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Abstract

Liapunov functions are constructed for nonlinear systems of ordinary differential equa-
tions whose linearized system at an equilibrium point possesses cither a simple zero eigen-
value or a complex conjugate pair of simple, pure imaginary eigenvalues. The construction
is explicit, and yields parametrized families of Liapunov functions for such systems. In the
case of a zero eigenvalue, the Liapunov functions contain quadratic and cubic terms in the
state. Quartic terms appear as well for the case of a pair of pure imaginary eigenvalues.
Predictions of local asymptotic stability using these Liapunov functions are shown to co-
incide with those of pertinent bifurcation-theoretic calculations. The development of the
paper is carried out using elementary properties of multilinear functions. The Liapunov
function families thus obtained are amenable to symbolic computer coding.
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1 INTRODUCTION

In this paper, we construct families of Liapunov functions useful in assessing the asymptotic stability

of critical equilibrium points of a class of systems

i = J(z) (1)

where r € IR"™ and f is at least four times continuously differentiable. Throughout the presentation,
we let the origin £ = 0 be the equilibrium point of interest of this system of ordinary differential
equations. Critical cases in the study of stability of the origin of Eq. (1) are those in which the
Jacobian matrix Df(0) possesses at least one eigenvalue with zero real part, and no eigenvalues
with positive real part. In these situations, it is not possible to ascertain whether or not the origin
of (1) is locally asymptotically stable solely from the linearized system 2 = (D f(0))=.

We focus on two specific critical cases in the stability analysis of Eq. (1). These correspond
to the Jacobian matrix of (1) at the origin possessing either a simple zero eigenvalue or a complex
conjugate pair of simple, pure imaginary eigenvalues. The associated hypotheses ((S) and (H)
below, respectively) are introduced next. The techniques of this paper can also be applied to other
critical cases, such as those involving multiple critical eigenvalues [7].

In essence, the paper relies on two basic tools in achieving its goals. First, the notation of
multilinear functions is adhered to throughout the paper, in denoting terms in the Taylor series
expansions of the nonlinear system of interest as well as Liapunov function candidates and their
derivatives. Second, a new result on local definiteness of a class of scalar bivariate functions
is introduced. This appears as Lemma 1 in Section 4. Lemma 1 is indeed key to the subsequent
constructions of Liapunov functions in Cases (S) and (H). These constructions are rather mechanical
given Lemma 1, albeit somewhat tedious.

The first critical case of interest in this work is characterized by the occurrence of a simple
zero eigenvalue of Df(0), with all remaining eigenvalues having strictly negative real parts. As
discussed in [2], stability of the origin in this situation is closely related to the stability of bifurcated
equilibrium points in smooth parametrizations of Eq. (1). Because of this connection to stationary

(or static) bifurcation, this critical case will be referred to here as “Case (S).”

S) The Jacobian Df(0) possesses a simple zero eigenvalue, with all other eigenvalues in the open

left half of the complex plane.



In the second critical case of interest here, Df(0) is assumed to possess a single complex con-
Jugate pair of simple, pure imaginary eigenvalues, with the remaining eigenvalues lying in the open
left half complex plane. Reference [1] discusses the relationship of stability of the origin in this case
with stability of bifurcated periodic solutions of smooth parametrizations of (1). Hopf bifurcation
to periodic solutions occurs for generic such parametrizations of Eq. (1) under these circumstances.

Because of this connection to Hopf bifurcation, this critical case will be referred to as “Case (H).”

(H) The Jacobian Df(0) possesses a complex conjugate pair of simple, pure imaginary eigenvalues,

with all other eigenvalues in the open left half of the complex plane.

Recently, there has been significant interest in feedback stabilization of nonlinear systems in
critical cases (see, e.g., the review paper [18] and references therein). This has yielded various
existence and synthesis results on stabilizability by either smooth or continuous feedback. The main
contribution of the present paper to this body of work is the construction of new Liapunov functions
for such systems, in the two critical cases (S) and (H). Liapunov functions facilitate estimation of
the domain of attraction of a stable equilibrium point, and as such can serve to quantify the
efficacy of a given control design. Liapunov functions can be used to define performance indices
in optimization-based feedback control design of nonlinear systems. Such performance indices can
involve estimates of the achieved domain of attraction and measures of the adequacy of the transient
response. The Liapunov functions derived here for Cases (S) and (H) are given explicitly in terms
of the system’s dynamics, and are amenable to symbolic computer coding. As a by-product of our
results, known formulae for testing stability in the critical cases (S) and (H) (so-called bifurcation
formulae) are found to follow easily from the Liapunov functions we obtain. Note, however, that
these formulae alone do not yield analytical performance indices of the type just alluded to.

The asymptotic stability of nonlinear systems in critical cases has received significant attention
in the literature (e.g., [3], [11], [13]-[15], [17], [19]). Although some of these works have employed
Liapunov stability analysis, the Liapunov functions used have generally been defined only tmplicitly.
In some cases, this is linked to the use of implicitly defined nonlinear coordinate transformatisns
to lower dimensional problems. Implicitly defined Liapunov functions suffice when the goal of the
analysis is limited to deriving sufficient conditions for local asymptotic stability. For instance,
one result of Mees and Chua [17] gives a Liapunov function for planar systems (1) satisfying

(H). Implications of this result for higher dimensional models (1) follow from the Center Manifold



Theorem (cf. [17],[5]). In the present paper, we give an ezplicit construction of families of Liapunov
functions for critical nonlinear systems satisfying either hypothesis (S) or (H) which apply directly
to the given n-dimensional system description (1).

This paper is organized as follows. In Section 2, pertinent results on multilinear functions
are given. The set-up for construction of Liapunov functions for systems (1) is formulated using
multilinear function notation in Section 3. A lemma giving sufficient conditions for local definiteness
of a class of scalar bivariate functions is presented in Section 4. Section ) contains a result on
solutions of Liapunov matrix equations for a coefficient matrix with a zero eigenvalue or a pair of
pure imaginary eigenvalues. The main results of the paper appear in Sections 6 and 7. Section
6 contains an explicit construction of a family of Liapunov functions for Case S, and Section T

contains an analogous construction for Case (H). Conclusions are collected in Section 8.

Notation. In what follows, IR" denotes the space of n-dimensional column vectors having real
entries, while '™ denotes the space of n-dimensional column vectors with complex entries. The
complex conjugate of a quantity (scalar, vector, or matrix) a is denoted by a. The transpose of a
vector or matrix a is denoted aT. For a vector space V, denote by (V)k the vector space obtained as
the k-tuple product V x ---x V. The Jacobian derivative of a function ¢ is denoted D¢. The norm
of a vector x € IR™ will be denoted |r|, and the same notation will apply to any compatible matrix
norm. Denote by r (resp. [) the right column (resp. left row) eigenvector of Df(0) corresponding
to the critical eigenvalue 0 (Case (5)) or iw, (Case (H)). For consistency with previous literature [1],
(2], [6], [9], the first component of r is set to unity, and [ is then chosen subject to the normalization
Ir = 1. (Ensuring that the first component of r is nonzero in some cases requires a reordering of

the elements of z.)



