
ABSTRACT
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This work concerns the study of Josephson junction circuits in the context of

their usability for quantum computing. The zero-voltage state of a current-biased

Josephson junction has a set of metastable quantum energy levels. If a junction is

well isolated from its environment, it will be possible to use the two lowest states as

a qubit in a quantum computer.

I first examine the meaning of isolation theoretically. Using a master equa-

tion, I analyzed the effect of dissipation on escape rates and suggested a simple

method, population depletion technique, to measure the relaxation time (T1). Us-

ing a stochastic Bloch equation to analyze the dependence of microwave resonance

peak width on current noise, I found decoherence due to current noise depends on

the noise spectrum. For high frequency noise with a cutoff frequency fc much larger

than 1/T1, I found decoherence due to noise can be described by a dephasing rate

that is proportional to the noise spectral density. However, for low frequency noise

such that its cutoff frequency fc is much smaller than 1/T1, decoherence due to noise

depends on the total rms current noise.



I then analyze and test a few qubit isolation schemes, including resistive isolation,

inductor-capacitor (LC) isolation, half-wavelength resonant isolation and inductor-

junction (LJ) isolation. I found the resistive isolation scheme has a severe heating

problem. Macroscopic quantum tunneling and energy level quantization were ob-

served in the LC isolated Nb/AlOx/Nb and AL/ALOx/Al junction qubits at 25

mK. Relaxation times of 4-12 ns and spectroscopic coherence times of 1-3 ns were

obtained for these LC isolated qubits. I found the half-wavelength isolated junction

qubit has a relaxation time of about 20 ns measured by the population-depletion

techniques, but no energy levels were observed in this qubit. Experimental results

suggest the LJ isolated qubit has a longer relaxation and coherence times than all

my previously examined samples. Using a microwave pulse technique, a relaxation

time of 50 ns was measured on this sample, the spectroscopic coherence time ob-

tained using continuous microwave pumping is about 5-8 ns. Coherent quantum

oscillations (Rabi oscillations) were also observed on this sample with a decay time

of around 10 ns for a |0 >→ |1 > level spacing of 7.6 GHz. The relaxation times are

much smaller than what I would expect from my designs for all isolation schemes.

Possible reasons for this inconsistency were discussed.

Using microwave spectroscopy techniques, I probed quantum phenomena in a

coupled macroscopic three-qubit system that is comprised of two Nb/AlOx/Nb

Josephson junctions and an LC resonator. The measured spectrum at 25 mK in

the frequency range 4-15 GHz agrees well with quantum mechanical calculations,

consistent with the existence of entangled states between the three degrees of free-

dom. These entangled states and a first-order strong coupling between two junction

qubits open the possibility of using a resonator as a data bus for information stor-

age and manipulation in a multi-qubit system. The measurements also demonstrate

spectroscopy is a powerful tool and can be used to study a composite system with

many qubits.
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Chapter 1

Introduction

1.1 Overview of quantum computing

To simulate the general dynamics of a system composed of N interacting two-state

particles (such as spins) on a classical computer would not only require a memory size

that is exponential in N, but also require diagonalizaition of an exponentially large

matrix. Both requirements become impractical on even the best existing computer

technologies as N approaches about 50.

In 1982, Feynman first proposed the idea of a universal quantum simulator to

reproduce the behavior of any desired quantum system [1]. This primitive concept

of a quantum computer was formalized by Deutsch in 1985 by introducing quan-

tum circuits that are made of quantum bits (qubits) and universal gate sets [2]. In

1992, Deutsch and Jozsa proposed the first quantum computing algorithm that can

solve a certain class of problems exponentially faster than any classical computation

methods [3]. Two years later, Shor discovered the integer factorization algorithm [4],

which can find the prime factors of a larger integer number exponentially faster than

any known classical computation methods, and the field of quantum computation

started to expand very rapidly. Shor’s algorithm stimulated the physics community

to begin seriously considering how to experimentally implement quantum comput-

ing.
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The idea of simulating the quantum dynamics of a composite system using a

quantum computer, shown by Lloyd [5] in 1996 to be implementable, could be

used to enhance our understanding of composite systems and may lead to new

discoveries. On the other hand, Shor’s algorithm would make a quantum computer

the world’s fastest code breaker since most public-key cryptography methods utilize

large integers whose prime factors are impractical to find using classical computers.

In 1996, Grover also reported discovery of an algorithm for searching a database,

which offers a quadratic speed-up compared to the existing fastest classical search

method [6].

The underlying reason why a quantum computer can perform certain classes of

calculations faster than a classical computer is that the state of a quantum system

can exist in a superposition of all possible states. This superposition principle can

be used for a type of parallel processing of information, which is impossible on a

classical processor.

However, quantum parallel processing of information does not necessarily guar-

antee that a quantum computer is faster than a classical computer. This is because

reading the final result requires making a quantum measurement of the system, and

a single measurement on an n-qubit system can only provide n bits of classical infor-

mation [7]. This is a tiny fraction of the total information contained in an arbitrary

state of the system. Quantum computation will be advantageous if algorithms are

designed to make sure the output state after many complicated calculations contains

only n bits of classical information.

Closely related to the computing side of quantum information processing is data

transmission in the quantum world. Quantum superdense coding [8] and quantum

teleportation [9], which do not have analogs in the classical world, were developed

by Bennett and his co-workers in the early 1990’s. Quantum teleportation allows

states to be faithfully transmitted from one location to another without possibility

of being stolen by a third party to extract useful information. Superdense coding
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allows classical information to be transmitted with a smaller number of resources

via a quantum channel.

These potential applications have stimulated global research in quantum infor-

mation science and how to build a quantum computer. The reader is referred to

the book by Nielsen and Chuang [10] for an introductory overview of the theory of

quantum computing.

1.2 DiVincenzo criteria

A classical computer has an architecture that involves a systematic organization

of individual components such as the memory, processor, input devices and output

devices. Similarly a quantum computer, if built, will also possess an architecture.

At this stage, it is mainly a conjecture as to what a real quantum computer will

look like. However, in order for a system to have the potential for use as a quantum

computer, it has to satisfy the DiVincenzo criteria [11]:

1. a scalable physical system of well-characterized qubits;

2. the ability to initialize the state of the qubits to a simple fiducial state;

3. long (relative) decoherence times, much longer than the gate-operation time;

4. a universal set of quantum gates,

5. a qubit-specific measurement capability,

6. the ability to interconvert stationary and flying qubits and

7. the ability to faithfully transmit flying qubits between specified locations.

The first criterion contains two conditions, one is a well-characterized qubit,

the other is scalability, i.e. that an arbitrary number of qubits can be connected

together. A classical bit can have two possible values, 0 or 1; similarly a qubit is

made of two quantum states, |0 > and |1 >. Essentially any two-level system can

be used a qubit, but some of them may be well characterized, some may not. A

quantum computer, will require many qubits. Therefore scalability is a necessary
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requirement.

The second criterion just says that computation must start from a known state,

so the ability of initializing the state of the qubits is a necessary condition.

The fourth criterion is based on the idea that quantum information, which in-

cludes the quantum phase factors of the qubits, is potentially very sensitive to noise

in the environment. Once the phase coherence of the system is lost, i.e. the sys-

tem decoheres, logic operations on the system only lead to meaningless results.

Therefore, long coherence times (the time scale over which the system maintains

coherence) are required, preferably much longer than the times required for logic

gates to be completed.

The fourth criterion says that logic gates are required in order to manipulate

quantum information. DiVincenzo showed that the combination of single qubit

gates and certain types of two-qubit gates are sufficient to accomplish any quan-

tum computing task [12]. Lloyd extended this work and concluded that a com-

bination of single-qubit gates and any two-qubit gate can form a universal set of

quantum gates [13]. The single qubit gates can be described mathematically as

|0 >→ (
cos θ|0 > + sin θe−iφ|1 >

)
, which is equivalent to control of both degrees of

freedom (θ and φ) on a Bloch sphere if one pictures |0 > as spin down and |1 > as

spin up. There are many types of two-qubit gates. The most studied one is perhaps

the Controlled-NOT (CNOT) gate, whose function is to change the state of a target

qubit depending on the state of the control qubit. If the control qubit is in |0 >,

then the state of the target qubit remains unchanged. On the other hand the state

of the target will be flipped if the control qubit is in |1 >.

The fifth criterion says that one must be able to measure the state of all the

qubits. All currently available algorithms require this. However, it is not impossible

that this requirement may be relaxed for some certain problems as new algorithms

are discovered.

The last two of the DiVincenzo criteria are necessary conditions for distributed
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quantum computing. Since a quantum computer does not have to be distributed,

these requirements are not in the same class as the first five criteria.

There are two other elements that are hidden in the above list that deserve some

further discussion: entanglement and error correction.

Quantum entanglement

Entanglement is a peculiar feature of the quantum world, i.e. it can not be explained

by the laws of classical mechanics [14, 15]. A state of a composite system is said

to be entangled if it cannot be expressed as a direct product of the individual

particle states (inseparable) [16]. Intuitively we can say that for an entangled state

a description of each particle’s state is not sufficient to describe the state of the entire

system. Entanglement is the property that permits violation of Bell’s inequalities

[17]. Because of the non-classical nature of entanglement, it is of special interest

from the point of view of the foundations of quantum mechanics.

Entanglement has also received a large amount of attention because of its impor-

tance in quantum computing. It is believed that entanglement is the main feature

of quantum systems that makes exponential speedup of calculations possible [18].

Entanglement is also required in quantum teleportation [9], and is needed to imple-

ment quantum logic gates. In addition, the theory of error correction (see below),

which is necessary for fault-tolerant quantum computing, is heavily based on the

properties of some special kinds of entangled states.

Many questions related to entanglement still remain open, such as the best way

to quantify entanglement in an inseparable mixed state and its underlying role in

quantum computation.

Quantum error correction

Both classical and quantum information are sensitive to noise. In both classical and

quantum computers, error correction can be used to reduce the effects of noise. Error
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correction can guarantee fault-tolerant computation even using unreliable gates as

long as the unreliability is below some threshold.

The simplest approach to error correction is based on the general idea of coding

a logical qubit using many physical qubits. A variety of error correction methods

have been proposed, including early ones by Shor [19] and Steane [20] which require

an error threshold of the order of 10−6. These error models assumed uncorrelated

random noise across the qubits. However, recent work by Steane [21] shows that

under mild assumptions the threshold can be as large as 10−3. Theoretically, the

error threshold cannot exceed 1/2. Therefore in principle there is still room to push

the threshold up to a range that can be readily accessed by current experiments

(say 0.01).

These error correction methods make use of multiple copies of information to

make the information robust against corruption. For example, the minimum coding

to correct for amplitude or phase errors (but not both) utilizes three physical qubits

to represent a single logical qubit. When the logical qubit is initialized to |0 >,

then all three physical qubits are initialized to zero, and computation is applied to

the three qubits simultaneously. This scheme can be used to correct single qubit

flip errors. In this case, a superposition state of the logical qubit, (|0 > +|1 >)/
√

2

will be coded as a maximum entangled state between the three physical qubits:

(|000 > +|111 >)/
√

2.

An alternative approach for error correction is to utilize the symmetry in the

physical interaction underlying the noise sources. These error correction methods

are often referred to as decoherence-free subspace encodings [22]. Such techniques

are passive in contrast to the active correction methods discussed above and thus

may ultimately be easier to implement for a large number of qubits.
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1.3 Experimental realization

A variety of physical systems have been proposed for realization of qubits in a

quantum computer. For a general overview of different approaches, the reader is

referred to Ref. [11]. Each physical system proposed for quantum computing tends to

differ in terms of the actual qubit and the interactions used for logic gates. However,

in a broad context, these systems can be grouped into eight classes: nuclear magnetic

resonance (NMR), ion trap, neutral atom, optics, cavity quantum electrodynamics

(QED), solid state, superconducting, and unique approaches such as electrons on a

film of superfluid helium.

Investigations of each class are being pursued at this time. Some are more

advanced, with gates between a few qubits demonstrated, while others have not

even succeeded in characterizing a single qubit. However, since the field is advancing

so fast, it is not possible now to say which approach is the most promising. I can

nevertheless list a few general advantages and disadvantages that are associated

with each approach.

NMR quantum computing

Nuclear magnetic resonance (NMR) has been around for more than a half century

[23, 24]. NMR Quantum computing [25, 26] involves using qubits that are chemically

distinct nuclear spins (on specific sites on specific molecules in a solution) with long

relaxation times T1 > 1 s and coherence times T2 ∼ 1 s. While the spin state

cannot be initialized at room temperature, ”pseudo-pure” states can be selected in

the presence of a magnetic field at room temperature. Single qubit rotations can be

realized using the fact that the spins in a molecule have distinct chemical shifts and

thus have slightly different resonance frequencies. The natural interaction (chemical

screening, dipolar, and hyperfine) between different spins can be used to design two

qubit gates.
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Very-well characterized experimental systems and techniques, and relatively long

coherence times are the strengths of this approach. However, there are several

disadvantages associated with this approach. First, the system does not appear to

be scalable, because qubits are defined through the internal Hamiltonian of a given

molecule. A limit of 10 qubits is perhaps the maximum number one can achieve in

liquid NMR quantum computing. Second, the gate speed is slow, typically less than

1 kHz. Finally, room-temperature versions of this approach are based on ensemble

measurement (a minimum of 106 spins in the solution is required in order to beat the

noise). Furthermore single spin detection and control has not been achieved so that

one cannot avoid this ensemble approach. Analysis of such computations shows that

they are essentially classical and that one cannot achieve the exponential speed up

found in a real quantum computer. However, it is possible to use this approach to

perform some simple calculations in very restricted cases, for example, a seven-qubit

computer based on NMR has been built and used to factor the number 15 ([27].

Ion-trap quantum computing

The idea of ion trap quantum computing was first proposed by Cirac and Zoller

[28] in 1995. The qubit states in this scheme are two hyperfine or Zeeman sublevels

in the electronics ground state of an ion, or the ground state and the first excited

state of weakly allowed optical transitions. Since direct Coulomb interaction is very

weak due to the large spacing between two ions (> 1µm), coupling between two

qubits is mediated through the motional states in the trap. Qubit initialization and

read-out can be accomplished using standard optical techniques (pumping and light

scattering) with high fidelity, and motional states in the trap can be initialized by

laser cooling. The coherence times in the hyperfine levels are very long (>10 min),

the decay times for the weakly allowed transitions are about 1 s. The life time of the

motional states are shorter, typically between 100 µ s and 100 ms. All these times

are significantly longer than the gate times (< 10 µs). Recently some significant
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progress has been made using this scheme, including two-qubit gates [29, 30] and

creation and control of three-qubit entangled states [31, 32].

Despite this progress, scalability of this approach remains unknown. Although,

concepts such as moving-ion qubits [33, 34] and coupling to photon modes [35, 36]

were proposed, experimental implementations of these ideas need to be demon-

strated.

Neutral-atom quantum computing

Neutral-atom quantum computing [37, 38] is conceptually similar to ion-trap quan-

tum computing. While ions can be trapped by electric fields, neutral atoms can be

trapped by optical lattices, or magnetic fields. The internal atomic states (ground

state hyperfine levels) can be used as qubit states and motional states of the trap

can be used to mediate interaction between two qubits. Similar to ion-traps, qubit

initialization can be accomplished by standard optical pumping techniques, and mo-

tional states in the trap can be initialized by laser cooling. Since neutral atoms are

weakly coupled to the environment, coherence times as long as many minutes are

expected for these qubits, although this has not been demonstrated by experiments.

Single qubit states are analogous to those for ion-traps.

Although two-qubit gates are not that straightforward compared to ion-traps,

there are proposals for two-qubit gates based on the optically induced conditional

electric-dipole interaction between two atoms when they are brought into close prox-

imity [39]. The speed of these gates are limited by the trap frequency, which is

typically between 10 kHz and 10 MHz. Read-out of individual qubit states is not

clear in this scheme, since the atoms are separated by less than a wavelength of the

trapping lasers. Solutions to this problem have been proposed, such as designing

optical lattices with potential wells separated by more than a wavelength [40].
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Optical quantum computing

The quantum nature of light has been known for almost a century. In principle,

single photon occupation of two polarization modes can be used as a qubit. Photons

have intrinsically long lifetimes because the influence of the thermal environment

(kBT ) is negligible compared to the photon frequency. However photons can be

lost easily due to imperfect optical elements (mirrors, beam splitters, phase shifters,

etc.). Coherence times as large as 1 µs have been achieved in a high-quality optical

storage cavity; this is much longer than typical expected gate times of the order of

ns.

Single qubit rotations are easily implemented in this system [41]. However, due

to the extremely small photon-photon interaction, realization of two-qubit gates

appears to be difficult. Surprisingly, the process of photon detection itself can lead

to effective photon-photon nonlinearities [42]. Knill, Laflamme and Milburn [43]

showed that deterministic single-photon sources and high-efficiency single-photon

detectors may be used to realize scalable quantum computing with only linear optical

elements. This linear optics quantum computing scheme is now the major scheme

studied in optics quantum computing.

This approach has the apparent advantage of interfacing to various quantum-

communication applications. Photons as flying qubits can be faithfully transmitted

in free space over a long distance. However, if the photons are confined to structures

with well-defined modes, such as optical fibers, photon loss over a distance of meters

needs to be taken into consideration.

Qubit initialization and read-out have not been demonstrated faithfully in this

scheme. Qubit initialization requires reliable, on-demand, single photon sources,

which have not been demonstrated. In order to realize an individual qubit read-out,

single photon detectors with high efficiency (99%) are required, but have not been

demonstrated.
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Cavity QED quantum computing

Cavity QED quantum computing refers to coherent interaction of a material qubit

(trapped atoms, trapped ions, etc.) with a single photon mode in an optical or

microwave cavity. The drive for this approach is to realize the sixth DiVincenzo

criterion, coherent interconversion of quantum states between stationary qubits and

flying qubits, which is a necessary condition for distributed quantum computing.

The systems studied in this approach include Rydberg atoms in microwave cavities

[44], neutral atoms in optical cavities [45], ion-traps interacting with optical cavities

[46, 47] and more recently, superconducting qubits interacting with a resonator

[48, 49, 50].

The challenges facing this scheme are more or less the same as those for the

ion-trap and neutral atom approaches. For the flying qubits, single photon sources

and detectors are required for initialization and readout.

In addition, this approach also requires realization of the strong coupling limit:

a small, extremely low-loss cavity is required to enhance the electric field per photon

such that the coherent Rabi frequency of the atom-field interaction is faster than

the spontaneous decay rates of the atom and the field. Current technology is good

enough to achieve the strong coupling limit, but the quality factor is not that high.

Solid state spin-based quantum computing

Solid state systems are generally complicated and it is hard to implement the kind

of coherent state control a quantum computer demands. However, a large variety of

quantum effects exist in solid state systems and by using the spacial precision that

modern lithography can achieve, it has become increasingly possible to engineer solid

state systems with a desired Hamiltonians. The first ideas of quantum computing

using solid state systems were proposed by Loss and DiVincenzo [51] based on the

spin of a single electron in a GaAs quantum dot, and by Kane [52] based on the
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nuclear spin of a 31P atom in silicon.

The underlying concept of the qubit here is essentially the same as in liquid

NMR. The Zeeman levels of the spin in the presence of an external magnetic field

(a few Tesla) can be used as a qubit. At millikelvin temperatures, the spins can

be polarized in one direction, which fulfills initialization of the qubit state. One

might expect the spin coherence time to be the same as in liquid NMR. However,

spin relaxation in solids is much more complicated than in liquids and a variety of

decoherence mechanisms exist. So far only ensemble measurements of spin coherence

time are available. For example, T2 is about 1 µs for electrons in GaAs, and on the

order of 1 ms for 31P in Si. Although these times are much longer than the expected

gate times (∼1 ns), the relaxation time and coherence time of a single spin are still

unknown.

Likewise, while rotations are trivial for an ensemble of spins using a transverse

rf magnetic field, single qubit operation still needs to be demonstrated.

In contrast to the natural internal interaction between spins in a molecule in

liquid NMR, here the interaction between two spins can be engineered. For the

quantum dot approach, two quantum dots of a size ∼50 nm can be fabricated next

to each other with a separation of 200 nm. Coulomb interaction between the two

electrons in the dots can be controlled via an electrical gate between the dots. For

two 31P donors in Si are separated by 20 nm and the state of the nuclear spin

can be transferred to the spin of the donor electron via the hyperfine interaction.

Interaction between the two donor electrons can then be controlled by electrical

gates. However, so far there is no report of experimental demonstration of such

two-qubit gates.

Perhaps the most difficult part of this approach is performing the individual qubit

measurements. It essentially requires high precision single spin detection. Methods

being pursued so far include: (i) convert spin information to charge information and

detect the resultant charge transfer using highly sensitive electrometers [51], such as
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a single electron transistor; (ii) transport current measurement (for quantum dot)

[53], and (iii) magnetic resonance force microscopy [54].

Despite a lot of uncertainty in this approach, spin-based solid state quantum

computing has some attractiveness, mainly due to its potential for compatibility

with existing microfabrication industry, and its potential for inherent scalability,

high density of qubits, and fast gate operations.

1.4 Superconducting quantum computing

Superconducting quantum computing has the advantage of inherent scalability, since

superconducting circuits can be fabricated by lithography. The gate times are also

relatively fast (< 10 ns) compared to ion-traps and neutral atoms. Since supercon-

ductivity is an inherently low-dissipation coherent quantum state, long coherence

times in these systems are expected. In addition, superconducting systems are elec-

tronic circuits in which qubit control (gates and individual-qubit readout) can be

implemented via electric or magnetic methods. Initialization of superconducting

qubits is realized by cooling the system to its ground state. Typically temperatures

of 20-30 mK are required if the first excited state is about 5-10 GHz above the

ground state.

A variety of individual qubits based on Josephson junctions have been imple-

mented [55], including flux qubits [56, 57, 58, 59, 60, 61], charge qubits [62, 63] and

phase qubits [64].

Flux qubit

Flux qubits are based on the general principle that only an integer value of the

flux quantum Φ0 ≡ h/2e can be trapped inside a superconducting ring. Mooij

and Orlando[57, 58] have developed a flux qubit that is a superconducting ring

interrupted by three junctions, in which the two qubit states correspond to the two
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directions of the circulating current in the ring, clockwise and counter-clockwise. A

superposition of these two states [59] and coherent quantum oscillations [65] between

the two states with a coherence time of 150 ns were demonstrated.

A simpler type of flux qubit, the rf SQUID, is a superconducting loop interrupted

by one Josephson junction. Spectroscopic evidence for superposition of the two qubit

states was also observed [60]. Since these qubits are made of superconducting loops,

they are sensitive to magnetic field noise, but relatively insensitive to electric field

or charge noise.

Charge qubit

One well-studied charge-qubit is the Cooper-pair box [62], which is basically a su-

perconducting electrode (the island) connected to a superconducting reservoir by

a small Josephson junction. Due to the large charging energy associated with the

small capacitance of the junction, the number of charges on the island is a good

quantum number and it can be controlled by applying a voltage to a gate that is

capacitively coupled to the island. The qubit states correspond to n and n+1 pairs

on the island. The level spacings between the two states can be adjusted by the gate

voltage, and oscillations between the two states can be excited using microwaves.

Coherent oscillations between the two qubit states were demonstrated by Nakamura

et al. [62]. More recently, evidence for entanglement between two charge qubits

was observed [66] and two-qubit gates were demonstrated [67]. The coherence times

observed in these systems are about 2 ns, rather short compared to the expected

value if decoherence is solely from spontaneous emission. This large decoherence was

attributed by the authors [62] to the constant detection via quasiparticle tunneling

through the probe junction.

A modified scheme in the charge qubit regime was demonstrated by the Saclay

group [63]. The qubit is still a Cooper-pair box, but the readout is not through

quasiparticle tunneling, but via the switching of a big junction (two small junctions
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are used to isolate the island, while the two small junctions and the big junction

form a loop). By the use of a gate voltage and a magnetic flux piercing the loop, the

system can be biased at an optimal operating point where the system is insensitive

to charge fluctuations to first order. The readout via the big junction can be turned

on when measurement is needed to minimize decoherence during gate operations.

A relaxation time of 1.8 µs and a coherence time of 500 ns were demonstrated.

Phase qubit

A third approach using Josephson junctions for quantum computing involves using

the phase regime, which is the topic of this thesis. In this approach, the qubit

is basically a single Josephson junction [64] that is biased at a constant current,

therefore it is also referred to as a current-biased Josephson junction. The simplicity

of the circuit makes it very attractive as a candidate for a qubit. Furthermore the

system is relatively insensitive to magnetic flux noise and charge noise, unlike flux

or charge qubits.

The dynamics of the system is analogous to an anharmonic oscillator, with un-

equal level spacings in the potential well. Therefore the ground state and the first

excited state can be singled out as the two qubit states. These states are metastable

due to the anharmonicity and they can tunnel out of the potential well to dissipa-

tive running states. The ground state and the first excited state have very different

tunneling rates, and thus can be distinguished with a high fidelity.

This approach also has some weaknesses. First, the junction is now directly con-

nected to electrical leads that supply the bias current. Therefore the electromagnetic

environment to which the qubit is coupled depends on the bias leads. Care must

be taken to engineer the bias lines such that energy relaxation is slow. The noise

in the bias lines can also cause significant decoherence. The mechanisms of deco-

herence are not entirely clear, and measurements of coherence time from different

groups show very inconsistent results, ranging from tens of ns [68] to 1 us [69, 70].
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Therefore further understanding and more measurements of decoherence time in the

phase qubit are needed.

In order to realize a quantum computer, coupling between two and more qubits

is required. In this thesis, I describe a first study of a coupled system comprised

of two junction qubits and a inductor-capacitor (LC) resonator. The measurements

can be interpreted from many points of view: a resonator as a qubit; capacitive

coupling between two junction qubits; and two stationary qubits coupled to a flying

qubit in analogy to a cavity-QED type experiment.

It is noteworthy that these superconducting circuits are macroscopic, not only

because they are large in size (1 µm to 1 mm), but also because all the quantum phe-

nomena observed in these circuits can be explained by a macroscopic variable [71],

the phase difference across a Josephson junction. The fact that the phase difference

can describe all the quantum physics that are based on the collective motion of bil-

lions of Cooper-pairs is a clear manifestation of macroscopic quantum phenomena.

Therefore it is interesting to study quantum phenomena in these macroscopic cir-

cuits not only from the point of view of quantum computing, but also from the point

of view of testing fundamental principles of quantum mechanics in a macroscopic

system.

1.5 Summary

In this chapter, I have briefly outlined the state of quantum computing. I also

explained the basic idea underlying the exponentially fast speed of quantum com-

puting. The strengths and weaknesses of each experimental realization of a quantum

computer were summarized. The purpose of this was not to provide judgement of

the different approaches, but to give a sense of the diversity of the field. Finally, I

have listed the different approaches that are being pursued by the superconducting

community. A general picture of the phase qubit, which is the subject of this thesis,
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was presented.

The rest of the thesis is organized as follows. Chapter 2 is a detailed description

of the basic physics associated with a current-biased Josephson junction. Chapter

3 discusses the physics underlying the relaxation process in the phase qubit. Mod-

eling of the relaxation process and methods to measure the relaxation time (T1) are

presented. Chapter 4 focuses on analysis of decoherence mechanisms. In particular,

a method is proposed to look at decoherence due to low frequency noise. Chapter 5

discusses various single qubit designs with potentially long relaxation and coherence

times. Chapter 6 focuses on details of the experiment setup, including the dilution

refrigerator, filtering and signal bandwidth, and low noise instrumentation. Chap-

ter 7 presents measurement results on the relaxation time and decoherence time in

various single qubits. Chapter 8 focuses on microwave spectroscopy of a coupled

three-body system. Chapter 9 presents some preliminary results on state measure-

ment in a coupled qubit system. Finally, Chapter 10 concludes with a summary of

the key results and a few comments on some future work.
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Chapter 2

Josephson Junction Physics

Among the various superconducting devices used for quantum computation, the

current-biased Josephson junction is perhaps the simplest. In this chapter, I will first

discuss the basic current-voltage (I-V) relations of a Josephson junction and then

introduce a model for the Josephson junction. I next discuss the classical dynamics of

the system, followed by a quantum mechanical description of the system, including

energy levels and quantum tunneling phenomena. At the end of this chapter, I

describe the experimental method I used to probe the system.

2.1 Josephson junctions

Electrons in a superconductor form Cooper pairs for temperatures below the transi-

tion temperature (Tc) of the superconductor [72]. Since these pairs are in a collective

motion corresponding to the ground state of the system, their behavior can be de-

scribed by a wave function, i.e.

Ψ(~r, t) = A(~r, t)eiθ(~r,t) (2.1)

Equation 2.1 describes the state of all the Cooper pairs, and the square of the norm

of the wave function can be interpreted as the density of the Cooper pairs at location

~r and time t. Moreover, the phase of the wave function is coherent throughout the
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superconductor.

If two superconductors are separated by a very thin layer of insulator, then a

Josephson junction [73] is formed. (see Fig. 2.1).

When the insulator thickness is small enough, the electronic wave functions from

the two sides can overlap. The consequence of this overlap is that the phases of the

two wave functions are correlated and Cooper pairs can coherently tunnel from one

side of the junction to the other side with a tunneling strength strongly dependent on

the insulator thickness. Indeed, if γ is the difference of the two phases, the relation

between the tunneling current I flowing through the junction and the voltage V

across the junction is given by

I = I0 sin γ (2.2)

V =
Φ0

2π

dγ

dt
(2.3)

where Φ0 = h/2e = 2.07 × 10−15 T m2 is the flux quantum, and I0 is the critical

current of the junction. Eqs. 2.2 and 2.3 were first derived by Josephson [73], and

are commonly referred as the dc and ac Josephson relations.

The variable γ is macroscopic because the two phases are from the wave func-

tions of a macroscopic number of Cooper pairs in the two superconductors and it

completely describes the coherent tunneling of pairs through the barrier [71] (the

number can be estimated as the pairs in a volume of the junction area and a coher-

ence length).

From the Josephson relations, we know a current that is smaller than I0 can flow

through the junction without dissipation, i.e. the junction stays in a zero-voltage

state. If one tries to force a current that is larger than I0 to flow through the junction,

then from the Josephson relation, γ can no longer possess a stationary solution.

This leads to the junction switching to a finite-voltage state. To fully understand
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Figure 2.1: Schematic of a Josephson tunnel junction. Two superconductors are

separated by a thin layer of insulator. Each circle in the two superconductors denotes

a Cooper pair. The Cooper pairs on the two sides are described by wave functions

A1 exp(iθ1) and A2 exp(iθ2), respectively. The current I and voltage V are related

to γ = θ1 − θ2 through the Josephson relations.
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the dynamics of this switching process, we need to consider two additional things

that are inherent with a Josephson junction, the shunt resistance R and the shunt

capacitance C.

2.2 RCSJ model

Since the junction is made of two overlapping superconducting plates, there will be

a capacitance C between the two plates. In addition, at any finite temperature there

will be electronic excitations (quasi-particles) present. For a voltage V across the

junction less than the gap voltage Vg, the quasi-particles can incoherently tunnel

through the barrier causing dissipation and producing an effective voltage-dependent

shunt resistance Rqp. According to the BSC theory [72], this resistance due to quasi-

particle tunneling obeys

Rqp = RN exp(eVg/2kBT ) (2.4)

where RN is the resistance of the junction in the normal state. For V > Vg, there

is enough energy available from the voltage source to break Cooper pairs, causing

the shunt resistance R to be comparable to RN . In some cases, a shunt resistance

is deliberately added to the junction, in which case the total shunt resistance R

is the parallel resistance of the quasi-particle resistance and the external one. I

note that the quasi-particle resistance Rqp is typically very large [74] for both Al

(Vg = 0.4 mV) and Nb (Vg = 2.8 mV) junctions for the temperatures used in our

experiment (around 30 mK).

Figure 2.2 shows a schematic of the resistively-capacitively shunted junction

(RCSJ) model. The cross represents the bare junction, whose current-voltage rela-

tions can be found from the Josephson equations.

With this model, one can write an equation for the total current Ib flowing

through the circuit,

21



RC

Ib

I0

Figure 2.2: The RCSJ model of an ideal Josephson junction. The cross denotes

the Josephson junction itself. The capacitor comes from the two parallel supercon-

ducting plates forming the junction. The shunt resistance R is the total parallel

resistance of the quasi-particle resistance Rqp and an external resistance if it exists.
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Ib = I0sin(γ) + C
Φ0

2π
γ̈ +

Φ0γ̇

2πR
(2.5)

One can solve Eq. 2.5 for γ as a function of time for a given bias current Ib. The

dc voltage can be taken as a time average of the time derivative of γ. One needs to

keep in mind that the shunt resistance R in general is strongly voltage-dependent

and highly nonlinear, which makes solving Eq. 2.5 difficult.

For junctions where the time constant RC is much larger than the inverse of the

characteristic frequency (∼
√

2πI0/Φ0C) of the system, the I-V curve is hysteretic

(see Fig. 2.3). For Ib < I0, there is zero voltage across the junction. However at some

bias current that is smaller than the critical current, the voltage across the junction

jumps discontinuously to the gap voltage Vg. For bias currents slightly above the

critical current, the voltage stays at the gap voltage. As one further increases the

bias current, the voltage increases linearly with the bias current, showing an ohmic

behavior with a resistance of RN (see Fig. 2.3). If the bias current is now reduced

below the critical current, V remains at Vg until the current reaches the retrapping

current. Thus the device characteristics are hysteretic.

This hysteretic behavior can be qualitatively understood from Eq. 2.5 and the

voltage dependence of the shunt resistance R. For Ib < I0, there exists a static

solution γ = arcsin(Ib/I0) for Eq. 2.5, therefore V ≡< γ̇ >= 0 is allowed. However

when Ib > I0, γ must be time dependent, and it turns out γ̇ will increase with time,

which causes the voltage to increase. However when V increases to Vg, Cooper

pairs start to break and the shunt resistance suddenly decreases to a value that is

comparable to RN , which conducts most of the bias current. When the bias current

is much larger than I0, the junction is normal and behaves just like a resistance RN .

From this discussion it is not obvious why the junction stays at the gap voltage

while the bias current is reduced. Furthermore the switching of the junction to the

finite voltage state does not occur at a fixed bias current. Instead the switching

is spread over a range of bias currents that are always below I0. To answer these
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Figure 2.3: I-V curve for a lightly damped Josephson junction. The switching

happens at a bias current that is slightly smaller than the critical current I0.
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questions, we need to carefully examine the junction behavior described by Eq. 2.5.

2.3 Classical dynamics of a current-biased Joseph-

son junction

To proceed, I use the analogy between Eq. 2.5 and the motion of a particle with a

effective mass m = C(Φ0/2π)2 moving in a tilted washboard potential

U(γ) = −Φ0/2π(I0 cos γ + Ibγ) (2.6)

subject to a damping force. Equation 2.5 can be rewritten as

mγ̈ = −dU(γ)

dγ
−

(
Φ0

2π

)2
γ̇

R
(2.7)

I note that the washboard potential given by Eq. 2.6 depends on the bias current

Ib. Three examples of the washboard potential for Ib = 0.1I0, Ib = 0.99I0, and

Ib = 1.2I0 are shown in Fig. 2.4 (a)-(c).

Notice the particle can be trapped inside a well for Ib < I0 and this will give

zero voltage across the junction [see Fig. 2.4(a)]. However, for Ib > I0, the potential

barrier disappears and the particle must roll down the slope so that a voltage will be

observed [see Fig. 2.4(b)]. If the damping resistance R is small, once the particles

starts rolling, it can continue rolling even if the tilt gets less steep, resulting in

hysteretic behavior. When the bias current is so small that the kinetic energy the

particle gains moving from one barrier to the next is equal to the energy dissipated,

the particle slows down and the junction retraps to the zero-voltage state. It turns

out that the retrapping current is related to the quality factor Q of the system by

Ir = 4I0/πQ [72], where Q =
√

2πI0/Φ0CRC is the quality factor.

