lack strict allocation guarantees. On the other hand, scheduled access

methods–like Time Division Multiple Access (TDMA)–achieve deterministic alloca-

tions via perfect coordination of transmissions, but typically rely on two restrictive as-

sumptions to reach their goal: network-wide slot synchronization and global knowledge

of network topology and traffic requirements.

We first relax on network-wide slot synchronization and study asynchronous TDMA

ad hoc networks. In these systems, each link uses a differentlocal time slot refer-

ence provided by the hardware clock of a node endpoint. We introduce a framework

of conflict-free scheduling and bandwidth allocation for such systems. Inevitably, slots

will be wasted when nodes switch time slot references. This restricts the rate alloca-

tions that can be supported had the ad hoc network been perfectly synchronized. We

show that the performance degradation due to lack of synchronization can be significant

and propose scheduling algorithms for overhead minimization that also have guaranteed

upper bounds on the generated overhead.

We then introduce an asynchronous TDMA architecture for reaching global QoS

objectives using only local information. The QoS objectiveis a set of link rates to be

realized by a slotted network TDMA schedule where at each slot, several transmissions

occur such that no conflicts occur at the intended receivers.Using only local informa-

tion, nodes asynchronously adjust the rates of their adjacent links by local slot reas-

signments. The core idea is to modify the TDMA schedule online in a continuous and

incremental manner until the QoS objective is reached. The incremental property allows

for natural adaptation to changes in network topology or traffic requirements.

The TDMA architecture consists of a QoS-aware distributed bandwidth allocation

algorithm and a generic distributed coordination mechanism. The bandwidth allocation

algorithm determines the amount of link rate adjustments for steering the network to the

desired objective. The coordination mechanism ensures that the local modifications on

the schedule maintain its conflict-free property.

We first introduce a bandwidth allocation algorithm aiming for the max-min fairness

objective. In this case, the optimal link rates are not knownbut are computed along with

the schedule modification process. Analysis and experiments show that the proposed

scheme has very good properties in tracking the optimal evenin regimes of constant

topology changes. We then extend the bandwidth allocation framework for the provision

of rate guarantees to multi-hop sessions. Both Constant Bit Rate(CBR) and Available

Bit Rate (ABR) services are considered. We show that CBR service canbe provided

using simple admission control rules and QoS routing mechanisms, similar to wireline

networks; for ABR service, we introduce an asynchronous distributed algorithm for

computing session max-min fair rates. The session rates computed by the end-to-end

bandwidth allocation algorithm are translated to link demands that must be enforced

using a TDMA schedule. We solve this dynamic link schedulingproblem for the special

case of tree topologies and provide upper bounds on convergence delay.

An important feature of both our topology organization and transmission scheduling

techniques is that they are amenable to distributed implementation on existing wireless

technologies. To this end, we present an implementation andperformance evaluation

over Bluetooth, a wireless technology that enables ad hoc networking applications.

Distributed Topology Organization and Transmission Scheduling in Wireless Ad Hoc Networks

by

Theodoros Salonidis

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Leandros Tassiulas, Chairman/Advisor
Professor Anthony Ephremides
Professor Sennur Ulukus
Professor Richard La
Professor A.Udaya Shankar

c© Copyright by

Theodoros Salonidis

2004

DEDICATION

To my grandmother, Eleftheria

my sister, Maria

my parents, Nikos and Anastasia

ii

ACKNOWLEDGEMENTS

Thank you to my research advisor, Professor Leandros Tassiulas. His remarkable

insight contributed substantially to the results of this dissertation; his high standards

of scholarship and intellectual integrity inspired me to continually challenge myself.

Despite his return to Greece during the last three years of work on my dissertation,

Leandros continued to provide insightful guidance and support on both academic and

professional matters. I will always be grateful to him for having faith in my abilities and

for helping make my first significant research experience extremely enjoyable.

I am thankful to Professors Anthony Ephremides, Sennur Ulukus, Richard La and

Udaya Shankar for reviewing my dissertation and kindly consenting to serve on my

defense committee. My special thanks to Professor Ephremides for his constructive

criticism and advice. His early work on TDMA scheduling in adhoc networks was one

of the factors that motivated the choice of my dissertation topic.

My work on distributed topology organization for ad hoc networks–the first part of

my dissertation–was completed during my one-year internship at the IBM T.J. Watson

Research Center. I owe a debt of gratitude to my supervisors andcolleagues there: Dr.

Mahmoud Naghsineh, then head of the Pervasive Computing division, for his constant

encouragement and guidance in what turned out to be a fruitful area of research; Dr.

Richard Lamaire for numerous discussions on random graphs and optimization; Dr.

Chatschik Bisdikian for sharing his authoritative knowledgeon the Bluetooth standard;

and Stefan Berger for his invaluable help on implementation issues related to the IBM

iii

Bluetooth stack. My special thanks go to Dr. Pravin Bhagwat, mymentor at IBM and

friend. Pravin’s vast knowledge on networking and his practical yet precise approaches

to solving complex problems set an example on how to perform systems research.

During my stay at Maryland I was fortunate to meet and befriend several interesting

people that helped maintain the much-needed balance between research life and social

life. It would be virtually impossible to list everybody here–I thank them all and wish

them all the best in their future plans.

I would like to especially thank the members of Digenis, the Greek Student Associa-

tion of UMD, for creating a reference point that made me feel at home. The stimulating

atmosphere in 3187 AVW with Majid Raissi-Dehkordi, Tassos Michail and Kyriakos

Manousakis made it a pleasure to work there every day. I wouldlike to thank them and

Jan Neumann for the inspiring technical and not-so-technical discussions.

Special thanks to my housemates at Stewart Court–Nikos, Tasos, Iordanis, Kyriakos,

Laurent, Ermos, George, Dimitri and Andy–for sharing the house harmoniously and for

being there in both good times and bad. To Thanasis Kyparlis,George Apostolopoulos

and Lampros Kalampoukas, whose constant updates of the networking industry world

helped keep my own research in due perspective. And to Grace Santos for showing me

what scrutinous editing really means!

Words cannot express my most sincere gratitude to my parents, my sister and my

grandmother who send me their love and support from back home. They are the main

reasons I have been able to reach this point. This dissertation is dedicated to them.

This work would not have been possible without the financial support of IBM Re-

search and the Institute of Systems Research (ISR). My work at IBM Research was

supported by an IBM University Partnership Award; at ISR, it was supported by a grant

from the Air Force Office of Scientific Research (AFOSR), contract F49620-01-1-0197.

iv

TABLE OF CONTENTS

List of Figures x

1 Introduction 1

1.1 Topology Organization in wireless ad hoc networks 3

1.1.1 Topology Control . 3

1.1.2 Neighborhood Discovery . 5

1.1.3 The challenge . 6

1.2 Transmission scheduling in wireless ad hoc networks 6

1.2.1 Interference constraints and traffic models 6

1.2.2 Medium Access Control Protocols 9

1.2.3 TDMA challenges . 11

1.3 Contributions of this dissertation 15

2 Distributed topology construction of Bluetooth Wireless Personal Area Net-

works 18

2.1 Link establishment in Bluetooth .23

2.1.1 The Asymmetric Protocol . 24

2.2 A symmetric link establishment protocol 26

2.3 Scatternet formation . 34

v

2.4 The Bluetooth Topology Construction Protocol (BTCP) 38

2.4.1 Phase I: Coordinator Election 39

2.4.2 Phase II: Role Determination 39

2.4.3 Phase III: Connection Establishment40

2.4.4 Leader election termination 41

2.5 Experiments . 43

2.5.1 Emulating Bluetooth . 43

2.5.2 Determining ALTTIMEOUT 44

2.5.3 Protocol Performance . 45

2.6 Related Work . 49

2.7 Further issues . 51

3 Asynchronous TDMA: Scheduling and Performance 54

3.1 Asynchronous TDMA communication model56

3.2 Problem formulation and approach 59

3.3 Equivalent schedules . 64

3.4 Computing optimal asynchronous schedules 73

3.4.1 Optimal algorithm . 73

3.4.2 MIN PROGRESS . 73

3.5 Performance Evaluation . 77

3.5.1 Factors affecting the overhead 77

3.5.2 Experimental setting . 78

3.5.3 Performance of MINPROGRESS with respect to optimal . . . 79

3.5.4 Performance of MINPROGRESS for large problem sizes . . . 79

3.6 Summary . 87

vi

4 A distributed asynchronous TDMA protocol 94

4.1 Related work . 96

4.2 TDMA architecture . 99

4.2.1 Signaling and local TDMA schedule structure 99

4.2.2 Exchanging control information 101

4.3 The distributed TDMA protocol . 103

4.3.1 Overview . 103

4.3.2 Detailed operation . 104

4.3.3 Properties . 106

4.3.4 Design considerations . 111

4.4 Link-level Quality of Service (QoS) 112

4.4.1 Local feasibility conditions .113

4.4.2 Optimal link scheduling for tree networks 117

4.4.3 Some practical considerations 119

4.5 Summary . 121

5 Link-level max-min fairness 122

5.1 Network Communication Model . 124

5.1.1 Rate feasibility and max-min fairness126

5.2 Distributed algorithm–Fluid model 130

5.2.1 Fairness deficit . 130

5.2.2 Fluid distributed algorithm . 132

5.3 Distributed algorithm–Slot model 135

5.3.1 Local conditions . 135

5.3.2 Slotted FDC . 136

5.3.3 Slot assignment algorithm . 136

vii

5.3.4 Slotted distributed algorithm138

5.4 Performance evaluation . 139

5.4.1 Experimental model and setting 139

5.4.2 Experiments on static networks 141

5.4.3 Experiments on dynamic networks 145

5.4.4 Traffic adaptation . 148

5.5 Related work . 151

5.6 Conclusions . 153

6 End-to-end rate guarantees 158

6.1 Distributed dynamic link scheduling for tree-based ad hoc networks . . 160

6.1.1 Network architecture, assumptions and definitions 160

6.1.2 The distributed algorithm . 162

6.2 End-to-end rate guarantees .169

6.2.1 Constant Bit Rate (CBR) Service 171

6.2.2 Available Bit Rate (ABR) service 173

6.3 Bluetooth Implementation . 178

6.3.1 Design . 178

6.3.2 Experiments . 181

6.4 Conclusions . 186

7 Summary and extensions 190

7.1 Contributions . 192

7.2 Suggestions for future work .193

7.2.1 Topology organization . 194

7.2.2 Transmission scheduling . 194

viii

7.2.3 Transmission scheduling and topology discovery 197

Bibliography 198

ix

LIST OF FIGURES

1.1 Dotted lines denote wireless proximity. The arrows denote intended

point-to-point transmissions (flows). Primary interference occurs if any

flows adjacent to a node are activated simultaneously. For exampleF1

andF2 force nodeD to transmit and receive simultaneously.F2 andF3

result in nodeE receiving from two intended transmissions. Also, since

a packet is destined to a single destination, nodeC cannot transmit on

F1 andF4 simultaneously. Secondary interference: If flowsF1 andF5

transmit at the same time, they will result in a conflict at node B, the

receiver ofF5. 7

2.1 (a) Single channel topology. (b),(c) Different configurations according

to the Bluetooth multi-channel topology model. 20

2.2 The Bluetooth asymmetric link establishment protocol 25

2.3 The symmetric link establishment protocol: Each node alternates inde-

pendently between INQUIRY(I) and SCAN(S) state. Connection can be

established only during the intervals where nodes are in opposite states.

The time intervalTc from t0 up to the point where the two units are in

opposite states for a sufficient amount of time is the link establishment

delay. 26

x

2.4 Symmetric protocol: Average link establishment delay for uniformly

and exponentially distributed state residence intervals.. 32

2.5 Symmetric protocol, uniform distribution: Delay for different mean res-

idence intervals per state (µS 6= µI) vs. delay for equal mean residence

intervals per state (µS = µI). Dotted curves correspond to (µS < µI),

while solid curves correspond to (µS ≥ µI). 33

2.6 BTCP operation: (a) Start of Phase I: All nodes begin alternating, trying

to discover other nodes in wireless proximity. (b) End of Phase I: Coor-

dinator has been elected. Given N=16, coordinator computesPmin = 3

using eq. (2.20). Next, the masters, bridges, and slaves areselected ac-

cordingly. (c) Phase II: Coordinator forms a temporary piconet with the

designated masters and sends them their connectivity lists. (d) Phase

III: Each master pages the nodes specified within its connectivity list.

(e) The scatternet is formed. 42

2.7 The node alternate, with state residence intervals drawn from a uniform

distribution of meanµ msec. The meanE[Tc] and standard deviation
√

V [Tc] of the delay of the symmetric protocol, are plotted as a function

of µ. 44

2.8 Average ideal scatternet formation delay for various application scenar-

ios. Units alternate according to uniformly distributed state residence

intervals of600 ms on the average. Each data point is the average of

10,000 runs. 46

2.9 The device power-on arrival process. The first user arrives att0. Each

useri arrives after an intervalLi, drawn from a truncated exponential

distribution of meanµp and upper boundW 47

xi

2.10 Timeout efficiency: Each bar graph is the probability ofconnection,

averaged over N=5,10,20 and30 nodes (10000 runs for eachN). 48

3.1 (a) Network configuration: Each local schedule uses a period Tsystem =

12 slots. Directed edges denote master-slave relationships.NodesA

andD act as masters on all their adjacent links,B is slave on links1,4

and master on link3 andC acts as slave on all its links. The numbers in

parentheses denote link phases. As an example, since link1 has a link

phase of (-1), slotp in the local scheduleSA of masterA must overlap

with slots (p − 1, p) in the local scheduleSC of slaveC. (b) This

asynchronous TDMA schedule corresponds to a system that tolerates

secondary interference: links2 and4 can transmit simultaneously. Slots

where nodes switch time reference as slaves are marked in red. The

realized slot allocation isτ = (τ1, τ2, τ3, τ4) = (3, 3, 3, 4). 58

3.2 An example of the asynchronicity overhead 63

3.3 An example of the EQUIVALENT algorithm execution 68

3.4 MIN PROGRESS vs. optimal. Each bar graph corresponds to a differ-

ent 20-node bipartite network configuration where density increases by

varyingBmax from 2 to 7. The reference synchronized schedule period

is 7 slots. The optimal periodTopt and the MINPROGRESS (h = 1)

periodTh of each bar are averages of100 reference synchronized sched-

ules. 80

3.5 Effect of the choice of horizon for varying topology densities and refer-

ence periods (N = 20, Bmax = 7). 82

xii

3.6 Average overhead standard deviation due to link phase variability for

20-node networks and various values off andT̃ (h = 1, fixed link roles

per topology) . 83

3.7 Average overhead standard deviation due to link role assignment vari-

ability for 20-node networks and various values off andT̃ (h = 1, fixed

link phases per topology). 83

3.8 Overhead of MINPROGRESS (h = 1) for 100-node networks asBmax

andT̃ vary (f = 1.0) . 84

3.9 Overhead of MINPROGRESS(h = 1) for 100-node networks asf and

T̃ vary (Bmax = 7). 85

3.10 MIN PROGRESS overhead for maxmin fair allocations vs. average

MIN PROGRESS overhead. For each reference period, both quantities

are averaged over all topologies considered in Figures 3.8 and 3.9 . . . 87

4.1 The busy link(u, v) and its one-hop neighborhood. The one-hop neigh-

bors ofu andv are denoted byN(u) andN(v), respectively. Arrows

denote master-slave relationships. 108

4.2 Scenario that maximizes the delay of link rate adjustment. 111

4.3 Without loss of generality, assume that all nodes are slot-synchronized

and Tsystem is even. No schedule exists that can allocateTsystem/2

conflict-free slots to each link, even if the local conditions τ1 + τ2 ≤

Tsystem, τ1 + τ3 ≤ Tsystem andτ2 + τ3 ≤ Tsystem for nodesA, B, C,

respectively allow this allocation. The non-local conditionτ1+τ2+τ3 ≤

Tsystem is also required here. 114

xiii

4.4 Maximum known values (in # of slots) for the QoS utilization parameter

TR
u ensuring feasibility under various assumptions on topology control

and slot synchronization. 120

5.1 A multi-channel slot-synchronized wireless ad hoc network using a TDMA

link schedule ofTsystem = 14 slots. Each slot in a local scheduleSu in-

dicates the link assigned by nodeu. 125

5.2 (a) Initialization: All nodes set their effective capacities to 1 (bipartite

topology). (b) Iteration 1: Bottleneck node isF–over all nodes, it pro-

vides the minimum fair share of 1/4 to its adjacent links. (c)Iteration

2: Bottleneck node isB (MMF rate is 1/3). (d) Iteration 3: Bottleneck

node isC (MMF rate is 5/12). (e) Iteration 4: Bottleneck node isD,

MMF rate is 7/12. (f) The MMF link rate allocation and corresponding

node utilizations. 129

5.3 The FDC algorithm for link1 at nodeA (CA = 1.0, B1 = 1.0). The

shaded entries during each iterationt denoteM (t). The last row isr′
A;

the fairness deficit isfd
(A)
1 = 0.215 − 0.05 = 0.165. 131

5.4 The slotted FDC for nodeA on link 1 in the network of Figure 5.1: 1)

slots are converted to rates. 2) fluid FDC is applied to rates.3) Resulting

rates are quantized to slots. 4) Excess slots due to the quantization of

step 3 are given to link1. (5) Difference vectorxA–the discrete fairness

deficit for link 1 is 4 slots. 137

5.5 The matching slot positions in local schedulesSA andSB are{0, 7, 11, 12, 13}:

In SA they are assigned to surplus links2 and3, while in SB they are

assigned idle. Taking this information into account, nodeA eventually

selects slot positions{7, 11, 12, 13} for link 1. 138

xiv

5.6 A sampleN = 100(50/50) bipartite topology ofp = 0.1 andDmax = 7

derived from the baseline topology graph. Only ACTIVE links are shown.141

5.7 (a) Average and (b) Maximum Relative Errors for a static network of

N = 100 p = 1.0 andTadjust = 512 slots for various choices ofTsystem

andDmax. The average and maximum relative errors are computed over

all active links at the last slot of each simulation run. 142

5.8 Control Overhead for a static network ofN = 100, p = 1.0 and

Tadjust = 512 slots for various choices ofTsystem andDmax. 143

5.9 Effect of the frequency of link rate adjustmentsTadjust (for p = 1.0)

and (b) topology densityp (for Tadjust = 512 slots) on the average and

maximum link MMF errors and the control overhead. (N = 100 nodes,

Tsystem = 200 slots,Dmax = 14 links.) 144

5.10 Effect of (a) rate of topology changesTactive (for p = 0.5) and (b) topol-

ogy densityp (for Tactive = 48000 slots) on the distribution of the aver-

age link MMF error (N = 100 nodes,Tsystem = 200 slots,Dmax = 7

links, Tadjust = 512 slots.). 147

5.11 Effect of frequency of link activationsTadjust on (a) the distribution of

the average link MMF error and (b) control overhead. (N = 100 nodes,

Tsystem = 200 slots,Dmax = 7 links, Tactive = 48000 slots.) 149

5.12 Effect of (a) rate of topology changesTactive (p = 0.5) and (b) topology

densityp (Tactive = 48000 slots) on the distribution of the average link

MMF error (N = 100 nodes,Tsystem = 200 slots,Dmax = 14 links,

Tadjust = 512 slots.). 150

5.13 Centralized algorithm for computing the link MMF rates 155

5.14 FDC pseudocode . 156

xv

5.15 The slot assignment algorithm .. 157

6.1 (a) Arrows denote master-slave relationships and red slots denote switch-

ing slots of links whereu is slave. (b) Demand of link3 changes from

3 to 6. (c) The highest priority child link (2) is satisfied and the distance

of slot 5 to slot 18 (|[5, 18]| = 14) is greater than the current demand

sum of the lower priority child links ((2+0)+(6+1)+(3+0)=12)–link 2 is

stable. The next priority link1 is satisfied but not stable (|[10, 18]| =

9 < (6 + 1) + (3 + 0) = 10). To satisfy conditionSTBL2, windowW1

(τ1 + J
(u)
1 = 2 + 0 = 2 slots) must be withinWmax = [5, 8]. (d) Su

after link 1 has been rescheduled. The position was decided after exe-

cuting the TDMA protocol with nodec1 for link (u, c1) and consulting

with Sc1. Link 4 is not satisfied (STF1 does not hold); it needs to be

rescheduled withinWmax = [7, 11] to become stable. (e)Su after link

1 has been rescheduled. Link3 is not satisfied; it can be rescheduled

within Wmax = [11, 18]. (f) All links are now stable–the sampling-

rescheduling loop is complete. 165

6.2 For ease of illustration, we compute the MMF session rates with respect

to fractional capacitiesCR
u = C = 1− 2

Tsystem
. The MMF rate in the first

iteration isC/5 (bottlenecks areB andC). Sessions 1,2,3,4 are allo-

cated C/5 and they are removed from the network, along with bottleneck

nodes B,C. Node A is also removed since all sessions crossing ithave

been removed. The bottleneck in the second iteration is nodeD provid-

ing all its remaining bandwidth (2/5 ·C) to session5. The session MMF

normalized rates are(r1, r2, r3, r4, r5) = (1/5, 1/5, 1/5, 1/5, 2/5) · C . 175

xvi

6.3 Update algorithm for session rate, link demands and MMF rate estimate

φu. 176

6.4 Implementation of the end-to-end bandwidth allocationframework over

the Bluetooth stack . 180

6.5 Arrows on links denote master-slave relationships. Italicized numbers

on each nodeu denoteTR
u = Tsystem −

∑

l∈L(u)

J
(u)
l , whereTsystem =

50 slots. The normalized capacities areCR
u = TR

u /Tsystem; the (normal-

ized) MMF rates are(rS1 , .., rS7) = (0.125, 0.125, 0.125, 0.208, 0.315, 0.208, 0.125).

These rates correspond to a slot allocation of(τS1 , .., τS7) = (6, 6, 6, 10, 15, 10, 6)

slots withinTsystem = 50 slots. 182

6.6 Convergence delay and control overhead in the configuration of Fig. 6.5

for different choices of the root node. 183

6.7 Session throughput (T), goodput(G) and average delay (Davg) with 95%

confidence intervals (d95) for the configuration in Fig. 6.5, measured at

each session destination after convergence. 186

6.8 Procedure SampleReschedule() .188

6.9 The asynchronous distributed link scheduling algorithm 189

xvii

Chapter 1

Introduction

A wireless ad hoc network consists of a set of geographicallydispersed wireless nodes

that can spontaneously form an all-wireless infrastructure without the need for any cen-

tralized administration. In such a network all nodes may be mobile, transmit on a shared

wireless medium and act as routers forwarding packets of other nodes toward the in-

tended destinations.

The ad hoc network concept is not new; it originates from the early DARPA packet

radio network (PRN) and Survivable radio network (SURAN) projects in the 1980’s

[1][2][3] [4]. Since that time, the dynamic self-configuring nature of ad hoc networks

has attracted attention for several military applicationsin all sectors, including the Army

[5] [6] [7] [8], the Navy [9] or the Air Force [10]. Due to the rapidly growing user de-

mand for wireless access, ad hoc networks have also started to appear recently within

the commercial sector in various forms and scales. As ”mesh networks”, they are cur-

rently being considered as complements or alternatives to cellular networks for broad-

band wireless data access [11] [12] [13][14]. This is due to their minimal deployment

cost and their potential to increase capacity and offer better robustness as more users

are added to the network. Sizewise, mesh networks can be found between personal area

1

networks (PANs) and sensor networks. PANs are short-range ad hoc networks sponta-

neously formed by lightweight mobile devices to perform an interactive or collaborative

task [15][16]. At the other extreme, sensor networks may consist of thousands of tiny

inexpensive nodes deployed in an area to perform various sensing and collaborative

processing tasks. Sensor networks are envisioned to operate unattended in diverse envi-

ronments for extended periods of time [17][18].

While an ad hoc network shares the internet distributed communication paradigm

and its exciting visions and applications, it also differs in some fundamental aspects:

available bandwidth is scarce, the wireless medium is shared, nodes may have power and

memory limitations, and the network topology can be highly dynamic. In view of these

restrictions, classic problems of wireline data networks,including resource allocation

and routing, become more difficult and require a fresh treatment. In addition, topology

organization and mobility management are issues unique to this environment. In this

dissertation, two fundamental problems related to the performance of an ad hoc network

will be addressed: topology organization and transmissionscheduling.

The aim of topology organization is to form and maintain a communication infras-

tructure from a set of geographically dispersed wireless nodes. In order to communicate,

nodes must first be able to discover other nodes in proximity.The discovered topology

can then be further controlled by transmission power adjustment or channel partitioning.

Topology organization plays a key role in the performance ofrouting or transmission

scheduling protocols used in the ad hoc network. A wrong topology may considerably

reduce network capacity, increase end-to-end packet delayand decrease robustness due

to node mobility and failures.

Given a network topology, transmission scheduling seeks tocoordinate transmis-

sions such that bandwidth is allocated to the entities competing for the wireless medium

2

according to a Quality of Service (QoS) objective. The entities may be nodes, links or

multi-hop sessions. The QoS objective depends on the intended application. In some

applications, traffic requirements are known in advance; inother applications the entities

request fair service from the network.

The remainder of this chapter presents the two problems in more detail and intro-

duces the basic terminology that will be used throughout thedissertation. The chapter

concludes with a summary of our contributions.

1.1 Topology Organization in wireless ad hoc networks

Topology organization consists of two operations: neighborhood discovery and topol-

ogy control. In neighborhood discovery nodes seek other nodes within proximity; in

topology control the discovered topology is restricted andshaped according to certain

performance criteria.

1.1.1 Topology Control

One way to exercise topology control in an ad hoc network is through transmission

power adjustments. Consider a set of geographically dispersed wireless nodes. The ad

hoc network topology depends on both the node locations as well as their transmission

power levels. By increasing its power level, each node can reach a larger part of the

network with a single transmission. However, this results in increased interference and

higher energy expenditure. On the other hand, low power levels may result in a discon-

nected network. The problem of finding the minimum node powerlevels to maintain a

connected topology has been addressed in [19][20]. Minimumpower assignments for

constructing and maintaining a multicast tree structure have also been considered [21].

3

In [22] each node is allowed to use different transmission power levels for each link; a

method based on Delauney triangulation is used to select logical links in the network.

Given node transmission power levels, the ad hoc network canbe represented as a

visibility graphG(N,E), where the vertices correspond to wireless nodes and the edges

correspond to pairs of nodes that can hear each other. In addition to wireless proximity,

the visibility graph also determines interference–the broadcast nature of the wireless

medium induces location-dependent contention. Interfering co-located transmissions

can be assigned to differentchannelsto reach conflict-free the intended receivers. On

the other hand, the same channel can be reused by transmissions that occur sufficiently

apart in space. Channels can be defined in the time, frequency or code domains as time

slots, frequency bands or spread spectrum codes (frequencyhopping (FH) sequences or

Direct Sequence (DS) codes), respectively.

Throughout this dissertation we will use the term ”channel”only for a frequency

band or spread spectrum code; time slot assignments will be studied separately in the

context of transmission scheduling. Topology control through channel assignment seeks

to partition the visibility graph in multiple interconnected channels such that the re-

sultant network topology–a subgraph of the visibility graph–satisfies specific perfor-

mance objectives. Such objectives include connectivity (assuming the visibility graph

is connected), energy efficiency or robustness to mobility;they may be sought under

constraints such as maximum number of channels available inthe network [23] and/or

maximum number of participants per channel [24] [25][26][27][28] [29] [30][31].

A network operation related to topology control is clustering. The main purpose of

clustering is to facilitate management of the ad hoc networkby electing a certain node

subset as ”clusterheads”. Clusterheads are vested with the most intensive network man-

agement tasks and coordinate operations within their cluster. A typical application of

4

clustering in ad hoc networks is hierarchical routing protocols [32][33][34]. Cluster-

heads are elected using distributed election algorithms. These algorithms may be based

on local criteria such as node identities [35], node degree [36] or, more generally, node

weights that reflect power reserve or mobility [37][38]. More sophisticated distributed

election algorithms take into account constraints on cluster size [39] or cluster diame-

ter [40]. Clustering differs from topology control in that itis not primarily intended to

restrict the physical topology structure. However, it may facilitate the topology control

operation by distributing it over the clusterhead nodes.

1.1.2 Neighborhood Discovery

The neighborhood discovery problem in ad hoc networks was introduced in [41][24] and

subsequently addressed in [42][43][44]. In this problem, nodes need to coordinate their

transmissions so that they discover their neighbors in minimum time. This resembles the

transmission scheduling problem in that the nodes need to transmit in a shared channel.

However, it differs in two main aspects: first, the nodes do not know their intended

recipients; second, the emphasis is not on communication performance but rather on

the delay of each node to discover its neighbors subject to all nodes performing the

discovery protocol. Discovery delay can be defined as the time needed for all neighbors

to successfully receive a discovery packet (asymmetric discovery) or the time needed

for all nodes to acquire knowledge about each other (symmetric discovery).

In [41] we studied symmetric discovery for a pair of nodes using a channel imple-

mented as a frequency hopping sequence. Multiple nodes weresubsequently considered

in [24]. Alonso et. al. [42] study symmetric discovery in a single frequency band. The

frequency hopping channel and multiple node cases have alsobeen studied in [43][44].

The analyses in [42][43][44] assume nodes perform discovery in synchronous rounds;

5

in [41][24] no synchronization is needed.

1.1.3 The challenge

So far, research on distributed topology organization has primarily focused on the topol-

ogy control aspect–nodes start forming the topology, awareof their neighbors. The need

for neighborhood discovery makes the problem more difficultfor two reasons: First, it

requires algorithms operating in an incremental manner. Second, it introduces delay as

an additional performance objective. Hence, in the topology organization problem we

will seek efficient topologies that must also be formed in minimum time.

1.2 Transmission scheduling in wireless ad hoc networks

1.2.1 Interference constraints and traffic models

The ad hoc network is represented by a visibility graphG(N,E). We define interfer-

ence in terms of transmissions occurring within a single channel, defined as a frequency

band or spread spectrum code. Within a channel acollisionoccurs when multiple trans-

missions arrive simultaneously at a receiver. We assume that the radios do no support

capture–upon a collision, all received transmissions are lost1.

Due to cost restrictions, each node in an ad hoc network typically has a single com-

munication transceiver and hence is unable to transmit and receive simultaneously. This

hardware constraint together with location-dependent contention gives rise to the no-

tions of primary and secondary interference. Primary interference occurs if a node is

scheduled to transmit and receive simultaneously, or if a node receives simultaneously

1Capture refers to the ability of some radios to recover the strongest out of a set of simultaneously

arriving transmissions.

6

from multiple transmissions intended to it. Secondary interference is due to unintended

broadcast transmissions. It arises when a receiverR tuned to a particular transmitter

T1 is within range of another transmitterT2 whose transmissions, though not intended

for R, collide with the intended transmissions ofT1. Figure 1.1 illustrates the different

manifestations of primary and secondary interference.

E

F

D

G

A

B

C
F1

F2

F3

F4

F5

Figure 1.1: Dotted lines denote wireless proximity. The arrows denote intended point-

to-point transmissions (flows). Primary interference occurs if any flows adjacent to a

node are activated simultaneously. For exampleF1 andF2 force nodeD to transmit

and receive simultaneously.F2 andF3 result in nodeE receiving from two intended

transmissions. Also, since a packet is destined to a single destination, nodeC cannot

transmit onF1 and F4 simultaneously. Secondary interference: If flowsF1 and F5

transmit at the same time, they will result in a conflict at nodeB, the receiver ofF5.

Depending on the intended neighbors of each node, three traffic models exist for

single-hop transmissions. In the point-to-point traffic model, each transmission is in-

tended for a single neighbor; in the broadcast traffic model each transmission is intended

for all neighbors; in the multicast traffic model a transmission is intended for a subset

of neighbors. Unicast (or multicast) data applications at higher layers are naturally

7

mapped to the point-to-point (or multicast) single-hop traffic models. In applications

where control information needs to be quickly disseminatedto the entire ad hoc net-

work, the single-hop broadcast model is more suitable. In the broadcast traffic model,

only primary interference exists because each node transmission is intended for all its

neighbors, or equivalently, all transmissions occurring around a node are intended to

this node. In the point-to-point and multicast traffic models both primary and secondary

interference exist.

In this dissertation our primary focus will be on schedulingdata traffic of unicast

applications sharing the ad hoc network. Such applicationsare naturally mapped to the

point-to-point single-hop traffic model, where the entities to be scheduled are links. Sec-

ondary interference can be mitigated by scheduling intended transmissions that satisfy

the primary interference constraints on different channels. One way to achieve this is

to assign a different channel to each link. However, as linksmay grow exponentially

with the network size, they may easily outnumber the number of available channels. In

addition, determining which channel to use for each link requires global topology infor-

mation. These issues are addressed by associating each nodewith a unique channel; if

each link is assigned the channel of one of the node endpoints, then all transmissions

satisfying the primary interference constraints will occur in different channels. Blue-

tooth [15] is a wireless technology that implements this method using spread spectrum

signaling. Each node is associated with a unique frequency hopping (FH) sequence de-

rived from its unique address. Upon link establishment, oneof the node endpoints is

assigned as master and the other as slave. The link is assigned the FH sequence of the

master. Although not orthogonal, Bluetooth FH sequences have been shown to perform

well in practice [45]. Interference can be further mitigated using distributed assignment

mechanisms that minimize the number of FH channels per locality [24][44][25]. In [23]

8

it is shown that perfectly orthogonal access can be achievedif nodes within two wire-

less hops of each other are assigned orthogonal channels–ifDmax is an upper bound on

the intended adjacent links per node, a total of2Dmax(Dmax − 1) + 1 (instead ofN)

channels are needed. References [23][46] propose distributed dynamic algorithms per-

forming such assignments. An alternative (and potentiallymore expensive) technique to

using multiple channels for mitigating secondary interference is to use a single channel

and directional antennae on the intended communication links.

We will call systems that tolerate secondary interferencemulti-channel systems,

while systems where both primary and secondary interference existsingle-channel sys-

tems. When we refer to multi-channel systems, we will also assume that different chan-

nels are orthogonal–transmissions on a channel are correctly received by a node listen-

ing on that channel despite any in-range transmissions thatmay be occurring at different

channels. Notice that, in addition to suppressing secondary interference, multi-channel

systems can also perform topology control: channel assignments to selected links can

restrict the network visibility graph in a desirable manner. As will be demonstrated later,

this feature will play a key role in determining the network capacity used for provision

of QoS guarantees.

1.2.2 Medium Access Control Protocols

Transmissions in the time domain are coordinated by a MediumAccess Control (MAC)

protocol. MAC protocols are based on either random (or contention-based) access or

Time Division Multiple Access (TDMA).

Random access protocols typically operate over a single channel for which the nodes

compete. Each node bases its transmission decisions on carrier sense and random back-

off in case the channel is sensed busy. Representative examples are ALOHA [47],

9

CSMA [48], or the Distributed Coordination Function (DCF) of the IEEE 802.11 stan-

dard for Wireless LANs [49]. The attractiveness of random access protocols for ad hoc

networks lies in ease of implementation–nodes base their transmission decisions only

on local information. While they work well under light traffic, under heavy traffic they

may incur high delays and low throughput. There is currentlyintense research effort

for improving the performance of random access protocols; however, by nature, such

protocols cannot be used for the provision of strict bandwidth allocation guarantees.

Time Division Multiple Access (TDMA) is based on a differentphilosophy. The ad

hoc network operates according to a slotted schedule of period Tsystem slots. During

each slot transmissions are scheduled such that no conflictsoccur at the intended re-

ceivers. Depending on whether a broadcast or point-to-point traffic model is sought the

scheduled entities can be nodes or links, respectively. Thebandwidth allocated to each

entity equals the number of slots it receives during the schedule period.

Due to its conflict-free nature TDMA provides better utilization of the wireless

medium compared to random access. Since the scheduled entities can be either nodes

or links both broadcast and point-to-point traffic can be supported naturally and effi-

ciently. In addition, TDMA can support multiple channels ata lower cost. Consider a

multi-channel ad hoc network where each node has the capability of transmitting to or

receiving from one channel at a time due to the single-transceiver constraint. If a ran-

dom access MAC protocol is used, in addition to the transmit/receive uncertainty, a node

must be able to decide which channel to use. Due to this constraint most multi-channel

random access MAC implementations require multiple communication transceivers per

node (equal to the maximum number of channels the node participates)[50]; this in-

creases system cost. In TDMA only a single transceiver is needed: at every slot in the

TDMA schedule, each node knows on which channel to transmit or receive.

10

1.2.3 TDMA challenges

The two major advantages of TDMA over random access are the ability to provide band-

width allocation guarantees and conflict-free access to thewireless medium; however,

exploiting these advantages in the distributed ad hoc network setting has been a notori-

ously challenging task.

Bandwidth allocation guarantees

Provision of bandwidth allocation guarantees typically requires global network topology

information and a priori knowledge of traffic requirements.To make this argument

more concrete we review the TDMA approaches for QoS routing in ad hoc networks.

Consider a set of unicast multi-hop sessions sharing the ad hoc network with traffic

requirements expressed in slots. Assume for the time being that the routes are fixed. To

supportτi slots for sessioni, each intermediate link over the route of this session must

supportτi slots. Hence, the demands of all routed sessions determine aset of link slot

demands to be realized by a TDMA schedule. Since the ad hoc network operates with

a period equal toTsystem slots, we ask whether there exists a schedule of length less

thanTsystem slots that can realize the link demand allocation. To answerthis feasibility

question for any given link demand allocation, we must be able to compute a minimum-

length schedule. This problem is NP-complete for both single channel [51] and multi-

channel TDMA systems [52]. Efficient centralized heuristics have been proposed in

[53][54][55].

In practice the sessions and their routes are not all given inadvance; in a more re-

alistic model sessions arrive one at a time. In this case, we need to find a route that

supports the traffic requirement of each incoming session. Acandidate route can be

tested by 1) increasing the current link loads over the routeby the session slot require-

11

ment and 2) using the heuristics in [53][54][55] to compute aTDMA link schedule of

short length. The session will be admissible over the candidate route if the schedule

length does not exceedTsystem slots. Two problems arise here. First, the computation

of the TDMA schedule requires global topology information.Second, if the session is

admitted, the new TDMA schedule must be disseminated to the entire network. Hence,

this centralized approach is not practical for the distributed ad hoc network setting.

Zhu and Corson [56] and Lin [57] use a different approach for QoS routing. Instead

of computing a new network-wide TDMA schedule for each incoming session, they

fix the slot positions of existing sessions and, for each route, they seek the maximum

available number of slots subject to the fixed slot positionsin the route. This problem

is also NP-complete even if global information is available. However, this approach

allows distributed heuristics for computing available bandwidth and reserving slots over

a route. Other distributed QoS routing approaches for ad hocnetworks focus on mobility

issues but do not take into account the MAC layer [58][36][59].

QoS routing operates according to a Constant Bit Rate (CBR) servicemodel where

sessions arrive with known bandwidth requirements. However, some applications have

no more specific requirements than asking for the maximum possible bandwidth from

the network. In this case, it is intuitive to allocate bandwidth according to a fairness

objective. The algorithms in [53][54][55][56][57] cannotbe used for fair allocations be-

cause they are specific to admission control. Sarkar and Tassiulas propose a distributed

algorithm for computing max-min fair rates for multi-hop sessions in multi-channel

wireless ad hoc networks [60]. However, the schedule computation that enforces these

rates requires global topology information.

12

Conflict-free access

Mobility and traffic dynamics in an ad hoc network require a mechanism to ensure

the TDMA schedule remains free of transmission conflicts. A common technique is

to split the schedule ofTsystem slots in a control part ofTcontrol slots and data part of

Tdata slots. During the control part the network TDMA schedule is reorganized, i.e.

the nodes exchange control information and reassign slots to update their transmission

schedules in a consistent manner. Then the data part uses thenew schedule for the

actual data transmissions. This technique introduces a fixed control overhead equal to

Tcontrol/Tsystem. It also requires a priori knowledge of two types of global information:

1. Network-wide slot synchronization: all nodes know when a slot starts.

2. Universal slot enumeration: all nodes know the slot boundaries of the con-

trol/data parts.

Network-wide slot synchronization can be supported by equipping all nodes with

GPS clocks or by using a protocol that periodically synchronizes the network [61]. Such

solutions are costly but may be justified in specialized applications (e.g. military mis-

sions); however they may not necessarily hold in more generalized ad hoc network set-

tings (e.g. civilian applications) and may not even be supported by certain TDMA-based

wireless technologies (e.g. Bluetooth).

Knowledge of universal slot enumeration in TDMA-based ad hoc networks is an is-

sue that, to the best of our knowledge, has yet to be raised. Inthe distributed ad hoc net-

work setting this information is not available in advance–when powered on, each node

only knows the slot enumeration of its own local schedule. A common slot enumeration

might be established by electing a leader node that providesits local slot enumeration

as a reference to the rest of the nodes in the network. Such a distributed leader elec-

13

tion protocol would need to run continuously because network dynamics (node power-

ons/power-offs and mobility) may generate multiple slot enumeration references in the

network. Upon detection of such an event, the nodes must suspend communications un-

til the election protocol converges to a common slot enumeration. This would be clearly

inefficient in a mobile setting.