2 RESULTS ON MULTILINEAR FUNCTIONS

Multivariable Taylor series can be conveniently represented in terms of multilinear functions. We
shall employ multilinear functions in representing Taylor series expansions both for the vector field
f(x) of Eq. (1), and for the Liapunov functions whose construction is the main purpose of this

work. In this section, we present several useful facts pertaining to multilinear functions.

2.1 Multilinear Functions

Multilinear functions may be defined as follows.
Definition 1. Let Vi, Vo,...,Vi and W be vector spaces over the same field. A map t: Vi x 15 x
. %X Vi +— W is said to be multilinear (or k-linear) if 1t is linear in each of its variables. That is

[4, p. 76], for arbitrary v', 7' €V;,i=1,...k, and for arbitrary scalars a, @, we have

w(vl,...,avi+55i,...,vk):ad)(vl,..‘,vi,...,vk)+5d)(v1,...,i7i,...,1)k). (2)

We refer to k as the degree of the multilinear function . In particular, multilinear functions of
degree two, three and four are referred to as bilinear, trilinear and tetralinear funclions, respectively.
We shall in the sequel deal exclusively with multilinear functions ¢ whose domain is the product
space of k zdentical vector spaces V; = Vo, = ... = V, = V. For such multilinear functions, we have
the following notion of symmetry.
Definition 2. A k-linear function ¥ : V x V x ... x V +— W is symmetric if, for any v* € V,

t=1,...,k, the vector
1,2 k
Yo ,v7, ..., 07) (3)
is invariant under arbitrary permutations of the argument vectors v*. o

With an arbitrary multilinear function 1, we associate a symmetric multilinear function

resulting from the following simple device, known as the symmetrization operation [4, pp. 88-89].

Given a multilinear function (2!, z?, ... ,zk), define a new (symmetric) multilinear function ¢, as
{ollows:
1 o .
1 2 ky .__ 1 1 i
d)s(z‘.,Ia"':x)"_E Z ¢(1:17I27--~a1:k)1 (4)
(1,12,0001k)
where the sum 1s taken over the k! permutations of the integers 1,2, ... k.



2.3 Coordinate Representation of Scalar Multilinear Functions

In this subsection, we state a useful representation result for scalar multilinear functions v :
(I'R”)k +— IR™. The representation rests upon a choice of basis (“coordinates”) for IR"™. 'Thus,

let {r',r%,...,7"} be a basis for IR™. By a standard result [4, Proposition 3.6.1], to this basis there

corresponds a unique dual basis which we may view as consisting of row vectors I*,[2 ... ™ such
that
'l = 6 (9)
for ¢,7 =1,...,n. Here, §; is the Kronecker delta symbol:
1 ifi=j
6i; = o (10)
0 ifi#j
fori,j =1,...,n. Eq. (9) will be referred to as the biorthonormality property of the vectors I, rJ.

Proposition 2 below provides a convenient representation for scalar symmetric multilinear func-
tions on (IR™)* in terms of the dual basis vectors I' and a set of “structural coefficients.” The result
will be applied in the next section, yielding a representation of Liapunov function candidates.
Proposition 2. (Coordinate Representation of Scalar Multilinear Functions) Any sym-

metric k-linear function ¢ : (JR™)* +— IR can be written as

n

k ] t T
el el 2 = Y i (et (22?) L (k) (11)
11,12, 1k =1
where the (k-tuple) sum is taken over all 71,14,,..., 7, and where the structural coeflicients 9,4, .4,
are symmetric with respect to all permutations of 77,14, .. ., 1.

Proof. This result is a special case of [16, Thm. 1.2]. However, we sketch a rather straightforward
proof for the sake of completeness. By [4, Thm. 2.12.2], a scalar multilinear function is determined
by its values when evaluated at all combinations of basis vectors as arguments. The formula (11)
for ¢ 1s clearly that of a k-linear function. Moreover, 1t follows from the biorthonormality property
(9) of basis vectors r* and dual basis vectors I' that, by appropriate assignment of the structural
coeflicients v;,4,..:,, any set of such values may be achieved. Hence, the representation above is

sufficiently general to accomodate any scalar multilinear function 9. D



2.4 Complexification of Real Multilinear Functions

It is sometimes convenient to evaluate a (real) multilinear function ¢ : (IR™)* — IR™ for argument

vectors in €. This is done simply by evaluating the value of ¢ as if the argument vectors were in

IR™, using a representation of ¢ such as Eq. (11) above. This process is the complezification of .
Our use of the complexification device is relegated to Section 7, in the construction of Liapunov

functions for Eq. (1) under hypothesis (H). The following observation will be important in ensuring

that the constructed Liapunov functions are indeed real-valued.

Proposition 3. (Test for Realness of Multilinear Functions) Let i denote a symmetric

k-linear function ¥ : (C™)* — @™. The image of (IR")* of under the map 1 is IR™ if and only if

v, 22, 2F) = (&', 22, ., 1Y) (12)

for all vectors z!,2%,... 25 e C™.

Proof. The “if ” part is automatic. An induction proof is now sketched for the “only f ” part.
Let j denote the number of argument vectors z* € €™ that are not also in IR™. That (12) holds
when j = 0 is obvious. Also, if (12) holds for some j = jo < k, then it is a simple exercise to verify

that it also holds for 7 = jo + 1. o

3 REPRESENTATION OF LIAPUNOV FUNCTION
CANDIDATES

Eq. (1) may be rewritten, upon Taylor series expansion of f(z), in the form

r = f(x)
= Lz+Q(z,2)+C(z,z,2)+ - (13)

Here, L := Df(0) and Q(z,z), C(z,z,z) are vector-valued quadratic and cubic forms, with the
dots denoting higher order terms. Without loss of generality, assume that Q(z,z) is induced by
a symmetric bilinear function Q(z!,z?) and, similarly, that C(z,z, ) is induced by a symmetric
trilinear function C(z!, 2%, 23).

In Case (S) (one zero eigenvalue), we shall in the sequel seek Liapunov functions V() consisting



of the sum of a quadratic part and a cubic part, viz.
V(z) = 2Pz + K(z, 2, ). (14)

It is natural to require P to be symmetric and positive definite. Similarly, the cubic form K(z,z, )
is induced by a symmetric trilinear function K(z!,2%,23). Since the term K(z,z,z) is dominated
by the quadratic term z7 Pz, any such V(z) will indeed be locally positive definite.

In our study of Case (H) (two purely imaginary eigenvalues), we will include a quartic term
7T(z,z,x,z)in the candidate Liapunov function V(z) in addition to the quadratic and cubic terms

presented in (2), viz.
V(z) = 2Pz + K(z,2,2) + T(z,z,2,2). (15)

We of course ask that the quartic form 7 (z, z,z,z) be induced by a symmetric tetralinear function
T(z!, 22,23, z%). Certainly, the local positive definiteness of V(z) with P > 0 remains preserved
under inclusion of 7 (z,z, z, ) or terms of still higher order.

Next, we invoke Proposition 2 for the cases k = 2,3 and 4, obtaining coordinate representations
of the bilinear, trilinear, and tetralinear functions xlT’Pr2, IC(:rl,arz,x3), and T (2!, 22,23 2%,
respectively.

Consider first the case k = 2. Since any real quadratic form 21TPz? is determined by a real
symmetric matrix P, we can apply Proposition 2 to conclude that all such matrices P have the
form

il 0, (16)
1

Pey

n n
=1 =

where m;; = m;; are real coeffiecients.