To understand why switching happens in a range of bias currents that are smaller

than the critical current, we need to include the thermal noise from the resistor,
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Ib=0.1I0

Ib=0.99I0

Ib=1.2I0

Figure 2.4: Washboard potential at various bias currents. (a) For Ib = 0.1I0, the

particle is trapped inside a well. (b) For Ib = 0.99I0, the barrier is very small so the

particle is barely trapped and can be readily thermally excited out of the well. (c)

For Ib = 1.2I0, the well no longer exists and the particle will roll down the potential

landscape.
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which adds an additional noise current to the bias current. We then change Eq. 2.7

by adding a noise force term,

mγ̈ = −dU(γ)

dγ
+ Fn(t)−

(
Φ0

2π

)2
γ̇

R
(2.8)

where Fn(t) = −Φ0/2πIn(t), and In(t) is a random noise current from the resistor.

The correlation function for In(t) is given by

< In(0)In(t) >∼= 4kBT

R
δ(t) (2.9)

where T is the temperature of the shunt resistance R.

With this noise, the particle will move at the bottom of the well with an os-

cillation frequency depending on the curvature of the potential. This bias-current-

dependent oscillation angular frequency is called the plasma frequency and is given

by

ωp = ω0

[
1−

(
Ib

I0

)2
]1/4

(2.10)

where ω0 =
√

2πI0/Φ0C is the plasma angular frequency at zero bias current.

The energy associated with small oscillations obeys a Boltzmann distribution,

i.e. P (E) = exp(−E/kBT ), where P (E) is the probability of the particle having

energy E. If the energy is larger than the barrier height ∆U , then the particle can

escape out of the well and roll down the slope, as depicted in Fig. 2.5.

We can define the escape rate Γ as the inverse of the life time of the particle

in the well. For this type of thermally-activated escape, Kramers [75] derived an

expression for the escape rate:

ΓK =
ωp

2π
exp

(
−∆U

kBT

)
(2.11)

Here the plasma frequency ωp is used as an attempt frequency, and ∆U is the barrier

height. One can show that ∆U depends on the bias current according to
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Figure 2.5: Classical picture of escape by thermal activation. The particle oscillates

with a frequency of ωp at the bottom of the well, occasionally it can acquire energy

greater than the barrier height ∆U , and escape out of the well.
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∆U =
I0Φ0

π




√
1−

(
I

I0

)2

− I

I0

arccos(I/I0)


 (2.12)

Therefore as one increases the bias current, the barrier height ∆U decreases

and the escape rate increases exponentially. Since for our typical experimental

parameters the well is very deep for small bias currents, and gets comparable to

kBT only when the bias current is close to the critical current, we can only observe

escape near I0. Furthermore, the escape is a stochastic process that does not occur

at one fixed bias current, but spans a range of bias currents.

Kramers’ escape rate formula is not entirely accurate. Due to the very high

escape rates for particles with energies near or above ∆U , particles with high energies

no longer follow a Boltzmann distribution; there is a population depletion effect for

E > ∆U as shown by Büttiker, Harris and Landauer [76]. Including depletion, the

modified escape rate is [76]

ΓBHL = at
ωp

2π
exp

(
−∆U

kBT

)
(2.13)

where the prefactor at is given by

at =
4[√

1 + 5QkBT/9∆U + 1
]2 (2.14)

where Q = ωpRC is the quality factor. One can see that at can be smaller than 1

for a high Q system. This is because, for a high Q system, it takes a longer time to

reach equilibrium once the particles with high energies have escaped, which results

in population depletion for E > ∆U and a reduced escape rate.
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2.4 The quantum picture of a current-biased Joseph-

son junction

The above discussion of escape is essentially a classical theory. However experi-

mentalists found that escapes were observed [77, 78] even for temperatures such

that kBT << ∆U . The measured escape rates cannot be explained by the classi-

cal escape rate formula Eq. 2.13. To explain these observed phenomena requires a

quantum picture of the system.

Returning to the equation of motion for the system, i.e. Eq. 2.7, and neglecting

the damping and noise terms for the moment, we can write the following Hamiltonian

for the system,

H0 =
p2

2m
+ U(γ) (2.15)

where the effective mass m = C(Φ0/2π)2, and the washboard potential U(γ) =

−Φ0/2π(I0 cos(γ) + Ibγ), and p = −i~ ∂
∂γ

is the canonical momentum operator.

Solving Schrödinger’s equation will lead to quantized energy levels in the wash-

board potential1 (see Fig. 2.6).

The anharmonicity of the potential well leads to interesting phenomena that will

allow us to use the junction as a qubit.

For Ib near I0, for convenience we can expand the washboard potential near the

minimum potential position γ0 = arcsin(Ib/I0) to find a cubic potential,

Uc(q) =
27

4
∆U

(
q

q0

)2 (
1− q

q0

)
(2.16)

1Since the particles is trapped in one well, here we just concentrate on the energy levels in

one well. The levels outside the well are important to understand tunneling, as we will see in a

moment.
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ω01 ≈ 6 GHz
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Γ2
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γ
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Figure 2.6: Washboard potential with three energy levels inside the well. Due to

the anharmonicity of the potential, the ground state and the first excited state can

be used as qubit states |0 > and |1 >. These two states can be distinguished due

to their distinct tunneling rates (horizontal dashed arrows). The vertical arrows

denote inter-level transitions. Note the typical level spacing in our experiment is

around 6 GHz or 300 mK in terms of temperature. Thus low temperatures (∼30

mK) are required to see these levels.
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where q = γ − γ0 and

q0 =
1

2ωp

√
54∆U

m
(2.17)

This cubic potential will lead to unequal level spacings in the well. Let us label

the level spacing between the ground state and the first excited state in terms of the

corresponding transition frequency as ω01, the level spacing between the first excited

state and the second excited state as ω12, etc. Employing perturbation theory, one

can calculate these level spacings and obtain [79]

ω01
∼= ωp

(
1− 5

36
α

)
(2.18)

ω12
∼= ωp

(
1− 5

18
α

)
(2.19)

where α = ~ωp/∆U describes the depth of the well. We can see from the above

equations that the anharmonicity is large only for Ib near I0 where the well contains

only a few levels. If we use the full washboard potential, we find2

ω01
∼= ωp

(
1.00− 0.16α + 0.06α2 − 0.24α3

)
(2.20)

and

ω12
∼= ωp

(
0.995− 0.316α + 0.411α2 − 1.81α3

)
(2.21)

The unequal level spacings will allow us to address levels of interest without

making transitions to other levels. For quantum computation, we can thus choose

the ground state and the first excited state as |0 > and |1 >, and address them

using excitations with appropriate frequencies.

Due to the finite barrier height, states inside the well can transition to the

continuum outside the well through quantum tunneling. Therefore the states in the

2These formulae are found by fitting numerically calculated level spacings using the full wash-

board potential; they work well for ~ωp/∆U < 0.40.
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well are metastable. The quantum tunneling rates can be calculated using the WKB

approximation to find

Γi =
ωi

2π
exp

(
−2

~

∫ q2

q1

√
2m(Uc(q)− Ei) dq

)
(2.22)

where ωi and Ei are the attempt frequency and energy of the particle in the i -th

state, and q1 and q2 are the boundaries where Ei = Uc(q1) = Uc(q2). Given the

energy levels Ei, we can evaluate the integral in Eq. 2.22 (see Appendix A) and find

Γ0 = 12.7

(
7.2∆U

~ωp

)1/2
ω0

2π
exp

(
−7.2∆U

~ωp

)
(2.23)

Γ1 = 393.2

(
7.2∆U

~ωp

)3/2
ω1

2π
exp

(
−7.2∆U

~ωp

)
(2.24)

From the above equations, we can show for our experimental parameters that

escape happens for Ib near I0, where ∆U/~ωp is about 2 to 4. Since that the escape

rate for the first excited state is much higher than the ground state (about a factor of

500 higher for typical parameters), we can easily distinguish which state the system

is in by measuring the tunneling rate.

The quantum tunneling rates are independent of temperature. But for high

temperatures such that kBT À ~ωp, escape will be dominated by the thermal-

activation. Only when kBT ¿ ~ωp, will one observe quantum-tunneling-dominated

escape and be able to distinguish |0 > and |1 >. This condition on temperature is

also the naive condition to observe quantized energy levels in the system, although

it will turn out this is not quite right, as I will discuss in Chapter 3.

To probe the quantized energy levels and manipulate the states, one can apply

current at the appropriate frequency (typically a few GHz in our experiment) to

the system and measure the escape rate. Since |1 > has a much higher escape rate

than |0 >, if particles are excited from the ground state to the first excited state,

an enhancement of the escape rate will be observed. This technique was first used
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by Martinis, Devoret and Clarke in the mid 1980’s to demonstrate the existence of

energy levels in the system [80].

The above discussion does not include the effects of damping or noise. The pres-

ence of these will complicate the simple picture presented here. Damping will cause

particles in excited states to relax to lower states. Noise will cause the level spacings

to fluctuate and induce decoherence. In addition to these effects, more subtle effects

occur. For example, Caldeira and Leggett found the quantum tunneling rate from

the ground state in the presence of damping is given by [81]

Γ0 = aq(
ωp

2π
) exp

[
−7.2

∆U

~ωp

(
1 +

0.87

Q
+ · · ·

)]
(2.25)

where aq =
√

120π(7.2∆U/~ωp). The effect of the damping is to localize the wave

function inside the well and thus reduce the tunneling rate.

The detailed effects of damping and noise - dissipation and decoherence - will be

discussed in Chapters 3 and 4 respectively.

2.5 Escape rate measurement

As seen above, we need to measure the escape rate of the junction to distinguish the

state of the phase qubit. Since escape only occurs for bias currents near the critical

current, we need to bias our junction at a current near I0. One way to measure the

escape rate is to bias the qubit at a fixed current at time t = 0 and measure when

it escapes. One repeats this measurement for tens of thousands of times and then

calculates an average lifetime and the escape rate. The procedure can be repeated

to get escape rates for different bias currents. In this thesis, I use a current ramp

method first developed by Fulton and Dunkleberger [82] to measure the escape rate.

In the ramp current technique, the bias current is steadily ramped from zero to

a current that exceeds the critical current of the junction, and one measures when

the junction escapes with respect to the start of the ramp. This measurement is
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Figure 2.7: A typical junction switching histogram. The switching histogram is for

Nb Josephson junction sample RESJJ-Nb with a critical current of 125.28 µA and

a capacitance of 1.1 pF. The data was taken at the base temperature of the dilution

refrigerator (25 mK) and with a sawtooth bias current ramped at 200 Hz. The

y-axis is the number of counts in 100 ns bins and the x-axis is the time from the

start of the current ramp, which was at about 0.029 A/s.

repeated for tens of thousands of times and a histogram is constructed (see Fig.

2.7). From this histogram and knowing how the bias current depends on time, I can

obtain the escape rate as a function of the bias current (see Fig. 2.8).

The conversion procedure can be understood from the following rate equation,

dN(t) = −Γ(t)N(t)dt (2.26)

where N(t) denotes the particles that have survived up to time t, Γ(t) denotes the

escape rate at time t, and dN(t) is the number of particles that escape during the
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Figure 2.8: Escape rate curve found from the histogram shown in Fig. 2.7 using Eq.

2.27. Note the escape rate increases exponentially with bias current.
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time interval from t to t + dt.

Integrating Eq. 2.26 from ti to ti+1 = ti + ∆t and assuming Γ(t) is a constant

during this interval ∆t, one finds

Γ(ti) = − 1

∆t
ln

(
N(ti+1)

N(ti)

)
(2.27)

where N(ti+1) and N(ti) are the number of particles that survived up to time ti+1

and ti respectively. The N(ti) can be found from the histogram h(ti) using N(ti) =
∑∞

j=i h(tj).

Using the time-dependent functional form of the ramp Ib = f(t), one can convert

time to bias current, and thus find the escape rate as a function of bias current (see

Fig. 2.8).

2.6 Summary

In this chapter, I discussed the basic physics of Josephson junctions including the

RCSJ model, the classical dynamics of the system and the quantum picture. The

Josephson relations are the key to understanding this system, but the inclusion of

the shunt resistance and capacitance are important for a complete understanding.

The classical dynamics gives us understanding of the system in the high temperature

limit. In terms of quantum computing, we are mainly interested in the quantum

behavior. The junction can also be viewed as a tunable anharmonic oscillator. For

a qubit, we can treat the junction as a two-level system, with the ground state |0 >

and the first excited state |1 >. The level spacing between the two states can be

adjusted using the bias current, and the two states can be distinguished by their

distinct tunneling rates. Manipulation of the two states can be realized by applying

microwave current to the system. Finally, I have described the experimental method

I used to measure the escape rate.
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Chapter 3

Dissipation in a Josephson Junction

Qubit

In the RCSJ model, a shunt resistance R is used to describe dissipation. From a

broader point of view, R incorporates all dissipative interactions of the qubit with

the environment. The damping due to this shunt will cause the qubit to relax from

excited states to the ground state. In this chapter I examine how relaxation affects

the non-coherent quantum dynamics of a current-biased Josephson junction. As

shown below, analysis of the non-coherent dynamics of our system can reveal an

important aspect of the qubit, the dissipation time T1. The effect of relaxation on

coherent dynamics and other decoherence mechanisms will be dealt with in Chapter

4.

3.1 The master equation

As discussed in Chapter 2, the Hamiltonian of the qubit can be written as

H0 =
p2

2m
− Φ0

2π
[I0 cos(γ) + Ibγ] (3.1)

where the effective mass m = C(Φ0/2π)2, and p is the canonical momentum operator

−i~ ∂
∂γ

. For bias current Ib < I0, there are quantized energy states in the well, which
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can be denoted as |i >, where i = 0, 1, 2, · · · . These states are metastable since

they can transition to the continuum outside the well through quantum tunneling.

Other processes that can broaden the levels are inter-level transitions induced by

relaxation and thermal noise. Due to tunneling the populations in these metastable

states will not follow an exact Boltzmann distribution.

For low dissipation, the non-coherent dynamics of the system can be described

by a master equation [83, 84]. Larkin and Ovchinnikov [83] showed that

dρi(t)

dt
=

∑

j 6=i

[Wjiρj(t)−Wijρi(t)]− Γiρi(t) (3.2)

where i = 0, 1, 2, · · · , n, ρi is the probability of finding the particle in the i -th state

|i >, Wji is the transition rate from the j -th level to i -th level due to relaxation and

noise, and Γi is the quantum tunneling rate from the i -th level.

The measured escape rate Γ(t) is related to ρi(t) and Γi by

Γ(t) ≡ −d ln [ρ(t)]

dt
=

1

ρ(t)

∑
Γiρi(t) (3.3)

where ρ(t) =
∑

ρi(t) is the probability of finding the particle in the zero-voltage

state. Therefore the problem of calculating the total escape rate comes down to

finding ρi(t) by solving the coupled Eq. 3.2.

3.2 Inter-level transitions

To proceed, we need to identify processes that lead to inter-level transitions. Recall

that the dynamics of the junction is governed by

mγ̈ = −dU(γ)

dγ
+ Fn(t)−

(
Φ0

2π

)2
γ̇

R
(3.4)

where Fn(t) = −Φ0/2πIn(t), In(t) is the noise current from the junction with a

correlation function < In(0)In(t) >∼= 4kBTδ(t)/R, and T is the temperature of the

shunt resistance.
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Due to damping caused by the shunt R, the higher levels can relax to lower

levels by losing energy to the environment, similar to spontaneous emission in atomic

systems. I can denote the rate of spontaneous emission from the j -th level to the i -th

level by Γji, for j > i (see Fig. 3.1). These rates are related by the detailed balance

condition, as shown below. It turns out that the rates are also closely related to

1/RC, where C is the junction capacitance.

In addition to relaxation, there are two other processes that can also induce inter-

level transitions: thermal noise, which acts as a random force Fn(t), and applied

excitations (microwaves).

3.2.1 Noise-induced inter-level transitions

Here we consider the low damping limit, i.e. Q = ωpRC À 1. In this limit, the

damping term and the noise term can be treated as perturbations to the canoni-

cal Hamiltonian H0. I denote the perturbation term associated with the noise by

Hn = −Φ0In(t)γ/2π. I then use time-dependent first order perturbation theory to

calculate W t
ij, the thermal noise-current induced transition rate (transition proba-

bility per unit time) from |i > to |j >. As shown in Appendix B, I find

W t
ij =

∆E

2Re2

| < i|γ|j > |2
exp (∆E/kBT )− 1

(3.5)

where ∆E = |Ei − Ej| is the level spacing between the i -th and j -th level, and

< i|γ|j > is the matrix element of γ between the i -th and j -th level.

From Eq. 3.5, we see the transition rate from |j > to |i > is equal to that from

|i > to |j >, i.e.

W t
ij = W t

ji (3.6)

This means thermal noise tends to equalize the populations among different

levels. However, due to the spontaneous relaxation with rate Γji, where j > i, the
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Thermal noise-induced rates Wij
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Relaxation rates Γij

Tunneling rates  Γi

Figure 3.1: Quantum dynamics inside the washboard potential. The downward ar-

rows indicate spontaneous relaxation processes with rates Γij, the horizontal arrows

denote quantum tunneling processes with rates Γi. The vertical bi-directional ar-

rows represent transitions due to thermal noise with rates W t
ij. Not shown here are

inter-level transitions due to applied microwaves with rates Wm
ij .
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net result of these two processes is a Boltzmann distribution among the levels. If

we impose the detailed balance condition on the rates, we can find the spontaneous

relaxation rates Γji. For j > i, the detailed balance condition implies

W t
ij exp (∆E/kBT ) = W t

ji + Γji (3.7)

or,

Γji = W t
ij [exp (∆E/kBT )− 1] (3.8)

From Eq. 3.8, we can calculate the spontaneous rates if we know the noise-induce

transition rates. The levels deep inside the well are very harmonic, therefore we have

| < i|γ|i + 1 > |2 =
∣∣∣< i|

√
~/2mω(a + a†)|i + 1 >

∣∣∣
2

= 2e2(i + 1)/C∆E, and

Γji =
j

RC
, for j = i + 1 (3.9)

Therefore the spontaneous rate from |1 > to |0 > is 1/RC, which is just what

one expects from classical theory. However, the relaxation rate from a higher level

increases with occupation number. In the literature, people often use the dissipation

time T1 to quantify this relaxation process, and then the relaxation rate is just 1/T1.

As far as the qubit states |0 > and |1 > are concerned, we thus have T1 ≈ RC.

For levels near the barrier top that are anharmonic, the matrix elements must

be calculated from their wave functions before the relaxation rates can be found. In

addition, transitions can happen not only between nearest neighbor levels, but also

between any two levels due to the large anharmonicity.

3.2.2 Microwave-induced inter-level transitions

In order to observe energy levels, we can apply microwaves to drive transitions from

lower levels to higher levels, where the tunneling rate is much higher.

To proceed, let us denote the microwave current by I1 cos(ω1t), where I1 and

ω1 are the microwave amplitude and angular frequency, respectively. For small
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microwave power, we can use first order perturbation theory to calculate the rates

due to the perturbation Hµ = −I1Φ0γ/2π and find1

Wm
ij = Wm

ji =
I2
1

16e2
| < i|γ|j > |2 Xij

(ω1 −∆E/~)2 + X2
ij/4

(3.10)

where Xij is the uncertainty in the level spacing ∆E due to the width of the levels

involved in the transition, and is given by

Xij =
∑

k 6=i

W t
ik +

∑

k 6=j

W t
jk +

∑

k<i

Γik +
∑

k<j

Γjk + Γi + Γj (3.11)

From Eq. 3.10, we see the microwave-induced transition rate is proportional to

the microwave power (proportional to I2
1 ). For harmonic levels, microwaves can only

induce transitions between nearest levels, i.e., from i to j = i + 1, we then have

Wm
ij = Wm

ji =
Pm

4RC∆E

Xij

(ω1 −∆E/~)2 + X2
ij/4

(3.12)

where Pm = I2
1R/2 is the microwave power. In particular, when the microwave

frequency is in resonance with the level spacing, i.e. ω1 = ∆E/~, the temperature is

low and tunneling is negligible, the microwave-induced transition rate between |0 >

and |1 > is

W01 = W10 =
1

RC

Pm

∆E/RC
(3.13)

The term ∆E/RC can be interpreted as the power at which particles in excited

states lose energy by relaxation. Therefore the microwave-induced transition rate is

proportional to the ratio of the pumping power to the power lost by spontaneous

relaxation.

1This formula can also be derived from study of the coherent dynamics of the system using the

Bloch equation as discussed in Chapter 4.
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3.3 Energy levels and tunneling rates

In order to solve Eq. 3.2, we need to know the energy levels, wave functions and

tunneling rates.

3.3.1 Hard-wall boundary condition

Although the levels are metastable, the tunneling rates are small compared to the

level spacing unless the levels are very close to the barrier top. For levels deep

inside the well, we define the two points γ1 and γ2 as the points where the potential

has adjacent local maxima (see Fig. 3.2). We then use a finite difference method

to solve the time-independent Schrödinger equation and find the eigen-values and

eigen-vectors of an N × N matrix, where N is the size of the coordinate grid. N

was chosen such that the discrepancy between the numeric solution and that from

the Bohr-Sommerfeld quantization rule is less than 0.1% (typically N ≈ 1000). For

bias current not close to I0 this allows us to avoid errors introduced if one used a

cubic approximation [84, 85].

Tunneling rates from deep levels can then be approximated by the WKB formula

Γi =
ωi

2π
exp

(
−2

~

∫ q2

q1

√
2m(Uc(q)− Ei) dq

)
(3.14)

where ωi and Ei are the attempt frequency and energy of the particle in the i -

th state, and q1 and q2 are the boundaries where Ei = Uc(q1) = Uc(q2). Using

the energy Ei obtained from solving the Schrödinger equation, we can evaluate the

integral in Eq. 3.14 to find the tunneling rate. Since we are only interested in the

low damping limit, the effect of dissipation on the tunneling rates is negligible.

For levels near the top of the barrier, the above boundary conditions for the

Schrödinger equation no longer hold and Eq. 3.14 becomes invalid for finding tun-

neling rates. However, the energies of these levels, and tunneling rates from them,

can still be found by generalizing the Bohr-Sommerfeld quantization rule, as shown
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Figure 3.2: The hard-wall boundary condition. The local maxima (separated by 2π

in γ) are chosen to be the boundaries. The hard-wall boundary condition, Ψ(γ1) =

Ψ(γ2) = 0 can be used to solve for the eigen-states deep inside the well.
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by Kopietz and Chakravarty [85].

3.3.2 Transmission boundary condition

Although one can use the methods given by Kopietz and Chakravarty [85] to find

the energies and tunneling rates, this technique does not yield the wave functions

for the states. In order to find the wave functions of these states and also check how

good are the hard-wall boundary conditions and the WKB method for finding the

energies and tunneling rates of the deep levels, I used the transmission boundary

condition method [86].

The basic idea is to allow wave functions to leak out of the right-side of the well

since the barrier height is not that large compared to the energies of the states,

especially for states near the barrier top. With this boundary condition, one does

not use the local maxima of the potential as the two boundaries. Instead one just

needs to picks up two points where the change in potential is much smaller than the

difference between the potential and the expected energy. Let γ1 and γ2 denote the

left and right boundaries, we impose the following boundary conditions

Ψ0 = exp(−λ δγ)Ψ1 (3.15)

ΨN+1 = exp(ik δγ)ΨN (3.16)

where Ψ1 and ΨN are the values of the wave function at the two boundaries, and Ψ0

and ΨN+1 are the values of the wave function just one step outside the boundary,

δγ is the step size of the grid, k and λ are wave vectors for the right boundary and

left boundary. The wavevectors are given by

λ =
√

2m(U(γ1)− E)/~ (3.17)
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k =
√

2m(E − U(γN))/~ (3.18)

Using Eqs. 3.15 and 3.16 and the Schrödinger equation on a finite-grid, one finds

an N × N tri-diagonal matrix. The eigenvalues of the matrix correspond to the

energies of the levels. Because both λ and k are energy-dependent, searching for the

eigenvalues can only be done by iteration. I usually start with the energies found

using the hard-wall boundary condition. After a few iterations with the transmission

boundary condition, the eigenvalue picks up an imaginary part that corresponds to

the tunneling rate from this state. Then the eigenvalue for the eigenstate |i > can

be written as

< i|H0|i >= Ei − i~Γi/2 (3.19)

where Ei is the real part denoting the energy of the state, and Γi denotes the

tunneling rate.

The eigenvalues found using this method agree with other well-established meth-

ods [87]. For the levels deep inside the well, I found the hard-wall boundary condition

and the WKB method give results that are within 2% of this method. For the levels

above the barrier, the convergence of the transmission boundary condition method is

slow as there are really no well-defined levels but rather a density of states. However

our calculations suggest that there is always one broad but relatively well-defined

level just above the barrier. I therefore treat the continuum as one broad level with

a large spread, the level |n > in Eq. 3.2 refers to this broad level (there are n levels

inside the well, labeled as |0 >, |1 >, · · · , |n− 1 >).

3.4 Escape rate at finite temperature

Once the various rates are known, I can now try to solve Eq. 3.2. Here I limit my

discussion to the case of no applied microwaves.

47



In general, the potential well, the energy levels and the wave functions change

with time (as a result of the bias current ramp). As seen above, the dependence

of inter-level transition rates and tunneling rates on the bias current is rather com-

plicated. As a result, Eq. 3.2 cannot be solved analytically. However under the

stationary condition, one can write down the expression for the total escape rate in

closed form.

3.4.1 Stationary condition

If the ramp is slow enough to reach a stationary condition (as discussed below), then

Eq. 3.2 can be solved in a simple way. Due to tunneling, the sum of the populations

in all the levels decreases with time, but the total escape rate only depends on

the relative ratio of these populations ρi(t). Since the population does not follow

a Boltzmann distribution (due to tunneling), the ratio of these populations will

change as the tunneling rates change (as a result of the bias current ramp). I note

that the escape rate increases exponentially with bias current, so that for a linear

bias current ramp, I can write for the tunneling rates,

Γi(t) = Γi(0) exp(−αt) (3.20)

where α = −d ln Γi

dt
is a quantity characterizing the ramp speed.

As the tunneling rates increase, the higher levels get more and more depopulated,

which means ρi/ρ0 is decreasing for i > 0. If the ramp is slow so that

α ¿ 1

RC
(3.21)

then the system always has enough time to establish an equilibrium state with time-

independent relative ratios of the populations. In other words, a stationary condition

can be reached where ρi(t)/ρ0(t) is a constant. Then when the bias current changes

slowly to a new value, new equilibrium states will be subsequently established.
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Under this stationary condition, for any bias current, we then have

d

dt

(
ρi(t)

ρ(t)

)
= 0 (3.22)

Using the above equation, one can then rewrite Eq. 3.2 as

∑

j 6=i

(Wjiρj(t)−Wijρi(t)) + (Γ− Γi)ρi(t) = 0 (3.23)

and Γ =
∑

Γiρi(t)/ρ(t) is the total escape rate.

In general, it is still not easy to solve Eq. 3.23. However for temperatures not too

high, we will have Γ ¿ Γi for i > 0 (which is fulfilled in almost all our experiments).

Thus for i > 0, we can ignore Γ in Eq. 3.23 and get

∑

j 6=i

(Wjiρj(t)−Wijρi(t))− Γiρi(t) = 0 (3.24)

where i = 1, 2, · · · , n. This equation can be easily solved to obtain the ratios of

populations, i.e. ρi/ρ0 and the total escape rate is then given by

Γ =
Γ0 +

∑n
i=1 Γiρi/ρ0

1 +
∑n

i=1 ρi/ρ0

(3.25)

The above equation can then be used to calculate how the escape rate depends on

bias current. Notice the above equation is applicable for any temperature provided

ρi/ρ0 ¿ 1 for i > 0. In contrast, the Caldeira-Leggett formula Eq. 2.25 only applies

for tunneling from the ground state, and the classical escape rate formula Eq. 2.13

can only be used when kBT À ~ωp.

3.4.2 Population depletion in higher levels

For simplicity, here we just assume there are just two levels, |0 > and |1 > 2. Using

Eq. 3.24, we can find the ratio of ρ1 to ρ0,

2This analysis can be readily generalized to the case of many levels.
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ρ1

ρ0

=
W01

W10 + Γ1

(3.26)

The total escape rate is then given by

Γ =
ρ0Γ0 + ρ1Γ1

ρ0 + ρ1

= Γ0
W10 + Γ1

W01 + W10 + Γ1

+ Γ1
W01

W01 + W10 + Γ1

(3.27)

where W01 and W10 are the inter-level transition rates, given by

W01 =
1

T1

1

exp(∆E/kBT )− 1
(3.28)

W10 =
1

T1

exp(∆E/kBT )

exp(∆E/kBT )− 1
(3.29)

where ∆E is the |0 > to |1 > level spacing.

From Eq. 3.27, we see that the total escape rate is a weighted sum of the tun-

neling rates from the ground state and the first excited state. The total escape rate

calculated using Eq. 3.27 for temperatures of 25 mK and 90 mK for the parameters

of sample LCJJ-Nb2 (see Chapter 7) are plotted in Fig. 3.3.

In the low-temperature limit, the relative weight for the ground state is almost 1

since W01 ¿ W10, but the relative weight for the first excited state depends on how

Γ1 compares to W10. For small bias currents, Γ1 ¿ W10, and thus the relative weight

for the |1 > state is just the Boltzmann factor exp(−∆E/kBT )/(exp(−∆E/kBT )+

1). This means the total escape rate is always larger than Γ0 and the total escape

rate curve is essentially parallel to the one for Γ0.

However, as Ib increases, Γ1 increases until it is comparable to and then larger

than W10. At this bias, the relative weight for the |1 > state will decrease and can

be significantly smaller than the Boltzmann factor. This causes the total escape rate

to increase more slowly than at small bias currents. Finally for high bias currents

where Γ1 >> W10, the relative weight for the |1 > state goes to zero, and the total

escape rate just collapses to Γ0, as seen in Fig. 3.3. Intuitively one can understand
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Figure 3.3: Theoretically predicted escape rates (solid lines) for the parameters of

sample LCJJ-Nb2 (see Chapter 7) for a slow ramp. Squares and triangles are data

taken on sample LCJJ-Nb2 at 25 mk and 90 mK, respectively. The ramp rate is

dI/dt =0.7 A/s and α = 7.5× 107/s.
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this collapse as due to population depletion in the first excited state as a result of

its high tunneling rate.

The place where collapse happens is marked by the condition Γ1 ≈ W10, and the

total escape rate at this point is

Γ = Γ0 +
W01

2
≈ W01

2
(3.30)

Therefore from the total escape rate at the collapse point, we can directly read W01

and if ∆E/kBT is known, we can obtain the relaxation time T1 using Eq. 3.28.

3.4.3 Fast ramp

So far my discussion has been limited to the stationary case, where the condition

α =
∣∣∂ ln Γ

∂t

∣∣ ¿ 1/T1 is satisfied. Interesting phenomena occur as one increases the

ramp rate.

The dynamics of this system under fast ramp conditions was first studied by

Silvestrini, Ovchinnikov and Cristiano [88] using the master equation 3.2. They

found the escape rate curve starts to oscillate when the ramp rate gets very high

and the temperature is high (∼1 K). Fig. 3.4 shows a calculation I did in this limit

using Eq. 3.2. Silvestrini and his coworkers [88] argued that these oscillations were

essentially manifestations of the quantized energy levels in the well. Remarkably,

this kind of oscillations was observed in later experiments that were carried out with

high ramp rates [89, 90] at temperatures as high as 1K.

As the bias current increases, the highest level approaches the barrier top and

its tunneling rate increases rapidly. Since the ramp rate is very fast, relaxation will

not be fast enough to reduce the population in this level to the stationary value.

The net effect is that the contribution to escape rate from the highest level is the

tunneling rate weighted by a Boltzmann factor. This results in a rapid increase of

the total escape rate. However, eventually the population in this level gets depleted
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Figure 3.4: Calculated escape rates for a junction with I0 = 13.335 µA and C =

4.378 pF at 500 mK for a fast current ramp. (a) R = 10 kΩ, (b) R = 300 kΩ. Solid

lines correspond to a ramp with dIb/dt = 7 A/s (α = 1.6 × 108/s), dashed lines

correspond to dIb/dt = 0.7 A/s (α = 1.6 × 107/s), and dotted lines correspond to

dIb/dt = 0.07 A/s (α = 1.6× 106/s).
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due to tunneling, so the total escape rate starts to decrease. The next cycle will

begin as the next level below the barrier top approaches the barrier top. The result

is an oscillation in escape rate, which can be viewed as evidence for quantized energy

levels. Since this effect is related to the relaxation process, the relaxation time T1

can be obtained from fitting the measured escape rate curve. Note that in order to

see the oscillations, high temperatures are also required in order to have some finite

populations in upper levels.

Both this effect and the population-depletion effect are the consequence of two

competing processes, the relaxation process and the tunneling process. However,

the two phenomena are distinct. The oscillations occur because the relaxation rate

(∼ 1/RC) is smaller than the rate of change of the tunneling rates (α = d ln Γi/dt).

But the population-depletion effect is a result of the relaxation rate being smaller

than the tunneling rate. Therefore population depletion can be observed under

a stationary condition with a temperature that is about half of the level spacing,

while the oscillations in the escape rate curve can only be observed under fast ramp

conditions and the temperature can be higher than the level spacing. Although a fast

ramp current can be easily applied to the junction, calibration of the ramp function is

not easy due to delays and distortion of the ramp waveform by the bias lines. From

the experimental point of view it is much easier to perform population-depletion

experiments under slow ramps, provided we can reach low enough temperatures.

3.5 Resonant activation

There are other ways to manifest the existence of the quantized levels in the well

even at high temperatures. The key concept is to create non-stationary conditions,

which can be achieved not only by a fast ramp [89], but also by resonant activation

[80] or a fast change in the bias current [69].

For example, when we apply microwaves to the system, we have additional

54



microwave-induced inter-level transition rates as given by Eq. 3.10. Therefore the

total inter-level transition rates are given by

Wij = W t
ij + Γij + Wm

ij (3.31)

Wji = W t
ji + Wm

ji (3.32)

where we have assumed i > j.

Let us first assume zero temperature for the system. Then the total escape rate

without microwaves applied is just Γ0. When microwaves with a fixed frequency ω1

are applied to the system, since the bias current will change the potential of the

qubit, we then expect that at some bias current where the |0 > to |1 > level spacing

∆E is close to ~ω1. The population in the ground state will then be driven to the

first excited state, and we expect an increase in the escape rate. This technique

was first used Martinis et al. to demonstrate the existence of energy levels in single

junctions [80].

3.5.1 T1 measurement

If we assume that only the lowest two levels are relevant, and furthermore Wm
01 ¿

Γ10,
3 one finds that the escape rate with applied microwaves is4

Γm =
Wm

01

Γ10 + Γ1

Γ1 + Γ0 (3.33)

Recall that the rate due to microwaves is given by

Wm
01 =

Pm

4RC∆E

X01

(ω1 −∆E/~)2 + X2
01/4

(3.34)

3This is the low microwave power limit; most of our experiments are in this limit.

4In typical resonant activation experiments, the bias current is ramped slowly, so the stationary

solution of the master equation can be used.
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where Pm = I2
1R/2 is the microwave power, ω1 is the microwave frequency, and

X01 = Γ10 + Γ0 + Γ1 is the uncertainty in the level spacing ∆E due to the life times

of the states. Substituting Eq. 3.34 into Eq. 3.33, and assuming Γ1 ¿ Γ10, we find

Γm =
PmΓ10/4∆E

(ω1 −∆E/~)2 + Γ2
10/4

Γ1 + Γ0 (3.35)

From Eq. 3.35, we can see the escape rate with microwaves applied will display

resonance peaks when the microwave frequency ω1 matches the level spacing. We can

include more levels in our calculations, which results in multiple resonance peaks as

the microwave frequency matches the level spacings between |2 > and |3 >, between

|1 > and |2 >, and between |0 > and |1 > (see Fig. 3.5). We note that the higher

level transitions will be observed only if the temperature is high enough to populate

the lower of the two levels involved in the transition.