Even with global synchronization and enumeration, furtherdifficulties are associ-

ated with splitting the TDMA frame into control and data parts. The control part may

use either a TDMA or a contention-based mechanism. In the first case the control part

consists ofTcontrol = N slots, whereN is the number of nodes in the network. At slot

i of the control part, nodei transmits and all other nodes listen [9][57]. This approach

provides a natural order for the nodes to perform schedulingdecisions and ensures that

control information will be exchanged conflict-free duringthe control portion. How-

ever, it requires a priori knowledge of the number of nodes inthe network. In addition,

large network sizes imply a large control part with respect to the data part–hence it is not

scalable. Alternatively,Tcontrol can be fixed and independent of the network size; nodes

compete during the control slots using a random access protocol (e.g. slotted ALOHA).

In this case, the control messages may collide and there are no guarantees that the in-

tended schedule reorganizations will occur during the control part. Clearly there is a

performance vs. overhead trade-off associated with the choice ofTcontrol in this case; an

appropriate value can be determined using simulations [62].

Summary

TDMA allows for provision of bandwidth guarantees but typically requires global in-

formation to achieve this goal. While distributed TDMA protocols for supporting CBR

service do exist, a flexible framework for supporting more general QoS objectives such

14

as fairness is a problem that has remained unaddressed. In addition, current techniques

for maintenance of the TDMA schedule conflict-free propertymay generate excessive

control overhead and rely on restrictive assumptions such as network-wide slot synchro-

nization, global slot enumeration and knowledge of the number of nodes in the network.

In the transmission scheduling part of this dissertation weaim to address these funda-

mental issues within the framework of a novel distributed TDMA architecture.

1.3 Contributions of this dissertation

The goal of this dissertation is to study distributed mechanisms for topology organiza-

tion and coordination of transmissions in order to achieve global performance objectives.

In Chapter 2 we address an instance of the topology organization problem that arises

in Bluetooth scatternets[41][24][63]. Bluetooth scatternets are multi-channel ad hoc

networks where all channels (including the discovery channel) are implemented as fre-

quency hopping sequences and communication channels have alimit on the number of

participants.

Neighborhood discovery in a frequency hopping channel is particularly challenging

because the nodes need to coordinate both in time and frequency. We first devise a sym-

metric link establishment protocol where two nodes try to discover each other using a

schedule that alternates between two complementary sender/receiver states. We show

that if the schedules are deterministic the mean discovery delay can be arbitrarily large;

for randomized schedules we show that the mean and standard deviation of the discov-

ery delay are finite and derive analytical expressions givendistributions on the schedule

state residence times. We then use the link establishment protocol as a basic building

block of a topology construction protocol. In addition to ensuring network connectivity

15

subject to the Bluetooth channel participation constraints, the protocol offers the flexi-

bility to realize topologies with additional desirable properties such as minimization of

the number of channels used in the network.

Chapters 3 through 6 focus on the transmission scheduling problem. In Chapter

3, we relax the global slot synchronization assumption and introduce an asynchronous

TDMA communication model, where slot reference for each link is provided locally by

the hardware clock of one of the node endpoints [64]. We studythe overhead introduced

when nodes switch among multiple time references and propose algorithms for overhead

minimization.

Chapter 4 introduces and analyzes a distributed asynchronous TDMA protocol for

multi-channel ad hoc networks where nodes reassign slots ontheir adjacent links in re-

sponse to asynchronous events triggered by a higher layer. The protocol can be executed

in parallel and can maintain conflict-free transmissions inthe network. The TDMA pro-

tocol can also provide bandwidth guarantees by incrementally reaching a TDMA sched-

ule that realizes a set of slot demands on the network links. We derive local conditions

the nodes can use to generate demands on their adjacent linksso that the induced global

link demand allocations are always feasible.

The local conditions provide a subset of feasible allocations over which any QoS

objective can be defined and enforced. In Chapter 5 we considerthe max-min fairness

(MMF) objective for the network links [65]. We introduce a fluid bandwidth allocation

algorithm that computes the MMF rates while, at the same time, guides slot reassign-

ments in the distributed TDMA protocol to reach a schedule that enforces these rates.

In Chapter 6, a framework is introduced for provision of rate guarantees to multi-hop

sessions [66]. This framework consists of two components: an end-to-end bandwidth

allocation algorithm that allocates rates to the sessions according to a QoS objective and

16

a link scheduling algorithm that reaches a TDMA schedule enforcing these rates. For

the end-to-end bandwidth allocation component we introduce algorithms for allocating

bandwidth according Constant Bit Rate (CBR) and Available Bit Rate (ABR) service

objectives. For the link scheduling component, we solve thedynamic link scheduling

problem for tree networks and provide upper bounds on convergence delay. Both end-

to-end and link scheduling algorithms rely only on local information.

Chapter 7 contains a summary of the major contributions of this dissertation along

with some suggestions for further work.

17

Chapter 2

Distributed topology construction of Bluetooth

Wireless Personal Area Networks

Most experimental ad hoc networks to date have been built on top of single-channel,

broadcast-based 802.11 wireless LANs or IR LANs. In such networks, all nodes within

direct communication range of each other share a common channel using a CSMA MAC

protocol. In addition, multi-hop routing is used as a means for forwarding packets be-

yond the communication range of the source’s transmitter. Since a single channel is used

throughout the network, the topology of the ad hoc network isimplicitly (and uniquely)

determined by distance relationship among the participating nodes.

We aim to address a problem that arises when multiple channels are available for

communication in an ad hoc network. The problem is determining which subgroup of

nodes should share a common channel and which nodes should act as relays, forwarding

traffic from one channel to another. The channel assignment should be performed so that

all constraints posed by the underlying physical layer are satisfied, while ensuring that

the resultant topology is connected.

We address an instance of the above problem which occurs in Bluetooth-based ad

hoc networks, known as scatternets. Bluetooth is a promisingtechnology that aims to

18

support wireless connectivity among cell phones, headsets, PDAs, digital cameras, and

laptop computers. Initially, the technology will be used asa replacement for cables, but

in due time, solutions for point-to-multipoint and multi-hop networking will evolve.

Bluetooth is a frequency hopping system which defines multiple channels for com-

munication (each channel defined by a different frequency hopping sequence). A group

of devices sharing a common channel is called a piconet. Eachpiconet has a master

unit which selects a frequency hopping sequence for the piconet and controls access to

the channel. Other participants of the group, known as slaveunits, are synchronized

to the hopping sequence of the piconet master. Within a piconet, the channel is shared

using a slotted Time Division Duplex (TDD) protocol where a master uses a polling

protocol to allocate time-slots to slave nodes. The maximumnumber of slaves that can

simultaneously be active in a piconet is seven.

Multiple piconets can co-exist in a common area because eachpiconet uses a differ-

ent hopping sequence. Piconets can also be interconnected via bridge nodes to form a

larger ad hoc network known as a scatternet. Bridge nodes are capable of timesharing

between multiple piconets, receiving data from one piconetand forwarding it to another.

There is no restriction on the role a bridge node can play in each piconet it participates

in. A bridge can be a master in one piconet and slave in others (M/S bridge) or a slave

in multiple piconets (S/S bridge).

It is possible to organize a given set of Bluetooth devices in many different config-

urations. Figures 3.1(b) and 3.1(c) show two example configurations in which nodes in

a Bluetooth network can be arranged. All nodes are assumed to be in radio proximity

of each other. In Figure 3.1(b) all nodes are part of a single piconet. Figure 3.1(c) il-

lustrates another configuration where node A is master of piconet 1, node E is master of

piconet 3, node B is an M/S bridge (master of piconet 2 and a slave of piconet 1), node

19

A

B

C D

E

A

B

C D

E

A

B

C D

E

Piconet 3

Piconet 1

Piconet 2

(a) (b) (c)

Figure 2.1: (a) Single channel topology. (b),(c) Differentconfigurations according to

the Bluetooth multi-channel topology model.

D is a slave of piconet 1 and node C is an S/S bridge (slave in piconets 2 and 3). In

contrast to these scatternet configurations the node interconnection topology in a single

channel system will be a complete graph (Fig. 3.1(a)) since all nodes will hear each

other’s transmissions.

Given a collection of Bluetooth devices, an explicit topology construction protocol is

needed for forming piconets, assigning slaves to piconets,and interconnecting piconets

via bridges such that the resulting scatternet is connected. Such a protocol should be

asynchronous, distributed and may start with nodes not having any information about

their surroundings.

The problem of constructing distributed self-organizing networks has been addressed

in the past [35][9][67][36][68] [19] [69]. All approaches assume existence of a broad-

cast channel through which neighborhood or control information can become available.

The Bluetooth setting introduces two unique challenges: first, no broadcast channel

exists for facilitating the exchange of any control information, including proximity in-

formation; second, even if proximity information is available, the piconet membership

constraint renders the formation of a connected topology a very challenging task.

The scatternet formation problem was introduced in [24] andsubsequently addressed

20

in [25][26][27][28] [29] [30][31]. Degree-constrained scatternet formation for multi-

hop topologies has been investigated in [25][27][28][31].The problem is NP-complete

for some instances and can be solved by a polynomial algorithm under certain assump-

tions [31]. All proposed solutions are distributed: starting with the sole knowledge of

their one-hop neighbors, the nodes perform role assignments on their adjacent links to

reach a connected topology that satisfies the Bluetooth connectivity requirements.

The scatternet formation problem becomes significantly harder if nodes start with

no knowledge about their surroundings. The discovery channel is a frequency hopping

sequence; nodes in proximity need to synchronize both theirtiming and frequency hop-

ping patterns before being able to communicate. In this setting, even the formation of

individual links becomes an issue—delays are random and canbe arbitrarily large if no

proper measures are taken.

We introduce and analyze a randomized symmetric protocol that yields link estab-

lishment delay with predictable statistical properties. Such a protocol is necessary for

pairs of identical devices or in situations when any external means for selecting initial

device states are not available. We then propose the Bluetooth Topology Construction

Protocol (BTCP), an asynchronous distributed protocol that extends the point-to-point

symmetric mechanism to the case of several nodes. BTCP is basedon a distributed

leader election process where proximity information is discovered in a progressive man-

ner and eventually accumulated to an elected coordinator node. Given a view of the

topology, the coordinator can then use a centralized algorithm to form a connected scat-

ternet topology.

We present a version of BTCP optimized for the single-hop case (i.e. all nodes are

within wireless range of each other). This is a valid assumption for Wireless Personal

Area Networks (WPANs), currently considered by the IEEE802.15 standard [70]. Com-

21

pared to other forms of ad hoc networks, such as Mobile Ad Hoc Networks (MANETs)

or sensor networks, WPANs are characterized by a relatively small number of low-power

devices operating within a limited geographic area (e.g. a conference room). In addition

to connectivity, WPAN applications require scatternet formation in a short amount of

time that is tolerable by a human user.

Zero-knowledge distributed scatternet formation has alsobeen addressed in [26][29].

Similar to BTCP, the protocols are distributed and are targeted for single-hop environ-

ments. However, they construct and re-arrange the scatternet topology as links are dis-

covered. The protocol of Law et.al. [26] constructs bipartite topologies while the pro-

tocol of Tan et.al. [29] focuses on the construction of tree topologies. Compared to

[26][29], BTCP is more flexible in constructing the topology because it uses a central-

ized algorithm for the role assignment phase.

The remainder of the Chapter is organized as follows: Section2.1 introduces the

asymmetric link establishment protocol as defined by the Bluetooth Specification. In

Section 2.2 we propose and analyze the symmetric link establishment protocol. Sec-

tions 2.3 and 2.4 describe the WPAN application requirementsand detailed operation of

BTCP, respectively. Since the total number of participants isnot known, each node uses

a timeout to assume leader election termination. The timeout introduces a correctness-

delay tradeoff in the network formation. Using the delay analysis of Section 2.2 we

show in Section 2.5 how to best choose the protocol parameters in order to maximize

the probability of forming a connected scatternet while minimizing delays. Section 5.5

provides a detailed survey of the state-of-the-art in Bluetooth scatternet formation. Fi-

nally, Section 5.6 concludes the Chapter.

22

2.1 Link establishment in Bluetooth

Bluetooth link establishment is a two-step process that involves the Inquiry and Pag-

ing procedures [15]. Both procedures are asymmetric, involving two types of nodes

that perform different actions: during Inquiry, senders discover and collect neighbor-

hood information provided by receivers; during Paging, senders connect to previously

discovered receivers.

When senders and receivers use the same (Inquiry or Paging) frequency hopping

sequence1, they will most likely start at different frequency hops derived from their

local clock readings. To overcome this frequency uncertainty senders and receivers hop

at different rates. A receiver changes hops slowly (every1.28s), listening for sender

messages; a sender transmits at a much higher rate (every625µs) while listening in-

between transmissions for an answer. The term Frequency Synchronization delay (FS

delay) refers to the time needed until the sender transmits on which the frequency the

receiver is currently listening2.

The functional difference between the two procedures is that Inquiry uses a univer-

sal frequency hopping sequence while Paging uses a common point-to-point frequency

hopping sequence. Using a universal frequency hopping sequence, a sender node ef-

fectively broadcasts an Inquiry Access Code (IAC) packet thatcan be heard by receiver

nodes listening for such a packet. During the paging procedure, a sender uses a re-

ceiver’s page hopping sequence and effectively unicasts a Device Access Code (DAC)

packet to be heard only by this receiver. Hence, Inquiry involves many units where a

1Nf , the number of frequencies in the inquiry or page hopping set, is equal to32 for systems operating

in Europe and US and16 for systems operating in Japan, Spain and France.

2The time needed by the sender to cover the entire inquiry hopping frequency set isTcoverage =

Nf × 625 µs which is10 ms (20 ms) for the16 (32) hop system.

23

sender can discover more than one receiver while Paging involves only two units where

a sender pages and connects to a specific receiver.

2.1.1 The Asymmetric Protocol

The asymmetric Bluetooth link establishment protocol (Fig.2.2) begins by the sender

entering the INQUIRY state and the receiver entering the INQUIRY SCAN state. After

an initial FS delay, the sender transmits on the frequency hop the receiver to which

is listening. Upon reception of the IAC packet, the receiversleeps for a random time

interval (called RB delay), uniformly distributed between0 andrmax(= 639.375ms).

The random back-off is performed to avoid collision at the sender in case two or more

receivers were listening on the same frequency hop and responded simultaneously.

When the receiver wakes up, it tunes to the hop it was listeningbefore the back-

off occurred. After a second FS delay, an IAC packet is received; the receiver replies

with an FHS packet and starts listening on its page hopping sequence by entering the

PAGE SCAN state. The FHS packet contains the identity and clock of the receiver.

Upon reception of the FHS packet, the sender initiates the Paging procedure by entering

the PAGE state. The identity and clock in the FHS packet are used to determine the

receiver’s page hopping sequence and current listening hop, respectively. Thus, when

paging follows inquiry, the FS delay is eliminated and the sender transmits a DAC packet

on the receiver’s listening hop.

The remaining control messages are exchanged in consecutive slots of625µs each.

The receiver replies with a DAC packet. The sender then transmits a FHS packet to

let the receiver determine its channel hopping sequence andphase. The receiver ac-

knowledges with another DAC packet and becomes the link slave. As soon as the

sender receives the DAC acknowledgment, it becomes the linkmaster. After an ad-

24

ditional POLL/NULL packet exchange, the synchronized nodes may start exchanging

data. Figure 2.2 illustrates the components of the overall protocol delay. The Inquiry

(6) Enter the

PAGE state

(5) Respond and enter

PAGE SCAN state

(4) Wake up

(3) Go to sleep

(2) Start in INQUIRY

SCAN state

(1) Start in the

INQUIRY state IAC

…
....

F
S

d
e
la

y

R
B

d
e
la

y

FHS

DAC

IAC

DAC

(7) Connection

Established

L
in

k
F

o
r
m

a
ti

o
n

D
e
la

y

Sender Receiver

F
S

d
e
la

y

(7) Connection
Established

P
a
g

in
g

d
e
la

y

(7) Connection
Established

FHS
DAC

0
-

6
3
9

.
3
7
5

m
s

0
-

2
0

m
s

0
-

2
0

m
s

4
x

0
.
6
2

5
m

s

(6) Enter the

PAGE state

(5) Respond and enter

PAGE SCAN state

(4) Wake up

(3) Go to sleep

(2) Start in INQUIRY

SCAN state

(1) Start in the

INQUIRY state IAC

…
....

F
S

d
e
la

y

R
B

d
e
la

y

FHS

DAC

IAC

DAC

(7) Connection

Established

L
in

k
F

o
r
m

a
ti

o
n

D
e
la

y

Sender Receiver

F
S

d
e
la

y

(7) Connection
Established

P
a
g

in
g

d
e
la

y

(7) Connection
Established

FHS
DAC

0
-

6
3
9

.
3
7
5

m
s

0
-

2
0

m
s

0
-

2
0

m
s

4
x

0
.
6
2

5
m

s

Figure 2.2: The Bluetooth asymmetric link establishment protocol

.

delay consists of one RB delay and two FS delays. Since the FS delay is bypassed when

paging follows inquiry, paging delay (6 slots,625µs each) is assumed negligible. Thus,

the overall delay of the asymmetric link establishment protocol can be approximated by:

R = 2FS + RB (2.1)

whereFS andRB are uniform random variables in[0, Tcoverage] and[0, rmax], respec-

tively.

25

2.2 A symmetric link establishment protocol

The asymmetric protocol yields a short link establishment delay3 provided that the

sender and receiver roles are pre-assigned. This may not be possible in an ad hoc

network setting. For example, in a ”conference room” scenario, users are not able to

explicitly assign sender and receiver roles on their devices. They just press a button and

expect to connect with their peers.

R

S

I

S S S

I I

I II

S S

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

0t

...

cT

Merged

Schedule

Unit 1

Unit 2

R

S

I

S S S

I I

I II

S S

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

0t

...

cT

Merged

Schedule

Unit 1

Unit 2

Figure 2.3: The symmetric link establishment protocol: Each node alternates indepen-

dently between INQUIRY(I) and SCAN(S) state. Connection can be established only

during the intervals where nodes are in opposite states. Thetime intervalTc from t0 up

to the point where the two units are in opposite states for a sufficient amount of time is

the link establishment delay.

Links can be automatically established using the followingsymmetric mechanism:

When a node is powered on, it arbitrarily assumes sender or receiver role by entering

the INQUIRY or INQUIRY SCAN state, respectively. The node remains in the selected

3According to eq. (2.1), the maximum delay of the asymmetric protocol isrmax + 2 · Tcoverage =

639.375 ms + 40 ms = 679.375 ms for the 32-hop system and 659.375ms for the 16-hop system.

26

state for a period of of time. If during this time no connection is established, it switches

to the opposite state. State alteration continues until a connection occurs.

Nodes execute the protocol independently; they will be ableto connect only during

intervals where they are in opposite states. During such an interval, the asymmetric

protocol is automatically executed. The sender will becomeaware of the receiver only

when it receives the FHS packet after a random delayR (given by eq. (2.1)). If during

this time the sender independently switches to the receiverstate, connection will not

occur. On the receiver end, the reception of the IAC packets,back-off activity and

transmission of FHS packets are not communicated to the upper layers of the Bluetooth

stack. Since we have only access to the upper layers and because we need to devise

a symmetric protocol without modifying the Bluetooth Specification, we assume the

receiver becomes aware of the sender only after paging and link establishment have

occured.

The symmetric protocol operation is depicted in Figure 2.3.During each ”on” in-

tervalXn, the asymmetric protocol restarts execution. Connection isestablished only if

the generated random delayRn is less thanXn. SinceR is random, the number of ”on”

intervals needed until connection will be random. Therefore, the symmetric protocol

is expected to have a random delay, typically greater than the delay of the asymmetric

protocol.

Some interesting questions arise regarding the performance of such a symmetric

protocol. Should the state residence intervals be constantor random? How can link

establishment delay be minimized? First, assume the nodes switch states according to a

schedule of periodT . Since the state residence intervals are constant, the ”on”intervals

of the merged processXn in Figure 2.3 are also constant. For a specific protocol run, the

”on” intervals can be arbitrarily small and the unsuccessful executions of the asymmetric

27

protocol can be many; the delay, then, will be arbitrarily large. Alternatively, if the state

residence intervals are drawn from a random distribution offinite mean and variance,

the mean and variance of the symmetric protocol link establishment delay are finite and

can be expressed analytically. More specifically, the following holds:

Theorem 2.2.1 Let each node alternate states such that the state residenceintervals

form an i.i.d. random processZn with meanE[Z] and varianceV [Z]. If E[Z] and

V [Z] are finite, the mean and variance of the link establishment delay Tc are finite and

given by:

E[Tc] =
E[X]

2
+

(E[X|R > X] + E[X])(1 − p)

p
+ E[R] (2.2)

V [Tc] =
V [X]

2
+

(V [X|R > X] + V [X])(1 − p)

p
+ V [R] (2.3)

whereR is the random link establishment delay of the asymmetric protocol,Xn is the in-

terval process formed by merging the state switching times ofthe two random schedules,

andp = P [R ≤ X].

Proof Without loss of generality, assume node1 starts alternating first, and node2

starts alternating at an arbitrary time instantt0 (Fig. 2.3). LetNi(t) be the number of

state switches of nodei from timet0 up to timet. Ni(t) is a renewal process induced by

the i.i.d. interval processZn. Since the units alternate independently,N1(t) andN2(t)

are independent. Consider the merged processN(t) consisting of the combined state

switchesNi(t) from t0 up to timet. The interval processXn induced byN(t) is i.i.d.

with the following cdf [71]:

Fx(x) = Fz(x) +
1 − Fz(x)

E[Z]

∫ x

0

[1 − Fz(z)]dz (2.4)

Then the pdf ofXn is the derivative ofFx(x) with respect to x:

fx(x) = fz(x) −
fz(x)

E[Z]

∫ x

0

[1 − Fz(z)]dz +
(1 − Fz(x))2

E[Z]
(2.5)

28

Depending on the timet0 where node2 starts alternating states, we consider two

cases:

Case A:Let t0 be such that the nodes start in opposite states. The nodes will have

the chance to connect during odd-numbered intervalsXn. During each such ”on” in-

terval, the asymmetric protocol will restart execution from scratch. Connection will be

established only if the random delayRn of the asymmetric protocol is less thanXn.

Since the random processesXn andRn are each i.i.d and independent with respect to

each other, this is equivalent to a coin-toss experiment with probability of ”connection-

success”p = P [X ≤ R]. Let the composite (”on”+”off”) intervalYn corresponding to

a failure be defined as:

Yn =





Xn + Xn+1 if Rn > Xn

0 otherwise
, n = 2k + 1, ∀k ≥ 0 (2.6)

The overall connection establishment delayT opp
c is:

T opp
c =

N∑

n=1

Yn + RN+1 (2.7)

whereN is the number of failures until a success occurs and is geometrically distributed

with parameterp = P [R ≤ X]. Thus, the average link establishment delay when nodes

29

start in opposite states can be computed as follows:

E[T opp
c] = E[E[T opp

c]|N] + E[R]

=
∞∑

n=0

E[T opp
c |N = n] · P [N = n] + E[R]

=
∞∑

n=0

E[
n∑

i=1

Yi] · P [N = n] + E[R]

=
∞∑

n=0

n · E[Yi] · P [N = n] + E[R]

= E[Yi] · E[N] + E[R]

= (E[X|R > X] + E[X]) · E[N] + E[R] ⇒

E[T opp
c] =

(E[X|R > X] + E[X])(1 − p)

p
+ E[R] (2.8)

Case B:Let t0 be such that the nodes start at the same state. The only difference

with the previous case is that the first ”off” interval introduces a constant delay factor

on the overall delay. Therefore:

T same
c = X + T opp

c (2.9)

whereT opp
c is given by eq. (2.7). Then,

E[T same
c] = E[X] + E[T opp

c] (2.10)

Sincet0 is arbitrary, the cases A and B are equiprobable. Combining eq. (2.8) and eq.

(2.10), we reach the desired expression forE[Tc]:

E[Tc] =
1

2
E[T opp

c] +
1

2
E[T same

c]

=
1

2
E[X] + E[T opp

c] ⇒

E[Tc] =
E[X]

2
+

(E[X|R > X] + E[X])(1 − p)

p
+ E[R]

30

To derive the varianceV [Tc], observe that eq. (2.7) and eq. (2.9) are sums of inde-

pendent random variables. In this case, the linearity of variance holds in the same way

as linearity of expectation. Repeating the same calculationas inE[Tc], we reach the

desired expression forV [Tc]:

V [Tc] =
V [X]

2
+

(V [X|R > X] + V [X])(1 − p)

p
+ V [R]

The quantitiesE[X] andV [X] can be derived from eq. (2.5). The quantitiesE[X|R >

X] andV [X|R > X] can be computed by first considering the conditional pdf ofX

given thatX < r:

fx(x|x < r) =





fx(x)
Fx(r)

if x < r

0 otherwise

Then,

E[X|X < R] = E[E[X|X < r]]

=

∫ A

r=0

∫ r

x=0

x · fX(x|x < r) · fR(r)dxdr ⇒

E[X|X < R] =

∫ A

r=0

∫ r

x=0

x ·
fX(x) · fR(r)

FX(r)
dxdr (2.11)

whereA = rmax + 2 · Tcoverage. Also,

E[X2|X < R] =

∫ A

r=0

∫ r

x=0

x2 ·
fX(x) · fR(r)

FX(r)
dxdr (2.12)

whereA = rmax + 2 · Tcoverage.

The conditional variance is given by:

V [X|X < R] = E[X2|X < R] − (E[X|X < R])2 (2.13)

and can be computed using equations (2.11) and (2.12).

31

Equations (2.2) and (2.3) hold for any distribution of finitemean and variance. Fig-

ure 2.4 is a comparative plot ofE[Tc] as a function of the mean state residence in-

terval for the cases of uniform and exponential distributions. Both distributions yield

U-shaped curves. Very small and very large mean state residence intervals yield high

delays. For very small state residence intervals, many short ”on” intervals are needed

until connection occurs. For very large state residence intervals, the high delay is due to

the uncertainty in the initial state assignment: if the nodes start at the same state, they

will wait for a large ”off” interval before the first ”on” interval occurs. The exponen-

tial distribution yields a lower delay for large mean state residence intervals. However,

both distributions perform similarly in the minimum delay region: for a mean state resi-

dence interval of600 ms the average delay is approximately1 s. This is approximately

three times greater than the average delay of the asymmetricprotocol given by eq. (2.1)

(≈ rmax/2 = 319.688ms).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 200 400 550 650 800 1000 2000 3000 4000

mean state residence time (ms)

E
x
p

e
c
te

d
li
n

k
fo

rm
a
ti

o
n

d
e

la
y

(m
s
)

uniform exponential

Figure 2.4: Symmetric protocol: Average link establishment delay for uniformly and

exponentially distributed state residence intervals.

32

We have also investigated whether different mean state residence interval per state

yields a lower delay. In this case we use simulations to determine E[Tc]. Figure 2.5

depictsE[Tc] with respect to the INQUIRY mean state residence intervalµI. Each

”×N ” curve corresponds to the INQUIRY SCAN mean state residence intervalµS being

N × µI. We observe that no benefit arises from using different mean state residence

intervals: In the minimum delay region of all curves, the ”×1” curve yields the lowest

average delay.

0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000 2000 3000 4000 5000

Inquiry State mean residence time (ms)

E
x
p

e
c
te

d
li
n

k
fo

rm
a
ti

o
n

d
e

la
y

(m
s
)

x1 x2 x3 x4 x0.5 x0.333 x0.25

Figure 2.5: Symmetric protocol, uniform distribution: Delay for different mean resi-

dence intervals per state (µS 6= µI) vs. delay for equal mean residence intervals per state

(µS = µI). Dotted curves correspond to (µS < µI), while solid curves correspond to

(µS ≥ µI).

The randomized symmetric mechanism guarantees automatic link establishment be-

tween two Bluetooth devices in finite mean time. When more than two devices need to

form a scatternet a protocol must be devised on top of this mechanism. This protocol

must yield a connected topology with high probability whiledoing so in minimum time.

33

The delay analysis of the point-to-point symmetric mechanism will provide a valuable

tool for balancing these conflicting objectives.

2.3 Scatternet formation

Our motivation for the scatternet formation problem arisesfrom a ”conference meet-

ing” scenario. Suppose that several users wish to form an ad hoc network using their

Bluetooth devices. Each user powers on his/her device and expects to see a ”network

established” message after a short period of time. After this message appears, the user

will be able to exchange information with every other user. The high-level description

of this application embodies the elements of a successful scatternet formation protocol:

• Network establishment must be performed in a distributed manner. Each device

must start operating asynchronously on its own without any prior knowledge of

the identities or number of nodes participating in the process.

• Network establishment delay must be tolerable by the end-user and minimized as

much as possible.

• Upon completion, the protocol must yield a connected scatternet that satisfies the

Bluetooth degree constraint of7 slaves per piconet.

In addition to satisfying connectivity, a desirable protocol feature would be to shape

the scatternet topology according to application-specificperformance criteria. For ex-

ample, a node may need to assume different roles in differentapplication scenarios.

Also, due to its own nature, a node may pose more restrictive degree constraints: a Palm

Pilot may not have the processing power to be a master of a7-slave piconet. Criteria may

also exist in the form of traffic requirements to be satisfied by the nodes participating

34

in the network construction process. Marsan et al. [72] havedevised a centralized role

assignment algorithm that minimizes the energy consumption of the most overloaded

node subject to node traffic requirements. In absence of preexisting scatternet formation

criteria, and in order to design a simpler and faster protocol, we propose the following

default properties that the resulting topology will satisfy:

R1 Each master may be connected to at mostD slaves: This condition restricts

the number of participants of each piconet toD + 1. The Bluetooth specification

requiresD = 7.

R2 Each node will be either master or slave on all its adjacent links: The Bluetooth

specification does not prevent a node being master in one piconet and slave in others

(M/S bridge); However, M/S bridges may result in high delays: when the master

visits other piconets as slave, no communication can occur in the piconet it controls.

Therefore, we use only S/S bridges to interconnect piconets. Note that with this

restriction the resulting topology will be bipartite.

R3 A bridge node will connect only two piconets: A bridge node forwards data by

switching between piconets in a time division manner. A portable device may have

limited processing capabilities. A maximum degree of two relieves the bridge from

being an overloaded crossroad of multiple originated data transfers. In addition, the

slot overhead incurred by switching multiple piconet time references is minimized

[73] [74].

R4 Every piconet will be connected toall other piconets through S/S bridges:

A fully-connected scatternet in its initial state provideshigher robustness against

topology changes. Also, according to this property, no routing is needed: every

master can reach every other master through a bridge node andevery slave can

35

reach every other node via its master in at most3 hops.

R5 Any two piconets will share only one bridge: This condition seeks to minimize

the total number of piconet interconnection points. Two masters may later use a

topology maintenance protocol to share more than one bridges.

Given a number of nodesN , we seek the minimum number of piconetsPmin that satisfy

constraints R1-R5. The motivation for this objective is similar to finding the minimum

number of routers in an ad hoc network [69]: A minimum number of piconets yields an

easier scatternet to control.

We now proceed to the derivation ofPmin. According to conditionR2, the bipartite

scatternet consists of masters, slaves that belong to only one piconet (”pure slaves”), and

slaves that belong to multiple piconets (S/S bridges). In such a scatternet, the number of

masters equals the number of piconets.

Let P be the number of piconets and let piconeti consist ofsi pure slaves andbi

bridge slaves for a total ofni slaves:

ni = si + bi, 1 ≤ i ≤ P (2.14)

Also, due to the piconet membership constraintR1:

ni ≤ D, 1 ≤ i ≤ P (2.15)

According toR4 andR5, each master will havebi = P−1 bridges andsi = ni−(P−1)

pure slaves. The total number of masters isP and, according to R4 the total number of

bridges should beP (P−1)
2

. Therefore, the following holds:

P +
P∑

i=1

si +
P (P − 1)

2
= N, 0 ≤ si ≤ D − (P − 1), ∀i (2.16)

where the three terms at the LHS are the total number of assigned masters, pure slaves

and bridges in the scatternet respectively.

36

Equation (2.16) represents the values forP andN that satisfy the scatternet forma-

tion requirementsR1−R5. For a specificP , there is a range of values ofN that can be

covered, depending on the possible valuessi. For example, a single piconet (P = 1) can

accommodate fromN = 1 up toN = D + 1 nodes. Two piconets (P = 2) can cover

from N = D + 2 to N = 2D + 1 nodes–in this case, the two masters are connected by

a common bridge and each master hasD − 1 pure slaves.

According to eq. (2.16), the maximumN (denoted byNmax) for a givenP can be

obtained if we setsi = D − (P − 1), ∀i. Then, eq. (2.16) becomes:

P +
P∑

i=1

(D − (P − 1)) +
P (P − 1)

2
= Nmax ⇒

P 2 − (3 + 2D)P + 2Nmax = 0 (2.17)

Solving eq. (2.17) forNmax we get the maximum number of nodes that can be supported

by a specificP without violating conditions R1-R5:

Nmax = f(P) =
P ((3 + 2D) − P)

2
(2.18)

According toR4 and R5, each master must be connected to every other master via

exactly one bridge node. Hence, the maximum number of piconets that can be supported

is P = D + 1. In this case every master hasD bridge slaves to all other masters.

UsingP = D + 1 in eq. (2.18) yieldsNmax = (D+1)(D+2)
2

, the maximum number

of nodes yielding a topology satisfying conditions R1-R5. Using eq. (2.18) we generate

the (ordered) set:

Nmax = {f(1), ..., f(P), ..., f(D + 1)}

Also, solving eq. (2.18) forP and keeping the ”-” solution we get:

P = f−1(Nmax) =
(3 + 2D) −

√
(3 + 2D)2 − 8Nmax

2
, Nmax ∈ Nmax (2.19)

37

Since eq. (2.19) is the inverse function of eq. (2.18), for any value ofN in the set

Nmax, eq. (2.19) yields an integerP . Also,P is a strictly increasing (discrete) function

of Nmax. Any two consecutive numbersNmax1 = f(P1) andNmax2 = f(P1 + 1) in

Nmax correspond to two valuesP1 andP1 + 1 respectively. SinceP is strictly increas-

ing function ofN , any values ofN not in Nmax in the ordered setS = {Nmax1 +

1, ..., Nmax2 − 1} that are used in eq. (2.19) will yield a real number betweenP1 and

P1 + 1. Thus the values in the setS, includingNmax2, are the values ofN supported by

a number of piconetsP1 + 1. Hence, using any value ofN in eq. (2.19) and rounding

the resulting real number to the next integer will always yield the minimum number of

piconetsPmin that can supportN :

Pmin =

⌈
(3 + 2D) −

√
(3 + 2D)2 − 8N

2

⌉
, 1 ≤ N ≤

(D + 1)(D + 2)

2
(2.20)

In the case of Bluetooth (D = 7), eq. (2.20) holds forN up to36 devices; we believe

this is a sufficiently large number for the envisioned WPAN application scenarios. Note

that this restriction holds if we need to satisfyall criteria R1-R5. A larger number of

nodes can be supported by either not requiring a minimum number of piconets or by

relaxing one or more of conditions R1-R5.

2.4 The Bluetooth Topology Construction Protocol (BTCP)

BTCP is based on a leader election process. Leader election is an important tool for

breaking symmetry in a distributed system. Since the nodes start asynchronously and

without any knowledge of the number of participating nodes,an elected coordinator

will be able to control the process and ensure that the resulting topology will satisfy the

scatternet formation criteria. The protocol consists of3 phases:

38

2.4.1 Phase I: Coordinator Election

Phase I consists of an asynchronous distributed election ofa coordinator node that will

eventually know the count, identities and clocks of all nodes participating in the topol-

ogy construction process.

Each node has an integer variable called VOTES. Upon power-on, a node initializes

VOTES to1, and starts executing the symmetric link establishment protocol using a

randomized schedule.

Any two nodes that discover each other and connect enter a one-on-one confronta-

tion by comparing their VOTES. The node with the larger VOTESwins the confronta-

tion. If the VOTES are equal, the winner is the node with the larger Bluetooth address.

The loser provides the winner with all the FHS packets (i.e. identities and clocks) of

the nodes it has won thus far. Then, it disconnects and entersthe PAGE SCAN state. In

this way, it will hear only page messages from nodes that willpage it in the future. This

action eliminates the loser from the leader election and prepares it for the next phases of

the protocol. Upon receiving the FHS packets, the winner increases its VOTES by the

loser VOTES and continues participating in the leader election by resuming execution

of the symmetric protocol.

If N nodes are participating in the leader election, there will beN−1 confrontations.

The winner of theN −1st confrontation becomes the coordinator. At this final state,the

rest of the nodes are in the PAGE SCAN state, waiting to be pagedby a node that has

information about them.

2.4.2 Phase II: Role Determination

After the election in Phase I, the coordinator has acquired the identities and clocks of

all nodes participating in scatternet formation. The coordinator initiates Phase II by

39

checking if the number of discovered nodesN is less thanD + 1. If this is the case, it

pages and connects to all other nodes that are waiting in PAGESCAN; a single piconet

is formed with the coordinator as master and the rest of the nodes as slaves. In this

special case, the protocol terminates at this point. IfN ≥ D + 1, several piconets

must be formed and interconnected via bridge nodes. Using eq. (2.20), the coordinator

computes the minimum number of piconetsPmin that satisfy the default criteria R1-R5.

Then, the coordinator selects itself andPmin − 1 nodes as the designated masters and

Pmin(Pmin−1)
2

other nodes to be S/S bridges. The remainingN − (Pmin + Pmin(Pmin−1)
2

)

nodes are assigned as ”pure” slaves; they are equally distributed among the coordinator

and the rest of the masters.

After role assignment, the coordinator constructs for every master X (and itself) a

connectivity list set (SLAVESLIST(X), BRIDGELIST(X)). Eachlist contains contains

FHS packets (id+clock) to aid the designated master to page its assigned slaves instan-

taneously. Next, the coordinator pages and connects to the nodes it selected as masters.

(Recall that, at the end of Phase I, the rest of the nodes wait inthe PAGE SCAN state). A

temporary piconet is formed with the coordinator as master and the designated masters

as slaves4. The coordinator transmits to each designated master its connectivity list set

and instructs the designated masters to start Phase III; then it disconnects the temporary

piconet and starts Phase III as a master.

2.4.3 Phase III: Connection Establishment

Phase III is initiated by the designated masters (includingthe coordinator). Each mas-

ter pages and connects to the slaves and bridges provided in its SLAVESLIST and

BRIDGELIST, respectively. As soon as a node is notified by its master that it is a

4According to eq. (2.20),Pmin is always less thanD and the temporary piconet can always be formed.

40

bridge, it waits to be paged by its second master (requirement R3). When this hap-

pens, the bridge node sends a CONNECTED notification to its masters. When a master

receives a CONNECTED notification fromall its assigned bridges, a fully connected

scatternet ofPmin piconets is guaranteed to be formed and the protocol terminates. An

example of the protocol operation is illustrated in Figure 2.6.

2.4.4 Leader election termination

The most time-consuming part of the protocol is the leader election phase. Phases II and

III involve only paging and connecting, which occur instantaneously due to the previous

inquiry procedures.

Ideally, election should stop as soon as the coordinator is elected. However, since a

node is not aware of the total number of participants, it willnever know whether or not

it is the winner of the election. Each node maintains a ”statealteration” timeout variable

called ALT TIMEOUT. ALT TIMEOUT is set upon power-on and reset each time the

node wins a confrontation and restarts the symmetric link establishment protocol. When

ALT TIMEOUT expires, the node assumes it is the elected coordinator.

It is important to determine an appropriate value for ALTTIMEOUT. A very large

value will result in a node having won the competition and continuing alternating with-

out knowing it is the only one left. This implies a slow Phase Iand, consequently, slow

scatternet formation. On the other hand, using a very short ALT TIMEOUT, several

nodes may assume the role of coordinator; this will result ina disconnected scatternet.

We address this issue using the following observation: the link formation delay between

any twoout of N alternating nodes is statistically less than the delay of only two alter-

nating nodes. Thus, the delay analysis of the two-node symmetric link establishment

protocol can be used to provide a tight estimate for ALTTIMEOUT.

41

(a) (c)(b)

(d) (e)

A B
B is a slave of A

Node in PAGE SCAN / Slave

Coordinator/Master

Alternating node

Bridge Node

Figure 2.6: BTCP operation: (a) Start of Phase I: All nodes begin alternating, trying to

discover other nodes in wireless proximity. (b) End of PhaseI: Coordinator has been

elected. Given N=16, coordinator computesPmin = 3 using eq. (2.20). Next, the

masters, bridges, and slaves are selected accordingly. (c)Phase II: Coordinator forms a

temporary piconet with the designated masters and sends them their connectivity lists.

(d) Phase III: Each master pages the nodes specified within its connectivity list. (e) The

scatternet is formed.

