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Enhancing quality of speech in noisy environments has been an active area

of research due to the abundance of applications dealing with human voice and

dependence of their performance on this quality. While original approaches in the

field were mostly addressing this problem in a pure statistical framework in which

the goal was to estimate speech from its sum with other independent processes

(noise), during last decade, the attention of the scientific community has turned

to the functionality of human auditory system. A lot of effort has been put to

bridge the gap between the performance of speech processing algorithms and that

of average human by borrowing the models suggested for the sound processing in

the auditory system.

In this thesis, we will introduce algorithms for speech enhancement inspired by two

of these models i.e. the cortical representation of sounds and the hypothesized

role of temporal coherence in the auditory scene analysis. After an introduction

to the auditory system and the speech enhancement framework we will first show

how traditional speech enhancement technics such as wiener-filtering can benefit



on the feature extraction level from discriminatory capabilities of spectro-temporal

representation of sounds in the cortex i.e. the cortical model.

We will next focus on the feature processing as opposed to the extraction stage in

the speech enhancement systems by taking advantage of models hypothesized for

human attention for sound segregation. We demonstrate a mask-based enhancement

method in which the temporal coherence of features is used as a criterion to elicit

information about their sources and more specifically to form the masks needed to

suppress the noise.

Lastly, we explore how the two blocks for feature extraction and manipulation can be

merged into one in a manner consistent with our knowledge about auditory system.

We will do this through the use of regularized non-negative matrix factorization to

optimize the feature extraction and simultaneously account for temporal dynamics

to separate noise from speech.
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Chapter 1: Introduction

Speech processing applications have gained plenty of interest during last decade

as the machine-human interaction through speech enters daily lives of people more

and more. Voice controlled devices, smart phone applications and automated cus-

tomer services are just a few examples in this new wave. Naturally, by the increase

in popularity the demand for more robust applications which can work anywhere

and at any time also increases over time. More specifically, these applications should

now detect and track a target source (Speech) of interest in the presence of acousti-

cal disturbances such as traffic noise, back ground music or even another competing

speaker. Almost always the performance of these applications is severely affected if

the noise is not handled correctly.

Speech enhancement as a popular solution aims to process the noisy speech signal

and to reduce the impact of the noise and enhance the sound quality i.e. listener

comfort or speech intelligibility. Speech enhancement can be done using single-

microphone (monaural) or multi-microphone methods. In terms of performance,

single-microphone methods often fall behind multi-microphone methods, but they

are usually preferred when there exist limitations in size, computational complexity

or power usage. Moreover many times single-channel methods are used in multi-
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Figure 1.1: General single-channel speech enhancement system.

microphone systems as a post-processing stage following a beamformer [1].

Single-microphone speech enhancement has been an active area of research for over

30 years, resulting in numerous methods and algorithms. Despite the varieties

of these systems, they often have a similar general structure i.e. the analysis-

modification-synthesis (AMS) arrangement. Figure 1.1 demonstrates the block dia-

gram of an AMS system.

The first two blocks exist in any enhancement system. The analysis block is

responsible for extracting features that can well represent the dynamic behavior of

speech. A very common choice in the existing systems is short-time Fourier trans-

form (STFT) computed by discrete Fourier transform (DFT). Besides historical

reasons, the efficient computation of STFT and its straightforward link to physi-

cal properties such as frequency content of the incoming signals have been the key

factors in this choice. The greatest variety of enhancement systems arises in the

modification stage where the extracted features are modified in a way that they

can represent the clean speech signal. Looking at the different approaches in the

2



field, they can be categorized into two main groups i.e., top-down, and bottom-up

methods [2].

In top-down approaches such as [3, 4], generative models are used to capture the

statistics of features of isolated signals, as well as the effect on the features of mix-

ing two signals. Taking advantage of the a prior knowledge about the speech, noise

and the mixing process, the inference seeks the speech and noise signals that are

most likely given the observed mixture. The decomposition of the spectrogram (or

other time-frequency representation) into its constituent sources emerges as a by-

product of this inference.

In bottom-up approaches, segmentation rules operate on low-level features to deter-

mine which regions of the mixture representation belong to the target speech. Often

times in these methods a measure of target speech dominance is estimated for each

feature and used to modify the representation.

Although original enhancement methods were mostly addressing this problem in a

pure signal processing framework, during last decade numerous approaches specially

in the bottom-up class have been proposed, inspired by the functionality of human

auditory system [5,6]. Some of these methods have tried to integrate computational

models suggested for the sound processing in the auditory system in the design

of analysis-modification-synthesis blocks, while others have taken into account our

knowledge about hearing.

In this thesis, we follow this trend by presenting speech enhancement methods in

both categories that take advantage of auditory models in the design of analysis

and modification blocks. The dissertation is organized in six chapters. Following

3



this introduction, we present an overview of the organizational structure of auditory

pathway, starting from the external ear and ending in the primary auditory cortex.

We also present the computational model suggested for sound processing in periph-

eral and central auditory system.

In chapter 3, we will show how traditional speech enhancement methods can benefit

on the feature extraction level from discriminatory capabilities of spectrotemporal

representation of sounds in the cortex i.e. the cortical model. We present a method

that identifies nonspeech segments of the noisy signal uses them to compute the

transformations needed in modification stage all performed in cortical domain.

In chapter 4, we put the feature extraction aside for a while and focus on the modifi-

cation stage. We overview the coherence-based model for auditory scene analysis and

see how it can serve as a foundation for speech enhancement. We present a button-

up mask-based enhancement method that uses mutual information as a measure of

coherence between features and a cue signal representing the target source to form

gain functions needed in modification stage. We provide examples in which loudness

and estimated pitch are used to clean noisy speech signals.

Chapter 5 explores how the spectroteporal feature extractors can adapt themselves

for better separation of noise from speech by merging the analysis and modification

stages. We present a noise reduction scheme based on regularized Non-negative

Matrix Factorization (NMF) in which the feature extractors (atom) simultaneously

adapt and take part in the separation process. In order to demonstrate the effec-

tiveness of the proposed methods, we provide performance comparison results for

all three methods.

4



Finally we conclude in Chapter 6 with an overview of the contributions presented in

this work and discuss the future works for auditory inspired speech enhancement.
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Chapter 2: Auditory System

2.1 The Auditory Pathway

Hearing in humans and other vertebrates is handled by the auditory system.

This system provide means to capture information about the surrounding objects

through the sounds they generate. The sound itself is the result of the propagating

energy produced by vibrating objects in an elastic medium in the form of a distur-

bance or pressure wave. The ear as the peripheral input gate of the auditory system

receive these vibrations and transduce the mechanical energy into electro-chemical

signals in the nervous system. At the core of the system, brain will process these

signals and extract certain attributes of the sound source such as location, content

and identity. in this chapter we will briefly review what we know about the auditory

system and see how sound is processed and perceived all the way from the external

ear to regions in central nervous system (CNS).

2.1.1 Ear

In order to hear sounds, ear is responsible for capturing the mechanical energy

(sound), transmitting it to the ears’s receptive organ and transducing it into electri-

6



Figure 2.1: The structure of the human ear. (Adapted from Noback 1967)

cal signals that can be analyzed by the nervous system. These tasks are respectively

accomplished by the three functional parts of ear i.e. external ear, the middle ear

and the internal ear [7] .Figure 2.1 illustrates the structure of the ear. The exter-

nal ear, especially the prominent auricle, focuses sound into the external auditory

meatus. Alternating increases and decreases in air pressure vibrate the tympanum.

These vibrations are conveyed across the air-filled middle ear by three tiny, lined

bones: the malleus, the incus, and the stapes. Vibration of the stapes stimulates

the cochlea, the hearing organ of the inner ear.

The cochlea shown in figure 2.2 in the inner ear consists of three fluid-filled

7



Figure 2.2: The Cochlea structure

compartments throughout its entire length of 33 mm. A cross section of the cochlea

shows the arrangement of the three ducts. The oval window, against which the

stapes pushes in response to sound, communicates with the scala vestibuli. The

scala tympani is closed at its base by the round window, a tick, flexible membrane.