It is often useful to introduce the relative difference between the escape rate

with microwave (Γm) and the escape rate without microwave (Γ). I can define the

enhancement ∆ as

∆ =
Γm − Γ

Γ
(3.36)

For the above two-level analysis at T = 0, we have

∆ =
PmΓ10/4∆E

(ω1 −∆E/~)2 + Γ2
10/4

Γ1

Γ0

(3.37)

We see that the response of the system to an external microwave drive is a Lorentzian

with a full width at half maximum (FWHM) of Γ10, the relaxation rate. If this

enhancement in escape rate due to microwaves is measured, one can readily extract

the relaxation time T1 from the resonance width. However, this analysis does not

include the effect of current noise, which can cause additional broadening.

Higher-order resonances have corresponding wider widths, since the relaxation

rate are proportional to the occupancy number of the state. Thus, the FWHM of
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Figure 3.5: Calculated escape rates for junction with I0 = 13.335 µA, R = 10 kΩ,

and C = 4.378 pF at 250 mK with a slow ramp. Solid line is for no microwave,

dashed line for 5.5 GHz microwaves with an amplitude of I1 = 0.5 nA.
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the |i >→ |i + 1 > transition is 2i + 1 times larger than the |0 >→ |1 > transition.

By comparing the widths of different transitions, one can check this simple scaling

and determine if additional smearing is present.

3.5.2 Resonance broadening at finite temperatures

At finite temperatures, the widths of transitions will be broadened compared to the

widths at zero-temperatures due to noise-induced inter-level transitions.

If we calculate the enhancement at finite temperatures, we will find the resonance

shape of the |i >→ |i + 1 > transition is still Lorentzian with the FWHM to be

Xi,i+1. If we ignore the broadening due to tunneling rates5, we find

Xi,i+1 = W t
i,i−1 + 2W t

i+1,i + W t
i+1,i+2 + Γi,i−1 + Γi+1,i (3.38)

Using the relation between the relaxation rates and the rates due to thermal noise,

we have

Xi,i+1 =
1

T1

[
coth

(
∆E

2kBT

)
− 1

]
+ Xi,i+1(T = 0) coth

(
∆E

2kBT

)
(3.39)

where Xi,i+1(T = 0) = (2i + 1)/(T1) is the FWHM of the resonance at zero temper-

ature. In particular for the |0 >→ |1 > transition, the width at a finite temperature

is related to the zero-temperature width 1/T1 by

X01 =
1

T1

[
2 coth

(
∆E

2kBT

)
− 1

]
(3.40)

Figure 3.6 shows calculations of enhancement at finite temperatures for a Joseph-

son junction with a critical current of 13.335 µA and capacitance of 4.378 pF at

temperatures of 25 mK, 250 mK and 2.5 K. Enhancements for two shunt resistances

of 300 Ω and 10 kΩ at 25 mK are shown in Fig. 3.6 (a). One can clearly see that

5|i >→ |i + 1 > resonance broadening due to tunneling will be significant for transitions

occurring in shallow wells where the |i + 1 > state has a large tunneling rate.
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the |0 >→ |1 > resonance peak for 10 kΩ (solid line) is much sharper than that

for 300 Ω (dashed line). There are no higher order resonance peaks due to the low

population in excited levels. At 250 mK, which is near the level spacing in this junc-

tion, more resonance peaks show up for 10 kΩ and 300 kΩ [see Fig. 3.6(b)]. Only

one broad classical resonance peak is predicted for 300 Ω. At 2.5 K, well-resolved

resonance peaks are predicted only for 300 kΩ [see Fig. 3.6(c)], and the widths are

larger than those at 250 mK. This suggests that quantized energy levels can be

observed at temperatures much higher than the level spacing when the system is

under microwave irradiation and the shunt resistance is high enough. This behavior

is consistent with the experiments in the fast ramp regime since both fast ramp and

microwave pumping create a non-stationary distribution of the populations. How-

ever, to our knowledge, no one has yet observed such microwave resonances at such

high temperatures.

From Fig. 3.6, we see that the width of a resonance peak increases as temperature

increases, and decreases as the shunt resistance increases. This is consistent with

our analysis of the resonance width. From the dependence of the width on temper-

ature and the shunt resistance, we find that the cutoff temperature where the effect

of energy level quantization is still observable scales as the zero temperature relax-

ation time T1 of the system [91]. For ongoing experiments in quantum computing,

this result provides another way to test if a system has a large relaxation time by

demonstration of energy level quantization at temperatures much larger than the

level spacing. For Josephson junction qubits with level spacings typically on the

order of 10 GHz, this implies that energy level quantization should be observable at

temperatures as high as 4 K if the dissipation time of the system is more than 1µs.

59



Figure 3.6: Calculated enhancement (relative difference of two escape rates with

and without microwaves) for junction with I0 = 13.335 µA and C = 4.378 pF when

5.5 GHz microwaves applied. (a) T = 25 mK, solid line for R = 10 kΩ , dashed

line for R = 300 Ω. (b) T = 250 mK, solid line for R = 300 kΩ, dashed line for

R = 10 kΩ, dotted line for R = 300 Ω. (c) T = 2.5 K, solid line for R = 300 kΩ,

dashed line for R = 10 kΩ.
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3.6 Summary

In this chapter, I described the master equation and applied it to study the non-

coherent quantum dynamics of a current-biased Josephson junction qubit. I exam-

ined the mechanisms for various inter-level transitions and described briefly numer-

ical methods to calculate these transition rates. Finally, I described three methods

that can be used in principle to measure the dissipation time T1 of our qubit: the

population-depletion method with a slow ramp, the fast ramp method at high tem-

peratures, and the resonant activation method. The prediction of the observability

of energy level quantization at high temperatures for an extremely low-damped qubit

provides a clear way to test whether the qubit has a long dissipation time, provided

additional broadening due to current noise (as discussed in Chapter 4 is not present

.
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Chapter 4

Decoherence in a Josephson Junction

Qubit

Dissipation causes a qubit to relax from the excited state to the ground state by

losing energy. This process is characterized by the time T1. However, relaxation can

also disturb the phase evolution when the qubit state oscillates between the ground

state and an excited state in the presence of an external microwave drive. This

distinct effect is called decoherence. In addition to dissipation-induced decoherence,

other non-dissipative sources, such as noise, can also induce decoherence. In fact,

in certain limits noise can dominate decoherence. In this chapter, I use the density

matrix to study decoherence due to both dissipation and noise.

4.1 The RCSJ model revisited

In Chapter 3, I used the resistively capacitively shunted junction (RCSJ) model to

describe the dynamics of a junction qubit. However, at microwave frequencies, the

impedance of the bias leads may not be a pure resistance. Furthermore, the low-

frequency (a few MHz to a few hundred MHz) electromagnetic environment can also

have an important effect on the behavior of the qubit. To capture this structure,

I use a complex admittance shunted junction model (see Fig. 4.1) to replace the
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RCSJ model.

The complex admittance Y (ω) can represent an arbitrary dissipative environ-

ment, in contrast to the ohmic environment of the RCSJ model. The complex

admittance can be due to the bias leads and any additional circuits that are on the

bias leads. For example, a resonant inductor-capacitor (LC) network (see Fig. 4.2)

used to isolate the junction can produce a resonant structure in the electromagnetic

environment.

Although exact expressions for the dynamics of a current-biased Josephson junc-

tion linearly coupled to such an arbitrary dissipative environment can be written

[92, 93], the calculations are complicated, making them difficult to compare with

data. However, many effects due to Y (ω) can be captured by a spectral function

SJ(ω) [92, 94], which for our system is just the zero-temperature noise power spectral

density of the bias current

SJ(ω) = 2~ωRe[Y (ω)] (4.1)

At finite temperature T , the power spectral density of the thermal noise in the bias

current is [95, 96]

SI(ω/2π) =
2SJ(ω)

exp(~ω/kBT )− 1
(4.2)

Figure 4.3 shows two idealized examples of how SI(ω/2π) could behave; the

dashed line is for an ohmic load of 1.5kΩ at 150 mK, and the solid line for an LC

isolation network at 150 mK (see Fig. 4.2, Li = 20nH and Ci = 1nF).

For high frequency noise such that the bandwidth fc of the noise1 is much larger

than 1/T1 and 1/T2, where T2 is the phase coherence time of the system, then the

1The cutoff frequency for an LC isolation circuit is roughly 1/2π
√

LiCi. For an ohmic envi-

ronment, the cutoff frequency is set by the temperature of the load as a result of the Boltzmann

factor.
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CJ

Ib+ I1cos(ωωωω1t)

Y(ωωωω)

Figure 4.1: Complex impedance shunted Josephson junction model.
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Figure 4.2: Schematic of an LC-isolated Josephson junction.
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Figure 4.3: Two idealized examples of the thermal noise spectral density. The

positions of the relaxation rate 1/T1(2π × 23 MHz), the dephasing rate 1/T2(2π ×
180 MHz), and the typical oscillation frequency (2π × 9.8 GHz) of the system are

indicated by the arrows. The dashed line is for an Ohmic load of 1.5 kΩ at 150

mK indicating most of the spectrum is in the frequency range above 1/T1 and 1/T2.

The solid line is for an LC isolation network at 150 mK, Li= 20 nH and Ci = 1 nF

assumed. The spectrum has a significant weight below 1/T1 and 1/T2.
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dynamics can be described by a master equation for the reduced density matrix [24].

Using this approach, several groups have modeled decoherence in superconducting

qubits [97, 98]. While these methods may be valid for high frequency noise (such as

an ohmic environment), they are inadequate if there is significant noise at frequencies

below 1/T1 (such as for an LC isolation network), and further analysis of the density

matrix is required.

4.2 The harmonic oscillator bath model

To study the effect of an arbitrary dissipative environment on the coherent dynamics

of the system, I use the density matrix approach.

The density operator ρ̂ of the total system obeys:

i~ ˙̂ρ = [Ĥtot, ρ̂] (4.3)

where Ĥtot is the Hamiltonian of the qubit and the environment,

Ĥtot = Ĥ0 + ĤB + ĤC (4.4)

where ĤB and ĤC are the bath and coupling Hamiltonians respectively, and Ĥ0 is

the Hamiltonian of the isolated junction given by,

Ĥ0 =
p̂2

2m
− Φ0

2π
[I0 cos(γ̂) + Ibγ̂ + I1 cos(ω1t)γ̂] (4.5)

where I1 and ω1 are the microwave amplitude and angular frequency respectively.

4.2.1 Caldeira-Leggett model

Assuming a harmonic oscillator bath and bilinear coupling [81, 93] as first proposed

by Caldeira and Leggett, then ĤB and ĤC can be written as [81]
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ĤB =
N∑

i=1

(
p̂2

i

2mi

+
1

2
miω

2
i x̂

2
i

)
(4.6)

ĤC = −γ̂

N∑
i=1

cix̂i +
N∑

i=1

ci
c2
i γ̂

2

2miω2
i

(4.7)

where x̂i and p̂i are the generalized coordinate and momentum operators of the i-th

oscillator in the bath with mass of mi, frequency of ωi, and coupling coefficient ci .

Tracing both sides of Eq. 4.3 over the bath coordinates, the equation of motion

for the reduced density operator of the qubit becomes (see Appendix C):

∂ρ̂S

∂t
=

1

i~
[Ĥ0 + Ĥn, ρ̂S] + D(ρ̂S) (4.8)

where Ĥn = −Φ0In(t)γ̂/2π, In(t) is the current noise flowing through the junction

and D(ρ̂S) is a memory damping term. Y (ω) is related to mi, ωi, and ci. As shown

in Ref. [99]:

Y (ω) =
2π3

Φ2
0

N∑
i=1

c2
i

miωi

δ(ω − ωi) (4.9)

The power spectral density of the current noise is solely determined by Y (ω) and can

now be linked to the model parameters. Due to the current noise the Hamiltonian

of the qubit is stochastic.

4.2.2 The stochastic Bloch equation

In order to solve Eq. 4.8, we choose a basis for the density operator. Since the

potential of the qubit can be described by a tilted washboard and the phase qubit

states are localized in one of the wells, we choose the lowest three metastable states

in a well as our basis2. However, Ĥ0 includes the microwave pumping term and this

2Here the basis is not the complete Hilbert space, but the computation subspace of the Hamilto-

nian. The logical qubit states are the two lowest metastable states, but the 3rd state is important

for measurement and gate operations.
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makes it inconvenient to find the states of the system. We then rewrite Eq. 4.5 as

Ĥ0 = Ĥb + Ĥµ (4.10)

where Ĥb = p̂2

2m
− Φ0

2π
[I0 cos(γ̂) + Ibγ̂] denotes the ’base’ Hamiltonian, and Ĥµ =

−Φ0

2π
I1 cos(ω1t)γ̂ denotes the microwave pumping term. Let |i > (i = 0, 1, 2) denote

the three metastable states associated with the ’base’ Hamiltonian Ĥ0. Equation

4.8 then reads in matrix form,

∂ρij

∂t
=

1

i~
∑

k

(Hikρkj − ρikH
∗
jk) + Dij (4.11)

where ρij =< i|ρ̂S|j >, Hij =< i|Ĥ0 + Ĥn|j >, and Dij =< i|D(ρ̂S)|j > takes

relaxation into account.

It is rather difficult to evaluate Dij in this form because, in the presence of

low frequency current noise, the metastable states of the system are constantly

changing. Also, damping that occurs on a much faster time-scale will tend to relax

the system to the resulting time-dependent states. To take into account the effects

of low frequency noise, I choose to work in a time-dependent basis formed by the

metastable states |i′ > of Ĥ0 + Ĥn. I consider only the limit of weak damping

such that both 1/T1 and 1/T2 are much less than the characteristic frequency of the

system. In this limit, one can show [84]

D′
j′j′ =

∑

i′>j′
Γi′j′ρ

′
i′i′ −

∑

k′<j′
Γj′k′ρ

′
j′j′ (4.12)

and

D′
i′j′ = −Γi′j′

2
ρ′i′j′ , i′ > j′ (4.13)

Here D′
i′j′ =< i′|D(ρ̂S)|j′ >, ρ′i′j′ =< i′|ρ̂S|j′ >, and Γi′j′ is the relaxation rate from

|i′ > to |j′ > as introduced in Chapter 3. We now need to express the first part of

Eq. 4.11 in the basis formed by the metastable states |i′ > of Ĥ0 + Ĥn. To do so, we
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use the unitary transformation ρ′i′j′ =
∑

i

∑
j Ni′iρijN

∗
j′j where Ni′i =< i′|i > and

ρij =< i|ρ̂S|j >. I find the following equation of motion for the density matrix ρ′i′j′

∂ρ′i′j′
∂t

=
1

i~
∑

k′

[
(H ′

i′k′ + HN
i′k′)ρ

′
k′j′ − ρ′i′k′(H

′
j′k′ + HN

j′k′)
∗] + D′

i′j′ (4.14)

where

H ′
i′j′ =< i′|Ĥb + Ĥn|j′ > + < i′|Ĥµ|j′ > (4.15)

HN
i′j′ = i~

∑

k

Ṅi′kN
∗
j′k (4.16)

Finally, I need to take into account tunneling from the metastable states to the

finite-voltage (running) states. As discussed in Chapter 3, < i′|Ĥb + Ĥn|j′ > has

the form,

< i′|Ĥb + Ĥn|j′ >=

(
E ′

i′ −
i~
2

Γi′

)
δi′j′ (4.17)

where E ′
i′ denotes the energy of the state |i′ > and Γi′ represents the tunneling rate

from the metastable state. Substituting Eq. 4.17 into Eq. 4.14, I obtain an equation

for the reduced density matrix in the time-dependent basis formed by |i′ > [99]:

∂ρ′i′j′
∂t

=
1

i~
∑

k′

[
(Hµ

i′k′ + HN
i′k′)ρ

′
k′j′ − ρ′i′k′(H

µ
j′k′ + HN

j′k′)
∗]

+
E ′

i′ − E ′
j′

i~
ρ′i′j′ −

Γi′ + Γj′

2
ρ′i′j′ (4.18)

After a two-level approximation, the equation resembles the optical Bloch equation

except for the tunneling and noise terms. To preserve this distinction, we will call

Eq. 4.18 the ”stochastic Bloch equation”.

The stochastic Bloch equation is expressed in terms of the time-dependent metastable

states of a current-biased Josephson junction. It can be used to analyze junction
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behavior under realistic conditions where low frequency noise, dissipation due to

bias leads, and tunneling are the significant mechanisms of decoherence. Once I

solve Eq. 4.18, I can compute the total escape rate Γ a function of bias current Ib

Γ =

〈∑
i′ Γi′ρ

′
i′i′∑

i′ ρ
′
i′i′

〉
(4.19)

Here ρ′i′i′ denote the probability of finding the qubit in |i′ >, and the bracket 〈〉
denotes a time average. Since most microwave spectroscopy experiments are done

under slow ramp conditions, I can take the average over an infinite time interval.

I can calculate the density matrix ρ′ for no microwave power (I1 = 0) and small

applied microwave power I1 6= 0, then find the escape rates under both conditions

using Eq. 4.19. To compare with experimental data, we can compute the enhance-

ment of escape rate

∆ =
Γ(I1 6= 0)− Γ(I1 = 0)

Γ(I1 = 0)
(4.20)

For simplicity from this point on, I drop the prime on the state indices as all the

states are in the time-dependent basis.

4.3 Decoherence due to noise

For most of my work, I used spectroscopy to characterize decoherence in the system

by looking at the resonance width. Although one can look at the behavior of the

system in the time domain (such as Rabi oscillations) to understand decoherence,

the spectroscopy method provides a simple way to quantify decoherence and it can

be applied in cases where the time-domain method is too difficult to use.
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4.3.1 Two-level approximation

Equation 4.18 can be solved numerically for a multi-level system. However, analysis

of Eq. 4.18 using a two-level approximation already yields interesting results. For a

two-level system with small current noise, the unitary matrix N can be approximated

as

N =


 1 αIn(t)

−αIn(t) 1


 (4.21)

where α = Φ0 < 0|γ̂|1 > /hω0, and ω0 = (E1 − E0)/~ with E1 − E0 being the |0 >

to |1 > energy level spacing for the qubit.

Using Eqs. 4.16 and 4.21, I can rewrite Eq. 4.18 for a two-level system, obtaining:

∂ρ′00

∂t
= iF (t)x′− + αİnx′+ + Γ10ρ

′
11 − Γ0ρ

′
00 (4.22)

∂ρ′11

∂t
= −iF (t)x′− − αİnx′+ − Γ10ρ

′
11 − Γ1ρ

′
11 (4.23)

∂ρ′01

∂t
= i [ω0 + δω(t)] ρ′01 +

[
iF (t) + αİn

]
x′z −X01ρ

′
01 (4.24)

∂ρ′10

∂t
= −i [ω0 + δω(t)] ρ′10 +

[
−iF (t) + αİn

]
x′z −X01ρ

′
10 (4.25)

where the constant Γ10 is the relaxation rate from |1 > to |0 >, X01 = (Γ10 + Γ1 +

Γ0)/2, x′± = ρ′10 ± ρ′01, x′z = ρ′11 − ρ′00, F (t) = Ω cos(ω1t), Ω = Φ0 < 0|γ̂|1 > I1/h

is the bare Rabi angular frequency, ω1 and I1 are the microwave angular frequency

and amplitude respectively, and

δω(t) =
1

~
∂(E1 − E0)

∂Ib

In(t) (4.26)

is the |0 > to |1 > level spacing fluctuation due to current noise.

Each term in Eqs. 4.22-4.25 can be associated with a physical meaning. Terms

containing F (t) can be interpreted as microwave pumping, since they reflect the

effect of off-diagonal elements on the evolution of the diagonal elements of the density
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matrix, and vice versa. Similarly, terms containing αİn(t) cause noise induced inter-

level transitions. The two terms Γ1ρ
′
11 and Γ0ρ

′
00 describe the effect of population

decrease due to tunneling. Both relaxation and tunneling can lead to decoherence,

which is described by the two terms containing X01. Finally, due to current noise the

level spacing will fluctuate. The effect of this time-dependent level spacing on free

evolution is captured by terms containing ω0+δω(t). We also note that the equations

for the diagonal terms resemble the form of the master equation used in Chapter 3

to discuss the relaxation process. The difference here is that the microwave pumping

and the noise-induced transitions are interconnected to the off-diagonal terms, while

in the master equation the two terms can be written as a product of some rates and

the diagonal terms themselves. The equations for the off-diagonal terms are critical

for understanding both decoherence and coherent processes in the system.

While Eqs. 4.22-4.25 can be solved numerically, we can gain insight by obtaining

analytic results under certain idealized conditions. To proceed, we consider the case

where the tunneling rates Γ1 and Γ0 are much smaller than the energy relaxation

rate Γ10. In this limit ρ′11 + ρ′00 = 1 and Eqs. 4.22-4.25 take the exact form of the

optical Bloch equation [100], except for the noise terms. In order to distinguish the

effects of the δω(t) term from the αİn term, we examine their effects separately.

4.3.2 Transitions due to noise

To understand the αİn term, I set δω(t) = 0. Transforming Eqs. 4.22-4.25 to the

Fourier domain, one can show that the αİnx
′
+ term is equal to Γ+x′z (see Appendix

D), where Γ+, as we will see later, can be interpreted as a transition rate and is

given by,

Γ+ = α2

∫ ∞

0

SI(ω/2π)ω2 Γ−(ω2
0 + ω2 + Γ2

−/4)

(ω2
0 − ω2 + Γ2−/4)2 + ω2Γ2−

dω

2π
(4.27)
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Similarly, we can show that αİnx
′
z is equal to Γ+x′+. We then rewrite Eqs. 4.22-4.25

as

∂ρ′00

∂t
= iF (t)x′− + Γ+x′z + Γ10ρ

′
11 (4.28)

∂ρ′11

∂t
= −iF (t)x′− − Γ+x′z − Γ10ρ

′
11 (4.29)

∂ρ′01

∂t
= iω0ρ

′
01 + iF (t)x′z − Γ+x′+ −X01ρ

′
01 (4.30)

∂ρ′10

∂t
= −iω0ρ

′
10 − iF (t)x′z − Γ+x′+ −X01ρ

′
01 (4.31)

From the above equations we see that Γ+ is a rate for inter-level transitions.

Setting F (t) = 0 and solving the above equation, one can find the time average of

ρ′11 is given by

< ρ′11 >=
1 + x′z

2
=

Γ+

Γ10 + 2Γ+

(4.32)

Indeed, Γ+ is exactly the thermal-noise-induced transition rate W t
10 introduced in

Chapter 3. At that time we calculated W t
10 for an ohmic environment. From Eq.

4.27, we can now calculate this rate for an arbitrary dissipation environment with

a known noise spectral density SI(ω/2π). From Eq. 4.27 we see that low frequency

components of SI(ω/2π) do not contribute significantly to Γ+ unless SI(ω/2π) di-

verges faster than 1/ω2. If the main contribution to Γ+ is from noise around ω0 such

as in the ohmic damping case, then Eq. 4.27 reduces to

Γ+ =
SI(ω0/2π)

8e2
| < 0|γ|1 > |2 =

~ω0

2Re2

| < i|γ|j > |2
exp (~ω0/kBT )− 1

(4.33)

where 1/R is the real part of the admittance Y (ω) at ω0 seen by the junction. Once

Γ+ is obtained, one can use the detailed balance condition to deduce the relaxation

rate Γ10 by forcing < ρ′11 > to obey the Boltzmann distribution. If |0 > and |1 >

are nearly harmonic states, one finds Γ10 = 1/RC.
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The effect of αİn is to induce inter-level transitions, which can also be studied

using the master equation for the diagonal elements as shown in Chapter 3.

4.3.3 Decoherence due to low frequency noise

To understand the effect of the δω(t) term, one has to consider the dynamics of the

complete density matrix including the off-diagonal elements.

To proceed, I set αİn = 0. Using the rotating wave approximation [100], I

find that Eqs. 4.28-4.31 yield an equation (Eq. E-1 in Appendix E) for the Fourier

transform of (e−iω1tρ′01 − eiω1tρ′10)/2i. Solving Eq. E-1, I obtain (see Appendix E)

< ρ′11 >=
Ω2/2

Ω2 + (1 + A)Γ2
10/2 + (2−B)ε2

(4.34)

where ε = ω0−ω1 is the detuning, Sd(ω/2π) =
[

1
~

∂(E1−E0)
∂Ib

]2

SI(ω/2π) is the spectral

density of δω(t), and

A =

∫ ∞

0

Sd(ω/2π)

ω2 + Γ2
10/4

dω

2π
(4.35)

B =

∫ ∞

0

Re[G(ω)]
dω

2π
(4.36)

where

G(ω) =F (ω)

[
2 +

1

1/2 + iω/Γ10

]

− F (ω)
∫∞
0

SdRe[F (ω)] dω
2π

1/2 +
∫∞

0
SdRe[F (ω)/2 + 1/(1/2 + iω/Γ10)]

dω
2π

(4.37)

and

F (ω) =

1
Γ10/2

+ 1
iω+Γ10/2

iω + Γ10/2 + Ω2

iω+Γ10
+ ε2

iω+Γ10/2

(4.38)
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From the form of Eq. 4.34 we conclude that the δω(t) term results in resonance

broadening.

Setting Ω = 0, we find ρ′11|I1=0 = 0, and the escape rate enhancement under

microwaves will be

∆ =
< ρ′11Γ1 + ρ′00Γ0 > |I1 6=0− < ρ′11Γ1 + ρ′00Γ0 > |I1=0

< ρ′11Γ1 + ρ′00Γ0 > |I1=0

≈ Γ1 − Γ0

Γ0

< ρ′11 > (4.39)

The approximation holds for small current noise, where we can ignore the time

dependence of Γ1 and Γ0 and replace < ρ′iiΓi > by < ρ′ii > Γi. Equation 4.39 shows

that the escape rate enhancement is determined by < ρ′11 > since, for a reasonably

sharp resonance, the ratio of Γ1 to Γ0 will be nearly constant in the neighborhood

of the resonance.

We now define the spectroscopic coherence time T ∗
2 to be the inverse of the half-

width at half maximum of the resonance. Since, from Eqs. 4.35-4.38, B generally

depends on the detuning ε in a complicated way, it is difficult to find a general

analytic expression for T ∗
2 . However, if Sd(ω/2π) has a constant value S0 below

some cutoff frequency fc À Γ10/2π, we find

A =
S0

2Γ10

(4.40)

B =
S0/Γ10

1 + S0/2Γ10

(4.41)

and

1

T ∗
2

=
Γ10

2

√
1 + A

1−B/2
=

Γ10

2
+

S0

4
(4.42)

From Eq. 4.42 we see that the decoherence rate is just that due to dissipation (Γ10/2)

plus an additional S0/4 due to current noise. This result reproduces those found
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using the Bloch-Redfield approximation [97, 98] or by simply considering the mean

squared phase noise [101]. Therefore, in this case the spectroscopic coherence time

T ∗
2 is exactly the same as the phase coherence time T2.

In the opposite limit fc ¿ Γ10/2π, we find

A =
4S0fc

Γ2
10

(4.43)

B =
16S0fc

2S0fc + Γ2
10/2 + 2ε2

(4.44)

and thus

1

T ∗
2

=

[
1

2
S0fc +

√
80(S0fc)2 + 8S0fcΓ2

10 + Γ4
10

4

]1/2

(4.45)

Equation 4.45 implies that the resonance broadens due to both dissipation and the

rms current noise. For S0fc À Γ2
10, Eq. 4.45 reduces to:

1

T ∗
2

= 1.65
√

S0fc = 1.65

∣∣∣∣
1

~
∂(E1 − E0)

∂Ib

∣∣∣∣σI (4.46)

where σI =
√

SIfc is the total rms current noise.

The dependence of resonance width on the rms current noise is not surprising.

In the case of slow fluctuations, for each repeated measurement of the system, there

will be a nearly constant but different noise current, which will cause the transition

to occur at a slightly different bias current each time. We also note that it is in-

appropriate in this limit to use the mean squared phase noise to characterize the

coherence, since phase correlation has been completely destroyed on a time scale

that is much smaller than 1/fc due to a short T1. Therefore Eq. 4.45 cannot be

interpreted as a dephasing rate 1/T2; instead, it should be considered as a spec-

troscopic coherence time T ∗
2 that characterizes decoherence due to dissipation and

noise. Since this spectroscopic coherence time includes the effect of the entire noise

spectrum, this sets a lower bound for the coherence time (T2) of the system. In

77



principle T2 could be greater than T ∗
2 if a different measurement technique is used,

such as a spin-echo.

If the noise spectrum is such that neither of the two limits discussed above is

valid, then there is generally no simple analytic expression for the resonance width.

Nevertheless, Eq. 4.34 can still be evaluated numerically to get the resonance shape.

From the above analytical results obtained under the two-level approximation,

we see noise can induce inter-level transitions as well as decoherence. While the inter-

level transition effect can be described by a transition rate, decoherence induced by

noise depends on the noise spectral density. For high frequency noise, this effect can

be captured by a dephasing rate, while for low frequency noise the total rms current

noise contributes to resonance broadening and one cannot use a dephasing rate to

describe the broadening.

For a real system, higher levels can be populated and there can be significant de-

coherence due to quantum tunneling [102]. For this general case we must include all

the relevant levels and take tunneling into account. This can be done by performing

a numerical simulation of Eq. 4.18 and computing the escape rate and enhance-

ment according to Eqs. 4.19 and 4.20. The simulation results and comparison with

experimental data will be discussed in Chapter 7.

4.4 Time-domain analysis of the Bloch equation

So far, I have discussed the long-time behavior of the density matrix in the context

of spectroscopy. Here I want to study the short-time behavior of the density matrix

where coherence is preserved.

4.4.1 Temporal behavior

As discussed above, decoherence due to high frequency noise can be described by

a dephasing rate, and the spectroscopic coherence time T ∗
2 is equal to the phase
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coherence time T2. In the case of high frequency noise, we can rewrite Eqs. 4.28-

4.31 as

∂ρ′00

∂t
= iΩ cos(ω1t)(ρ

′
10 − ρ′01) + ρ′11/T1 (4.47)

∂ρ′11

∂t
= −iΩ cos(ω1t)(ρ

′
10 − ρ′01)− ρ′11/T1 (4.48)

∂ρ′01

∂t
= iω0ρ

′
01 + iΩ cos(ω1t)(ρ

′
11 − ρ′00)− ρ′01/T2 (4.49)

∂ρ′10

∂t
= −iω0ρ

′
01 − iΩ cos(ω1t)(ρ

′
11 − ρ′00)− ρ′10/T2 (4.50)

where Ω = Φ0 < 0|γ̂|1 > I1/h is the bare Rabi frequency. In obtaining the above

equations, I have made two assumptions. First I have assumed the temperature is

low enough that the thermal rate Γ+ is negligible compared to the relaxation rate

1/T1. Second I have assumed tunneling rates are also small compared to 1/T1.
3

Notice I have replaced Γ10 by 1/T1, and include the decoherence effect due to noise

via 1/T2, where T2 is the same as the spectroscopic coherence time T ∗
2 as given by

Eq. 4.42.

Equations 4.47-4.50 imply that the dynamics of the system in this limit is iden-

tical to that of a two-level system in atomic physics that can be described by the

optical Bloch equation [100]. The five relevant parameters in this description are:

the level spacing ω0, the microwave frequency ω1, the bare Rabi frequency Ω, the

relaxation time T1 and the coherence time T2.

Analogy to the Bloch equation

In order to solve Eqs. 4.47-4.48, I make an analogy between the optical Bloch equa-

tion and the original Bloch equation. When the microwave drive frequency ω1 is

3It is straightforward to include decoherence due to tunneling by adding (Γ0 + Γ1)/2 to 1/T2,

and adding −Γ0ρ
′
00 and −Γ1ρ

′
11 to the equations for ρ′00 and ρ′11 to account for the population

changes.
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close to the level spacing ω0, the system will be forced to rotate in the same di-

rection as the applied microwave drive, while the counter rotation component is

negligible. Therefore we can use the rotating wave approximation [100] to simplify

Eqs. 4.47-4.50. These equations can be rewritten as,

u̇ = εv − u/T2 (4.51)

v̇ = −εu + Ωw − v/T2 (4.52)

ẇ = −Ωv − (w − w0)/T1 (4.53)

where ε = ω0 − ω1 is the detuning, w0 = −1/2, and u, v and w are related to the

density matrix by

u =
e−iω1tρ′01 + eiω1tρ′10

2
(4.54)

v =
e−iω1tρ′01 − eiω1tρ′10

2i
(4.55)

w =
ρ′11 − ρ′00

2
(4.56)

Equations 4.51-4.53 are exactly the original Bloch equations for the motion of

a magnetic moment moving in a combination of a static magnetic field in the z-

direction and a transverse rotating field subject to relaxations in all three directions

(see Fig. 4.4).

For comparison, the equation of motion for a magnetic moment ~m in the labo-

ratory frame is

d~m

dt
= γ0 ~m× ~B − R̂ · (~m− ~m0) (4.57)

where γ0 is the gyromagnetic ratio, ~m0 is the equilibrium value for ~m, and ~B is the

total field given by ~B = B1 cos(ω1t)̂i − B1 sin(ω1t)ĵ + B0k̂, and R̂ is the relaxation

tensor with R11 = R22 = 1/T2, R33 = 1/T1 and zero for all other elements.
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Figure 4.4: A pictorial description of the Bloch equation. In the laboratory frame,

the moment rotates around the direction of the total magnetic field, which is con-

stantly changing. However in the rotating frame, the moment rotates around a fixed

axis ~c. When ω0 = ω1, i.e. on resonance, ~c is the x-axis in the rotating frame. In the

absence of relaxation, the magnitude of the moment will remain unchanged, hence

the motion of the moment will be constrained on a sphere i.e. the Bloch sphere.
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By introducing a frame that is rotating with the transverse magnetic field, one

can show that in this frame the magnetic moment ~m′ rotates around a fixed axis

~c = Ωî + (ω0 − ω1)k̂, where Ω = γ0B1 and ω0 = γ0B0. Therefore the variables

u, v and w introduced above are analogous to the x, y and z components of the

magnetic moment in the rotating frame. In this picture, the dissipation time T1 and

coherence time T2 correspond to the longitudinal and transverse relaxation times of

a magnetic moment.

Steady state solution

By letting u̇ = v̇ = ẇ = 0, we can find the steady solution of Eqs. 4.51-4.53

ρ′eq11 = weq − w0 =
Ω2T1T2/2

1 + T 2
2 (ω0 − ω1)2 + Ω2T1T2

(4.58)

This is the long-time behavior of the density matrix, and one sees the system is in a

mixed state. This is exactly what spectroscopy probes. If we plot ρ′eq11 as a function

of ω0 with ω1 held constant, we can deduce the coherence time from the resonance

shape. From the above equation, the half width at half maximum (HWHM) of the

resonance is

HWHM =
1

T2

√
1 + Ω2T1T2 (4.59)

For small microwave power such that Ω2T1T2 ¿ 1, we have the half width at half

maximum is the inverse of T2. I note that when the power increases the resonance

will broaden accordingly.

The amplitude of the resonance increases with applied microwave power but

saturates at 1/2 for powers such that Ω2T1T2 À 1.
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No relaxation

If the relaxation and decoherence processes are very slow, then on a short time scale

I can ignore the terms involving 1/T1 and 1/T2. Assuming that the microwave power

is switched on at t = 0 and ρ′11(0) = 0 and ρ′00(0) = 1, I can then solve the Bloch

equation exactly to find

ρ′11(t) =
Ω2

2Ω′2 [1− cos(Ω′t)] (4.60)

where Ω′ =
√

Ω2 + (ω0 − ω1)2 is the Rabi oscillation angular frequency. From Eq.

4.60, we see ρ′11 oscillates between 0 and Ω2/Ω′2 with a frequency Ω′. The minimum

Rabi frequency is determined by the microwave power. Detuning causes an increase

in the Rabi frequency, with a corresponding decrease in the oscillation amplitude.