42

2.5 Experiments

2.5.1 Emulating Bluetooth

We have implemented BTCP on top of an existing prototype implementation that em-

ulates the Bluetooth environment on a Linux platform. The emulator is used instead

of actual Bluetooth devices because it allows testing the protocol for a wide range of

parameters and for a large number of nodes.

Each Bluetooth host is implemented as a Linux process consisting of two interact-

ing modules. The Bluetooth Baseband (BB) module emulates in software the Inquiry,

Paging and piconet switching procedures, as defined in the Bluetooth Baseband speci-

fication [75]. The BTCP module interacts with the BB module through Bluetooth Host

Controller Interface (HCI) functions [76]. The use of HCI functions allow us to later

replace the BB module with an actual Bluetooth unit.

The wireless medium is simulated by aNf -hop channel process. The channel pro-

cess is responsible for the exchange of IAC and FHS packets during the inquiry and

paging procedures. It also simulates the occasional frequency collisions and FS delays.

Note that the channel process is not similar to a CSMA broadcast channel–the senders

and receivers cannot perform any carrier sensing nor any form of intelligent back-off.

We also assume that all devices are within range of each other. This is a valid

assumption for networking many short-range wireless devices in a single room. This

is mapped in the architecture by having all Bluetooth host processes connected to the

Nf -hop channel process and executing the scatternet formation protocol.

43

2.5.2 Determining ALT TIMEOUT

Using the the PeriodicInquiry Mode HCI command [76], it is possible to program

Bluetooth units to alternate between INQUIRY and INQUIRY SCANwith uniformly

distributed state residence intervals. Figure 2.7 plots the meanE[Tc] and standard de-

viation
√

V [Tc] of the two-node link establishment delay as a function of themean

state residence interval. GivenE[Tc] andV [Tc], ALT TIMEOUT is determined by the

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

200 400 600 800 1000 2000 3000 4000 5000 6000 7000 8000 9000

alt_mean (ms)

T
a

v
g

+
T

s
td

(m
s
)

mean standard deviation

Figure 2.7: The node alternate, with state residence intervals drawn from a uniform

distribution of meanµ msec. The meanE[Tc] and standard deviation
√

V [Tc] of the

delay of the symmetric protocol, are plotted as a function ofµ.

following empirical formula:

ALT TIMEOUT = E[Tc] +
√

V [Tc] + rmax (2.21)

According to Figure 2.7, for every mean state residence interval, the standard deviation

is comparable to the mean. This indicates that the distribution of Tc is not centered

around the mean and justifies the inclusion of the term
√

V (Tc) in eq. (2.21). The

44

termrmax was determined by experimentation. During many protocol runs, the follow-

ing frequent phenomenon was observed: after theN − 2nd confrontation, the winner

A would start alternating by resetting ALTTIMEOUT while another node B was in

SLEEP mode due to a previous back-off. A and B were the last nodes in the election

process and would start trying to form theN − 1st connection only after B woke up.

The termrmax is the upper bound on the back-off interval of the asymmetricprotocol

and was included in eq. (2.21) to take this case into account.

In the experiments we use a mean state residence interval of600ms which, according

to Fig. 2.7 and eq. (2.21), yields a minimum ALTTIMEOUT of 2527.223ms.

2.5.3 Protocol Performance

We use the average scatternet formation delay and the probability of connection as the

protocol performance metrics. The scatternet formation delay is dominated by the delay

to elect the coordinator (Phase I). Phases II and III are veryfast since they involve only

paging and connection establishment. Without loss of accuracy we will represent the

overall scatternet formation delay by the leader election delay.

We also distinguish between the ”ideal” and ”actual” leaderelection delays, termed

asTideal andTactual, respectively.Tideal is the delay from the time when the first node

is powered-on until the coordinator is elected. It is ideal in the sense that the protocol

would terminate at this point had the nodes known the number of participants; however,

a node will assume it is the coordinator after an additional delay of ALT TIMEOUT.

Therefore, the actual scatternet formation delayTactual is given by:

Tactual = Tideal + ALT TIMEOUT (2.22)

The probability of connection is the fraction of experiments where only a single node

assumes the role of coordinator. This metric depends on the value of ALT TIMEOUT.

45

The higher ALTTIMEOUT is, the higher the probability of connection, but the longer

the scatternet formation delay.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N

T
id

e
a
l
(m

s
)

No offset exp1000 exp2000

Figure 2.8: Average ideal scatternet formation delay for various application scenarios.

Units alternate according to uniformly distributed state residence intervals of600 ms on

the average. Each data point is the average of 10,000 runs.

The protocol delay performance is summarized in Figure 2.8.The ”no offset” curve

corresponds toTideal when all nodes start alternating simultaneously. Delay increases

with the number of nodes in a sub-linear manner. This is due tothe multiple one-on-one

confrontations that occur in parallel during the leader election process. This behavior is

a desirable property of a scatternet formation protocol. Wewould not like, for example,

the delay increasing linearly withN . The delay ranges from1 s to 3 s for N = 2 to

N = 30 nodes.

The ”no offset” curve yields very small delays partly because all nodes start partici-

pating in the network formation at the same time instant. In areal world scenario, users

will power on their devices in an asynchronous manner. We model the power-ons as a

46

Poisson arrival process within aW = 10 s application window: after the first user, each

useri arrives after an exponentially distributed delayLi of meanµp and truncated within

theW = 10 s application window. The truncated exponential distribution is preferred to

others (e.g. uniform) because it spreads the arrivals over the entire application window.

The process is shown in Figure 2.9.

The curves ”exp1000” and ”exp2000” in Figure 2.8 illustrateTideal when each user

is expected to arrive after the first user withinµp = 1 s andµp = 2 s on the average,

respectively. Asµp increases, the system becomes more asynchronous and less one-on-

one confrontations occur in parallel. This yields an increase in the scatternet formation

delay. Nevertheless, the protocol’s immunity to the increase ofN is preserved. This is

illustrated by a constant delay offset between the curves for a fixedN .

W

L2

LN-1

L1

t0

1st arrival 2nd arrival 3rd arrival Nth arrival

Figure 2.9: The device power-on arrival process. The first user arrives att0. Each useri

arrives after an intervalLi, drawn from a truncated exponential distribution of meanµp

and upper boundW .

The timeout can be viewed as a delay overhead due to the need for a distributed

algorithm. A large ALTTIMEOUT will yield a connected scatternet with higher prob-

ability, but will accumulate a larger actual connection delay Tactual. Figure 2.10 illus-

trates this trade-off by depicting the probability of connection (”timeout efficiency”) for

several candidate values of ALTTIMEOUT. For all application scenarios, the timeout

efficiency initially increases rapidly with ALTTIMEOUT and then reaches a steady

47

state. It is clear that the value of ALTTIMEOUT where the curves start stabilizing is

at 2500 ms–very close to the value2527.223 ms chosen by our empirical formula (eq.

(2.21)).

0

10

20

30

40

50

60

70

80

90

100

1000 1500 2000 2500 3000 3500 4000 4500 5000

Timeout (ms)

T
im

e
o

u
t

E
ff

ic
ie

n
c
y

(%
)

No offset

exp1000

exp2000

Figure 2.10: Timeout efficiency: Each bar graph is the probability of connection, aver-

aged over N=5,10,20 and30 nodes (10000 runs for eachN).

When an upper bound estimate exists on the number of nodes participating in the

protocol, the combination of Figures 2.8 and 2.10 provides practical guidelines. For

example, if the expected number of nodes is30 and an ALTTIMEOUT of 2500ms is

used, the average delay experienced by each user will be3000ms + 2500ms = 5.5s

(Fig. 2.8) and a connected scatternet will be formed with a probability of 96.13% in the

”no offset” application scenario (Fig. 2.10).

48

2.6 Related Work

The scatternet formation problem can be summarized as follows: ”Given the network

visibility graph induced by the nodes’ wireless proximity,establish a subset of mas-

ter/slave links such that the resulting communication graph is connected and satisfies

the Bluetooth degree constraints”.

Using a Minimum Spanning Tree (MST) framework, Guerin et. al. [31] show that

the scatternet formation problem is NP-complete for general visibility graphs5. When

nodes are distributed on a 2-dimensional plane (Euclidean visibility graphs), the prob-

lem can be solved by a MST construction algorithm of polynomial complexity6. This

is because every node belonging to a Euclidean MST has at most6 adjacent links–less

than the Bluetooth constraint of7.

Most proposed solutions to the scatternet formation problem are distributed. The

protocols can be classified according to the initial information available to the nodes

and the structure of the generated topologies.

In [25][31][27] [28][30] the nodes start with a priori knowledge of their one-hop

neighbors. Źaruba et. al. [25] present a protocol for Euclidean visibility graphs where

a designated root node initiates scatternet formation and forms a tree topology. A ge-

ometric argument7 is used to re-assign roles on links in case some nodes exceed the

degree constraints during the formation process. It is not analytically proven whether

the re-organizations converge to a connected topology. As mentioned in [31], for Eu-

5NP-completeness holds if a node is forced to act as master or slave to all its adjacent links. If M/S

bridges are allowed it is not known whether or not the problemis NP-complete

6The MST is constructed by considering the node distances in the visibility graph as the edge weights

7In a Euclidean graph, if a node has more than5 neighbors, then at least2 of them are within wireless

proximity of each other.

49

clidean visibility graphs, existing distributed dynamic MST algorithms such as [77] can

generate a connected tree topology at the expense of high communication complexity.

Sacrificing analytical connectivity guarantees, [31] proposes a heuristic of low commu-

nication complexity. The approach requires additional GPShardware on the Bluetooth

nodes to know the coordinates of nodes in proximity.

Li and Stojmenovic [30] generate connected non-tree scatternet topologies for the

Euclidean case. The protocol applies Yao structure, which also requires knowledge of

the neighbor coordinates. Petrioli and Basagni [28] trade off the cost of extra GPS hard-

ware by extending the required initial knowledge to two hops. They combine clustering

techniques with the geometric argument of [25] to yield connected non-tree scatternet

topologies. The BlueNet protocol [27] operates for general visibility graphs but does

not guarantee scatternet connectivity.

The problem does not become easier when the nodes start with no knowledge about

their surroundings. Due to the random discovery delays it isdifficult to make any deter-

ministic claims regarding connectivity, even for the Euclidean case. It is not straightfor-

ward to extend the multi-hop protocols in [25][31][27] [28][30] to the zero-knowledge

setting because they assume static topologies and do not operate in an incremental man-

ner.

On the other hand, BTCP and the protocols in [26][29], are targeted for the zero-

knowledge setting but are currently restricted to the single-hop environment (the visi-

bility graph is complete). Law et. al. [26] construct a connected bipartite scatternet

topology with high probability. The protocol operates in synchronous rounds of fixed

length where nodes assume sender and receiver roles with a certain probability. The

round length is assumed sufficiently large to guarantee connection of two nodes that

start in opposite states. However, synchronous operation is difficult to support in a zero-

50

knowledge setting. Tan et. al. [29] propose an asynchronousincremental protocol that

creates tree fragments, continuously merged to yield a single tree topology. To avoid

loops, only the root nodes in each fragment are allowed to connect. This feature makes

it unclear how both the degree constraint and overall scatternet connectivity can be sat-

isfied. BTCP is both distributed and asynchronous; it also provides more flexibility in

forming the final WPAN topology due to its centralized role assignment phase.

2.7 Further issues

In ad hoc networks using frequency hopping technology, nodes can be grouped in multi-

ple communication channels. This physical layer setting provides a new way of viewing

higher layer functions like topology construction algorithms. Motivated by this envi-

ronment and using the Bluetooth technology as our research vehicle, we first investigate

the Bluetooth standard asymmetric ”sender-receiver” pointto point link establishment

scheme and then propose a symmetric mechanism for establishing a connection without

any role pre-assignment. Based on the ad hoc link formation mechanism we present

BTCP, a distributed topology construction protocol where nodes start asynchronously

without any prior neighborhood information and result in a network satisfying the con-

nectivity constraints imposed by the Bluetooth technology.The protocol is centered

on a leader election process where a coordinator is elected in a distributed fashion and

consequently assigns roles to the rest of the nodes in the system.

BTCP was tested under a conference scenario where users arrivein a room and try

to form a scatternet by turning on their Bluetooth-enabled devices. An attractive fea-

ture of the protocol is that the network formation delay is sub-linear with the number of

participating nodes (implying that the users do not need to wait proportionately longer

51

when more users are present). Although the delay is small, each node must have an

estimate of how long it must participate in the protocol before assuming protocol ter-

mination. A conservative estimate of the timeout will introduce unnecessary delays in

network formation while an aggressive estimate may leave the network disconnected.

Our analysis of the delay statistics of the symmetric link formation protocol provides a

tight estimate of the appropriate timeout value, making theprotocol fast while ensuring

high probability of scatternet connectedness.

The protocol needs to be extended for the multi-hop case. Theleader election mech-

anism can serve as a building block for discovering, connecting partial topology views

and then merging them in larger components. A possible implementation of this idea is

as follows: During the election process a node maintains a topology map in addition to

the FHS packets of the nodes it has won so far. After a one-on-one confrontation, the

loser communicates its FHS packets and topology map to the winner. Before starting al-

ternating, the winner pages the nodes indicated in the losertopology map. (Temporary)

connections will be established only with the paged nodes that are within proximity of

the winner. This results in the winner node updating its local topology map; this process

continues until the node loses a one-on-one confrontation or becomes the coordinator.

The coordinator uses a centralized algorithm to produce an optimized scatternet based

on the discovered topology graph. Using this modified leaderelection mechanism, it is

likely that multiple leaders will be elected and form scatternet clusters with no nodes in

common. The clusters are further discovered and merged using a new leader election

process operating at the cluster level.

Given a set of nodes with zero knowledge of each other that need to form quickly

an initial connnected ad hoc network, BTCP focuses on minimizing the connection de-

lay while providing connectedness with high probability. This is a desired property in

52

application scenarios where ad hoc networks continuously connect (birth), perform a

coordinated function for a short amount of time (live) and disconnect (die); connection

setup delays should be a small fraction of these ”birth-live-die” cycles. Keeping this

network operation model in mind, alternative methods for topology construction need

to be studied and compared in terms of delay with the one presented here.

In addition to zero-knowledge network initialization, thereformation of an existing

network in the face of dynamic changes can be viewed as a separate but equally impor-

tant issue. After network connection, a separate topology maintenance and optimization

protocol need to be run to accommodate mobility and/or nodesentering and leaving

the network while ensuring that the scatternet is reformed accordingly. Such a protocol

should be the subject of future research efforts.

53

Chapter 3

Asynchronous TDMA: Scheduling and

Performance

TDMA is a well known access method for provision of bandwidthguarantees in wireless

ad hoc networks. According to TDMA, the system operates using a schedule of period

equal toTsystem slots; at every slot, entities (nodes or links) are scheduled such that there

are no conflicts at the intended receivers. The number of conflict-free slots each entity

receives determines its allocated bandwidth.

A central performance issue that arises in a TDMA-based ad hoc network is deter-

mination of the set of feasible allocations. A demand allocation is feasible if the slot

demand of every entity can be satisfied by a TDMA schedule of length less thanTsystem

slots. Feasibility characterization is intrinsically coupled with an optimization prob-

lem: being able to compute the minimum-length schedule for every demand allocation

is equivalent to being able to detect all feasible allocations.

Most studies of the above optimization problem, along with most proposed central-

ized or distributed TDMA-based protocols, assume the slot boundaries are provided by

a global system clock. However, a system-wide synchronization mechanism is not al-

ways possible to implement in the distributed ad hoc networksetting. In this chapter we

54

introduce an asynchronous TDMA communication model where time slot reference is

provided on a local basis. Since data (as opposed to control)traffic is usually mapped

to the point-to-point (as opposed to broadcast) service, wedefine a link-oriented com-

munication model where time slot reference is provided locally for each link by the

hardware clock of one of the node endpoints. Bluetooth scatternets are ad hoc net-

works that operate according to this model. Asynchronous TDMA removes the need for

a global slot synchronization mechanism; however, certainslots are inevitably wasted

when nodes switch time slot references on their adjacent links. This phenomenon has

been reported in the scatternet scheduling literature [73][78][79] [80][81] as a source

of overhead. However, no formal study has examined its effect on the system’s ability

to allocate bandwidth. This ability is linked to the determination of the region of feasi-

ble allocations or, equivalently, to the solution of the related link schedule optimization

problem.

Due to the slots wasted for time reference alignment, the minimum period required

for realizing a given allocation will be greater than the minimum period required by a

perfectly synchronized system. This increase can be seen asoverhead due to system

asynchronicity. Based on this observation, we can use a two-step procedure to address

the optimal link scheduling problem for asynchronous TDMA ad hoc networks. The

first step involves finding a minimum-period synchronized schedule for the demand al-

location at hand. The second step, our contribution, utilizes the reference synchronized

schedule to find an asynchronous schedule of minimum overhead.

The amount of overhead depends on the order by which links areactivated in the ref-

erence synchronized schedule. We first introduce an algorithm that derives a minimum-

overhead asynchronous schedule for a specific ordering. Thegenerated overhead is

always upper-bounded regardless of ordering or network configuration. Using this al-

55

gorithm, it is possible to determine the optimal solution bysearching over all possible

orderings. This leads to a combinatorial problem where exhaustive search is not feasible

for large problem sizes. To this end, we introduce a heuristic algorithm of reduced com-

plexity. The heuristic performs excellent for problem sizes where an optimal solution

can be computed. When this is not possible, we investigate theeffect of various sys-

tem parameters on the generated overhead and use the upper bound as the performance

measure.

The remainder of this chapter is organized as follows: Section 3.1 introduces a

conflict-free scheduling framework for asynchronous TDMA ad hoc networks. In Sec-

tions 3.2, 3.3 and 3.4 the problem is introduced and formulated and the overhead min-

imization algorithms are presented. Section 3.5 evaluatesthe algorithms performances

in various scenarios. Section 3.6 concludes.

3.1 Asynchronous TDMA communication model

Every wireless node has a hardware clock that determines thetiming of the radio transceiver.

The clocks of different nodes are not synchronized and no mechanism exists for syn-

chronizing them under a global time slot reference.

The ad hoc network is represented as a directed graphG(N,E). A directed edge

from nodei to nodej signifies thati andj are within range and communicate on a link

wherei has been assigned the role of master andj the role of slave.

The system is slotted and carries point-to-point traffic–each transmission slot carries

a packet destined to a single outgoing link. The time slot reference of each link is

provided locally by the hardware clock of the master node endpoint. Each slot supports

full-duplex communication initiated by the master: Duringthe first part of the slot the

56

master polls a slave; during the second part a slave respondsif polled by the master.

Each node has a single radio transceiver and can communicate(either transmit or

receive) to at most one link at a time. Thus, nodes need to coordinate their presence on

links in mutual time intervals. Based on its own hardware clock, each nodei divides

time in fixed-size slots–each equal to the duration of a full-duplex communication slot.

Transmissions on adjacent links are coordinated using a local link scheduleSi of period

Tsystem slots. The local schedule determines communication actionfor the duration of

a slot: the node can either be active on a single link (start acting as master or slave) or

remain idle.

Local schedules of different nodes are not necessarily time-aligned. Every nodei

maintains arelative phaseφi→j with respect to each adjacent link(i, j). If φi→j = −1,

slotp in the local scheduleSi overlaps in time with slots (p− 1, p) in the local schedule

Sj. If φi→j = 1, then slotp in Si overlaps with slots (p, p + 1) in Sj. A relative phase

φi→j = 0 indicates that the hardware clocks of the endpoints happen to be perfectly

synchronized. The relative phase maintained at the other link endpointj is φj→i =

−φi→j. Given the relative phases and master-slave role assignment on link l, the link

phaseφl is defined as the relative phase of the master node endpoint.

According to primary interference constraints, communication is successful on a

link l only if both node endpoints assign time-overlapping slots in their local schedules.

The assignment must be such that when the master starts polling in slotp of its local

schedule, the slave must have assigned slotsp + φl(1+φl)
2

− 1 andp + φl(1+φl)
2

in its

own local schedule for listening to this master. For conflict-free communication onτl

consecutive slots on linkl, the master must allocateτl slots in its local schedule for

polling while the slave must allocate at leastτl + 1 time-overlapping slots for aligning

to the time reference of this master. In general, an extra slot is needed every time a node

57

switches to a new time reference as slave.

- - 1 1 1 - - - - 2 2 2 - - - 1

3 3 - - - 3 3 3 2 2 2 2 3 3 - -

- - - - - - - - 4 4 4 4 - - - -

3 1 1 1 1 3 3 4 4 4 4 4 3 1 1 1

101 2 3 4 5 6 7 8 9 11 1 211 12

SC

SD

SA

SB

........

....

........

....

T=12

12

101 2 3 4 5 6 7 8 9 11 1 211 12 12

101 2 3 4 5 6 7 8 9 11 1 211 12 12

101 2 3 4 5 6 7 8 9 11 1 211 12 12

(b)

B D1

C

A

2

4

3

(-1)(-1)

(-1) (+1)

(a)

Figure 3.1: (a) Network configuration: Each local schedule uses a periodTsystem = 12

slots. Directed edges denote master-slave relationships.NodesA andD act as masters

on all their adjacent links,B is slave on links1,4 and master on link3 andC acts as

slave on all its links. The numbers in parentheses denote link phases. As an example,

since link1 has a link phase of (-1), slotp in the local scheduleSA of masterA must

overlap with slots(p− 1, p) in the local scheduleSC of slaveC. (b) This asynchronous

TDMA schedule corresponds to a system that tolerates secondary interference: links2

and4 can transmit simultaneously. Slots where nodes switch timereference as slaves

are marked in red. The realized slot allocation isτ = (τ1, τ2, τ3, τ4) = (3, 3, 3, 4).

The communication model captures both single channel systems, where both pri-

mary and secondary interference exist as well as multi-channel systems where only

primary interference exists. The interference constraints define which links can be acti-

vated conflict-free in each case. For both types of systems, alink slot allocationτ = [τl]

realized by the network asynchronous TDMA schedule is the number of slots every link

l transmits conflict-free duringTsystem slots which equals the number of slots allocated

58

to l in the local schedule of the master endpoint. Anetwork configurationconsists of

the ensemble of a network topology, link phases and master-slave link role assignments.

Figure 3.1 illustrates an example of a network configuration, asynchronous TDMA link

schedule and the link slot allocation realized by this schedule.

3.2 Problem formulation and approach

Given a network configuration, it would be of interest to determine feasibility of any

given link demand allocation. A demand slot allocationτ is feasible if it can be realized

by a schedule of length less thanTsystem slots. Being able to find the minimum length

for any demand allocation is equivalent to detecting all feasible demand allocations.

For synchronized TDMA ad hoc networks the optimal scheduling problem can be

described by a generic formulation. Let the ad hoc network beshared by a setE

of entities being either nodes or links. An activation setT i is a set of entities that

can transmit conflict-free given the interference constraints in the network. Define

T = {T k : 1 ≤ k ≤ |T |} to be the set consisting of all transmission sets in the ad

hoc network. Given a set of demands (time durations) on the entitiesτ = (τ1,, τ|E|),

we seek a minimum-length TDMA schedule that can realize these demands. The TDMA

schedule can be represented as a sequence of activation setsand their transmission du-

rations. Hence, the optimal TDMA scheduling problem can be solved if we can find

the activation durationλi ≥ 0 of each transmission setT i such thatτ is realized in

minimum time. More formally:

minimize

|T |∑

i=1

λi (3.1)

59

subject to:
|T |∑

i=1

λiI i = τ (3.2)

whereI i is the indicator vector of transmission setT i.

The above formulation applies to both node and link scheduling. The interference

constraints (single-channel or multi-channel system) arecaptured by the indicator vec-

torsI i. The problem has been addressed in both continuous time and slotted time. In

continuous time, the demandsτ and the solution weightsλi are real numbers (rates)

while in slotted time, they are both integer multiples of a constant time interval (slots).

Almost all instances of this problem are NP-complete. The difficulty in solving it

partially stems from the fact that the number of activation sets increases exponentially

with the network size. In continuous time the problem for single-channel systems is

NP-complete for both node scheduling [82] and link scheduling [51]; in multi-channel

systems, link scheduling can be solved in polynomial time [83].

Real-life synchronized TDMA ad hoc networks use the slotted time model. The

network operates according to a TDMA schedule of period equal to Tsystem slots. Each

slot can carry a certain amount of bits; demands for each entity given in bits/sec are

translated in a number of slots. In slotted time, node scheduling has been addressed

in [84][85] for single channel systems; link scheduling hasbeen considered in [51]

for single channel systems and in [52] for multi-channel systems. Unfortunately, all

problem instances in slotted time are NP-complete.

References [84][54][53][55] propose efficient heuristics for the TDMA optimization

problem in slotted time. In [53], Silvester proposes such a heuristic for link scheduling

in single channel systems. Post, Sarachik and Kerschenbaumaddress link scheduling

for both single-channel and multi-channel systems [54]. Broadcast (node) scheduling is

considered in [84]. A unified framework is presented in [55].The optimal scheduling

60

problem is first parametrized with respect to scheduled entities (links or nodes) and in-

terference constraints and then further abstracted to a generic graph coloring problem.

This problem is addressed by a greedy heuristic of polynomial complexity. Alterna-

tively, optimal solutions exist for restricted topologies. For single channel systems, tree

topologies can be optimally scheduled [86]. For multi-channel systems, scheduling links

is equivalent to coloring edges in a multi-graph where the multiple edges between two

node endpoints map to the slot requirement of the corresponding link. If the network

topology is bipartite the optimal solution can be reached using minimum edge-coloring

algorithms for bipartite multi-graphs [87].

Synchronized TDMA can be viewed as a special case of asynchronous TDMA if

all link phases in the network are set to zero. Hence, the optimal link scheduling in

asynchronous TDMA is NP-complete in its general form. Existing heuristics or optimal

solutions for special cases for synchronized systems are not straightforward to apply to

asynchronous TDMA. First, the problem cannot be captured bythe generic formula-

tion of equations (3.1) and (3.2)–the notion of activation sets implies existence of slot

synchronization. Second, graph coloring techniques are not readily applicable. For ex-

ample, in multi-channel systems there exists no one-to-onemapping of the slot demand

per node pair in the network topology graph to multiple edgesfor this node pair in the

corresponding multi-graph: in the asynchronous system, each link slot demand is the

number of slots that should be allocated in the local schedule of the master endpoint;

however the slave endpoint must allocate additional slots in its local schedule for time

reference alignment. Also, as will be evident later in the discussion, the number of addi-

tional slots required in the slave local schedules depends on the order links are activated

in the local schedules of the masters.

Our approach is based on the observation that the additionalslots needed by the

61

slaves yield an increase in period with respect to the minimum period of a perfectly

synchronized system. This period increase is an overhead induced by the system asyn-

chronicity. The link schedule optimization problem for theasynchronous system is

translated to an overhead minimization problem. First, a synchronized link schedule

that realizes the demand allocation is computed. Using thisschedule as a reference

we seek an asynchronous schedule of minimum overhead. If a reference synchronized

schedule of minimum period can be found, a minimum overhead asynchronous sched-

ule is a minimum-period asynchronous schedule. When the reference schedule period

is sub-optimal, a minimum-overhead asynchronous scheduleis still useful: the resulting

period will be compared toTsystem for determining feasibility of the demand allocation

at hand. Therefore, minimum-overhead schedules allow detection of a greater number

of feasible allocations.

The amount of overhead depends on the ordering of link activations in the reference

synchronized schedule. Consider the3-node line configuration of Figure 3.2 where node

B is slave to both nodesA andC and where the demand allocation is3 slots for each

link.

First, let us assume existence of slot synchronization. Since each node can com-

municate to only a single link at a time, the demand allocation can be realized by a

minimum-period schedule of6 slots. In this schedule, each link is activated3 times by

assigning concurrent slots in the endpoints’ local schedules. Figure 5.7(b) illustrates

two possible instances of the minimum-period schedule, each using a different ordering

of link activations.

Figures 3.2(c)-I and 3.2(c)-II are two asynchronous schedules where links are ac-

tivated in the order of Figures 5.7(b)-I and 5.7(b)-II, respectively. Both asynchronous

schedules need a period greater than6 slots to realize the demand allocation: in Figure

62

BA C
1 2

(a) Network configuration:B is

a slave to bothA andC.

1 1 1 - - 1

2 1 1 1 2 2 1

2 - - - 2 2

2

-

SA

SB

SC

....

....

....

....

....

....

-

T=6

-

2

1 - 1 1 - 1

2 1 2 1 1 2 1

2 - 2 - 2 -

2

-

SA

SB

SC

....

....

....

....

....

....

-

T=6

-

2

(I) (II)

(b) Synchronized system: Two possible synchronized schedule instances realizing slot al-

location(τ1, τ2) = (3, 3) in a minimum period of6 slots

- 1 1 1 - - - - -

2 1 1 1 1 2 2 2 2 1

2 - - - - - 2 2 2 -

SA

SB

SC

....

....

....

....

....

....

-

T=8

- 1 - - - 1 - - - 1 - - -

2 1 1 2 2 1 1 2 2 1 1 2 2 1

2 - - - 2 - - - 2 - - - 2 -

SA

SB

SC

....

....

....

....

....

....

-

T=12

I II

(c) Asynchronous system: Depending on the order of link activations, slot allocation

(τ1, τ2) = (3, 3) is realized by schedules of different minimum periods.

Figure 3.2: An example of the asynchronicity overhead

63

3.2(c)-I nodeB switches time reference only once per link yielding a periodof 8 slots;

in Figure 3.2(c)-II nodeB is forced to switch time reference every slot, yielding a period

of 12 slots.

In the example of Figure 3.2, it is possible to determine by inspection the link or-

dering and asynchronous schedule that yield minimum overhead (Schedule 3.2(c)-I).

However, for arbitrary configurations and demand allocations a systematic approach is

needed. We first introduce an algorithm that finds a minimum overhead asynchronous

schedule for a fixed ordering of link activations in the reference synchronized sched-

ule. This algorithm can be used to determine the minimum-overhead schedule over all

possible orderings via exhaustive search. The following sections describe in detail our

approach for the solution of this problem.

3.3 Equivalent schedules

A link activation setconsists of links that can simultaneously transmit withoutconflicts

to the intended receivers. Asynchronized link schedulẽS of period T̃ is a collection

of link activation sets{Ak : 1 ≤ k ≤ T̃}. A synchronized schedule instanceS̃(π) is a

periodic sequence of a specific orderingπ of the link activation sets of̃S:

S̃(π) = (Aπ(1), ..., Aπ(T̃)). (3.3)

whereπ is a mapping of the indices{1, ..., T̃} → {1, ..., T̃}.

Let S̃
(π)

be a synchronized schedule instance realizing allocationτ . For the ordering

of link activations inS̃
(π)

, allocationτ can be realized by more than one asynchronous

schedules, each having a different period.

Consider the synchronized schedule instance of Fig. 5.7(b)-I that realizes allocation

64

(τ1, τ2) = (3, 3) by activating each link in3 consecutive slots. For this ordering of

link activations, the asynchronous schedule of Fig. 3.2(c)-I realizes the same allocation

using a period of8 slots. If slaveB spent5 slots instead of4 listening on link1, the

same demand allocation would also be realized with this ordering of link activations but

the overall period of the resulting asynchronous schedule would be9 slots instead of8.

We define an asynchronous scheduleS(π) to beequivalentto a synchronized sched-

ule instancẽS
(π)

if the following conditions hold:

• (E.1): Every node activates its adjacent links inS(π) in the same order as iñS
(π)

.

• (E.2): S(π) realizes the same allocation asS(π).

• (E.3): S(π) satisfies (E.1) and (E.2) in minimum period.

Thus, an equivalent scheduleS(π) of a synchronized schedule instanceS̃(π) is an

asynchronous schedule that yields minimum overhead for theordering of link activa-

tions inS̃(π).

We now present an algorithm called EQUIVALENT that takes a network config-

uration and a reference synchronized schedule instanceS̃
(π)

as input and outputs the

equivalent asynchronous scheduleS(π) of S̃
(π)

.

EQUIVALENT constructsS(π) incrementally by iterating over the link activation

sets ofS̃
(π)

. During iterationk, let l be a link in activation setAπ(k) andi andj be its

master and slave endpoints. Also letp
(k−1)
i andp

(k−1)
j be the last assigned slot positions

in the local schedulesS(π)
i andS

(π)
j , respectively (p(0)

n = 0,∀n ∈ N).

First, masteri determines the earliest possible slotp
(k)
i to be assigned to linkl in

S
(π)
i . There are three possible cases:

65

• Case A: Link l was activated in iteration k − 1: The local schedules are ”in

synch” and nodei can allocate to linkl the next slot:

p
(k)
i = p

(k−1)
i + 1 (3.4)

• Case B: Link l was not activated in iteration k − 1 and p
(k−1)
i > p

(k−1)
j : The

master’s local schedule is considered forward in time with respect to the slave’s

local schedule. The earliest slot is again:

p
(k)
i = p

(k−1)
i + 1 (3.5)

• Case C: Link l was not activated in iteration k − 1 and p
(k−1)
j ≥ p

(k−1)
i : The

slave’s local schedule is considered forward in time with respect to the master, so

the master must find the earliest unassigned slot inS
(π)
i whose start time exceeds

the end time of slotp(k−1)
j in S

(π)
j :

p
(k)
i = p

(k−1)
j +

φ2
l − φl + 2

2
, φl ∈ {1, 0,−1} (3.6)

Then i assigns slotp(k)
i to link l. If any intermediate unassigned slots exist between

p
(k−1)
i andp

(k)
i , they are assigned as idle inS(π)

i .

Once the master updates its local schedule, slavej determinesp(k)
j as the earliest

unassigned slot inS(π)
j whose end time exceeds the end time ofp

(k)
i in S

(π)
i . Depending

on the link phaseφl the position of this slot is computed as:

p
(k)
j = p

(k)
i +

φl(1 + φl)

2
, φl ∈ {1, 0,−1} (3.7)

If there are any unassigned slots betweenp
(k−1)
j andp

(k)
j , they are assigned to linkl in

S
(π)
j .

The same assignment steps are performed for every linkl in Aπ(k). For every node

n not considered during iterationk, p
(k)
n = p

(k−1)
n . At the end of iterationk, theforward

66

progressf(k) is defined as:

f(k) = max
n∈N

{p(k)
n } (3.8)

After T̃ iterations, the asynchronous schedule periodT (π) is set to the forward progress

f(T̃). Then, starting again fromAπ(1), a few extra iterations are performed until all

nodes assign their local schedules up to slotT (π). Upon termination, all nodes use the

first T (π) slots in their local schedules to form an asynchronous schedule with this pe-

riod. An example of the algorithm operation is illustrated in Figure 3.3; the algorithm

pseudocode can be found in Chapter Appendix 3.

Proposition 3.3.1 The computational complexity of EQUIVALENT isO(NT̃).

Proof During iterationk of EQUIVALENT the link activation setAπ(k) is added to the

asynchronous schedule. Addition of each linkl of Aπ(k) requires a constant number of

arithmetic operations:

• Checking whether linkl = (i, j) is inAπ(k−1): This operation can be performed by

inspecting if slotsp(k−1)
i andp

(k−1)
j have been assigned tol in the local schedules

S
(π)
i andS

(π)
j , respectively. (two comparisons).

• Comparingp(k−1)
i with p

(k−1)
j (one comparison).

• Updatingp
(k)
i andp

(k)
j (two additions).

SinceAπ(k) is a matching in the network topology graph, it consists of atmostN/2

links, the size of a perfect matching. Therefore, insertionof a link activation setAπ(k)

requiresO(N) operations. EQUIVALENT requires̃T iterations to determine the period

of the asynchronous scheduleT (π), as well as a certain number of additional iterations

until all nodes fill their local schedules up toT (π). Due to the schedule periodicity, there

67

B1

4D

E

AC

2

5

3

(-1)

(+1)

(-1) (+1)

(+1)

(a) Network configuration

- 1 1 - - - 1 1 1 1 - 1 1 -

2 1 1 5 5 5 1 1 1 1 2 1 1 5

4 4 3 3 3 3 4 4 3 4 4 4 3 3

4 4 - 5 5 5 4 4 - 4 4 4 - 5

2 - 3 3 3 3 - - 3 - - 3 3

10 1 2 3 4 5 6 107 8 9 19

........

....

........

....

........

T=10

2

2

A
B

C

D

E

(b) Reference synchronized schedule instance of period

T̃ = 10 slots, realizing allocation(τ1, τ2, τ3, τ4, τ5) =

(6, 1, 5, 5, 3).

1

1

3 3

3

(1)

(1) (1)

(1)

(1)

1 112 3 4 5 6 7 8 9 10 12 13 14 15

101 2 3 4 5 6 7 8 9 11 12 13 14

16 17

15 16

101 2 3 4 5 6 7 8 9 11 12 13 14 15 16

101 2 3 4 5 6 7 8 9 11 12 13 14 15

101 2 3 4 5 6 7 8 9 11 12 13 14 15 16

SA

SB

SC

SD

SE

........

....

........

....

........

5

5 5

-

(2) (2)

(2)(2)

5

5
(3)

(3)

(2)

(3)

3 3
(3)

3 3
(2)

3

3

5

5
(4)

(4)

(4)

(4)

1 1

1

4 4

4-

- - - - -

(5) (5)

(5)

(5)(5)

(5) (5)

(5) (5) (5) (5) (5)

1

1

4

4
(6)

(6)

(6)

(6)

1

1

3 3

3----

(7)

(7) (7)

(7)

(7) (7) (7) (7) (7)

1

1

4 4

4- - -

(8)

(8)

(8) (8)

(8) (8) (8) (8)

4

4

2

-

2

-
(9) (9)

(9) (9)

(9)

(9)

4

4

1

1 1

(10)(10)

(10)(10)(10)(10)

(10)

(10)

2 - -

1

1

3

3 3

-

(11)

(11)(11)

(11)

(12)

(9)(11)(11)(11)

16

17

17

5

5 5

(12)(12)

-

3

3
(12)

(12)

(12)(12)

(c) Numbers in parentheses indicate iteration where the slot was assigned on

each node’s local schedule. Switching slots are shaded. Theequivalent schedule

period (=14) is determined at the10th iteration. Two additional iterations are

performed so that all nodes assign their local schedules up to this period.

2 3 4 5 7 8 1012 13 14

2 3 4 5 7 8 1012 13 14

1 3 4 5 7 8 9 10 12 14

1 1 1 1 7 8 9 10 10 14

0 2 3 4 6 7 7 11 13

(k) (1) (2) (3) (4) (5) (6) (10)(7) (8) (9)

12

1 2 3 4 4 4 9 9 1111

0

0

0

0

(0)

0

pD
(k)

pE
(k)

pA
(k)

pB
(k)

pC
(k)

f(k)

0

(d) Evolution ofp(k)
n andf(k).

Figure 3.3: An example of the EQUIVALENT algorithm execution
68

will be no more thanT̃ extra iterations. Therefore, EQUIVALENT requires at most

2T̃ iterations (O(T̃)). Since each iteration requiresO(N) operations, the complexity of

EQUIVALENT is O(NT̃).

For any network configuration and any link activation ordering π, EQUIVALENT

possesses two important properties, summarized by the following theorems:

Theorem 3.3.2 The asynchronous scheduleS(π) derived by EQUIVALENT incurs min-

imum overhead for the link activation ordering corresponding toS̃
(π)

.

Proof We need to show that the reference synchronized scheduleS̃
(π)

and the derived

asynchronous scheduleS(π) satisfy the following conditions:

1. Nodes activate the links in the same order in both schedules.

2. Both schedules realize the same slot allocation.

3. ScheduleS(π) is conflict-free and has the minimum possible period for the order-

ing π of link activations.

Condition 1 is satisfied because the link activation set instances are added toS(π) in a

sequential manner. Also, when a linkl = (i, j) is added at iterationk, the masteri

assigns only one slot to linkl. Thus the link masters assign in their local schedules a

number of slots equal to the number of slots assigned tol in the synchronized schedule.

Since a slot allocation of an asynchronous schedule is defined as the number of conflict-

free slots in the local schedules of the master node endpoints, condition 2 also holds.

Regarding condition3, when a linkl is considered on iterationk, equations (3.6)

and (3.4) forp(k)
i ensure that the masteri assigns the earliest possible slot in its local

schedule that does not overlap in time with the last assignedslotp(k−1)
j of slavej. Then,

equation (3.7) forp(k)
j ensures that the slave will assign the smallest possible number

69

of time overlapping slots with respect top(k)
i . Similarly, every other endpoint node for

a link of iterationk progresses in its local schedule by the minimum number of slots

that guarantee a conflict-free transmission. Thus, at everystepk, the forward progress

f(k) = max
n∈N

{p(k)
n } is the minimum possible. Since this property holds for all stepsk,

it also holds forf(T̃) which is, by definition, the period of the resulting asynchronous

schedule.

Theorem 3.3.3 If T̃ is the period of the reference synchronized schedule, the period

T (π) of anyequivalent asynchronous schedule is upper bounded by2T̃ .