Between these two compartments lies the scala media, an endolymph-filled tube

whose epithelial lining includes the 16,000 hair cells surrounding the basilar mem-

brane.
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2.1.2 Functional anatomy of the cochlea

Illustrated in figure 2.3, the basilar membrane is a mechanical analyzer of

sound frequency. The mechanical properties of the basilar membrane are key to the

cochlea’s operation. In brief, the membrane is tapered and it is stiffer at one end than

at the other. The dispersion of fluid waves causes sound input of a certain frequency

to vibrate some locations of the membrane more than the other locations. As shown

in experiments by Nobel Prize laureate George von Bekesy, high frequencies lead to

maximum vibrations at the basal end of the cochlear coil (narrow, stiff membrane),

and low frequencies lead to maximum vibrations at the apical end of the cochlear

coil (wide, more compliant membrane).

9



Figure 2.3: The basilar membrane and its frequency analysis mechanism
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Figure 2.4: Cellular architecture of the organ of Corti in the human cochlea

2.1.3 Cellular architecture of the organ of Corti

The organ of Corti shown in figure 2.4 is the organ in the inner ear of mammals

that contains auditory sensory cells, or hair cells. The organ contains some 16,000

hair cells arrayed in four rows: a single row of inner hair cells and three of outer

hair cells. The mechanically sensitive hair bundles of these receptor cells protrude

into endolymph, the fluid contents of the scala media. The hair bundles of outer

hair cells are attached at their tops to the lower surface of the tectorial membrane,

a gelatinous shelf that extends the full length of the basilar membrane. The basic

architecture of the organ of Corti is similar for all mammals.

11



Hair cells in the cochlea are stimulated when the basilar membrane is driven

up and down by differences in the fluid pressure between the scala vestibuli and

scala tympani. Because this motion is accompanied by shearing motion between

the tectorial membrane and organ of Corti, the hair bundles that link the two are

deflected. This deflection initiates mechanoelectrical transduction of the stimulus.

When the basilar membrane is driven upward, shear between the hair cells and the

tectorial membrane deflects hair bundles in the excitatory direction, toward their

tall edge. At the midpoint of an oscillation the hair bundles resume their resting

position. When the basilar membrane moves downward, the hair bundles are driven

in the inhibitory direction (Figure 2.5).

12



Figure 2.5: Hair cell stimulation by basilar membrane stimulation

The receptor potential in mammalian outer hair cells triggers active vibrations

of the cell body (figure 2.6). Mammals have not improved hearing sensitivity, but

the outer hair cells evolved only in them. As a result, they have extended the hearing

13



range and frequency selectivity which is of particular benefit for humans, because it

enables sophisticated speech and music.

Figure 2.6: Outer hair cell

2.1.4 Structure of inner hair cells

As shown in figure 2.7 The cylindrical hair cell is joined to the adjacent sup-

porting cells by a junctional complex around its apical perimeter. From the cells

apical surface extends the hair bundle, the mechanically sensitive organelle. Afferent

and efferent synapses occur upon the basolateral surface of the plasma membrane.

The bundle comprises some 60 stereocilia, each a cylinder with a tapered base, ar-

ranged in stepped rows of varying length. Deflection of the hair bundle to the right,

the positive stimulus direction, depolarizes the hair cell; movement in the opposite

14



direction elicits a hyperpolarization.

Figure 2.7: Structure of a vertebrate hair cell
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2.1.5 Transformation of mechanical energy into neural signals

Deflection of the hair bundle initiates mechanoelectrical transduction. This

involves a mechanism for gating of ion channels that is fundamentally different from

those employed in such electrical signals as the action potential or postsynaptic

potential. The opening and closing of transduction channels is regulated by the

tension in the elastic structure within the hair bundle. Figure 2.8 illustrates this

mechanism. The ion channels that participate in mechanoelectrical transduction in

hair cells are gated by elastic structures in the hair bundle. The channel is assumed

to be a membrane-spanning protein with a cation- selective pore. When the hair

bundle is at rest, each transduction channel clatters between closed and open states,

spending most of its time shut. Displacement of the bundle in the positive direction

increases the tension in the gating spring, here assume to be a tip link attached

to each channel’s molecular gate. The enhanced tension promotes channel opening

and the influx of cations, thereby producing a depolarizing receptor potential.

16



Figure 2.8: A model for the mechanism of mechanoelectrical transduc-
tion by hair cells

2.1.6 Innervation of the organ of Corti

The great majority of afferent axons end on inner hair cells, each of which

constitutes the sole terminus for an average of 10 axons. A few afferent axons

of small caliber provide diffuse innervation to the outer hair cells. Efferent axons

largely innervate outer hair cells, and do so directly. In contrast, efferent innervation

17



of inner hair cells is sparse and is predominantly axoaxonic, at the ending of afferent

nerve fibers. An illustration of the innervation is shown in figure 2.9.

Figure 2.9: Innervation of the organ of Corti.

2.1.7 Computational model for peripheral auditory processing

Computational Models aim to mimc the functionality of systems. For the pe-

ripheral auditory processing numerous computational models have been suggested

based on neurophysiological data gathered from mammalians peripheral stage of pro-

cessing [8,9]. The specific model we will use though this thesis stablished by Wang et

al [10] was preferred over others for the its biological foundation and perceptual rel-

evance which have been shown through analytical and experimental investigations.

Throughout this section, we will discuss how an auditory spectrogram is computed

based the the original work in [8].

18
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Figure 2.2: Schematic of the early stages of auditory processing. Sound is analyzed

by a model of the cochlea (depicted on the left) consisting of a bank of 128 constant-Q

bandpass filters with center frequencies equally spaced on a logarithmic frequency axis

(tonotopic axis) spanning 5.2 octaves (e.g., 0.1-4kHz). Each filter output is then half-wave

rectified and lowpass filtered by an inner hair cell model to produce the auditory-nerve

response patterns (middle panel). A spatial first-difference operation is then applied

mimicking the function of a lateral inhibitory network (LIN) which sharpens the spectral

representation of the signal and extracts its harmonics and formants [131]. The short-

term integration is typically performed over 8 ms intervals. A final smoothing of the

responses on each channel results in the auditory spectrogram depicted on the right.

tational strategies of auditory perception. In this section, we describe briefly the steps

involved in computing an auditory spectrogram based on the original work presented in

[144, 147]. While not strictly biophysical, the model abstracts from physiological data

relevant for basic sound analysis. It consists of various stages based on a wavelet-analysis

of the acoustic waveform (s(t) in Equation 2.1), modelled as a three-step process:

• First, the frequency analysis in the cochlear stage is modelled by a bank of constant-Q

highly asymmetric bandpass filters (Q=4) equally spaced on a logarithmic frequency

axis (h(t, x) in Equation 2.1). The model employs 24 filters/octave over a 5.3 octave

range. The left panel of Figure 2.2 illustrates an incoming sound waveform processed

through a bank of frequency selective filters.

14

Figure 2.10: Schatic of peripheral auditory processing modeled as a three
step process.

The computation involves a stage of wavelet analysis followed by a series of

linear and nonlinear transformations applied on the acoustic waveform. Figure 2.10

shows a schematic of the peripheral auditory processing i.e. the computation of the

auditory spectrogram. The model can be formulized through the following three

steps computation:

y1(t, x) = s(t) ∗t h(t;x) (2.1)

y2(t, x) = g(δty1(t, x)) ∗t ω(t) (2.2)

y3(t, x) = max(δxy2(t, x), 0) ∗t µ(t; τ) (2.3)

With s(t) being the acoustic waveform, equation (2.1) models the frequency

analysis mechanism of cochlea as a filter bank consisting of constant-Q (Q = 4)

19



highly asymmetric bandpass filters, h(t, x) that are uniformly spread over the fre-

quency axis. The filters span a 5.3 octave range on the frequency axis with 24 filters

in each octave.

The next stage (equation (2.2)) models the conversion of the basilar membrane out-

puts into inner hair cell intra-cellular potentials i.e. y2(t, x). The conversion involves

the following operations: a high-pass filtering (the fluid-cilia coupling), a nonlinear

compression (gated ionic channels) denoted by a nonlinear function g(·), and a low-

pass filtering by the filter ω(·) (hair cell membrane leakage).