In order to see a reasonable oscillation amplitude, ω1 ≈ ω0 is required.

On resonance

For a real system, T1 and T2 are finite. Most interesting experiments are also at

near-resonance, i.e. ω1 ≈ ω0. An exact solution in this case can be obtained:

ρ′11(t) = ρ′eq11 − ρ′eq11 e−t/T ′
[
cos(Ω′t) +

sin(Ω′t)
T ′Ω′

]
(4.61)

where ρ′eq11 = Ω2T1T2/2
1+Ω2T1T2

is the equilibrium value, T ′ is related to T1 and T2 by

1

T ′ =
1

2T1

+
1

2T2

(4.62)

and Ω′ is the oscillation frequency, given by

Ω′ =
√

Ω2 − (1/2T1 − 1/2T2)2 (4.63)

In the high power limit such that ΩT1 >> 1 and ΩT2 >> 1, we have Ω′ = Ω,

ρ′eq11 = 1/2, and
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ρ′11(t) =
1

2
− 1

2
e−t/T ′ cos(Ωt) (4.64)

The behavior of this function is a decaying oscillatory curve, the oscillation

period is the inverse of Ω, and the decay constant is determined by T ′.

Figure 4.5 shows a few examples of the time dependence of ρ′11 for various mi-

crowave powers. For small powers, since Ω′ < 1/T ′, ρ′11 does not have enough

time to complete a cycle before it approaches the equilibrium value. In the high

power limit, it behaves like an oscillatory function and furthermore the oscillation

frequency increases as the power increases.

From the decaying behavior, I can get the time constant T ′, which depends on

both T1 and T2. If T1 can be determined by an independent method such as the

population depletion technique, one can then obtain T2 from T ′. This T2 should

be exactly the same as the T ∗
2 determined from the half width at half maximum of

the spectroscopy resonance in the case of high frequency noise. Of course, if low

frequency noise is present then we expect T ∗
2 < T2.

4.4.2 Power dependence

Besides looking at the long-time behavior and the short-time behavior, one can also

choose to look at the behavior of the system on an intermediate time scale. This

can be done by applying continuous microwave power or a long pulse while the level

spacing is being ramped, as shown in Fig. 4.6.

In this case one can look at the behavior near the point where the frequency of the

system matches the microwave frequency. For a sufficiently fast ramp, the system

does not have time to settle to its equilibrium state at the resonance point. Clearly

the behavior of ρ′11 will depend on how fast the ramp is compared to T1 and T2.

Figure 4.7 shows the calculated behavior of ρ′11 for a system with T1 = T2 = 100 ns

and a ramp speed such that ω0 is changing at −2π · 0.6 GHZ/µs under various
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Figure 4.5: Theoretically predicted Rabi Oscillations for T1 = 10 ns, T2 = 20 ns and

ω0/2π = ω1/2π = 5.4 GHz. Solid line for Ω = 2×109/s, dotted line for Ω = 5×108/s,

dash-dotted line for Ω = 1 × 108/s, and dashed line for Ω = 3 × 107/s. Notice

oscillations show up for high microwave powers only and the oscillation frequency

increases with the power. The decay time T ′ in this case is about 13 ns.
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t1 t2t0 t

)(0 tω Microwaves On

Figure 4.6: Schematic of Rabi oscillation experiment in the continuous sweep mode

where the level spacing ω0 is being ramped and the microwave frequency is kept

at ω1. Microwaves are turned on between t1 and t2, and at t0 the system is in

resonance with the drive. By adjusting the slope of the ramp, in principle this type

of measurement can be used to reveal T1 and T2.
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microwave powers.

The point marked by t = 0 is where the system is in resonance with the mi-

crowaves. One can see for small powers, ρ′11 starts to increase around t = 0 and

oscillates near this resonance point before decaying with even faster and smaller

oscillations. However, for larger powers, ρ′11 starts to increase before t = 0 and by

the time the system is in resonance with microwaves, coherence has already been

lost so no oscillation is observed.

It is also interesting to note that the maximum value of ρ′11 first increases with

power, then starts to decrease for high powers. The maximum value of ρ′11 is plotted

in Fig. 4.8 for T1 = 100 ns and various T2. Indeed for large T2, ρ′11max first increases

with power, then decreases and eventually for high powers it settles to the equilib-

rium value 1/2. However for small T2, the overshoot is not there. Simulations for

T1 = 10 ns do not show any overshoot behavior either. Therefore observation of this

overshoot behavior can provide us information about T1 and T2.

4.4.3 The times probed by different methods

Table 4.1 summarizes the different times and methods to measure them.

From Table 4.1, we see that the times probed by the three methods are different

when the system has low frequency noise. In the case of high frequency noise,

there are just two independent quantities T1 and T2, and the three independent

measurements can provide a consistency check. If no noise is present, decoherence

will come solely from dissipation, and there is only one independent parameter, T1.

4.5 Summary

In this chapter, I have derived a stochastic Bloch equation, which includes both

dissipation and noise, to study decoherence in the Josephson junction qubit. The

spectroscopic coherence time T ∗
2 provides a simple way to understand how dissi-
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Figure 4.7: Calculated ρ′11 in the sweep mode for ω1/2π = 5.4 GHz, T1 = T2 =

100 ns and a ramp rate of −2π · 0.6 GHZ/µs. Solid line for Ω = 3 × 108/s, dash-

dotted line for Ω = 1 × 108/s, dotted line for Ω = 5 × 107/s, and dashed line for

Ω = 3 × 107/s. Note the maximum value of ρ′11 first increases with power, then

starts to decrease for high powers.
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Figure 4.8: Calculated power dependence of the maximum ρ′11 in the continuous

sweep mode for ω1/2π = 5.4 GHz, a ramp rate of −2π · 0.6 GHZ/µs, T1 = 100 ns

and various T2. Solid line for T2 = 100 ns, dash-dotted line for T2 = 50 ns, dotted

line for T2 = 20 ns, and dashed line for T2 = 10 ns. The overshoot behavior is visible

for large T2, but completely disappears for T2 < 10 ns. Note for large powers, ρ′11max

approaches 1/2.
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Table 4.1: Times probed by different methods

Methods Measured

Quantity

Low frequency

noise

High frequency noise No

noise

Level depletion T1 T1 T1 T1

Spectroscopy T ∗
2 T ∗

2 T2 2T1

Rabi oscillation T ′ -a 1/(1/2T1 + 1/2T2) 4T1/3

aIn the case of low frequency noise, it is not clear under what conditions the

exponential decay can be observed.

pation and noise affect decoherence. For high frequency noise, the spectroscopic

coherence time T ∗
2 reduces to the phase coherence time T2, in agreement with pre-

vious work. However, for low frequency noise, T ∗
2 depends on both the rms current

noise and T1, and decoherence cannot be described by a dephasing rate. For high

frequency noise, I have also used the optical Bloch equation to study the short-time

behavior of the density matrix where coherence is maintained. Finally a comparison

between the times obtained from the different methods was made.
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Chapter 5

Designs of Qubits and Qubit Isolation

In order to achieve a long dissipation time T1 and coherence time T2, we need to

engineer the electromagnetic environment for the Josephson junction. From Chap-

ters 3 and 4, we know that the dissipation time T1 is roughly the RC time constant,

where R is the inverse of the real part of the admittance seen by the junction at the

plasma frequency and C is the junction capacitance. Low frequency noise (i.e. the

part of the spectrum below the frequency 1/2πT1) can cause decoherence, while high

frequency noise is averaged out and its effect on decoherence is negligible. Therefore

increasing R and reducing low frequency noise are the main concerns for our qubit

design.

5.1 Resistively isolated Josephson junction

The first idea we tried was to use a large resistor to isolate a current-biased Josephson

junction [64].

5.1.1 Basic idea

If we place large resistors R in series with the Josephson junction, as shown in Fig.

5.1, then these large resistors are in series with any lead resistance and also block

current noise. The resistor becomes the shunt resistance for the junction at the
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plasma frequency1. I note that the circuit in Fig. 5.1 is equivalent to the RCSJ

model.

Due to the large resistance R, if we measure the voltage at the current supply

(two-wire measurement), then the junction switching voltage will be in series with

a large background signal from the bias current. Also the signal will be slow due

to RC roll-offs. Therefore we used a second pair of leads that are also resistively

isolated for voltage measurement (see Fig. 5.1)2. To increase the signal speed, we

used a cold amplifier that consisted of a transformer and a dc SQUID to detect the

switching voltage of the junction.

5.1.2 Experimental realization

To build the above circuit, we needed to fabricate a large resistor. The resistor

needed to be very close to the junction so that at microwave frequencies it was not

capacitively shunted by long leads. Since this large resistor would also carry a bias

current for the junction, we also had to worry about Joule heating. Heating at low

temperatures is problematic and electron ”cooling fins” are needed to take the heat

out.

Figure 5.2 shows a schematic of the resistors and their heat sinks used in our

experiment. A photo of the patterns fabricated using photo-lithography are shown

in Fig. 5.3. The resistor is made of 650 segments of 150 Ω NiCr resistors. Each

segment is 14 µm long, 5 µm wide and 15 nm thick. The cooling fins are also made

of NiCr but with a thickness of 0.6 µm, and are 1 mm long and 18 µm wide. The

junction is fabricated in the middle.

The mechanisms behind thermal sinking of the thin-film NiCr resistors are ex-

plained in detail in Ref. [64]. Essentially the difficulty in effective cooling of the

1The rest of the bias lines acts like a 50 Ω impedance at such high frequencies.

2The actual shunt resistance for the junction is then the parallel of the resistance in the current

leads and that in the voltage leads.
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Figure 5.1: Schematic of a resistively isolated Josephson junction. (a) Chip layout.

(b)Circuit schematic.
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Figure 5.2: Design of a NiCr resistor and its heat sink.

electrons in a resistor at millikelvin temperatures is due to the fifth-power law that

governs how electrons radiate heat via emissions of phonons [103, 104, 105, 106].

The result is that the electron temperature can be much higher than the phonon

temperature when power is applied. However one can use a large volume of normal

metal to reduce this thermal bottleneck between electrons and phonons. In the

above design the large volume of the cooling fins bring the electron temperatures to

around 50 mK if the phonons are at a temperature of 20 mK.

However the electrons in the thin-film NiCr resistor can be much hotter than the

temperature of the electrons in the heat sink. This is because the electron-phonon

thermalization process is slow in the resistor due to its tiny volume3. The only

3Because the electron temperature is around 100 mK, the phonons emitted by these hot electrons

have a wavelength that is much larger than the thickness of the film (150 Å), therefore they cannot

be confined in the film by reflection at the interface [105]. Thus the phonon temperatures in the

film are the same as the substrate.
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Figure 5.3: Photo of NiCr resistor and its heat sink. (a) NiCr cooling fins. (b) 20

µm × 5 µm Al/AlOx/Al junction.
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effective thermalization process is electron diffusion. This depends on the electronic

specific heat, electron scattering length and Fermi velocity. To proceed, we assume

that in each segment of the resistor, the electron temperature at the two boundaries

will be same as the electron temperature in the cooling fins, then one can calculate

the temperature distribution along the segment. Analysis of this situation suggests

that [64] the maximum electron temperature is given by

Tmax
e ≈ [

T 2
b + T 2

p

]1/2
(5.1)

where Tb is the electron temperature at the two boundaries, and Tp = eIRs/kB

is the temperature increase due to Joule heating, where Rs is the resistance of

each segment. I note that Tp is essentially the potential energy drop for a single

electron across the segment. This result is not surprising since it is just expressing

conservation of energy for each individual electron. For I = 1 µA, we estimate

Tmax
e ≈ Tp = 140 mK, which is much hotter than the base temperature of our

refrigerator (20 mK).

Cold amplifier

To detect the switching voltage, we connected the V+ and V− leads to a transformer

which was coupled to a dc SQUID. The primary of the transformer was made of

copper, and the secondary of the transformer was made of a single turn of niobium

foil that was connected to the input coil of a hysteretic dc SQUID. A signal of Φ0/800

would allow us to do single shot measurements of junction switching. Therefore a

gain of larger than 3 in the transformer was required to boost the original signal (4

nA=400 µV/100 kΩ) to 12 nA given that the mutual inductance between the input

coil and the dc SQUID loop is around 200 pH [107]. Unfortunately the transformer

was not designed to allow efficient detection of the junction switching during our

trial. However we could still use the two current leads to measure the voltage.

To remove the large background signal due to the 100 kΩ isolation resistance, a
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bridge circuit was used to cancel out the background signal. However, due to the

capacitance in the leads (∼ 1 nF), the rise time of the signal was about 200 µs,

which limited our timing resolution to 20 µs4. This low resolution was acceptable

as long as we used a slow ramp so that resonance width in time was much larger

than the time resolution.

5.1.3 Advantages and disadvantages

The restively isolated Josephson junction qubit is attractive in principle due to its

relative simplicity and broad-band isolation. The relaxation time T1, according to

the above design can be as large as 40 ns for a junction capacitance of 0.4 pF5.

Because the isolation is broadband, decoherence due to noise is determined by the

noise spectral density, which is very small for a 100 kΩ resistance.

The major disadvantage is the heating of the resistor. This causes the junction

temperature to be close to the level spacing and makes it difficult to see quantum

effects in the system. One cannot increase the junction capacitance without increas-

ing the critical current of the junction. But large critical currents make the heating

even worse. Therefore even with an isolation resistance of 100 kΩ, it is difficult to

achieve much more than 40 ns for T1.

In retrospect we also realized that the large area of the cooling fins will also give

rise to a capacitance between each cooling fin and the copper plane where the chip

is mounted. For a typical substrate thickness of 100 µm (sapphire substrate), this

capacitance is about 16 fF. Analysis of the circuit with this capacitance included

shows the isolation resistance is less than 500 Ω at 5 GHz. This suggests that the

design will not work.

4The Blue amplifier designed by Cawthorne [108], which has a voltage noise of 100 nv/
√

Hz

and a bandwidth of 100 kHz, was used to amplify the voltage signal.

5This is for a 3 µm × 3 µm junction, although one can use a larger size, then the critical current

will also increase, which leads to more heating.
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We built a resistively isolated junction sample labeled as RJJ-Al in the rest of

the thesis. Measurements on this sample are presented in Chapter 7.

5.2 LC isolated Josephson junction

5.2.1 Basic idea

Resistive isolation of the qubit from the environment is simple in principle, but suf-

fers from excessive heating and difficulties in achieving isolation at high frequencies.

One way to avoid this problem is to use nondissipative elements such as inductors

and capacitors to block the noise from getting to the qubit.

The objective of isolation is to prevent noise (generated by dissipative elements)

from reaching the junction. As far as relaxation is concerned, the blocking should

occur around the plasma frequency of the junction. A large resistance will do the

job, but it causes heating. To replace the resistor, one can use an inductance, since

the impedance of a inductor increases with frequency. For example, the impedance

of a 10 nH inductance is about 300 Ω at 5 GHz. Due to freezing of magnetic moments

in ferrites at millikelvin temperatures, one cannot use large inductors that are made

of ferrite cores. The maximum lumped inductance one can obtain is about 10 nH

at 5 GHz given the vacuum permeability is 1 nH/mm.

In order to achieve further blocking of the noise, one can use an inductor-

capacitor (LC) isolation network (see Fig. 5.4a). In this scheme, the resonance

frequency of the LC circuit is well below the plasma frequency of the junction. Be-

cause of current division, external noise currents coming down the bias leads at high

frequencies will be mainly shunted by the capacitance Ci. Therefore the junction is

relatively isolated from the leads. Using the complex admittance shunted junction

model (see Fig. 5.4b), we can convert the LC network to a complex admittance. We

have
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Figure 5.4: Circuit schematic of an LC isolated Josephson junction. (a) Circuit

schematic. (b) Equivalent circuit. I ′b and I ′1 represent current sources in the equiv-

alent circuit.
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Y (ω) =
1

jLiω + RL

jRLCiω+1

(5.2)

where RL ≈ 50 Ω (above 10 MHz) is the lead impedance from the top of the cryostat

to the LC isolation network. Since relaxation is determined by the inverse of the

real part of the admittance, one finds

Reff (ω) =
1

Re[Y (ω)]
=

L2
i ω

2

RL

+ RL

(
1− LiCiω

2
)2

(5.3)

If LiCi is chosen such that LiCiω
2
p À 1 and (RLCiωp)

2 À 1, then the shunting

resistance at the plasma frequency is given by

Reff (ωp) ≈ RLL2
i C

2
i ω

4
p (5.4)

The above expression agrees with our intuitive understanding that the noise is

blocked because of current division by the LC network, i.e. the lead resistance

is stepped up by the LC transformer. Therefore in order to have a large shunt resis-

tance, large Li and Ci are preferred. In other words, the resonance frequency of the

LC circuit should be made much smaller than the plasma frequency of the junction.

For example, for Li = 10 nH, Ci = 10 pF, ωp = 5 GHz and RL = 50 Ω, one finds

Reff (ωp) ≈ 500 kΩ, which leads to a relaxation time of 2 µs for a typical junction

capacitance of 4 pF.

I note that the imaginary part of Y (ω) can be described by a shunt inductance

Leff (ω),

Leff (ωp) =
L2

i ω
2 + R2

L(1− LiCiω
2)2

ω2L−R2
LCiω2(1− LiCiω2)

(5.5)

At the plasma frequency this effective inductance is equal to Li ≈ 10 nH. Thus the

effect of the complex part of Y (ω) is negligible compared to the junction inductance,

which is in parallel and typically smaller than 1 nH.
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I also note that in Eq. 5.3, if we let Ci = 0, then we have

Reff (ω) = RL

(
L2

i ω
2

R2
L

+ 1

)
(5.6)

This RL network will also boost the shunt resistance when Liω >> RL, in which

case, the large impedance due to the inductance provides reduction of the noise

level.

In reality at high frequencies, the capacitance Ci always has some stray induc-

tance Ls. Then Ci in the above equations should be replaced by Ci/(1 − LsCiω
2).

If Ls is so large that LsCiω
2 >> 1, then the effective shunt resistance at the plasma

frequency will be given by

Reff (ω) =
L2

i ω
2

RL

+ RL

(
Li

Ls

)2

(5.7)

The second term in the above equation essentially represents the effect of an induc-

tance divider.

5.2.2 Experimental realization

The experimental realization of the LC-isolated Josephson junction is relatively

straightforward. The key thing is that the LC circuit should be adjacent to the

junction so that the junction sees the LC circuit at microwave frequencies without

any parasitic elements. We have tested this design on both Al and Nb junctions.

Surface mounted LC isolation circuit

We made Al junctions by double-angle evaporation (see below). Due to complica-

tions in making on-chip inductors6 and capacitors, we choose to use surface-mounted

6Spiral geometry is required in order to make a 10 nH inductor with a short total electri-

cal length, which requires via structures. Such multi-layer elements require an insulation layer

(typically SiO2), which complicates fabrication.
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inductors (10 nH) [109] and capacitors (10 pF) [110] as shown in Fig. 5.5. The core

of the inductor is alumina and the wires are wound from copper. The inductor con-

tacts are made of lead/tin solder alloy with a slightly magnetic nickel buffer layer

(although non-magnetic materials are preferred). The self resonance frequency of

the inductor is above 8 GHz, so that in the frequency range 5 - 7 GHz, it can be

treated as a inductor. The capacitor is made of multi-layer porcelain with copper

barriers and non-magnetic solder contact pads [110]. The dielectric loss and tem-

perature dependence of the capacitance should be negligible at 25 mK. The self

resonance frequency of the capacitor is around 3 GHz, above which it becomes in-

ductive. If we include a parasitic series inductance of 0.3 nH, we can use Eq. 5.7

to find that the effective resistance is around 57 k Ω at 5 GHz. This should give

us a relaxation time of T1 =230 ns. The series resistances in the inductor and the

capacitor (both made from Cu) should be much lower than 0.1 Ω, and their effect

on the effective R should be negligible.

After the junctions were fabricated, the L and C components were mounted on

the gold contacts of the Al junction as shown in Fig. 5.5 using silver-filled epoxy

[111]. The whole chip (with junctions already made) was cured at 80◦C in air for

1.5 hours.

On-chip LC isolation circuit

We also used on-chip LC isolated Nb junctions to test this isolation scheme. The

samples were fabricated by Hypres, Inc. [112] according to a CAD drawing we

supplied. Two samples were tried, one with an on-chip inductance of 10 nH, the

other with an 8 nH inductance. The circuit layout is shown in Fig. 5.6(a)-(b), where

the square spirals are the inductor and the big squares in the middle are capacitors.

The latter sample contains two identical LC isolated junctions that are 0.7 mm

apart and connected by a loop containing two coupling capacitors. A photo of the

LC isolated single-Nb-junction sample is shown in Fig. 5.6(c). A photo of the LC
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Figure 5.5: Sample LCJJ-Al. (a) A schematic of the LCJJ-Al sample. (b) A photo

of the LCJJ-Al sample. (c) Close-up view of the Al/AlOx/Al junction overlap area.
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isolated coupled-Nb-junction sample is shown in Fig. 5.7.

In order to be able to treat the inductance as a lumped element, we want the

total electrical length of the inductor to be much less than a quarter wavelength at

the junction plasma frequency. At 5 GHz, we estimate λ/4 ≈ 5 mm in silicon as a

result of its high dielectric constant (ε = 12).

The inductor is made of a planar square spiral with an inner diameter din, outer

diameter dout and n turns. Using the formula in Ref. [113], the inductance is given

by

L ≈ 2.34µ0
n2davg

1 + 2.75ρ
(5.8)

where davg = (dout − din)/2 and ρ = (dout − din)/(dout + din) is the filling factor.

For the single-Nb-junction sample, the design has an inner diameter of 65 µm, an

outer diameter of 120 µm, and 8 turns, which leads to an expected inductance of

10 nH. The total length of the inductance is 3 mm which is below λ/4 at 5 GHz.

For sample LCJJ-Nb2, the outer diameter is 112 µm and there are 7 turns; thus the

total inductance is 8 nH and the total length is 2.5 mm.

The stray capacitance across the inductor also needs to be considered. In the

above design, the main stray capacitance is merely due to the overlap of the via

lead with the coils on the bottom layer (see Fig. 5.6b). A rough estimate of this

overlap (16 µm × 10 µm with a separation of 200 nm of SiO2) leads to a stray

capacitance of 30 fF. If I assume this capacitance is shunting the total inductance,

the self resonance frequency is above 5 GHz. The actual self resonance frequency

could be even higher due to the distributed nature of the stray capacitance.

One might also want to include a series resistance in the inductor to take into

account eddy current losses in the copper ground plane on which the chip is mounted.

A rough estimate using the transformer concept gives a series resistance of 1 µΩ [79]

which is completely negligible in terms of its effect on Reff .

The capacitor for both samples is formed by two 450 µm × 450 µm parallel
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Figure 5.6: Sample LCJJ-Nb1. (a) Circuit design. (b) Close-up view of the spiral

inductor design. (c) Photo of the sample.

105



Figure 5.7: Photo of sample LCJJ-Nb2. (a) Overall view. (b) Detail of Nb/AlOx/Nb

junction.
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plates separated by a 100 nm-thick layer of SiO2. This leads to a capacitance of 80

pF. The series inductance of this capacitor is negligible as the plate thickness is 100

nm which is much less than the plate size.

Using Eq. 5.4, I estimate Reff ≈ 30 MΩ for the single-Nb-junction sample and

Reff ≈ 20 MΩ for the double-Nb-junction sample. In both cases, the expected

relaxation time should be larger than 80 µ s.

5.2.3 Advantages and disadvantages

The LC isolation scheme is simple and may lead to a large T1 without heating the

junction. However in retrospect, we found that the circuit has a problem associated

with current noise in the system.

Due to the resonance of the LC circuit, the effective resistance in Eq. 5.3 displays

a resonance dip at ω = 1/
√

LiCi. Therefore the noise spectral density which is given

by

SI(ω/2π) =
4~ωRe[Y (ω)]

exp(~ω/kBT )− 1
≈ 4kBT

Reff (ω)
(5.9)

will peak at ω = 1/
√

LiCi. The approximation holds for temperatures such that

~ω/kBT << 1. If one integrates this noise spectral density from zero to infinity to

obtain the square of the total rms current noise, one finds

σ2
I =

∫ ∞

0

SI(ω/2π)
dω

2π
=

kBT

Li

(5.10)

The total rms current noise is thus given by
√

kBT/Li. For a temperature of 50 mK

and Li = 10 nH, the total rms noise seen by the junction is roughly 8.3 nA, which

is large enough to effectively reduce the coherence time to a few ns under typical

experimental conditions.

However, according to my discussion in Chapter 4, the system should not be

sensitive to high frequency noise that is above 1/2πT1. According to the above
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estimate, T1 is of the order of µs; therefore only the noise below 1 MHz would induce

decoherence in the system. Since the noise due to the LC resonance is centered

around 1/2π
√

LiCi ≈ 180 MHz, which is much greater than 1/2πT1 ∼ 1MHz, we

should not have decoherence problem. However, experimental results show that

the relaxation time is rather short (∼ 4 ns). Therefore decoherence due to the LC

resonance was a major problem. The source of the short dissipation time was not

clear.

The surface-mounted LC isolated Al junction sample is labeled as LCJJ-Al in the

rest of the thesis. The LC isolated single Nb junction sample is labeled as LCJJ-Nb1,

and the LC isolated coupled Nb junction sample is labeled as LCJJ-Nb2. Results

on these samples are presented in Chapter 7.

5.3 Resonantly isolated Josephson junction

Since high frequency noise has less effect on decoherence, it is best to move the

resonance frequency of the LC circuit up such that 1/
√

LiCi >> 1/T1. Increasing

the LC resonance frequency also helps to reduce the noise level due to the Boltzmann

factor. However from Eq. 5.3, we know when 1/
√

LiCi gets comparable to ωp, the

effective resistance will decrease dramatically due to the fourth-power dependence

on ωp

√
LiCi. Therefore there is a balance between increasing Reff and reducing

decoherence due to low frequency noise.

One limit is to set the LC resonance frequency the same as the junction frequency,

and replace the lumped LC circuit by a resonant transmission line.

5.3.1 Basic idea

We have mainly been looking at the problem of reducing dissipation and decoherence

from the point of view of preventing external noise from getting to the junction.

Equivalently we can also thinking about this problem as preventing the junction
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from losing energy to its environment. To prevent the ac voltage across the junction

from radiating power, we can put the junction at one end of a cavity that is formed

by a half-wavelength (at the plasma frequency) transmission line while leaving the

other end open. Current bias leads can be attached to the middle point of the

transmission line (see Fig. 5.8).

The idea is that since the two ends of the transmission line are voltage antinodes,

the middle point will be a voltage node. Therefore the dissipation over the current

bias lines can be minimized.

One can also use the transmission line model to analyze this circuit. At the

plasma frequency, the impedance at the middle is

Zm(ωp) =
Z2

0RL

Z2
0 + jZlRL

(5.11)

where Z0 is the characteristic impedance of the transmission line, RL is the impedance

of the current bias line, and jZl denotes the impedance at the open end of the cavity,

needed to account for stray capacitance. The admittance seen by the junction is

thus

Y (ωp) =
Zm(ωp)

Z2
0

=
RL

Z2
0 + jZlRL

(5.12)

and Reff is given by

Reff (ωp) =
Z2

0

RL

+ RL

(
Zl

Z0

)2

(5.13)

Thus we see that in order to have a large Reff , a small Z0 and a large Zl is preferred.

For a stray capacitance of 10 fF at the open end, and Z0 ≈ 50 Ω, we estimate

Reff = 50 kΩ at 10 GHz, leading to T1 = 200 ns for C = 4 pF.

109



I01 C1

Ib

Z0~50Ω

qubit

leads

λ/4λ/4

λ/4

Figure 5.8: Circuit schematic of a resonantly isolated junction. Note current bias

leads are attached in the middle of the transmission line.
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5.3.2 Experimental realization

Figure 5.9 shows the design drawing and a photo of the sample made by Hypres,

Inc. The transmission line is formed by two parallel plates that are 60 µm wide and

are separated by 200 nm. The transmission line has a total length of 4.75 mm, and

contact pads are attached in the middle. Using the dielectric constant of the silicon,

we estimate this geometry will provide a half-wavelength resonator at a frequency

of 10 GHz.

5.3.3 Advantages and disadvantages

Since this design is using a half-wavelength transmission line, there should be no

resonances below the plasma frequency, and some low frequency noise should be

avoided.

The most undesirable property of this design is it only functions around one

particular frequency; that is, when the total length is equal to the half wavelength.

This scheme might be useful if the parameters for both the junction and the res-

onator are designed carefully. Also, this design does not block low-frequency noise

that is present in the leads.

This resonantly isolated Nb junction sample is labeled as RESJJ-Nb in the rest

of the thesis. Results on this chip are presented in Chapter 7.

5.4 LJ isolated Josephson junction

All of the above LC isolation schemes do not isolate the junction from low frequency

noise, which causes decoherence. Resonant isolation only works at a single frequency.

In order to achieve broadband isolation, a impedance transforming scheme was first

proposed and implemented by Martinis and his coworkers [68]. The basic idea of

the impedance transforming scheme is similar to the inductance divider I discussed
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Junction Open
Contact Pads

Figure 5.9: The design drawing and a photo of the RESJJ-Nb sample where the

transmission line is formed by two parallel plates that are 60 µm wide and are

separated by 200 nm. One end is the qubit junction, the other end is left open.
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above.

If one replaces the isolation capacitor Ci with an inductor Li2, then we have

Reff (ω) =
L2

i ω
2

RL

+ RL

(
Li

Li2

)2

(5.14)

where Li is the inductor in series with the junction and RL is the impedance of the

bias line. In order for this scheme to work, Li must be much greater than Li2.

However, placing an inductor across the junction will make it difficult to detect

the junction switching. When the junction switches, the gap voltage will be divided

between the big inductor Li and the small inductor Li2, so the signal will be very

small. This problem can be solved by placing another Josephson junction in the

small inductor arm of the circuit.

5.4.1 Basic idea

Figure 5.10 shows a schematic of the inductor-junction (LJ) isolated qubit scheme.

Note that the qubit junction (big cross in Fig. 5.10) is protected by the inductor

and isolation junction (small cross in Fig. 5.10) network from noise in the bias line.

For the inductive divider to work, the isolation junction must be kept in its zero-

voltage state. The isolation junction displays an effective minimum inductance (due

to the Josephson relations) that can be written as

Lj2 =
Φ0

2πI02

(5.15)

where I02 is the critical current of the isolation junction. Including the stray induc-

tance Ls2 in series with the isolation junction, we find the total shunt inductance

Li2

Li2 = Lj2 + Ls2 (5.16)
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Figure 5.10: Circuit schematic of an LJ isolated junction.
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Inductance divider

The current from the bias leads will be divided according to the inductance ratio

Li/Li2. Let Ib be the total current supplied in the bias line. The currents flowing

through the qubit junction (Ib1) and the isolation junction (Ib2) are

Ib1 =
IbLi2

Li + Li2

(5.17)

Ib2 =
IbLi

Li + Li2

(5.18)

By choosing Li À Li2 the majority of the current will flow through the isolation

junction. This is not exactly what we want; in this case the isolation junction

switches first and then triggers the qubit junction to switch.

In order to be able to bias the qubit junction while keeping the isolation junction

in its zero-voltage state, a flux bias line is placed near the large inductor (see Fig.

5.10). Through the mutual inductance between the flux bias line and the large

inductor, a circulating current in the junction loop can be induced. One can choose

the polarity and the magnitude of this circulating current such that it tends to

cancel the current flowing in the isolation junction. Let If be the current in the flux

line, and M be the mutual inductance between the flux line and the big inductor

Li. Then the total bias current flowing through the qubit junction (It1) and the

isolation junction (It2) are

It1 ≈ IbLi2

Li + Li2

+
IfM

Li + Li2

(5.19)

It2 ≈ IbLi

Li + Li2

− IfM

Li + Li2

(5.20)

These are approximate since they neglect the non-linear behavior of the junctions.

From Eq. 5.20, we see that if If = IbLi/M , then the total current flowing through

the isolation junction will be zero and the junction will stay in its zero voltage
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state. Meanwhile, the total current in the qubit junction will equal the bias current

supplied by the current bias leads, i.e.

It1 = Ib (5.21)

In this scheme, provided Li is large, the dynamics of the qubit junction resembles

a single junction, while the isolation junction acts as a noise filter and also an

amplifier to detect the switching of the qubit junction. This is because once the

qubit junction switches, the voltage it outputs will force the isolation junction also

to switch, producing an easily detectable signal.

Hamiltonian analysis

Although the above discussion was from the point of view of an inductive divider

that treated the isolation junction as an inductor, one can do a full analysis. Let

γ1 and γ2 denote the phase differences across the qubit junction and the isolation

junction, then the dynamics of the system can be described by the Hamiltonian,

H =
p2

1

2m1

+
p2

2

2m2

+ U(γ1, γ2) (5.22)

where p1 and p2 are the canonical momenta corresponding to γ1 and γ2, and m1 =

C1(Φ0/2π)2 and m2 = C2(Φ0/2π)2 are the effective masses of the two degrees of

freedom. U(γ1, γ2) is a two-dimensional potential and given by

U(γ1, γ2) = −Φ0

2π
(I01 cos γ1 + I02 cos γ2 + Ibγ2) +

((γ1 − γ2)Φ0/2π −MIf )
2

2Li

(5.23)

This is just the Hamiltonian of an asymmetrical dc SQUID. Setting ∂U(γ1, γ2)/∂γ1 =

∂U(γ1, γ2)/∂γ2 = 0, we have the following equations

Ib = I01 sin(γ1) + I02 sin(γ2) (5.24)
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γ1 − γ2 = −2π
LiI01 sin(γ1)−MIf

Φ0

(5.25)

In order to force the isolation junction into the zero-voltage state, we choose γ2 = 0

and obtain the optimal bias condition,

Ib = I01 sin(γ1) (5.26)

and

If =
1

M

(
LiIb +

γ1Φ0

2π

)
(5.27)

Under the condition LiIb À Φ0, Eq. 5.27 reduces to the same result as the simple

inductive divider.

Relaxation time

For this circuit, the dissipation coming from the current bias leads has already been

described above, i.e.

Rb
eff =

L2
i ω

2

RL

+ RL

(
Li

Li2

)2

(5.28)

However, the flux bias line can also contribute dissipation. We can find the effective

resistance Rf
eff by transforming the dissipative element in the flux bias line to the

junction loop. The impedance seen by the qubit junction is

Z(ω) = jωLi +
M2ω2

RL + jωLf

(5.29)

where RL is the impedance of the flux line at high frequencies, and Lf is the self

inductance of the flux loop. Converting Z(ω) to an effective resistance, we have

Rf
eff = RL

(
Li

M

)2

+
(M2 − LiLf )

2ω2

M2R
≈ RL

(
Li

M

)2

(5.30)
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where the approximation holds for M2 ≈ LiLf , which is the strong coupling limit.

The total effective resistance is a parallel combination of the above two re-

sistances. For parameters Li = 3 nH, Li2 = 60 pH, and M = 30 pH, I find

Rb
eff = 125 kΩ, Rf

eff = 500 kΩ and Reff = 100 kΩ, which corresponds to a re-

laxation time of 400 ns for a 4 pF junction.

Decoherence due to noise

The inductance divider also reduces decoherence from low-frequency current noise.

This can be verified by examining Eq. 5.19, which describes the current flowing

through the qubit junction. The rms noise in It1, the total bias current for the qubit

junction, is

σ2
It1

= σ2
Ib

(
Li2

Li + Li2

)2

+ σ2
If

(
M

Li + Li2

)2

(5.31)

Therefore the current noise in the current bias line and the flux bias line has

been reduced by factors of Li2

Li+Li2
and M

Li+Li2
, respectively.

5.4.2 Experimental realization

Our LJ isolated junction sample was fabricated by Hypres, Inc. The Nb/AlOx/Nb

qubit junction size is 10 µm × 10 µm, while the isolation junction is 7 µm × 7 µm,

and the nominal critical currents of the junctions are 100 µA and 50 µA respectively.