Proof To prove Theorem 3.3.3, we first establish the following lemmae:

Lemma 3.3.4 For every master-slave link(i, j) let L
(k)
ij = max{p

(k)
i , p

(k)
j }. Then the

following inequalities hold:

L
(k)
ij − L

(k−1)
ij ≥ 0, ∀k = 1, 2, .., T̃ . (3.9)

L
(k)
ij − L

(k−1)
ij ≤ 2, ∀k where link (i, j) is activated. (3.10)

Proof When link (i, j) is activated in iterationk, both nodesi andj assign slots in

their local schedule and thereforeL
(k)
ij > L

(k−1)
ij . If nodesi andj are not involved in any

link activation during iterationk, thenL
(k)
ij = L

(k−1)
ij sincepi andpj are not updated.

Therefore in generalL(k)
ij ≥ L

(k−1)
ij .

We now prove the upper bound. Let link(i, j) where master isi and slave isj be

activated in iterationk. If this is the case then due to equation (3.7),p
(k)
j ≥ p

(k)
i and

thereforeL
(k)
ij = p

(k)
j . We now distinguish 3 different cases that arise when the link

(i, j) is activated in iterationk:

• Link (i, j) was activated in iterationk − 1: Equation (3.7) was used in iteration

k-1 and thereforep(k−1)
j = p

(k−1)
i + φl(1+φl)

2
≥ p

(k−1)
i . ThereforeL(k−1)

ij = p
(k−1)
j .

70

From equations (3.6) and (3.7),p
(k)
j = p

(k−1)
i + 1 + φl(1+φl)

2
. SinceL

(k)
ij = p

(k)
j ,

we finally have that

L
(k)
ij − L

(k−1)
ij = 1 ≤ 2. (3.11)

• Link (i, j) was not activated in iterationk − 1 and p
(k−1)
i > p

(k−1)
j : In this case

L
(k−1)
ij = p

(k−1)
i . Also from equations (3.6) and (3.7) we have thatL

(k)
ij = p

(k)
j =

p
(k−1)
i + 1 + φl(1+φl)

2
. Therefore,

L
(k)
ij − L

(k−1)
ij = 1 +

φl(1 + φl)

2
≤ 2. (3.12)

• Link (i, j) was not activated in iterationk − 1 and p
(k−1)
j ≥ p

(k−1)
i : In this case

L
(k−1)
ij = p

(k−1)
j . Application of equations (3.6) and (3.7) yieldsL

(k)
ij = p

(k)
j =

p
(k−1)
j + 2 and then:

L
(k)
ij − L

(k−1)
ij = 2 ≤ 2. (3.13)

For all casesL(k)
ij − L

(k−1)
ij ≤ 2.

Lemma 3.3.5 The following property holds for the forward progressf(k) for every

iterationk:

0 ≤ f(k) − f(k − 1) ≤ 2, ∀k = 1, 2.., T̃ (3.14)

Proof We use contradiction. Suppose there is an iterationk for whichf(k)−f(k−1) >

2. Sincef(k) is strictly greater thanf(k − 1) the increase in the forward progress was

contributed by at least one linkl = (i, j) in the link setAπ(k) that was activated during

this iteration. This means thatL
(k)
ij = f(k). From Lemma 3.3.4 it holds that:

L
(k−1)
ij ≥ L

(k)
ij − 2 ⇔

L
(k−1)
ij ≥ f(k) − 2

(3.15)

71

and from the hypothesis we have thatf(k − 1) < f(k) − 2. Therefore it must be that

L
(k−1)
ij > f(k−1). We arrive at a contradiction since by the definition of thesequantities

this implies thatmax{p
(k−1)
i , p

(k−1)
j } > max

n∈N
{p(k−1)

n }.

We are now ready to prove Theorem 3.3.3. Starting from Lemma 3.3.5:

T̃∑

k=1

(f(k) − f(k − 1)) ≤
T̃∑

k=1

(2)
f(0)=0
⇐⇒

f(T̃) ≤ 2T̃
T (π)△=f(T̃)
⇐⇒

T (π) ≤ 2T̃

Theorem 3.3.3 states that the maximum overhead of an equivalent schedule is̃T

slots. This leads to the following statement for feasibility of allocations in asynchronous

TDMA ad hoc networks:

Corollary 3.3.6 Consider an asynchronous TDMA ad hoc network operating with a

period Tsystem and a demand allocationτ . If τ can be realized by asynchronized

schedule of period̃T ≤ ⌊Tsystem/2⌋, thenτ is feasible by the asynchronous system.

Proof From Theorem 3.3.3, for any permutationπ:

T (π)(τ) ≤ 2T̃ (τ)

≤ 2(⌊Tsystem/2⌋)

≤ Tsystem

Theorem 3.3.2 states thatT (π)(τ) is the minimum period that can be generated by link

activation orderingπ. Since the minimum period is less than or equal to the system

period, the allocationτ is feasible.

Corollary 3.3.6 asserts that EQUIVALENT can realize at leasthalf the allocations

that are feasible under perfect synchronization. If the condition T̃ ≤ ⌊Tsystem/2⌋ holds

72

for a demand allocation, any reference synchronized schedule instance can be used to

generate an asynchronous schedule realizing this allocation. Otherwise, we must solve

the optimization problem addressed next.

3.4 Computing optimal asynchronous schedules

3.4.1 Optimal algorithm

The optimal asynchronous schedule can be determined by executing EQUIVALENT for

all T̃ ! synchronized schedule instancesS̃
(π)

and selecting the equivalent schedule of

minimum overhead. Such an exhaustive search is prohibitiveeven for small values of

T̃ .

A link activation set may appear multiple times in the reference synchronized sched-

ule. The search space can be reduced if we consider only reference schedules where all

instances of each link activation set are scheduled in consecutive slots–no switching

slots are generated by EQUIVALENT whenAπ(k−1) = Aπ(k); the overhead is zero dur-

ing such a transition. IfM(S̃) is the set ofdistinct link activation sets appearing in the

reference schedule, we only need to search|M(S̃)|! schedule instances instead ofT̃ !.

Unfortunately, even|M(S̃)|! can be prohibitively large for exhaustive searches. In this

case we resort to the heuristic algorithm introduced in the next section.

3.4.2 MIN PROGRESS

MIN PROGRESS is a heuristic for overhead minimization that consists of two phases.

Phase I determines an orderingπh of the distinct link activation sets inM(S̃). Phase II

involves two steps: first, a synchronized schedule instanceis formed, where distinct link

activation sets are ordered according toπh and the instances of each set are activated

73

in consecutive slots. Second, this synchronized schedule instance is input to EQUIVA-

LENT to generate the final asynchronous schedule.

We now describe Phase I that selectsπh. An asynchronous schedule is constructed

using only the distinct link activation sets instead of all their instances. The sets are

added to the asynchronous schedule in the same way as instances are added in EQUIV-

ALENT. Upon initialization, an arbitrary link activation set of the setM(S̃) is added to

the asynchronous schedule. LetU (k−1) be the set of all unassigned link activation sets

at the start of iterationk (U (0) = M(S̃)). The addition of each setMα of U (k−1) will

generate a forward progressf(α, k) for the asynchronous schedule. The algorithm se-

lects the link activation set yielding minimum forward progress, with ties being broken

arbitrarily. LetMαk be the selected set. Then thek-th entry ofπh is set toαk and set

Mαk is removed from theU -set. The same steps are repeated until theU -set becomes

empty after|M(S̃)| iterations.

Phase I can be extended to select and insert multiple link activation sets per iteration,

according to a horizon parameterh. During iterationk, all possibleh-set blocks in the

U -set and all possible orderings (h!) of the link activation sets within eachh-set block are

considered. The block and ordering that yields minimum forward progress is selected

and added to the asynchronous schedule. The selected block is removed from theU -set

and the next iteration is performed. Depending on whetherh divides |M(S̃)| or not,

the algorithm will terminate in⌊ |M(S̃)|
h

⌋ or ⌊ |M(S̃)|
h

⌋ + 1 iterations, respectively. The

algorithm pseudocode can be found in Chapter Appendix 3.B.

For the minimum horizon value (h = 1), each block consists of a single activa-

tion set. During iterationk, the remaining|M(S̃)| − k activation sets in heU -set

are tested. Therefore, only
|M(S̃)|∑

k=1

k =
(|M(S̃)|)(|M(S̃)| + 1)

2
tests or, equivalently,

O(N |M(S̃)|2) operations are performed in this case. Increasing the horizon h is ex-

74

pected to improve performance because more orderings are tested per iteration. This,

however, comes at an expense of computational complexity. For the maximum horizon

value (h = |M(S̃)|) MIN PROGRESS is essentially the optimal algorithm–it includes

a single iteration where a block of|M(S̃)|! orderings must be exhaustively tested.

The dependence of complexity onh is summarized by the following proposition:

Proposition 3.4.1 For h > 0 and fixed, the computational complexity of MINPROGRESS

is O(N |M(S̃)|h+1).

Proof Let M be the number of distinct activation sets in the reference synchronized

schedule (M = |M(S̃)|). The complexity of MINPROGRESS is determined by the

complexities of Phases I and II:

1) Complexity of Phase I:During iterationk,
(

M−(k−1)h
h

)
blocks are considered

and, for each block,h! orderings of activation sets are tested. Depending on whether h

dividesM or not, the last iteration will consist of a single block ofh or (M mod h)

activation sets, respectively. Testing each ordering of activation sets involves insertion of

h activation sets to the asynchronous schedule. Therefore, the total number of insertions

CI throughout the execution of Phase I is given by:

CI =

⌊M
h
⌋∑

k=1

(
M − (k − 1)h

h

)
· h! · h + r(M,h) · h (3.16)

where

r(M,h) =





(M mod h)! if M mod h 6= 0

0 otherwise
(3.17)

After some algebraic manipulations, equation (3.16) yields:

CI = h

⌊M
h
⌋−1∑

k=0

h−1∏

i=0

((M − i) − hk) + r(M,h) · h (3.18)

75

An upper bound toCI is:

CI < h

⌊M
h
⌋−1∑

k=0

h−1∏

i=0

(M − hk) + r(M,h) · h

= h

⌊M
h
⌋−1∑

k=0

(M − hk)h + r(M,h) · h

= h

⌊M
h
⌋−1∑

k=0

h∑

i=0

(−1)iaiM
h−i(hk)i + r(M,h) · h

= h
h∑

i=0

(−1)iaih
iMh−i

⌊M
h
⌋−1∑

k=0

ki + r(M,h) · h

= h
h∑

i=0

(−1)iaih
iMh−i

⌊M
h
⌋−1∑

k=1

ki + r(M,h) · h (3.19)

whereai are positive integers. The termr(M,h) · h is constant, since(M mod h) <

h. The term

⌊M
h
⌋−1∑

k=1

ki is Θ(M i+1) because the power sum
n∑

k=1

ki can be expanded in

polynomial form as
i+1∑

j=0

bjn
j, wherebj are integers. Multiplying this term withMh−i in

(3.19), causes the entire term in (3.19) to beΘ(Mh+1).

A lower bound toCI is:

CI > h

⌊M
h
⌋−1∑

k=0

h−1∏

i=0

((M − (h − 1)) − hk) + r(M,h) · h (3.20)

and can be shown to beΘ(Mh+1) in a similar way as (3.19). Therefore,CI is Θ(Mh+1).

From the proof of Proposition 1, the insertion of each activation set requiresO(N)

operations. Thus, the number of operations needed by Phase Iis O(NMh+1).

2) Complexity of Phase II: Given the orderingπh computed by Phase I, Phase II

uses EQUIVALENT to generate the corresponding minimum-overhead asynchronous

schedule. According to Proposition 1, EQUIVALENT requiresO(NM) operations for

insertingM blocks of activation sets.

76

From 1) and 2), we conclude that the complexity of MINPROGRESS is dominated

by the complexity of Phase I and isO(NMh+1).

Given a specific input reference schedule, the horizonh must be carefully selected

for tractability. According to MINPROGRESS, the maximum number of
(
|M(S̃)|

h

)

blocks must be considered in the first iteration. The horizonh must be selected small

enough to allow exhaustive enumeration of this number, as well as exhaustive enumer-

ation of h! orderings per block. The algorithm performance with respect to h will be

investigated next in the experiments section.

3.5 Performance Evaluation

3.5.1 Factors affecting the overhead

We are interested in evaluating performance in view of the factors that affect the asyn-

chronicity overhead. The overhead is first related to the topology structure. In gen-

eral, denser topologies are expected to produce higher overhead because more links will

translate to a higher number of time reference switches. Performance is also affected by

the master-slave role assignments. In the example of Figure3.2, if nodeB is assigned

as master to nodesA andC, the overhead is zero due to the single time reference in the

system.

For a specific network configuration the overhead also depends on the demand al-

location at hand. A parameter specific to the demand allocation is the ratio|M(S̃)| of

distinct link activation sets to the period̃T of the optimal reference schedule. A small

ratio is desirable because overhead is generated only during the transitions between

distinct activation sets in the synchronized schedule. Another related parameter is the

periodT̃ of the synchronized schedule. Larger periods may allow for smaller|M(S̃)|/T̃

77

ratios and, therefore, less generated overhead.

3.5.2 Experimental setting

Performance must be evaluated for a variety of network configurations and optimal ref-

erence synchronized schedules. As mentioned in Section 3.2, determination of optimal

synchronized schedules is in general a NP-complete problem. However, for bipartite

topologies in multi-channel systems, the minimum period equals the maximum node

utilization:

T̃ (τ) = max
i∈N

∑

l∈L(i)

τl. (3.21)

whereL(i) is the set of adjacent links to nodei. Thus, in this case, optimal reference

synchronized schedules of period̃T can be constructed by generating arbitrary conflict-

free schedules where at least one node transmits during the entire period.

In our experiments we consider|N |-node multi-channel bipartite networks with

|N |/2 nodes per bipartite set. This provides a baseline topology of |N |2/4 links. We use

the restrictive parametersBmax andf to generate various topologies from the baseline.

The channel degree parameterBmax is an upper bound on the number of channels a

node can participate as slave. Such a constraint would arisein practice to avoid exces-

sive overhead. We also restrict the number of links where a node can act as master to7.

This restriction is specific to Bluetooth, a multi-channel asynchronous TDMA system.

Combined withBmax, this provides an upper bound ofBmax + 6 to the overall link de-

gree of each node in the topologies we consider. The density parameterf (0 ≤ f ≤ 1)

generates topologies where an arbitraryf × 100% links of the baseline topology remain

intact while the rest have been removed.

Given a topology constructed as above, asynchronicity is introduced by 1) master-

slave role assignments on the links and 2) arbitrary phase differences in the hardware

78

clocks of the nodes in the network. According to the link roleassignments, a node may

act either as master to all its adjacent links (master) or as slave to all its adjacent links

(S/S bridge), or as master to some links and slave to others (M/S bridge).

3.5.3 Performance of MIN PROGRESS with respect to optimal

Six 20-node bipartite topologies (10 masters and10 S/S bridges) of varying density are

considered in this experiment. For each topology we randomly generate100 reference

synchronized schedules of period̃T = 7. This period allows exhaustive search and

determination of the optimal asynchronous schedule. Figure 3.4 compares the resulting

optimal and MINPROGRESS periods. For each topology, the periods are averaged

over all reference schedules. Using a horizonh = 1, MIN PROGRESS exceeds the

optimal by less than one slot on the average, while in topology 5 it exceeds the optimal

by 1.3 slots on the average.

The optimal and MINPROGRESS periods increase withBmax and forBmax = 7

they both approach14 slots, the upper bound of EQUIVALENT. The high overhead

stems fromBmax being equal to the small reference periodT̃ : S/S bridges with such a

channel degree need to switch time reference at almost everyslot regardless of the link

activation order in the reference schedule.

3.5.4 Performance of MIN PROGRESS for large problem sizes

For each parameter set(N,Bmax, f, T̃) we generate10 topologies and, for each topol-

ogy, 100 arbitrary reference synchronized schedules. For each(N,Bmax, f, T̃), the

overhead is averaged over the corresponding topologies andreference schedules and

is plotted as the %increase in the reference periodT̃ . If Th is the period computed by

MIN PROGRESS, this quantity is equal toTh−T̃

T̃
, with 100% denoting that MINPROGRESS

79

B
max

Pe
rio

d
len

gt
h

(s
lo

ts
)

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14
T
T

opt
−T

T
h
−T

opt

Figure 3.4: MINPROGRESS vs. optimal. Each bar graph corresponds to a different

20-node bipartite network configuration where density increases by varyingBmax from

2 to 7. The reference synchronized schedule period is7 slots. The optimal periodTopt

and the MINPROGRESS (h = 1) periodTh of each bar are averages of100 reference

synchronized schedules.

yields period2T̃ , the upper bound of EQUIVALENT. We proceed by investigatingthe

various factors that affect the performance of MINPROGRESS.

Effect of horizon

In this set of experiments, we use20-node bipartite topologies (10 masters and10 S/S

bridges) and vary the density parameterf (Bmax = 7) and reference period̃T . Figure

3.5 plots the overhead of MINPROGRESS using up to3 activation sets per block (h=1

to h=3).

For all scenarios, the overhead decreases ash increases. The improvement is always

more drastic fromh = 1 to h = 2 than fromh = 2 to h = 3. Usingh = 2 instead of

h = 1 appears beneficial for larger periods and densities (bar graphsf = 0.6, 0.9 in Fig.

3.5(c) and Fig. 3.5(c)), with a maximum overhead reduction of 13% at T̃ = 112 and

80

f = 0.9.

For the lowest density considered, MINPROGRESS performs similarly for allh. Over-

all, a horizonh = 2 seems to provide a good performance/complexity trade-off at higher

reference periods and topology densities, while a horizonh = 1 appears sufficient at low

topology densities.

Effect of phase and role assignments

Consider a topology graph G(N,E). Since for every linkl, φl can be -1, 0, or 1, there

are3|E| possible link phase assignments in the network. Also, thereare2|E| possible

master-slave link role assignments.

In this experiment, we consider20-node bipartite topologies. For a specific topol-

ogy and reference synchronized schedule, we measure the standard deviation of the

generated overhead of MINPROGRESS for a sample of1000 arbitrary phase (or role)

assignments. Then, for each parameter set (f ,T̃) we plot the average standard deviation

over the corresponding topologies and reference schedules.

For every (f ,T̃), role variability (Fig 3.7) produces higher standard deviation than

phase variability (Fig 3.6)–the difference never exceeds1%. Apart from this differ-

ence, both figures have similar properties: For a fixed density the standard deviation

appears insensitive tõT–less than 0.5% changes are observed. However, for everyT̃ ,

the standard deviation decreases as the density increases.This indicates that the over-

head deviates less from a certain mean as the number of links per locality increases;

therefore variability in phase and role assignments affectthe algorithm performance to

a lesser extent in this case.

81

f

 %
H

eu
ri

st
ic

 O
ve

rh
ea

d

0.3 0.6 0.9
0

10

20

30

40

50

60

70

80

90

100
h=1
h=2
h=3

(a) T̃ = 28 slots,Bmax = 7, f varies.

f

%
 H

eu
ri

st
ic

 O
ve

rh
ea

d

0.3 0.6 0.9
0

10

20

30

40

50

60

70

80

90

100
h=1
h=2
h=3

(b) T̃ = 112 slots,Bmax = 7, f varies.

f

%
 H

eu
ri

st
ic

 O
ve

rh
ea

d

0.3 0.6 0.9
0

10

20

30

40

50

60

70

80

90

100
h=1
h=2
h=3

(c) T̃ = 448 slots,Bmax = 7, f varies.

Figure 3.5: Effect of the choice of horizon for varying topology densities and reference

periods (N = 20, Bmax = 7).
82

f

%
Ov

er
he

ad
 d

ev
iat

io
n

0.3 0.6 0.9
0

1

2

3

4

5

6

7

8

9

10
T

ref
=28

T
ref

=112
T

ref
=448

Figure 3.6: Average overhead standard deviation due to linkphase variability for20-

node networks and various values off andT̃ (h = 1, fixed link roles per topology)

.

f

%
Ov

er
he

ad
 d

ev
iat

io
n

0.3 0.6 0.9
0

1

2

3

4

5

6

7

8

9

10
T

ref
=28

T
ref

=112
T

ref
=448

Figure 3.7: Average overhead standard deviation due to linkrole assignment variability

for 20-node networks and various values off and T̃ (h = 1, fixed link phases per

topology).

83

Effect of density

Here, a100-node (50 masters,50 S/S bridges) baseline bipartite topology is used. Figure

3.8 illustrates the effect ofBmax on the overhead of MINPROGRESS. For fixed̃T the

overhead consistently increases withBmax. At T̃ = 28, the overhead is15% when

Bmax = 2 but reaches60% whenBmax = 7. The overhead decreases as the reference

period increases. AtBmax = 7 the overhead reduces to30% for T̃ = 896 slots. While

this decrease is more drastic for transitions between smaller periods (e.g. from28 to 56

slots), it is less for larger periods (e.g. from448 to 896 slots). This indicates that a non-

negligible overhead may still exist even if the system uses alarge period. Similar trends

arise in Figure 3.9 whereBmax = 7 and only parameterf is used to vary the topology

density. The overhead increases with network density regardless of the number of time

references in which each node participates.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

10

20

30

40

50

60

70

80

90

100

B
max

%
He

ur
ist

ic
Ov

er
he

ad

T=28
T=56
T=112
T=224
T=448
T=896

Figure 3.8: Overhead of MINPROGRESS (h = 1) for 100-node networks asBmax and

T̃ vary (f = 1.0)

84

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

%
 H

eu
ris

tic
 O

ve
rh

ea
d

f

T=28
T=56
T=112
T=224
T=448
T=896

Figure 3.9: Overhead of MINPROGRESS(h = 1) for 100-node networks asf andT̃

vary (Bmax = 7).

Effect of demand allocation

The previous experiments investigated the algorithm performance averaged over arbi-

trary demand allocations and topologies. A natural question that arises next is whether

there exists a network configuration and demand allocation for which the generated

overhead is maximized. In this section we make a first attemptto informally classify

such worst-case instances and then test our intuition through simulations.

Let the topology be bipartite andΨ(T̃) be the set of all allocations realized by a

synchronized schedule of minimum periodT̃ . For any allocationτ in Ψ(T̃), let BN(τ)

be the set of nodes that receive maximum utilizationT̃ underτ .

BN(τ) = {n : arg max
i∈N

∑

j∈N(i)

τij}. (3.22)

We conjecture that maximum overhead will be generated if thefollowing conditions

hold for a demand allocationτmax in Ψ(T̃) and at least one of the bottleneck nodes in

BN(τmax):

• P1: In addition to maximum utilization, the node has maximum link degree.

85

• P2: The node is a S/S bridge.

• P3: Allocationτmax is such that the node is requested to allocate an equal number

of slots to its adjacent links.

A maximum utilization node will be considered at every iteration of an overhead min-

imization algorithm. Also, since this is a node of maximum degree and acts as a S/S

bridge, it will visit the maximum possible number of time references (Bmax) as slave. If

link demands are equal for this node, we can show that the overhead will be maximized

under the worst ordering of link activations.

A maxmin fair allocation in a synchronized multi-channel wireless ad hoc network

maximizes utilization of the nodes with maximum link degree[88, 89]. If at least one

of these nodes is also assigned as a S/S bridge then conditions P1-P3 will hold.

Figure 3.10 compares the MINPROGRESS overhead resulting from a maxmin

fair reference schedule and the average MINPROGRESS overhead over100 arbitrary

schedules. (The algorithm in [88] is used to compute the reference maxmin fair sched-

ules).

The average MINPROGRESS overhead decreases as the system period increases.

The overhead for the maxmin fair schedule however, does not change significantly–

in the order of80% for all cases. This indicates that the overhead can be very high

for the allocations we identified even if an overhead minimization algorithm such as

MIN PROGRESS is used. Counterintuitively, the overhead remains high even if the

reference period increases. Nevertheless, it is always less than the upper bound given

by EQUIVALENT.

86

T
ref

 (slots)

%
He

ur
ist

ic
Ov

er
he

ad

28 56 112 224 448 896
0

10

20

30

40

50

60

70

80

90
Average
MMF

Figure 3.10: MINPROGRESS overhead for maxmin fair allocations vs. average

MIN PROGRESS overhead. For each reference period, both quantities are averaged

over all topologies considered in Figures 3.8 and 3.9

3.6 Summary

In this chapter, we addressed the problem of minimizing overhead in TDMA wireless

ad hoc networks that use multiple local time slot referencesinstead of a single global

time slot reference. This overhead arises due to slots wasted when nodes synchronize

to the different local time slot references and manifests asloss of supported allocations

with respect to a perfectly synchronized system. The problem was cast and addressed

using a generic framework; the results can be directly applied to Bluetooth, a wireless

technology operating according to the asynchronous TDMA communication paradigm.

It was demonstrated that the overhead can significantly affect the ability of a net-

work to allocate bandwidth if no measures are taken to minimize it. We introduced two

scheduling algorithms that aim to minimize overhead while ensuring that the generated

overhead has an upper bound regardless of the network configuration or demand alloca-

tion at hand. The first algorithm reaches the optimal solution but cannot be applied to

large problem sizes because it relies on exhaustive search.For such cases an efficient

87

heuristic was devised. We also identified and verified, through simulations, certain con-

ditions on demand allocations and network configurations for which the overhead can

be high even if an overhead minimization algorithm is run. Further investigation of the

exact nature of such conditions is an interesting research direction.

Both optimal and heuristic algorithms are centralized and can operate in settings

where global information is available. More importantly, they can be used to provide

design insights and serve as a reference performance measure for overhead-aware dis-

tributed approaches. Such an approach is considered in the chapters that follow.

88

Chapter Appendix 3−Pseudocodes of EQUIVALENT and

MIN PROGRESS algorithms

ProcedureEQUIVALENT

input : G(N,E),Φ = [φl], S̃
(π)

= [Aπ(k)], π, T̃

output : Seq = [Sn], n ∈ N : The asynchronous equivalent schedule ofS̃
(π)

Teq: The period ofSeq.

local : p = [p
(k)
n], f = [f(k)], k

Initialization: f(0) = 0, p0
n = 0, ∀n ∈ N ;

begin

1 for k = 1 to T̃ do

AddLinkActivationSet(G, Φ, k, Aπ(k), p, f(k),Seq);

end

Teq = f(T̃) ;

q = 1;

k = T̃ + 1;

repeat

AddLinkActivationSet(G, Φ, k, Aπ(q), p, f(k), Seq);

k = k + 1;

q = q + 1;

until (p
(k)
n = Teq,∀n ∈ N);

end

89

Function AddLinkActivationSet
Add a set of links to the asynchronous scheduleS

input : G(N,E), Φ, k, LINKSET, p(k−1), S

output : p(k), f(k), S

local : ACTIV ATED NODES SET = { }

begin
1 for every linkl in LINKSET do

i = l.master, j = l.slave ;
Add i andj in ACTIV ATED NODES SET ;
if (p(k−1)

i == 0 ANDp
(k−1)
j == 0) then

/*This is the first activation for both nodes*/;
p
(k)
i = p

(k−1)
i + 1, Si(p

(k)
i) = l ;

p
(k)
j = p

(k)
i + φl(1+φl)

2 , Sj(p
(k)
j) = l ;

end
if (Si(p

(k−1)
i) == l ANDSj(p

(k−1)
j) == l) then

/*Case A*/ ;
p
(k)
i = p

(k−1)
i + 1;

end
else

if (p(k−1)
i > p

(k−1)
j) then

/*Case B*/ ;
p
(k)
i = p

(k−1)
i + 1;

end
else

/*Case C*/;

p
(k)
i = p

(k−1)
j +

φ2
l
−φl+2

2 ;

end
end
Si(p

(k)
i) = l ;

for any unassignedt ∈ p
(k−1)
i + 1, ..., p

(k)
i − 1 do

Si(t) = idle ;

end
p
(k)
j = p

(k)
i + φl(1+φl)

2 ;

Sj(p
(k)
j) = l ;

for any unassignedt ∈ p
(k−1)
j + 1, ..., p

(k)
j − 1 do

Sj(t) = l ;

end
end
for every n not in ACTIV ATED NODES SET do

p
(k)
n = p

(k−1)
n ;

end
f(k) = max

n∈N
{p(k)

n };

end

90

Function GetForwardProgress
Compute forward progress onS due toLINKSET
input : Φ, k, p(k−1), LINKSET, S

local : f, p = [pn], n = 1, .., N ,
ACTIV ATED NODES SET = { }

begin
1 for every linkl in LINKSET do

i = l.master, j = l.slave ;
Add i andj in ACTIV ATED NODES SET ;
if (p(k−1)

i == 0 ANDp
(k−1)
j == 0) then

pi = p
(k−1)
i + 1, pj = pi + φl(1+φl)

2 ;

end
if (Si(p

(k−1)
i) == l ANDSj(p

(k−1)
j) == l) then

pi = p
(k−1)
i + 1;

end
else

if (p(k−1)
i > p

(k−1)
j) then

pi = p
(k−1)
i + 1;

end
else

pi = p
(k−1)
j +

φ2
l
−φl+2

2 ;

end
end
p
(k)
j = p

(k)
i + φl(1+φl)

2 ;

end
for every n not in ACTIV ATED NODES SET do

pn = p
(k−1)
n ;

end
f = max

n∈N
{pn};

returnf ;

end

91

Function FindHperm
Phase I of MINPROGRESS that finds permutationπh

input : Φ, S̃ = {Mα, λα : α = 1, .., |M(S̃)|}, T̃

output : πh: πh(k) contains the activation set index

selected at iterationk

local : U , currmin, f , p = [p
(k)
n]

S : dummy asynchronous schedule

Initialization: U = {M1, ..,M |M(S̃)|} ;

begin

1 for k = 1 to |M(S̃)| do

currmin = 3|M(S̃)| ;

for every setM g ∈ U do

f=GetForwardProgress(Φ, k, p(k−1), M g, S);

if (currmin < f) then

πh(k) = g;

currmin = f ;
end

end

AddLinkActivationSet(G, Φ, k, Mπh(k), p, f,S);

U = U − {Mπh(k)} ;

end
end

92

ProcedureMIN PROGRESS

input : G(N,E),Φ, S̃ = {Mα, λα}, T̃

output : S: The asynchronous schedule computed by the heuristic
local : πh: permutation of the activation setsMα

begin

1 /*Phase I*/;

FindHperm(Φ, S̃, T̃ , πh);

FormS̃
(πh)

from S̃ usingπh for the ordering

of setsMα and activating theλα instances of

each setMα in consecutive slots.;

/*Phase II*/ ;

EQUIVALENT(G, Φ, S̃
(πh)

, πh, S);

end

93

Chapter 4

A distributed asynchronous TDMA protocol

The main advantages of TDMA over random access are conflict-free transmissions

and strict bandwidth allocation guarantees. However, implementing TDMA in the dis-

tributed ad hoc network setting has been a notoriously challenging task. As a result most

TDMA protocols rely on one or more of the following global assumptions: network-

wide slot synchronization, universal slot enumeration or apriori knowledge of the num-

ber of nodes in the network. In addition, TDMA protocols providing bandwidth alloca-

tion guarantees typically require knowledge the network topology in its entirety.

In this chapter we introduce a TDMA protocol that does not rely on any global as-

sumptions. The protocol is completely distributed, asynchronous and traffic adaptive:

in response to asynchronous local events such as traffic or topology changes, nodes re-

assign slots to their adjacent links using only local information. The protocol can be

executed simultaneously in different parts of the network.It ensures that the network

TDMA schedule remains free of transmission conflicts despite the concurrent slot reas-

signments.

Being TDMA-based, the protocol can potentially be used to provide rate guaran-

tees to the network links. This involves computation of a TDMA schedule that realizes

94

a given set of link slot demands. The demands input to the TDMAprotocol must be

feasible–there must exist a network TDMA schedule of lengthless than the system pe-

riod that can realize them. As we saw in Chapter 3, feasibilitydetermination of an

arbitrary demand allocation is a NP-complete problem, evenif global information is

available. Our approach is based on the fundamental observation that, in practice, the

link demands will not be arbitrary but will be locally generated by bandwidth alloca-

tion algorithms running at the nodes. We are therefore interested in a subset of feasible

allocations that can be characterized by a set of local conditions. The local conditions

give rise to the node QoS utilization parameter–a sufficientnumber of slots each node

can provide as demands to its adjacent links in order for feasibility to be ensured at all

times. It turns out that the QoS utilization parameter depends on both the existence (or

lack thereof) of slot synchronization and the degree of topology control. This intro-

duces an interesting trade-off between topology restrictions and the fraction of feasible

allocations that can be captured by the local conditions.

The rest of the chapter is organized as follows: Section 5.5 provides an overview

of state of the art distributed TDMA protocols for ad hoc networks and identifies the

most important issues involved in their design. Section 4.2introduces the multi-channel

TDMA access architecture and control structure used by the distributed TDMA proto-

col. The protocol is presented and analyzed in Section 4.3. Section 4.4 introduces the

dynamic link scheduling problem and elaborates on the determination of local feasibility

conditions in various settings. Section 4.5 concludes.

95

4.1 Related work

Early efforts for traffic-aware TDMA protocols aimed to realize a given set of slot de-

mands on nodes or links. Since the problem of computing the minimum-length schedule

realizing the demands is NP-complete, these protocols relyon heuristics that compute

sub-optimal schedules [53][54][84][55]. These heuristics require global knowledge of

network topology and traffic requirements. They can be incorporated in a TDMA pro-

tocol for a (slot-synchronized) wireless ad hoc network as follows: every node sends its

connectivity or link demand changes to a central controller. Consequently, the controller

computes and distributes the new TDMA schedule back to the nodes. In absence of a

central controller each node can broadcast the locally observed changes to the entire

network. Each node then uses an identical copy of the centralized algorithm to compute

a TDMA schedule for the new demand allocation and then communicate on the part

of the schedule that corresponds to its own locality. This idea was utilized in [90] to

produce such a ”distributized” version of the centralized heuristic in [54].

Two drawbacks are associated with centralized TDMA protocols in ad hoc networks.

First, an often unnecessarily high communication and computation overhead are in-

curred: a single change in topology or demand triggers network-wide broadcasts and

global schedule recomputation from scratch. Second, the TDMA protocol uses a vari-

able system period–equal to the computed schedule length for the demands at hand1.

Hence, each time a change occurs, communications in the network must be suspended

until the new system period and TDMA schedule are determined. Both problems be-

come more acute as the network size increases and as changes become more frequent:

If network dynamics occur too fast for the system to react theresult is excessive com-

1If a fixed system period ofTsystem slots were used, the system should support an abort mechanism

in case the computed schedule length exceedsTsystem slots.

96

munication overhead and extended network downtime.

A parallel line of research focuses on TDMA protocols where afixed system pe-

riod is used and nodes coordinate transmissions using only alocal view of the network.

These distributed protocols do not attempt to realize specific traffic demands. Instead,

emphasis is placed on constructing a conflict-free network TDMA schedule. This is a

challenging task because nodes have access to local information and may independently

assign conflicting slots during this process. Equally challenging to the schedule con-

struction is the maintenance of its conflict-free property in the face of topology changes.

One of the first distributed protocols in this family is the Link Activation Algorithm

(LAA) [91] developed for link scheduling in multi-channel ad hoc networks. LAA is ex-

ecuted in twoN -slot control frames: during sloti of the first frame, nodei constructs its

own conflict-free link schedule by taking into account the schedules previously broad-

cast by lower indexed nodes within range; it then broadcaststhis schedule to its neigh-

bors. During the secondN -slot frame the nodes resolve any scheduling conflicts that

occurred when they set up their schedules independently during the first frame. LAA

is simple fast and robust but rather inflexible–the established schedule depends only on

the relative order of node identities in the network. A more sophisticated algorithm

was later proposed in [92] where the nodes periodically reorganize the TDMA schedule

based on local traffic observations. Traffic-adaptive distributed TDMA protocols have

also been proposed for single-channel systems for both linkscheduling [93] as well as

broadcast (node) scheduling [94][62].

Keeping the network TDMA schedule free of transmission conflicts may result in

excessive control overhead. Chlamtac and Farago [95] and Ju and Li [96] relax on the

conflict-free requirement and develop TDMA protocols that are topology-transparent.

Each node uses a precomputed TDMA node schedule of periodTsystem slots (Tsystem <

97

N). The schedule of each node is unique to the node’s identity and has been computed

using estimates on the maximum projected number of one-hop neighbors per node as

well as number of nodes in the network. Although conflicts areallowed, the schedule

computation guarantees a node to transmit conflict-free on at least one slot within a pe-

riod of Tsystem slots regardless of the current topology structure. Since the schedules

are precomputed, no control overhead exists for schedule maintenance. However, the

achieved throughput is sensitive to the choice of parameters (maximum node degree and

maximum number of nodes) and can be very low for certain scenarios. The performance

of the TDMA protocol in [95] (called Time Spread Multiple Access (TSMA)) was ex-

perimentally compared to Carrier Sense Multiple Access (CSMA) in [97]. Interestingly,

CSMA, a pure random access protocol, outperformed TSMA in terms of both through-

put and delay in most tested scenarios. This gives an indication that topology transparent

TDMA protocols are not necessarily better than pure random access protocols.

All the TDMA protocols mentioned above assume a mechanism that maintains

network-wide slot synchronization. The emergence of Bluetooth-based ad hoc networks

(termed ”scatternets”) created the need for distributed TDMA link scheduling protocols

that do not rely on this assumption. The approaches for scatternet scheduling can be

categorized into hard and soft coordination protocols. Hard coordination protocols [81]

attempt to establish perfectly conflict-free link schedules. The advantage is that they

can provide strict bandwidth allocation guarantees since no transmission conflicts ex-

ist. However, maintenance of the conflict-free property maycome at the expense of

communication overhead when there are dynamic changes in the network. On the other

hand, soft coordination schemes [79][80] are the link scheduling analog of the topology-

transparent protocols in [95] and [96]: they trade off perfectly conflict-free transmissions

for lower complexity. The downside: occasional transmission conflicts and lack of abil-

98

ity to provide strict bandwidth allocation guarantees; hence loss of the main advantages

of TDMA over random access.

The above discussion provides some practical guidelines for design of TDMA pro-

tocols for ad hoc networks:

• To avoid network downtime, the period of the TDMA schedule must be fixed.

• Since our goal is provision of QoS guarantees, the network TDMA schedule must

be free of transmission conflicts. In this case, care must be taken to ensure the

control overhead for schedule maintenance is minimized.

• It is desirable for the protocol to not require global knowledge including network-

wide slot synchronization, universal slot enumeration or apriori knowledge of the

number of nodes in the network.

• During protocol operation nodes should have access to only local information.

4.2 TDMA architecture

4.2.1 Signaling and local TDMA schedule structure

The system uses multiple channels for communication and a universal channel for neigh-

borhood discovery. Each channel can be implemented as a distinct frequency band

or spread spectrum code (Frequency Hopping (FH) sequence orDirect Sequence (DS)

code).

Since neighborhood discovery is not communication-intensive we will assume it is

implemented using a simple random access protocol (e.g. ALOHA) on a separate low-

99

cost transceiver2. Hence, each wireless node has two transceivers: one dedicated to

neighborhood discovery; the other to communications.

When two nodes within range discover each other they may decide to establish a

communication link. This decision can be the result of a simple policy (e.g. estab-

lishment of every discovered link or establishment of up toDmax links per node) or

the result of a distributed topology control protocol that ensures certain global network

topology properties (e.g. bipartite or tree structures).

When established, links must be assigned communication channels such that no sec-

ondary conflicts exist in the network. One way to achieve thisis to associate every node

with a unique channel; if each link is assigned the channel ofone of the node endpoints,

then, all transmissions satisfying the primary interference constraints will occur in dif-

ferent channels. Bluetooth implements this method using spread spectrum signaling.

Each node is associated with a unique frequency hopping (FH)sequence derived from

its unique MAC address. Upon link establishment, one of the node endpoints is assigned

as master and the other as slave. The link is assigned the FH sequence of the master.

Although not orthogonal, Bluetooth FH sequences have been shown to perform well in

practice [45]. Interference can be further mitigated usingdistributed assignment mech-

anisms that minimize the number of FH channels per locality [98][44][25]. Secondary

interference can also be avoided if nodes within two wireless hops of each other are

assigned orthogonal channels–ifDmax is an upper bound on the intended adjacent links

per node, a total of2Dmax(Dmax − 1)+1 (instead ofN) channels are needed [23]. Ref-

erences [23][46] propose distributed dynamic algorithms performing such assignments.

Although secondary interference can be avoided using one ofthe above techniques,

2Alternatively, the discovery and communication functionscan be integrated using a single transceiver

at the expense of increased scheduling complexity.

100

primary interference is always present: since each wireless node has a single communi-

cation transceiver it can transmit or receive to only a single channel and link at a time.

Each node uses a localTsystem-slot periodic schedule to coordinate transmissions on its

adjacent links. The system supports both slot-synchronized and asynchronous modes of

operation. In the synchronized mode all local schedules areperfectly slot-aligned using

either additional hardware (e.g. GPS clocks) or a separate protocol (e.g. the Network

Time Protocol (NTP) [61]). In the asynchronous mode the local schedules are not slot

aligned; time slot reference for communication on a link is provided upon link establish-

ment by the master node endpoint. Each communication slot consists of two mini-slots

that support that support full-duplex transfer–one for master-to-slave transmission and

the other from slave-to-master transmission.