The final step (equation (2.3)) mimics the functionality of the the lateral inhibitory

network that detects discontinuities in the responses across the tonotopic axis of the

auditory nerve array and the sharpening of the filter-bank frequency selectivity ob-

served in the cochlear nucleus. It is modelled as a first difference operation across the

channel array, followed by a half-wave rectifier, and then a short-term integrator.

The temporal integration window is captured by the function µ(t; τ) = e−t/τu(t)

with the time constant τ . This stage effectively sharpens the bandwidths of the

cochlear filters from about Q = 4 to 12, as explained in detail in [10].

Overall the resulting spectrogram acts as a temporal envelope tracker for the com-

ponents interacting with each other within the bandwidths of each filter.

2.1.8 The central auditory pathway

The central auditory pathways extend from the cochlear nucleus to the audi-

tory cortex. Postsynaptic neurons in the cochlear nucleus send their axons to other
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centers in the brain via three main pathways: the dorsal acoustic stria, the interme-

diate acoustic stria, and the trapezoid body. The first binaural interactions occur in

the superior olivary nucleus, which receives input via the trapezoid body. In particu-

lar, the medial and lateral divisions of the superior olivary nucleus, along with axons

from the cochlear nuclei, project to the inferior colliculus in the midbrain via the

lateral lemniscus. Each lateral lemniscus contains axons relaying input from both

ears. Cells in the colliculus send their axons to the medial geniculate nucleus of the

thalamus. The geniculate axons terminate in the primary auditory cortex, a part of

the superior temporal gyrus (Figure 10). Information flows from cochlear hair cell

to neurons whose cell bodies lie in the cochlear ganglion. The pattern of afferent

innervations in the human cochlea emphasizes the functional distinction between

inner and outer hair cells. At least 90% of the cochlear ganglion cells terminate on

inner hair cells. Each axon innervates only a single hair cell, but each inner hair

cell directs its output to several nerve fibers, on average nearly 10. The output of

each inner hair cell is sampled by many nerve fibers, which independently encode

information about the frequency and intensity of sound. The tonotopic organiza-

tion of the auditory neural pathways begins at the earliest possible site, immediately

postsynaptic to inner hair cells.

The acoustical sensitivity of axons in the cochlear nerve mirrors the innervation

pattern of spiral ganglion cells. Each axon is most responsive to stimulation at a

particular frequency of sound, its characteristic frequency. Stimuli of lower or higher

frequency also evoke responses, but only when presented at greater intensities. The

relation between sound-pressure level and firing rate in each fiber of the cochlear
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nerve is approximately linear. Difference in neuronal responsiveness originate at the

synapses between inner hair cells and afferent nerve fibers. Nerve terminals on the

surface of a hair cell nearest the axis of the cochlear spiral belong to the afferent

neurons of lowest sensitivity and spontaneous activity. The multiple innervations

of each inner hair cell are therefore not completely redundant. Instead, because of

systematic differences in the rate of transmitter release or in postsynaptic respon-

siveness (or both), the output from a given hair cell is directed into several parallel

channels of differing sensitivity and dynamic range.

Three important general principles emerge from connections in the brain stem. First,

acoustical information is processed in parallel pathways, each of which is dedicated

to the analysis of a particular feature of auditory information. Second, the various

cell types of the cochlear nuclei project to specific relay nuclei, so that the sepa-

ration of information streams commence within the cochlear nuclei. Finally, there

is extensive interaction between auditory structures on the two sides of the brain

stem. The medial superior olive performs a specific function in a readily intelligible

way. The ability to localize sound sources along the azimuthal axis stems in part

from the processing of information about auditory delays.

The inferior colliculus (IC) is divisible into two major components. Because it con-

tains many neurons sensitive to interaural timing or intensity differences, the IC is

apparently involved in sound localization. The medial geniculate body (MGN) con-

stitutes the thalamic relay of the auditory system. This nuclear complex comprises

at least three subdivisions of which the principal nucleus is the best understood.

Most neurons in MGN are sharply tuned to specific stimulus frequencies, and most
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are responsive to stimulation through either ear.

Figure 2.11: The central auditory pathway

The ascending auditory pathway terminates in the cerebral cortex, where sev-

eral distinct auditory areas occur on the dorsal surface of the temporal lobe. The

most prominent projection from the ventral nucleus of the MGN extends to the

primary auditory cortex (A1).
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It should be pointed out that due to the anatomical complexity of the pathways,

the neural morphology of cells and circuitry, and the unknown nature of the neu-

ral code, our understanding of the structure and function of the central auditory

nervous system is far less than that of the periphery. However the brain imaging

besides psycho-acoustical and neurophysiological studies have vastly broaden our

knowledge and provided us with tools to gain insight toward the function of the

central auditory system and the processes in the brain for sound perception.

2.1.9 Computational Model

There is no consensus regarding the real role of the cortical circuitry in sound

perception [11], but a simplistic view about the neurons in the cortex is that they

serve as “feature extractors” for the processing of sound. Aligned to this view, the

model we describe and use in this thesis is proposed by Chi et al. [12]. They derived

the model based on the physiological detain animals [13–15], and psycho-acoustical

data in humans [16].

The model consists of a multi-scale filter-bank represented by impulse responses in

the form of spectrotemporal Gabor functions [16].

Each of these two-dimensional filters are tuned to a range of temporal (denoted

ω, or rate) and spectral (denoted Ω, or scale) modulations. The overall impulse

response of each filter is a “separable” spectrotemporal modulation function RF

which can be computed as the product of two marginal functions i.e. a spatial
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impulse response hRF(x; Ωc, ϕc) and temporal impulse response gRF(t;ωc, θc) (as

shown in the Figure 2.12) mathematically formulated as:

gRF(t;ωc, θc) = g(t;ωc) cos θc + ĝ(t;ωc) sin θc

hRF(x; Ωc, ϕc) = h(x; Ωc) cosϕc + ĥ(t; Ωc) sinϕc (2.4)

RF(t, x;ωc, θc,Ωc, ϕc) = gRF(t;ωc, θc) · hRF(x; Ωc, ϕc)

The parameters in the models determine the selectivity of cortical neurons to

spectral local shapes, rate movements of spectra, as well as direction of movement

(upward or downward). In this way the spectrotemporal response of the neuron to

an input spectrogram y(t, x) can be computed as:

r(t, x;ωc, θc,Ωc, ϕc) = y(t, x) ∗xt RF(t, x;ωc, θc,Ωc, ϕc)

= y(t, x) ∗xt [gRF(t;ωc, θc) · hRF(x; Ωc, ϕc)]

= y(t, x) ∗xt [g · h cos θc cosϕc + g · ĥ cos θc sinϕc (2.5)

+ ĝ · h sin θc cosϕc + ĝ · ĥ sin θc sinϕc]

In the next chapter we use this model in the complex form in which the output

is reduced to a 4 dimensional complex-valued mapping r(t, x;ω,Ω) obtained from

a complex valued wavelet transform varying along time, frequency, spectral scale,

temporal rate. A functional description of the parameters of the cortical model

is presented in [17]. A schematic of the multi-scale wavelet analysis performed by

cortical neurons is shown in Figure 2.12. It shows how the input spectrogram is
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decomposed through the various filters into a four-dimensional complex-valued re-

sponse (time, frequency, rate, and scale). The right panel in this figure shows the

magnitude response of 4 different modulation selective filters. Fast temporal en-

velopes in the original speech corresponding to rates +32Hz and -32Hz are detected

by the two fast filters while the 8Hz filter capture the slower envelope dynamics rep-

resenting the overall patterns in the input spectrogram. The upward vs. downward

filters capture different patterns in the input representing the orientation selectivity

of neurons in the cortical model.