Fig. 5.11 shows the design of the sample while Fig. 5.12 shows a photo.

The large inductor Li is a planar square spiral with an inner diameter of 42 µm,

an outer diameter of 84 µm and 6 turns. Using Eq. 5.8 for the inductance of a

square spiral, I estimate Li ≈3.3 nH.

The experiment is performed at I02 = 10 µA, and from the geometry of the

sample (see Fig. 5.12), one can tell the stray inductance in series with the isolation

junction is about 30 pH; thus I estimate Li2 to be 60 pH.
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Figure 5.11: Lithography design of the LJJJ-Nb sample. (a) Chip Layout. (b)

Detail of the LJ isolation network.
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Figure 5.12: Photo of sample LJJJ-Nb.
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The flux loop is made of three sides7, each side is 200 µm long, and the separation

between the flux loop and the large inductor is 65 µm (see Fig. 5.12). From this I

estimate the mutual inductance between the flux loop and Li is M ≈ 30 pH.

Most of the circuits except for the large inductor and the flux loop, sit above a

Nb ground plane to minimize stray magnetic coupling.

5.4.3 Advantages and disadvantages

The LJ isolated junction qubit is very appealing in terms of broadband filtering to

reduce decoherence due to low frequency noise. But these attractive features come

at the cost of complexity. Moreover, in order for the inductance divider to work,

one requires Li À Lj2 which means LiI02 À Φ0. Therefore the circuit, if viewed as

a dc SQUID, has a potentially high degree of magnetic hysteresis [72]. This can be

verified by examining the two-dimensional potential given in Eq. 5.23. The potential

displays many local minima. Unlike the single junction case, these minima are

not identical. Therefore starting from different local minima8 in which the system

is initially trapped, the subsequent dynamics of the system can be dramatically

different when the bias current is ramped. Analysis of the junction switching data

will thus be more complicated than a true single junction qubit.

This LJ isolated single Nb junction sample is labeled as LJJJ-Nb in the rest of

the thesis. Results on the sample are presented in Chapter 7.

5.5 Sample fabrication

Al junctions (RJJ-Al and LCJJ-Al) were fabricated in house using photo-lithography

and E-beam lithography, while Nb junctions (LCJJ-Nb1,LCJJ-Nb2,RESJJ-Nb and

LJJJ-Nb) were fabricated by Hypres, Inc. [112] using photo-lithography.

7The fourth side is the ground plane.

8The different minima correspond to different flux trapped in the loop.
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For the home-made samples, photo-lithography was used to define large-size

patterns (> 5 µm), such as the NiCr resistors and NiCr heat sinks for the RJJ-Al

sample and gold contact pads. E-beam lithography was used to define the junction

pattern with a feature size of 2 µm.

5.5.1 Photo-lithography for contact pads

The main process used in our fabrication process is liftoff. Liftoff consists of three

steps:

(a) Photoresist pattern. A 1.5-2 µm layer of Shipley 1813 photoresist was spun

onto a blank wafer9. After UV exposure in a contact aligner, the chip was soaked in

chlorobenzene for 90 seconds to harden the top part of the resist10 and subsequently

baked at 90◦C for 90 seconds. The pattern was then developed in CD-30 developer

for approximately 30 seconds11. After developing, we checked the undercut on the

photoresist pattern using an optical microscope.

(b) Metal deposition. Depending on the type of metal and the film thickness,

there are many choices for this deposition step. For gold contact pads, we used

thermal evaporation. To facilitate sticking of gold to the substrate, a wetting layer

of 1 nm Cr is used. Typically a layer of 20 nm gold was subsequently evaporated at

a speed of 0.5-1 nm/s.

(c) Liftoff. The chip is soaked in acetone for liftoff of the metals on unwanted

areas. The liftoff usually takes about 1-2 hours12. If necessary, a photoresist stripper

9We used a sapphire substrate for RJJ-Al and an oxidized (2.5 µm SiO2) silicon wafer for

LCJJ-Al.

10This will facilitate creation of undercuts when the photoresist is developed, and help create a

clean edge on the film pattern.

11A rough rule is to wait for dissolving of the resist and then develop for another equal length

of time.

12If the process does not complete in this time, it usually means something is wrong, for example
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such as µstrip is used to remove any residue that might be stuck at the corners of

the patterns. The sample is then cleaned with acetone, methanol, isopropanol and

DI water for the next lithography step.

For sample LCJJ-Al, the liftoff process was used for defining the gold contact

pads.

For sample RJJ-Al, the above liftoff process was repeated three times to form a

thick NiCr layer (for the heat sink), a thin NiCr layer (for the isolation resistor) and

a gold layer (for contact pads and also on top of thick NiCr)13. The thick NiCr layer

(0.5-0.8 µm) was deposited by dc sputtering at 500 W for 2.5 minutes in less than 5

mTorr of argon, as thermal evaporation of thick NiCr left highly stressed films that

can easily peel off14. Both the thin NiCr layer and the gold layer were deposited by

thermal evaporation in a cryo-pumped deposition chamber.

To prevent contact problems between the thick NiCr layer and the thin NiCr

layer, we ion-milled the thick NiCr film before depositing the thin NiCr film. An

alternative to this all-liftoff process is an all-etching process, with three layers of

deposition (thin NiCr, gold and then thick NiCr), done in the same chamber without

breaking vacuum, followed by three steps of etching [79].

5.5.2 E-beam lithography for junctions

In our home-made Al samples, junctions were defined using E-beam lithography.

Although one can also use photo-lithography to create junctions, it is inconvenient

since a different mask must be made every time the pattern changes.

(a) The first step is to make an e-beam resist pattern using three layers of

not enough undercut.

13In Fig. 5.3, the fabrication order is different, with thin NiCr first, gold layer second, and then

the thick NiCr layer.

14The argon pressure is crucial in producing stress-free films, films sputtered in a 5 mTorr of Ar

do not seem to have noticeable stress and can pass the scotch-tape test.
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MMA8.5MAA EL11 15and one layer of PMMA C6. Each layer of MMA8.5MAA

EL11 was spun at 1500 rpm for 45 seconds onto a well-cleaned16 wafer that already

has gold contact pads. After spinning, the wafer is placed in an oven at 120◦C for

20-30 minutes. This results in a thickness of 1 µm for each layer. After the layers

of MMA8.5MAA EL11 are done, a layer of PMMA C6 was spun in the same way

as the MMA8.5MAA El11 layer.

The whole wafer was then diced into individual chips for E-beam writing. The

writing of the bridge pattern (see Fig. 5.13) was done using a JOEL 5400 SEM.

The typical geometry of the junction bridge is 20 µm long and 2 µm wide. Stable

and stress-free mounting of the chip on the writing stage is important to produce

stress-free patterns. The chip was then developed in a solution of MIBK:IPA(1:3)

for 70 seconds followed by 20 seconds in IPA and another 5 seconds of IPA rinse.

After developing, an optical inspection of the bridge must be done to ensure a clear

bridge structure is obtained without cracks and shorts.

(b) The second step is double angle evaporation of Al. With the bridge pattern

created, one can use double angle deposition to create junctions [114]. The chip was

loaded into a vacuum chamber that is cryopumped to the low 10−6 Torr range. In

order to obtain good contact between Au and Al, the exposed Au pads were first

argon ion-milled at 300 V at a pressure of 10−4 Torr for about 10 seconds. We

estimate the milling rate for gold under this condition is a few Å/s.

Next, a 30 nm layer of Al was deposited at an incident angle of θ (the incident

angle is defined as the angle between the beam and the normal to the chip)17. The

15For small area junctions, two layers of MMA8.5MAA EL11 were used as for the RJJ-Al sample.

16If the gold contacts are freshly made, wet cleaning with photoresist stripper is probably enough,

but one can also do plasma etching of the sample (with a few hundred mTorr of O2 at 150 W).

17The number quoted here is the thickness in the case of perpendicular deposition; therefore

more deposition (to be multiplied by 1/ cos θ) is required in order to achieve 30 nm of Al in the

case of deposition with an incident angle θ.
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Figure 5.13: Al/AlOx/Al Josephson Junction E-beam lithography pattern. The

stress relief patterns near the bridge were sometimes necessary and were intentionally

underexposed. The bridge shown here is 20 µm long and 2 µm wide. The actual

junction size also depends on the metal deposition step. The notch pattern is used

to avoid larger junction effects.
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deposition was done at a typical speed of 0.5-1 nm/s after pre-evaporation of at least

10 nm. Lower deposition speed tends to create Al films that display a yellowish color.

After evaporation of the first Al layer, oxygen was introduced into the chamber and

the pressure ramped to 18 Torr within a minute. The Al film was oxidized for 10

minutes. Following this oxidation, another 30 nm of Al was deposited at an incident

angle of −θ. This oxidation condition reproducibly generate junctions with a critical

current density of about 13 A/cm2 and a junction specific capacitance of about 40

fF/µm2.

The result of this double angle deposition is a junction with the length being

the bridge length l, and the width being 2h tan(θ)− w, where h is the thickness of

the MMA layer and w is the width of the bridge. For the RJJ-Al sample, we used

a bridge length of 3 µm and a bridge width of 2 µm, and a deposition angle of 45◦,

resulting in a junction size of 3 µm × 2 µm. For the LCJJ-Al sample, we have a

bridge length of 20 µm and a bridge width of 2 µm, and a deposition angle of 60◦,

resulting in a junction size of 20 µm × 5 µm.

(c) The third step is liftoff. This step is the same as that for photo-lithography.

One caution is the sample should not sit in acetone for too long as the junction

oxide barrier may degrade [115]. After liftoff, the sample was cleaned with acetone,

methanol and isopropanol (DI water cleaning should be avoided) and placed in a

vacuum chamber immediately, if possible.

5.5.3 Contact resistance between gold and aluminum

Some of the samples we made had large contact resistance, presumably between the

Au contact pads and the Al leads of the junction.

Our main suspicion about the cause was failure of the Al film at the gold edge

due to the sharp edges on the gold contact pads. For gold pads that were created

with large undercuts in photo-lithography, we did not measure noticeable contact
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resistances.

In depositing metals, we also adopted the rule of having a thicker Al layer (upper

layer) than the gold layer (lower layer), in which case good contacts could be made

between Au and Al even in the presence of a sharp edge on the gold pad.

We also used ion-milling of the exposed gold pads before deposition to prevent

contamination-related bad contacts.

Using a four probe measurement at room temperature, one can measure the nor-

mal state resistance of the junction (sensing current should not exceed the expected

critical current of the junction), and the critical current of the junction can be esti-

mated from the junction size and a critical current density based on the oxidation

condition. The product of the normal resistance and the critical current should be

equal to πVg/4 according to Ambegaokar and Baratoff [116]. For Al junctions, this

number is about 300 µV. If the measured number is significantly more than this,

contact resistance probably exists. With the above modifications, samples without

noticeable contact resistances were successfully fabricated.

5.5.4 Hypres samples

All the Nb junction samples (LCJJ-Nb1,LCJJ-Nb2,RESJJ-Nb and LJJJ-Nb) were

made by Hypres, Inc. Their Nb junction trilayer process can produce a minimum

feature size of about 2 µm, more than sufficient for our needs. I-V measurements

of these junctions were generally satisfactory, without any noticeable contact resis-

tance. The junction critical current density was fixed at roughly 100µA/cm2.18 In

most of our experiments, a magnetic field that is parallel to the plane of the junc-

tion overlap area (typically below 50 Gauss) is used to suppress junction critical

currents to a value which is more appropriate for our needs. The junction specific

18They have recently introduced a 30 µA/cm2 process, which is more suitable for quantum

computing, and also have a 1000 A/m2 process for digital applications.
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Figure 5.14: The Cu sample box used for all samples except LJJJ-Nb.

capacitance is around 40 fF/µm2, similar to that for our Al junctions.

5.5.5 Sample mounting

Two sample boxes were used to mount the samples. For RJJ-Al, LCJJ-Al, LCJJ-

Nb1 and LCJJ-Nb2, a Cu box was used (see Fig. 5.14), while for RESJJ-Nb and

LJJJ-Nb, an Al box was used (see Fig. 5.15). The Al box was superconducting at

T < 1K and was used for magnetic shielding.

For mounting, the back of a chip is coated with a small amount of silver paint

to ensure good thermal contact; then the chip is gently pressed onto the Cu surface.

GE varnish is then applied to the four corners to provide mechanical anchoring. The

four sides of the chip were then covered with silver paint to provide good thermal
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Figure 5.15: The Al sample box used for sample LJJJ-Nb.
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contact.

After the chip is mounted, we wirebond the contact pads. For samples other

than LJJJ-Nb, two wirebonds were made, one contact pad was wirebonded (with

Al 1% Si wire) to the inner pin of an SMA jack mounted on the wall of the box,

and the other contact pad was wirebonded directly to the inner surface of the box

serving as the return line for the bias current. For LJJJ-Nb, four wirebonds were

made, one for the current bias line, one for the flux bias line, a third one for the

microwave line, and the last one to connect the ground plane to the inner surface of

the Al box. This last line serves as the return line for the bias current and the flux

current.

5.6 Summary

In this Chapter, I discussed four different qubit designs: (a) resistively isolated

Josephson junction, (b) LC isolated Josephson junction, (c) resonantly isolated

Josephson junction, and (d) LJ isolated Josephson junction. Some of the advantages

and disadvantages of these four designs were briefly discussed. Resistive isolation is

simple in principle but hard to implement due to heating. LC isolation in princi-

ple can produce an extremely large relaxation time but suffers from low frequency

noise. Resonant isolation in principle reduces relaxation and decoherence signifi-

cantly but it only works at the resonant frequency. LJ isolation provides broadband

filtering but involves two degrees of freedom and is much more complicated than

the other isolation schemes. Six samples (RJJ-Al, LCJJ-Al, LCJJ-Nb1, LCJJ-Nb2,

RESJJ-Nb and LJJJ-Nb) based on these four designs were built.
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Chapter 6

Experimental Setup

In this chapter, I discuss the experimental setup including the dilution refrigerator,

the wiring inside the refrigerator, the measurement procedure and the instrumenta-

tion.

6.1 The dilution refrigerator

The low temperatures needed for our experiment are provided by an Oxford Instru-

ments Model 200 dilution refrigerator. It has an original base temperature of 8.45

mK. With the wiring added the fridge can reach temperatures of around 20 mK and

has a cooling power of 200 µW at 100 mK.

The refrigerator is attached to an insert that is fixed to an isolation table that

is supported by a frame made of four stainless-steel legs on top of a sand-filled

frame (see Fig. 6.1). To work on the refrigerator and mount samples, the helium

bath dewar and µ-metal shield can be dropped through the floor to a lower level of

the building. The refrigerator insert, dewar and µ-metal shield are mounted in a

screened room that was made by Universal Shielding Corporation. The attenuation

of the screened room is around 70 dB at 100 MHz. The control panel for the gas

handling system sits outside the screened room on the same floor as the screened

room. All the pumps except a diffusion pump for evacuating the inner can are on
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the lower level. Fig. 6.1 shows a schematic of the arrangement of the refrigerator,

the control panel and the pumps.

Because there is no electrical isolation between the metal pumping tubes and the

screened room wall, the wall and the fridge are grounded by the pumps through the

pumping tubes. IN addition, there are power supply boxes attached to the screened

room wall, which create another ground. Since the two grounds are far away from

each other, there will be a fluctuating voltage difference and hence a current will flow

over the wall. It would have been preferred to ground the screened room and the

fridge by an earth ground using a thick copper rod, and isolate all pumping tubes

from the wall. When the experiment is running, all instruments should be battery-

powered (or run on isolation transformers) to avoid extra grounds and ground loops.

Besides the diffusion pump for the inner vacuum can, another three pumps

(sealed pump, 1 K pot pump and roots pump) are used for the refrigerator. Table

6.1 lists the pumps that have been used and their main specifications.

6.1.1 The magnet

We used a superconducting magnet to generate a field in the z-direction (vertical,

in the plane of the junction overlap area) in order to suppress the critical current of

the junctions.

The magnet was custom-built by Cryomagnetics, Inc., using twisted multifila-

mentary NbTi (Tc = 9.8 K, Hc =12 T at 4.2 K) wires in a copper matrix. The field

to current ratio is 111.3 gauss/A, and the maximum rated current is 4.49 A. Given

that the critical field of Aluminum is around 100 gauss, a current of less than 1 A

is required.
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Figure 6.1: Oxford Instruments Model 200 dilution refrigerator and pumps. Note

the fridge is inside a screened room and all the pumps are on the lower level.
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Table 6.1: List of Pumps used for the Oxford Model 200 refrigerator

Pump model Usage Flow rate

(m3/h)

Ultimate

pressure

(10−3mbar)

Inlet

pressure

(mbar)

LH RUVAC WSU501 Roots pump 505 - 80a

LH TRIVAC S16B Roughing pump 16 < 25 -

LH TRIVAC S40B 1K pot pump 40 < 25b -

LH TRIVAC S65Bc Sealed pump 65 < 25 -

ALCATEL 2063 1K pot pump 60 < 3 -

ALCATEL 2063Hd Sealed pump 60 < 3 60

aThis is the maximum difference pressure between inlet and outlet.

bWe tested the pump and found the ultimate pressure is about 35 mTorr.

cThis pump is built for Oxford with modifications on the regular model of S65B.

d The pump is water cooled for optimal performance and extended usage.
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6.1.2 Thermometry and heaters

The temperatures at various places in the fridge are monitored by several types of

thermometers. An Allen-Bradley carbon resistor thermometer is mounted on the top

surface of the vacuum can flange. This is useful for monitoring a temperature range

of 4 K to 300 K. Two carbon resistors are mounted on the 1 K pot and the still. The

resistance values vary somewhat from run to run, but even so, the performance is

adequate to monitor the relative temperature changes on the pot and the still while

cooling down the refrigerator. A germanium thermometer, which is good from 300 K

to 100 mK and very repeatable from run to run, is mounted on the mixing chamber

to monitor its temperature during the cool-down process. A calibrated ruthenium

oxide thermometer from Scientific Instruments is used to read the temperature of the

mixing chamber below 100 mK. The resistances of these thermometers are measured

by an AVS-47 resistance bridge made by RV-Elektroniikka Oy PICOWATT.

There are several heaters on the fridge for controlling the operation of the dilution

refrigerator. A heater on the still with a maximum power of 50 mW can be used

to increase the mix flow rate, and a heater on the mixing chamber (0.2 µW to 20

mW) can be used to control the temperature of the mixing chamber. The powers for

these two heaters are provided by an Oxford 2603 Power Supply. We also used the

TS-530 Temperature Controller from PICOWATT to precisely control the mixing

chamber temperature by the use of a feedback circuit between the bridge readout

and the output from the temperature controller.

There is a separate heater on the pot that can provide a maximum power of 2 W.

There are two additional high power heaters that we used to heat the charcoal bags

on the mixing chamber and at the bottom of the vacuum can (the charcoal bags

were used to absorb helium that accumulated from a cold leak). The two heaters

provide maximum powers of 0.5 W and 4 W respectively and are very useful during

the warm-up process. Figure 6.2 shows the interior of the Oxford Model 200 dilution
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refrigerator.

6.2 The dilution refrigerator wiring

As discussed in Chapter 2, I need to measure the switching of a Josephson junction

to its voltage state while the bias current is slowly swept. In some of our experiments

the same lead is used for current biasing and voltage monitoring, while in other cases

I used separate lines for the current and voltage. Also, I need to apply microwaves

to the system to carry out spectroscopy measurements. Therefore broadband lines

suitable for transmitting microwave frequency signals are also needed.

The measurements I want to perform are very sensitive to the electromagnetic

environment that the junction sees. Although the sample holder is thermally an-

chored and shielded, the leads that connect the junction to the room temperature

instruments can still introduce a large amount of noise and heat to the sample.

Therefore broad-band filtering from low frequency to the junction characteristic fre-

quency is required to keep the sample cold and reduce noise seen by the junction.

Fig. 6.3 shows a schematic of the wiring and filtering inside the fridge. Figures 6.4

and 6.5 show the actual wiring and filtering inside the fridge.

In my experiment, each current bias line is constructed as follows. There is a

40-inch long Manganin wire from the top of the cryostat to a 4 K connection box.

This is followed by another 40-inch long Thermocoax cable [117] from the 4 K box

to the mixing chamber. This is followed by a home-made rf filter and a home-made

copper-powder microwave filter, which is connected to the sample box.

The idea of using Thermocoax as a microwave filter was apparently first proposed

by Zorin [118]. The type 1 NcAc Thermocoax cable we used has a stainless steel

(type 304L) jacket with an outer diameter of 0.5 mm and an inner diameter of 0.35

mm. The central wire is made of NiCr (80/20) alloy with an outer diameter of

0.17 mm. The dielectric material between the conductors is highly compacted MgO
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Figure 6.2: The interior of the Oxford Model 200 dilution refrigerator.
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Figure 6.3: Schematic of the wiring inside the fridge. Note the green wires, red

cables, brown cables and black cables represent the manganin wires, the Thermocoax

cable, the LakeShore cable and the microwave cables respectively.
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Figure 6.4: The wiring inside the dilution refrigerator vacuum can (top part). Ther-

mocoax cables as bias lines, UT-34-SS-SS from Micro-Coax as microwave lines, and

CC-SR-10 from LakeShore as voltage lines.
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Figure 6.5: The wiring inside the dilution refrigerator vacuum can (bottom part).

Current and voltage lines are anchored at mixing chamber and then filtered by

LC and Cu-powder microwave filters. Microwaves are capacitively coupled to the

current bias lines at the Cu-powder filter.
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with very low leakage at low temperatures. The cable has the following electrical

properties: The dc resistance per unit length for the inner wire is 50 Ω/m, and 6.9

Ω/m for the jacket, the capacitance per unit length is

c = 2πεε0/ ln(d2/d1) ≈ 490 pF/m (6.1)

and the inductance per unit length is

l = (µµ0/2π) ln(d2/d1) ≈ 0.14 µH/m (6.2)

Due to the skin effect, the resistance of the cable will increase at high frequencies

(> 30MHz). For this cable, one finds the resistance per unit length is r(ω) = a
√

ω

for ω > 30 MHz with a = 2.18×10−3Ω s1/2m−1. The characteristic impedance Z(ω)

and the propagation coefficient γ(ω) are [119],

Z(ω) =

√
r(ω) + jωl

g(ω) + jωc
=

√
r(ω) + jωl

jωc
≈ Z0 =

√
l/c (6.3)

γ(ω) =
√

(r(ω) + jωl)(g(ω) + jωc) ≈ r(ω)

2Z0

+ jω
√

lc = α + jβ (6.4)

where g(ω) is the conductance per unit length through the dielectric and is negligibly

small. The above approximation holds for frequencies (>100 MHz) where jωl À
r(ω). From the real part of the propagation constant, we find the attenuation per

unit length,

A(ω) = −10 log
Pout

Pin

= −10 log exp−2α = 20α(ω)/ ln 10 = b
√

ω (6.5)

where b = 5.56× 10−4s1/2 m−1.

The voltage measurement line is similar to the current bias line except for the

first section, which is a 40-inch CC-SR-10 semi-rigid cable (probably the same as

UT-20-SS-SS from Micro-Coax) from LakeShore Cryotronics, Inc.
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The microwave line is a 7-foot UT-34-SS-SS cable from Micro-Coax that is ca-

pacitively coupled to the current bias line at the copper-powder filter. Table 6.2

lists the attenuation per unit length for the above three cables in the frequency

range of interest.

Table 6.2: Attenuation of Thermocoax cable, LakeShore cable and Micro-Coax cable

Frequency (GHz) Thermocoax (dB) LakeShore (dB) Micro-Coax (dB)

0.001 2.6 - -

0.01 7.5 - -

0.02 9.9 - -

0.05 12.8 - -

0.1 14.0 - -

0.2 19.4 2.7 4.7

0.5 31.1 4.2 7.4

1.0 44.2 6.0 10.5

2.0 62.6 8.5 14.9

5.0 99.2 13.4 23.5

10.0 140.3 19.1 33.2

20.0 198.5 27.1 47.2

6.2.1 Microwave frequency filtering

To find the noise seen by the junction, we need to model the transmission of the

distributed Johnson noise along the cables. To simplify the calculation, I model the

current bias line as two pieces of transmission line at two different temperatures,
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although in reality there is a temperature gradient along the cable. I assume the

temperature of the first transmission line is T1, which is somewhere around 100 K

and the second piece has a much lower temperature T2 of around 25 mK. I use the

circuit in Fig. 6.6 to model the two transmission lines.

I will assume the second transmission line with a characteristic impedance Z2 is

so lossy that in the frequency of interest αd À 1, where α is the real part of the

propagation constant and d is the length of the cable. In this case, the effect of

the Johnson noise due to the real part of the first cable impedance Z1 on the load

formed by the LC filter and the junction, can be described by an effective voltage

source VN1 with a source impedance of Z2 [see Fig. 6.6(b)]. The mean-squared value

of this effective voltage source in the frequency range of f to f + df is given by

dV 2
N1 =

4~ωRe(Z1)df

exp (− ~ω
kBT1

)− 1
·
∣∣∣∣

2Z2

Z1 + Z2

∣∣∣∣
2

exp (−2αd) (6.6)

The noise generated by the transmission line sitting at a temperature of T2 can

be replaced by another voltage source whose source impedance is also Z2 and its

mean-squared value is given by

dV 2
N2 =

4~ωRe(Z2)df

exp (− ~ω
kBT2

)− 1
(6.7)

Therefore the effect of the two noises is equivalent to a noise VN with a mean-

squared value given by

dV 2
N = dV 2

N1 + dV 2
N2 (6.8)

Note that this noise is not directly seen by the junction due to additional filtering

by the LC filter. However, since the LC filter is lossless, the noise given by Eq. 6.8

will set the effective temperature of the junction. It is the noise spectral density at

the junction plasma frequency that defines the junction temperature.
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Figure 6.6: Circuit model for noise in the transmission lines. In (a), I model the first

transmission line as an impedance of Z1 sitting at temperature of T1. I assume the

second transmission line has an characteristic impedance of Z2 at temperature T2.

In (b), I model the effect of the two transmission lines as two effective noise sources

Vn1 and Vn2 in series with an impedance Z2. Note the LC filter can be assumed to

be non-dissipative.
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To see the effect of the hot first transmission line, I introduce an effective tem-

perature Tj that the junction sees such that

dV 2
N =

4~ωRe(Z0)df

exp (− ~ω
kBTj

)− 1
Re(Z0)df (6.9)

For the Thermocoax, Z2 = 17 Ω. Assuming Z1 = 50 Ω, T1 =100 K and T2 =25 mK,

we can calculate Tj as a function of the attenuation A = 20αd/ ln 10. We choose two

representative plasma frequencies 5 GHz and 10 GHz to calculate Tj. The results

are shown in Table 6.3.

Table 6.3: Junction temperature vs. attenuation of the transmission line

Attenuation (dB) Tj for 5 GHz (mK) Tj for 10 GHz (mK)

10 7684 7794

20 871 976

30 168 241

40 69 115

50 42 74

60 31 55

70 26 43

80 25 36

90 25 31

100 25 27

From the above table, we can see that for a junction frequency of 5 GHz, the

first 60 dB attenuation reduces Tj to 31 mK. However, in the case of 10 GHz, an

attenuation of 90 dB is required to achieve the same temperature. Nevertheless, as

we can see from Table 6.2, the attenuation provided by the Thermocoax is enough

to provide the required filtering in the 5 to 10 GHz frequency range.
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In the experiment with the LJ-isolated Josephson junction, we use niobium cable

to replace the Thermocoax to avoid heating in the flux bias line. In this case we

need some additional ways to provide attenuation in the microwave frequency range.

One way is to use copper-powder filters [120, 121, 122]. In these filters, the inner

conductor and the outer wall of the filter are made of copper. The hollow space

inside the filter is potted with oxidized copper grains (typically 30 µm in diameter)

and Stycast epoxy. The behavior of a dilute Cu-powder filter can be modeled using

the conductance g(ω) of a granular dielectric material,

1

g(ω)
=

1

jωCgg

+ ag

√
ω (6.10)

where Cgg is due to inter-grain capacitance, and ag is a coefficient that describes

the skin-depth effect of the resistance across each grain. Substituting Eq. 6.10 into

Eqs. 6.4 and 6.5, one can find the real part of the propagation constant and the

attenuation. The conductance through the granular dielectric material is zero at dc

and increases as inter-grain impedance decreases. However above some frequency

where the skin depth in the copper grain is about the grain size, the resistance across

each grain will increase, which results in increased attenuation at high frequencies.

Figure 6.7 shows the outside of one of the Cu-powder filters we built. Note the

SMA connector in the middle of the filter is for capacitive coupling of microwaves to

the current bias line. With this design we achieved good thermalization for the inner

connector of the microwave cable and additional filtering for the microwave cable.

The measured attenuation from input to output at 4 K is above 80 dB between 1

GHz and 20 GHz.

6.2.2 rf filtering

Microwave filtering is essential to prevent high frequency noise from getting to the

junction and to allow the junction to be at the same temperature as the mixing
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Figure 6.7: The Cu-powder microwave filter. Microwaves are capacitively coupled

to the current bias lines at the middle of the filter.
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chamber of the fridge. However, according to our discussion in Chapter 4, low

frequency noise can induce decoherence. Therefore we need low frequency filtering

too. In order to have the low frequency noise reasonably filtered out, we need to

have effective filtering from 1 MHz to a few hundred MHz where the microwave filter

starts to provide filtering. Below 1 MHz the first transmission line (about 50 Ω at

100 K) still sees the large bias resistor at room temperature which is usually larger

than 50 kΩ. Therefore below 1 MHz the noise mainly come from the bias resistor

at 300 K. However above 1 MHz, the current noise is essentially dominated by the

50 Ω transmission line at 100 K. Therefore we have to have low-pass filters after the

first transmission line. For the cables installed in our fridge, if we have a low-pass

filter whose rolloff frequency is 1 MHz, we should have only about 1 nA of current

noise from the hot bias resistor and the cables.

In the various experiments we have performed, we tried several kinds of low-pass

filters with different rolloff frequencies.

First, we just used a 250 Ω NiCr thin-film resistor mounted on the Mixing cham-

ber to provide filtering. Due to the capacitance of the cable after the resistor, which

is about 100 pF, we create a RC filter that has a 3 dB point of 6 MHz. This simple

RC filter functioned to some degree and the noise from the hot environment is cer-

tainly less than the inherent current noise in the surface-mounted LC resonator (see

Chapter 4). The measurement in sample LCJJ-Al was carried out using this filter.

The next filter we tried is a simple commercial LC T-filter [123] manufactured

by Mini-Circuits with a nominal 3-dB point of 1.9 MHz at room temperature. The

ceramic capacitor has a capacitance of 2 nF, and the inductor is a coil of several

turns of copper wires wound on a ferrite core. However as we cooled down the

filter, we found its 3-dB point increased to 30 MHz. This is presumably due to the

freezing of the permeability of the ferrite core once the temperature is below the

Curie temperature. The measurement on sample LCJJ-Nb1 was carried out using

this filter.
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To avoid this problem we used non-ferrite core inductors and built our own low-

pass filter from multi-pole LC stages with 3-dB points ranging from 1 MHz to 100

MHz. Figure 6.8(a) shows a photo of our home-made filter. The capacitors are

from American Technical Ceramics [124] and the inductors are from Coil Winding

Specialist [125]. The 3-dB point of the filter is around 1 MHz, and attenuation of

above 40 dB is achieved from 50 MHz to 10 GHz. The low frequency measurement

(see Chapter 8) on sample LCJJ-Nb2 was performed using this rf filter.

Although we had sufficient filtering using the home-made LC filter, we paid a

price in reduced bandwidth. In the timing experiment I performed (see Chapter 9),

there is a high demand on the rise time of the signal. This means we need to open

up the bandwidth perhaps at the price of allowing more noise to reach the junction.

Since there is already 10 nA of current noise associated with the on-chip LC filter,

we have room to increase the 3-dB point of the LC filter. We thus took out the low

frequency stages in the filter and only kept a 1.1 nH-100 pF-1.1 nH T-filter inside.

A photo of this filter is shown in Fig. 6.8(b). The high frequency measurement

(see Chapter 9) on sample LCJJ-Nb2 was performed using this filter. We also used

slightly different inductance values for the measurement on sample LJJJ-Nb; in this

case the filter is a 3.3 nH-100 pF-3.3 nH T-filter and the measured 3 dB point of

this filter is about 12.5 MHz.

Since LC filters do not cause heating, we mounted them on the mixing chamber

to provide rf filtering. On the other hand, the LC filters can cause ringing in

the voltage signal (see below) and produce resonant structure in the noise spectral

density. A different way to provide rf filtering is to use low-pass RC filters, as we

used for sample LCJJ-Al. A resistance of 2 kΩ at the 4 K stage with the capacitance

from the transmission line will provide good filtering for frequencies of 2 MHz and

above. In this case the thermal noise from the bias line will be dominated by the 2

kΩ resistor.
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(a)

(b)

Figure 6.8: LC rf filters. (a) Multi-stage LC filter with a 3 dB point of 1 MHz. (b)

Single-stage T filter with a 3 dB point of 16 MHz. (c) Detail of the T-filter.
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6.2.3 The voltage signal bandwidth

In our measurements, we monitor the voltage across the junction. But all the

electronics are at the top of the cryostat and the junction resistance is not matched

to the cable impedance. In this case the voltage signal is limited by the capacitance

in the cables. The signal bandwidth is similar to the bandwidth for noise to transmit

from the top to the bottom. However, due to the non-linear I-V characteristics of

the junction, the two bandwidths are different. Here we use a simple LC model to

analyze the relation between the two (see Fig. 6.9).

When we slowly increase the bias current, the current will all go through the

junction when it is in the zero-voltage state. Basically the junction behaves like

a short. However, at some bias current, the junction quickly switches to a finite

voltage state. In order to measure the switching current, we used a peak detection

circuit to trigger on the switching voltage. Because the uncertainty in measuring

the time when the junction switches is determined by the ratio of voltage noise to

the signal slope, a large signal slope is desired.

Let us assume the junction switches to a finite voltage state at a bias current

Is (which is slightly smaller than the critical current of the junction). Since the

junction impedance suddenly becomes very large, the voltage cross the junction

rapidly increases from zero to the gap voltage Vg (400 µV for Al and 2.8 mV for

Nb), we can write down the circuit equation for the current I(t) flowing through

the filter inductor L,

LC1Ï(t) + (
C1

C2

+ 1)I(t) = Is (6.11)

Notice that just before the junction switches, all the current goes through the in-

ductor and there is zero voltage across C1 and C2. Therefore the initial conditions

for Eq. 6.11 are I(0) = Is and İ(0) = 0. Solving Eq. 6.11, we obtain
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C1 C2

VS(t)

Vj(t)

Figure 6.9: A simplified circuit model for analyzing the voltage signal VS developed

when the junction switches. I model the transmission line above the LC2 filter as a

capacitance C1.
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I(t) =
C1

C1 + C2

Is cos ω0t +
C2

C1 + C2

Is (6.12)

where C = C1C2/(C1 + C2) and ω0 = 1/
√

LC. Then we can find the voltage across

C2 (or the junction) as

Vj(t) =
C1Is

C2(C1 + C2)
t +

Is

C1 + C2

sin (ω0t)

ω0

(6.13)

With Eq. 6.13 we now can calculate how long it takes for the voltage across the

junction to reach the gap voltage, however what we really measures is the voltage

across C1. We denote this voltage as our signal voltage VS. Clearly, how this voltage

increases depends on the behavior of Vj(t). If the time it takes for Vj(t) to reach the

gap voltage is on a time scale much smaller than 1/ω0, then the time scale for VS to

increase will be set by ω0 and will be independent of the junction critical current.

However in our experiments, we observed a time scale that depends on the junction

critical current, suggesting we are not in this limit.