The nodes use a distributed TDMA protocol to reassign slots to their adjacent links

in response to locally observed asynchronous events such aschanges in topology or traf-

fic requirements. Due to asynchronous nature of the events the protocol can be executed

simultaneously in different parts of the network. Since thenodes decide to reassign

slots based on only local information, the protocol needs to1) coordinate initiation of

slot reassignments on a link by both node endpoints and 2) ensure the network TDMA

schedule remains conflict-free despite the simultaneous slot reassignments. The proto-

col is also used to assign an initial number of conflict-free slots to a link that has just

been discovered and needs to be established.

4.2.2 Exchanging control information

When nodes execute the protocol they must exchange control messages to keep their

local schedules consistent and hence preserve the conflict-free property of the entire

TDMA schedule. According to the previous section, the predominant method for ex-

101

changing control information is by splitting the TDMA schedule of Tsystem slots into

control and data parts ofTcontrol andTdata slots, respectively.

Apart from the issues regarding global slot synchronization and universal slot enu-

meration mentioned in Chapter 1, deciding on the relative sizing of the control and data

parts is not trivial. Clearly, settingTcontrol = N and using TDMA on the control part

does not scale with network size. Alternatively,Tcontrol < N and the control part is

shared using random access,Tcontrol must be chosen large enough to minimize the con-

trol overhead and small enough to ensure timely delivery of control messages. This

design problem has been considered in [62].

Note that these approaches aim at each node sending conflict-free only a single con-

trol packet during the control part. If the coordination protocol requires multiple control

messages per link rate adjustment, multiple system periodswill be required. This in-

creases the protocol response to network dynamics.

An alternative approach to splitting the TDMA communication schedule in control

and data part is to use a separate transceiver and channel, aswell as a simple access

mechanism (e.g. ALOHA) for the exchange of control information [99]. However,

random access cannot guarantee packet delivery in a timely manner–the protocol may

respond very slowly to the network dynamics.

According to our approach, each node uses its current local TDMA communication

schedule for the exchange of control information. However,the local schedule is not

split in a control and data part. Instead any slot can be used for transmission of either a

control packet or a data packet. To speed up the schedule modification process, control

packets are given transmission priority over data packets.

102

4.3 The distributed TDMA protocol

4.3.1 Overview

The protocol allows each node to be involved in at most one link slot reassignment

at a time. A node conveys its busy status to its neighbors using a local one-bit vari-

able, called BUSYBIT. The current value of BUSYBIT is copied to the corresponding

field of every outgoing control or data packet. In addition toits own BUSYBIT, each

node maintains the BUSYBIT of its neighbors using a local variable, called NEIGH-

BOR BBIT VEC.

Rate adjustment on a linkl can be initiated when none of its node endpoints is

currently busy on a rate adjustment of other links. Upon initiation, both endpoints set

their BUSY BIT variables. Then, they exchange their current local schedules using

SC INFO control packets. This information aids one of the endpoints to determine the

new set of slot positions to be assigned to this link.

Each endpoint stores the new slots for linkl in a variable called LOCKVEC. Some

of these slots may be currently assigned to other links adjacent to the node endpoints

and need to be canceled.

Each endpoint signals schedule modifications to all its affected neighbors using

SC UPD packets. A SCUPD packet transmitted on a link contains the new slot posi-

tions to refresh the old ones for this link in the recipient’slocal schedule. The recipient

of a SCUPD packet updates its local schedule accordingly and acknowledges with a

SC UPD ACK packet.

After all affected neighbors acknowledge their schedule modifications, the endpoints

update their own local schedules by assigning the new slot positions (stored in their

LOCK VEC variables) to linkl. Finally, the endpoints become available for rate adjust-

103

ment on other links by clearing their BUSYBIT and LOCK VEC variables.

4.3.2 Detailed operation

Consider a nodeu that receives a request for rate adjustment for linkl = (u, v). Such

a request can be triggered either by a timer expiration or by an explicit higher layer

notification.

First, nodeu sets its BUSYBIT and becomes unavailable for rate adjustment on

other adjacent links. Then, it inspects NEIGHBORBBIT VEC(l) (constantly updated

by incoming packets fromv). If NEIGHBOR BBIT VEC(l)=1, thenv is currently en-

gaged on a rate adjustment on another of its own adjacent links. Nodeu must wait until

that rate adjustment ends. Then, the following steps are performed:

1. Nodeu computes a rate estimate (in # of slots) for link(u, v) and sends a SCINFO

packet to nodev containing its rate estimate and current local schedule.

2. Upon reception of the SCINFO packet, nodev sets its own BUSYBIT and com-

putes its own rate estimate for the link. It then uses a local election rule to deter-

mine whether it will be the ASSIGNER or ASSIGNEE for this rateadjustment.

The local rule can be based on the rate estimates of the SCINFO packets, the end-

point addresses, or even the parent-child relationship of the endpoints (in the case

of a tree topology). If nodev determines itself to be the ASSIGNEE, it replies

with a SCINFO packet to nodeu; otherwise it performs the ASSIGNER action

described next.

3. Using the information in the SCINFO packet of the ASSIGNEE, the ASSIGNER

node a) decides the new rate for link(u, v) and b) performs aslot assignment

104

algorithm that determines the new slot positions for link(u, v) in the endpoints’

local schedules that will realize the new rate .

4. The ASSIGNER stores the new slot positions in its LOCKVEC. Since the lo-

cal schedules of the node endpoints are not generally slot-synchronized, the AS-

SIGNER computes a set of time-overlapping slot positions with respect to the

slot offset of the ASSIGNEE. It then sends the translated slot positions to the

ASSIGNEE via a SCUPD packet and waits for acknowledgement.

5. Upon reception of the SCUPD packet from the ASSIGNER, the ASSIGNEE

stores the new slot positions in its own LOCKVEC. Some of the new positions

may indicate that certain slots currently assigned to otheradjacent links must now

be assigned to linkl in the local schedule of the ASSIGNEE. In this case, the AS-

SIGNEE sends SCUPD packets on the affected links and waits for acknowledge-

ments. Finally, the ASSIGNEE replies to the ASSIGNER with a SC UPD ACK

packet.

6. Upon reception of the SCUPD ACK packet from the ASSIGNEE, the ASSIGNER

sends SCUPD packets to its own affected neighbors (the ASSIGNEE excluded)

and waits for acknowledgements.

7. For each SCUPD ACK packet received by an affected neighbor, each endpoint

sets the corresponding slots as idle in its own local schedule. Without loss of

generality, letu be the first node endpoint of link(u, v) that receives all acknowl-

edgements from its affected neighbors. Nodeu sends a COMMITREQ packet to

nodev and waits for acknowledgment.

8. When nodev receives the COMMITREQ packet, as well asall SC UPD ACK

packets from its affected neighbors:

105

(a) it assigns the new slot positions (stored inLOCK V EC) to link (u, v),

(b) it sends a COMMITACK packet to nodeu, and

(c) waits for acknowledgement.

9. Upon reception of the COMMITACK packet, nodeu assigns to link(u, v) the

new slot positions (stored in its ownLOCK V EC), and sends a COMMITACK

packet tov. Then, it clears its BUSYBIT and LOCK VEC variables, thus be-

coming available for rate adjustment on other adjacent links.

10. Upon reception of the COMMITACK packet fromu, nodev clears its own

BUSY BIT and LOCK VEC variables and becomes available for rate adjustment

on other adjacent links.

11. Rate adjustment of link(u, v) is complete.

4.3.3 Properties

The protocol has the following properties:

Property 4.3.1 The network TDMA schedule is always free of transmission conflicts,

despite the simultaneous rate adjustments.

Proof We define a link asbusywith respect to rate adjustment if both its node endpoints

are currently busy for rate adjustment on this link. According to the protocol, each node

can be busy at only one adjacent link at a time. In addition, the BUSY BIT precludes

the neighbors of each endpoint to initiate a rate adjustmenton a non-busy link. Hence, at

any time no busy links have common node endpoints–the set of busy links is a matching

on the network topology graph.

106

Let B(t) be the set of busy links in the network at timet andNB(t) be the set of

non-busy links adjacent to the node endpoints of the links inB(t). Depending on the slot

reassignments, the rate of each link inB(t) may either increase (by assigning additional

slots to the current link slot allocation) or decrease (by cancelling slots of the current

link slot allocation); however, the rates of the links inNB(t) can never increase–they

may either remain intact or decrease due to their slots beingreassigned to their adjacent

busy links.

Hence, during protocol execution, any simultaneous reassignments of concurrent

slots can only occur on the set of busy links. Since the busy links are a matching in the

network topology graph, the network TDMA schedule conflict-free property is main-

tained.

Note that it is possible for a nodeu currently busy on link(u, v) to receive a SCUPD

packet cancelling slots on a non-busy link(u, x) due to a rate adjustment on another link

(x, y) (bothx, y 6= v). Since a slot cancellation request on a non-busy link does not af-

fect slot re-assignments on busy link(u, v), nodeu sets these slots idle in its local sched-

ule and responds to nodex with a SCUPD ACK packet. In addition, upon reception of

a SCUPD ACK on a non-busy link it has requested slot cancellation, busy nodex can

immediately set these slots as idle in its local schedule. Stored in the LOCKVEC of x,

these slots will be re-assigned to busy link(x, y) once its rate adjustment is complete.

Finally, according to the protocol, the node endpoints reassign slots on their busy

link only after having received acknowledgements from all their affected neighbors.

Thus, it is ensured that all local schedules affected by the slot reassignments on the busy

link will be conflict-free and consistent after the update.

Property 4.3.2 If the maximum node degree in the network isDmax links, the maximum

number of control packets needed for each link rate adjustment is5 + 2Dmax.

107

Proof On the busy link,2 SC INFO packets,2 packets for the SCUPD-SCUPD ACK

packet exchange,1 COMMIT REQ packet, and2 COMMIT ACK packets are needed.

If both node endpoints have degreeDmax and if all their neighbors are affected by the

slot assignments on the busy link, a total of2(Dmax − 1) additional packets are needed

for the SCUPD-SCUPD ACK packet exchanges on the non-busy links. The property

follows.

Property 4.3.3 If no packets are lost due to channel errors, the maximum duration of a

link rate adjustment is5 · Tsystem slots.

Proof We focus on a busy link(u, v) and its one-hop neighborhood as shown in Figure

4.1. Without loss of generality, let the system be slot-synchronized. We assume that slot

N(v)

...
...

vu

..
.

..
.

N(u)

Figure 4.1: The busy link(u, v) and its one-hop neighborhood. The one-hop neighbors

of u andv are denoted byN(u) andN(v), respectively. Arrows denote master-slave

relationships.

reassignments are such that each link is always assigned at least one slot in the local

schedules of its node endpoints. This condition can be maintained because, during each

link rate adjustment, the ASSIGNER is aware of the local schedule of the ASSIGNEE

when it determines the new slot positions for the busy link. To derive the maximum

duration of the link rate adjustment, we assume that each link is assigned exactly one

slot in the local periodic schedules of its node endpoints.

108

Without loss of generality, let the busy link(u, v) be assigned slot0 and the rest

of its adjacent links be assigned subsequent slots (one sloteach) within the TDMA

schedule period. Recall that each slot in the TDMA schedule isfull-duplex–in the first

part the master polls; in the second part the slave responds.The duration of the link rate

adjustment will depend on the master-slave role assignmenton the busy link(u, v) as

well as the master-slave role assignments on the non-busy links adjacent to nodesu and

v.

The rate adjustment starts when the first SCINFO packet is sent on the busy link

and terminates when the last COMMITACK packet is received on the busy link. We

derive the maximum duration by constructing a scenario thatmaximizes the delay of

each stage of the protocol execution. Since we have assumed that each link is assigned

one slot within a system period, the protocol execution willrequire multiple TDMA

cycles:

Cycle1: Let u initiate the link rate adjustment by sending the first SCINFO packet

at slot0. If u is master on link(u, v), the SCINFO packet will be sent in the first half

of slot 0 andv will reply in the second half; ifu is master on link(u, v), v will reply in

the the first part of slot0 of the next cycle. Hence, to maximize delay, we will assume

thatu is slave on link(u, v).

Cycle 2: Having received the SCINFO packet from nodeu, nodev determines

its ASSIGNEE or ASSIGNER role. In the first case, it will delegate the ASSIGNER

responsibility to nodeu by replying with a SCINFO packet; in the second case, it will

act as ASSIGNER and initiate the slot reassignments. Clearly, the first case maximizes

delay and will be assumed in the steps that follow. Upon receiving the SCINFO packet

in the first half of slot0, (slave) nodeu will act as ASSIGNER and send a SCUPD

packet tov in the second half of slot0.

109

Whenv receives the SCUPD packet, it will notify the set of its affected one-hop

neighborsA(v) (A(v) ⊆ N(v)) about the schedule changes using SCUPD packets. If

v is master toall its affected adjacent links, it will receive all acknowledgments within

this cycle. Ifv is slave in at least one affected link, all acknowledgementswill arrive by

the next TDMA cycle. Since we seek the maximum delay, we will assume that nodev

is slave to at least one link and this link has been affected bythe slot reassignment on

busy link(u, v).

Cycle3: Nodev replies to nodeu with a SCUPD ACK packet. Then, nodeu sends

SC UPD packets to all its affected neighbors. To maximize delaywill also assume that

nodeu is slave to at least one link and this link has been affected bythe slot reassignment

on busy link(u, v). In addition, nodev receives all SCUPD ACK packets from its

affected neighbors by the end of this cycle.

Cycle 4: Nodev sends a COMMITREQ packet tou at slot0. In addition, nodeu

receives all SCUPD ACK packets from its affected neighbors by the end of this cycle.

Cycle 5: Once the COMMITREQ and all SCUPD ACK packets have been re-

ceived, nodeu sends a COMMITACK packet tov at the second half of slot0.

Cycle 6: Nodev completes the rate adjustment by sending a COMMITACK packet

to nodeu at the first half of slot0.

In the above scenario, the rate adjustment starts at the second half of slot0 of cycle

1 and terminates at the first-half of slot0 of cycle 6. Hence, the overall delay equals

5 · Tsystem slots. The delay is maximum because the scenario was constructed by con-

sidering the maximum delay case at every stage of the protocol execution.

110

slot 0 slots 1-Tsystem − 1

cycle# v− > u u− > v N(v)− > v v− > N(v) N(u)− > u u− > N(u)

1 SC INFO

2 SC INFO SC UPD SC UPD

3 SC ACK SC ACK SC UPD

4 COM REQ SC ACK

5 COM ACK

6 COM ACK

Figure 4.2: Scenario that maximizes the delay of link rate adjustment.

4.3.4 Design considerations

Storage requirements

Let Dmax be the maximum number of adjacent links per node. GivenDmax, a node can

distinguish its adjacent links using⌈log2Dmax⌉ bits. Hence, the local schedule can be

encoded using⌈log2Dmax⌉ · Tsystem bits. In addition to the local schedule, BUSYBIT,

NEIGHBOR BBIT VEC and LOCKVEC require1, Dmax, andTsystem bits, respec-

tively. Hence, the total storage for local variables required by the protocol is:

Bstorage = 1 + Dmax + (⌈log2Dmax⌉ + 1) · Tsystem bits (4.1)

SinceDmax is typically much less thanTsystem the storage requirement increases linearly

with Tsystem. BothDmax andTsystem are design parameters that depend on the technol-

ogy at hand. For example, in the case of Bluetooth,Dmax = 7 and each full-duplex slot

has a duration equal to1.25ms. A maximum inter-frame delay of125ms would require

Tsystem = 100 slots. According to eq. (4.1) the protocol storage requirement would only

be208 bits in this case.

111

Communication requirements

Each half-duplex mini-slot can be used by either a data or control packet. Hence, each

packet has a header that includes the packet type (DATA, SCINFO, SCUPD, COM-

MIT REQ, COMMIT ACK) and the BUSYBIT state of the sender node. This infor-

mation can be encoded using4 bits.

A SC INFO control packet contains the local schedule and the rateestimate of

the sender node. The rate estimate range is[1, Tsystem] slots and can be encoded by

⌈log2Tsystem⌉ bits. Hence, the total size of a SCINFO packet isTsystem · ⌈log2Dmax⌉+

⌈log2Tsystem⌉ bits.

A SC UPD control packet sent over linkl indicates the new slot positions to be

assigned to this link in the recipient’s local schedule. This information can be encoded

usingTsystem bits. The rest of the control packets (SCUPD ACK, COMMIT REQ,

COMMIT ACK, CANCEL REQ) contain no extra information other than their type.

If we include the4 bits of the common header, the number of bitsBcontrol required

per control packet is determined by the size of the SCINFO packets:

Bcontrol = 4 + ⌈log2Tsystem⌉ + ⌈log2Dmax⌉ · Tsystem bits (4.2)

Since a slot can carry either a data or control packet, eq. (4.2) sets the minimum

half-duplex mini-slot size in the system or equivalently, the maximum system period

Tsystem that can be supported given a fixed system slot duration.

4.4 Link-level Quality of Service (QoS)

At any time instant the distributed TDMA protocol guarantees that the network operates

according to a conflict-free TDMA schedule. Being conflict-free this schedule realizes

a link slot allocation in the network. In order to provide QoSon a link-level basis we

112

must be able to compute a TDMA schedule that realizes a given demand allocation on

the network links. We are interested in a dynamic version of this problem where link

demands may change at asynchronous time instants due to a higher layer process. This

process can be a higher-layer bandwidth allocation mechanism or even mobility–in this

case link failure is viewed as transition to zero link demandand link establishment as a

transition from zero to positive demand.

We assume that the higher-layer process alternates betweentwo states: an active

state where the link demands change and a quiescent state where no changes occur. The

end of each active state corresponds to a link demand allocation to be realized by a

network TDMA schedule. The challenge: nodes must reach sucha schedule starting

from the current TDMA schedule and using only local information.

The alternating states model is necessary for the definitionof convergence. It im-

plies that network topology and traffic dynamics must remainstable for a sufficient time

period to allow realization of the desired allocation. However, the nodes are not aware

which of the two states the network is currently in. They can only detect the demand

changes on their adjacent links. Once the link demands stabilize, the nodes use the

distributed TDMA protocol converge to a TDMA schedule realizing these demands.

4.4.1 Local feasibility conditions

In order for convergence to occur, the distributed TDMA protocol must always be pro-

vided with feasible link demands. Recall that a link demand allocationτ = (τ1, ..., τl, ..., τ|E|)

is feasible if a conflict-free TDMA schedule exists that can allocateτl conflict-free slots

to every linkl without exceeding the system period (Tsystem slots). In Chapter 3 we saw

that determining feasibility of an arbitrary set of link rates in a slotted multi-channel ad

hoc network is an NP-complete problem. However, in practice, the higher layer pro-

113

cess changing the link demands will not be global but, in fact, the result of higher-layer

bandwidth allocation or hand-off mechanisms executed locally by the nodes. We are

therefore interested in identifying certain instances where feasibility can be character-

ized by a set of local conditions.

Let us first assume that global slot synchronization is supported in the network.

In this case local conditions would require the demand sum ofthe links adjacent to

each node to not exceedTsystem slots. Due to link scheduling interdependence, these

local conditions cannot alone guarantee feasibility (see Fig. 4.3 for an example). The

additional non-local conditions require that, for every odd node subsetQ (|Q| > 1) in

the topology graph, the sum of the demands of all links adjacent to the nodes inQ must

not exceed⌊(|Q| − 1)/2 · Tsystem⌋ slots [100].

B
1

C

A

2 3

Figure 4.3: Without loss of generality, assume that all nodes are slot-synchronized and

Tsystem is even. No schedule exists that can allocateTsystem/2 conflict-free slots to each

link, even if the local conditionsτ1 + τ2 ≤ Tsystem, τ1 + τ3 ≤ Tsystem andτ2 + τ3 ≤

Tsystem for nodesA, B, C, respectively allow this allocation. The non-local condition

τ1 + τ2 + τ3 ≤ Tsystem is also required here.

There are two ways to guarantee feasibility using only localconditions: restrict the

network topology or underutilize the network. If the network topology is bipartite, the

entire set of feasible allocations can be captured only by local conditions. Topology

control is inherent in multi-channel systems due to the needto assign channels to the

discovered links before communication takes place. Alternatively, in absence of a topol-

114

ogy control mechanism, feasibility can be ensured by restricting the maximum number

of slots each node provides to its adjacent links. For slot-synchronized multi-channel ad

hoc networks feasibility is guaranteed by requiring the sumof link demands on every

node be less than⌊2/3 · Tsystem⌋ slots at any time [101]. Local conditions of this form

are sufficient: they guarantee feasibility but only capturea fraction of the entire set of

feasible allocations. Hence, the network is underutilizedin this case.

In an asynchronous TDMA system the region of feasible rates is further restricted.

Due to the additional slots needed in the slaves’ local schedules, the minimum period

Lmin(τ) realizing a demand allocationτ in an asynchronous system is greater than the

minimum periodLsynch
min (τ) had the system been perfectly synchronized. Since feasibil-

ity is characterized by comparing the minimum schedule length that can realizeτ to the

system periodTsystem, certain allocations feasible by a synchronized system will not be

feasible when asynchronicity is present.

In Chapter 3, we derived the feasibility corrollary 3.3.6. The corollary states, that,

for any given topology and demand allocationτ , Lmin(τ) ≤ 2 · Lsynch
min (τ) [74]. Con-

sequently, a set of sufficient local feasibility conditionswould allow for nodes to offer

half the slots they would offer in the corresponding synchronized system: For bipar-

tite topologies, feasibility is guaranteed if every node offers⌊1/2 · Tsystem⌋ slots while

for arbitrary topologies⌊1/3 · Tsystem⌋ slots. These conditions imply further network

underutilization–1/2 and2/3 of the total capacity of bipartite and arbitrary topologies,

respectively cannot be used for QoS provision.

A lower bound on the minimum periodLmin(τ) of an asynchronous TDMA sched-

ule realizing a demand allocationτ = (τ1, ..., τl, ..., τ|E|) is given by:

LB(τ) = max
u∈N

∑

l∈L(u)

(τl + J
(u)
l) (4.3)

115

whereL(u) is the set of links adjacent to nodeu and,

J
(u)
l =





1 if u is slave on link l

0 otherwise
(4.4)

The termτl in the sum of the RHS of (4.3) exists because each node can communicate

to only a single link at every slot of its local schedule. The termJ
(u)
l represents the need

for (at least) an additional slot for time-slot reference alignment on every link a node

acts as slave. The lower bound on the minimum period is not tight but can be used to

identify instances where the entire set of feasible allocations can be captured by a set of

local conditions. This is summarized by the following proposition:

Proposition 4.4.1 Consider an asynchronous TDMA ad hoc networkG(N,E). If for

every demand slot allocationτ , Lmin(τ) = LB(τ), then,all feasible allocations for

G(N,E) can be captured by the following set of local conditions:

∑

l∈L(u)

τl ≤ Tsystem −
∑

l∈L(u)

J
(u)
l , ∀u ∈ N (4.5)

Proof We use contradiction. Letτ ∗ be a demand allocation satisfying the local condi-

tions of eq. (4.5) but is not feasible. Sinceτ ∗ is not feasible, the minimum period for

realizing it must be strictly greater thanTsystem slots:Lmin(τ ∗) > Tsystem. The demand

allocationτ ∗ obeys the local conditions of eq. (4.5):

∑

l∈L(u)

(τ ∗
l + J

(u)
l) ≤ Tsystem, ∀u ∈ N ⇒

max
u∈N

∑

l∈L(u)

(τ ∗
l + J

(u)
l) ≤ Tsystem ⇒

LB(τ ∗) ≤ Tsystem

SinceLmin(τ) = LB(τ), ∀τ ∈ G(N,E), we reach the conclusion thatLmin(τ ∗) ≤

Tsystem, i.e. τ ∗ is feasible. This contradicts our initial hypothesis.

116

Proposition 4.4.1 states that classes of topologies or specific topologies for which

Lmin(τ) = LB(τ) for all τ , can be fully utilized by distributed algorithms. In the next

section we show the class of tree topologies satisfies this property.

4.4.2 Optimal link scheduling for tree networks

Let the ad hoc network topologyG(N,E) be a tree. Without loss of generality, assume

that an arbitrary node in the tree is designated as root. The root provides a reference for

parent-child relationships between the node endpoints of every link in the network. The

parent-child relationship between the node endpoints is independent of their master-

slave relationship. We define thelevel of a nodeto be its hop distance from the root

(the root has a level equal to zero). Thelevel of a linkequals the level of its child node

endpoint.

Let τ be a demand allocation. Givenτ , every node is equipped with a local schedule

of periodTsystem = LB(τ) slots (eq. (4.3)). The slot positions in each local schedule

are indexed from0 to Tsystem − 1. A set of consecutively assigned slots to linkl in the

local periodic scheduleSu of nodeu, forms a (circular) windowW (u)
l = [s

(u)
l , e

(u)
l]:

[s
(u)
l , e

(u)
l] =





s
(u)
l , ..., e

(u)
l if s

(u)
l ≤ e

(u)
l

s
(u)
l , .., 0, ..., e

(u)
l otherwise

(4.6)

wheres
(u)
l ande

(u)
l are the start and end slot positions assigned to linkl in Su, respec-

tively. The number of slots inW (u)
l is denoted as|W (u)

l |. Modulo-Tsystem addition and

subtraction are denoted by ”⊕” and ”⊖”, respectively.

We now describe the operation of CENTRALTREE, a link scheduling algorithm

that realizesτ using a period ofLB(τ) slots. Initially, all local schedules are empty.

Links are scheduled in a breadth-first manner. In the first iteration, the root noder starts

from slot0 in its local scheduleSr and schedules its children links (level-1 links) until

117

their total demand is satisfied. The links are scheduled non-preemptively in successive

windows: For each child linkl = (r, c), r allocates inSr a window ofτl + J
(r)
l consec-

utive slots, immediately succeeding the window of the previously scheduled child link.

After l has been scheduled inSr, the child nodec assignsτl + J
(c)
l time-overlapping

slots to linkl in its own local scheduleSc.

In the next iteration, the root children (level-1 nodes) schedule their own children

links (level-2 links). For each such nodeu, its parent linklp has already been satisfied

by a windowW
(u)
lp

= [s
(u)
lp

, e
(u)
lp

] in Su, during the previous iteration. Nodeu starts from

slot positione
(u)
lp

⊕ 1 and schedules its children links non-preemptively in successive

windows by filling Su towards slot positions(u)
lp

in a circular fashion. For each link

l = (r, c) scheduled inSu, the child node endpointc assigns time-overlapping slots in

Sc.

The scheduling process is repeated recursively until the highest-level links have been

scheduled and the leaf nodes have updated their local schedules.

Theorem 4.4.2 If the network topology is a tree, any demand allocationτ can be real-

ized by algorithm CENTRALTREE using a period ofLB(τ) slots.

Proof SinceTsystem is set toLB(τ) slots, it suffices to show that no node runs out of

slots in its local schedule during the algorithm execution.We use induction on the link

levels over the tree.

Level 1: Starting at slot0 in its local scheduleSr, the rootr schedules
∑

l∈L(r) τl +

J
(r)
l slots which, by definition, is less than or equal toLB(τ). In addition, each child

nodec on child link l allocatesτl + J
(c)
l time-overlapping slots in its local schedule,

which does not exceedLB(τ).

Level k-1: Assume that no node has run out of slots after all levelk − 1 links have

been scheduled. Due to the breadth-first recursion, each of the levelk − 1 nodes that

118

are children of the same (levelk − 2) parent has been assigned a single window, the

windows of such nodes being mutually exclusive.

Therefore, without loss of generality, we can consider a link lp of levelk − 1 and its

child nodeu in isolation. During the previous iterationu has been allocatedτlp + J
(u)
lp

consecutive slots inSu.

Let CH(u) be the set of children links of nodeu. Nodeu will need
∑

l∈CH(u)(τl +

J
(u)
l) slots inSu to schedule its children links in mutually exclusive windows. Thus node

u will have assigned a total of
∑

l∈CH(u)(τl + J
(u)
l) + τlp + J

(u)
lp

=
∑

l∈L(u)(τl + J
(u)
l)

slots at the end of iterationk, which, by definition does not exceedLB(τ). Also, for

each linkl = (u, c) ∈ CH(u), the child nodec will allocateτl + J
(c)
l in Sc, which does

not exceedLB(τ). Therefore no node runs out of slots at the end of iterationk. The

induction step is complete.

Algorithm CENTRAL TREE cannot be used in practice because it requires global

information and a priori knowledge of a static demand allocation for which it computes

an optimal schedule. Its importance lies in establishing that the entire set of feasible

allocations for tree topologies can be captured by local conditions, even for the case of

asynchronous TDMA.

4.4.3 Some practical considerations

To summarize our results on local feasibility conditions, guaranteeing feasibility of the

global link demand allocation requires each nodeu to provide at mostTR
u slots as de-

mands on its adjacent links:
∑

l∈L(u)

τl ≤ TR
u (4.7)

where the maximum value forTR
u is given by the table in Figure 4.4. According to our

previous discussionTR
u depends on whether or not the network is slot-synchronized and

119

whether a distributed protocol for enforcing bipartite or tree topologies exists.

Topology

Arbitrary Bipartite Tree

Synchronized ⌊2
3
Tsystem⌋ Tsystem Tsystem

Asynchronous ⌊
⌊ 2
3
Tsystem⌋

2
⌋ ⌊Tsystem

2
⌋ Tsystem −

∑

l∈L(u)

J
(u)
l

Figure 4.4: Maximum known values (in # of slots) for the QoS utilization parameterTR
u

ensuring feasibility under various assumptions on topology control and slot synchro-

nization.

In a multi-channel system such as the one considered here, bipartite topologies can

be easily enforced using local information: every node actsonly as master or slave to

all its adjacent links and the channel assigned to each link is derived from the (unique)

address of the master node endpoint. In practice, bipartitetopologies arise in clustered

architectures [35][36]. In these architectures each cluster is defined and controlled by

a clusterhead node. Inter-cluster communication is performed by non-clusterhead gate-

way nodes that participate in multiple clusters.

Tree topologies can be enforced using existing algorithms for dynamic tree forma-

tion and maintenance [29][31][77]. Trees manifest in various ad hoc networking appli-

cations. Existing topology construction algorithms for Bluetooth ad hoc networks gener-

ate tree topologies [25] [29][31][102]. According to the sensor network communication

paradigm, sensors report data back to a single source over a tree structure [103][104].

Tree topologies are also used for energy-efficient broadcasting [21][105]. Several non-

tree ad hoc networks use a certain subset of nodes as a tree backbone for facilitating

administrative purposes such as routing.

When nodeu joins the network it queries its neighbors about existence of global

120

synchronization or topology control protocol and sets itsTR
u according to the table in

Figure 4.4. The table demonstrates that more restricted topologies allow for greater

node utilization. Trees allow for maximum utilization in both synchronized and asyn-

chronous systems; in addition, the entire set of feasible allocations is captured only by

local conditions.

We would like to emphasize that the terms ”feasibility” and ”underutilization” are

with respect to provision of QoS guarantees, i.e. when nodesaim to realize a link

demand allocation in the network. The QoS utilization parameter indicates a sufficient

number of slots each node can provide for QoS traffic. However, the remaining slots in

the nodes’ local schedules need not be idle–they are always available for other purposes

including control or best-effort traffic.

4.5 Summary

We introduced a distributed TDMA protocol for multi-channel ad hoc networks that

operates with no global assumptions such as network-wide slot synchronization, knowl-

edge of number of nodes in the network or universal slot enumeration. The protocol

reacts locally to topology or traffic changes, adjusting link rates by means of conflict-

free slot reassignments. The TDMA nature of the protocol allows provision of QoS

guarantees–a set of link rates realized by a TDMA schedule. We identified local feasi-

bility conditions that depend on existence or not of networktopology control and global

slot synchronization mechanisms. These conditions capture a subset of feasible alloca-

tions but ensure that a distributed algorithm will be able toreach a schedule that realizes

them. The definition as well as distributed algorithms for enforcement of QoS objectives

within this subset of feasible allocations is the subject ofthe following chapters.

121

Chapter 5

Link-level max-min fairness

In this chapter we focus on distributed bandwidth allocation mechanisms that operate in

the subset of feasible allocations defined in chapter4 and aim at generating and enforc-

ing link demands for the realization of various QoS objectives.

One possible QoS objective is for users to impose specific slot demands on the net-

work links. This would require additional mechanisms for admission control and re-

source provisioning that might be costly in the mobile ad hocnetwork setting. Another

QoS model might be for users to specify a utility that expresses their satisfaction level

as a function of the bandwidth they receive. Given the user utility functions the network

tries to allocate bandwidth accordingly. Since it is not always easy to characterize a user

satisfaction in terms of bandwidth, defining utility functions that are meaningful is gen-

erally difficult. Max-min fairness is an intuitive and desirable objective in application

scenarios where no explicit knowledge exists about the bandwidth requirements of the

users in the network. A max-min fair allocation tries to allocate an equal amount of

bandwidth to all users. If a user cannot utilize all the bandwidth because of a constraint,

then the residual bandwidth is distributed to less constrained users. Among any feasi-

ble bandwidth allocations, a max-min fair allocation ensures that the most constrained

122

users are allotted the maximum possible bandwidth. This form of fairness has also been

shown to be a good trade-off between maximizing network utilization and providing fair

access to the network users.

In this chapter, our focus is at the medium access layer; as in[106][107][108] [109],

we address max-min fairness for the case where the ”users” are single-hop flows (links)

instead of multi-hop sessions. Two reasons motivate this approach. First, maintenance

of state for end-to-end sessions may not be possible in lightweight mobile nodes nor

even desirable in a highly mobile network. Still, transmissions must be coordinated

such that robust and balanced access is provided to the higher layers. Second, provision

of fairness on a multi-hop session basis can be viewed as an orthogonal objective. Re-

cently, two distributed algorithms have been proposed in [110] and [60] for end-to-end

utility-based fairness and max-min fairness, respectively. Operating at a higher layer,

these algorithms compute the fair session rates, but they donot enforce these rates–a

distributed medium access mechanism is needed.

We first introduce a fluid model that captures only the bandwidth allocation con-

straints without taking into account the conflict-free requirement. In this model we

propose a distributed algorithm that starts from an initialrate allocation and eventually

converges to the max-min fair solution after a series of asynchronous link rate adjust-

ments. The slotted version of the algorithm uses the distributed TDMA protocol and

attempts to emulate the one of the fluid model with the basic difference that whenever

it adjusts the rate of a link it does so by re-assigning transmission slots directly on the

network schedule without violating the conflict constraints. Since the fluid algorithm

converges to the max-min fair rates under asynchronous distributed operation, the slot-

ted one is expected to have similar properties.

Max-min fairness in slotted multi-channel wireless systems was first addressed in

123

[109]. The authors provide an on-line scheduling policy andprove analytically that

it converges to the max-min fair solution. However, the policy uses global network

information to compute the conflict-free link schedule and,therefore, cannot be imple-

mented in practice. The slotted version of the distributed algorithm proposed here is

implementable but no analytical proof exists for its exact convergence as in the fluid

case. Through extensive simulations in static and dynamic networks we show that the

algorithm possesses very good tracking properties of the max-min fair rate allocation.

The rest of the chapter is organized as follows: Section 5.1 presents the network

model and definition of max-min fairness. Section 5.2 introduces the fluid part of the

asynchronous algorithm that computes the amount of rate adjustments. Section 5.3

describes the scheduling technique that enforces these rate adjustments by means of

conflict-free slot reallocations. The algorithm performance is evaluated in Section 5.4.

A traffic-adaptive extension of the basic algorithm is presented in section 5.4.4. We

discuss related work in Section 5.5. Section 5.6 concludes.

5.1 Network Communication Model

We consider a multi-channel ad hoc network represented as a graphG(N,L) where ver-

tices correspond to wireless nodes and edges correspond to established communication

links. The nodes use the TDMA architecture and protocol defined in Chapter4: each

node to coordinate transmissions on its adjacent links using a periodic local schedule

of Tsystem full-duplex slots; both asynchronous and globally slot-synchronized modes

are supported. Since only primary interference exists, anyset of links that do not have

a common node endpoint can transmit simultaneously withoutconflict. Figure 5.1 il-

lustrates a multi-channel ad hoc network using a slot-synchronized TDMA schedule.

124

B EA

FC

D Tsystem =14 slots

3SA

0slot#

SB
SC
SD
SE
SF

1 2 3 4 5 6 7 8 9 10 11 12 13

- 4 4 4 4 4 4 4 1 4 1 - - -

- 2 2 - 2 - 2 - - 2 - - 2 -

3 - - 3 - 3 - 3 - - - 3 - 3
5 4 4 4 4 4 4 4 5 4 - 5 5 5

5 - - - - - - - 5 - - 5 5 5

2 2 3 2 3 2 3 1 2 1 3 2 3

2 5

1 4

3

Figure 5.1: A multi-channel slot-synchronized wireless adhoc network using a TDMA

link schedule ofTsystem = 14 slots. Each slot in a local scheduleSu indicates the link

assigned by nodeu.

We use two models to represent bandwidth allocation. In theslot modelthe band-

width allocated to a linkl is expressed as the number of slotsτl in a (synchronized or

asynchronous) TDMA schedule of periodTsystem slots. Thefluid modeldoes not refer

to a slotted system. The bandwidth allocated to a linkl is expressed as a normalized rate

rl and is the time fraction the node endpoints spend communicating conflict-free on this

link.

Given link slot allocationτ = (τ1, ..., τ|L|) in the slot model, the corresponding

normalized rate allocation in the fluid model equalsr = τ/Tsystem. Conversely, the slot

allocation in aTsystem-periodic system corresponding to rate allocationr = (r1, ..., r|L|)

is τ = ⌊r · Tsystem⌋.

The two models serve different purposes: the fluid model is more general and intu-

itive and can be used to describe bandwidth sharing as well asnotions such as feasibility

125

and max-min fairness. On the other hand, a real system uses the slotted model–it always

works in the discrete domain using a TDMA schedule of periodTsystem slots.

5.1.1 Rate feasibility and max-min fairness

Under the fluid model, theeffective capacityCu of a nodeu is defined as the maximum

rate it provides to its adjacent linksL(u) for communication. IfCu is less than unity

then the node is partially utilized and remains idle for the rest of the time.

A link rate allocationr = (r1, ..., rl,, r|L|) is feasibleif there exists a conflict-free

(not necessarily periodic) TDMA schedule that allocates toevery linkl a long term rate

equal torl. Since each nodeu cannot communicate on different adjacent links simulta-

neously the sum of the rates of all links inL(u) must be less thanCu. A node effective

capacity of unity guarantees feasible rate allocations when the network topology is bi-

partite [83]. For arbitrary topologies, the feasibility region cannot be characterized only

by these local conditions. The additional non-local conditions require that, for every odd

node subsetQ (|Q| > 1) in the topology graph, the sum of the rates of all links adjacent

to the nodes inQ must not exceed(|Q| − 1)/2. Alternatively, an effective node capac-

ity of 2/3 provides with a sufficient (albeit not necessary) characterization of feasibility

[83]. Hence, we will use the following local capacity constraints for the fluid model:

∑

l∈L(u)

rl ≤ Cu , ∀u ∈ N ,whereCu =





1 if G(N,L) is bipartite

2/3 otherwise

If a link l has a long-term arrival rateBl we also need ademand constrainton its maxi-

mum allowable rate:

rl ≤ Bl (5.1)

Here, we implicitly assume the theBl are such that feasibility is maintained: for every

link l, Bl ≤ 1 and for every nodeu,
∑

l∈L(u) Bl ≤ Cu. These conditions hold because,

126

in practice, theBl are estimated online with respect to the node effective capacity. We

will outline such an estimation procedure in section 5.4.4.

A feasible rate allocation ismax-min fair (MMF)if the rate allocated to a link cannot

be increased without decreasing the rates of other contending links having equal or less

rate. More formally, we define a rate allocationr to be MMF if:

1. It is feasible i.e. satisfies the capacity and demand constraints given by equations

(5.1) and (5.1).

2. It is lexicographically greater than any other feasible rate allocation vectorr′. In

other words, if we sort bothr andr′ in increasing order of their rates and start

comparing the rates of the respective permuted vectorsr̃ andr̃
′ starting from the

lowest index, then after a possible set of equal rates there will be an indexl such

that r̃l
′ < r̃l.

Intuitively, if all links have equal access right, the most constrained links are provided

the maximum possible bandwidth.

Nodeu is defined as abottleneck nodeto an adjacent linkl ∈ L(u) if it is fully

utilized with respect toCu and the rate of linkl is greater than or equal to the rate of all

other links inL(u). The definition of bottleneck node gives rise to a distributed criterion

to determine whether a given allocation is MMF or not:

Theorem 5.1.1 MMF criterion: A bandwidth allocation is MMF if and only if every

link l in the network satisfies at least one of the following conditions:

• The bandwidth allocated to linkl equals its long-term arrival rateBl.

• The linkl has at least one bottleneck node.

127

A similar criterion has been used for determining MMF allocations of end-to-end ses-

sions sharing wireline networks; the proof of theorem 5.1.1can be derived from the

proof of the wireline criterion [111].