Time (ms)

F
re

q
u

en
cy

 (
K

H
z)

-8Hz, 8c/o 8Hz, 8c/o

-32Hz, 1c/o 32Hz, 1c/o

Time

F
re

q
u

en
cy

ω: 4H
z, Ω: 1c/o

Rates (H
z)S

ca
le

s 
(c

/o
)

Auditory spectrogram Modulation
Filterbank

Filters outputs

250 5000

2

.5

.125

Figure 2.4: The cortical multi-scale representation of sound. The auditory spectrogram

of a speech sentence /right away/ (from Figure 2.2), spoken by a male is analyzed by

a bank of spectrotemporal modulation selective filters. The spectrotemporal response

field (STRF) of one such filter (tuned to ω = 4 Hz and Ω = 1 cycles/octaves) is shown

in middle panel. The output from each filter is computed by convolving the STRF with

the input spectrogram, to produce a new spectrogram as shown in the right panels. The

panels show the magnitude response of 4 such filters.

spectral local shapes, rate movements of spectra, as well as direction of movement (upward

or downward) (right panels of Figure 2.4). The spectrotemporal response of each filter to

an input spectrogram y(t, x) is given by:

r(t, x;ωc, θc,Ωc,φc) = y(t, x) ∗xt RF(t, x;ωc, θc,Ωc,φc)

= y(t, x) ∗xt [g
RF

(t;ωc, θc).hRF
(x;Ωc,φc)]

= y(t, x) ∗xt [g.h cos θc cosφc + g.ĥ cos θc sinφc

+ ĝ.h sin θc cosφc + ĝ.ĥ sin θc sinφc]

(2.3)

The output can be reduced to a 4 dimensional complex-valued mapping obtained from a

complex valued wavelet transform varying along time, frequency, spectral scale, temporal

rate. A functional description of the parameters of the cortical model is presented in [145].

Figure 2.4 illustrates the analysis stages through the multi-scale filter-bank. The in-

put spectrogram is decomposed through the various filters into a four-dimensional complex-

19

Figure 2.12: The cortical multi-scale representation of sound.
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Chapter 3: Nonlinear Filtering of Spectro-Temporal Modulations for

Speech Enhancement

3.1 Overview

Noise suppression for speech applications is used to enhance the perceptual

quality of speech or to improve the performance of speech processing and communi-

cation systems. It can also play an important role in automatic speech recognition

systems (ASR) by improving their robustness in noisy environments. This has been

an active area of research for over fifty years, mostly framed as a statistical es-

timation problem in which the goal is to estimate speech from its sum with other

independent processes (noise). This strategy requires an underlying statistical model

of the signal and noise, as well as an optimization criterion. In some of the earliest

work, one approach was to estimate the speech signal itself [18]. When the objective

is expressed as minimization of mean-square error, the problem reduces to the de-

sign of an optimum Wiener filter. Estimation can also be achieved in the frequency

domain, as in methods such as the spectral subtraction [18], the signal subspace

approach [19], and the estimation of the short-term spectral magnitude [20]. Esti-

mation in the frequency domain is superior to the time domain as it offers better
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initial separation of the speech from noise, which in turn (1) results in easier im-

plementation of optimal/heuristic approaches, (2) simplifies the statistical models

because of the decorrelation of the spectral components, and (3) facilitates integra-

tion of psychoacoustic models [21].

Recent psychoacoustic and physiological findings in mammalian auditory systems,

however, suggest that the spectral decomposition is only the first stage of several fur-

ther transformations in the representation of sound. Specifically, it is thought that

neurons in the auditory cortex decompose the spectrogram further into its spectro-

temporal modulation content [22]. This finding has inspired a multi-scale model

representation of speech modulations that has proven useful in assessment of speech

intelligibility [23], discriminating speech from nonspeech signals [24], and in account-

ing for a variety of psychoacoustic phenomena [25]. A key feature of this analysis is

that extracted modulations of noise and speech often have a very different charac-

ter, and hence their representations are well separated making it readily suitable in

the context of speech enhancement applications. Filtering of such spectro-temporal

modulations has already been demonstrated in the enhancement of speech quality

in [26]. In that work, the representation of noise in the “modulation domain” is first

estimated, and then used to construct denoising filters to remove it from the speech

signal.

28



Inverse  
Spectrotemporal  

Transform 

Spectrotemporal  
Transform 

Spectrotemporal  
Transform 

Voice Activity 
Detector 

Estimation of 
Volterra filter 
parameters 

Nonlinear 
Filter 

Noisy 
Speech 

Clean 
Speech 

Samples Filtered 
Speech Filter Estimator 

Figure 3.1: Schematic of the proposed nonlinear filtering of spectro-
temporal modulations

In this chapter, we offer a new approach as introduced in [27] that differs

from [26] in two major ways: (1) In addition to modeling the spectro-temporal

representation of noise, we utilize the statistics of clean speech in the estimation

of denoising filters; (2) we also take into account the dynamics of speech by using
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nonlinear filters [28]. As a result, the quality of the filtered speech is far better

preserved while reducing the background noise. A key component of this approach

is the invertible auditory cortical model, which can be used to transform the noisy

signal, and subsequently invert it back to the acoustic signal once nonlinear filtering

is applied. Figure 3.1 illustrates the diagram of the proposed method. Details of

each stage are provided in the following sections.

3.2 Spectro-temporal modulation analysis

The auditory model was inspired by psychoacoustic and neurophysiological

findings in the early and central stages of the auditory pathway. The early stage

converts the sound waveform into an auditory spectrogram - roughly akin to a time-

frequency distribution along a tonotopic (logarithmic frequency) axis [17]. The sec-

ond (cortical) stage performs a two-dimensional wavelet transform of the auditory

spectrogram, thus providing an estimate of its spectral and temporal modulation

content. It is computationally implemented by a bank of two-dimensional (spectro-

temporal) filters that are selective to different modulation parameters ranging from

slow to fast rates temporally and narrow to broad scales spectrally.

The spectro-temporal impulse responses (or “receptive fields”) of these filters

are centered at different frequencies along the tonotopic axis. Therefore, the basic

mathematical formulation of the model can be summarized as follows:
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r(t, f ;ω,Ω) = y(t, f) ∗tf h(t, f ;ω,Ω) (3.1)

where y(t, f) is the auditory spectrogram, h(/dot) the spectrotemporal impulse

response, and r(t, f ;ω,Ω) the rate-scale representation. Since the cortical stage

(Equation (3.1)) is linear and invertible, we can readily reconstruct the auditory

spectrogram y(t, f) from its modified rate-scale representation, r̂(t, f ;ω,Ω). The

reconstruction of an audio waveform from the auditory spectrogram is achieved by

an iterative method based on a convex projection algorithm described in [9]. The

central stage processing is illustrated with an example in Figure 3.2.
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3.3 Feature Modification

The feature modification stage takes cortical representation of the noisy speech

as input and outputs the enhanced spectro-temporal features. This modification has

two step is done in two steps: first we form the second order Volterra series expan-

sion of spectro-temporal representation of the noisy speech. Next, a linear map-

ping is found from the Volterra expansion of noisy to clean signal representation in

spectro-temporal domain. To estimate the mappings, we first detect the non-speech

segments of the noisy signal. We then generate noisy speech samples by adding

the noise-only segments to stored clean samples at the estimated SNR. Having the

noisy and original clean speech exemplars, we then estimate the nonlinear optimum

filter from noisy to clean representations as described below. These filters can be

updated as frequently as needed to track the changes in the statistics or type of the

background noise.

3.3.1 Extracting Noise-only Segments

Estimation of the background noise modulations is the first step in single-

microphone speech quality enhancement. This task is particularly challenging in ad-

verse environments with low signal-to-noise ratios (SNR) and highly non-stationary

background noise. Most of the proposed techniques are based on three assump-

tions: (1) speech and noise are statistically independent, (2) speech is not always

present, and (3) the noise is more stationary than speech [21]. All such methods

must employ a Voice Activity Detector (VAD), or tracking of spectral minima [21].
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We used a VAD that is based on the same multi-scale spectro-temporal modulations

as described in [29].