In fact under our typical parameters(Is < 100 µA, Vg = 3 mV, C1 ≈ 1 nF,

C2 ≈ 1 nF, L ≈ 1 µH), the time it takes for Vj to increase to the gap voltage is

larger than 1/ω0. Under this condition, we find VS(t) is given by

VS(t) =
Is

C1 + C2

t− Is

C1 + C2

sin (ω0t)

ω0

(6.14)

This kind of oscillation structure in the voltage signal was indeed observed in our

experiments (see Fig. ??), although it was heavily damped due to resistance in the

system, which is not included here. The slope of this voltage signal is

dVS(t)

dt
=

Is

C1 + C2

− Is

C1 + C2

cos(ω0t) (6.15)

Analysis shows that the maximum slope occurs at tm = π/ω0, and its value is given

by
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Figure 6.10: Switching voltage signal measured at the top of the cryostat. Shown

here is an average waveform of four switching voltage signals taken directly by the

Tektronix TDS1002 digital scope (i.e. before the signal is fed into the preamplifier)

for a junction with a critical current of 10 µA. Ringing in the signal is clearly visible.

The small dip at -3 mV is due to the triggering of the scope.
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dVS(t)

dt
|t=tm =

2Is

C1 + C2

(6.16)

In other words, the slope of the voltage signal is equivalent to that from a

capacitance of (C1 + C2)/2 being charged by a current Is. Of course we need to

keep in mind that Eq. 6.16 is valid only if the maximum slope is less than Vgω0/π.

In other words, when the LC filter is there, the maximum signal slope we can achieve

is Vgω0/π. But when the critical current is small, then we will get an even smaller

slope than is given by Eq. 6.16. In our case, when the critical current is less than

40 µA, the signal slope will depend on the critical current.

Based on the above analysis, the maximum voltage signal slope is

dVS

dt
|max

∼= Vgω0

π
(6.17)

For our circuit parameters, it should be around 4×104 V/s. In our experiments,

we observed a maximum of 2× 104 V/s. This could be due to the reduction of the

bandwidth by the resistance in the bias lines.

If we assume the total equivalent input noise of the amplifier is given by vn, then

we can obtain the time resolution σt in detecting when the junction switches,

σt =
vn

dVS

dt
|max

(6.18)

For the amplifiers used in our experiment, we have vn = 500 nV, leading to a

time resolution of 100 ps for junctions with large critical currents where the signal

speed is dominated by the line bandwidth (Eq. 6.17) rather than the charging effect

(Eq. 6.16).
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6.3 Instrumentation

The experimental technique we use involves ramping the bias current through the

junction and measuring when the junction switches from the zero-voltage state to

the finite-voltage state. With this ramp technique, we measure the escape rate of

the junction for a range of bias currents. The basic instruments required in this

experiment are an arbitrary waveform generator, low noise amplifiers to amplify

the junction switching voltage, detection circuits to detect the amplified signal and

precise timing circuits. Figure 6.11 shows a block diagram of the instrumentation

setup used in the experiment.

The measurement procedure is as follows. A timer is started when the bias

current starts to ramp. At some bias current which is very close to the critical

current of the junction, the junction switches to a finite-voltage state. This voltage

pulse is amplified and then detected by a Schmitt trigger which converts the signal

to a digital pulse. This digital pulse is optically coupled to a receiver outside the

screened room and used to generate a second digital signal that triggers the timer

to stop counting. The time elapsed is recorded and converted to a current based on

the functional form of the ramp. We repeat this measurement about 105 times to

build up a histogram of the currents at which the junction switched.

Thus we need to measure two quantities, when the junction switches, and the

bias current at that time. The former requires good time resolution. The latter

requires calibration of the current ramp.

Good time resolution demands high bandwidth and low noise amplifiers. In the

above section, we have already discussed filtering of the thermal noise from the bias

lines, but extrinsic noise from function generators and external interference from the

room can also cause problems.
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Figure 6.11: Block diagram of the experiment. The differential buffer has the same

ground as the cryostat, but the shields of the two inputs are grounded at the screened

room wall. The output from the Schmitt trigger is optically coupled to the receiver

outside the screened room.
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6.3.1 Function generator and buffer

The important characteristics for the function generators, used in our experiments

for the current ramp, are low noise and long-time stability. We used an Agilent

33120A 12-bit arbitrary waveform generator in our experiments.

The arbitrary waveform generator, which is built from digital circuits, voltage

references and resistors, has its own intrinsic noise. It is generally true that the

noise at the output is smaller than the precision set by the bits of the Digital-

Analog Converter (DAC). But sometimes the noise can be lower than the precision.

The Agilent 33120A has a maximum output of 20 V (p-p), and a total white noise

of 200 µV (p-p) when the function generator is outputting a positive ramp with

an amplitude of 5 V. This performance is close to that of a 16-bit DAC. However,

we have found this model has some peculiar noise at 1 kHz with a level that is

equivalent to the white noise background. Since in our experiments we use a ramp

with frequencies around 1 kHz, this noise cannot be filtered out.

We also tried a 16-bit arbitrary waveform generator from Tektronix, and found

its white noise is close to that of the Agilent 33120A, but it does not have excess low

frequency noise. Its cost is one order of magnitude higher than the Agilent 33120A

due to its ability to generate various pulse shapes. The white noise level of other

12-bit functions we looked at was much worse than the Agilent 33120A, and some

of them also have excess low frequency noise.

I note the actual current noise that goes to the junction will depend on the bias

resistor. If we use a bias resistor of 400 kΩ (this is for a junction with a critical

current of 13 µA), we will have a current noise of 1 nA (p-p). If 1 nA of current

noise goes directly to the junction, it will limit the measured Q to be around 500.

Using a broadband isolation scheme (see Chapter 5), we can achieve a significant

reduction in the current noise that goes to the junction.

The second requirement on the function generator is its long-time stability. As
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mentioned above, we need to repeat the junction switching measurement many times

to build a switching histogram. This means we need the electronics to be stable over

a time period of hours to tens of hours. Since we do not directly record the bias

current at which the junction switches, drift of the ramp function will lead to errors

in the switching histogram. Indeed, the Agilent 33120A has this problem: the phase

error of this function generator can accumulate to a degree that is beyond the level

we can accept. Fortunately, Agilent was able to provide some fixes to correct this

problem to a degree that it is no longer noticeable in our measurements.

The digitization of the output due to the DAC is not a problem here since we

use a low frequency ramp. A low-pass filter placed after the output of the function

generator can smooth the waveform. The maximum frequency waveform that the

Agilent 33120A can generate is 15 MHz.

The output from the function generator is fed through the screened room wall

without any filtering (for a waveform with high frequency components) or through

a 7-kHz T-filter (for a slow ramp). The ramp is then sent to a battery-powered

differential buffer. If the differential buffer is not used, the rest of the system (the

junction, voltage amplifiers, and Schmitt trigger) are grounded at the screened room

wall through the outside jacket of the bias cable. However the rest of the system

is also connected to the top of the cryostat, which is always connected through

the refrigerator’s still pipe to the screened room wall. These two separate grounds

produce a ground loop. This means there will be a large common 60 Hz signal on

both the core and the shields of the bias cable. Using a differential buffer prevents

this problem. There are two kinds of buffers I used in my experiments: one was the

Blue amplifier that was designed by Fred Cawthorne [108] and the other type was

a simple differential amplifier built from op-amps (AD797 and AMP03).

I used the Blue amplifier with a unity gain and a rolloff frequency of 10 kHz for

slow ramps. With this amplifier the voltage noise spectral density from the buffer

is about 30 nV/
√

Hz. However if I use the Blue amplifier for a dc bias, I have to set
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the roll-off frequency at 100 kHz. In this setting the noise spectral density goes up

to 100 nV/
√

Hz.

In addition to the Blue amplifier, we built our own buffers using low-noise op-

amps. One type of op-amp we used is the AD797 made by Analog Devices with a

voltage noise of 1.0 nV/
√

Hz. We used this op-amp to make a differential amplifier

with an input impedance of 1 kΩ and a voltage noise of 6 nV/
√

Hz. The low input

impedance helps to keep the voltage noise low. A balance resistor must be used

on the negative input, since the function generator has an output impedance of

50 Ω. Because the AD797 is a very unstable chip, a low-pass RC circuit (typically

R = 10 kΩ, C = 168 pF) is added as a load for the buffer to function properly. We

also used AMP03 chips which are differential amplifiers with an input impedance

of 25 kΩ. These amplifiers are not sensitive to a lack of balance with the output

impedance of the function generator. The differential amplifier built from this chip

has a voltage noise of 30 nV/
√

Hz and functions with a bandwidth of 1 MHz. Note

the power for both the Blue amplifier and the home-made buffer are provided by 12

V lead-acid batteries.

After the buffer, we use a bias resistor to convert the bias voltage to a bias

current. We choose a resistance as large as possible to reduce current noise. A

switched shorting box follows this bias resistor to protect the junction when it is

not being measured.

6.3.2 Ultra-low noise amplifier

When the junction switches to its finite-voltage state, a voltage signal (400 µV for Al

junction and 2.8 mV for Nb junction) is developed at the junction and propagates

up the wires to the top of cryostat, where it is amplified by a low-noise voltage

amplifier. The basic requirements for a good amplifier for detecting pulses are low

noise, low drift and wide bandwidth.
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One of the amplifiers used in our early experiments is the Stanford Research

Model 560 (SR560) preamplifier1. The SR560 has a voltage noise of 4 nV/
√

Hz for

gains above 100 and a bandwidth of 1 MHz. It provides single-ended measurement or

can be used in a differential mode. The low-pass and high-pass filters (6dB/decade

or 12dB/decade) built inside the amplifier are also very useful2.

This amplifier is useful in terms of its versatility, but the noise is limited to

4 nV/
√

Hz and the bandwidth is limited to 1 MHz. The next generation of amplifiers

used in our experiments was built from silicon JFETs. The type of JFET we used

is a 2SK117 (Silicon N Channel Junction) from Toshiba. It is generally used for low

noise audio amplifiers. It has a voltage noise of 1 nV/
√

Hz from 1 kHz and above

and has a very low corner frequency for 1/f noise (∼100 Hz). The first preamplifier

we made was just a single 2SK117 in a common source configuration with a drain

resistance of 1 kΩ [see Fig. 6.12(a)]. We measured a gain of 14 and a bandwidth of

3 MHz. The voltage noise of this preamplifier is less than 1 nV/
√

Hz and its current

noise is about 20 fA/
√

Hz at 1 MHz as a result of low gate-to-channel capacitance

(∼10 pF). This contributes an additional voltage noise of 2 pV/
√

Hz for a lead

resistance of 100 Ω in the bias line and can be completely neglected. Note that

in this circuit the gate of the JFET is directly connected to our junction without

AC coupling. This is because large noise at low frequencies will be present if an

AC coupling circuit is used in front of the gate. The gain variation induced by the

this DC coupling configuration (the gate voltage now depends on the junction bias

current) is negligible.

1For measurements on our resistively-isolated junction, we used the Blue amplifier. This was

not ideal but acceptable since the voltage signal is very slow due to the large isolation resistance.

For experiments on other junctions, the Blue amplifier is too slow and also too noisy.

2In our early measurements, the voltage line shared the same line with the current bias line,

therefore we have a large background signal due to the 100 Ω resistance in the bias line. High-pass

filters were used to remove this background.
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Figure 6.12: An ultra-low noise JFET preamplifier. (a) A single JFET amplifier

with a gain of 14, a voltage noise of 1 nV/
√

Hz and a current noise of 20 fA/
√

Hz.

(b) A 16-JFET amplifier with a gain of 40, a voltage noise of 0.3 nV/
√

Hz and a

current noise of less than 1 pA/
√

Hz.
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To further reduce the noise of the preamplifier, we wired sixteen 2SK117 JFETs

in parallel to reduce the voltage noise [126]. This 16-JEFT amplifier is shown in

Fig. 6.12(b). The voltage noise of a FET is mainly from the Johnson noise in the

conducting channel and is given by [127]

SV =
√

8kBT/3gm (6.19)

where gm is the transconductance of the FET. With N parallel JFETs, the total

transconductance will be N times a single FET, reducing the voltage noise to 1/
√

N

of a single FET. Since the transconductance is already very high, only a small drain

resistance is required to get a reasonable gain. A small resistance is also enough

to bias the JFETs since the drain currents from all the FETs will flow through

this resistor. We used eight 20 Ω resistors for the drain resistance. We measured

a gain of 40 and a voltage noise of less than 0.3 nV/
√

Hz for this amplifier. The

measured bandwidth for this amplifier is above 2 MHz and its current noise is less

than 1 pA/
√

Hz, which contributes a noise of 0.1 nV/
√

Hz for a lead resistance of

100 Ω.

We also need to include the Johnson noise generated by the lead resistance,

especially by the first section of the cable since it is at 300 K. The hot resistance is

about 20 Ω, corresponding to a Johnson noise of 0.6 nV/
√

Hz. To make full use of

our ultra-low noise amplifier, we replaced the first section of the voltage line by a

40-inch LakeShore semi-rigid cable (twisted Manganin wires used previously) that

has a resistance of 4 Ω.

When the amplifier is in place for a measurement, the total input noise spectral

density Stot is given by

Stot = SV + SIR
2
L + 4kBTRL (6.20)

where SV and SI are the 16-JFET amplifier’s voltage and current noise, respectively,
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RL is the lead resistance, and T is the temperature of the load resistance. For our

amplifier, we find a total root voltage noise spectral density of
√

Stot = 0.4 nV/
√

Hz.

Considering the bandwidth of the amplifier is about 2 MHz, we have a total input

rms voltage noise of 0.56 µV.

Although the signal is of the order of 100 mV after the preamplifier, it is in-

convenient for trigger circuits to trigger on this level of signal. Moreover, the input

of trigger circuits usually has large voltage noise (∼1 mV). Therefore it is useful

to amplify the signal further by a low noise second-stage amplifier. The SR560

has a voltage noise of 10 nV/
√

Hz for gains below 100, which can still contribute

significantly to the total noise, so we built our own second-stage amplifiers. The

home-made amplifiers use AD797 or AD829 op-amps have a fixed gain of 50, and

a bandwidth of above 1 MHz. The intrinsic noise of AD797 is only 1.0 nV/
√

Hz.

However, due to the resistors used in the amplifier, the input voltage noise is about

4.0 nV/
√

Hz. The amplifier built from an AD829 has the same amount of noise, but

it has a larger slew rate (230 V/µs) than the AD797 amplifier ( 20 V/µs). A circuit

schematic of the AD829 amplifier is shown in Fig. 6.13.

The drain resistor has its own Johnson noise. The current noise from the second

stage amplifier introduces additional voltage noise after loading on the drain resis-

tance. Each of these contributions is much smaller than the voltage noise of the

second-stage amplifier and can be neglected. For this combined two-stage amplifier,

we measured a gain of 2000, and an equivalent input voltage noise of 0.4 nV/
√

Hz

(referred to the input of the first stage amplifier) with a bandwidth of above 1 MHz.

6.3.3 Ultra-low noise power supply

To achieve the above noise level for the combined amplifier, we also need to be careful

with the construction of the power supply. The noise on the power supply for the

JFET amplifier is 100% coupled to the output of the JFET amplifier and will be
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Figure 6.13: The second stage amplifier. The input is AC-coupled with a 3dB point

of 10 kHz. The first AD829 chip is a buffer. The second AD829 chip has a gain of

50. Note the 50 Ω resistor on the positive input terminal is for balance so that the

effect due to the input bias current can be eliminated.
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fed to the second-stage amplifier. Although op-amps have very good power supply

noise rejection, it is not sufficient for the kind of noise level we desire. Therefore we

built our own ultra-low noise power supplies for the amplifiers.

Figure 6.14 shows the +15 V and -15 V power supplies used in our experiment.

Note the power for these power supplies circuits is from two 12 V lead-acid bat-

teries. For the +15 V power supply, when the input voltage changes a little bit,

the change will be coupled to the base electrode of the bipolar junction transistor

(BJT), therefore the current in the collector electrode will change correspondingly.

This causes the voltage across the 15 Ω resistor to change in response. If the gain

of the BJT amplifier is right, then the voltage change in the 15 Ω resistor will be

exactly the same as the initial change in the input voltage and the output voltage

will be kept constant. By tuning the resistance in the emitter to around 7 Ω, we

obtained a voltage noise spectral density of 1.0 nV/
√

Hz for frequencies 100 kHz

and above, and a total rms voltage noise of about 10 µV for frequencies below 100

kHz. The negative power supply works in a similar way, but because the emitter

follower always has a gain less than unity, the cancelation is not perfect. We found

the -15V power supply has a noise spectral density of 5 nV/
√

Hz, and the total rms

voltage noise for frequencies below 100 kHz is about 50 µV. Since the -15V power

supply is only used in the second stage amplifier, this kind of performance is good

enough for the applications described here.

6.3.4 Detection circuits

Once we have a large signal (∼5V), we need to detect it and measure when it occurs.

Here the zero reference in time is taken to be the start of the ramp. We thus need

a trigger circuit to detect the voltage signal, and a timer to count the time elapsed

between the start of the ramp and the occurrence of a voltage signal.
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Figure 6.14: The ultra-low noise ±15 V power supplies. Each power supply employs

negative feedback with a bipolar junction transistor. A noise spectral density of

1.0 nV/
√

Hz is achieved for the +15 V power supply and 5 nV/
√

Hz for the -15V

power supply. The 24 V input is from two 12 V lead acid batteries in series.
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Schmitt trigger and optical transmitter

We could use a timer to directly detect the voltage signal, but then we need to

put the timer right next to the output of the second stage amplifier in order to

preserve the speed of the waveform. This is not desired because the timer, which

must communicate with a computer, can cause grounding and noise problems and

affect the performance of the ultra-low-noise voltage amplifiers.

To avoid this problem, we built our own trigger circuit that can run on batteries.

Fig. 6.15 shows our trigger circuit, which is basically an adjustable negative level

Schmitt trigger with very small hysteresis.

When the voltage decreases below some threshold value, the output of the op-

amp will switch from -5 V to 5 V (due to the clamping of the diode, the actual

output is -0.7 V or 5 V). The threshold depends on the resistances, and is given by

Vth = −5
RR2/(R + R2)

R1 + RR2/(R + R2)
− 5

RR1/(R + R1)

R2 + RR1/(R + R1)
(6.21)

Thus we can adjust the trigger level by changing R. The hysteresis of the circuit is

given by

Vhys = 10
RR2/(R + R2)

R1 + RR2/(R + R2)
(6.22)

and can be made very small by choosing R << R1.

To keep the hysteresis small, we do not want to use a large R to increase the

adjustable range of the trigger level. Instead we use two different values of R2 to

provide a large adjustable range for the trigger level. In our case we used 1 kΩ and

4.7 kΩ for R2 to provide low and high trigger levels.

The power for the Schmitt trigger comes from 12 V lead-acid batteries (5 V and

-5 V voltage regulators are also used). Note in Fig. 6.15, the output of the Schmitt

trigger is sent to an optical transmitter. By using an optical transmitter, we avoid

making electrical connections through the screened room wall and ensure all the
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Figure 6.15: The Schmitt trigger. It is built using positive feedback on a fast

voltage comparator. The trigger threshold is set by the ratio of R2 to R1 with small

adjustment by changing the variable resistance R. The output of Schmitt trigger

goes to an analog buffer for driving an LED which drains a large current (∼100

mA).
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battery-powered electronics inside the screening room are properly grounded.

Optical receiver and timer

The optical output from the transmitter is sent through an optical fiber to a receiver

outside the screened room. Another Schmitt trigger is used to convert the small

output signal from the receiver to a large digital signal. The circuit is shown in Fig.

6.16. Basically the output of this circuit is high when there is no light at the input

and becomes low when light comes in.

The signal from the second Schmitt trigger is fed to the stop terminal of a timer.

The timer used in our experiment is a Stanford Research Systems Model 620. The

precision of the timer for a single shot is typically 25 ps. 3 We note that the input

terminal has a rms noise of 350 µV, which can lead to a large trigger jitter in timing

signals with slow transition edges. The start of the timer is triggered by a sync

signal from the function generator when the ramp is started.

To prevent forming ground loops and keep the ground of the function generator

separated from the grounds of the timer and the computer, we also insert an opto-

isolator between the sync output of the function generator and the start input of

the timer.

6.3.5 Labview programming

The ’flight’ time from the start of the ramp to the arrival of a voltage signal, which

is captured by the timer, can be retrieved by a computer through a GPIB interface

controlled by a Labview program. This measurement can be repeated as many

times as needed, and we typically accumulate 105 switching events to generate a

histogram.

3The absolute accuracy is much worse, typically 500 ps plus that due to an error of about 15

mV in the trigger level.
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Figure 6.16: The optical receiver and converter. The optical receiver converts the

light to a small voltage spike of a few hundred mV and a Schmitt trigger is used to

amplify this voltage spike to a negative -5V signal. With AC coupling and adding

a 2.5V shift, the signal is converted to a standard TTL signal with high for no light

and low for light. A digital buffer is used to drive low input impedance devices if

necessary.
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Labview programming can also be used to control the parameters of various

devices, such as the function generator and the microwave generator. For mapping

out the spectra of the system, it is necessary to do a frequency scan. This process

can be automated through Labview programming and data can be taken overnight.

Furthermore, we can use the computer to synchronize two devices. In the timing

experiment where switching from both junctions is recorded, the synchronization of

the two timers can be implemented through Labview programming.

6.4 Summary

In this chapter I discussed the experimental setup involved in this experiment, in-

cluding the dilution refrigerator, the wiring inside the refrigerator, and the instru-

mentation. I also discussed the importance of microwave filtering and rf filtering,

and how the required filtering was implemented through our wiring inside the fridge.

On the apparatus side, I described the demands we have on the signal-to-noise ratio

and how these demands were met through our home-made electronics. In short, we

need careful wiring of the fridge and high-performance electronics (low noise and

large bandwidth) to achieve the kind of sensitive measurements we want.
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Chapter 7

Dissipation and Decoherence in Single

Qubits

In this chapter, I present measurement results on my samples. In particular I focus

on characterization of dissipation and decoherence in Josephson junction qubits.

The two important time scales that I want to deduce from my measurements are

the dissipation time T1 and the coherence time T2. Table 7.1 lists the key parameters

for the six different samples on which measurements were made.

7.1 Results on a resistively isolated Josephson junc-

tion sample RJJ-Al

Using the time-of-flight technique, junction switching histograms for sample RJJ-

Al sample were obtained under different conditions. Figure 7.1 shows a histogram

taken at the base temperature of the refrigerator (25 mK).

Using the method described in Chapter 2 and a calibration of the ramp function

Ib(t), I convert the histogram to a curve of escape rate versus bias current, which is

shown in Fig. 7.2.

I used the master equation discussed in Chapter 3 to calculate the total escape

rate for a junction with critical current I0, capacitance C, shunt resistance R, and
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Table 7.1: List of junction qubits that were measured

Samples I∗0 C Isolation additional

filtering

RJJ-Al 464.4 nA 0.3 pF On-chip resistor, R = 100 kΩ Noa

LCJJ-Al 13.330 µA 4.25 pF SMD LC, 10 nH, 10 pF Yesb

LCJJ-Nb1 70.891 µA 4.64 pF On-chip LC, 10 nH, 80 pF Yesc

LCJJ-Nb2 15.421 µA 4.8 pF On-Chip LC, 8 nH, 80 pF Yesd

RESJJ-Nb 125.28 µA 1.1 pF On-Chip λ/2 resonator Noe

LJJJ-Nb 34.055 µA 4.50 pF On-chip LJ, 3.3 nH,30pH,30pH Yesf

∗I0 and C found by fitting measurement results to theory.

aThermocoax directly connected to the junction.

b250 Ω resistor at Mixing Chamber followed a 1-meter-long LakeShore cable.

cCommercial rf filter (30 MHz rolloff) at Mixing Chamber followed by home-made

Cu-powder filter.

dHome-made rf filter (1 MHz rolloff at Mixing Chamber followed by home-made

Cu-powder filter.

eThermocoax directly connected to the junction.

fHome-made rf filter (13 MHz rolloff) at Mixing Chamber followed by home-made

Cu-powder filter.
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Figure 7.1: A switching histogram for sample RJJ-Al. Data (Data file: 082101b.dat)

taken at the base temperature of the fridge (25 mK). The ramp rate was 53 µA/s.
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Figure 7.2: Escape rate curve for sample RJJ-Al. Points are data and the solid line

is a fit using the master equation 3.2 discussed in Chapter 3 with I0 =464.6 nA,

RC = 25 ns, T = 155 mK. The ramp rate was 53 µA/s.
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temperature T . I obtained a good fit of the data with the parameters I0=464.6

nA, RC = 25 ns and T = 155 mK. The fit is sensitive to the temperature and

the critical current, but not to the RC time constant, since escape is dominated by

the thermal activation process because of the high temperature. I can still get a

reasonable fit even using RC as small as 1 ns. I also note that the shunt resistance R

and the junction capacitance C cannot be independently determined in the thermal

regime. If I assume the junction capacitance is about 0.3 pF, estimated from the

junction size and the specific capacitance, then the shunt resistance is between 10

kΩ and 80 kΩ.

The high temperature obtained from fitting the data is not surprising since the

estimated maximum temperature in the NiCr resistor can be as high as 120 mK.

By suppressing the critical current of the junction, I measured the junction temper-

ature as a function of the critical current. The result shows a linear dependence of

temperature on the critical current (the temperature is 80 mK at a junction critical

current of 160 nA) [79], which is consistent with the model of heat transport via

electron diffusion.

At these high temperatures, all the switching happens at low bias currents where

the anharmonicity in the potential is weak. Due to thermal smearing of the energy

levels and the lack of anharmonicity, we would not be able to observe transitions

between individual levels when microwaves are applied. One might expect classical

resonant activation phenomena [128] at high temperatures. However in this sample,

I also could not observe classical resonance phenomena, suggesting the quality factor

of the system is low. From the measurements, I can estimate an upper bound of 10

for the quality factor, leading to a spectroscopic coherence time of less than 0.3 ns.

The short T1 and T ∗
2 are not inconsistent with our rough estimate of the shunt

resistance, which between 500 Ω and 1 kΩ since the NiCr resistor is shunted by the

capacitance formed between the heat sinks and the ground.
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7.2 Results on LC isolated Josephson junction

samples LCJJ-Al, LCJJ-Nb1 and LCJJ-Nb2

I have tried three LC isolated Josephson junction samples: LCJJ-Al, LCJJ-Nb1 and

LCJJ-Nb2. LCJJ-Al and LCJJ-Nb1 are single qubit samples, while LCJJ-Nb2 has

two coupled qubits. Here I just concentrate on single qubit characterization.

7.2.1 Spectroscopic coherence time

Figure 7.3 shows a set of histograms taken for sample LCJJ-Al at temperatures of

250 mK, 200 mK, 150 mK, 125 mK, 100 mK, 50 mK and 25 mK. As expected,

the histogram moves to the right as the temperature decreases, and the width of

the histogram shrinks, signifying thermal activation is being suppressed. Between

50 mK and 25 mK, the histogram does not change much. This is probably due to

self-heating since analysis of the 25 mK data suggests a junction temperature of 45

mK (see below). Nevertheless the temperature is low enough compared to the level

spacing (∼300 mK) that escape is dominated by quantum tunneling.

I next used microwave spectroscopy to probe the energy levels at the base tem-

perature of the refrigerator. An example of this measurement is shown in Fig.

7.4. One can clearly see two resonance peaks corresponding to |0 >→ |1 > and

|1 >→ |2 > transitions.

Due to the anharmonicity of the well, the |1 >→ |2 > level spacing is smaller than

the |0 >→ |1 > level spacing. Therefore when microwaves with a fixed frequency

are applied to the system, the higher order transition occurs at lower bias current1.

Figure 7.5 shows a plot of the relative difference, or enhancement.

From the enhancement plot, we can find the peak position and the peak width.

The peak position can provide us information on the critical current and the junc-

1The well gets shallower and the level spacings decrease as the bias current increases.
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Figure 7.3: Macroscopic quantum tunneling results on sample LCJJ-Al. Switching

histogram moves to higher bias currents as the temperature decreases. The width

of the peak also shrinks.
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Figure 7.4: Resonant activation on sample LCJJ-Al. Circles are measured escape

rates without microwaves. Crosses are escape rates when 5.5 GHz microwaves were

applied. Date were taken at the base temperature of the fridge (25 mK).
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Figure 7.5: Escape rate enhancement in sample LCJJ-Al when 5.5 GHz microwave

current is applied at 25 mK. Two resonances corresponding to |1 >→ |2 > and

|0 >→ |1 > transitions were observed. The full width at half maximum (FWHM)

of the |0 >→ |1 > is about 10 nA.
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tion capacitance, while the peak width, according to discussions in Chapter 4, is a

measure of coherence in the system.

Similar results to the one shown in Fig. 7.5 were obtained when we apply mi-

crowaves of various frequencies to the system. After identifying the peak positions,

I can plot the dependence of the level spacings on bias currents. The result is shown

in Fig. 7.6. By fitting the spectrum using the energy level spacing formulae of a

current-biased Josephson junction, I can then deduce the critical current and the

junction capacitance. For sample LCJJ-Al, I obtained I0 = 13.316± 0.008 µA and

C = 3.84± 0.2 pF.

With Fig. 7.6, I can also convert the resonance width in current to a frequency

width. This width can be interpreted as the sum of the widths of the levels involved

in the transition. For the |0 >→ |1 > transition shown in Fig. 7.5, I find the half

width at half maximum is 85 MHz, corresponding to a spectroscopic coherence time

of 1.9 ns. Using the same procedure, I can then find the spectroscopic coherence

times for different microwave frequencies. The result is shown in Fig. 7.7.

I note that Fig. 7.7 shows that the spectroscopic coherence time increases with

microwave frequency. One might think this is due to the frequency dependence of

the shunt resistance. However when we performed the measurement at a reduced

junction critical current, we found a larger coherence time at the same frequency.

Therefore this effect of smaller T ∗
2 at low frequencies cannot be due to frequency

dependence of the isolation scheme. Further analysis revealed that this effect is due

to current noise and tunneling rate broadening [102]. The resonance width measures

the uncertainty in the energy levels, which includes life-time-related uncertainties

such as the relaxation rate and tunneling rate. Since the tunneling rates from

the quantized energy levels increase exponentially with bias currents, at high bias

currents where the |0 >→ |1 > level spacing is small, the tunneling rate can cause

severe resonance broadening. Current noise also tends to broaden resonances at

low frequencies [99]. This is because the |0 >→ |1 > level spacing decreases more
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Figure 7.6: Energy spectrum of sample LCJJ-Al. Resonances positions were mea-

sured for different microwave frequencies. Data were taken at the base temperature

of the refrigerator (25 mK).
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Figure 7.7: Spectroscopic coherence time T ∗
2 for sample LCJJ-Al. The T ∗

2 is about

2 - 3 ns. It gets shorter at low frequencies due to current noise and the increased

tunneling rate.
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rapidly at high bias currents (see Fig. 7.6), therefore for the same amount of current

noise, the level spacing fluctuation is larger at high bias currents.

I also performed spectroscopy measurements on LCJJ-Nb1 and LCJJ-Nb2 at the

base temperature of the refrigerator2. One example of microwave-induced escape

rate enhancement is shown in Fig. 7.8 for sample LCJJ-Nb1.

For sample LCJJ-Nb1, the measurement was done for a large junction critical

current so that the plasma frequency is around 10 GHz. I could not observe clear

resonances at lower frequencies. This is not surprising since the junction was hot

(150 mK, see below) and this sample suffers from a large amount of low frequency

noise. We suspect this is due to poor thermal-anchoring of the commercial rf filter3

(from Mini-Circuits). The large thermal noise from the filter thus heats the junction.

From the width of the |0 >→ |1 > resonance, I found a spectroscopic coherence time

T ∗
2 of 0.9 ns.

For sample LCJJ-Nb2, a home-made rf filter (3dB point around 1 MHz) was used

to replace the commercial rf filter. We observed clear resonances at 5 GHz, and the

junction temperature (35 mK) deduced from the measurement was close to the base

temperature of the refrigerator. This junction has a critical current of 15.421 µA and

a capacitance of 4.8 pF. From the peak width, we found a spectroscopic coherence

time T ∗
2 ≈3 ns. I note that for this sample some changes outside the screened room

were also made, including isolating the sync output of the function generator from

the input of the timer using an opto-isolator4.

2For LCJJ-Nb2, one junction is ramped, and the other junction is biased at zero current.

Therefore the two junctions are effectively decoupled and the measurement can be considered to

probe single junction properties.

3The commercial rf filter is sealed in a stainless steel barrel with SMA connectors at the two

ends. Inside the barrel the body of the filter is mounted on a plastic circuit board that is a poor

thermal conductor.

4The peak width with the opto-isolator was 30% smaller than that without the isolator.
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Figure 7.8: Escape rate enhancement when 9.8 GHz microwaves applied to sample

LCJJ-Nb1. Three resonances corresponding to |2 >→ |3 >, |1 >→ |2 > and |0 >→
|1 > were observed. The full width at half maximum(FWHM) of the |0 >→ |1 >

transition is about 27 nA.
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7.2.2 Analysis of the relaxation time in LCJJ-Al and LCJJ-

Nb1

In the absence of current noise, the spectroscopic coherence time T ∗
2 should be equal

to the coherence time T2 and twice the relaxation time T1. We expected T1 for these

LC isolated qubits to be at least 200 ns. There are two questions that need to be

answered: first, what is T1 in these qubits? Second, what is causing the short T ∗
2 ?

To answer the first question, a reliable measurement of T1 would be helpful. We

can get a rough estimate for T1 by answering the second question. Note that the

resonance widths for the |0 >→ |1 > and |1 >→ |2 > transitions were in the ratio

of 1 to 1.3 instead of 1 to 3, which would have been the case if the broadening were

due to dissipation alone. Therefore there must exist another source of decoherence

in addition to dissipation. The fact that the peaks have nearly the same width in

current suggests that the broadening is caused by low frequency current noise, which

would produce just such a simple ’smearing’ along the current axis.

I can use the stochastic Bloch equation (see Chapter 4) to analyze the resonance

shapes. Shown in Fig. 7.9 are the measured spectrum (circles) for sample LCJJ-

Al where 5.5 GHz microwaves were applied to the system and a best fit (dashed

curve) from simulating Eq. 4.18 with R = 2.75 kΩ , T = 44.7mK, σI = 6.7 nA,

fc = 600 MHz, I1 = 0.1744 nA, I0 = 13.330 µA and C = 4.25pF. Here I1 denotes

the microwave current amplitude. Notice I have assumed a noise with a constant

spectral density from 0 to fc and a total rms value of σI .

I note that the measured spectrum and simulations are in very good agreement,

and the cutoff frequency (600 MHz) and the level of rms current noise (6.7 nA)

are reasonable for our LC isolation circuit. In fact, we expect the noise is centered

around 1/2π
√

LiCi ≈ 500 MHz, and the total rms value is
√

kBT/L = 7.9 nA.

Although there are seven fitting parameters, close examination shows that the two

peaks are neither Lorentzian nor Gaussian, so the good fit I have obtained is non-

187



FWHM

13.6 nA

FWHM

10.8 nA

2 =13.4 nAs
I

Figure 7.9: Noise-induced resonance broadening for sample LCJJ-Al. The fitting

parameters are R = 2.75 kΩ , T = 44.7mK, σI = 6.7 nA, fc = 600 MHz, I1 =

0.1744 nA, I0 = 13.330 µA and C = 4.25 pF.

188



trivial.

From these parameters I find T1 = RC = 12 ns. I also note that the observed

half width (∼5 nA) of the |0 >→ |1 > transition is considerably smaller than the

1.65σI (∼11 nA) width that one would expect from Eq. 4.46. This suggests the

high frequency part of the spectrum is averaged out and does not contribute to

broadening, which agrees with our prediction for fc >> 1/2πT1.