The link MMF rates can be computed using an iterative, off-line centralized algo-

rithm. During each iteration, each node equally divides itsavailable bandwidth to its

adjacent links. The bottlenecks are the nodes for which thisdivision is minimum; the

minimum ratio is the MMF rate for this iteration and is allocated to the links adjacent to

the bottleneck nodes. We then remove the bottleneck nodes and their adjacent links from

the network and reduce the available bandwidth of the remaining nodes by the amount

consumed by the removed links. Any node whose available bandwidth becomes zero

is also removed. In the next iteration, we consider the reduced network, determine the

(next-level) bottleneck nodes and repeat the procedure. The process continues until all

links have been allocated their rates. Upon termination, this algorithm yields the link

MMF rates because the links removed in each iteration have atleast one bottleneck

node. The centralized algorithm is similar in spirit to the algorithm of Bertsekas and

Gallager [111] that computes MMF rates for end-to-end sessions sharing the links of a

wireline network–in our case, the shared resources are the nodes rather than wired links

and the entities sharing resource bandwidth are the wireless links rather than end-to-end

sessions.

Figure 5.2 is an example of the centralized algorithm performing the MMF rate

computation. The topology is bipartite and all links are assumed backlogged (Bl = 1).

The algorithm pseudocode in Figure 5.13 in Chapter Appendix 5.A includes the case

where demand constraints are taken into account.

The centralized algorithm demonstrates that max-min fairness for wireless links is a

global objective–the optimal allocation is dependent on the entire topology. Since nodes

128

A B C

D

F

G H

E

3/43/4 1

1 1

(3/8)(1/3)(3/4)

(1/2) (1/2)

1/3 1/3

1/3

A B C

D

F

G H

E

3/43/4 1

1 1

(3/8)(1/3)(3/4)

(1/2) (1/2)

(3/8)(1/3)(3/4)

(1/2) (1/2)

1/3 1/3

1/3

1/3 1/3

1/3

A B C

D

F

G H

E

5/12

2/3 1

5/12

(5/12)

(2/3) (1/2)

A B C

D

F

G H

E

5/12

2/3 1

5/125/12

(5/12)

(2/3) (1/2)

(5/12)

(2/3) (1/2)

A B C

D

F

G H

E

2/3 7/12
7/12

(2/3) (7/12)

A B C

D

F

G H

E

2/3 7/12
7/127/12

(2/3) (7/12)(2/3) (7/12)

A B C

D

F

G H

E

1

1

1/4 1/4

1

11/12 1

7/12

5/12

7/12

1/3 1/3

1/3

1/4

1/4

1/4

1/4

A B C

D

F

G H

E

1

1

1/4 1/4

1

11/12 1

7/12

5/12

7/12

1/3 1/3

1/3

1/4

1/4

1/4

1/4

A B C

D

F

G H

E

1/4

1/4

1/4

1/4

1

1

1 1

1 1

1 1

(1)

(1/4)

(1/3)(1/3)(1/2)

(1/2) (1/2)

(1)

A B C

D

F

G H

E

1/4

1/4

1/4

1/4

1

1

1 1

1 1

1 1

(1)

(1/4)

(1/3)(1/3)(1/2)

(1/2) (1/2)

(1)

A B C

D

F

G H

E

1

1

1 1

1 1

1

A B C

D

F

G H

E

1

1

1 1

1 1

1

(A) (B) (C)

(D) (E) (F)

Figure 5.2: (a) Initialization: All nodes set their effective capacities to 1 (bipartite topol-

ogy). (b) Iteration 1: Bottleneck node isF–over all nodes, it provides the minimum fair

share of 1/4 to its adjacent links. (c) Iteration 2: Bottleneck node isB (MMF rate is

1/3). (d) Iteration 3: Bottleneck node isC (MMF rate is 5/12). (e) Iteration 4: Bottle-

neck node isD, MMF rate is 7/12. (f) The MMF link rate allocation and corresponding

node utilizations.

129

have access to only local information, they never know the MMF rates of their adjacent

links. We seek an asynchronous distributed algorithm wherenodes incrementally reach

the global MMF link rate allocation through local rate adjustments. Such an algorithm

would allow convergence to the MMF solution provided the topology remains stable for

a sufficient amount of time. A second challenge (not addressed even by the centralized

algorithm) is for the nodes to reach a TDMA schedule that enforces these rates.

We first introduce an algorithm that computes the MMF rates using only local infor-

mation. This algorithm is then used in the slotted system to guide slot re-assignments

for rate adjustments. We thus aim for rate computation and enforcement to occur in

parallel. Our approach will be presented in detail in the following sections.

5.2 Distributed algorithm–Fluid model

In this section we introduce an asynchronous distributed algorithm for the fluid model

that works in the feasible rates region and eventually converges to the MMF allocation.

5.2.1 Fairness deficit

A central component of the distributed algorithm is thefairness deficit computation

(FDC), performed by a nodeu with respect to an adjacent linkl = (u, v): nodeu starts

from the current allocationru = {rl : l ∈ L(u)} on its adjacent links and computes a

new allocationr′
u where it is a bottleneck forl. Then, thefairness deficit of nodeu for

link l is defined asfd
(u)
l = r′l − rl.

The FDC can be implemented by the following iterative algorithm: Initially, r′
i = ri.

The rate of linkl is increased by the excess capacityEu = Cu −
∑

k∈L(u) rk of nodeu.

Then, at each iterationt, we consider the setM (t) of maximum rates inr′
u. If r′l is not in

130

A B

E

D

C

F

0.050.25

0.17

0.25 0.23

0
step

r�5 E1
m ax_
rate

1
2

3

0.17
0.17

0.17

0.17

0.25

0.20

0.20

0.25

0.20

0.20

0.23
0.23

0.05

0.00

0.00

0.00

0.25
0.25

0.23

0.215

r�4r�3r�2r�1

0.05
0.10

0.20
0.215

0.25

0.215

0.25

0.23

r�A

1

54

3
2

Figure 5.3: The FDC algorithm for link1 at nodeA (CA = 1.0, B1 = 1.0). The shaded

entries during each iterationt denoteM (t). The last row isr′
A; the fairness deficit is

fd
(A)
1 = 0.215 − 0.05 = 0.165.

M (t), the total bandwidth ofM (t) plusr′l is equally distributed to the links inM (t) and

link l. This operation decreases the rates of links inM (t) and increases the rate of link

l; it also determines the maximum rate set of the next iteration. The process is repeated

until r′l is in the maximum rate set.

The above description assumes thatl is a greedy link (demand constraintBl = 1).

If Bl < 1 the iterations stop when eitherr′l is in the maximum rate set or whenr′l

becomes greater than or equal toBl. In this case, the excess bandwidthr′l − Bl is

equally distributed to the links in the maximum rate set of the last iteration andr′l is set

to Bl. The FDC steps are described by the pseudocode in Figure 5.14; Figure 5.3 is a

representative example of the FDC operation.

131

5.2.2 Fluid distributed algorithm

The distributed fluid algorithm starts from an arbitrary feasible link rate allocation.

Links are continuously activated for rate adjustment at asynchronous time instants.

When a linkl = (u, v) is activated for rate adjustment, the algorithm seeks to increase

its rate such that one of the node endpoints becomes a bottleneck for this link. More

specifically, the following actions take place:

1. Nodesu andv perform the FDC for linkl and exchange their fairness deficits.

The link fairness deficitis fdl = min{fd
(u)
l , fd

(v)
l }.

2. If the link fairness deficit is zero, then no rate adjustment takes place, steps 3 and

4 are not executed and no further action is taken.

3. If both deficits are non-zero, then the rate of linkl is increased byfdl.

4. Nodesu and v adjust the rates of the rest of their adjacent links accordingly.

The new link rate allocationr′
u for the minimum deficit nodeu has already been

computed by the FDC in step1. For the maximum deficit nodev, any new link rate

allocationr′
v where the sum of rates does not exceedCv and link l has rate equal

to r′l = rl +fdl, is acceptable. For example, such an allocation can be reached if v

applies again the FDC on linkl with an upper bound equal tomin{Bl, rl + fdl}.

Note that in order to perform the above adjustments we only need to reduce the rates of

certain links adjacent to nodesu andv except linkl, the rate of which is increased by

fdl.

Theorem 5.2.1 (Convergence Theorem)Given a static topology and an arbitrary ini-

tial feasible link rate allocation, the distributed fluid algorithm converges to the network

MMF allocation after a finite number of link activations for rate adjustment.

132

Proof We assume that every link in the network will be asynchronously activated

for rate adjustment infinitely often. In other words, links do not stop attempting to

perform rate adjustments and intervals in-between consecutive rate adjustments of a

specific link are finite. For simplicity, we assume that all links are backlogged (i.e.

Bl = 1∀l ∈ G(N,L)). The proof under demand constraints (Bl < 1) follows a similar

reasoning.

Let the link rate adjustment process start at timet0. Consider the set of most con-

strained nodesN (0), for which the ratioCk/|L(k)| is equal and minimum:

N (0) = {u : u = arg min
w∈N

{Cw/|L(w)|}}.

When a linkl adjacent to a nodeu in N (0) is activated for rate adjustment:

• Nodeu is always the bottleneck node forl because it offers the minimum deficit.

• According to the FDC algorithm ofu, link l will belong to the maximum rate set

of the new rate allocationr′
u. Also, the cardinality of the new maximum rate set

of nodeu increases by one link.

When all adjacent links ofu have been activated for rate adjustment, its maximum rate

set will have|L(u)| links, each link allocated rateCu/|L(u)|. From that point on, when

a link l ∈ L(u) is activated for rate adjustment,u will be giving it a fairness deficit

of zero, and no further rate adjustment will take place for such a link. Since links are

activated infinitely often for rate adjustment, there will be a pointt1 > t0 where all

adjacent links to all nodesu in N (0) have been allocated a rate ofCu/|L(u)|.

Let L(0) be the set of all links adjacent to the nodes inN (0) and consider the algo-

rithm operation after timet1.

Nodes inN (0) will never adjust the rates of their adjacent links. When a node u

in N − N (0) executes the FDC algorithm for an adjacent linkl not in L(0), it may

133

decrease the rates of other adjacent links except those inL(0)–these links have the global

minimum rate in the network and will never belong to the maximum rate set during the

FDC computation ofu. This is equivalent to saying that links inL(0) and the bandwidth

they consume have been ”removed” from the network; the nodesin N−N (0) redistribute

their remaining capacity to their adjacent, non-saturatedlinks.

After time t1, denote byN (1) the set of the next most constrained nodes in the net-

work:

N (1) = {u : u = arg min
w∈N−N(0)

{(Cw −
∑

k∈(L(w)∩L(0))

rk)/|L(w)|}}.

When a linkl = (u, v) adjacent to a nodeu ∈ N (1) is activated for a rate adjustment:

• If the other endpoint nodev is in N (0), no rate reallocation takes place because

the link fairness deficit is zero.

• Otherwise, nodeu is the bottleneck node for this link. Now if there is another

link in L(u) for which the endpoint nodew 6= v is in N (0), then its rate cannot

be decreased further by the FDC algorithm ofu because it has already established

the minimum possible fair share in the network (Cw/|L(w)|).

• The cardinality of the new maximum rate set of nodeu increases by one link.

Now lett2 > t1 be the time instant where all adjacent links to all nodesu in N (1) (except

the linksk ∈ L(0)) will have been allocated their fair rates ((Cu−
∑

k∈(L(u)∩L(0))

rk)/|L(u)|).

It is straightforward to show by induction that there existsa future finite time instanttn+1

until every set of constrained nodes

N (n) = {u : u = arg min
w∈N−N(0)∪...∪N(n)

{(Cw −
∑

k∈L(w)∩(L(0)∪...∪L(n))

rk)/|L(w)|}}

will saturate its remaining links. It follows that the algorithm converges to the MMF

allocation in a finite number of steps.

134

The algorithm is self-terminating–no explicit message needs to be sent to the entire

network to signal convergence. When a link is activated for a possible rate adjustment,

adjustment occurs only if the link fairness deficit is non-zero. Upon convergence, all

links will have at least one bottleneck node–the link fairness deficit will be zero for all

links in the network.

5.3 Distributed algorithm–Slot model

The fluid algorithm guarantees convergence to the MMF rates but does not yield a

conflict-free schedule that realizes these rates. This is because the fluid model does not

refer to a slotted system but is mainly concerned with how to redistribute the bandwidth.

The slotted algorithm emulates the fluid algorithm: it adjusts the rate of a link by

re-assigning transmission slots directly on the network schedule without violating the

conflict constraints. Since the fluid algorithm converges tothe MMF rates under asyn-

chronous distributed operation, the slotted algorithm will have similar properties, pro-

vided it yields a conflict-free schedule after each rate adjustment.

Next, we describe the three components needed to use the fluidalgorithm in the

slotted system: 1) a modification in the local conditions 2) the slotted FDC and 3) the

slot assignment algorithm.

5.3.1 Local conditions

When the fluid algorithm is applied to the slotted system, rates will be quantized to slots.

In order for the resulting slot demands to be feasible, we need to restrict the fluid model

local conditions to fit the corresponding slotted system:

∑

l∈L(u)

rl ≤ Cu, Cu =
TR

u

Tsystem

, ∀u ∈ N (5.2)

135

whereTR
u depends on the topology control algorithm and the existenceof network-wide

slot synchronization and its maximum allowed value is givenby the Table in Figure 4.4

of Chapter 4.

The capacity conditions (eq. (5.2)) allow the fluid algorithm to operate over both

asynchronous and synchronized TDMA systems. For ease of illustration through the rest

of the chapter we will describe the mapping of the fluid algorithm to a slot-synchronized

ad hoc network.

5.3.2 Slotted FDC

The number of conflict-free slots each nodeu transmits on its adjacent links in its local

scheduleSu determines its slot allocationτ u. In the slotted FDC nodeu uses the fluid

FDC to reach from the initial slot allocationτ u to a new slot allocationτ ′
u; the slotted

FDC outputs the difference vectorxu = τ ′
u − τ u. An example of the slotted FDC

operation at nodeA in Figure 5.1 is shown in Figure 5.4.

5.3.3 Slot assignment algorithm

Given xu, a positive (or negative) elementxk indicates the rate of linkk must be in-

creased (or decreased) byxk slots. A zero element indicates no change in the rate of the

corresponding link. The set of surplus links (i.e. the linksaffected by the rate adjustment

on link l) is X−
u = {k : xk < 0}. Also xl is positive and equal to the fairness deficit

amount of slots that must be assigned to linkl.

The slot assignment algorithm decides for each surplus linkk whichxk out of the

τk current slot positions will be re-assigned to linkl. The slot assignment algorithm

consists of two phases. InPhase I, nodeu takes into account the local link schedule

Sv of the other node endpointv and assigns slot positions to linkl in the following

136

step Link 1 Link 2 Link 3 rem Actions

0 τA 2 6 6 0 Tsystem = 14

1 rA 2/14 6/14 6/14 0/14 rA = τA/Tsystem

2 r′
A 0.333 0.333 0.333 0.000 Fluid FDC

3 τ ′
A 4 4 4 2 τA = ⌊rA · Tsystem⌋

4 τ ′
A 6 4 4 0 Give remainder slots to link 1

5 xA +4 -2 -2 0 xA = τ ′
A − τA

Figure 5.4: The slotted FDC for nodeA on link 1 in the network of Figure 5.1: 1) slots

are converted to rates. 2) fluid FDC is applied to rates. 3) Resulting rates are quantized to

slots. 4) Excess slots due to the quantization of step 3 are given to link1. (5) Difference

vectorxA–the discrete fairness deficit for link1 is 4 slots.

prioritized manner:

1. First, link l is assigned slot positions that are currently assigned idlein both local

schedulesSu andSv, if such positions exist.

2. If step 1 did not find enough matching slot positions, linkl is assigned slot po-

sitions that are currently assigned to surplus linkk in Su and idle inSv, if such

positions exist.

The number of slot positions that matched during Phase I may still be less than the

required deficit for linkl. For each surplus linkk that Phase I selected onlymk out of

xk slots,Phase II randomly selects extraxk − mk slot positions that are still assigned

to k in Su and reassigns them to linkl. The algorithm outputs a list indicating the extra

slot positions that should be assigned to linkl.

Figure 5.15 in Chapter Appendix 5.A contains the pseudocode of the slot assignment

137

algorithm. As an example, after the FDC of Figure 5.4, nodeA is called to decide on the

extra slot positions that will be assigned to link1 based on its own and nodeB’s local

schedules (see Figure 5.5). The rate difference vector (row5 in Figure 5.4) indicates

that links2 and3 must give away two slots each and link1 should be assigned four extra

slots. By matching the idle slots ofSB, nodeA reassigns slot positions{7, 12} from 2

and{11, 13} (selected randomly from{0, 11, 13}) from 3 to link 1.

Slot 0 1 2 3 4 5 6 7 8 9 10 11 12 13

SA 3 2 2 3 2 3 2 2 1 2 1 2 2 3

SB - 4 4 4 4 4 4 - 1 4 1 - - -

Figure 5.5: The matching slot positions in local schedulesSA and SB are

{0, 7, 11, 12, 13}: In SA they are assigned to surplus links2 and3, while in SB they

are assigned idle. Taking this information into account, nodeA eventually selects slot

positions{7, 11, 12, 13} for link 1.

5.3.4 Slotted distributed algorithm

The ad hoc network operates according to a TDMA schedule of period Tsystem slots. At

asynchronous time instants, nodes use the TDMA protocol of Chapter 4 to adjust the

rates of their adjacent links through local slot reassignments. More specifically, when a

link l = (u, v) is activated for rate adjustment, the following actions take place:

1. Endpoint nodesu andv perform the slotted FDC for linkl and exchange their dis-

crete fairness deficitsfd
(u)
l andfd

(v)
l . The link fairness deficit isfdl = min{fd

(u)
l , fd

(v)
l }.

2. If the link fairness deficit is zero, then no rate adjustment takes place, steps 3 and

4 are not executed and no further action is taken.

138

3. If both deficits are non-zero, linkl must be assignedfdl additional slots in con-

current positions of both endpoint local schedules.

4. The minimum deficit node endpoint operates as ASSIGNER andexecutes the slot

assignment algorithm.

5. The ASSIGNER transmits the new slot positions to the otherend; the TDMA

protocol in Chapter 4 ensures that the modified local schedules of the endpoints

and their one-hop neighbors will be free of transmission conflicts.

The slotted distributed algorithm does not enjoy analytical convergence properties

like the fluid couterpart that guides the slot reassignments. We will evaluate its perfor-

mance using simulations in large networks and various static and dynamic scenarios.

5.4 Performance evaluation

5.4.1 Experimental model and setting

We have implemented a packet-level simulator environment in C++ to evaluate the algo-

rithm performance. The simulator includes the generation of various static and dynamic

topology scenarios as well as an implementation of the proposed protocol.

Topology dynamics are modeled by having links going up and down in a static

baseline topology [112]. This model captures the way mobility is manifested in multi-

channel systems without delving into the details of the complex hand-off and link estab-

lishment protocols that should be used by a multi-channel system when nodes actually

move. While important, such protocols are beyond our scope. Also this model allows

for explicit control of parameters that affect the protocolperformance such as topology

density and frequency of topology changes.

139

Each link in the baseline topology cycles independently between an ACTIVE (”link

up”) and INACTIVE (”link down”) state. A link remains ACTIVE for a geometrically

distributed number of slots with meanTactive. Since all links alternate between the two

states independently, the long-term fraction of timep a link is ACTIVE equals the aver-

age percentage of active links in the baseline topology at any time. In addition, certain

multi-channel technologies impose a limit on the number of physical links a wireless

node can maintain simultaneously. This restricts the maximum node degree toDmax

(e.g. in BluetoothDmax is 7). The parameterTactive is used to tune the rate of topology

changes whilep andDmax affect the average network density. The frequency of rate

adjustments is controlled by the protocol parameterTadjust. After a link rate adjustment,

the endpoint nodes agree on a random rate adjustment timer chosen uniformly between

0 andTadjust slots. The timer decreases on each future time slot the link is used for

transmissions. When the timer expires, the link is activatedfor rate adjustment.

We use two metrics to evaluate performance:

• Relative computation error: If the MMF rate of a linkl at timet is rMMF
l (t)

and the computed rate isrl(t), the relative computation error for linkl at timet

is |1 − rl(t)/r
MMF
l (t)|. For each slott, we consider the maximum and average

relative computation error over all currently ACTIVE links.After each topology

change, the reference link MMF rates are computed off-line using the centralized

algorithm.

• Control Overhead: During network operation, a slot can be idle, used for trans-

mission of a DATA packet or for exchange of control information conveyed by

the control packets of the TDMA protocol. The control overhead is the ratio of

control packets over the total number of packets transmitted during a simulation

run.

140

In the experiments we consider a slot-synchronized network; we setTR
u = Tsystem

(Cu = 1) for every node nodeu and consider bipartite topologies–in this case the entire

feasibility region can be captured by the local conditions.For arbitrary topologies, nodes

can set their QoS utilization parameters toTR
u = ⌊2/3 · Tsystem⌋ and the algorithm will

target for MMF allocations with respect to this fractional capacity. We use anN = 100

node bipartite baseline topology with50 nodes per bipartite set. This yields a rich set of

N2/4 = 2500 possible links in the baseline topology that can be ACTIVE or INACTIVE

at any time. In terms of traffic demands, all links are assumedbacklogged (no demand

constraints) when ACTIVE.

5.4.2 Experiments on static networks

Given the baseline topology, the parametersp andDmax are used to derive static topolo-

gies of various density and maximum degree characteristics(e.g. Figure 5.6). All simu-

lations in static topologies were run for500000 slots.

Figure 5.6: A sampleN = 100(50/50) bipartite topology ofp = 0.1 andDmax = 7

derived from the baseline topology graph. Only ACTIVE links are shown.

In Figures 5.7 and 5.8 we setp = 1.0 so that every node has a degree ofDmax.

141

The target MMF rate every link in the network must reach is1/Dmax (approximated

by Tsystem/Dmax slots). Figure 5.7 shows the effect of the schedule periodTsystem and

maximum degree constraintDmax on the average and maximum relative errors. For a

fixedDmax, both errors decrease asTsystem increases. One reason to explain this is that a

larger period provides a better approximation to the reference (continuous) MMF rates.

Average Relative Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

32 64 128 256 512 1024
T (slots)

Dmax=7

Dmax=10
Dmax=14

(a) Average relative error

Maximum Relative Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

32 64 128 256 512 1024
T(slots)

D=7
D=10
D=14

(b) Maximum relative error

Figure 5.7: (a) Average and (b) Maximum Relative Errors for a static network ofN =

100 p = 1.0 andTadjust = 512 slots for various choices ofTsystem andDmax. The

average and maximum relative errors are computed over all active links at the last slot

of each simulation run.

142

For example a period ofTsystem = 64 cannot provide enough granularity forDmax =

14; the resulting errors are very high. The other reason is thata largerTsystem offers more

transmission slots to a link per period. This incurs more frequent expirations of the rate

adjustment timer and, hence, more overall activations for link rate adjustment. This is

also the explanation for the increase in the control overhead in Figure 5.8 as the period

Tsystem increases. The maximum node degreeDmax has a more pronounced effect both

0

0.05

0.1

0.15

0.2

32 64 128 256 512 1024

T (slots)

C
o

n
tr

o
lO

ve
rh

ea
d

Dmax=7
Dmax=10
Dmax=14

Figure 5.8: Control Overhead for a static network ofN = 100, p = 1.0 andTadjust =

512 slots for various choices ofTsystem andDmax.

in the amount of error and control overhead. This is illustrated by the distance between

the curves in both Figures 5.7 and 5.8. In the error curves, the effect ofDmax decreases

as the periodTsystem increases. AfterTsystem = 1024 slots, the average relative error

becomes less than3% and the maximum error less than20% for all cases. However,

in terms of control overhead, the difference between the curves does not decrease with

Tsystem. Thus forTsystem = 1024, a Dmax = 7 spends only3% of transmissions in

exchange of control packets while aDmax = 14 spends17%. To keep the control

overhead low, we need to reduce the frequency of rate adjustments that is controlled by

theTadjust parameter.

Figure 5.9(a) illustrates the effect ofTadjust on a (Tsystem = 1024, Dmax = 14)

143

T =1024, p=1.0, D
max

=14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

128 256 512 1024 2048 4096 8192 16384

T
adjust

(slots)

Overhead

MaxRelError

AvgRelError

(a)

T =1024, D max =14, Tadjust=512

0

0.05

0.1

0.15

0.2

0.25

0.3

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
p

Overhead

AvgRelError

MaxRelError

(b)

Figure 5.9: Effect of the frequency of link rate adjustmentsTadjust (for p = 1.0) and (b)

topology densityp (for Tadjust = 512 slots) on the average and maximum link MMF

errors and the control overhead. (N = 100 nodes,Tsystem = 200 slots,Dmax = 14

links.)

144

system. By increasingTadjust (hence decreasing the frequency of link rate adjustments)

the control overhead decreases without any noticeable effect in the resulting maximum

and average discrepancy from the MMF solution. AtTadjust = 16384 slots, the control

overhead becomes negligible. Still, decreasing the frequency of link activations leads

to a slower convergence. This will become obvious in the experiments of the dynamic

topologies.

Figure 5.9(b) shows the effect of the topology density parameterp on the three met-

rics of interest. As the density decreases, less nodes need to establish the maximum

number of linksDmax and this leads to a reduction of both errors and control overhead

in the network.

5.4.3 Experiments on dynamic networks

The parameter controlling the network dynamics isTactive for the rate of topology

changes. To see how the time scale of topology dynamics affects the algorithm per-

formance, we use the system technology parameters of Bluetooth. Bluetooth supports a

raw transmission rate ofRtx = 1Mbps and a maximum number of simultaneously active

links Dmax = 7. The system slot duration is1.25ms. We use a period ofTsystem = 200

slots, which is the maximum that can be supported by the current Bluetooth specifica-

tion1. All simulations were run for500000 slots. We consider the pdf distribution of the

average relative error during the last100000 slots.

Figure 5.10 illustrates the effect of mobility and network density on the error dis-

1Half duplex mini-slots in our model correspond to single-slot Bluetooth baseband ACL packets. The

payload size of these packets is limited to240 bits. If we exclude the higher layer headers and the CRC,

only 216 bits are left for the protocol information (DH1 packets). When FEC is added (DM1 packets),

the available space goes down to 136 bits. Using equation (4.2, Chapter 4), we can see that the maximum

periodTsystem for DH1 packets is200 slots and for DM1 packets122 slots.

145

tribution. The bell-shaped curves indicate that the MMF rate discrepancy experienced

by an average link generally oscillates around a mean value.In Figure 5.10a, we let

a link spend an equal average amount of time in the ACTIVE or INACTIVE state, by

settingp = 0.5. The average timeTactive a link alternates between the two states varies

from 32min (1536000 slots) to1min (48000 slots). As the rate of topology changes

increases, both error mean and variance increase. This is illustrated by a right-shift

and ”spreading” of the error distribution curves as the parameterTactive decreases. For

a quasi-static network (Tactive = 32min), theMMF discrepancy of an average link is

centered at0.7% and varies between0.2% and4%. ForTactive = 1min the peak consists

of a range of error values (4%− 6%) and the overall error dynamic range is2%− 10%.

For the same rate of topology changes, the mean and variance of the average relative

error increase with topology density (Figure 5.10b). The reason is that a denser topol-

ogy allows for less simultaneous conflict-free transmissions per period and hence less

frequent expirations of the rate adjustment timer per link.Therefore rate adjustments are

happening at a slower rate and this affects the ability of thealgorithm to track topology

changes. Still, even in the most dense topology (p = 0.9) and high rate of topology

changes ofTactive = 1min (48000 slots), an average link will achieve above80% of its

target MMF rate.

Figure 5.11 shows the effect of the rate adjustment parameter Tadjust in the most

dynamic case where links form and fail every1 minute (48000 slots) on the average. As

Tadjust varies from5.12s (4096 slots) to160ms (128 slots), the error mean and variance

decrease slightly (Figure 5.11a) but the control overhead increases (Figure 5.11b). For

Tadjust = 160ms (128 slots), the error is centered at2% of theMMF rate but the control

overhead needed to sustain it amounts to27% of the overall number of transmissions. A

Tadjust greater than640ms (512 slots) keeps the overhead below9% but the error mean

146

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 7, T = 200,

Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 7, T = 200,

Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p=0.9

Rtx = 1Mbps, Dmax = 7, T = 200

Tadjust = 512 Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

p=0.9

Rtx = 1Mbps, Dmax = 7, T = 200

Tadjust = 512 Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

(b)

Figure 5.10: Effect of (a) rate of topology changesTactive (for p = 0.5) and (b) topology

densityp (for Tactive = 48000 slots) on the distribution of the average link MMF error

(N = 100 nodes,Tsystem = 200 slots,Dmax = 7 links, Tadjust = 512 slots.).

147

and variance will gracefully increase according to Figure 5.11a.

Figure 5.12 illustrates how topology dynamics and density affect the algorithm per-

formance had the reference technology specification allowed for a largerDmax. The

curve trends are the same as in Figure 5.10 but the error meansand variances increase

with Dmax. This shows the algorithm performance degradation for technologies using a

certain radio transmission rate and wish to support a largermaximum number of MMF

links per node in a dynamic network.

Technologies supporting higher transmission rates resultin a better performance

because they can use a shorter slot duration. For example ifRtx = 2Mbps in the

reference system, the system slot duration is0.625ms instead of1.25ms and there-

fore ”Tactive = 2min” in Figure 5.10a will now correspond to the error distribution of

Tactive = 192000 instead of the one of96000 slots. As we double the transmission rate,

we can see the corresponding performance improvement by moving one error distribu-

tion curve to the left in Figures 5.10a, 5.11a, 5.12a and one bar to the left in Figure 5.11b

for the control overhead.

5.4.4 Traffic adaptation

In the previous section we considered backlogged links to measure the algorithm ability

to track the MMF allocation subject to topology changes. Responsiveness to traffic

dynamics can be incorporated using the upper boundBl.

For each adjacent linkl, each node measures the fraction of allocated slots that

were actually utilized for transmission over a measurementintervalTmeasure (Tmeasure >

Tsystem). Let ρ̂l(n) be the estimated rate of linkl at the beginning of thenth measurement

interval, andρ̃l(n) be the measured utilization after thenth measurement interval. The

estimated ratêρl(n + 1) for link l during then + 1th measurement interval can be

148

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.02

0.04

0.06

0.08

0.1

0.12

Tadjust= 4096 (5.12s)

Rtx =1Mbps, Dmax = 7, T = 200

p=0.5, Tactive = 48000

Relative Error

Tadjust= 2048 (2.56s)

Tadjust= 1024 (1.28s)

Tadjust= 512 (640ms)

Tadjust= 256 (320ms)

Tadjust= 128 (160 ms)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.02

0.04

0.06

0.08

0.1

0.12

Tadjust= 4096 (5.12s)

Rtx =1Mbps, Dmax = 7, T = 200

p=0.5, Tactive = 48000

Relative Error

Tadjust= 2048 (2.56s)

Tadjust= 1024 (1.28s)

Tadjust= 512 (640ms)

Tadjust= 256 (320ms)

Tadjust= 128 (160 ms)

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
adjust

 (#slots)

(b)

Co
ntr

ol
Ov

er
he

ad

4096 2048 1024 512 256 128

(b)

Figure 5.11: Effect of frequency of link activationsTadjust on (a) the distribution of the

average link MMF error and (b) control overhead. (N = 100 nodes,Tsystem = 200

slots,Dmax = 7 links, Tactive = 48000 slots.)

149

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 14, T = 200,

Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Tactive= 48000 (1min)

Rtx=1Mbps, Dmax = 14, T = 200,

Tadjust = 512, p=0.5

Relative Error

Tactive= 96000 (2min)

Tactive= 192000 (4min)

Tactive= 384000 (8min)

Tactive= 768000 (16min)

Tactive= 1536000 (32min)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p=0.9

Rtx=1Mbps, Dmax = 14, T = 200,

Tadjust = 512, Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p=0.9

Rtx=1Mbps, Dmax = 14, T = 200,

Tadjust = 512, Tactive = 48000

p=0.7

p=0.5

p=0.3

Relative Error

(b)

Figure 5.12: Effect of (a) rate of topology changesTactive (p = 0.5) and (b) topology

densityp (Tactive = 48000 slots) on the distribution of the average link MMF error

(N = 100 nodes,Tsystem = 200 slots,Dmax = 14 links, Tadjust = 512 slots.).

150

computed using exponential averaging:

ρ̂l(n + 1) = αρ̂l(n) + (1 − α)ρ̃l(n) (5.3)

The parameterα (0 ≤ α ≤ 1) is the weight given to the history of previous samples.

This parameter can be set a priori depending on the desired degree of network adaptivity

to traffic dynamics. Recall that provision of a robust view to the higher layers (more

static TDMA schedule) and traffic adaptivity (more dynamic TDMA schedule) are two

conflicting objectives. A high value ofα should be preferred in the first case; a low in

the second. Alternatively,α can be computed online based on the observed traffic. An

excellent treatment of this topic can be found in [113].

The estimated value of̂ρl(n + 1) is used to set the upper bound parameterBl of the

link. More specifically, ifρ̂l(n + 1) is greater than a thresholdβ (β should typically be

greater than0.9), the link is considered backlogged andBl is set to 1. Otherwise,Bl is

set toρ̂l(n + 1). The updated value ofBl is then passed to the MMF link scheduling

algorithm. We are currently experimenting with this technique for various topology and

traffic dynamics.

5.5 Related work

The max-min fairness objective has been addressed for both single channel and multi-

channel ad hoc networks. Fairness is defined and addressed for single-hop flows in all

cases. Single channel systems are considered in [106][107][108]. The work in [106]

uses a weighted fairness scheme to first allocate a minimum fair bandwidth to the net-

work flows and then maximize the system utilization subject to this allocation. This

approach can reach the MMF allocation using appropriate flowweights. However, the

weight computation would require knowledge of the MMF rates. This in turn would

151

require a global network MMF rate pre-computation phase a difficult task in a large

dynamic network. Nandagopal et al. [108] define fairness in terms of maximizing total

logarithmic user utility functions and implement proportional fairness within this frame-

work. Max-min fairness is mentioned as a asymptotic case of this utility fairness model.

A centralized and a distributed algorithm specifically targeted for max-min fairness are

proposed in [107]. The centralized algorithm reaches an approximate solution for large

networks because it relies on the computation of the clique corpus of a graph, which is

a NP-complete problem. In the distributed algorithm a node maintains a subset of the

contention graph and heuristically computes a coarser allocation.

It should be noted that in [106][107][108], the distributedalgorithms that approx-

imate the fairness models are implemented using a random access MAC protocol and

attempt to achieve the desired rates by setting a per-flow back-off timer according to the

fair weight of the flow. Since random access cannot support strict bandwidth allocation

guarantees, fairness can be achieved only in a probabilistic sense in this case (very large

time scales).

The work in [109] defines the max-min fairness objective in a slotted multi-channel

system using scheduled access and provides a scheduling policy that achieves max-min

fair allocation of flows. At each slot, a node first assigns appropriate weights to each

of its adjacent flows by using a round robin token generation scheme. Then the flows

that constitute a maximum weighted matching on the network are scheduled to transmit

conflict-free. This step makes this approach unsuitable fordistributed implementation

because it requires global topology information for the maximum weighted matching

computation.

DSSA [81], a distributed TDMA scheduling algorithm for Bluetooth scatternets,

cannot be applied to the max-min fairness objective. In DSSAnodes start with an

152

knowledge of demands on their adjacent links and try to reacha conflict-free sched-

ule of short length that satisfies these demands. However max-min fairness is a global

objective. Hence, to use this algorithm one must first pre-compute the MMF rates and

then provide them as local traffic demands to every node in thenetwork–this is not

practical.

Distributed algorithms for MMF rate computation for multi-hop sessions have also

been studied extensively in the wireline networks context [114][115]. Our algorithm is

similar because it is asynchronous, distributed and targets max-min fairness. The differ-

ence is that these algorithms perform only the fluid model portion: they only compute

the MMF rates but do not specify how to enforce them. Rate enforcement is treated sepa-

rately by using end-to-end or hop-by-hop link schedulers and traffic shapers [116][117].

This separation is perfectly justified due to the link scheduling independence in wireline

networks. In the wireless case, rate adjustment on a link hasan effect on the rates of

links adjacent to both endpoint nodes; the problems of rate computation (fairness deficit

computation) and rate enforcement (conflict-free slot assignment) must be addressed

jointly.

5.6 Conclusions

Future deployment of wireless ad hoc networks calls for decentralized techniques that

efficiently allocate the scarce wireless medium to mobile users. We presented a dis-

tributed asynchronous algorithm of low complexity aiming for max-min fairness. Band-

width allocations are realized by conflict-free periodic link schedules. This implies both

short-term (with respect toTsystem) and long-term fairness properties.

A unique feature of the distributed scheduling technique isthat it does not assume

153

any initial knowledge about the (global) MMF objective. Instead, the rate computation

and enforcement occur simultaneously by means of local and incremental conflict-free

schedule updates. This incremental property allows for natural adaptation to network

dynamics without the need to suspend communications and restart the schedule com-

putation from scratch. The scheduling mechanism is driven by the rate computation

algorithm, which converges to the MMF solution under the fluid model. Still, when em-

ulating the fluid algorithm in the slotted world the convergence is not exact and there are

restrictions and trade-offs a designer has to take into account. To this end, we provide

an analysis of the algorithm communication requirements and its effect on the design

choices of a technology supporting it.

The algorithm was extensively tested under various technology choices and topol-

ogy dynamics. For static networks it demonstrated excellent convergence properties

especially as the schedule periodTsystem increases. For dynamic scenarios, an aver-

age link typically experiences a certain mean MMF discrepancy with a finite variance.

Performance gracefully degrades with the increase in the rate of topology changes, net-

work density and desired maximum number of physical links supported by a wireless

node. In highly dynamic scenarios and stringent technologyconstraints (modestRtx

and highDmax), the incremental nature of the algorithm allows the network to be rea-

sonably close to the MMF solution most of the time. In addition, the frequency of link

rate adjustments can be fine tuned to achieve acceptable performance for low control

overhead.

154

Chapter Appendix 5.A−Pseudocodes of Centralized MMF, FDC

and slot assignment algorithms

ProcedureCentralizedComputeMMF
Computing the MMF rates using global information
input : G(N,L), {0 ≤ Bl ≤ 1, }

output : MMF vectorr = (r1, ..., rf , ..., r|L|)

Intialization: i = 1, U0
n = 0 ∀n ∈ N , r0

l = 0 ∀f ∈ L, L1 = L, N1 = N

Cn =

{
1 if G(N,L) bipartite
2/3 otherwise

∀n ∈ N

repeat
1 f i

n = # of links inF i adjacent to noden;

2 K1 = min
n∈N i

(
Cn − U i−1

n

f i
n

)
, K2 = min

f∈F i
(Bf − ri−1

f) ;

3 dri = min(K1,K2) ;

4 Bi =

{
m : m = arg min

n∈N i

(
Cn − U i−1

n

f i
n

)}
;

5

F̂ i =





{
f : f = arg min

j∈F i

(
Bj − ri−1

f

)}
if K1 > K2

{
f : f is adjacent to every n ∈ Bi

}
otherwise

6 ri
f = ri−1

f + dri, ∀f ∈ F i;

7 U i
n =

∑

f adjacent to n

ri
f ;

8 N i+1 = {n : Cn − U i
n > 0};

9 F i+1 = F i − F̂ i;
10 i = i + 1;

until (F i is empty);

Figure 5.13: Centralized algorithm for computing the link MMF rates

155

ProcedureFDC
The fairness deficit computation algorithm

input : ru, l, Bl

output : r′
u, fd

(u)
l

Intialization: t = 0, r′
u = ru Eu = Cu −

∑

k∈L(u)

rk;

1 r′l = rl + Eu /*Increase by the available node bandwidth*/;

2 rmax = max
k∈L(u)

r′k ;

3 while (r′l < rmax) and (r′l < Bl) do

t = t + 1 ;

rmax = max
k∈F (u)−{l}

r′k ;

M (t) =
{
k1, ..., km : r′k1

= ... = r′km
= rmax

}
;

m = |M (t)| ;

r′k1
= ... = r′km

= r′l =
r′
k1

+...+r′
km

+r′
l

m+1
;

end

4 if (r′l ≥ Bl) /*Demand constraint less than the fair share*/then

r′l = Bl ;

r′k = r′k +
r′
l
−Bl

m
, ∀k ∈ M (t) ;

end

5 fd
(u)
l = r′l − rl ;

Figure 5.14: FDC pseudocode

156

ProcedureAssignSlots
The slot assignment algorithm
input : xu, l, Su, Sv, Tsystem

output : S′
u, du

Intialization: S′
u = Su, du(s) = 0, ∀s = 0, ..., Tsystem − 1;

begin
/*Phase I: Assign tol the slots inSu that are concurrent to idle slots inSv*/ ;

1 I0 = {s : S′
u(s) = idle and S′

v(s) = idle};
repeat

Select a random slot positions from setI0 ;
S′

u(s) = l , du(s) = 1 /*Assign slot positions to link l in S′

u*/ ;
xl = xl − 1, I0 = I0 − {s} ;

until (xl == 0 ORI0 is empty);
if (xl == 0) then

Stop and exit procedure;

end
2 Form the set of surplus linksX−

u = {k : xk < 0};
for Every linkk ∈ X−

u do
Ik = {s : S′

u(s) = idle and S′
v(s) = idle};

repeat
Select a random slot positions from setIk ;
S′

u(s) = l , du(s) = 1 /*Assign slot positions to link l in S′

u*/ ;
xl = xl − 1, Ik = Ik − {s} ;

until (xk == 0 ORIk is empty);
if (xl == 0) then

Stop and exit procedure;

end
end
/*Phase II starts here*/

3 for Every linkk ∈ X−
u do

if xk < 0 then
/*If link k has still slots to provide after Phase I*/
Select randomxk positions and formIk = {s : S′

u(s)};
for every slot positions ∈ Ik do

S′
u = l, du(s) = 1 /*Assign slots to link l in S′

u*/ ;

end
end

end
end

Figure 5.15: The slot assignment algorithm

157

Chapter 6

End-to-end rate guarantees

In this chapter we present a framework for provision of bandwidth guarantees to multi-

hop sessions sharing the ad hoc network. Guided by local feasibility conditions the

sessions are dynamically offered bandwidth, further translated to link slot demands.