The following representations for trilinear functions K and tetralinear functions 7T also follow

from Proposition 2:

K(z', 22, 1% = ii k() (F ) (1F2%), (17)
T(z! 2%, 2% %) = ZZZT;]-kp(lixl)(Ij:rz)(lk:rS)(Ipz4), (18)

k= p"l

uM: il sz

respectively. These multilinear functions are rendered symmetric by imposing the condition that

the values of the structural coefficients (k) and (7ijkp) do not depend on the order of the indices.




The simple representations above for the bilinear, trilinear and tetralinear functions appearing in
the Liapunov function candidates V imply that the construction of V is tantamount to specification
of the structural coefficients mj, Kk, Tijkp-

In the calculations to follow, the goal is to obtain sets of structural coefficients m;;, ki, 7ijip
which ensure the local negative definiteness of V, the time derivative of the Liapunov function
candidate, along trajectories of (1). Of course, this will only be possible under assumptions on
Eq. (1) which guarantee local asymptotic stability of the origin. In the next section, a result is
presented on local definiteness of a class of bivariate functions. The sufficient conditions for local
definiteness provided by this result will facilitate a systematic derivation of local Liapunov functions

and conditions for local asymptotic stability.

4 LOCAL DEFINITENESS OF A CLASS OF
BIVARIATE FUNCTIONS

We now introduce an interesting lemma which will prove to be an important tool in exhibiting
conditions for local negative definiteness of the time derivative of a Liapunov function candidate.
Lemma 1. (Local Definiteness of a Class of Bivariate Functions) The scalar bivariate

function

§(u,v) = asou’® + agqv?

+ ag vl + asou’ + ayzuv® + agou?v? + azudv + agu + O(|(u, v)|5) (19)

in the real variables u and v is locally negative definite near (u,v) = (0,0) provided that ag < 0

and agg < 0. Here, O(|(u,v)|*) denotes terms of fifth and higher order in |(u, v)].

Remark 1. It is convenient to view this lemma as follows. Consider 6(u,v), a scalar polynomial
function of the scalars u and v, for which the leading term in 8(u, 0) is azu?, and the leading term

in 6(0,v) is agqv?

. Then the assertion is that é(u,v) is locally negative definite when two basic
conditions are fulfilled: First, the absence of the two terms agzv3, aj2uv?; Second, the local negative
definiteness of the univariate functions é(u,0) and 6(0,v) (1.e., azo < 0 and agg < 0, respectively).
Proof. In proving Lemma 1, we neglect the terms O(|(u, v)|?) in 6(u, v), since, being higher order

terms, they can easily be incorporated with only slight modifications in the analysis. With this

10



understanding, rewrite §(u, v) in the form of a quadratic polynomial in u:

6(u,v) = (a0 + az1v + azgou + azov? + azjuv + a40u2)u2 + aj3v°u + agqv?
= p(u, v)u2 + (a130%)u + apqv. (20)
Here,
plu,v) = ag + az;v + azou + azev? + azjuv + agou?. (21)

Since p(0,0) = ago < 0, it is clear that there is an ¢; > 0 such that p(u,v) < 0 for
lul, o] < €. (22)

(One could easily write a formula for such an ¢;.)
The leading coefficient p(u, v) in the expression (20) for 6(u,v) is therefore strictly negative for

lu|, |v| < €1. Next, rewrite 6(u,v) as

3
§(u,v) = plu, v)[u + 2;237’51))]2 + q(u,v), (23)
where
o
q(u, ’U) = m{4(120004 + 4(13()00411 -+ 402161041}

+ daggasou’® + daggaz uv + (4dapsage — 033)1;2}. (24)

Since azp < 0 and a49 < 0, the constant term in the expression in braces in Eq. (24), namely
daggaoy, is strictly positive. Hence, there is an € > 0 such that the expression in braces in Eq. (24)

1s strictly positive for
lul, vl < €. (25)

Recalling that p(u,v) < 0 for |u|, |v| < €1, we have that for |u|, |v] < € := min(e1, €2), q(u,v) < 0,
with g(u,v) = 0 only for v = 0 (see Eq. (24)). Now consider the implications of these observations
for the expression (23) for 6(u,v). Clearly, for |u|, |v| < € and v # 0, the fact that ¢(u,v) is strictly

negative ensures that 6(u,v) < 0. If, on the other hand, |ul, |v| < € and v = 0, then é(u,v) reduces

to
6(w,0) = p(u,0)u?
< 0 (26)
for u # 0. Thus, 6(u,v) is indeed locally negative definite near (0, 0). o

11



5 CALCULATIONS INVOLVING THE STABLE SUBSPACE

In this section, we define the stable subspace of IR™ corresponding to the Jacobian matrix L, recall
an associated orthogonality property from [10], and employ the stable subspace concept in the
choice of the quadratic term z7 Pz in the Liapunov function candidate V(z) (cf. Egs. (14), (15)).
The development proceeds for Cases (S) and (H) in parallel.

Definition 4. The stable subspace of IR", denoted by E*, is the span of the eigenvectors (and
generalized eigenvectors, if any) of L corresponding to the stable eigenvalues of L. o

In Case S, any vector ¢ € IR™ has a unique representation ¢ = ar + w where a is a real scalar, r
is the right eigenvector of L corresponding to the eigenvalue 0, and w € E°. In Case H, any vector
z € IR" has a unique representation z = ar + af + w where a is a complex scalar, r is the right
eigenvector of L corresponding to the eigenvalue iw., and w € E*.

The following property is well known (see, e.g., [10, Appendix 4.1]).

Proposition 4. (Orthogonality of Left and Right Eigenvectors) Let I and r? denote left
and right eigenvectors, respectively, corresponding to eigenvalues A, and Ag of a matrix A. Either,
or both, of I* and r® may be generalized eigenvectors. If Ay # Ag, then 1°r® = 0. Moreover,
the subspace of all column vectors nullified by [® is precisely the span of all right eigenvectors and
generalized right eigenvectors of A associated with eigenvalues other than A,.

Remark 2. Proposition 4 implies the following facts, which will prove useful in the sequel. As
above, let I denote a left eigenvector corresponding to the critical eigenvalue 0 (in Case (S)) or w,
(in Case (H)). Then lw = 0 if and only if w € E®. Moreover, pw = 0 for a row vector p if and
only if p € span(l) (Case (S)), or p € span(Re [,3m I) (Case (H)). Finally, in Case H, we have [
=1Ir=0.

Since the Jacobian matrix L = Df(0) has part of its spectrum on the imaginary axis, it is not
possible to choose a positive definite P for which LTP + PL is negative definite. However, one can
ensure that the latter matrix is negative definite on a subspace of IR™, while being only negative
semidefinite on all of IR™. A method for achieving this i1s given next.

Recall that r denotes the eigenvector of L corresponding to the critical eigenvalue (0 in Case
S, iw, in Case (H)). Note that » € €™ in Case H, and that r € IR™ in Case (S). Denote by E* the
subspace of IR™ spanned by the eigenvectors (and generalized eigenvectors, if any) corresponding

to the stable eigenvalues of L (in either Case (S) or Case (H)). We refer to E° as the stable subspace

12



of IR".