To fit the measured spectrum for sample LCJJ-Nb1, simulations using the stochas-

tic Bloch equation were also performed. The result is shown in Fig. 7.10 with circles

being data and the dashed curve being a best fit to the data with the parame-

ters: R = 1.5 kΩ , T = 150 mK, σI = 10.3 nA, fc = 30 MHz, I1 = 3.1 nA,

I0 = 70.891 µA and C = 4.64 pF. For this junction the cutoff frequency (30 MHz)

is much lower than the resonance frequency of the on-chip LC network (180 MHz),

perhaps due to the fact that the commercial rf low-pass filter is dominating the

noise contribution and it has a resonance frequency at 30 MHz. 5 The level of rms

current noise is also larger than that for LCJJ-Al due to the elevated temperature

of the rf filter.

From the above parameters I find T1 = RC = 7 ns. I note that the observed

half width (∼14 nA) of the |0 >→ |1 > transition is close to 1.65σI (∼17 nA). Since

in this case fc ≈ 1/2πT1, the noise is not high frequency and we do not expect the

effect of the noise to be averaged out. The result of this is the resonance width is

determined by the total rms current noise.

Note that for both samples T ∗
2 (2 ns for LCJJ-Al and 1 ns for LCJJ-Nb1) is

much less than the relaxation times T1 (12 ns for LCJJ-Al and 7 ns for LCJJ-Nb1).

This suggests that in our system decoherence is dominated by current noise rather

than dissipation.

5The 3-dB point of the rf filter is 1.9 MHz at room temperature, but the inductance is built

from a ferrite core whose magnetic moments are completely saturated at millikelvin temperatures

leading to an increase in the 3-dB point to 30 MHz.
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Figure 7.10: Noise-induced resonance broadening for sample LCJJ-Nb1. The fitting

parameters are R = 1.5 kΩ , T = 150mK, σI = 10.3 nA, fc = 30 MHz, I1 = 3.1 nA,

I0 = 70.891 µA and C = 4.64 pF.
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I also note that the relaxation times deduced from this stochastic Bloch equation

analysis are much smaller than our expected values of at least 200 ns. The cause

of this inconsistency has not been determined so far. One possible explanation is

that there is extra dissipation due to quasiparticles generated after the junction

switches to the voltage state. Since quasiparticles act as a parallel channel for

dissipation and cannot be filtered by isolation circuits placed next to the junction,

our isolation schemes does not filter them. This quasiparticle poisoning problem

may be diagnosed by varying the duty cycle of the switching measurement. Some

preliminary measurements suggest that the temperature of the junction decreases

by a few millikelvin when the experiment repetition rate goes from 300 Hz to 10 Hz

[79]. However 100 ms of waiting time seems not to help much, which might imply

the quasiparticles have a very low recombination rate when fewer quasiparticles are

present. Work by Lang et al. [129] found that it can take more than 100 ms of

waiting time in order not to see noticeable changes in resonance widths. Despite

this, we have not seen conclusive evidence that quasiparticle poisoning is the cause

for shortening of the relaxation time.

On the other hand, I note that the shunt resistance R we measure is much higher

than the 50 Ω we would find if the junction were directly connected to the bias leads.

This suggests that the LC isolation scheme is working at some level by stepping up

the lead impedance around the transition frequency, but it is not doing a good job

of blocking low frequency current noise.

7.2.3 Relaxation time in LCJJ-Nb2

The level-depletion technique discussed in Chapter 3 can be used to measure the

relaxation time T1.

This technique relies on measurement of the escape rates and the collapse feature

corresponding to population depletion in high levels. The measurement must be
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carefully performed to avoid junction critical current drift, electronics drift and

other features such as bistable switching6. Since the collapse feature occurs at the

bias current where the tunneling rate from the |1 > state is equal to the relaxation

rate, one needs to be able to measure escape rates that are as high as the relaxation

rate. This typically requires a moderate ramp rate for the bias current in order to

avoid excessive escape at lower escape rates.

For sample LCJJ-Nb2, we were able to measure a collapse feature [130]. Figure

7.11 shows the measured escape rates at 25 mK and 90 mK. One can clearly see

the 90 mK escape rate curve collapses to the 25 mK escape rate curve at 33.45

µA, signifying population depletion in the first excited state. By using Eq. 3.2 in

Chapter 3, good fits to the data were obtained with I0 = 33.65 µA and C = 4.2 pF

for the 25 mK curve and two additional parameters R = 1 kΩ and T = 98 mK for

the 90 mK curve.

From these parameters, we thus deduce a relaxation time of T1 = 4 ns for the

junction. We note the spectroscopic coherence time deduced for the same junction

but at a different critical current (15.421 µA) is T ∗
2 = 3 ns. This indicates reso-

nance broadening due to current noise in this sample since if only dissipation were

responsible for the resonance width we should have found T ∗
2 = 2T1 = 8 ns.

7.3 Results on a resonantly isolated Josephson

junction sample RESJJ-Nb

We tried spectroscopy measurement on sample RESJJ-Nb, but no clear resonances

were observed in the frequency range of 9 GHz-11 GHz, where the resonator is

supposed to provide isolation. One possible explanation is the frequency at which

6Sometimes junction switching displays two distinct voltage signals, this may create a bump

feature that resembles the real collapse feature corresponding to population depletion.
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Figure 7.11: Population depletion in sample LCJJ-Nb2. Squares and triangles are

data, lines are fits using the master equation. Notice the collapse feature occurs at

33.45 µA. The 25 mK data were fitted with I0 = 33.65 µA and C = 4.2 pF and the

90 mK data was fitted with two additional parameters R = 1 kΩ and T = 98 mK.

The current ramp was 0.7 A/s.
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the resonant circuit works is outside the frequency range that has been probed.

The population depletion technique was also used to measure the relaxation time

in this system (see Fig. 7.12).

From the collapse feature at 124.3 µA, I estimate the background escape rate is

5× 104/s. Therefore a rough estimate of the relaxation time will be 40 ns7.

7.4 Results on an LJ isolated Josephson junction

sample LJJJ-Nb

Switching histograms of ramping the bias current at many fixed flux currents were

taken to find out Li and M (see Fig. 7.13). When the bias current Ib and the

flux current If = LiIb/M were applied simultaneously, one guarantees the qubit

junction switches first assuming no flux trapped in the loop (see Chapter 5). A

typical histogram under this biasing scheme is shown in Fig. 7.14. The multiple

switching states are a result of different flux trapped in the closed loop formed by

the junctions and the inductor. The two adjacent bias currents at which escape

happens are separated by Φ0/Li, indicating the fluxes trapped in the junction loop

for the two initial states differ by one flux quantum.

Since each sub-histogram corresponds to a different initial state, escape rates

should be calculated for each sub-histogram. For better statistics, the sub-histogram

with the largest weight was picked for data analysis.

7.4.1 Spectroscopic coherence time

When microwaves were applied to sample LJJJ-Nb, sharp resonance peaks were

observed as shown in Fig. 7.15. From the peak width and measurements of ∆E vs.

7By pumping the system with microwaves and then turning off the microwaves, I find the escape

rate curve has a decay time of 10 ns.
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Figure 7.12: Population depletion in sample RESJJ-Nb. Notice the collapse feature

occurs at 124.3 µA. From that, I estimate the background escape rate is 5× 104/s.

Therefore a rough estimate of the relaxation time will be T1 = 40 ns.
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Figure 7.13: A switching histogram for sample LJJJ-Nb while bias current ramped

and flux current fixed. The measurement is then repeated for many different fluxes.

Multiple switching histograms are due to different flux states of the system.
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Figure 7.14: A switching histogram for sample LJJJ-Nb while bias current and

flux current are ramped simultaneously such that If ≈ LiIb/M . Multiple switching

histograms are due to different flux states of the system.
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I, we deduce the spectroscopic coherence time T ∗
2 ≈ 4.4 ns.

At elevated temperatures, in addition to the |0 >→ |1 > transition, |1 >→ |2 >

and |2 >→ |3 > transitions were also observed. The widths of these transitions are

1:1.5:2, not quite in the ratio of 1:3:5, but broadening of higher order transitions

are clearly visible. This suggests the resonance width is dominated by decoherence

from dissipation. However, it could also be due to escape rate broadening. I note

that the resonance widths also broaden was observed at higher temperatures. This

is expected as the resonance width accounts for all the uncertainties in the energy

level, including relaxation rate, tunneling rate and thermal-noise-induced inter-level

transition rates that increase with temperature.

7.4.2 Rabi oscillations

We attempted Rabi oscillations experiments in several samples, but only LJJJ-Nb

sample yield oscillations. We chose the start of the microwave pulse to be the center

of the resonance peak measured under continuous microwaves. The ramp was also

slow enough such that the system was in resonance with the applied microwave

for a time interval that was much longer than the expected coherence time. The

microwave pulse is turned off at the end of the bias current ramp. A histogram

obtained for 7.6 GHz microwaves is shown in Fig. 7.16.

Oscillations in the counts were clearly visible corresponding to coherent pumping

between the ground state and excited states. The histogram can be converted to

escape rate Γm(t) (see Fig. 7.17).

Assuming just two levels are involved, we can write the probability of finding

the system in the first excited state |1 > at time t,

P1(t) =
Γm(t)− Γ0(t)

Γ1(t) + Γ0(t)
≈ Γm(t)

Γ1(t)
(7.1)

where Γ0 and Γ1 are the tunneling rates from the ground state and the first excited
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Figure 7.15: Escape rate enhancement on sample LJJJ-Nb (7.6 GHz). Data taken

at 25 mK, but weak |1 >→ |2 > transition is still visible (not shown here). The full

width at half maximum for the |0 >→ |1 > transition is about 5.5 nA corresponding

to T ∗
2 of 4.4 ns.
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Figure 7.16: Switching counts oscillation on sample LJJJ-Nb (7.6 GHz). The data

were taken with the sweep method introduced in Chapter 4 with microwaves turned

on at t = 0.
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Figure 7.17: Escape rate oscillation on sample LJJJ-Nb (7.6 GHz). Escape rates

converted from the histogram shown in Fig. 7.16.
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state respectively, and can be calculated using the junction parameters. In fact if one

finds Γm no longer increases with microwave power, then the system is in saturation

and the equilibrium value (after coherence is lost) of P1(t) should be 1/2. From

that, one can get Γ1 without doing any complicated calculations. The measured P1

as a function of t is plotted in Fig. 7.18.

Oscillation of the population in the first excited state is clearly visible, indicating

the system is oscillating between the ground state and the first excited state. This

behavior is commonly referred as Rabi oscillations between two levels in atomic

physics when excitations with the right frequency are applied to the system.

By fitting this oscillation curve using Eq. 4.64, we find T ′ = 10 ns. I note the

decay time of the coherent oscillations is neither T1 nor T2, but T ′ which is given by

(see Chapter 4)

1

T ′ =
1

2T1

+
1

2T2

(7.2)

Using T1 = 50 ns and T ′ = 10 ns, I find T2 ≈ 5.6 ns from Eq. 7.2. I note that I

have already assumed decoherence can be completely described by a phase coherence

time in order to obtain Eq. 7.2. In other words, I expect T ∗
2 = T2. Here I see that

the spectroscopic coherence time (4.4 ns) is slightly smaller than the spectroscopic

coherence time of 4.4 ns.

7.5 Summary

In this Chapter, I have presented results on six different qubits: RJJ-Al, LCJJ-Al,

LCJJ-Nb1, LCJJ-Nb2, RESJJ-Nb and LJJJ-Nb. Key time scales (T1, T ∗
2 and T ′

were deduced from the measurements. Table 7.2 summarizes the results.
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Figure 7.18: Rabi oscillations on sample LJJJ-Nb (7.6 GHz) microwaves applied

after t = 0. The microwave power is high, therefore the equilibrium value of P1 is

almost 1/2. The decay time of the oscillation is about 10 ns.
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Table 7.2: Times obtained for various qubits implemented

Samples Expected T1 T1 T ∗
2 T ′

RJJ-Al < 1 ns 1-25 ns < 0.3 ns -

LCJJ-Al 230 ns 12 ns 1.9 ns -

LCJJ-Nb1 120 µs 7 ns 0.9 ns -

LCJJ-Nb2 80 µs 4 ns 3 ns -

RESJJ-Nb 200 ns 40 ns - -

LJJJ-Nb 1 µs 50 ns∗ 4.4 ns 10 ns

∗Here the relaxation time is obtained by measuring the decay of the escape rate

when microwaves were turned off [131].
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Chapter 8

Spectroscopy of Multiparticle

Entanglement

So far this thesis has only described results on single qubits. However, a real quan-

tum computer will require coupling together many qubits. In this chapter, I present

our spectroscopy measurements on sample LCJJ-Nb2, which acts as a coupled three-

particle system (resonator and two junctions). Our results demonstrate the qubit

properties of a resonator when it is coupled to a Josephson junction, provide evi-

dence for resonant coupling between two junction qubits, and indicate the existence

of entangled states between the three macroscopic degrees of freedom.

8.1 A coupled macroscopic three body system

Figure 8.1 shows a circuit schematic of our three-particle system, which consists

of two Josephson junctions (J1 and J2) connected together by a series inductor-

capacitor (LC) resonator. This system can be viewed in three distinct ways. First,

it can be viewed as an LC resonator that is isolated by and detected using two

junctions. Second, the system can be viewed as two junction qubits coupled by a

tuned element, the resonator. Third, it can be viewed as a three-qubit system where

the quantum states of the junction qubits and the resonator are all used for infor-
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mation storage and manipulation. All three viewpoints are useful in understanding

the system behavior, and will be discussed below.

The three degrees of freedom of this system are the macroscopic [71] quantum

variables γ1 and γ2 (the gauge-invariant phase differences across junctions J1 and

J2), and γ3 = 2πLI/Φ0 corresponding to the current flowing through the total

inductance L = L1 + L2. The classical equations of motion for the system are

m1γ̈1 + m3ω
2
30γ3 = −∂U1(γ1)

∂γ1

(8.1)

m2γ̈2 −m3ω
2
30γ3 = −∂U2(γ2)

∂γ2

(8.2)

γ̈1 − γ̈2 − γ̈3 = ω2
30γ3 (8.3)

where mi = Ci(Φ0/2π)2 , i = 1, 2, 3 are the effective masses for γ1, γ2 and γ3 with

C1 and C2 the junction capacitances and C3 the capacitance of the resonator. ω30 =

1/
√

LC3 is the angular frequency of the resonator, and U1(γ1) and U2(γ2) are the

washboard potentials for Junctions J1 and J2 respectively, given by

U1(γ1) = −Φ0

2π
(Ic1 cos γ1 + Ib1γ1) (8.4)

U2(γ2) = −Φ0

2π
(Ic2 cos γ2 + Ib1γ2) (8.5)

where Ic1 and Ic2 are the junctions’ critical currents, and Ib1 and Ib2 are the junction

bias currents.

One can construct the following Lagrangian

L =
1

2
m1γ̇

2
1 +

1

2
m2γ̇

2
2 +

1

2
m3(γ̇1 − γ̇2 − γ̇3)

2 − U1(γ1)− U1(γ1)− 1

2
m3ω

2
30 (8.6)

to generate the above equations of motions.
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Figure 8.1: A coupled macroscopic three-body system comprised of two Josephson

junctions and an LC resonator. Bias currents through the two junctions are Ib1 and

Ib2 respectively. Im is a microwave current that can be used to probe the energy

levels of the system. I have assumed the same capacitance C for the two junctions.

207



Given the Lagrangian, one can find the canonical momenta pi , i = 1, 2, 3 for the

three degrees of freedom

p1 = m1γ̇1 + m3(γ̇1 − γ̇2 − γ̇3) (8.7)

p2 = m2γ̇1 −m3(γ̇1 − γ̇2 − γ̇3) (8.8)

p3 = −m3(γ̇1 − γ̇2 − γ̇3) (8.9)

and obtain the following Hamiltonian

H =
(p1 + p3)

2

2m1

+
(p2 − p3)

2

2m2

+
p2

3

2m3

+ U1(γ1) + U1(γ1) +
1

2
m3ω

2
30 (8.10)

In this experiment, the junctions have the same area, so we can assume C1 = C2 = C

and thus m1 = m2 ≡ m = C(Φ0/2π)2.

To see the coupling between the three degrees of freedom, we rewrite Eq. 8.10 by

introducing a renormalized mass m′
3 = (Φ0/2π)2C3C/(C +2C3) and a renormalized

frequency ω3 = 1/
√

L3C3C/(C + 2C3) for the LC resonator. We then have

H =
p2

1

2m
+ U1(γ1) +

p2
2

2m
+ U2(γ2) +

p2
3

2m′
3

+
1

2
m′

3ω
2
3γ

2
3 + ξ

p1p3√
mm′

3

− ξ
p2p3√
mm′

3

(8.11)

where ξ =
√

C3/(C + 2C3) is a dimensionless coupling coefficient.

The first two terms in Eq. 8.11 are the Hamiltonian for J1 alone. It has dynamics

analogous to that of a particle moving in a tilted washboard potential as discussed

in Chapter 2. The second pair of terms describes J2, which has the same dynamics

as J1, while the third pair describes the harmonic oscillator dynamics of the LC

resonator. Finally, the last two terms represent capacitive coupling between each

junction and the resonator. The momenta in the Hamiltonian are proportional
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to the charge stored on each capacitor in the circuit [132], and thus the coupling

between the LC oscillator and each qubit is simply electrostatic.

Sample LCJJ-Nb2 was made by Hypres, Inc. A photo of the sample is shown

in Fig. 5.12 in Chapter 5. The Josephson junctions are thin-film 10 µm × 10 µm,

Nb/AlOx/Nb junctions on a 5 mm × 5 mm silicon chip. The coupling inductor is

a 780 µm × 90 µm thin-film niobium loop connecting the two junctions, and the

coupling capacitance consists of two capacitors in series, each of them formed by 60

µm × 60 µm parallel niobium plates separated by a 200 nm layer of SiO2. With this

geometry we estimate the inductance L = 1.5 nH and the capacitance C3 = 0.37 pF.

The chip is mounted inside the Cu sample box, and all the measurements presented

in this Chapter were preformed at the base temperature of the refrigerator (25 mK).

As discussed in Chapter 3, microwaves can be applied to the system to drive

transitions from the ground state to the excited states. Since the excited states

have much higher tunneling rates, by measuring the enhancement in escape rate,

we can probe the quantized energy levels in the system.

8.2 An LC resonator qubit

Figure 8.2 shows the spectrum of the system when the bias current for junction J1

is ramped and junction J2 is held at Ib2 = 0. The circles denote measured resonance

peak positions when microwaves are continuously applied to induce transitions from

the ground state to excited states. The dashed lines are from quantum mechanical

calculations using the Hamiltonian in Eq. 8.11 with the following parameters: Ic1 =

21.388 µA, Ic2 = 22.536 µA and C = 4.8pF, L = L1 + L2 = 1.71 nH and Ib2 = 0.

The zero-biased junction J2 is effectively decoupled from the rest of the system since

it has a much larger energy scale (∼19 GHz) than both junction J1 and the LC

resonator (∼7 GHz). Therefore, we observe a spectrum essentially due to junction

J1 and the LC resonator only.
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Figure 8.2: Spectrum of junction J1 coupled to an LC resonator. J2 is zero-biased

and thus essentially decoupled from the rest of the system. Circles are data, dashed

lines are fits from Eq. 8.11 with the parameters: Ic1 = 21.388 µA, C = 4.8 pF,

L = L1 + L2 = 1.71 nH and Ib2 = 0.
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The minimum avoided crossing between the first excited state and the second ex-

cited state occurs at Ib1 = 21.18 µA. Entangled states of the form (|001 > ±|100 >

)/
√

2 are predicted here, where the first, second, and third positions in the ket denote

the states of J1, J2, and the resonator, respectively. The next three excited states

at the degeneracy point are (|002 > +|200 > −√2|101 >)/2, (|002 > −|200 >)/
√

2,

and (|002 > +|200 > +
√

2|101 >)/2.

Figure 8.3 shows the measured spectrum for the case Ib1 = 0 while ramping

the bias current for J2. We find good agreement between data and theoretical

calculations using the same parameters as that for Fig. 8.3 and Ib1 = 0, i.e. we used

a single set of five parameters to fit the ten curves in Figs. 8.2 and 8.3.

Since a classical oscillator would only possess a single absorption frequency, the

observation of discrete higher order transitions in Figs. 8.2 and 8.3 such as transitions

from |000 > to states involving |002 >, provides evidence for the quantum nature

of the LC resonator. For a harmonic oscillator, this type of higher order transition

would be forbidden. But here, the resonator is coupled to the anharmonic junctions

and this leads to entangled states that can be excited. These states also allow

us to detect the state of the resonator through tunneling of the junctions. This

entanglement between a superconducting qubit (the Josephson junction) and an LC

resonator can be thought of as a macroscopic cavity QED experiment, analogous to

the entanglement between a two-level atom and a single mode of an electromagnetic

cavity [44].

8.3 Entanglement between three qubits

We can also use spectroscopy to probe entangled states between all three degrees

of freedom. We proceed by biasing J2 at a constant current while ramping the bias

current for J1. Figure 8.4 shows a measured spectrum, where red indicates enhance-

ment in escape rate when microwaves are continuously applied (this measurement
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Figure 8.3: Spectrum of junction J2 coupled to an LC resonator. J1 is zero-biased.

Circles are data, dashed lines are fits from Eq. 8.11 with the parameters: Ic2 =

22.536 µA and C = 4.8 pF, L = L1 + L2 = 1.71 nH and Ib1 = 0.
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is referred to as the ”3-qubit experiment” later on.). The dashed curves are the

calculated transitions using the Hamiltonian in Eq. 8.11 with the previously deter-

mined parameters and one additional adjustable parameter Ib2 = 22.330 µA (the

measured Ib2 is 22.110 µA; the discrepancy appears to come from the calibration

of the current ramp which has overestimated the critical current of junction J2 by

1%).

Comparison with simulations indicate that the lowest three excited states are

formed from the subspace spanned by |100 >, |010 > and |001 >. In our case

ω3 ≈ ω2, where ω2 is the |0 > to |1 > level spacing for J2. Therefore, for J1 at

low bias we expect the first two excited states to be (|001 > ±|010 >)/
√

2 with a

splitting of ξ~ω3 (see Fig. 8.4 for Ib1 < 21 µA).

Note the presence of a triple degeneracy point at Ib1 = 21.18 µA, where the first

three excited states make their closest approach. At this bias, the predicted lowest

three excited states are (|100 > −|010 > −√2|001 >)/2, (|100 > +|010 >)/
√

2,

and (|100 > −|010 > +
√

2|001 >)/2 with corresponding energies of ~ω3(1− ξ/
√

2),

~ω3 and ~ω3(1 + ξ/
√

2). The first and third excited states are entangled states

involving the two junctions and the LC resonator, while the second excited state

corresponds to an in-phase oscillation of the two junctions that does not couple to

the resonator. The higher levels shown in Fig. 8.4 also agree well with our calcula-

tions. The theoretical description of these quantum states, however, is significantly

more complicated than the lower levels, as they correspond to entangled states with

multiple excitations in all three degrees of freedom [133].

8.4 Resonant coupling between two junction qubits

We note that the observed avoided crossings between the in-phase state and the two

out-of-phase states at the triple degeneracy point are in good agreement with our

model, which predicts strong coupling with a dimensionless coupling coefficient of
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Figure 8.4: Spectrum of the macroscopic three-body system (sample LCJJ-Nb2)

at 25 mK. Color denotes measured enhancement in escape rate due to microwaves

when the bias current for J1 is ramped and J2 is biased at Ib2 = 22.330 µA. Red

for maximum enhancement and light blue for zero. The red line represents the

uncoupled level spacing for J1, and the horizontal blue and green lines are for J2

and the LC resonator respectively. The dashed curves are fits using Eq. 8.11 with the

parameters shown in Figs. 8.2 and 8.3 and Ib2 = 22.330 µA. At the triple degeneracy

point (Ib1 = 21.15µA) where the frequencies of the three particles are close to each

other (shown in the black box), entangled states between all three particles are

predicted.
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ξ/
√

2 =
√

C3/(C + 2C3)/2 ≈ 0.18.

When ω3 is much greater than either junction frequency and the junction frequen-

cies are detuned from each other, we expect the coupling strength is proportional

to ξ4. Quantum logic gates that are similar to the two-qubit gates [134] designed

for the purely capacitive coupling can also be built for this circuit.

This resonant coupling scheme, which offers the potential for a large ratio of

coupling to decoupling, opens up the possibility of using an LC resonator as a data

bus [135, 136, 48] for interacting multi-qubit systems in a superconducting quantum

computer.

8.5 Capacitive coupling between two junction qubits

When both junction frequencies are equal to the resonator frequency ω3, a resonant

coupling strength that is proportional to ξ is achieved between the two junction

qubits. However there is still coupling between the two junctions when ω3 is much

greater than either junction frequency but the two junctions are tuned to the same

frequency ω.

In the limit ω ¿ ω3, one should be able to ignore the energy stored in the induc-

tor. Therefore the coupling between the two junction qubits reduces to capacitive

coupling1. Quantum mechanically we can think of the LC resonator as being in its

ground state since its excited states have very high energies. Figure 8.5 shows a

schematic of the circuit in this limit.

For this regime of pure capacitive coupling, we only have two degrees of freedom,

γ1 and γ2, and the Hamiltonian for the system is

H =
p2

1

2M
+ U1(γ1) +

p2
2

2M
+ U2(γ2) + +ζ

p1p2

M
(8.12)

1At frequencies much below the resonance frequency of the series LC resonator, the resonator

behaves capacitively.
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Figure 8.5: Two capacitively coupled Josephson junctions. Bias currents through

the two junctions can be controlled by Ib1 and Ib2. Im is a microwave current and is

used to probe the energy levels of the system. I have assumed the same capacitance

C for the two junctions.
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where ζ = Cc/(Cc+C) is a dimensionless coupling coefficient and M =
(

Φ0

2π

)2
C(1+ζ)

is the renormalized mass for each junction.

This capacitive coupling regime was what we examined in our early experiments

[137]. To do this, we applied a magnetic field that is in the plane of the junction

overlap area to suppress the junction currents so that the junction frequencies were

around 5 GHz, reasonably lower than the resonator frequency 7 GHz. Figure 8.6

shows the measured spectrum when the bias current J2 is ramped and that for J1

is held at a constant bias of Ib1 = 14.630 µA (this measurement is referred to as the

”2-qubit experiment” later on). Note that the minimum avoided crossing occurs at

Ib2 = 15.275 µA, where theory predicts the first two excited states are of the form

(|01 > ±|10 >)/
√

2. Here the first and second position in the ket denote J1 and J2

respectively.

Also shown in Fig. 8.6 are resonance peak positions (black squares) measured

when the bias current J2 is ramped and J1 is held at Ib1 = 0. In this case, the two

junctions are effectively decoupled; thus one is measuring the spectrum of junction

J2 only. The dashed diagonal black curve is a fit to the data using the single junction

|0 >→ |1 > level spacing formula with Ic2 = 15.421 ± 0.002 µA and C(1 + ζ) =

5.63± 0.07 pF.

The critical current for junction J1 can also be found by measuring the spectrum

of junction J1 when J2 is zero-biased. Fitting the data leads to Ic1 = 14.779 ±
0.004 µA.

We then fit the spectrum shown in Fig. 8.6 using the Hamiltonian in Eq. 8.12

and varying Ic1, C and Cc. The fits obtained using Ic1 = 14.778 µA, C = 4.8 pF

and Cc = 0.7 pF are shown as white lines in Fig. 8.6. Note the parameters obtained

are in good agreement with those obtained by fitting the single junction spectra.

One surprise was that the coupling capacitance Cc is almost twice C3 (0.37 pF)

found before in the 3-qubit experiment, the physical capacitance in the circuit. This

discrepancy is not accidental, although it puzzled us for some time. The key thing
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Figure 8.6: Spectrum of two capacitively coupled junctions. (a) Measured resonance

enhancement peak for |00 >→ (|01 > −|10 >)/
√

2 transition for microwave power

applied at f=4.7 GHz. (b) Color plot of normalized ∆ as a function of microwave

drive frequency (y-axis) and bias current Ib2 through J2 (x-axis). Each data set

(horizontal stripe, as in (a) above) is normalized so the highest peak is unity (red),

with green signifying zero, and blue negative enhancement. For each frequency, we

adjust the microwave power so the maximum ∆ < 5. Open circles mark centers

of resonance peaks. Solid white lines are from theoretical calculation using the

following parameters: Ic2 = 15.421 µA , Ic1 = 14.778 µA, Ib1 = 14.630 µA, C =

4.8 pF and Cc = 0.7 pF . For comparison, decoupled |0 >→ |1 > energy spacing

for J1 is shown by the dashed horizontal black line and cross while J2 is the dashed

diagonal black line and squares.
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to realize is that we can neglect the inductor only when ω3 is much larger than the

junction frequency. But here, the junction frequency (5 GHz) is not small compared

to ω3 (7 GHz), therefore one still has to include the effect of the LC resonator.

Analysis of this regime using Eq. 8.11 shows that the LC mediated interaction

between the two tuned junctions can be modeled by a frequency dependent coupling

[133]

ζ(ω) = ξ2/(1− ξ2 − ω2/ω2
3) (8.13)

where ω is the junction frequency. For ω= 5 GHz, and ω3= 7 GHz, we have ζ(ω) =

0.14, in good agreement with the measured number ζ = Cc/(Cc + C) = 0.13.

However for ω ¿ ω3 and small coupling, Eq. 8.13 reduces to ζ(ω) ≈ ξ2 = C3/C,

which is just the frequency-independent coupling coefficient discussed in the pure

capacitive coupling model with Cc = C3.

In comparison with the resonant coupling regime, the coupling between the two

junctions decreases from ξ to ξ2 with this low-frequency capacitive coupling scheme.

The coupling strengths in both schemes are proportional to ξ4, when the two junc-

tions are detuned from each other and the resonator.

8.6 Coherence times

While the resonance peak positions reveal the spectrum of the system, the peak

widths contain information about the decoherence in the system.

The half width at half maximum of the peak can be converted to a width in

frequency, from which the spectroscopic coherence time T ∗
2 can be obtained (see

Chapter 4). For the spectrum shown in Fig. 8.6, we found T ∗
2 is about 2-4 ns for

both the single junction resonances and coupled junction resonances [79]. Similar to

the data shown in Fig. ?? for sample LCJJ-Al, the coherence times also get shorter

for lower frequencies probably due to higher tunneling rates and current noise.
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The spectroscopic coherence times for the resonances shown in Fig. 8.4 are

around 2 ns, which is shorter than that for the resonances shown in Fig. 8.6. In

the 3-qubit experiment, I used a different rf filter that has a much higher rolloff fre-

quency (∼16 MHz) than that for the 2-qubit experiment (∼2 MHz). This increase

in bandwidth may lead to a significant amount of current noise in the junctions as

discussed in Chapter 6. Thus I suspect this broadening is due to current noise.

I note that the resonances in Fig. 8.4 broaden severely for high bias currents.

Also, in Figs. 8.2 and 8.3, the level spacing for the third excited state drops vertically

on the right side, which deviates considerably from the fit. A similar phenomenon

also occurs in Fig. 8.4 but is not that pronounced as in Figs. 8.2 and 8.3. The cause

of this deviation is unknown. Further analysis is needed to understand this peak

shifting phenomenon, which seems to occur only for very broad transitions.

The higher states shown in Fig. 8.4 seem to be broader than the lower states.

This is probably because the upper states have much higher tunneling rates. In

particular, state decomposition shows |Ψ4 > has a large weight in |020 >, i.e. the dc-

biased junction (J2) is in its second excited state, which explains why the transitions

from |000 > to this state are so broad.

8.7 Summary

In this chapter, I presented microwave spectroscopy results on a coupled macroscopic

three-body system comprised of an LC resonator and two Josephson junctions. The

quantum nature of the resonator was revealed through coupling to Josephson junc-

tion qubits. Entangled states between the two junctions were probed when the

junctions are out of resonance with the LC resonator. Finally our results support

the existence of entangled states between all three degrees of freedom when both

junctions are in resonance with the LC resonator. This spectroscopy technique can

also be extended to study multi-qubit systems.
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Chapter 9

Correlated Escape Measurement

In the previous chapters I described how I used spectroscopy to probe the quan-

tized energy levels in single qubits, two capacitively coupled junction qubits and

a macroscopic three-qubit system. Comparison with quantum mechanical calcula-

tions implies that the states probed in the two-qubit and three-qubit experiments

are entangled states. For example, in the two-qubit experiment, theory predicts the

states are of the form (|01 > ±|10 >)/
√

2 at the minimum avoided crossing point.

However we have not directly measured these states. In addition, state measure-

ment is also required for quantum logic gates. In this Chapter I discuss a method

to do state measurement in the coupled qubit system (LCJJ-Nb2) and present some

preliminary results on measuring entangled states.

9.1 Measuring entangled states

The Hamiltonian of two capacitively coupled qubits in Eq. 8.12, when diagonalized,

will produce a set of energies and states. The energies form the spectrum of the

system that can be probed spectroscopically. Agreement between theoretically pre-

dicted spectrum and the measured spectrum will imply that the states, which have

not been measured directly, are probably like those predicted by theory. But can

we verify these states?
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9.1.1 Entangled states

The lowest excited state for the two coupled junction system is predicted to be of

the form

|Ψ >= α|01 > +β|10 > (9.1)

where |α|2 and |β|2 are the probability of finding the system in |01 > and |10 >

respectively, and |α|2 + |β|2 = 1.

Note |Ψ > in Eq. 9.1 cannot in general be written as a product of individual

qubit states. This leads to the following special property: the result of a measure-

ment on one particle depends on the state of the other particle, i.e., the result of a

measurement on one particle is correlated with that of a simultaneous measurement

on the other particle. This correlation does not depend on the distance between the

two particles, or whether there is physical interaction between the two. This kind

of states are said to be ”entangled”.

Therefore, to measure this state, we need two detectors that are simultaneously

measuring the states of each qubit. If the results are always |01 > or |10 > with

probabilities of |α|2 and |β|2 respectively, and |α|2+|β|2 = 1, then we have confirmed

the state1.

Therefore the problem becomes to measure both individual qubit states simul-

taneously and distinguish whether the outcome is |00 >, |01 >, |10 > or |11 >.

9.1.2 The measurement scheme

As discussed in Chapter 2, the tunneling rate Γ1 from the first excited state is much

higher than that from the ground state Γ0. Therefore, measuring the escape rate of

each junction seems to be a good way to distinguish the above four states, |00 >,

|01 >, |10 > or |11 >.

1There is a relative phase that remains undetermined.

222



If |1 > has a tunneling rate of infinity and |0 > has zero tunneling rate, then one

might expect the four states could be identified by four different escape phenomena:

(i) If no escapes are measured for both junctions, then it implies the system is

in |00 >;

(ii) If escape for J1 is measured but no escape for J2, then it implies the system

is in |10 >;

(iii) If escape for J2 is measured but no escape for J1, then it implies the system

is in |01 >;

(iv) If escapes are measured for both junctions, then it implies the system is in

|11 >.

However in reality Γ0 is not zero, and Γ1 is only 500-1000 times larger than Γ0.

This will complicate the simple state assignment given above. For example, events

where both junctions escape could mean the system is in |00 >. This uncertainty in

state assignment is called the measurement fidelity. By choosing appropriate biasing

conditions, the fidelity can be made reasonably high.

Another problem is the effect produced by escape of one junction on the other

junction. When the first junction escapes, the phase particle rolls down the wash-

board potential and radiates power in a frequency range from GHz to THz. Due

to the capacitive coupling between the two junctions (see Fig. 9.1(a)), this emitted

radiation is coupled2 to the other junction. Under this microwave radiation, the

second junction is forced to switch even if it was initially in the ground state. Due

to this effect, the states (|01 >, |10 > and |11 >) all correspond to events in which

both junctions switch. However, there is still some differences between the switching

events from the states:

(i) |01 > corresponds to J2 escaping first followed by J1 escaping.

(ii) |10 > corresponds to J1 escaping first followed by J2 escaping.

2The radiation can be expressed in terms of a microwave current with an amplitude of ζIc1,

where ζ is the coupling coefficient.
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(iii) |11 > corresponds to J1 escaping first followed by J2 escaping, or J2 escaping

first followed by J1 escaping.