Using the distributed TDMA protocol, nodes adapt to the demand changes on their

adjacent links by local, conflict-free slot reassignments.As soon as the demand changes

stabilize the nodes must incrementally converge to a TDMA schedule that enforces the

global link (and session) demand allocation. Therefore, the framework consists of two

processes that operate in parallel: an end-to-end algorithm for computing session rates

according to a QoS objective and a dynamic link scheduling algorithm for enforcing

these rates.

The dynamic link scheduling problem was partially addressed in Chapter 5 for the

enforcement of MMF link rates. The resulting slot assignment algorithm operated for

arbitrary topologies but is specific to slot synchronized systems. In addition, though it

demonstrated excellent properties through simulations itdid not possess analytical con-

vergence guarantees. In this chapter we solve the dynamic link scheduling problem for

tree topologies. The link scheduling algorithm does not require slot synchronization,

158

realizes all feasible rates for trees and guarantees convergence within a finite time pe-

riod. An upper bound on the convergence delay is also computed. Tree topologies arise

in several ad hoc networking applications such as Bluetooth scatternets [25] [29][31]

[102], sensor networks [103][104], power-aware multicasting [21] [105] or backbone

structures used for administrative purposes such as routing [32].

Dynamic link scheduling focuses on converging to a TDMA schedule realizing the

link demands and is agnostic of the specifics of the higher layer algorithm that allocates

bandwidth to the end-to-end sessions. This allows definition and realization of various

models for end-to-end Quality of Service provision. We consider both Constant Bit Rate

(CBR) and Available Bit Rate (ABR) services.

End-to-end CBR service is implemented by QoS routing algorithms. Current ap-

proaches for QoS routing in ad hoc networks either focus on mobility and do not take

medium access into account [58][36] or use complex admission control tightly coupled

with the underlying TDMA protocol [57][56]. Both approachesresult in network un-

derutilization. We show that admission control within our framework is far simpler than

[57][56] bearing a similar formulation to wireline networks. For tree topologies it yields

maximum network utilization.

According to ABR, sessions do not have specific bandwidth requirements–they re-

quest from the network the maximum available bandwidth. In this setting, network

resources must be shared to the sessions in a fair manner. ForABR, the preferred notion

of fairness is MMF. In [60], Sarkar and Tassiulas introduce abackpressure/window-

based flow control algorithm for computing the session MMF rates. However, the

slotted TDMA scheme that enforces these rates requires global topology information

and network-wide slot synchronization. We introduce an asynchronous distributed rate-

based algorithm for MMF rate computation, similar to approaches used in wireline ATM

159

networks. Being rate-based, this algorithm can be combined with a distributed TDMA

link scheduling protocol to enforce the computed MMF rates.

Finally, we present the implementation of our framework over Bluetooth. The in-

teraction of the end-to-end MMF rate computation and tree link scheduling algorithm

are investigated through extensive simulations–both algorithms demonstrate excellent

performance in practice.

The chapter is structured as follows: In Section 6.1 we present the distributed dy-

namic scheduling algorithm for trees. Section 6.2 elaborates on the integration of link

scheduling with end-to-end bandwidth allocation. Section6.3 presents the detailed im-

plementation of the bandwidth allocation framework over Bluetooth. Section 6.4 con-

cludes.

6.1 Distributed dynamic link scheduling for tree-based

ad hoc networks

6.1.1 Network architecture, assumptions and definitions

The ad hoc network uses the multi-channel distributed TDMA architecture and protocol

of Chapter 4. Each node uses a local periodic scheduleSu of Tsystem slots to coordinate

transmissions on its adjacent links. We will consider the (more general) asynchronous

mode, where the local schedules are not slot aligned and timeslot reference for commu-

nication on each link is provided by the master node endpoint. The network topology

is a tree. If the network is mobile, we assume a distributed topology control protocol

maintains the tree structure [29][31][77]. The nodes neither maintain a global view of

the network nor know their level within the tree–they are only aware of parent-child

160

relationships with their one-hop neighbors.

In Chapter 4 we established that feasibility is guaranteed ifeach nodeu uses the

following local conditions for the demands on its adjacent links:

∑

l∈L(u)

τl ≤ TR
u , TR

u ≤ Tsystem −
∑

l∈L(u)

J
(u)
l (6.1)

where,

J
(u)
l =





1 if asynchronous mode and u is slave on link l

0 otherwise
(6.2)

If the QoS utilization parameterTR
u equals the upper bound, the local conditions capture

the entire set of feasible allocations. Without loss of generality we will assume this is

the case here, i.e. all network capacity is used for QoS traffic.

Nodes reassign slots in response to demand changes on their adjacent links. The

distributed TDMA protocol ensures that the network is always free of transmission con-

flicts. The distributed link scheduling algorithm runs on top of this protocol and deter-

mines which slot positions should be modified during each link rate adjustment so that

eventually nodes converge to the global TDMA schedule realizing the current link de-

mand allocation. Before presenting the algorithm we introduce the notions ofsatisfied

andstablelinks. Letτl be the current demand for linkl = (u, υ), andt
(u)
l be the number

of conflict-free slots currently assigned tol in the local scheduleSu of nodeu.

Definition 1: Nodeu calls its child linklc satisfiedif the following conditions hold:

STF1: The link is scheduled in a single windowW (u)
lc

= [s
(u)
lc

, e
(u)
lc

] in Su.

STF2: The current demand is exactly satisfied by the current assignment: t(u)
lc

= τl +

J
(u)
lc

.

161

whereJ
(u)
l is given by eq. (6.2).

Let the parent linklp = (u, p) of nodeu be satisfied by a windowW (u)
lp

= [s
(u)
lp

, e
(u)
lp

]

in Su. Also, let the children linkslc = (u, c) of u be assigned distinct prioritiesplc.

A child link lc of u is stable if 1) it is satisfied and 2) the position of window

W
(u)
lc

= [s
(u)
lc

, e
(u)
lc

] in Su provides enough room for scheduling all links of lower priority

according to their current demands. More formally, this canbe expressed as follows:

Definition 2: Nodeu calls its child linklc stable if the following conditions hold:

STBL1: Link lc is satisfied.

STBL2: |[e
(u)
lc

⊕ 1, s
(u)
lp

⊖ 1]| ≥
∑

k∈CH(u):pk<plc

(τk + J
(u)
k)

whereCH(u) is the set of children links ofu and ”⊕” and ”⊖” are Modulo-Tsystem

addition and subtraction, respectively.

6.1.2 The distributed algorithm

Central to the algorithm operation is procedure SampleReschedule(). This procedure

is asynchronously triggered for execution at a node either when the higher layer pro-

cess changes the demand of an adjacent link or after an adjacent link is rescheduled.

When either of these events occurs, a non-root nodeu proceeds in execution of Sam-

pleReschedule() only if its parent linklp is satisfied; the root proceeds in execution

unconditionally.

During execution of SampleReschedule() at nodeu the following actions are per-

formed:

162

1) Let W (u)
lp

= [s
(u)
lp

, e
(u)
lp

] be the window inSu satisfying the parent linklp of nodeu.

First,u assigns decreasing priorities to its children links in the (circular) order that they

currently appear inSu, starting at slote(u)
lp

and ending ats(u)
lp

. (The root node assigns

priorities using0 andTsystem − 1 as start and end slots, respectively).

2) By inspectingSu, nodeu samples its children in decreasing priority for violation

of the stability conditions. If all links are found stable, SampleReschedule() terminates

and no further action takes place. Otherwise, the highest priority unstable child linklc

needs to be rescheduled and stabilized.

3) Nodeu initiates rate adjustment onlc by exchanging SCINFO packets with the

child endpointc. After the exchange,u erases fromSu all slots currently allocated to

lc and considers a fresh allocation for a windowWlc of τlc + J
(u)
lc

slots. The position of

Wlc in Su is determined as follows:

• First,u computes the closest slot position tos
(u)
lp

for which the stability conditions

for lc will hold:

smax = s
(u)
lp

⊖
∑

k∈CH(u):pk<plc

(τk + J
(u)
k) (6.3)

Let lm be the (stable) link of immediately higher priority thanlc. If lc is the

highest priority child link,lm is defined to be the parent linklp. In either case,

link lm is satisfied. LetW (u)
lm

= [s
(u)
lm

, e
(u)
lm

] be the window satisfying the demand

of lm in Su. Link lc will be stable if windowWlc is scheduled within the window

W
(u)
max = [e

(u)
lm

⊕ 1, smax ⊖ 1].

• Nodeu decides on the position ofW (u)
lc

within Wmax: The new position ofW (u)
lc

may cancel slots of lower-priority children links inSu. Also, the position ofW (u)
lc

will be enforced to the local schedule of the child nodec and may cancel slots

on some of the children links ofc. Using the local schedule ofc (provided in the

163

SC INFO packet) the position ofW (u)
lc

is selected withinWmax such that the total

number of affected links at both node endpoints is minimized.

4) Onceu determines the position ofW (u)
lc

, it issuesSC UPD packets to its affected

neighbors using the TDMA protocol of Chapter 4. The protocol ensures that the local

schedules of endpoint nodesu and c, as well as the local schedules of their affected

neighbors, will be free of transmission conflicts after the update.

After lc has been scheduled, nodeu must restart sampling from the highest priority

child link for violation of the stability conditions. This is because the demands of links

of higher priority thanlc may have changed while the rate adjustment was taking place.

If the demands stop changing, repetitive invocation of procedure SampleReschedule()

will reschedule and stabilize the unstable links in decreasing priority. The sampling-

rescheduling loop terminates when all child links are foundstable.

An example of SampleReschedule() is shown in Fig. 6.1. According to the ini-

tial local scheduleSu (Fig. 6.1(c)), the allocations on adjacent links of nodeu are

(t
(u)
lp

, t
(u)
1 , .., t

(u)
4) = (2, 2, 3, 4, 3) and corresponding demands are(τlp , τ1, ..., τ4) = (2, 2, 2, 3, 3).

In Fig. 6.1(b) the demand of link3 changes from3 to 6 slots. Since the parent linklp

is satisfied (t(u)
lp

= τlp + J
(u)
lp

= 4), nodeu initiates SampleReschedule(). Using the

window [0, 1] assigned to its parent linklp, u assigns decreasing priorities to its children

links in the cyclic order they appear inSu, starting from slot1 towards slot0. The links

in decreasing priority are2, 1, 4, 3. Figures 6.1(c)-(f) illustrate a sequence of steps and

modifications ofSu that stabilize the links.

The above description corresponds to the desired operationof SampleReschedule()

at a nodeu. However, the fact that nodes may be busy at any time makes things

more complicated. For example, when the highest priority unstable child link is sam-

pled, it may be currently busy scheduling a child of its own and, therefore, unavail-

164

2 - - - 1 1 4 3 3 3 3 - - 4 4 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

- lp lp 2 2
1 2 318 0

Su

2 1 1 - - - 4 3 3 3 3 - - 4 4 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

4 lp lp 2 2
1 2 318 0

Su

2 1 1 - 4 4 4 3 3 3 3 - - - - lp
167 8 9 10 11 12 13 14 15 174 5 186 0

- lp lp 2 2
1 2 318 0

Su

2 1 1 - 4 4 4 - 3 3 3 3 3 3 3 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

3 lp lp 2 2
1 2 318 0

Su

W m ax

W m ax

W m ax

(c)

(d)

(e)

(f)

(a) (b)

u

p

c1 c2 c4c3

lp

3 41 2

2

2 2 6 3

u

p

c1 c2 c4c3

lp

3 41 2

2

2 2 3 3

Figure 6.1: (a) Arrows denote master-slave relationships and red slots denote switch-

ing slots of links whereu is slave. (b) Demand of link3 changes from3 to 6. (c)

The highest priority child link (2) is satisfied and the distance of slot5 to slot 18

(|[5, 18]| = 14) is greater than the current demand sum of the lower prioritychild links

((2+0)+(6+1)+(3+0)=12)–link2 is stable. The next priority link1 is satisfied but not sta-

ble (|[10, 18]| = 9 < (6 + 1) + (3 + 0) = 10). To satisfy conditionSTBL2, windowW1

(τ1 +J
(u)
1 = 2+0 = 2 slots) must be withinWmax = [5, 8]. (d)Su after link1 has been

rescheduled. The position was decided after executing the TDMA protocol with nodec1

for link (u, c1) and consulting withSc1. Link 4 is not satisfied (STF1 does not hold); it

needs to be rescheduled withinWmax = [7, 11] to become stable. (e)Su after link1 has

been rescheduled. Link3 is not satisfied; it can be rescheduled withinWmax = [11, 18].

(f) All links are now stable–the sampling-rescheduling loop is complete.

165

able for re-scheduling. Hence, a need exists for coordinating parent and children to

allow proper operation of the sampling re-scheduling loop.This is accomplished by

the STABLEREQ/STABLEACK packet exchange. Before executing SampleResched-

ule() nodeu sends a STABLEREQ packet to its parent. The parent will respond in one

of two possible ways: either 1) it replies with a STABLEACK packet as permission

for nodeu to continue sampling and rescheduling its children or 2) it initiates a rate

adjustment on this link via a SCINFO packet.

In the example of Fig. 6.1, nodeu must perform a STABLEREQ/STABLEACK

handshake with its parentp for every child link it reschedules. If, meanwhile, linklp

becomes unstable, the parent will respond to STABLEREQ with an SCINFO packet

and linklp will be rescheduled. Based on the new stable windowlp, nodeu will reassign

priorities and resume the sampling-rescheduling loop. Thedetailed operation of the

asynchronous protocol, called STABLETREE, is described in Figure 6.9, in Chapter

Appendix 6.A.

Theorem 6.1.1 (Convergence Theorem)Consider an initial tree topology and network

TDMA schedule. Assume that a set of arbitrary demand and topology changes occur

that eventually stabilize to a new tree topology and demand allocation τ obeying the

capacity condition of eq. (6.1). The asynchronous distributed algorithm will converge

to a new TDMA schedule realizingτ in a finite number of link rate adjustments.

Proof In general, nodes may re-assign slots using SampleReschedule() when their

adjacent links are detected unsatisfied. We will show that, as soon as the changes in

link demands stabilize, convergence is guaranteed to occurprogressively from the root

downward.

We assume that changes on a link demand are detected by both node endpoints

(not necessarily at the same time instant) and that control messages are not lost due to

166

channel errors. Mobility can be treated as a special case of link demand changes with a

link failure being a transition to zero demand and a link establishment being a transition

from zero to a positive demand satisfying the local feasibility conditions.

We define the level of a node to be its hop distance from the root(root has zero

level). In addition, we define the level of a link to be equal the level of its child node

endpoint. Given an arbitrary set of demand or topology changes that have stabilized, let

Kmin be the link level such that all links of levelKmin or less have not been affected by

the changes. We will prove convergence by induction on the link levelsk > Kmin that

have been affected by the changes. We distinguish two cases for Kmin:

Case AKmin = 0: At least one of the child links of the root has been affected by

the changes.

Level 1: Link level 1 includes the root and its children. Upon detection of any

unsatisfied link, the root will run SampleReschedule() only if it is not busy or after it has

finished scheduling its current link. Letlc the highest-priority unstable child link. We

distinguish two cases for the child node endpointc of lc:

Case 1:Nodec not busy: the root initiates scheduling oflc by sending anSC INFO

packet toc (line SR-4, Fig. 6.8, Chapter Appendix 6.A).

Case 2: Nodec currently busy: the root exits SampleReschedule(). When nodec

completes scheduling, it will send a STABLEREQ packet to the root (line E1-3, Fig.

6.9, Chapter Appendix 6.A). It also becomes unavailable for rescheduling its own chil-

dren until it receives a response from the root (line E1-2, Fig. 6.9, Chapter Appendix

6.A). Upon reception of the STABLEREQ packet, the root executes SampleResched-

ule(). Since the link demand changes have stopped, the highest priority child will be

again nodec–it is guaranteed not to be busy this time (due to line E1-3 in Fig. 6.8,

Chapter Appendix 6.A, nodec will not enter SampleReschedule() upon reception of

167

STABLE REQ packets from its children.). Next the root initiates scheduling onlc (line

SR-4, Fig. 6.8, Chapter Appendix 6.A). In a similar fashion, the root will eventually

schedule all level-1 unstable links in decreasing order of their priority.

Level k: Assume that all links up to and including levelk have been scheduled

and stabilized. We will show that all levelk + 1 unstable links will be scheduled and

stabilized in a finite number of iterations .

Since every level-k nodeu has been independently assigned a stable parent link

window Wlp = [startlp , endlp], it suffices to consider one such node in isolation. Each

time nodeu needs to execute SampleReschedule(), it asks permission from its parent

nodep by sending a STABLEREQ packet. Sincelp is stable, the parentp will always

reply with a STABLEACK packet (line E2-1, Fig. 6.9, Chapter Appendix 6.A).

As soon asu receives permission to run SampleReschedule(), we have the same case

of the root node and the level-1 links. Therefore, all unstable children links of nodeu

will eventually be re-scheduled and stabilized. Since thiswill happen for all level-k

nodes and their levelk + 1 children links, the induction step is complete.

Case BKmin > 0: This case can be proven using as initial inductive stepk =

Kmin. The initial step holds since it is similar to the Level-k inductive step of the case

Kmin = 0. For levelk > Kmin to k + 1, a similar argument to the one used in case A is

applicable.

The convergence delay of STABLETREE depends on the tree depth and the system

periodTsystem. For a worst-case analysis, assume that all links have become unsatisfied

due to the link demand changes. Since convergence is guaranteed from the root down-

ward, in the worst-case scenario, all links will need to be rescheduled in this order. Also,

the worst tree topology is a line starting at the root node–inthis case all (N − 1) links

will be scheduled sequentially in time.

168

According to the distributed protocol analysis in Chapter 4,the maximum duration

of a link rate adjustment is5Tsystem slots (Property 3). Hence, when a node samples

the highest priority unstable link, it will wait at most5Tsystem slots in case the child

node is busy. Thus, each link on the line will be scheduled in at most10Tsystem slots.

We conclude that once link demands have stabilized, STABLETREE converges within

10(N − 1)Tsystem slots.

The worst-case analysis assumes all links become unsatisfied and rescheduling will

happen in the order that guarantees convergence–starting from the root downward. Since

nodes continuously detect changes and reassign slots locally, convergence may occur

faster in practice. In addition, demands may be changing locally at lower tree levels;

only part of the tree will need to be rescheduled in this case.Existing tree topology

control algorithms strive to maintain balanced structures. In this case, even if links

will need to be scheduled from the root downwards, multiple links will be scheduled in

parallel. Also, during a link rate adjustment, not all neighbors are always affected and

acknowledgements may arrive in less thanTsystem slots. The convergence behavior of

STABLE TREE in practice will be investigated in Section 6.3 togetherwith end-to-end

bandwidth allocation mechanisms (addressed next).

6.2 End-to-end rate guarantees

We now introduce a framework for integrating link scheduling with end-to-end band-

width allocation. The asynchronous TDMA ad hoc network is shared by a set of unicast

multi-hop sessions. Without loss of generality, we assume that half-duplex parts of a

slot have equal duration (Dslot) and are used by the same session. Although bidirec-

tional transfer is supported over a path, we assume that dataflows in a single direction.

169

Each node can transmit at a maximum rate ofR bps on a link. To support a rate

of ρi(≤ R) bps for sessioni over a path, the network must be able to allocateτi =

⌈(ρi/R) · Tsystem⌉ conflict-free slots fori to all links in the path.

Since each slot assigned to a link can be used only by a single session, the total

bandwidth consumed by the sessionsF (u) sharing nodeu must obey the local feasibility

conditions:
∑

i∈F (u)

δ
(u)
i · τi ≤ TR

u , ∀u ∈ N (6.4)

where

δ
(u)
i =





1 if u is source or destination of session i

2 otherwise

The termδ
(u)
i indicates that, in order to support allocationτi for sessioni, an interme-

diate nodeu must be able to communicate forτi slots on both upstream and down-

stream links of the session. The maximum value forTR
u –given in Figure 4.4, Chapter

4–depends on existence or not of global slot synchronization and the topology control

used in the network (if any).

The integrated framework provides end-to-end bandwidth guarantees using three

independent components:

• End-to-end rate allocation: Sessions are allocated (feasible) rates according to

eq. (6.4).

• Link scheduling: The session rates are translated to (feasible) link demands:

∑

i∈S(l)

τi = τl, ∀l ∈ E (6.5)

whereS(l) is the set of sessions crossing linkl. The link demands are realized

by a distributed dynamic link scheduling algorithm. STABLETREE is such an

algorithm for tree topologies.

170

• Session packet schedulingOnce link scheduling converges, every link has been

allocated enough bandwidth (conflict-free slots) to support the session demands.

The slots allocated to each link can be shared to its sessionsaccording to their

demands, using Weighted Round Robin (WRR), Weighted Fair Queuing(WFQ)

[116] or other single-server queuing disciplines. Since our TDMA architecture

uses slots of fixed-size, WRR would be a reasonable choice. Another possibility

is to combine First-Come-First-Serve (FCFS) queuing at intermediate links with

explicit control of the transmission rates at the source nodes. The choice will

depend on the target environment and application requirements.

Decoupling session rate allocation from link scheduling allows definition and real-

ization of various end-to-end QoS objectives. In the following sections we introduce

end-to-end rate allocation mechanisms for Constant Bit Rate (CBR)and Available Bit

Rate (ABR) services.

6.2.1 Constant Bit Rate (CBR) Service

According to the CBR service model, sessions have fixed rate requirements that need to

be satisfied by the network. A typical application is packetized voice. For each session

arriving at a source node, a path supporting the requested rate to the destination must be

determined.

Sessioni with rate demandρi bps can be admitted on a pathu1, u2, ..., up if the

corresponding demand allocationτi = ⌈(ρi/R) · Tsystem⌉ does not exceed the minimum

available node capacity over the path. Therefore, sessioni is admitted if:

τi ≤ min
k∈1,..,p

⌊TR
uk

−
∑

j∈F (uk) δ
(uk)
j τj

δ
(uk)
i

⌋
(6.6)

A similar admission control rule is used in wireline networks. The difference here

171

is that the shared resources over the path are nodes instead of links. The rule in eq.

(6.6) admits sessions without taking into account the arrangement of slots in the cur-

rent TDMA schedule. This is possible due to the underlying dynamic link scheduling

algorithm. If sessioni is admitted, the demands of all links on the selected path arein-

creased byτi slots. As soon as the nodes in the path detect the demand changes on their

adjacent links, they use the link scheduling algorithm to re-assign transmission slots

and converge to a new TDMA schedule realizing the new link (and end-to-end) demand

allocation. In case the session is admissible by multiple paths, a path selection crite-

rion similar to ones used for wireline networks can be used (see [118] and references

therein). The admission control rule over a single path and the path selection criterion

together constitute a QoS routing algorithm.

TDMA-based QoS routing in ad hoc networks has also been considered in [57] for

multi-channel systems and [56] for single-channel systems. The main difference of

these algorithms with our approach is that they do not allow slot reassignments to ac-

commodate incoming sessions. Instead, they keep the slots assigned to existing sessions

fixed and seek to allocate available slots to incoming sessions subject to the current

state of the TDMA schedule. Finding the maximum number of available slots on a path

subject to the slot positions of the existing sessions is a NP-complete problem, even if

global topology information is available. The authors propose distributed heuristics for

available path bandwidth calculation and slot assignment.

In exchange for the more complex admission control, [57][56] operate in arbitrary

topologies, while our approach currently supports rate enforcement for tree topologies.

However, [57][56] assume global slot synchronization. Dueto the heuristic nature of

the available path bandwidth calculation in [57][56], sessions that could be accepted

are blocked, i.e. the network is underutilized. Underutilization is also unpredictable:

172

given a set of session arrivals, the number of admitted sessions depends on the order

of arrivals. For tree topologies, our approach will admit the maximum possible number

of sessions irrespective of the order of session arrivals. However, the ability to admit

more sessions comes with the penalty that some existing sessions may not receive their

requested service while the TDMA schedule is reorganized toaccommodate incoming

sessions. Hence, provision ofcontinuousCBR service requires a detailed experimental

study of convergence delay under various traffic loads.

Although it would be interesting to experimentally comparethe two approaches in

terms of their strengths and weaknesses we will instead focus on end-to-end ABR–a

service not currently supported for multi-hop wireless networks. According to ABR,

arriving sessions do not have specific bandwidth requirements but agree to comply with

what is available by the network. Such a setting necessitates provision of fair access.

The approach of [57][56] cannot be applied in this case because it is specific to the path

bandwidth calculation mechanism which is dependent on the current TDMA schedule.

6.2.2 Available Bit Rate (ABR) service

In the ABR framework, optimality is understood as allocatingbandwidth to sessions

in a max-min fair manner. For convenience and ease of illustration, we will use the

fluid model to represent the sharing of bandwidth to the end-to-end sessions. A session

normalized rate allocationr = (r1, .., r|F |) is feasible, if for every sessioni, each link

in the pathL(i) can supportτi = ⌊ri · Tsystem⌋ slots, that is, the induced demand slot

allocation on the network links is feasible. A feasible rateallocation ismax-min fair

(MMF), if the rate of a session cannot be increased without decreasing the rate of another

session of equal or lower rate. More formally, a feasible rate allocation(r1, .., r|F |) is

MMF if it satisfies the following property with respect to another feasible rate allocation

173

(r
′

1, ..., r
′

|F |): if there exists a sessioni such thatri < r′i, then there exists aj such that

rj ≤ ri andr
′

j < rj.

Determining feasibility of a session demand allocation requires determining feasi-

bility of the corresponding link slot allocation. According to [52] this problem is NP

complete for arbitrary topologies. Since MMF allocations are by definition feasible,

finding or detecting them for arbitrary topologies becomes problematic. We will thus

assume that only part of the overall network capacity is utilized for ABR, and seek the

MMF rates with respect to this fraction. The fraction depends on the degree of topol-

ogy control and is determined by the local feasibility conditions (written in terms of

normalized rates by dividing both sides of (6.4) withTsystem):

∑

i∈F (u)

δ
(u)
i · ri ≤ CR

u , ∀u ∈ N (6.7)

whereCR
u = TR

u /Tsystem. Note that, for tree topologies, it is possible to compute the

absolute MMF rates–eq. (6.7) captures the entire set of feasible allocations in this case.

We define nodeu to be abottleneckfor sessioni, if 1) u is fully utilized (with respect

to CR
u) and 2) sessioni has been allocated maximum rate over all sessionsF (u) sharing

u. The definition of a bottleneck node yields a criterion for determining whether a given

session allocation is MMF:

MMF criterion: A session rate allocationr = (r1, ..., ri, ..., r|F |) is MMF if and

only if every session has at least one bottleneck node.

The session MMF rates can be computed using an iterative, off-line centralized al-

gorithm similar to the algorithm of Bertsekas and Gallager for wireline networks [111].

The modification must take into account that, in our case, theresources are nodes instead

of links and that sessions in intermediate nodes need to consume twice the bandwidth

174

B C
1

A

2

4
3

D E
5

Figure 6.2: For ease of illustration, we compute the MMF session rates with respect

to fractional capacitiesCR
u = C = 1 − 2

Tsystem
. The MMF rate in the first iteration is

C/5 (bottlenecks areB andC). Sessions 1,2,3,4 are allocated C/5 and they are removed

from the network, along with bottleneck nodes B,C. Node A is also removed since all

sessions crossing it have been removed. The bottleneck in the second iteration is node

D providing all its remaining bandwidth (2/5 · C) to session5. The session MMF

normalized rates are(r1, r2, r3, r4, r5) = (1/5, 1/5, 1/5, 1/5, 2/5) · C

than their allocated rate due to the slots needed at both incoming and outgoing links.

During each iteration of the centralized algorithm, each node divides its available

bandwidth equally over the total number of sessions crossing its adjacent links. The

bottlenecks of the current iteration are the nodes for whichthis division is minimum;

the minimum ratio is the MMF rate for this iteration and is allocated to the sessions

crossing the bottleneck nodes. We then remove the bottleneck nodes and their sessions

from the network and reduce the available bandwidth of the remaining nodes by the

amount consumed by the removed sessions (for each intermediate node in the path of

each removed session, we must subtract twice the MMF rate from the node available

bandwidth). Any node whose available bandwidth becomes zero is also removed. We

then consider the next level bottleneck nodes of the reducednetwork and repeat the

procedure. We continue until all sessions have been allocated their rates. The algorithm

operation is described in Fig. 6.2.

We have implemented an asynchronous distributed version ofthe centralized algo-

rithm. The distributed algorithm is similar in spirit to algorithms proposed for wireline

175

ATM networks [114][115][119]. This is a rate-based approach for flow control where

each source adjusts its transmission rate based on values seen in returning control pack-

ets, previously injected and circulated over the session path. The returning values are the

most recent estimates of the session MMF rate as computed by all nodes in the session

path.

ProcedureMMF UpdateState
Update algorithm at nodeu for a control packetp of sessioni to be forwarded on linkl

1 ri = min(φu, p.rate) /*update the session rate*/;
τi = ⌊ri · Tsystem⌋ ;

2 τl =
∑

j∈S(l) τj /*update demand of linkl*/;

if (δ(u)
i == 2) /*u is intermediate node ofi*/ then
τk =

∑
j∈F (k) τj /*update demand of the other linkk adjacent tou where sessioni belongs*/;

end
3 if (φu ≤ p.rate) then

p.rate = φu; p.constrained = 1;

end
if (φu ≥ p.rate) then

FC(u) = FC(u)
⋃
{i};

end
4 if (|FC(u)| == |F (u)|) then

φu = CR
u −

∑
j∈F (u) rj + maxj∈F (u) rj;

else

φu =
CR

u −
∑

j∈F C(u) δ
(u)
j ·rj

∑
j∈F (u) δ

(u)
j −

∑
j∈F C(u) δ

(u)
j

;

end
5 if existsj in FC(u) such thatrj ≥ φu then

for all j in FC(u) such thatrj ≥ φu do
FC(u)=FC(u)-{j};

end
repeat step 4;

end

Figure 6.3: Update algorithm for session rate, link demandsand MMF rate estimateφu.

Every nodeu maintains a subsetFC(u) of its sessionsF (u), currently seen as ”con-

strained” by other nodes. It also maintains an estimateφu for the MMF rate it currently

provides to its unconstrained sessions. The MMF rate estimate φu is updated locally

176

by procedure MMFUpdateState(). The source or an intermediate node of a session

invokes MMFUpdateState() when a control packet is about to be sent to thedown-

stream link (forward direction); the destination node invokes MMF UpdateState() when

a session control packet is about to be sent to the upstream link (reverse direction). In

each case, when a control packetp of sessioni is about to be sent on linkl, procedure

MMF UpdateState() at nodeu involves the following actions (Fig. 6.3):

Step 1: Nodeu updates the rateri of sessioni as the minimum ofφu and the value

in the rate field of packetp.

Step 2: The demand of linkl is updated to reflect the change inri. If u is an

intermediate node of sessioni, the demand of the other adjacent linkk shared byi is

updated in a simlilar fashion. The new link demand(s) are passed to the link scheduling

algorithm.

Step 3: If φu is less than or equal to the value carried by the packet, it is copied to

the packet rate field. In addition, a bit in the packet is set toindicate that the session

is constrained by a node in the path. Otherwise, sessioni is added toFC(u) and the

packet contents are not modified.

Step 4: Nodeu updates the MMF estimateφu by subtracting the bandwidth taken

by the currently constrained sessions and equally dividingthe rest of the bandwidth to

the unconstrained sessions.

Step 5:The rates of some sessions inFC(u) may be greater than the newφu. If this

is the case, these sessions are removed fromFC(u) and step4 is repeated. After the

second iteration, it is guaranteed that no sessions inFC(u) will have rate greater than

φu.

Upon return of a control packet, the source adjusts the transmission rate according

to the packet rate field. If the field indicates a value ofri, the source adjusts its sending

177

rate tori · R bps, whereR is the maximum transmission rate of the radio in bps. The

new control packets for sessioni are sent out with the packet rate field set tori and the

constrained bit field set to zero.

Using arguments similar to those in [114], it can be proven that the asynchronous

distributed algorithm converges in a finite number of iterations to the end-to-end MMF

rate values. This holds for any topology form, given the appropriate fractional capacities

CR
u that ensure feasibility in each case. The main difference ofthe distributed algorithm

with the wireline versions lies in the update of the MMF estimated rate that divides

available rate of each node to its session parts (instead of sessions) and in thatevery

node in the path–including the source and destination nodes–must update the MMF

rate estimate. According to Step 2 of MMFUpdateState() (Fig. 6.3), the demands of

adjacent links are updated and passed to the link schedulingalgorithm. Viewed globally,

the end-to-end computation and link scheduling processes occur in parallel. The link

scheduling is not aware of whether the end-to-end process iscomplete; it simply reacts

to the link demand updates. As soon as the end-to-end bandwidth allocation converges

to the MMF rates, the link demands stabilize, allowing the link scheduling algorithm to

converge.

6.3 Bluetooth Implementation

6.3.1 Design

Bluetooth [15] is a multi-channel asynchronous TDMA system with a special constraint

that a node can be master to at most seven adjacent links. Channels are implemented as

frequency hopping sequences, termedpiconets. A Bluetooth ad hoc network is termed

as ascatternet.

178

Figure 6.4 depicts the implementation of the end-to-end bandwidth allocation algo-

rithm, the link scheduling algorithm and the coordination mechanism over the Bluetooth

protocol stack. The Bluetooth Baseband layer operates according to the asynchronous

TDMA scheme presented in Chapter 3. The Bluetooth Link ManagerProtocol (LMP) is

used for exchange of baseband control packets. Ideally, thelink scheduling protocol and

coordination mechanism would be implemented in the Basebandwith the control pack-

ets being LMP messages. The current Bluetooth specification does not offer periodic

scheduling at the Baseband layer. We have therefore implemented the link scheduling

and coordination mechanisms in software, at the application layer.

We use the Bluetooth ”sniff mode” to instruct the Baseband to transmit according

to the schedule maintained at the application layer. ”Sniffmode” is a low power mode

where a slave can listen to a master for only a window ofNsniff attempt slots within

a period ofTsniff slots. Before entering sniff mode the nodes must agree on a slot

offset within the period where they will commmunicate. The Bluetooth Host Controller

Interface (HCI) exports a function where a node (either master or slave) can initiate

sniff mode on a link. We can thus mapTsystem directly toTsniff . Each node will impose

different non-overlapping sniff windows to its neighbors.When, during the execution of

the coordination mechanism, the local schedule of a node is modified at the application

layer, we instruct the hardware to start sniff mode on linkl on that offset by setting

Nsniff attempt = τl+J
(u)
l . Sniff mode has also been used in other approaches specifically

targeted for scatternet scheduling [120][80].

The Bluetooth L2CAP layer provides connection-oriented and connectionless ser-

vices to upper layer protocols. It can support both unidirectional and bidirectional logi-

cal channels between two nodes. For the exchange of the link coordination mechanism

control packets we use a bidirectional L2CAP channel. Each session consists of multiple

179

L2CAP bidirectional channels, one for each link in the path. Thus, a session at an inter-

mediate node is mapped on two L2CAP bidirectional channels, one to the upstream link

and the other to the downstream link. Session data packets orcontrol packets flowing

in the forward direction are sent on the downstream L2CAP connection while session

control packets returning to the source to the upstream L2CAPconnection.

L2CAP

LMP

Baseband

Radio

Bluetooth Host

Link scheduler

User-level

Bbit

Tsystem

Coordination

Mechanism

Network Layer

Host controller Interface (HCI)

(NsniffAttempt, Tsniff)

Link

Demands

LOCK_VEC

E2E BW
Allocation

E2E Traffic
Generator

Slot Positions

E2E Traffic

Link Control Traffic

Local Schedule

…..

Figure 6.4: Implementation of the end-to-end bandwidth allocation framework over the

Bluetooth stack

When a source receives feedback control packet with normalized rateri, it adjusts its

transmission rate tori ·B/Dslot bits/sec, whereB/Dslot is the ratio of maximum payload

bits per direction over the duration of a full-duplex slot. The Bluetooth baseband layer

supports half-duplex slots of duration0.625ms. Each half-duplex slot can support up to

B = 216 bits for payload data (Bluetooth DH1 packets). Slots can be combined in full

180

duplex configurations of(1, 1), (1, 3), (1, 5) half duplex slots. In the experiments we use

(1, 1) configuration. Thus, a full-duplex slot has a duration equalto 2 · Dslot = 1.25ms

and a maximum rate ofR = B/2Dslot = 172.8 Kbps per direction can be supported.

In addition to rate adjustment at the sources, performance is enhanced by the use

of a packet scheduler on every linkl to select the type of packet that will be transmit-

ted on a conflict-free slot. To expedite convergence of the link scheduling algorithm,

link control packets are given highest priority. When the link control packet queue is

empty, Weighted Round Robin (WRR) is used to share the bandwidth among the out-

going sessions on this link. When the demand of linkl changes during the end-to-end

algorithm execution (step 2 of MMFUpdateState() in Fig. 6.3), the WRR weightWi(t)

for each sessioni in the set of outgoing sessionsOUTS(l) of this link is updated as

Wi(t) = ri(t)

min
j∈OUTS(l)

rj(t)
. A new WRR cycle is then constructed that will schedule ses-

sions in proportion to their new relative weights. All WRR weights stabilize when all

link demands stabilize; however, the target rates will actually be enforced when the link

scheduling algorithm converges to the desired network TDMAlink schedule.

6.3.2 Experiments

To test the system in complex configurations we use BlueHoc[121], the IBM Bluetooth

extensions to the NS simulator [122]. We have further extended BlueHoc to support

scatternets and the sniff mode. The link scheduling algorithm, the end-to-end MMF

algorithm and the coordination mechanism have been implemented as separate modules.

We have performed experiments on various topology and session configurations. Here,

we present and analyze a representative case.

We consider the configuration shown in Fig. 6.5. A period ofTsystem = 50 slots is

used. Nodes start with an arbitrary conflict-free TDMA schedule. This initial schedule is

181

A

E

F

C

G

H

B

J

I D

1

2

3 4

8
5

7

6 9

S1

S3S2

S4

S5

S6

S7

50

49

49

47 50

49

4950

48 50

Figure 6.5: Arrows on links denote master-slave relationships. Italicized numbers on

each nodeu denoteTR
u = Tsystem −

∑

l∈L(u)

J
(u)
l , whereTsystem = 50 slots. The normal-

ized capacities areCR
u = TR

u /Tsystem; the (normalized) MMF rates are(rS1 , .., rS7) =

(0.125, 0.125, 0.125, 0.208, 0.315, 0.208, 0.125). These rates correspond to a slot allo-

cation of(τS1 , .., τS7) = (6, 6, 6, 10, 15, 10, 6) slots withinTsystem = 50 slots.

constructed when endpoints execute the link coordination mechanism to assign arbitrary

slots on a newly established link; all sources start transmitting at maximum rate (172.8

Kbps) and subsequently adjust it based on the values of the received end-to-end control

packets. Time is measured with respect to the time slot reference of the root node. Each

simulation runs for20000 slots (or20000 × 1.25ms = 25sec).

Convergence delay is determined byDS, the time until the link demands stabilize

due to the end-to-end algorithm convergence, andDL, the additional delay needed by

the distributed link scheduling algorithm to converge to a TDMA schedule realizing

these demands.

The table in Fig. 6.6 includesDS andDL that resulted from different choices of

the root node. Both delay components depend on the location ofthe root and the or-

der with which the end-to-end algorithm satisfies the sessions–in increasing order of

182

MMF rates. According to Fig. 6.5, sessionsS1, S2, S3 andS7 first receive the lowest

MMF rate (0.125) due to the first-level bottleneck nodeA. Then the MMF rates ofS5

(0.315) andS4,S6 (0.208) will be allocated by the second-level bottleneck nodesG and

B, respectively.