The following proposition is useful in selecting the quadratic term TPz in the Liapunov func-
tion V under either hypothesis (S) or (H).
Proposition 5. (Liapunov Matrix Equation on Stable Subspace) Using the notation above,
and under either hypothesis (S) or (H), there exists a family of real symmetric n x n matrices II

for which

() Ir =0, (i) w'Hw >0, and (i) w? (LTT + TL)w < 0 (27)
for all w = E*,w # 0.
Proof. The proof may be carried out i two steps. In the first step, we exhibit a choice of
coordinates for the state space IR™ for which the existence of matrices Il is transparent. In the

second step, we verify that the existence of a matrix II satisfying (i)-(ii1) in one coordinate system

implies the existence of such a matrix for any choice of coordinates. Step I. Suppose, then, that

the state z of system (1) is expressed with respect to a coordinate basis {rl r% .. r"} defined
as follows. In Case S, take r! := r and choose the remaining basis vectors »* € IR, i = 2,...,n
such that span{r?, ... ,r"} = E°. Analogously, in Case H, choose ! := Re(r), r? := Sm(r), and
let 3 ..., r" satisfy span{r3,... r®} = E®. For such a coordinate basis, L has the block diagonal
representation

9 0
L:( ). (28)
0 L,

Here, Ly is a real square stable matrix whose eigenvalues coincide with the stable eigenvalues of L,
and @ is given by
0 in Case S,

0 = ( 0 wc) (29)
in Case H.

—-we. 0
(Note that 6 is a scalar for Case S, and is 2 2 x 2 matrix for Case (H).) It is now straightforward

to exhibit a matrix II satisfying (i)-(iii). Consider the matrix

0 0
n:( ), (30)
0 Iy

where Il4, is a real symmetric positive definite matrix of dimension (n—1) in Case 5, and dimension

(n — 2) in Case H, for which the matrix

LTl + gL, (31)

13



is negative definite. The existence of such a matrix Ily; is clear, since L, is stable. Note that, for
the present choice of coordinate basis, we have that in Case (S) the first component of any vector
w € E° 1s 0, and, in Case H, the first two components of w are 0. Also, the right eigenvector r
is given, in Case (S) and Case H, by r = (1,0,...,0)7 and r = (1,7,0,...,0)7, respectively. The
matrix IT of Eq. (30) is now easily verified to satisfy conditions (i)-(iii). Step 2. Next, we show
that existence of a matrix II satisfying (i)-(ii1) in one set of coordinates implies existence of such
a matrix for any set of coordinates. Let the coordinate change be determined by a nonsingular

transformation matrix ¥, and indicate vectors in the transformed coordinates by a hat (7):
F=%r @=Yw. (32)
In the new coordinates, L has the representation
L = Ly (33)
It is straightforward to verify that the matrix
=" 'nx! (34)

satisfies conditions (i)-(iii), where all quantities are taken in the new coordinates. (Note that the

relationship between il and II specified in Eq. (34) is not that of a similarity transformation.) o

As a corollary to Proposition 5, we have the following result.
Corollary 1. Let II be a matrix satisfying (1)-(iii) of Proposition 5. Then, there is an o > 0 such

that, for each nonzero w € E?®,
wl (LT 4+ N L)w < —a|w]?. (35)

Proof. This follows easily using the proof of Proposition 5 and the standard fact that, for a
negative definite real matrix Q, there is an o > 0 such that 7Qz < —c|z|? for all z € IR™. In the

present setting, the role of Q is played by L, Iz + Mgy Ls. o

In our construction of Liapunov functions for Case S, we shall employ matrices P of the form

P=T+1"1 (36)

14



where II is any real n x n matrix satisfying the conditions of Proposition 5. For Case H, the matrices
P will be of the form
P:H+ITI+I_TI. (37)

It is not difficult to check that, both in Case (S) and Case H, the matrix P is positive definite, and

the matrix LTP + PL is negative semidefinite.

6 CONSTRUCTION OF LIAPUNOV FUNCTIONS IN THE
CASE OF ONE ZERO EIGENVALUE

In this section, we construct a family of Liapunov function candidates for system (1) (equivalently,
(13)) under hypothesis (S). The main task is to specify the matrix P and the cubic form K(z, z, r)
appearing in the expression (3) for V(x). In the foregoing, we have constrained the matrix P to
take the form P = [T+ 11 in Case S, where II is any real symmetric n x n matrix satisfying the

conditions of Proposition 5.

6.1 Conditions for V <0

Using Proposition 1 (Jacobian of Homogeneous Functions), the time derivative of V(z) evaluated
along trajectories of Eq. (13) can be written as
V(z) = 2T (LTP+PL)x
+2Q7(z,2)Pz + 3K(z, 2, Lx)
+2CT(z,z,2)Pz + 3K(z,z,Q(z,z)) + - -- (38)
Recall from Section 5 the notation E° for the stable subspace of IR™, i.e., the (n—1)-dimensional
subspace spanned by the eigenvectors (and generalized eigenvectors, if any) corresponding to the
stable eigenvalues of L. Using the representation £ = ar + w (w € E?) in Eq. (38); recalling that
P has been chosen, by Eq. (306), such that P = Tl 4+ 1 with IIr = 0; invoking the fact that a

multilinear function is linear in each argument; and collecting terms on the right side of (38) of like

order in |(a, w)|, we obtain a series expansion

V(x) = V) + Wy + Wy + (39)

15



where the integer subscripts denote the degree of the corresponding term in |(a,w)|, and the dots

denote terms of fifth and higher order in |(a, w)|. Specifically, the terms appearing on the right side

of Eq. (39) are given by

M = o (LT1+0L)w, (40)
Vg = 26°1Q(r,7)

+3a*K(r,r, Lw) + 40*1Q(r, w) + 2a2QT (r, r)llw

+ 2alQ(w, w) + 4aQ” (r, w)Tw + 6aK (r, w, L)

+2Q7 (w, w)w + 3K (w, w, Lw), (41)
Vi = o™2C(r,r,r)+3K(r,r,Q(r, 1))}

+2a°{3IC(r, r,w) + 3K (r,w, Q(r, 7)) + 3K(r, 7, Q(r, w))}

+3a*{2C(r, w, w) + K(r,7, Q(w,w)) + 4K(r,w, Q(r, w)) + K(w, w, Q(r,7))}

+ 2a{IC(w, w,w) + 3K(r, w, Q(w, w)) + 3K (w, w, Q(r, w))}

+ 2CT (w, w, w)lHw + 3K (w, w, Q(w, w)). (42)

Note that condition (iii) on Il (cf. Proposition 5) implies that [V],, < 0 for w € E*,w # 0.
This does not of course imply that V is locally negative definite, only that it is locally negative
definite on the subspace E*.

Lemma 1, along with the foregoing computation of V, allow us to obtain the following pre-
liminary statement concerning the local asymptotic stability of the origin of Eq. (1). Note that
condition (S1) of the next proposition is a known necessary condition for stability for systems (H
possessing a simple zero eigenvalue (see for instance [2], [10]).