This method performs speech detection in cortical domain in two step:

1. Dimension reduction: The typical size of cortical representation is usually

very large (around 7500 coefficients per frame), but the elements are highly

correlated making it possible to reduce the dimension significantly using a

comprehensive data set, and finding new multilinear and mutually orthog-

onal principal axes that approximate the subspace of smaller dimensionality

spanned by these data. The training set we used consisted 1500 cortical frames

from both speech and nonspeech classes. By stacking all these frame we formed

a 4-D tensor D of size 5×12×128×1500. Using a higher order SVD (HOSVD)

decomposition described in [30] we decamposed D to its mode-n singular vec-

tors:

D = S ×1 Ufrequency ×2 Urate ×3 Uscales ×4 Usamples (3.2)

where Ufrequency, Urate, and Uscale are orthonormal ordered matrices containing

subspaces singular vectors, obtained by unfolding D along its corresponding

modes. Tensor S is the core tensor with the same dimension as D. Singular

matrices are then truncated so that only a desired number of principal axes

are retained. As shown in Figure 3.3, in order to reduce the dimension of

new sound samples in cortical domain represented by 4-D tensor A will be
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The product of a tensor by a
matrix , denoted by , is an

-tensor given by

(25)

for all index values.

B. Multilinear SVD and PCA

Matrix singular-value decomposition orthogonalizes the
space spanned by column and rows of the matrix. In general,
every matrix can be written as the product

(26)

in which and are unitary matrices contains the left- and
right-singular vectors of . is a pseudodiagonal matrix with
ordered singular values of on the diagonal.

If is a data matrix in which each column represents a data
sample, then the left singular vectors of (matrix ) are the
principal axes of the data space. Keeping only the coefficients
corresponding to the largest singular values of (principal
components or PCs) is an effective means of approximating the
data in a low-dimensional subspace. To generalize this concept
to multidimensional data, we consider a generalization of SVD
to tensors [24]. Every -tensor can be
written as the product

(27)

in which is a unitary matrix containing left singular vectors
of the unfolding of tensor , and is a

tensor which has the properties of all-orthogonality
and ordering. The matrix representation of the HOSVD can be
written as

(28)

in which denotes the Kronecker product. The previous equa-
tion can also be expressed as

(29)

in which is a diagonal matrix made by singular values of
and

(30)
This shows that, at matrix level, the HOSVD conditions lead

to an SVD of the matrix unfolding. Lathauwer et al. shows
[24] that the left-singular matrices of the different matrix un-
folding of correspond to unitary transformations that induce
the HOSVD structure which in turn ensures that the HOSVD
inherits all the classical space properties from the matrix SVD.

HOSVD results in a new ordered orthogonal basis for rep-
resentation of the data in subspaces spanned by each mode of
the tensor. Dimensionality reduction in each space is obtained

Fig. 3. Illustration of equation (32).

by projecting data samples on principal axes and keeping only
the components that correspond to the largest singular values
of that subspace. However, unlike the matrix case in which the
best approximation of a given matrix is obtained from
the truncated SVD, this procedure does not result in optimal
approximation in the case of tensors. Instead, the optimal best

approximation of a tensor can be ob-
tained by an iterative algorithm in which HOSVD provides the
initial values [27].

C. Multilinear Analysis of Cortical Representation

The auditory model transforms a sound signal to its corre-
sponding time-varying cortical representation. Averaging over
a given time window results in a cube of data in rate-scale-fre-
quency space. Although the dimension of this space is large,
its elements are highly correlated making it possible to reduce
the dimension significantly using a comprehensive data set, and
finding new multilinear and mutually orthogonal principal axes
that approximate the real space spanned by these data. The as-
sembled training set is described in detail in Section IV-A which
contains 1223 samples from speech and nonspeech classes. The
resulting data tensor , obtained by stacking all training tensors
is a tensor. Next, tensor is decomposed
to its singular vectors

(31)

in which , , and are orthonormal ordered
matrices containing subspace singular vectors, obtained by un-
folding along its corresponding modes. Tensor is the core
tensor with the same dimensions as .

Each singular matrix is then truncated by setting a predeter-
mined threshold so as retain only the desired number of prin-
cipal axes in each mode. New sound samples are first trans-
formed to their cortical representation, , and are then projected
onto these truncated orthonormal axes , , (as
shown in Fig. 3)

(32)

The resulting tensor whose dimension is equal to the total
number of retained singular vectors in each mode, thus, con-
tains the multilinear cortical principal components of the sound
sample. is then vectorized and normalized by subtracting its
mean and dividing by its norm to obtain a compact feature vector
for classification.

Figure 3.3: Dimensionality reduction using HOSVD

projected onto these truncated orthonormal axes U ′frequency, U
′
rate, and U

′
scale as

following:

Z = A×1 U
′
frequency ×2 U

′
rate ×3 U

′
scales (3.3)

2. Classification: Speech frames are distinguished from nonspeech ones using

a support vector machine (SVD) [31, 32] classifier. The optimal boundary

separating the two classes is found by SVMs in such a way as to maximize

the margin between separating boundary and closest samples to it (support

vectors). We used the same data set used in dimension reduction stage to

train SVMs with a radial basis function (RBF) kernel.

This method detects speech reliably at low SNRs (e.g., -5 dB), relying primarily

on the fact that average spectro-temporal modulations of clean speech are distinctive

and can be reliably detected and discriminated from other non-speech sounds [23,24].
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Once noise-only segments are extracted, they can be added to the stored clean speech

samples to create noisy speech signals with known clean samples.

3.3.2 Estimation of the Nonlinear Filter Parameters

The nonlinear filter can be viewed as a nonlinear mapping between the spectro-

temporal representation of the noisy signal to its corresponding clean representation.

The mapping is found in the adaptive estimation stage by learning the optimal

transformation between representation of the constructed noisy signals and the cor-

responding clean samples. Starting from the 4-D spectro-temporal representation of

noisy speech rn(t, f ;ω,Ω), we use Volterra expansion to form a new representation

for each frequency channel (fc):

Rn(t, fc) =[1, rn(t, fc;ω1,Ω1), . . . , rn(t, fc;ωnr ,Ωns) (3.4)

, rn(t, fc;ω1,Ω1)
2, rn(t, fc;ω1,Ω1)rn(t, fc;ω2,Ω2), . . . , rn(t, fc;ωnr ,Ωns)

2]

where nr and ns are respectively the number of rates and scales in spectro-

temporal representation. Assuming the clean version of the spectro-temporal repre-

sentation for the noisy sample exists, rc(t, fc;ωi,Ωj), the goal is then to estimate a

signal that minimizes the mean squared distance to the original sample:

min
∑
t

(rc(t, fc;ωi,Ωj)− r̂c(t, fc;ωi,Ωj))
2 (3.5)

where r̂c is the denoised signal estimated fromRn using a linear transformation:
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r̂c = HRn (3.6)

This problem is then reduced to the least squares estimation and the solution

can be shown to satisfy the following equation (in matrix form):

(RnR
T
n )H = RT

nrc (3.7)

where RnR
T
n is the autocorrelation of the noisy speech and RT

nrc is the cross-

correlation of the clean and noisy speech. The auto and cross correlation matrices

may also include lags larger than zero which can be helpful in such applications where

reverberation and other temporal distortions need to be eliminated. For additive

noise, however, we found that adding more lags does not improve the performance.

Another significant finding is that the quality of the reconstructed speech improves

significantly when extended to the space of nonlinear Volterra mappings. This

is probably because of the non-stationary character of the speech signal, which

necessitate the denoising filter be either a time-varying linear function or a nonlinear

filter capable of capturing the dynamics of the underlying input signal. The former

idea has been implemented before using Kalman filter [33], while the latter approach

was attempted through the application of neural networks and Volterra series [24,34].

In this work, we used the second order Volterra representation of Noisy speech in the

modulation domain as the input to all mappings denoted by Rn and computed in

3.5. Once the coefficients of the nonlinear Volterra filter are estimated, the filter is
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applied on the original noisy speech, and then the output that is in spectro-temporal

domain will be transformed into acoustic waveform.
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Figure 3.4: The nonlinear filter parameters are optimized by least
squares method in such a way that the noisy representation of train-
ing data is mapped to the corresponding clean representation.
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3.4 Evaluation Results

We evaluated the performance of the proposed nonlinear spectro-temporal

modulation filtering (NSTMF) method using subjective tests and compared the

quality of the denoised signal to the original noisy and also to denoised samples

using the spectro-temporal modulation filtering (STMF) method suggested by Mes-

garani et al. [26].