Convergence Delay (slots) and Overhead (%)

Root DS DL DS + DL OS(%) OL(%)

A 1523 469 1992 11.5 9.7

B 3145 178 3323 8.5 7.2

C 1995 282 2277 17.05 11.80

D 1718 733 2451 12.54 10.2

E 2529 196 2725 15.8 8.78

F 2765 327 3092 11.25 10.3

G 2836 392 3228 8.74 7.05

H 1943 436 2379 12.56 9.9

I 1982 361 2343 16.31 11.86

J 2225 543 2768 15.44 9.2

Figure 6.6: Convergence delay and control overhead in the configuration of Fig. 6.5 for

different choices of the root node.

In addition to the location of the root, the delay componentDS depends on the

transient states of the TDMA schedule. During the TDMA schedule modifications,

some links may be occasionally allocated a few slots. Since slots are shared by link

control packets, as well as control and data packets of various sessions, this may delay

the circulation of the control packets of some sessions and,consequently, increase the

convergence delay of the end-to-end algorithm. This phenomenon was observed in the

183

case of maximumDS (3145 slots) where nodeB is the root. Link3 was allocated

5 slots or less until slot904; links 4 and8 were constantly being rescheduled at the

expense of link3 during this period. Link3 is in the control path of sessionsS1 and

S2, which belong to the set of sessions whose MMF rates must be computed first; this

slowed down the end-to-end algorithm convergence. This behavior did not arise for all

other root choices. The minimumDS (1523 slots) was observed when the first-level

bottleneck nodeA was selected as the root.

The delay componentDL depends on the order in which link demands have stabi-

lized and the location of the root with respect to this order.The link demands stabilize

in the order they are ”removed” (along with bottleneck nodesand sessions) during the

end-to-end algorithm execution. In Fig. 6.5, the first demands to stabilize will be of

links 1-4 because these links are crossed by the first-level sessionsS1,S2,S3 andS7 (and

only those sessions). Then links5-9 will follow, due to the second-level sessionsS4-

S6. This reasoning provides the order for demand stabilization among groups of links.

The order within a group depends on the specific experiment run. According to Fig.

6.6, maximumDL (733 slots) occurred when nodeD was selected as root. In this run,

the last demand to stabilize (at slotDS = 1718) was link 9, the only link adjacent to

the root. We observed that, although at slotDS the link demands at lower tree levels

had already been stabilized and satisfied, the entire tree was rescheduled from the root

downward. This worst-case global rescheduling did not occur for similar scenarios; for

example, when nodeI was selected as root, it was adjacent to the slowest converging

demand (link6 at slotDS = 1982) but in this run the tree was partially re-scheduled and

convergence occurred within361 slots. Incidentally, the minimumDL was observed for

the root being nodeB, the case that yielded maximumDS. In all experimentsDL is

less than10(N − 1)Tsystem = 4500 slots, the delay bound of the tree link scheduling

184

algorithm.

Another quantity of interest during convergence is the control overhead, expressed

as the fraction of slots used for control packet transmissions. The control overhead

consists of the overhead due to the link coordination mechanism (SCINFO, SCUPD,

SC UPD ACK, STABLE REQ and STABLEACK packets) and the overhead due to

the circulating end-to-end control packets. According to Fig. 6.6, the link control over-

head is greater duringDS (maximumOS = 17.05%) because the link demands change

constantly during this period. After the link demands stabilize, the link control over-

headOL is in the order of 10% on average. Link control overhead is dominated by the

STABLE REQ/STABLEACK packet exchanges: a node must request permission from

its parent for each unstable child link it needs to reschedule. Similar to ATM networks,

the end-to-end control overhead is regulated at the source by sending 1 control for every

P data packets. The parameterP can be adjusted to trade-off increased speed of con-

vergence for increased overhead. In the experiments we useP = 19; this yields a fixed

overhead of 5%.

After convergence, only end-to-end control overhead exists because the sources are

never aware that the MMF rates have been reached. Constant flowof end-to-end control

packets is needed for dynamic recomputation of the session MMF rates in presence of

network dynamics (session additions and removals). Fig. 6.7 depicts session through-

put and goodput as well as average delay between data packet arrivals measured at the

session destination after convergence. The throughput (goodput) of a session in bps is

the number of bits due to data plus control packets (data packets only) the destination

receives for this session from the time of convergence (DS + DL) until the end of the

simulation run. The session throughputs exactly match the MMF rates; as expected, the

goodput of every session is approximately 5% less than the throughput on account of the

185

Rates (Kbps) and Delay (ms)

Root MMF T G Davg d95

S1 20.73 20.73 19.69 10.65 ± 1.25

S2 20.73 20.73 19.66 10.71 ± 1.22

S3 20.73 20.73 19.66 10.69 ± 1.20

S4 34.56 34.56 32.83 6.54 ± 0.73

S5 51.84 51.84 49.24 4.284 ± 0.78

S6 34.56 34.56 32.83 6.54 ± 0.73

S7 20.73 20.73 19.68 10.63 ± 1.21

Figure 6.7: Session throughput (T), goodput(G) and average delay (Davg) with 95%

confidence intervals (d95) for the configuration in Fig. 6.5, measured at each session

destination after convergence.

end-to-end control overhead. Sessions within the same MMF group experience similar

average delay (Davg) within a small 95% confidence interval (d95); this is due to the

TDMA schedule periodicity and the WRR link schedulers employed over each session

path.

6.4 Conclusions

We presented a framework where end-to-end bandwidth allocation algorithms currently

available for wireline networks can be used with certain modifications for wireless ad

hoc networks if we can find a set of appropriate local feasibility conditions as well as an

underlying distributed, self-stabilizing link scheduling algorithm. The link scheduling

is based on an asynchronous TDMA protocol that does not rely on global slot synchro-

186

nization nor knowledge of the number of nodes in the network.

Using this framework, we proposed an algorithm for provision of end-to-end ABR

service to multi-hop sessions. This algorithm can operate for any topology and compute

the session MMF rates with respect to a fraction of the network capacity provided by the

local feasibility conditions. We showed that, in the case oftree topologies, the network

can be fully utilized and a link scheduling algorithm that can enforce the computed end-

to-end rates exists. We presented an implementation of thisframework over Bluetooth,

an existing asynchronous TDMA wireless technology.

A natural extension for the link scheduling component of theframework is the design

of converging algorithms that provide rate enforcement in more general topologies than

trees (at the inevitable expense of reduced utilization). Such algorithms are the subject

of our future research efforts.

187

Chapter Appendix 6.A−Pseudocodes of Procedure SampleResched-

ule() and algorithm STABLETREE

ProcedureSampleReschedule
begin

SR-1 PrioritizeLinks();
SR-2 lc = GetMaxUnstableChildLink();

if (lc 6= −1) then
if (busybit==0 AND BusyBit(v)==0) then

SR-3 busybit=1;
SR-4 send SCINFO packet tov;

end
end

end

ProcedurePrioritizeLinks

Assign priorities to children links in order of appearance after slote(u)
lp

local : CH = set of children links, LINKSET, p, slot
begin

p = |CH|; LINKSET = CH; slot =e
(u)
lp

⊕ 1;
repeat

lc = local schedule[slot];
if (lc ∈ LINKSET) then

plc = p /*set the priority oflc to p*/;
p=p-1;
LINKSET = LINKSET - {lc} ;

end
slot = slot⊕ 1;

until LINKSET is empty;

end

Function GetMaxUnstableChildLink
Return the maximum priority unstable child link or -1 otherwise
local : CH = set of my children links,Jk equals 1 if I am slave on child linkk and zero otherwise
begin

for p=|CH| down to 1do
lc = the child link of priorityp;
if (not satisfied(lc)) then

returnlc;
else

lpsum =
∑

k∈CH:pk<pl
(τk + Jk);

if (lpsum > |[elc ⊕ 1, slp ⊖ 1]|)) then
returnlc;

end
end

end
return -1;

end

Figure 6.8: Procedure SampleReschedule()

188

Algorithm 1: STABLETREE
Data : Asynchronous events at nodeu1 Parent node(link):p(lp) (or none if root), Child node

(link): c (lc)
Result : Corresponding actions

E1 Events: e1: Any adjacent link becomes non-satisfied;
OR e2: Scheduling of a link just completed;

begin
if (event e2 occured)then

E1-1 busybit =0;

end
if (busybit==0) then

if (I am root) then
SampleReschedule();

else
if (wait parent ==0)) then

E1-2 wait parent=1;
E1-3 send STABLEREQ packet to parentp;

end
end

end
end

E2 Event: STABLE REQ packet received from childc;
begin

if (I am root OR satisfied(lp)) then
if (stable(lc)) then

E2-1 send STABLEACK packet to child c;

else
if (busybit==0 AND wait parent ==0) then

E2-2 SampleReschedule();

end
end

end
end

E3 Event: STABLE ACK packet received from parent p;
begin

E3-1 wait parent=0;
E3-2 SampleReschedule();

end
E4 Event: SC INFO packet received from nodev;

begin
if (I am child ofv) then

E4-1 busybit =1;
E4-2 wait parent=0;
E4-3 send SCINFO packet tov;

else
E4-4 AssignSlots(lv) /*Determine new slot positions forlv*/ ;
E4-5 Initiate distributed coordination mechanism by updatingv and affected neighbors with

SC UPD packets.

end
end

Figure 6.9: The asynchronous distributed link scheduling algorithm

189

Chapter 7

Summary and extensions

The goal of this dissertation was to address two fundamentalissues that arise in wireless

ad hoc networks: topology organization and transmission scheduling for provision of

QoS guarantees. Both were viewed as resource allocation problems where nodes need

to reach a global optimality objective using only local information.

In the topology organization problem, topology control wasaddressed jointly with

neighborhood discovery. The symmetric link establishmentprotocol provided insights

for neighborhood discovery mechanics in frequency hoppingsystems in general and

Bluetooth in particular. The channel participation constraints in topology control and

the incorporation of network formation delay as an additional performance objective,

were unique contributions of this dissertation.

In the transmission scheduling problem we introduced a novel distributed TDMA

framework for the realization of various link-level and end-to-end QoS objectives. The

fundamental starting point was the recognition that link demands will be generated lo-

cally by the nodes. This led to the need for capturing a subsetof the (globally) feasible

allocations using local conditions. The general bound for arbitrary topologies and the

optimal bound for trees on the asynchronicity overhead, derived in Chapters 3 and 4,

190

respectively, allowed asynchronous TDMA to be naturally incorporated in this frame-

work.

Another fundamental contribution was the fluid distributedalgorithm that operates in

this well-defined subset of feasible allocations and guidesslot reassignments towards the

desired objective. Although we could not analytically prove that application of the fluid

algorithm to the slotted system converges to the optimal TDMA schedule, simulations

for both static and mobile networks demonstrated excellentperformance.

The local feasibility conditions and the fluid model allowedviewing the provision

of end-to-end QoS as interaction of two separate mechanismsthat operate in parallel: a

QoS-aware end-to-end bandwidth allocation algorithm operating at the fluid level and

computing the optimal session rates and a dynamic link scheduling algorithm that re-

ceives feasible link demands and attempts to converge a TDMAschedule realizing the

computed rates. This logical separation allows realization of various end-to-end QoS

objectives by modiying existing algorithms for wireline networks. The dynamic link

scheduling problem was solved for tree networks; however, the end-to-end algorithms

can compute the optimal rates for any topology when coupled with the identified feasi-

bility conditions.

Finally, an important common feature of both topology organization and transmis-

sion scheduling approaches is that, due to their low complexity and lack of restrictive

assumptions, they can be implemented even in current low-end wireless technologies

such as Bluetooth.

The next section, outlines the contributions of this dissertation. Section 7.2 discusses

some open problems for further study.

191

7.1 Contributions

Chapter 2:

• A randomized protocol for symmetric discovery and link establishment in fre-

quency hopping systems (two-node case).

• A distributed topology construction protocol for multi-channel frequency hopping

systems with channel participation constraints (multiple-node case).

Chapter 3:

• Introduction of the asynchronous TDMA communication model.

• A scheduling algorithm that minimizes asynchronicity overhead for a specific or-

dering of link activations in the reference synchronized schedule. The overhead

of this algorithm never exceeds the period of the reference schedule.

• A heuristic approach to find the minimum-overhead ordering of link activations.

Chapter 4:

• A distributed asynchronous TDMA protocol for multi-channel ad hoc networks

that does not rely on any assumptions such as network-wide slot synchroniza-

tion/enumeration or global topology knowledge.

• Derivation of sufficient local feasibility conditions thatdepend on existence (or

lack thereof) of a topology control algorithm and global slot synchronization.

• An algorithm for optimal scheduling in asynchronous TDMA tree networks: in

this case, the entire set of feasible allocations can be captured by local conditions.

Chapter 5:

192

• A distributed fluid algorithm for computing link MMF rates inan ad hoc network

and a slot assignment algorithm aiming their enforcement.

• Extensive performance evaluation for large networks in both static and dynamic

settings.

Chapter 6:

• A two-stage framework for provision of end-to-end rate guarantees:

– Fluid-based end-to-end bandwidth allocation algorithm computes optimal

session rates according to a QoS objective.

– Distributed link scheduling algorithm computing a TDMA schedule realiz-

ing these rates.

• Distributed admission control mechanism and MMF rate computation algorithm

for realizing CBR and ABR end-to-end QoS objectives, respectively.

• A distributed dynamic link scheduling algorithm for enforcing any set of link rates

in tree-structured asynchronous TDMA ad hoc networks.

• Implementation and performance evaluation of the transmission scheduling frame-

work over Bluetooth.

7.2 Suggestions for future work

Throughout the dissertation, we have tried to provide directions toward which our work

can be extended. In this section, we will elaborate on a few webelieve are most inter-

esting.

193

7.2.1 Topology organization

In the topology organization problem, the lack of initial proximity information necessi-

tates approaches that are incremental in addition to being distributed. While we ad-

dressed this complexity when all nodes are initially withinrange of each other, the

problem needs to be studied extensively for the multi-hop case. In addition, adjust-

ing transmission powers in addition to channel assignmentsfor performing topology

control is another interesting research direction to pursue.

7.2.2 Transmission scheduling

In the transmission scheduling problem, it was evident thatrealization of both link-

level or end-to-end QoS objectives relies on the solution ofa dynamic link scheduling

problem. While this problem was solved for the case of tree topologies, a converging

algorithm for arbitrary topologies remains an open issue. Apossible approach would

be to aim for an approximate solution and use an extension of the fluid MMF algorithm

of Chapter 5 to guide the slot reassignments. Such an algorithm could be realized in

the context of a generalized link-level MMF model that includes minimum rate require-

ments for each link. In this model, link demands generated bythe end-to-end algorithm

would be viewed as minimum link rate requirements; the remaining bandwidth would

be shared to the links in a MMF manner. In addition to the generalized link MMF

fluid model, various algorithms for the decisions of slot reassignments during a link rate

adjustment should be investigated for both synchronized and asynchronous TDMA net-

works. For example, a slot assignment algorithm that uses two-hop information might

yield better convergence properties at the expense of increased complexity.

Our approach for the transmission scheduling problem can besummarized by the

following steps:

194

1. Find the minimum or an upper bound on the TDMA schedule length realizing

a set of local slot demands in the network. This bound will determine the local

feasibility conditions.

2. Define a (link-level or end-to-end) QoS objective and find adistributed fluid band-

width allocation algorithm.

3. Find a dynamic TDMA scheduling algorithm that realizes the local slot demands

resulting from the fluid algorithm.

4. Design a distributed TDMA protocol that keeps the networkfree of transmission

conflicts during the slot reassignments.

While these steps were applied to a single-transceiver/multi-channel ad hoc network

carrying point-to-point traffic, they also provide a flexible framework for a systematic

treatment of distributed transmission scheduling in a widevariety of wireless settings:

• Single-channel systems:Single-channel systems carrying point-to-point traffic

suffer from secondary interference. A typical example is the hidden-terminal

problem that arises in 802.11-based wireless ad hoc networks. Similar to the

multi-channel case, finding the minimum length TDMA link schedule is a NP-

complete problem [51]; contrary to the multi-channel case,no known upper bounds

on the schedule length translatable to local conditions exist, even for slot-synchronized

systems. However, for asynchronous TDMA, our general boundon the asyn-

chronicity overhead holds irrespective of interference constraints.

• Multi-transceiver systems: Network throughput can be increased if each node

is equipped with multiple communication transceivers. In such a system, each

nodeu can simultaneously communicate (transmit or receive) witha number of

195

neighbors equal toα(u), its transceiver count. In absence of secondary interfer-

ence (multi-channel system), Choi and Hakimi have established that ifα(u) is

even for every nodeu, the minimum schedule length for a given link demand nor-

malized rate allocationr is Lmin(r) = max
u

∑

l∈L(u)

rl/α(u) [123]. Hence, the fluid

local feasibility conditions in a multi-channel/multi-transceiver system with even

number of transceivers per node will be
∑

l∈L(u)

rl ≤ α(u). Given these conditions,

the fluid model developed in this dissertation can be used unmodified to compute

optimal rates for any link-level or end-to-end QoS objective. However, enforc-

ing the optimal rates using a slotted schedule will require more sophisticated slot

assignment mechanisms.

• Multicast traffic model: In many envisioned applications an ad hoc network is

spontaneously formed when a need for collaborative action exists. Such higher-

layer group communications can be captured by the multicasttraffic model where

each packet transmission is destined to a subset of neighbors. Contrary to point-

to-point traffic, here the broadcast nature of the wireless medium is needed to in-

crease performance–while multicasting can be implementedusing multiple point-

to-point transmissions, multicast scheduling can achievethe same allocations us-

ing fewer transmissions. For the multicast traffic model, neither NP-completeness

of the optimal scheduling problem nor any upper bounds on theschedule length

are known to date.

Summarizing, in the single-channel system and the multicast traffic model cases, op-

timal centralized offline scheduling (step 1) has yet to be addressed; in multi-transceiver

ad hoc networks appropriate bounds on the schedule length doexist under certain con-

ditions. In every case, if local feasibility conditions aredetermined from step 1, steps

2-4 can be used to generate distributed online scheduling algorithms aiming for various

196

QoS objectives.

7.2.3 Transmission scheduling and topology discovery

Our distributed TDMA architecture assumes that neighborhood discovery is performed

using a separate transceiver and channel. In single-transceiver networks a node will need

to coordinate transmissions in the discovery and communication channels. Hence dis-

covery can be seen as part of the transmission scheduling process where discovery and

communication become conflicting objectives: if many slotsare assigned for discovery,

communication throughput decreases. On the other hand, if the discovery channel is

used only a very small fraction of time, then topology discovery may not be effective.

The investigation of this trade-off in a mobile network setting is another challenging

open research issue.

197

BIBLIOGRAPHY

[1] R.E. Kahn. The Organization of Computer Resources into a Packet Radio Net-

work. Proc. IEEE Transactions on Communications, 25:169–178, January 1977.

[2] J. Jubin and J.D. Tornow. The DARPA Packet Radio Network Protocols. Proc.

IEEE, 75:21–32, January 1987.

[3] D. Beyer. Accomplishments of the DARPA SURAN program. InProc. MILCOM,

Monterey, CA, October 1990.

[4] P. Sass. Communications Networks for the Force XXI Digitized Battlefield.Proc.

ACM/Baltzer Mobile Networks and Applications Journal (Special Issue, Mobile

Ad Hoc Networking), 4, October 1999.

[5] J. Strater and B. Wollman. OSPF Modeling and Test Results and Rec-

ommendations. Mitre technical report, Xerox Office Products Division,

96W0000017:http://www.isr.umd.edu/TechReports, 1996.

[6] J.J. Garcia-Luna-Aceves. Wireless Internet Gateways (WINGS). In Proc. MIL-

COM, Monterey, CA, November 1997.

[7] M. Steenstrup. Cluster Based Networks.Ad Hoc Networking, Addison Wesley.

[8] B. Leiner, R. Ruth, and A. Sastry. Goals and Challenges of the DARPA GloMo

Program.IEEE Personal Communications, pages 34–43, December 1996.

198

[9] A. Ephremides, J.E. Wieselthier, and D.J. Baker. A designconcept for reli-

able mobile radio networks with frequency hopping signaling. Proc. of IEEE,

75(1):56–73, 1987.

[10] M. Frankel. Tactical C3 for the Ground Forces, Telecommunications and Pro-

cessing for Military Command and Control: An Architecture forthe 21st Century.

AFCEA International Press, 1986.

[11] MeshNetworks Inc. Fostering Disruptive Technologies. In

www.meshnetworks.com, Maitland, FL, USA, January 2002.

[12] Moteran Systems. True Network mobility. Inwww.moteran.com, Germany, Jan-

uary 2003.

[13] Arcwave. Inc. MeshCast Urban and Suburban Network Simulations. In

http://www.cowave.com/, Campbell, CA, USA, January 2003.

[14] Vista Broadband Networks. Connecting Communities. In

http://www.vbbn.com/d6.html, Santa Rosa, CA, USA, January 2003.

[15] Bluetooth Special Interest Group. Specification of the Bluetooth system, version

1.2. Inwww.bluetooth.com.

[16] IEEE 802.15 Working Group for WPAN. WPAN Specification. In

http://www.vbbn.com/d6.html, http://grouper.ieee.org/groups/802/15/, January

2002.

[17] G.J. Pottie and W.J. Kaiser. Wireless Integrated Network Sensors.Communica-

tions of the ACM, 43:551–558, May 2000.

199

[18] Ember Communications Inc. Reliable Wireless Networks for Industrial Systems.

In www.ember.com, Boston, MA, January 2003.

[19] R. Ramanathan and R. Hain. Topology Control of Multihop RadioNetworks

using Transmit Power Adjustment. InProc. IEEE INFOCOM, Tel Aviv, Israel,

March 2000.

[20] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly dis-

tributed packet radio terminals.Proc. IEEE Transactions on Communications,

32(1):246–257, 1984.

[21] J. Wieselthier, G.D. Nguyen, and A. Ephremides. On the Construction of Energy-

Efficient Broadcast and Multicast Trees in Wireless Networks. In Proc. IEEE

INFOCOM, Tel Aviv, Israel, April 2000.

[22] L. Hu. Topology Control for Multihop Packet Radio Networks. Proc. IEEE

Transactions on Communications, 41(10), October 1993.

[23] L. Hu. Distributed code assignments for CDMA Packet RadioNetwork. Proc.

IEEE Transactions on Networking, 1(6), 1993.

[24] T. Salonidis, P. Bhagwat, L. Tassiulas, and R.O. LaMaire.Distributed Topology

Construction of Bluetooth Personal Area Networks. InProc. IEEE INFOCOM,

Anchorage, AK, April 2001.

[25] G.V. Záruba, S. Basagni, and I. Chlamtac. Bluetrees - scatternet formation to

enable Bluetooth-based ad hoc networks. InProc. International Conference on

Computer Communications (ICC), St. Petersburg, Russia, June 2001.

[26] C. Law, A. Mehta, and K. Siu. Performance of a new Bluetoothscatternet forma-

tion protocol. InProc. ACM MOBIHOC, Long Beach, CA, October 2001.

200

[27] Z. Wang, R.J. Thomas, and Z.J. Haas. Bluenet-a New Scatternet Formation

Scheme. InProc. HICSS, Big Island, Hawaii, January 2002.

[28] C. Petrioli and S. Basagni. Degree-Constrained Multihop Scatternet Formation

for Bluetooth Networks. InProc. GLOBECOM, Taipei, Taiwan, November 2002.

[29] G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. An Efficient Scatternet Forma-

tion Algorithm for Dynamic Environments. InProc. IASTED Communications

and Computer Networks (CCN), Cambridge, MA, November 2002.

[30] X. Li and I. Stojmenovic. Partial Delaunay triangulation and degree-limited lo-

calized Bluetooth scatternet formation. InProc. AD-HOC NetwOrks and Wireless

(ADHOC-NOW), pages 17–32, Toronto, Canada, September 2002.

[31] R. Guerin, J. Rank, S. Sarkar, and E. Vergetis. Forming Connected Topologies

in Bluetooth Adhoc Networks. InProc. International Teletraffic Congress (ITC),

Berlin, Germany, September 2003.

[32] V. Bharghavan R. Sivakumar, B. Das. Spine Routing in Ad hoc Networks.

ACM/Baltzer Publications Cluster Computing Journal, SpecialIssue on Mobile

Computing, 3, June 1998.

[33] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen. Scalable Routing

Strategies for Ad Hoc Wireless Networks.Proc. IEEE Journal on Selected Areas

in Communications, 3:1369–1379, August 1999.

[34] R. Ramanathan and M. Steenstrup. Hierarchically-organized, multihop mobile

wireless networks for Quality of Service support.Proc. ACM Baltzer Mobile

Networks and Applications, 3:101–119, June 1998.

201

[35] D.J. Baker and A. Ephremides. The architectural organization of a packet radio

network via a distributed algorithm.Proc. IEEE Transactions on Communica-

tions, 29:1694–1701, 1981.

[36] M. Gerla and T. Tsai. Multicluster, mobile multimedia radio network.Proc. ACM

Baltzer Journal of Wireless Networks, 1:255–65, August 1995.

[37] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support

in multi-hop wireless networks. InProc. IEEE Vehicular Technology Conference

(VTC), Amsterdam, The Netherlands, September 1999.

[38] L. Bao and J.J. Garcia-Luna-Aceves. Topology Management in Ad Hoc Net-

works. InProc. ACM MOBIHOC, Annapolis, MD, USA, June 2003.

[39] S. Banerjee and S. Khuller. A Clustering Scheme for Hierarchical Control in

Multi-hop Wireless Networks. InProc. IEEE INFOCOM, Anchorage, ALASKA,

USA, April 2001.

[40] A. Amis, R. Prakash, D. Huynh, and T. Vuong. Max-Min D-Cluster Formation

in Wireless Ad Hoc Networks. InProc. IEEE INFOCOM, pages 32–41, 2000.

[41] T. Salonidis, P. Bhagwat, and L. Tassiulas. Proximity Awareness and Fast Con-

nection Establishment in Bluetooth. InProc. ACM MOBIHOC, Boston, MA,

August 2000.

[42] G. Alonso, E. Kranakis, R. Wattenhofer, and P. Widmayer.Probabilistic Protocols

for Node Discovery in Ad-hoc, Single Broadcast Channel Networks. InIn WMAN

(workshop on Wireless Mobile Adhoc Networks), IPDPS, Nice, France, April

2003.

202

[43] G. Alonso, C. Sawchuk, E. Kranakis, R. Wattenhofer, and P.Widmayer. Random-

ized Protocols for Node Discovery in Ad-hoc Multichannel Broadcast Networks.

In Proc. ADHOCNOW, Montreal, Canada, April 2003.

[44] C. Law, A. Mehta, and K. Siu. Performance of a new Bluetoothscatternet for-

mation protocol. InProc. ACM MOBIHOC, Long Beach, CA, USA, October

2001.

[45] A. Kumar and R. Gupta. Capacity Evaluation of Frequency Hopping Based Ad-

hoc Systems. InProc. ACM SIGMETRICS, Cambridge, MA, June 2001.

[46] J.J. Garcia-Luna-Aceves and J. Raju. Distributed Assignment of Codes for multi-

hop Packet Radio Networks. InProc. MILCOM, Monterey, CA, USA, October

1997.

[47] N. Abramson. The ALOHA system.eds. N.Abramson and F. Kuo, Computer-

Communication Networks, Prentice Hall, Englewood Cliffs, NJ, 1973.

[48] L. Kleinrock and F.A. Tobagi. Packet switching in radiochannels I. Carrier sense

multiple-access modes and their throughput-delay characteristics. Proc. IEEE

Transactions on Communications, 23, December 1975.

[49] IEEE. Wireless LAN, Medium Access Control (MAC) and Physical Layer (PHY)

specifications. Inwww.ieee.org.

[50] A. Nasipuri and S. Das. A Multichannel CSMA MAC Protocol for Multihop

Wireless Networks. InProc. IEEE Wireless Communications and Networking

Conference (WCNC), New Orleans, September 1999.

[51] E. Arikan. Some complexity results about packet radio networks. Proc. IEEE

Transactions on Information Theory, 30:681–685, July 1984.

203

[52] I. Holyer. The NP-completeness of edge coloring.Proc. SIAM Journal of Com-

puting, 10:169–197, 1981.

[53] J. Silvester. Perfect Scheduling in Multihop BroadcastNetworks. InProc. In-

ternational Conference on Computer Communications (ICC), London, England,

Sepmteber 1982.

[54] M. Post, P. Sarachik, and A. Kershenbaum. A Biased GreedyAlgorithm for

Scheduling Multihop Radio Networks. InProc. Annual Conference on Informa-

tion Sciences and Systems (CISS), Johns Hopkins Univ., March 1985.

[55] S. Ramanathan. A Unified Framework and Algorithm for Channel Assignment

in Wireless Networks. InProc. IEEE INFOCOM, Kobe, Japan, September 1997.

[56] C. Zhu and M.S. Corson. QoS routing for mobile ad hoc networks. InProc. IEEE

INFOCOM, New York, NY, June 2002.

[57] C.R. Lin. On-demand QoS routing in Multihop mobile networks. InProc. IEEE

INFOCOM, Anchorage, AK, April 2001.

[58] S. Chen and C. Nahrstedt. Distributed Quality of Service Routing in ad hoc

networks.Proc. IEEE Journal on Selected Areas in Communications, 17, August

1999.

[59] S. Lee and A. Campbell. INSIGNIA: In-band signaling support for QOS in mo-

bile ad hoc networks. InProc. International Workshop on Mobile Multimedia

Communications (MoMuC), Berlin, Germany, October 1998.

[60] S. Sarkar and L. Tassiulas. End-to-end bandwidth guarantees through fair local

spectrum share in wireless ad-hoc networks. InControl and Decision Conference

(CDC), Maui, HI, USA, December 2003.

204

[61] D.L. Mills. Network Time Protocol (NTP). InNetwork Working Group Report

RFC-958, M/A-COM Linkabit, September 1985.

[62] C. Zhu and M.S. Corson. A Five-Phase Reservation Protocol (FPRP) for Mobile

Ad Hoc Networks.Wireless Networks, 7:371–384, October 1989.

[63] T. Salonidis, P. Bhagwat, L. Tassiulas, and R.O. LaMaire.Distributed Topology

Construction of Bluetooth Wireless Personal Area Networks.Proc. IEEE Journal

on Selected Areas in Communications (JSAC)–Special Issue on Wireless Ad Hoc

Networks, January 2005 (to appear).

[64] T. Salonidis and L. Tassiulas. Asynchronous TDMA ad hocnetworks: Schedul-

ing and Performance. Proc. European Transactions In Telecommunications

(ETT), 3, May-June 2004.

[65] T. Salonidis and L. Tassiulas. Distributed on-line schedule adaptation for bal-

anced slot allocation in wireless ad hoc networks. InProc. IEEE International

Workshop on Quality of Service (IWQoS), Montreal,Canada, June 2004.

[66] T. Salonidis and L. Tassiulas. Distributed dynamic scheduling for end-

to-end rate guarantees in wireless ad hoc networks.Technical Report,

Institute of Systems Research (ISR), University of Maryland, TR 2004-

7:http://www.isr.umd.edu/TechReports, 2001.

[67] T.G. Robertazzi and P.E. Sarachik. Self-Organizing Communication Networks.

IEEE Communications Magazine, 24(1), 1986.

[68] C.R Lin and M. Gerla. Adaptive Clustering for Mobile Wireless Networks.Proc.

IEEE Journal on Selected Areas in Communications, 15(7):1265–1275, 1997.

205

[69] A.K. Parekh. Selecting Routers in Ad Hoc wireless networks. In SBT/IEEE

International Telecommunications Symposium, Acapulco, Mexico, August 1994.

[70] IEEE 802.15 Working Group for WPAN. IEEE 802.15 Std. Specification, 2002.

In http://grouper.ieee.org/groups/802/15/.

[71] K. Trivedi. Probability and Statistics with reliability queuing and Computer Sci-

ence Applications.

[72] M. Marsan, C. Chiasserini, A. Nucci, and G. Carello. Optimizing the topology of

bluetooth wireless personal area networks. InProc. IEEE INFOCOM, New York

City, NY, June 2002.

[73] G. Miklos, Z. Turanyi, A. Valko, and P. Johansson. Performance Aspects of

Bluetooth Scatternet Formation. InProc. ACM MOBIHOC, Boston, MA, August

2000.

[74] T. Salonidis and L. Tassiulas. Performance issues of Bluetooth scatternets and

other asynchronous TDMA ad hoc networks. InProc. International Workshop

on Mobile Multimedia Communications (MoMuC), Munich, Germany, October

2003.

[75] J. Haartsen. Bluetooth Baseband Specification, version 1.1. In

www.bluetooth.com.

[76] K. Fleming. Bluetooth Host Controller Interface Functional Specification, ver-

sion 1.1. Inwww.bluetooth.com.

[77] I.A. Cimet C. Cheng and P.R. Kumar. A protocol to maintain a minimum span-

ning tree in a dynamic topology. InProc. ACM SIGCOMM, Stanford, CA, August

1988.

206

[78] N. Johansson, F. Alriksson, and U. Jonsson. JUMP mode - adynamic window-

based scheduling framework for Bluetooth scatternets. InProc. ACM MOBIHOC,

Long Beach CA, October 2001.

[79] A. Racz, G. Miklos, F. Kubinszky, and A. Valko. A Pseudo Random Coordinated

Scheduling algorithm for Bluetooth Scatternets. InProc. ACM MOBIHOC, Long

Beach CA, October 2001.

[80] S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz. Bluetooth Scatternets: An

Enhanced Adaptive Scheduling Scheme. InProc. IEEE INFOCOM, New York,

NY, June 2002.

[81] U. Korner N. Johansson and L. Tassiulas. A distributed scheduling algorithm for a

Bluetooth scatternet. InProc. International Teletraffic Congress (ITC), Salvador

da Bahia, Brazil, September 2001.

[82] L. Tassiulas. Scheduling problems in multihop packet radio networks, M.Sc.

Thesis, May 1990.

[83] B. Hajek and G. Sasaki. Link Scheduling in Polynomial Time. Proc. IEEE

Transactions on Information Theory, 34:910–917, September 1988.

[84] A. Ephremides and T.V. Truong. Scheduling Broadcasts inMultihop Radio Net-

works. Proc. IEEE Transactions on Communications, 38, April 1990.

[85] R. Ramaswami and K. Parhi. Distributed Scheduling of Broadcasts in a Radio

Network. InProc. IEEE INFOCOM, Ottawa, Ontario, Canada, April 1989.

[86] S. Ramanathan and E. Lloyd. Scheduling algorithms for multihop radio networks.

Proc. IEEE Transactions on Networking, 1:166–177, April 1993.

207

[87] N. Alon. A simple algorithm for edge-coloring bipartite multigraphs.Information

Processing Letters.

[88] T. Salonidis and L. Tassiulas. Distributed On-Line Schedule Adaptation for bal-

anced slot allocation in Bluetooth Scatternets and Other Ad Hoc Network Ar-

chitectures.Technical Report, Institute of Systems Research (ISR), University of

Maryland, TR 2001-24:http://www.isr.umd.edu/TechReports, 2002.

[89] L. Tassiulas and S. Sarkar. Maxmin Fair Scheduling in Wireless Networks. In

Proc. IEEE INFOCOM, New York, NY, USA, October 2002.

[90] M. Post, A. Kershenbaum, and P. Sarachik. A DistributedEvolutionary Algo-

rithm for Reorganizing Network Communications. InProc. MILCOM, Boston,

MA, October 1985.

[91] D.J. Baker, J. Wieselthier, and A. Ephremides. A Distributed Algorithm for

Scheduling the Activation of Links in a Self-Organizing, Mobile, Radio Network.

In Proc. International Conference on Computer Communications (ICC), London,

UK, June 1982.

[92] D.J. Baker, J. Wieselthier, and A. Ephremides. A channelaccess protocol for

survivable radio networks with frequency hopping spread spectrum signalling. In

Proc. Annual Allerton Conference On Communication, Control and Computing,

pages 50–59, Allerton, IL, October 1984.

[93] I. Chlamtac and A. Lerner. Fair Algorithms for Maximal Link Activation in

Multihop Radio Networks.Proc. IEEE Transactions on Communications, 35,

July 1987.

208

[94] I. Cidon and M. Sidi. Distributed assignment algorithmsfor multihop packet

radio networks.Proc. IEEE Transactions on Computers, 38:1353–1361, October

1989.

[95] A. Farago I. Chlamtac and H. Zhang. Time-spread multiple-access (TSMA) pro-

tocols for multihop mobile radio networks.Proc. IEEE Transactions on Network-

ing, 6:804–812, December 1997.

[96] J.H. Ju and V.O.K. Li. An optimal topology-transparentscheduling method in

multihop packet radio networks.Proc. IEEE Transactions on Networking, 6:298–

306, June 1998.

[97] R. Krishnan and J. Sterbenz. An Evaluation of the TSMA Protocol as a Control

Channel Mechanism in MMWN.Technical report, BBN Technical Memorandum,

1279, 2000.

[98]

[99] I. Chlamtac and S. Pinter. Distributed nodes organization algorithm for chan-

nel access in a multihop dynamic radio network.Proc. IEEE Transactions on

Computers, 36, June 1987.

[100] J. Edmonds. Maximum matching and a polyhedron with 0,1vertices. In Proc.

Journal of Research National Bureau of Standards, 69(B), 1965.

[101] C. Shannon. A theorem on colouring lines of a network.J. Math. Phys., 39:148–

151, 1948.

[102] V. Bhatnagar and G. Kesidis. Bluetooth Scatternet Formation Using Proximity

Information of an Election Protocol. InProc. joint IEEE Int. Conf. on Networking

209

and IEEE Int. Conf. on Wireless LANs and Home Networks, Atlanta, GA, August

2002.

[103] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directeddiffusion: a scalable

and robust communication paradigm for sensor networks. InProc. ACM MOBI-

COM, Boston, MA, USA, 2000.

[104] W. Zhang and G. Cao. Optimizing Tree Reconfiguration for Mobile Target Track-

ing in Sensor Networks. InProc. IEEE INFOCOM, Hong Kong, March 2004.

[105] M. Cagalj, J.P. Hubaux, and C. Enz. Minimum-Energy Broadcast in All-Wireless

Networks: NP-completeness and Distribution Issues. InProc. ACM MOBICOM,

Atlanta, GA, September 2002.

[106] S. Lu H. Luo and V. Bharghavan. A new model for packet scheduling in multihop

wireless neworks. InProc. ACM MOBICOM, Boston, MA, USA, August 2000.

[107] X. Huang and B. Bensaou. On Max-min Fairness and Scheduling in Wireless

Ad-Hoc Networks: Analytical Framework and Implementation. In Proc. ACM

MOBIHOC, Long Beach, CA, USA, October 2001.

[108] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan. Achieving MAC layer fair-

ness in Wireless Packet Networks. InProc. ACM MOBICOM, Boston, MA, USA,

October 2000.

[109] L. Tassiulas and S. Sarkar. Maxmin Fair Scheduling in Wireless Networks. In

Proc. IEEE INFOCOM, New York, NY, USA, June 2002.

[110] K. Nahrstedt Y. Xue, B. Li. Price-based Resource Allocation in Wireless Ad Hoc

Networks. InProc. 11th International Workshop on Quality of Service (IWQoS),

Monterey, CA, USA, June 2003.

210

[111] D. Bertsekas and R. Gallager.Data networks.

[112] M.S. Corson V. Park. A performance comparison of the Temporally-Ordered

Routing Algorithm and Ideal Link State Routing. InProc. International Sympo-

sium on Computer Communications (ISCC), Athens, Greece, April 1998.

[113] P.S Khedhar and S. Keshav. Fuzzy prediction of Timeseries. In Proc. IEEE

Conference on Fuzzy systems, March.

[114] A. Charny. An algorithm for rate allocation in a packet switching network with

feedback, M.Sc. Thesis, May 1994.

[115] L. Kalampoukas.Congestion Management in High Speed Networks. PhD thesis,

University of California Santa Cruz, September 1997.

[116] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing

algorithm. InProc. ACM SIGCOMM, Austin, TX, USA, September 1989.

[117] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. Scalable architecture for

integrated traffic shaping and link scheduling in high-speed ATM switches.Proc.

IEEE Journal on Selected Areas in Communications, 15, June 1997.

[118] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, T. Przygienda, and

D. Williams. QoS routing mechanisms and OSPF extensions, 1998.

[119] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore. The ERICA

switch algorithm for ABR traffic management in ATM networks.TON, 8(1):87–

98, 2000.

211

[120] P. Johansson, R. Kapoor, M. Kazantzidis, and M. Gerla. Rendezvous Scheduling

in Bluetooth Scatternets. InProc. International Conference on Computer Com-

munications (ICC), New York, NY, April 2002.

[121] IBMResearch. BlueHoc: Bluetooth Performance EvaluationTool. In

http://oss.software.ibm.com/bluehoc/.

[122] NS notes and documentation. Inhttp://www.isi.edu/vint/nsnam.

[123] H. Choi and S. Hakimi. Data Transfers in Networks with Transceivers.Networks,

18:223–251, 1988.

212