Proposition 6. Under hypothesis (S), the origin of Eq. (1) is locally asymptotically stable if
there are a real symmetric n x n matrix II satisfying (i)-(iii) of Proposition 5, and a symmetric real

trilinear function K(z!, 2%, z?), for which the following three conditions hold:
(S1) 1Q(r,7) =0,
(S2) 3K(r,r, Lw)+41Q(r,w) + QQT(r, r)lfw =0 for all w € E*, and

(S3) 20C(r,r, 1y + 3K (r,7,Q(r,7)) <O0.
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Proof. Let conditions (S1)-(S3) of the Proposition hold. It is straightforward to write an upper
bound for V(ar + w) in the form of a scalar bivariate Taylor series. To facilitate application of
Lemma 1, we employ notation consistent with Eq. (19) of Lemma 1, and define variables u := |w]
and v := |a|. The proof proceeds in two steps. The first step consists of verifying that ag; = 0 and
a;z = 0. In the second step, we ascertain that azp < 0 and ags < 0. Step 1. From Eq. (41), it is
clear that the v3-term in V is 21Q(r,7)v*, and this vanishes by virtue of condition (S1). Thus, the
upper bound for v will naturally be absent of a term agzv®. Using Eq. (41), it is apparent that
the uv?-term in the upper bound will vanish if 3K(r,r, Lw) +41Q(r, w) + 2Q7 (r, r)[Iw = 0 for each
w € E°. This latter condition is precisely (52). Step 2. Eq. (40) and Corc.ary 1 imply that the
quadratic terms in V are bounded above by a function agou?, where ayp < 0. Also, Eq. (42) (which

gives the quartic terms in V) and assumption (S3) together imply that agq < 0. =

6.2 Algorithm for Construction of V in Case (S)

For Proposition 6 to be useful in the explicit construction of Liapunov functions for Eq. (1), a
method is needed facilitating the choice of a matrix I and a trilinear function K for which, under
an auxiliary condition guaranteeing local stability, (S2) and {S3) are satisfied. As it turns out, one
can first choose any matrix II for which conditions (1)-(iii) of Proposition 5 hold, and then proceed
to construct compatible trilinear functions K satisfying (S2), (S3). We now proceed to construct a
family of such trilinear functions, using the representation (17) in terms of the associated structural
coefficients.

The general representation (17) for trilinear functions K(z1, 22, 2%) assumes a specific choice of
basis for IR". Let {r!,r? ... 7"} be a basis for IR", obtained by setting r! := r and requiring
that #* € E* for i = 2,...,n. Let the associated dual basis (discussed in Section 2.3) be given
by {I*,12,...,I"}. Recall that the biorthonormality property (9) holds, i.e., that I'+? = 6,j, the
Kronecker delta. Moreover, by Proposition 4 and the fact that the dual basis is unique, we have
that I' = I, the left eigenvector of L associated with the eigenvalue zero (recall the normalization
r=1).

By (17), the trilinear function K can be represented as follows:

K(z! 2%, %) = ZZZnijk(lix])(lsz)(lk:rB). (43)

1=17=1k=1
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By (S1) and Proposition 4, we have that Q(r,r) € E°. Thus we are free to substitute Q(r,r)
for Lw in condition (S2), upon which we directly obtam
3K(r, 7, Q(r,r)) = —4lQ(r,L~Q(r,7)) — 2Q7 (r, YILL™Q(r, )
= —4IQ(r, L=Q(r,7)) = QT(r.n) (L) T + IL)Q(r, 7). (48)
Here, L™ is as defined in Eq. (45). Substitution of (48) into (S3) yields the following condition

equivalent to (S3):

AC(r, r,#) — AQ(r, L~ Q(r, 7)) — QT (r, r)((L™) T + IL™)Q(r,r) < 0. (49)

Note that (S3) therefore places a condition only on the quadratic part of the Liapunov function
candidate V), as reflected by the appearance in (49) of the matrix II.

Conditions (S1) and (S3) are akin to conditions that arise in the stability analysis of stationary
bifurcation for parametrized embeddings of Eq. (1). Under hypothesis (S), such parametrized
systems will generically exhibit a bifurcation in which a new equilibrium z. coexists with the origin
for each small |e]. Here, € is a (normalized) real amplitude parameter. The eigenvalue near zero of

the bifurcated equilibrium z is given by an expansion

Ble) = Pre+ Pae® + B3 + - - (50)

To guarantee asymptotic stability of the new equilibrium z., one requires $; = 0 and B, < 0. In

this context (cf. [2]), we have the “bifurcation formulae”

By =1Q(r,r), (51)

Be = 21{C(r,r,7) = 2Q(r, L™ Q(r,7))}. (52)

Note that condition (S1) is therefore identical to the bifurcation stability condition By = 0.
Similarly, (S3) (equivalently, Eq. (49)) is readily expressed in terms of the coeflicient §2. Denote
by Ag(I) the II-dependent scalar

As(I) = —QT(r,)((L7) I+ IIL7)Q(r, 7). (53)
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Eq. (49) is now rewritten in terms of #; and Ag:

By + As(Tl) < 0. (54)

The following result is well known (see, e.g., [2], [9]).

Theorem 1. Let hypothesis (S) hold, and suppose that 8y = 0 and 3, < 0, where 3; and 3, are
given by (51) and (52), respectively. Then the origin of Eq. (1) is locally asymptotically stable.

In our pursuit of Liapunov functions for (1), we have in fact rederived this result. Indeed, note
that our condition (S1) requires that 3; = 0, and, for a given system (1) for which 8, < 0, the
matrix II can be chosen so as to ensure that (54) holds. (Recall that II is any real symmetric matrix
satisfying conditions (i)-(iit) of Proposition 5. These conditions are linear in II.)

An observation of relevance here is that, for any choice of II, the quantity Ag(Il) is nonnegative:
As(Il) > 0. (55)

Thus, As(Il) contributes adversely to satisfaction of Eq. (53).
We can now present the main result of this section, the construction of a family of Liapunov

functions V(z) of the form (14) for Case (S) (one zero eigenvalue).

Theorem 2. Let hypothesis (S) hold, and suppose that 3; = 0 and B2 < 0, where B; and 3, are
siven by (51) and (52), respectively. Then any function V(z) resulting from Algorithm Vg below
is a Liapunov function for the equilibrium point 0 of Eq. (1).

Algorithm Vs. (Construction of Liapunov functions V(z) = 7Pz 4+ K(z,z,2) in Case (S))

Step 1. Compute I and r. Choose a basis {r?,...,r"} for E*. Compute the dual basis
{I},12)... )"} to the basis {r!,72 ...,r"} for IR". Here, r! := r and I' = I. Compute
the coeflicients 3; and fy according to Egs. (51) and (52), respectively. Check that §; = 0
and £, < 0.

Step 2. Choose any real symmetric n x n matrix II satisfying, for all w € E°, w # 0: (i) lIr = 0,
(i) wTOw > 0, and (iii) w (LTH + N L)w < 0, and for which

|As(ID] < [Bal, (50)

where Ag(Il) is as defined in Eq. (53).

20



Step 3. Set P =TI +1I.

Step 4. Set the structural coeflicients ;11,1 =2,...,n to
2 — i T By -
K1 = ~§{21Q(T‘,L ™)+ Q (r,r)IIL7r'}. (57)

Step 5. Symmetry requires that «;;x be independent of permutations in the indices i,j, k. The
structural coefficients in the representation

n n n
K(z',22,2%) =) 3 3 wip(fa')(F2?)(1F2°) (58)
1=1 7=1k=1

which have not been specfied in Steps 1-4 are either determined by symmetry and Eq. (57),

or can be assigned arbitrarily, subject only to the symmetry requirement.