The results below were computed from noisy speech data, where the adaptive

estimates of the nonlinear mapping were computed for three different types of

noise extracted from Noisex [33] and averaged over ten clean speech samples from

TIMIT [34]. The noise signals were: Pink, f16, Jet and Babble noise. The test

material was prepared at four SNR ranges, -5, 0, +5 and +10 dB. We conducted

subjective quality evaluation tests using mean opinion score (MOS) [35]. In the sub-

jective quality tests, twenty subjects were asked to score the quality of the original

and denoised speech samples between one (bad) and five (excellent).

Table 3.1 shows the average MOS results of ten subjects for three conditions: de-

graded speech, enhanced using the STMF [26], and the current NSTMF. The results

are reported separately for different SNR and noise types. For the the stationary

noises (the first three) the improvements in quality were almost significant, while

for the nonstationary babble noise we only saw a slight improvement. This observa-

tion is consistent with the intrinsic assumption for the proposed algorithm that the

statistical characteristics of the noise does not vary over time. The improvements

for the proposed algorithm almost in all conditions beat that of the older STMF
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method.

3.5 Discussion

We presented a speech enhancement method that took advantage of discrim-

inatory capabilities of cortical representation of sounds. In contrast to standard

STFT features typically used in enhancement systems the cortical features specially

those corresponding to lower rates encode information from much longer windows

in the input signal some times in the order of a second. This makes these features

much richer in terms of the information they encode about spectro-temporal evolu-

tion of speech signals.

3.5.1 Size Issue

This intrinsic richness of cortical features comes at the cost of an overcomplete-

ness manifested through the large size of the representation which in turn results

in a computational burden when working with these features. A natural question

that can be asked here is that if there exists other spectro-temporal representations

of sound possibly that can describe speech and distinguish them from other types

of signals but possibly more compact than the cortical basis. We will try to answer

this question later in Chapter 5 through the use of non-negative matrix factorization

framework.
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Table 3.1: Mean Opinion Score on a scale of 1 to 5 averaged over 20 subjects for
three conditions: (1) Original noisy speech (2) enhanced speech using STMF and
NSTMF.

Noise type, SNR Noisy STMF NSTMF

Pink, +10dB 3.6 3.9 4.3

Pink, +5dB 2.8 3.1 4.0

Pink, 0dB 2.0 2.1 2.5

Pink, -5dB 1.1 1.4 1.6

Jet, +10dB 3.7 4.0 4.3

Jet, +5dB 3.0 3.5 4.0

Jet, 0dB 2.0 2.3 2.4

Jet, -5dB 1.0 1.2 1.8

F16, +10dB 3.6 4.3 4.7

F16, +5dB 2.8 3.1 3.8

F16, 0dB 2.2 2.6 3.3

F16, -5dB 1.8 1.8 1.4

Babble, +10dB 3.5 3.7 3.9

Babble, +5dB 2.7 2.8 3.1

Babble, 0dB 2.0 2.0 2.4

Babble, -5dB 1.7 1.7 1.6
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3.5.2 Adaptive vs Nonadaptive

The proposed method involved a stage of voice activity detection followed by

a transformation in cortical domain applied on noisy segments. The input segments

identified as non-speech were used to estimate the filters that could suppress the

noise in cortical domain when applied on noisy signal. In our implementation, the

filter estimation stage was performed in an offline fashion in the sense that assuming

the noise statistics did not change significantly over time we collected all noise-only

segments first and used them to compute the filter coefficients in a batch-mode using

equation (3.7).

This introduce a lag equal to the duration of the noisy input to the enhancement

scheme which might not be acceptable in some specific applications. Since the filters

themselves are linear transforms one can think of computing them in an adaptive

fashion. In this sense, once the cortical features for a segment in noisy signal are

extracted the filter coefficients would be updated depending on wether the frame

is identified as speech or nonspeech. The adaptive implementation would not only

address noise types with slowly varying statistics over time but also seems to be

biologically more plausible.

We also considered a certain form of nonlinearity for the feature transformation i.e.

Volterra expansion followed by a linear transform. Studying other forms of nonlin-

earity would be of interest for the future direction of this work.
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Chapter 4: Coherence-based mask estimation for speech enhance-

ment

4.1 Overview

In the previous chapter, we saw how traditional speech enhancement methods

can take advantage of our knowledge about feature extraction function of the audi-

tory system through the use of a model suggested for sound representation in the

primary auditory cortex. In this chapter we will put the feature extraction problem

aside and focus on the feature modification stage. While traditional modification

methods in the field mostly addressed this problem in a pure statistical framework

in which the goal was to estimate clean speech representation from its sum with

other independent processes (noise), during last decade, the attention of the scien-

tific community has turned to the functionality of human auditory system as the

biological means for speech perception. Since the notion of audible distortion was

introduced in [36] and was taken into account to improve the intelligibility of speech,

numerous other methods motivated by psychoacoustic studies have emerged in the

field.

Within this mindset, another source of inspiration has been special capability of
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humans and other animals auditory system in detecting, identifying and track-

ing sounds generated by a specific source in presence of sounds coming from other

sources i.e. the auditory scene analysis (ASA). ASA has been defined as processes

by which sequential and concurrent acoustic events are analyzed and organized into

auditory streams. These streams are perceived by the listener as a coherent entity

and, as such, can be selectively attended to among other sounds. Speech enhance-

ment problem can be viewed as a special case of auditory scene analysis when the

listener aims to attend to a speech signal in a noisy environment. This can create

new opportunities for innovations in the enhancement field by adapting numerous

hypotheses and models proposed in the ASA context.

While the biological processes in the brain underlying ASA determining which com-

ponents and attributes in a mixture belongs to a certain source is yet to be fully

understood, numerous hypotheses and models have tried to explain the neural basis

of auditory perception in central auditory system and specially the auditory cortex

based on neurophysiological data and psychophysical observations.

A prominent hypothesis in the field is the “population separation” theory of audi-

tory streaming which suggests that sound elements segregate into separate streams

whenever they activate well-separated populations of auditory neurons that are se-

lective to frequency or any other sound attributes that have been shown to support

stream segregation [37, 38]. One short-coming about this model is that it cannot

account for the observed influence of the relative timing of sounds on streaming

percepts. For example, the population-separation hypothesis predicts that both al-

ternating and synchronous tones that differ widely in frequency should be heard as
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separate streams. This prediction is contradicted by psychophysical and neurophys-

iological data [39] demonstrating that sequences of tones that are separated by an

octave or more are still heard as a single stream if the tones are synchronous or,

more precisely, fully coherent in time.

To address this shortcoming, another model was recently proposed by Shamma et

al [40] that highlights the role of temporal coherence in auditory streaming and will

be the center of our focus throughout this chapter. The two main arguments of this

model are as following:

1. The formation of auditory streams depends fundamentally on the temporal

coherence of responses of neural populations in the auditory cortex encoding

various features of the sound. In particular, it is hypothesized that the tem-

poral coherence between features is used as criterion to link those produced

by the same sound source, while simultaneously separate them from others

produced by other sources.

2. Attention plays role in the auditory scene analysis through enhancing re-

sponses to different sound features, and thus modifying the neural representa-

tion and ultimately the perceptual saliency of these features. In this way, the

notion of feature-based attention is introduced and discussed that in situations

where at least one distinctive feature of the target stream is sufficiently salient

to be selectively attended to by the listener (called cue hereafter) it can serve

as the anchor that points to and can be used to bind other features that are
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temporally coherent with it.

A schematic of the this model illustrated in Figure 4.1 demonstrates how dif-

ferent attributes of the sound mixture such as spectrotemporal patterns, pitch tracks

and location information are extracted in the feature and how their temporal dy-

namics is used trough a coherence analysis stage to group ensembles to form streams.

It also shows how selective attention plays role on each of these stages.
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Inspired by this model of feature-based attention, we will suggest a mask-based

enhancement method as presented in [41] that uses a measure of coherence between

available dynamical cues and acoustic features to control the gain coefficients sup-

pressing/enhancing those features. Previously, in works such as [42] and [43], cues

in the form of visual sensory data (i.e. mouth shape) and those extracted from the

acoustic waveform itself such as pitch tracks have been used in forming the gain

functions. The distinctive feature of this work is that, the introduced model pro-

vides a multimodal framework in which single or multiple cues of different types can

simultaneously or individually be fused into the enhancement system.