The idea is that after one junction escapes, there is a short delay before the

other junction escapes. Therefore, in principle we can still distinguish |10 > from

|01 >. However for our sample LCJJ-Nb2, this delay is very small, typically 200 ps,

probably set by the inverse of the junction frequency (5 GHz). Figure 9.1(b) shows

a schematic of the timing of the escapes from the two junctions. In order to detect

this small delay, our detection circuit must be able to achieve a time resolution of

less than 200 ps; otherwise we will not be able to tell which junction escapes first.

Ultimately I was able to get a timing resolution of 100 ps by using ultra-low noise

amplifiers and a large bandwidth voltage line (see Chapter 6).

In our spectroscopy experiments, the polarities of the current ramps used to bias

the junctions are arbitrary. Usually the same polarities are used for the two ramps

that bias the two junctions. However, since the junction impedance becomes large

after it escapes, the bias current will flow through the coupling capacitance. This

extra current (ζIc1) will force the other junction to switch almost instantaneously.

To lessen this effect, we used opposite polarities for the two current ramps. In this

case, the first junction switching will tend to lower the bias current for the other

junction.

9.2 Correlated escapes from the ground state |00 >

It is possible to bias the junctions at such a low current that no escape can occur

from the ground states. However, since the escape rate from the first excited state

is only 500-1000 times larger than that from the ground state, it will take a very

long time to accumulate enough switching events. Therefore the experiment is run

with some escapes from the ground state.

Before studying correlated escapes from the excited states of the system, I first
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Figure 9.1: Correlated escape measurement on two capacitively coupled Joseph-

son junctions. (a) Two capacitively coupled Josephson junctions. Notice opposite

bias polarities were used for the two bias currents. (b) A schematic of the timing

experiment. If t1 < t2, then J1 escapes first, and vice versa.
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take a look at the correlation in escapes from the ground state, which already yields

some interesting results.

As in the 2-qubit spectroscopy experiment, I ramp the bias current Ib2 for J2

and fix the bias current Ib1 for J1. Since the bias current for J1 is fixed, it has a

roughly time-independent washboard potential and tunneling rates. However, the

level spacing and tunneling rates for J2 are changing as a result of the bias current

ramp. Figure 9.2 shows the tunneling rates from the ground states of the two

junctions. As the bias current for J2 increases, the tunneling rate (Γ0,J2) from the

ground state of J2 increases from much smaller than Γ0,J1 to much larger than Γ0,J1,

where Γ0,J1 is the tunneling rate from the ground state of J1.

Therefore at the point where Γ0,J2 = Γ0,J1 one should find 50% probability that

J1 escapes first and 50% probability that J2 escapes first. In general for the |00 >

state, the probability that J1 escapes first is determined by the ratio of the tunneling

rates

PJ1 =
Γ0,J1

Γ0,J1 + Γ0,J2

(9.2)

Therefore, for small Ib2, since Γ0,J2 ¿ Γ0,J1, we expect PJ1 to be equal to 1, and for

large Ib2 such that Γ0,J2 À Γ0,J1, we expect PJ1 to be essentially zero.

Figure 9.3 shows the measured switching histogram from the ground state of the

two coupled junction system. The x-axis is the bias current for J2 and the y-axis is

the delay (∆t = t2 − t1) between the two switching times for J2 and J1. The color

denotes the number of counts in each grid. Since ∆t = t2 − t1, ∆t > 0 implies J1

escapes first and ∆t < 0 implies J2 escapes first3. Therefore we expect to see J1

escapes first for small Ib2 and J2 escapes first for large Ib2. This is indeed observed.

Most escape events occur around 119.4 µA due to the large tunneling rate from the

3Note though that the ∆t = 0 line was chosen to make this happen. In the raw data, the

∆t = 0 line can be at some arbitrary number since the voltage signals from the two junctions have

different shapes, speeds, and trigger levels.
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Figure 9.2: Tunneling rates from the ground states of the two junctions. The

bias current for J1 is held constant, which leads to a constant Γ0,J1; however the

bias current for J2 is changing, resulting in a changing tunneling rate Γ0,J2. At

Ib1 ∼ 119.2 µA, the two rates cross each other.
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Figure 9.3: A 2-D switching histogram from the ground state. Note ∆t = t2−t1 > 0

implies J1 escapes first. Therefore J1 escapes first on the left side, and J2 escapes

first on the right side.

ground state of J2 that has caused all not-yet-switched junctions to switch.

We can then calculate the probability that J1 escapes first by taking the ratio of

the counts that are above the ∆t = 0 line to the total counts for each bias current.

The result is shown in Fig. 9.4. The solid curve is a theoretical prediction, in rough

agreement with the data. The probability does not quite go to unity for low Ib1 and

the measured transition region around 119.25 µA is broader than the calculation,

probably because the time resolution (∼100 ps) is not small compared to the delay

(200 ps).

As shown in Fig. 9.2, if we increase the fixed bias current for J1, then Γ0,J1 will

increase and cross the Γ0,J2 curve at a higher Ib2. The result of this is the transition

point in the delay plot (see Fig. 9.4) will shift to a higher bias current. Indeed this
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Figure 9.4: Probability that J1 escapes first from the state |00 > for sample LCJJ-

Nb2 at 25 mK. The solid curve is a prediction using Eq. 9.2 with the rates obtained

from the measurement.
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effect was also observed in our experiment.

9.3 Correlated escapes from excited states α|01 >

+β|10 >

The rough agreement between theory and data for the state |00 > provided some

plausibility to the idea of measuring states via escape event timing. Next I applied

continuous microwaves to drive transitions from the ground state to the excited

states and measured correlated escapes from the coupled junction system.

9.3.1 The spectrum

Figure 9.5 shows the measured spectrum of the system between 12 GHz and 15 GHz.

One sees two branches, one above 14 GHz and the other below 14 GHz. There is a

minimum avoided crossing at 119.15 µA. Since the frequency of the LC resonator is

around 7 GHz, these states are very likely to be coupled to the second excitation of

the resonator4. Therefore a full analysis using Eq. 8.11 in Chapter 8 is necessary to

figure out the state decomposition5. However if we approximate the LC resonator as

an inductor at these frequencies, then one would expect a position-position coupling

between the two junctions instead of a momentum-momentum coupling for junction

frequencies much lower than the LC resonance frequency. The result of this position-

position coupling is similar to that of capacitive coupling, which leads to entangled

states between the two junctions.

4Although we can run the experiment in a frequency range below 7 GHz, for small critical

current junctions the time resolution is not good enough to distinguish which junction escapes

first.

5At that time I did these measurements, we did not understand that we had an LC resonator

or its possible effects.
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Figure 9.5: Spectrum of the three-body system at high frequencies. Solid circles are

data. The line is a theoretical fit using the 2-qubit model with an effective capacitive

coupling. Note the three highlighted frequencies correspond to states where |β|2 is

believed to be approximately 1, 1/2 and 0, respectively.
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Therefore for the lower branch, I expect the states might be |10 >, (|10 > +|01 >

)/
√

2 and |01 > from left to right (see Fig. 9.5).

9.3.2 Theoretical prediction

Since these states probably involve the first excited state of the junction, we have to

consider the tunneling rates both from |0 > and |1 >. Figure 9.6 shows the tunneling

rates Γ0,J1, Γ1,J1, Γ0,J2, Γ1,J2 as a function of the bias current for J2. Since Ib1 is

held constant, Γ0,J1 and Γ1,J1 are time-independent, while Γ0,J2 and Γ1,J2 increase

with Ib2.

Similar to the correlated escape from the ground state, for an excited state with

a general form α|01 > +β|10 >, we expect the probability that J1 escapes first is

PJ1 = |α|2 Γ0,J1

Γ0,J1 + Γ1,J2

+ |β|2 Γ1,J1

Γ1,J1 + Γ0,J2

(9.3)

Under the conditions Γ0,J1 ¿ Γ1,J2 and Γ1,J1 À Γ0,J2, i.e. the tunneling rate from

|1 > is larger than that from |0 >, then PJ1 = |β|2. Thus the probability that J1

escapes first is a measure of |β|2. Notice the tunneling rate from |1 > is not always

larger than that from |0 >, because the bias current for junction J2 is changing. In

Fig. 9.6, this condition is satisfied only in a narrow region from 118.9 µA to 119.3

µA. Based on this discussion, we expect:

(i) For |10 >, the probability that J1 escapes first is ∼1;

(ii) For (|10 > +|01 >)/
√

2, the probability that J1 escapes first is ∼1/2;

(iii) For |01 >, the probability that J1 escapes first is ∼0.

9.3.3 Measurement results

Figure 9.7 shows the switching histogram when microwaves of 13.4 GHz were applied

to the system. Compared to the histogram for the ground state, there are some

additional counts at low bias currents and ∆t > 0. These are switching counts from
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Figure 9.6: Tunneling rates from the ground and excited states of the two junctions.

The bias current for J1 is held constant, which leads to constant Γ0,J1 and Γ1,J1.

However the bias current for J2 is changing, which results in changing tunneling

rates Γ0,J2 and Γ1,J2.
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Figure 9.7: The timing switching histogram when 13.4 GHz microwaves were applied

to sample LCJJ-Nb2. The expected state at this frequency is |10 >; this implies J1

escapes first, which is consistent with our measurement.

the excited state to which the system is pumped. All the counts due to microwaves

are in the region of ∆t > 0 signifying J1 escapes first, which implies the state should

be |10 >. This is consistent with our expectation of the state with a energy of 13.4

GHz according to the spectrum shown in Fig. 9.5.

Figure 9.8 shows the switching histogram when microwaves of 13.2 GHz were

applied to the system. Note the additional counts due to microwaves at 119.15 µA.

It seems most of the additional counts are in the upper plane where ∆t > 0, but

there are also some counts in the lower plane, suggesting |β|2 is neither unity nor

zero. Because of the large background escape from the ground state, for the counts

in the upper plane, we need to subtract the background to figure out the exact

portion of the counts that is due to escape from the excited state. We did not try

this subtraction so we could not perform a quantitative analysis of |β|2. On the
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Figure 9.8: The timing switching histogram when 13.2 GHz microwaves were applied

to sample LCJJ-Nb2. The expected state at this frequency is (|10 > −|01 >)/
√

2,

which implies J1 has a 50% probability to escape first.

other hand, based on the spectrum shown in Fig. 9.5, one expects the state has the

form of (|10 > −|01 >)/
√

2, i.e. |β|2 = 1/2. Therefore the data and theory are at

least in qualitative agreement.

Figure 9.9 shows the switching histogram when microwaves of 12.6 GHz were

applied to the system. In contrast to the above two cases, all the counts due to

microwaves now occur in the lower half plane where ∆t < 0. This means J2 now

escapes first, which implies the state should be |01 >. This is consistent with our

expectation of the state with an energy of 12.6 GHz according to the spectrum

shown in Fig. 9.5.

Due to the large background counts and the marginal time resolution, it is dif-

ficult to deduce a number for |β|2. However the measured states are qualitatively
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Figure 9.9: The switching histogram when 12.6 GHz microwaves were applied to

sample LCJJ-Nb2. The expected state at this frequency is |01 >; this implies J2

escapes first, which is consistent with our measurement.
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consistent with theoretical expectations. Thus after modification and improvement,

such as reducing the background escape from the ground state (or finding ways

to subtract it) and improving the time resolution, it may be possible to use this

correlated escape measurement technique to do quantitative state measurement.

9.4 Summary

In this chapter, I have described a technique to do state measurement, particularly to

measure the states of the form α|01 > +β|10 >. Measurement of correlation between

escapes of two junctions can be used to distinguish the four states: |00 >, |01 >,

|10 > and |11 >. Due to the coupling of the first junction to the second junction, we

cannot just track whether each junction escapes or not, but have to measure which

junction escapes first. With a time resolution of 100 ps, we demonstrated that it is

possible to tell which junction escapes first. The preliminary results on measuring

the excited states of a two-coupled-junction system indicate this correlated escape

measurement technique can be used to do quantitative state measurement.

One remaining issue is that when we observe an event in which J1 escapes and

then J2 escapes after a short delay, we cannot tell whether this corresponds to |10 >

or |11 >. However, in the above experiment since we are concerned only with the

first and second excited states, which do not contain |11 > according to theory, we

can just put |11 > aside. However, for gates in a real quantum computer, one does

not know which state is being measured, and all possible state decompositions need

to be considered. One possible solution to this problem is to decrease the coupling

between the two junctions to prevent forced switching of the junction that is in |0 >.

In general one expects the |11 > state to have a delay that is different from that for

the |10 > state. Further work on this aspect is needed.
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Chapter 10

Conclusion

In this thesis I have reported research on quantum computing using superconducting

circuits. My work involved two main components: characterization of a current-

biased Josephson junction qubit and investigation of coupling between multiple

qubits.

10.1 Characterization of a phase qubit

In characterizing a phase qubit, I attacked the problem theoretically and experi-

mentally.

The relaxation process was modeled using the master equation and effects of the

shunt resistance and temperature on the energy relaxation time (T1) of the qubit

were examined. A simple method of testing the quality factor of a qubit with a long

relaxation time, the population depletion technique, was suggested.

A stochastic Bloch equation was used to study decoherence in a phase qubit

theoretically. I found that the effect of high frequency noise can be simply described

by a dephasing rate (1/T2) due to averaging of the noise with frequencies above

the relaxation rate. However for low frequency noise, decoherence cannot be simply

described by a dephasing rate. In this case a spectroscopic coherence time (T ∗
2 )

is appropriate and includes decoherence due to both dissipation and noise. This

238



stochastic Bloch equation method can be readily generalized to analyze decoherence

in other types of superconducting qubits.

On the experimental side, a variety of qubit isolation circuits were designed

and T1 and T ∗
2 of the phase qubit with these isolation circuits were characterized

by several different methods. The resistively isolated junction qubit (RJJ-Al) had

a severe heating problem which prevented us from seeing quantum effects. All

three LC isolated junction qubits (LCJJ-Al, LCJJ-Nb1 and LCJJ-Nb2) showed clear

quantum phenomena (macroscopic quantum tunneling, energy level quantization).

The measured spectroscopic coherence times (T ∗
2 ) for all three samples are in the

range of 1-3 ns, consistent with decoherence due to current noise. The relaxation

times (T1) deduced from fits to the resonance peaks for LCJJ-Al and LCJJ-Nb1 are

12 ns and 7 ns respectively, and the measured T1 for LCJJ-Nb2 is 4 ns. T1 values

for all three samples are considerably smaller than designed for reasons that are not

clear at the present time.

No quantized levels were observed for the resonantly isolated junction qubit

(RESJJ-Nb). The relaxation time measured using the population depletion tech-

nique is about 40 ns.

The inductor-junction isolated qubit (LJJJ-Nb) demonstrates a better T ∗
2 than

all our previous samples. Coherent quantum oscillations (Rabi oscillations) were

observed in this sample with a decay time of about 14 ns. The spectroscopic co-

herence time T ∗
2 is about 8 ns. The width of the |1 >→ |2 > is broader than the

|0 >→ |1 >, implying that decoherence is dominated by dissipation. In other words,

a rough estimate of T1 is T1 ≈ T ∗
2 = 8 ns. This number is much shorter than what

we would expect for this design (1 µs).

Although the coherence time measured here is not as long as we wanted, it is

probably long enough for demonstration of simple logic operations.
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10.2 Coupling between multiple qubits

The coupled three-body system I examined is comprised of two Josephson junc-

tion qubits and an LC resonator. Our measurements support the idea that this

macroscopic three-body system is indeed governed by quantum mechanics.

The LC resonator has a size of almost 1 mm with a natural frequency of 7 GHz

and was probed through coupling to Josephson junctions, which are anharmonic.

In the low frequency range, this circuit can be described as two junction qubits

coupled by a capacitor. A dimensionless coupling coefficient of Cc/(Cc + C) results

when the level spacings of the two junctions are tuned together. The coupling can be

essentially turned off by detuning the junction frequencies. Our measured spectrum

agrees well with theory, consistent with the existence of entangled states between

the two junction qubits.

When the junction frequencies are tuned to the LC mode, our spectroscopy re-

sults indicate the existence of entangled states between all three degrees of freedom.

In this regime, the system can be viewed as two remote qubits (junctions) being

coupled by a flying qubit (a single photon in the resonator). This is analogous

to a QED experiment of two atoms interacting with a resonant cavity. Our re-

sults demonstrate the possibility of coupling two remote qubits and can perhaps be

viewed as a first step in realizing a distributed superconducting quantum computer.

10.3 Future work

There are many open questions in the field of superconducting quantum computing.

Answering these questions will move us closer to realizing the construction of a

quantum computer, and further our understanding of how quantum mechanics works

in the macroscopic world.

The major question that begs for a clear answer is, why the measured T1 is
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much shorter than the expected value? What other relaxation channels have been

overlooked in our analysis? Is it due to quasiparticle poisoning, the quality of

the junction and the material, or other factors? Is the longest T1 obtained on

NbN/AlN/NbN junctions [70] a result of the material? Answers to these questions

will help us figure out the large discrepancy between the measured and expected T1.

Our preliminary results on state measurement shows that we can roughly distin-

guish |01 > from |10 >. But this method cannot tell the difference between |11 >

and |01 > (or |10 >) . This is acceptable if one is told the state to be measured is

a superposition of |01 > and |10 >. But for real quantum computing, the state is

unknown, and any state in Hilbert space is possible. Therefore the ability to dis-

tinguish between all possible states is required. This still needs to be demonstrated

for a multi-qubit system.

The coherence times measured in the LJJJ-Nb sample are probably long enough

to pursue coherent control experiment between two qubits. Any demonstration of

coherence in a 3-qubit system will be a great step towards error correction and

building a quantum computer.

Finally, I note that as the system gets more and more complicated, it will be

very interesting to see how quantum mechanical phenomena survive in a complicated

macroscopic world. Systems built from Josephson junctions appear to be superb test

objects for such studies.
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Appendix A:

Tunneling Rate from Cubic Potential

The quantum tunneling rate from the i -th state can be calculated using the

WKB method, i.e.

Γi =
ωi

2π
exp

(
−2

~

∫ q2

q1

√
2m(Uc(q)− Ei) dq

)
(A-1)

where ωi and Ei are the attempt frequency and energy of the particle in the i -th

state, and q1 and q2 are the boundaries where Ei = Uc(q1) = Uc(q2).

Therefore the problem reduces to an evaluation of the definite integral. For the

cubic potential

Uc(q) =
27

4
∆U

(
q

q0

)2 (
1− q

q0

)
(A-2)

we can rewrite Eq. A-1 as

Γi =
ωi

2π
exp

(
−27∆U

~ωp

I

)
(A-3)

where I is an definite integral and given by

I =

∫ y2

y1

√
y2 − y3 − α2 dy (A-4)

here α2 = 4Ei/27∆U , and y1 and y2 are the two positive roots that satisfy y2−y3−
α2 = 0.
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For Levels deep inside the well, we have α2 ¿ 1; therefore to forth order in α,

we have y1 = α + α2/2, and y2 = 1− α2, and we can also expand the integral I to

fourth order in α and obtain

I =

∫ y2

y1

√
y2 − y3 dy − α2

2

∫ y2

y1

1√
y2 − y3

dy (A-5)

After some algebra, we evaluate the above integral to be

I =
4

15
+

1

2
ln αα2 −

(
23

30
+

ln 2

2

)
α2 + O(α3) (A-6)

Therefore, for the ground state, E0 ≈ ~ωp/2, and the first excited state, E1 ≈
3~ωp/2, we have

Γ0 = 12.7

(
7.2∆U

~ωp

)1/2
ω0

2π
exp

(
−7.2∆U

~ωp

)
(A-7)

and

Γ1 = 393.2

(
7.2∆U

~ωp

)3/2
ω1

2π
exp

(
−7.2∆U

~ωp

)
(A-8)
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Appendix B:

Transition Rate Due to Thermal Noise

The inter-level transition rates due to thermal noise for a lightly damped junction

can be calculated using first-order perturbation theory.

Let |i > be the initial state of the qubit, and Cij(t) be the amplitude of the

qubit in the final state |j > as a result of the perturbation due to the noise, Hn =

−Φ0In(t)γ/2π.

Using the time-dependent perturbation theory (to first order), we have

Cij(t) =
i

2e

∫ t

0

eiωjitIn(t) < j|γ|i > dt (B-1)

where ωji = (Ej − Ei)/~ is the level spacing and we assume ωji > 0. Then the

transition probability will be

|Cij(t)|2 =
| < j|γ|i > |2

4e2

∫ t

0

e−iωjit1In(t1) dt1

∫ t

0

eiωjit2In(t2) dt2 (B-2)

Taking an ensemble average of Eq. B-2 and using the relation between the noise

correlation function and its power spectral density, we can simplify Eq. B-2 to

|Cij(t)|2 =
| < j|γ|i > |2

4e2

∫ ∞

0

S(f) df

∫ t

0

∫ t

0

eiωji(t2−t1) cos(iω(t1 − t2) dt1dt2 (B-3)

where S(f) is the power spectral density of the noise current. Simplifying the above

equation, we get
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|Cij(t)|2 =
| < j|γ|i > |2

2e2

∫ ∞

0

S(f)

[
sin2 (ω−ωji)t

2

(ω − ωji)2
+

sin2 (ω+ωji)t

2

(ω + ωji)2

]
df (B-4)

Next we take the limit of t →∞, and notice

lim
t→∞

sin2 (ω−ωji)t

2

(ω − ωji)2
=

πt

2
δ(ωji − ω) (B-5)

We obtain

lim
t→∞

|Cij(t)|2 =
πt| < j|γ|i > |2

4e2

∫ ∞

0

S(f)δ(ωji − ω) df (B-6)

Note for a simple shunt resistance of R, the thermal noise has a spectral density

S(f) =
4~ω
R

1

exp(~ω/kBT )− 1
(B-7)

Substitute Eq. B-7 into Eq. B-6, we obtain

lim
t→∞

|Cij(t)|2 =
t~ωji| < j|γ|i > |2

2Re2

1

exp(~ωji/kBT )− 1
(B-8)

And finally the transition rate W t
ij, the transition probability in unit time, is

W t
ij = lim

t→∞
|Cij(t)|2

t
=

∆E

2Re2

| < i|γ|j > |2
exp (∆E/kBT )− 1

(B-9)

where ∆E = |Ej − Ei| is the level spacing between the i -th and j -th level, and

< i|γ|j > is the matrix element between the i -th and j -th levels.
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Appendix C:

A Stochastic Bloch Equation

The density operator ρ̂ of the total system obeys:

i~ ˙̂ρ = [Ĥtot, ρ̂] (C-1)

where Ĥtot is the Hamiltonian of the qubit and the environment,

Ĥtot = Ĥ0 + ĤB + ĤC (C-2)

where Ĥ0 is the Hamiltonian of the isolated junction given by Eq. 4.5, and ĤB and

ĤC are the bath and coupling Hamiltonian respectively.

Assuming a harmonic oscillator bath and bilinear coupling [81, 93] as first pro-

posed by Caldeira and Leggett, then ĤB and ĤC can be written as [81]

ĤB =
N∑

i=1

(
p̂2

i

2mi

+
1

2
miω

2
i x̂

2
i

)
(C-3)

ĤC = −γ̂

N∑
i=1

cix̂i +
N∑

i=1

ci
c2
i γ̂

2

2miω2
i

(C-4)

where x̂i and p̂i are the generalized coordinate and momentum operators of the i-th

oscillator in the bath with mass of mi, frequency of ωi, and coupling coefficient ci .

Tracing both sides of Eq. C-1 over the bath coordinates, I obtain
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i~ ˙̂ρS = [Ĥ0, ρ̂S] + TrB[ĤB, ρ̂] + TrB[ĤC , ρ̂] (C-5)

One can show TrB[ĤB, ρ̂] = 0. To evaluate TrB[ĤC , ρ̂], I use Eq. C-4 and expand

to find

TrB[ĤC , ρ̂] =

∫
(−γ̂) < ~x|Ĉρ̂|~x > d~x−

∫
< ~x|ρ̂Ĉ|~x > (−γ̂) d~x (C-6)

where |~x >= |x1x2 · · · xN > and d~x = dx1dx2 · · · dxN , and

~C = Σicix̂i − Σi
c2
i γ̂

2miω2
i

(C-7)

Next introduce the Heisenberg operator,

~C(t) = Û †(t)ĈÛ(t) = Σicix̂i(t)− Σi
c2
i γ̂(t)

2miω2
i

(C-8)

where Û(t) = exp(−iĤtott/~), x̂i(t) is the coordinate operator of the i -th oscillator

in Heisenberg picture, and γ̂(t) is the Heisenberg coordinate operator of the qubit.

We can rewrite Eq. C-6 as

TrB[ĤC , ρ̂] =

∫
(−γ̂) < ~x|Û(t)Ĉ(t)Û †(t)ρ̂|~x > d~x

−
∫

< ~x|ρ̂Û(t)Ĉ(t)Û †(t)|~x > (−γ̂) d~x (C-9)

In the Heisenberg picture, one can show

x̂i(t) = x̂i(0) cos(ωit) +
p̂i(0)

miωi

sin(ωit) +
ci

miωi

∫ t

0

γ̂(t′) sin(ωi(t− t′)) dt′ (C-10)

Then we can rewrite Ĉ(t) as

Ĉ(t) = ξ̂(t) + η̂(t) + Σi
c2
i

2miω2
i

γ̂(t) (C-11)
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where

ξ̂(t) = Σici

[
x̂i(0) cos(ωit) +

p̂i(0)

miωi

sin(ωit)

]
(C-12)

η̂(t) = −
∫ t

0

κ(t− t′) ˙̂γ(t′) dt′ − κ(t)γ̂(0) (C-13)

and x̂i(0) and p̂i(0) are the coordinate and momentum operator of the i -th oscillator

in Heisenberg picture at t = 0. The coefficient κ(t) is defined as

κ(t) =
2

π

∫ ∞

0

J(ω)

ω
cos(ωt) dω (C-14)

where

J(ω) =
π

2
Σi

c2
i

miωi

δ(ω − ωi) (C-15)

The last term on the right hand side of Eq. C-11 will renormalize the qubit charac-

teristic frequency, but under our experimental conditions, its effect is negligible and

can be ignored. From Eqs. C-12 and C-13, we can see ξ̂(t) acts as a random force

and η̂(t) acts as a memory damping force.

Next I substitute Eq. C-11 into Eq. C-9, obtaining

TrB[ĤC , ρ̂] =

∫
(−γ̂) < ~x|Û(t)ξ̂(t)Û †(t)ρ̂|~x > d~x

−
∫

< ~x|ρ̂Û(t)ξ̂(t)Û †(t)|~x > d~x(−γ̂) + i~D(ρ̂S) (C-16)

where D(ρ̂S) denotes the contribution of the memory damping and is given by

D(ρ̂S) =
1

i~

∫
(−γ̂) < ~x|Û(t)η̂(t)Û †(t)ρ̂|~x > d~x

− 1

i~

∫
< ~x|ρ̂Û(t)η̂(t)Û †(t)|~x > d~x(−γ̂) (C-17)
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Since ξ̂(t) is of the order of the coupling coefficient ci, it follows that to first

order in ci we can evaluate the integral in Eq. C-17 using the approximations

Û(t) ≈ exp(−iĤSt/~) exp(−iĤBt/~) (C-18)

ρ̂ ≈ ρ̂S

⊗
ρ̂S (C-19)

I obtain

TrB[ĤC , ρ̂] = [−γ̂ξ(t), ρ̂S] + i~D(ρ̂S) (C-20)

where

ξ(t) =

∫
< ~x|ξ̂(t)ρ̂B(0)|~x > d~x

= Σici

[
TrB(x̂i(0)ρ̂B(0)) cos(ωit) +

TrB(p̂i(0)ρ̂B(0))

miωi

sin(ωit)

]

Next evaluating the correlation function for ξ(t), I obtain

< ξ(t)ξ(0) >ensemble= 4~
∫ ∞

0

J(ω) cos(ωτ)

(
1

2
+

1

e~ω/kBT − 1

)
dω

2π
(C-21)

Equation C-21 gives the power spectral density of the random function ξ(t). In fact,

one can see that there are two parts, the 1
2

term from zero-point noise, and the

Boltzman which can be interpreted as John-Nyquist noise.

For the junction, I identify the random noise ξ(t) as the current noise In(t)

flowing through the junction, i.e.

ξ(t) =
Φ0

2π
In(t) (C-22)

Substituting Eq. C-20 into Eq. C-5, I find the equation of motion for the reduced

density matrix
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∂ρ̂S

∂t
=

1

i~
[Ĥ0 + Ĥn, ρ̂S] + D(ρ̂S) (C-23)

where Ĥn = −Φ0In(t)γ̂/2π, In(t) is the current noise flowing through the junction

and D(ρ̂S) is a memory damping term.

Comparing Eq. C-21 with Eqs. 4.1 and 4.2, I can make a connection between

J(ω), which is defined through the microscopic quantities ci, mi and ωi, and the

circuit parameters Y (ω), namely

J(ω) = ω

(
Φ0

2π

)2

Re[Y (ω)] (C-24)

Or

Y (ω) =
2π3

Φ2
0

N∑
i=1

c2
i

miωi

δ(ω − ωi) (C-25)

i.e. Y (ω) can be linked to the microscopic quantities mi, ωi, and ci.
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Appendix D:

Transitions due to Noise

Setting δω(t) = 0 and Ω = 0 in Eqs. 4.22-4.25 and neglecting Γ0ρ
′
00 and Γ1ρ

′
11 ,

we Fourier transform Eqs. 4.22-4.25 to the frequency domain to find

1

2π

∫ ∞

−∞
αİnx′+e−iωt dt =− 2α2

∫ ∞

−∞

(ω − ω′)(Γ10/2 + iω′)g(ω − ω′)
iω′ + Γ10/2)2 + ω2

0

×
∫ ∞

−∞
(ω′ − ω′′)x̃′z(ω

′′)g(ω′ − ω′′) dω′′ (D-1)

where

x̃′z(ω) =
1

2π

∫ ∞

−∞
x′z(t)e

−iωt dt (D-2)

g(ω) =
1

2π

∫ ∞

−∞
In(t)e−iωt dt (D-3)

The Fourier transform of a stationary noise obeys [138]:

< g(ω1)g(ω2) >ensemble=
1

4π
SI(ω1/2π)δ(ω1 + ω2) (D-4)

where SI(ω/2π) is the power spectral density of the random noise and <>ensemble

denotes an ensemble average. Taking the ensemble average of Eq. D-1, substitute

Eq. D-4 into Eq. D-1, I find
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1

2π

∫ ∞

−∞
αİnx

′
+e−iωt dt =

α2

2π
x̃′z(ω)

∫ ∞

−∞

(ω − ω′)2(Γ10/2 + iω′)SI(
ω−ω′
2π

)

(Γ10/2 + iω′)2 + ω2
0

dω′ (D-5)

The integral on the right side depends on ω, however, if we make an approxi-

mation that in the long time limit x′z(t) is mainly a dc component, then we can set

ω = 0 in the integral. If we define

Γ+ = α2

∫ ∞

0

SI(ω/2π)ω2 Γ10(ω
2
0 + ω2 + Γ2

10/4)

(ω2
0 − ω2 + Γ2

10/4)2 + ω2Γ2
10

dω

2π
(D-6)

Eq. D-5 becomes

1

2π

∫ ∞

−∞
αİnx′+e−iωt dt = Γ+x̃′z(ω) (D-7)

or

αİnx
′
+(t) = Γ+x′z(t) (D-8)

Similarly, one can show that αİnx
′
z is equivalent to Γ+x′+.
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Appendix E:

Decoherence due to Noise

After neglecting Γ0ρ
′
00 and Γ1ρ

′
11 and applying the rotating wave approximation

[100] to Eqs. 4.22-4.25, I obtain the following equation for the Fourier transform of

(e−iωtρ′01 − eiωtρ′10)/2i:

B(ω)V (ω) =− Ω

2
δ(ω) + ε

∫ ∞

−∞
h(ω − ω′)V (ω′)

(
1

iω + Γ10/2
+

1

iω′ + Γ10/2

)
dω′

−
∫ ∞

−∞

h(ω − ω′) dω′

iω′ + Γ10/2

∫ ∞

−∞
h(ω′ − ω′′)V (ω′′) dω′′ (E-1)

where B(ω) = iω + Γ10/2 + Ω2

iω+Γ10
+ ε2

iω+Γ10/2
, V (ω) and h(ω) are Fourier transforms

of (e−iωtρ′01 − eiωtρ′10)/2i and the level spacing fluctuation δω(t) respectively.

Next, we try the following ansatz solution for Eq. E-1:

V (ω) = νδ(ω) + D(ω)h(ω) (E-2)

where D(ω)h(ω) is everywhere finite, and D(ω) has no direct dependence on h(ω).

Substituting Eq. E-2 into Eq. E-1, I find
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B(ω)V (ω) =− Ω

2
δ(ω) + ενh(ω)

(
1

iω + Γ10/2
+

1

Γ10/2

)

+ ε

∫ ∞

−∞
h(ω − ω′)h(ω′)D(ω′)

(
1

iω + Γ10/2
+

1

iω′ + Γ10/2

)
dω′

− ν

∫ ∞

−∞

h(ω − ω′)h(ω′)
iω′ + Γ10/2

dω′

−
∫ ∞

−∞

h(ω − ω′) dω′

iω′ + Γ10/2

∫ ∞

−∞
h(ω′ − ω′′)h(ω′′)D(ω′′) dω′′ (E-3)

Using Eq. D-4, I can simplify Eq. E-3 as 1

B(ω)νδ(ω) + B(ω)h(ω)D(ω) = −Ω

2
δ(ω) + ενh(ω)

(
1

iω + Γ10/2
+

1

Γ10/2

)

+
εδ(ω)

4π

∫ ∞

−∞
Sd(ω

′/2π)D(ω′)
(

1

Γ10/2
+

1

iω′ + Γ10/2

)
dω′

− νδ(ω)

4π

∫ ∞

−∞

Sd(ω
′/2π)dω′

iω′ + Γ10/2
− h(ω)

4πΓ10

∫ ∞

−∞
Sd(ω

′′/2π))D(ω′′) dω′′ (E-4)

Separating ω = 0 terms from ω 6= 0 terms, I have:

B(0)ν =− Ω

2
δ(ω) +

ε

4π

∫ ∞

−∞
Sd(ω

′/2π)D(ω′)
(

1

Γ10/2
+

1

iω′ + Γ10/2

)
dω′

− ν

4π

∫ ∞

−∞

Sd(ω
′/2π)

iω′ + Γ10/2
dω′ (E-5)

B(ω)D(ω) =εν

(
1

iω + Γ10/2
+

1

Γ10/2

)

− 1

4πΓ10

∫ ∞

−∞
Sd(ω

′/2π))D(ω′) dω′ (E-6)

Solving Eqs. E-6 for D(ω), I find

1The simplification of the last term on the right hand side is based on the assumption that the

noise is low frequency compared to Γ10 . However even for high frequency noise this simplification

does not affect the final result for < ρ′11 > since the contribution from this term is small for high

frequency noise.
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D(ω) =
εν

B(ω)


 1

iω + Γ10/2
+

1

Γ10/2
−

∫∞
−∞

(
1

iω′+Γ10/2
+ 1

Γ10/2

)
Sd(ω′/2π)

B(ω′) dω′

2πΓ10 +
∫∞
−∞ Sd(ω′/2π)B(ω′) dω′




(E-7)

Indeed D(ω) has no direct dependence on h(ω) since the integrals involving Sd(ω/2π)

yield constants. This justifies the form of the ansatz solution Eq. E-3. Substituting

Eq. E-7 into Eq. E-5, I find:

ν =
−ΩΓ10/2

Ω2 + (1 + A)Γ2
10/2 + (2−B)ε2

(E-8)

where A and B are given by Eqs. 4.35 and 4.36 respectively. Finally I have the time

average of ρ′11:

< ρ′11 >=
Ω2/2

Ω2 + (1 + A)Γ2
10/2 + (2−B)ε2

(E-9)

which is Eq. 4.34.
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