7 CONSTRUCTION OF LIAPUNOV FUNCTIONS IN THE
CASE OF A PAIR OF PURE IMAGINARY EIGENVALUES

In this section, Liapunov functions are constructed for the origin of Eq. (1) under hypothesis (I).
The construction parallels that of the last section, while differing from it in several respects. For
example, the Liapunov function candidates used in the previous section consist only of quadratic
and cubic terms in the state. In this section, quartic terms also appear in the Liapunov function
candidates (cf. Eq. (15)). If quartic terms were not included in the assumed form of the Liapunov
function candidates, the construction would fail generically in Case (H). A second difference be-
tween the calculations of this and the preceding section concerns the adoption of complex notation.
Although not essential, complex notation is both natural and convenient when considering local

asymptotic stability of systems (1) under hypothesis (H).
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7.1 Conditions for V <0

Consider, then, the time-derivative of the Liapunov function candidate
V(z) = zT'Px+IC(x,x,x)+T(x,x,x,:t) (59)

along trajectories of Eq. (1). Using Proposition 1, and the Taylor series representation (13) of

f(x), we find that this derivative is given by

V() = 2T(LTP+PL)z
+ QQT(;L', )Pz +3K(z,z,Lx)

+ QCT(I‘, z,2)Pr+3K(z,z,Q(x,z))+ 4T (z,z, 2, Lx) + --- (60)
In Section 5, it was noted that any vector z € IR™ has a unique representation
r=ar+ar+ w. (61)

Here, r is the right eigenvector of L associated with the eigenvalue iw. (as specified in Section 1), r
is the complex conjugate of r and as such is a right eigenvector of L associated with the eigenvalue
--iw., a is a complex scalar, and w € E*.

The first step in our procedure for obtaining conditions for local negative definiteness of V(z)
is to substitute in Eq. (60) the representation (61) for z and the representation (37) for the matrix
P, and group terms according to their order in |(a, @, w)|. (Recall that (37) states that, in Case
I, P is chosen from among matrices of the form P = I + [T1 41 TI, where II satisfies conditions
(i)-(iii) of Proposition 5.) Using Proposition 4 and Remark 2 (orthogonality of left and right
eigenvectors), and after a considerable amount of algebra and reordering of terms, we can obtain
explicit formulae for the quadratic, cubic and quartic terms in |(a,a, w)| (these are [V](z), [V](a),

and [V](4), respectively) in the expansion
V(z) = [V](z) + [V}(a) + [V](4) +e (62)

of V(z). (This is in analogy with Egs. (39)-(42) of the preceding section.) For example, one can

check that [V],), [V](5) are given by
[V]m = w (L7 + UL)w, (63)
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M = @{2Q(r,r) + 3iwK(r,r,7)}
+ @3 {210Q(F, ) - 3iw K (F, 7, 7)}
+ a?a{20Q(r,r) + 4IQ(r, 7) + 3iwK(r, 7, 7)}
+ @*a{2IQ(F, 7) + 41Q(r, 7) — 3iw K(r,7,7)}
+ a*{2Q7 (r, ") Tw + 4IQ(r, w) 4 3K(r, v, Lw) + Giw K(r, r, w)}
+ a2 {2Q7 (7, 7)lw + 4lQ(F, w) + 3K (7, 7, Lw) — 6iw K (7, 7, w)}
+ aa{4QT (r, F)lw + 4IQ(F, w) + 4IQ(r, w) + 6K (r, 7, Lw)}
+ a{20Q(w, w) + 6K (r, w, Lw) + 3iw K (r, w, w)}
+ a{20Q(w, w) + 6K (7, w, Lw) — 3iw K (7, w, w)}
+ 3K (w, w, Lw). (64)

Note that both [V],,, and [V], as given above are real-valued, as expected. There is no need to
(2) (3) % 8

give the full expression for [V](4) here. Instead, we proceed directly to the statement of the following

preliminary result in the construction of Liapunov functions under hypothesis (H). In the proof of

this result, which is analogous to Proposition 6 in the preceding section, values of certain pertinent

terms appearing in the expansion of [V] 4 will be given. All the terms in the expansion of m

may be obtained readily, to result in an expression analogous to (64).

Proposition 7. Let hypothesis (H) hold. Suppose that, for some real matrix Il satisfying the
conditions of Proposition 5, symmetric real trilinear function K(zl,x2,x3), and symmetric real

tetralinear function ’T(zl,xQ,x3, z*), the following seven conditions hold:

(H1) 20Q(r,7) + 3iwK(r,r,7) = 0,

(H2) 20Q(r,r) + 4IQ(r,7) + 3iw K (r,r,7) = 0,

(H3) 2Q7(r,r)lw + 4IQ(r, w) + 3K(r,r, (L + 2iw. I)w) = 0, for all w € E?,
(H4) 2Q7 (r,7)[lw + 2AQ(r,w) + 20Q(7,w) + 3K(r,7, Lw) = 0, for all w € E?,
(H5) 21C(r,r,v) + 3K(r, 7, Q(r, ) + 4iw.T (r,r,r,r) = 0,

(H6) IC(r,r,7) + 3IC(r, v, 7) + +3K(r, 7, Q(r, 7)) + 3K (7, 7, Q(r, 7)) + diw.T (r,r,7,7) = 0,
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(H7) Re{20C(r,r,7)+ K(r,r,Q(F,7))} +2K(r,7,Q(r,7)) < 0.

Then the ongin of Eq. (1) is locally asymptotically stable.

Proof. The proof consists of a judicious application of Lemma 1, which gives general sufficient
conditions for local negative definiteness of a class of bivariate functions. Identify the scalar variables
u and v in Lemma 1 as u := |w|, v := |a| = |a|. The bivariate function 8(u, v) of Lemma 1 is taken
to be a local upper bound on V(z). We show that conditions (H1)-(H7) are sufficient for there to
exist such an upper bound é(u, v) satisfying the hypotheses of Lemma 1. To ensure absence of the
v-term in 8(u,v), i.e., that ags = 0, we require the coefficients of a®, @*, a®a and aa in Eq. (64)
to vanish. The coefficient of a® is precisely the expression on the left side of (H1). (Note that the
a’-term in (64) is the complex conjugate of the a®-term, and thus also vanishes when (II1) is in
force; analogous comments apply below.) Similarly, the expression on the left side of (H2) is simply
the coefficient of a?a in Eq. (64). Thus, (H1) and (H2) combined ensure that agz = 0. To ensure
absence of the uv?-term in &(u,v), i.e., that aj; = 0, we require the “linear-in-w” coefficients of
a? and a@ in Eq. (64) to vanish for each w € E*. (The coeflicient of a?, being the conjugate of
that of a2, will then vanish automatically.) Inspection of Eq. (64) reveals that this is equivalent to
conditions (H3) and (H4) above. It remains to show that azg < 0 and a40 < 0 (in the notation of
Lemma 1). That age < 0 follows immediately from Eq. (63) and Corollary 1. Conditions ensuring
that a4o < 0 can only result from examination of the quartic terms in V. However, quartic terms in
W](“) which involve w are irrelevant to this requirement. The needed coeflicients can be obtained