Figure 4.2 illustrates a schematic of the proposed method based on coherence anal-

ysis. The analysis stage decomposes the time-domain waveform into time-frequency

features describing the noisy mixture in a higher dimensional space. The short-time

coherence between the decomposed features and the cues are calculated. The coher-

ence values are then translated into gain coefficients through nonlinear mappings.

The gain functions are smoothed over time and finally the cleaned waveform is re-

constructed using modified features in the synthesis stage. Throughout the following

subsections, we will explain the mathematical formulation of auditory-inspired spec-

tral weighting rule (AISWR) and elaborate the notion of temporal coherence. In

the result section, we show two examples for which loudness and pitch tracks are

used as the cue to enhance the perceptual quality of the speech in noise.
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4.2 Auditory-Inspired Spectral Weighting Rule

In a single-acoustic-channel noisy environment, consider the time-frequency

representation of a speech signal, S(k,m) (with k and m respectively denoting

time and frequency) that is corrupted by statistically independent background noise

N(k,m). The noisy mixture X(k,m) can be represented as:

X(k,m) = S(k,m) +N(k,m) (4.1)

The objective of a spectral weighting rule is to estimate the speech spectrum as

follows:

S̃(k,m) = G(k,m)X(k,m) (4.2)

A common form to construct Wiener-like filter G(k,m) is as following:

G(k,m) = ξm(ε(k,m)) (4.3)

where ε(k,m) represents a measure of noise level at time k, and ξm a nonlinear

mapping effective in suppressing background noise in the m-th subband but at the

expense of speech distortion. Indeed, the measure ε(k,m) must reflect the degree

of speech signal dominance over noise in the m-th subband channel at time k, and

its transform G(k,m) should take values close to one when the likelihood of speech

signal being completely dominant is high and vanish to zero at low SNR. Estimated

subband SNR is a common example of such measure previously suggested in [44]

in a single-microphone scenario. Alternatively, in a multimodal framework, where

there is access to a dynamic cue feature of the target source, short-time coherence of
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Figure 4.2: Schematic for AISWR

subband components with such a feature can serve as a measure of target superiority,

i.e. ε(k,m). In this way we will have:

G(k,m) = ϕm

(
CXm,l(k)

)
(4.4)

With l(k) and CXm,l(k) respectively denoting the cue signal and the short-time

coherence between the cue signal and the m-th subband feature at time k, and ϕm(·)

a nonlinear function translating coherence values into appropriate gain coefficients.

In the following two subsections, we will explain how to quantize the temporal

coherence and compute the translation mappings.
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4.2.1 Temporal Coherence

The term temporal coherence between two measured quantities is intuitively

recognized as the extent their values evolve together over time. There exist several

metrics suggested to quantize this type of association. The correlation coefficient of

two variables can be a measure of coherence when referring to linear dependencies.

Mutual Information (MI) is another measure that quantizes the broader case of sta-

tistical dependence between random variables. For two continuous random variables

X and Y with joint and marginal densities fX,Y , fX and fY , Shannon defined MI

defined as:

I(X,Y ) =

∫∫
fX,Y (x, y) ln

fX,Y (x, y)

fX(x)fY (y)
dxdy (4.5)

MI has already been used to measure similarity in the context of clustering and fea-

ture selection in [45] on the basis that features belonging to the same objects must

have strong statistical dependence. The necessity of tracking statistical dependence

becomes specifically more evident in our application noting that the features in

hand might be of different natures and hence their simultaneous changes over time

might not be captured only from their second order statistics. An example of this

phenomenon is the case when two signals with correlated envelopes (both following

the same vocal tract shape changes) are modulated at different frequencies and their

second order correlation is simply zero. For that, we use MI as a metric of coherence

to extract information about acoustic features and to modify them.
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4.2.2 Mutual Information Estimation

In applications, one usually has the data available in form of N sample points

(xi, yi), i = 1, . . . , N which are assumed to be i.i.d. realizations of the underlying

joint density fX,Y . Since the underlying joint densities are unknown MI should be

estimated from the available sample points. Among existing algorithms to estimate

I(X, Y ), we adapted a k-nearest neighbor (KNN) estimator proposed by Kraskov et

al. [46]. 3

x(i)ε

yε (i)

b

i

c

x(i)ε

yε (i)i

(i)ε

(i)ε

a

i

FIG. 1: Panel (a): Determination of ϵ(i), nx(i) and ny(i)
in the first algorithm, for k = 1 and some fixed i. In this
example, nx(i) = 5 and ny(i) = 3.
Panels (b),(c): Determination of ϵx(i), ϵy(i), nx(i) and ny(i)
in the second algorithm. Panel (b) shows a case where ϵx(i)
and ϵy(i) are determined by the same point, while panel (c)
shows a case where they are determined by different points.

very high dimensions where ϵ(i) tends typically to be
much larger than the marginal ϵxj

(i). In that case the
second algorithm seems preferable. Otherwise, both can
be used equally well.

A systematic study of the performance of Eqs.(8)
and (9) and comparison with previous algorithms will
be given in Sec.III. Here we will just show results of
I(2)(X, Y ) for Gaussian distributions. Let X and Y be
Gaussians with zero mean and unit variance, and with
covariance r. In this case I(X, Y ) is known exactly [8],

IGauss(X, Y ) = −
1

2
log(1 − r2) . (11)

In Fig. 2 we show the errors I(2)(X, Y )−IGauss(X, Y ) for
various values of r, obtained from a large number (typi-
cally 105 − 107) of realizations. We show only results for
k = 1, plotted against 1/N . Results for k > 1 are sim-
ilar. To a first approximation I(1)(X, Y ) and I(2)(X, Y )
depend only on the ratio k/N .

The most conspicuous feature seen in Fig. 2, apart from
the fact that indeed I(2)(X, Y ) − IGauss(X, Y ) → 0 for
N → ∞, is that the systematic error is compatible with
zero for r = 0, i.e. when the two Gaussians are uncor-
related. We checked this with high statistics runs for
many different values of k and N (a priori one should ex-
pect that systematic errors become large for very small
N), and for many more distributions (exponential, uni-
form, ...). In all cases we found that both I(1)(X, Y )
and I(2)(X, Y ) become exact for independent variables.
Moreover, the same seems to be true for higher order

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0  0.01  0.02  0.03  0.04  0.05
I(2

) (X
,Y

)  
+ 

 1
/2

 lo
g 

(1
-r2 )

1 / N

r = 0.9
r = 0.6
r = 0.3
r = 0.0

FIG. 2: Estimates of I(2)(X, Y ) − Iexact(X, Y ) for Gaussians
with unit variance and covariances r = 0.9, 0.6, 0.3, and 0.0
(from top to bottom), plotted against 1/N . In all cases k = 1.
The number of realizations is > 2 × 106 for N <= 1000, and
decreases to ≈ 105 for N = 40, 000. Error bars are smaller
than the sizes of the symbols.

redundancies. We thus have the
Conjecture: Eqs.(8) and (9) are exact for indepen-

dent X and Y , i.e. I(1)(X, Y ) = I(2)(X, Y ) = 0 if and
only if I(X, Y ) = 0.

We have no proof for this very surprising result. We
have numerical indications that moreover

|I(1,2)(X, Y ) − I(X, Y )|
I(X, Y )

≤ const (12)

as X and Y become more and more independent, but
this is much less clean and therefore much less sure.

In Sec.II we shall give formal arguments for our es-
timators, and for generalizations to higher dimensions.
Detailed numerical results for cases where the exact MI
is known will be given in Sec.III. In Sec.IV.A we give two
preliminary applications to gene expression data and to
ICA. Conclusions are drawn in the last section, Sec.V.
Finally, some general aspects of MI are recalled in an
appendix.

II. FORMAL DEVELOPMENTS

A. Kozachenko - Leonenko Estimate for Shannon
Entropies

We first review the derivation of the Shannon entropy
estimate [19, 20, 21, 22], since the estimators for MI are
obtained by very similar arguments.