readily by substituting Eq. (61) for z in the formula
Vg (2) = 207 (2,2, 2)Pz + 3K(z, 2, Q(z,2)) + 4T (2, 2,7, L), (65)

using the orthogonality of left and right eigenvectors (cf. Proposition 4 and Remark 2), and using

the fact that a multilinear form is linear in each argument. The expansion of [V] 4 (ar + a7 + w)
is seen to contain five terms which are quartic in (a,ad): an a*-term, an a®a-term, the conjugates
of these two, and an a?a?-term. Of these five, only the latter is sign-definite: a?a® = |a|*. Thus,
we require the coefficient of a®a? in the expansion of [1.)](4)(ar + aF + w) to be negative, and the
coefficients of a* and a®a to vanish. It is readily verified that the left side of (H5) is the coeflicient
of a*) and the left side of (H6) is half the coefficient of a®a. Finally, it is straightforward to check

that the left side of (H7) is one-sixth the coefficient of a?a® in the expansion of [V](4)(ar +ar +w).
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Thus, conditions (H5)-(H7) together give the desired negativity of ag4. o

7.2 Algorithm for Construction of V in Case (H)

Conditions (H1)-(HT7) may be solved for a trilinear function K(z', z?,z®) and a tetralinear function
7'(1‘1,12,:1:3,1'4), under an appropriate auxiliary condition ensuring stability of the origin and for
a given matrix II satisfying the conditions of Proposition 5. The procedure is much the same as
was carried out in the preceding section, where the coordinate representation of a trilinear form
K(z', 2%, 2°%) was employed to solve (S1)-(S3) for the structural coefficients rizk of K. Due to this
similarity, only a summary of the main steps in the derivation is deemed necessary here, with the
result for the Liapunov functions we obtain summarized below in Algorithm V.

For convenience, we continue to employ complex notation, and choose a coordinate basis
{r,r% .. .,r"} for IR™ in which 7! := r, 72 .= 7 and 73, ..., 7" lie in E* C IR". To this ba-
sis there corresponds a unique dual basis of row vectors {I*,1%,... 1"} where ! := [ and I? := [.
The trilinear and tetralinear functions K(z',z?,2°) and 7 (z', 22,23, 2*) are then expressed in the
coordinate representations (17) and (18), respectively. We seek the minimum set of specifications on
the associated structural coefficients x5 and 7;j4p, respectively, under which conditions (H1)-(H7)
above hold.

Conditions (H1) and (H2) are interpreted in this framework simply as assigning values to the
structural coefficients 111 and k1y2, respectively. Next consider (H3). Since E* is invariant under
L, w € E? implies that (L +2iw.I)w lies in the complexification of E* (also referred to as E* below).

Thus, we can define a vector @ := (L + 2iw.I)w, noting that the matrix inverse in the equation

w = (L + 2uw.I)"'% exists by hypothesis (H). Interpreting (H3) as a requirement on each basis

vector r3,...,r™ of E*, we find that (H3) amounts to a specification of the structural coefficients
Ki11, ¢ = 3,4,...,n. Similarly, (H4) amounts to a specification of the structural coefficients &2,
1= 3,4,...,n.

Since each of the structural coefficients ki1, i = 1,2,...,n is fixed (by one of (HI)-(H3)),
K(r,r,z) 1s fixed for any x € C". The coeflicients ki12,7 = 1,2,...,n are also fixed: k112 is fixed by
(H2), ki12, 2 = 3,4,...,n are fixed by (H4), and we also have k212 = K112 by applying Proposition
3 to (H2). Thus, K(r, 7, z) is also fixed for any # € @". By these remarks, it follows that the
terms K(r,r, Q(r, 7)), K(r,r,Q(r,7)), K(r,7,Q(r,r)) appearing in (H5) and (H6) are determined by



(H1)-(H4). Their values may be found by expressing Q(r,r) and Q(r,7) as linear combinations of
the basis vectors r*, i = 1,...,n, and then employing the coordinate representation of K. Thus,
(H5) and (H6) serve to assign the values of T(r,r,7,7) (= m111) and T(r,r,7,7) (= Ti312). The
importance of including the quartic term 7 in the Liapunov function candidate now becomes clear:
with 7 = 0, (H5) and (H6) become constraints on the system which do not constitute necessary
conditions for stability. However, with inclusion of a quartic term 7, (H5) and (H6) are quite easily
satisfied.

By the remarks above, it follows that the quantity appearing on the left side of (H7) is completely
specified by the system dynamics and the matrix II. Next, we sketch the derivation of an explicit
reformulation of the left side of (H7) in terms of system (1) and II. A stability coefficient which
arises in the study of Hopf bifurcation for parametrized versions of (1) under hypothesis (H) will
appear in the reformulation. The value of this coefficient, which we denote as 3;, is recalled next.
Note that this coefficient f; 1s distinct from the coefficient of the same name appearing in Section
6. In the present context, 3, relates to an (even in €) expansion B(€) = B¢ + Bse? + .-+ of the
Floquet exponent near zero of bifurcated periodic solutions of parametrized embeddings of Eq. (1).
(Compare with Eq. (50) for the analogous eigenvalue expansion in Case (S).)

Define vectors £ and n by
1
£ = —§L’1Q(r, ), (66)
1
n o= 5(21'%1 - L)7'Q(r,r). (67)

(In [9] and [1], £ and 7 are denoted as a and b, respectively.) Then B3, is given by the “bifurcation
formula” [9], (1]

By = 2Re{2AQ(r,€) + 1Q(F, n) + glC(r, r,7)}. (68)

Conditions (H1)-(H4) can be used to replace (H7) with an equivalent condition stated explicitly
in terms of the Taylor expansion (13) of system (1). Consider the two terms K(r,r, Q(#,7)) and
K(r,7,Q(r,7)) appearing in (H7). The former quantity is of the form KC(r,r, z), which occurs in the
statements of conditions (H1) (with = = r), (H2) (with z = 7) and (H3) (with =z € E*). Thus, we
resolve the vector z (= Q(7, 7)) into its components lying in the subspace E® and along the »- and
r-directions, and then apply (H1)-(H3). The r-component of any vector z is given by (Iz)r (recall

the normalization [r = 1), the #-component is (Iz)7, and the E*-component is the remainder
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z* =z — (lz)r — (Iz)7. (69)

Using (H1)-(H3), we have that, for any z,

2 9 ]
K(r,r,z) = ~ i (Ix)JQ(r,r) — Sio (Iz)(IQ(r, ) + 21Q(r, 7))
_ %{QQT(r, P)I(L + 2iwe )™ 2° + 41Q(r, (L + Ziwe ) 2°}. (70)

Since r is an eigenvector of L, it is also an eigenvector of (L + 2iw.1)~! and of (L — 2iw. 1)~ 1.
Using this fact, and the fact that IIr = 0, this expression may be expanded and simplified. Letting

z = Q(7,7), the resulting expression is

K(r,r,Q(7,7) = -gicz(r, 7) + %QT(r, )7
- G (10 MU ) = 7 (1Q(r, M)IQ( ). (1)
Thus,
Re(K(r,7,2)) = Re{5Q(r, ) + Q7 ()17} (72)

The following formula for K(r, 7, Q(r, 7)) is obtained in a similar fashion. The fact that » and

7 are eigenvectors of L™! is employed in the computation.

K(r,7,Q(r,7)) = g?Re{IQ(r,{) + %QT(r, FYIEY. (73)

Condition (H7) may now be rewritten explicitly as

B2+ Ap(Il) <0, (74)
where [, is as defined above, and where A is given by the real number

Ay = Q(r,mT((L™H T+ 1L )Q(r,7)

- %QT(T" (L + 2iw 1)~ + ((L = 2iw 1) H) T} Q(F, 7). (75)
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It is not difficult to ascertain that Ay is nonnegative, although this is not an essential consider-
ation. (One proof of this uses the fact that formula (75) is a special case of the sum of a Hermitian
form and a quadratic form.)

We have just rederived the following known criterion for asymptotic stability in Case (H).

Theorem 3. Let hypothesis (H) hold, and suppose that 8, < 0, where 3, is given by Eq. (68).
Then the origin of (1) is locally asymptotically stable.

Regarding the structural coefficients «;;; and 7,4, that have not been specified explicitly in the
foregoing analysis, only two constraints remain: The first, the symmetry requirement, entails that
the value of a coefficient is independent of the order of subscript indices. e second constraint
is that the function V(z) must be real-valued for x € IR™. Using Proposition 3, it is found that
this latter requirement is equivalent to what might be called a conjugate symmetry relationship
among the structural coefficients, the exact nature of which is specified in the next Corollary to
Proposition 3.

Corollary 2. (Conjugate Symmetry of Structural Coefficients in Case (H)) Denote, for
any positive integer i, the quantity [i] (the “complement of ¢”)
2 ifi=1,
[J=q1 ifi=2 (76)
i otherwise
Then, V(z) is real-valued for each z € IR™ if and only if the structural coefficients ;;; and 7354,

satisfy the following relationship:

-1
-1
—

Kijk = Kk

~~ —~_
-1
oo
~—

Tiske = THKp)-
Proof. Follows immediately from Proposition 3. ' o

The foregoing construction of a family of Liapunov functions V(z) of the form (59) for the case
in which D f(0) possesses a pair of pure imaginary eigenvalues is summarized in the next result and

algorithm.

Theorem 4. Let hypothesis (H) hold, and suppose that 33 < 0, where 3; is given by Eq. (68).
Then any function V(z) resulting from Algorithm Vg below is a Liapunov function for the equilib-

rium point 0 of Eq. (1).
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Algorithm Vy. (Construction of Liapunov functions V(z) = TPz + K(z,z,2) + T (z,z,2,2) in
Case (H))

Step 1. Compute [ and r and choose a basis {r!,r? ... "} for IR" with r! := r, r? := 7 and for
which {r®,...,r"} is a basis for E*. Calculate the row vectors {I°,... I"} of the associated

dual basis. Check that B2 < 0, where B, is as defined in (68).

Step 2. Pick any II satisfying (i) Ir = II7 = 0, (ii) w"Mw > 0, and (jii) w? (LTO + M L)w < 0 for
all w € E* w # 0, and such that Ay (1) < |B;|, where Ay (1II) is given by Eq. (73).

Step 3. Set P =T+ TI4+171

Step 4. Set K(z!,22,2%) =1, ;l:l > et nijk(lixl)(lsz)(lkrs), and

1 -

K111 = —3@01(2(7"»7")7 (79)
1 _

Kil2 = ~3 {41Q(r,7) + 21Q(r, )}, (80)
e

Kin = _%{4TQ(r,(2iwcz+L)-lr*')+2QT(r,r)H(L+incz)-lr*'}, i=3,...,n,(81)

Kig = —g{iQ(f,L“lr")-+IQ(r,L‘lr“)+QT(r,f)HL‘1r"}, i=3,...,n (82)

Step 5. Set T(xl,12,13,14) =5, Z?:l > k=1 E;—.—l 'r,-jkp(lixl)(Ijx2)(lk13)(1px4). Here, 71111 (=

T(r,r,7,7)) and m112 (= T(r,7,7,7)) are selected according to (H5) and (H6), respectively.

Step 6. All structural coeflicients &;;; and 7%, which have not been specified in Steps 1-5 are

assigned arbitrarily, modulo the symmetry requirement and the conjugate symmetry require-

ment (Egs. (77), (78)).
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8 CONCLUDING REMARKS

Liapunov functions for nonlinear systems with either of the two simplest critical cases have been
explicitly constructed. For the case in which the sytem linearization possesses a simple zero eigen-
value, generically the Liapunov functions need contain only quadratic and cubic terms in the state.
However, when a complex conjugate pair of simple, pure imaginary eigenvalues are present, the
Liapunov functions contain quartic terms, in addition to the quadratic and cubic terms. These
[iapunov functions were shown to predict local asymptotic stability precisely when certain known
sufficient conditions from bifurcation analysis are satisfied. We have obtained parametrized “fam-
ilies” of Liapunov functions for the studied critical cases, in the same sense that the Liapunov
matrix equation yields an infinite set of quadratic Liapunov functions for asymptotically stable lin-
ear time-invariant systems. The Liapunov functions are computed directly in terms of the Taylor
series expansion of the vector field f(r), and are thus amenable to symbolic computer coding. The
use of these Liapunov functions in the design of feedback control laws for critical nonlinear systermns

is a topic for future investigation.

APPENDIX A. SOLUTION OF LINEAR ALGEBRAIC EQUATIONS
WITH SINGULAR COEFFICIENT MATRIX

Consider the system of linear equations

Az =b (A1)

where A is a real n X n matrix and b € IR". Suppose that A has a simple zero eigenvalue. Let
r and [ denote right (column) and left (row) eigenvectors of A, respectively, corresponding to the
zero eigenvalue, and require that these be chosen to satisfy Ir = 1. Under these conditions, the
Fredholm Alternative asserts that (A.1) has a solution if and only if [b = 0. Moreover, the Fredholm
Alternative also implies that, if (A.1) has a solution 29, then the totality of solutions is given by
the one-parameter family z = 2% 4+ ar where o € IR is arbitrary. The solution is rendered unique
upon imposing a normalization condition which specifies the value of lx.

Introduce subspaces E°, E° C IR" as follows: E° is the one-dimensional subspace

E° := span{r}, (A.2)
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and E° is the (n — 1)-dimensional subspace
E* :={z € IR"| Iz = 0}. (A.3)

From the foregoing, we have in particular that if Ib = 0 then the system Az = b, I = 0 has a
unique solution. Egquivalently, (A.1) has a unique solution tn E° for any vector b € E°. This proves
that the restriction [8, p. 199] A|g, of the linear map A to E* defines an invertible (one-to-one and
onto) map. In the next result, we exhibit the unique solution which lies in E®of the system Az = b,
[r = 0. The proof is elementary [2].

Proposition A.1 The unique solution of Az = b, Iz = 0 given that [b= 10 is
z=ATA+ 1T A D, (A.4)

This result motivates the following introduction of notation:

A = (ATA+ 1T 14T (A.5)

Thus, the inverse of the restricted map A|p, exists and is given by

(Alge) 1= A". (A.6)
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