Let X be a continuous random variable with values
in some metric space, i.e. there is a distance function
||x − x′|| between any two realizations of X , and let the
density µ(x) exist as a proper function. Shannon entropy

Figure 4.3: Determination of ϵ(i), nx(i) and ny(i) for k = 1. In this
example, nx(i) = 5 and ny(i) = 3

With some arbitrary norm defined on the spaces spanned by X, Y and a

maximum norm for Z = (X, Y ) i.e. ∥z− z′∥ = max{∥x−x′∥, ∥y− y′∥}, the method

first ranks for each point zi = (xi, yi), its neighbors by distance di,j = ∥zi − zj∥:
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di,j1 ≤ di,j2 ≤ di,j3 ≤ . . . with same ranking in the subspaces X and Y . By ϵ(i)/2

being the distance from zi to its k -th neighbor, and ϵx(i)/2 and ϵy(i)/2 the distances

between the same points projected into X and Y subspaces, the method then counts

the number nx(i) of points xj whose distance from xi is strictly less than ϵ(i)/2 and

similarly for y instead of x as shown in Figure 4.3. The mutual information is then

estimated by:

I(X, Y ) = ψ(k)− ⟨ψ(nx + 1) + ψ(ny + 1)⟩+ ψ(N) (4.6)

With ⟨· · · ⟩ denoting averages both over all i ∈ [1, . . . , N ] and over ll realizations of

the random samples i.e.

⟨· · · ⟩ = N−1
N∑
i=1

E[. . . (i)] (4.7)

and ψ(x) being the digamma function, ψ(x) = Γ(x)−1dΓ(x)/dx.

The KNN estimator for MI has been shown to be data-efficient and effective in

capturing nonlinear dependence [47]. For dynamic signals such as speech for which

the statistical characteristics change significantly over time, it is natural to compute

the coherence between features over short time windows. In this way short-time

coherence, Cx,y(k) is defined as the MI estimated using the samples pairs of the two

signals x and y in a window of appropriate length centered at time k.

4.2.3 Translation to Gain Coefficients

Once the short-time coherence values are calculated, they should be trans-

formed to correct gain coefficients through the functions ϕ. Roughly speaking,
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the larger the value of the coherence is, the larger expected contribution of the

speech signal in the mixture and consequently the value of the gain should be.

In general, due to the unknown dependency of the cue to the target signal, un-

like wiener-filtering approaches, it is hard to obtain closed form functions relat-

ing coherence values to gain coefficients. Because of that, to formulate these rela-

tions we follow a supervised learning approach.So given the cue signal(s) and the

mixture decomposition, ϕm is trained offline on some noisy speech signals along

their clean versions. For that, the ground truth gain coefficients are calculated,

G(k,m) = S(k,m)/X(k,m), a scatterplot is built with the pairs of gain coefficients

and coherence values, (G(k,m), CXm,l(k)), and then smoothed, giving ϕm.

An important aspect of these mappings is that they are empirically found to follow

same trends for various types of noise. This is in fact the key point that makes this

technique independent of the noise characteristics. Figure 4.4 demonstrates such

invariability by illustrating the mappings for a specific subband feature and the

loudness signal (see section 4.3) computed for three different types of noise. Need-

less to mention, this invariability does not necessarily exist across different features

as emphasized in (4.4) by the superscript m. In the final stage, the gains in each

channel are smoothed in time by passing through a low-pass filter with a cutoff

frequency matching the natural bandwidth of the corresponding feature. The logic

behind this is the fact that rapid fluctuations in the gain has been shown to result

in audible artifacts in the reconstructed waveforms as discussed in [48].
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4.3 Results

In this section, we describe proof-of-concept examples for speech enhancement

with the aid of two different types of cue signals. In both cases, objective tests

were performed to assess the effectiveness of the proposed method. We compared

AISWR against two other methods, the MMSE log-spectra amplitude estimation

introduced in [44] and a recently proposed method called Block Thresholding (BT)

based on adaptive wavelet denoising [49]. An objective metric, Enhanced Modified

Bark Spectral Distortion (EMBSD) was used to evaluate the quality of the enhanced

speech signals. This measure introduced in [50] is an improved version of BSD mea-

sure shown to have higher correlations with subjective Mean Opinion Score (MOS)

of the perceptual quality of speech signals. Experiments were done using 20 speech

sentences randomly selected from TIMIT corpus and corrupted with different types
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of noise from NOISEX92 dataset [51] at four different SNR levels [0-15dB]. In all

these experiments, we chose auditory spectrogram for the feature analysis stage.

This frequency-time representation of the sound, inspired by the early stages of

human auditory pathway, consists of almost constant-Q filters along the tonotopic

(logarithmic frequency) axis followed by a nonlinear function capturing the envelope

in each subband. The sound is decomposed into 128 real, positive-valued features

evolving in time.

In the first example, the cue was chosen to be the power signal of the mixture rep-

resenting the loudness of the target speech. We used three noise types (white, jet

and babble) for which the power did not change significantly over time so that the

cue was only correlated with the target source. In computation of STCC, 250 ms

windows were chosen according to syllabic rate of speech. Figure 4.5 depicts a clean

speech signal selected from TIMIT corpus along with the corrupted one in white

noise (SNR=0dB), and the enhanced version using AISWR with loudness signal.

In the second example, we used for cue the pitch tracks extracted from the noisy

speech signal. For that, first the values of the fundamental frequency, f0, were

computed for each time frame in the mixture representation. To generate the cue

signal at each time window, instead of using the pitch values themselves, we picked

three subband channel outputs in the mixture representation corresponding to the

first three harmonics of the salient calculated f0. In fact, the attended feature in

this example was part of the representation itself that likely more correlated with

the target speech signal. We used a publicly available package, praat [52] to analyze

and extract f0 values from the noisy segments. The pitch estimation algorithm in

57



this package is pretty robust to a broad range of noise types. Thus the subband

signals at harmonics with salient periodicity can serve as a reliable cues regardless

of stationarity of the interfering signal. To show this, we chose two non-stationary

noise types for this example, i.e. city and babble.

In the translation stage, separate mappings were trained for different values of f0

due to the fact each value mandates use of different channels as cue. This lead to

95 different mappings according to different pitch values in the range [50Hz-450Hz].

The mean EMBSD improvements for the three methods are reported in figure 4.6.

AISWR outperformed the other two methods in all conditions when loudness was

used as cue.
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Figure 4.6: (a) loudness signal used as cue with three stationary noise types (b)

pitch tracks used to extract the cue for two non stationary noise types.

4.4 Discussion

An auditory-inspired framework for speech enhancement was described in this

chapter. This framework inspired by a model of attention that is hypothesized for
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auditory scene analysis creates the capacity to capture information from cue sig-

nals and use it to modify acoustical features in the enhancement system. We used

temporal coherence between the cue signals and the acoustical features to compute

the gain coefficients in our spectral weighting enhancement scheme. Computation

of coherence through a nonparametric estimate of mutual information between al-

lows us to integrate one or multiple cue signals possibly in different modalities to

the enhancement system in a unified framework. Two examples we used to show

the effectiveness of the the proposed method were loudness signal and extracted

pitch tracks. We showed through objective evaluations of sample audio files that

the method can be effective in improving the speech quality.

We should here emphasize on the importance of the cue signal choice. It is easy to

see that for a cue signal that is independent from the target source (speech), the

method would result in meaningless gain functions as the coherence would always

be measured as zero. So the more this cue signal carries information about under-

lying dynamic characteristics of the source the better it can be used as an anchor

to detect target dominance in the acoustical features.

Another consideration about the proposed method is the choice of the estimator

for measuring temporal coherence. As we saw the MI estimation algorithm involves

finding k -th nearest neighbor which can be computationally expensive for certain ap-

plications. A future direction for this work would be considering other measures for

statistical dependence that can be computed more efficiently or customized specifi-

cally for speech signals.
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Chapter 5: Speech Enhancement Using Convolutive Nonnegative Ma-

trix Factorization with Cosparsity Regularization

5.1 Overview

In the previous two chapters we introduced two enhancements schemes in

which the analysis and the modification stages were designed by looking into models

suggested for the auditory system. We saw how detecting certain spectro-temporal

patterns that could differentiate speech and noise could serve the enhancement and

also how temporal coherence between extracted features may be used as a criterion

to separate noise from speech. A common aspect of these two schemes was that in

both of them the analysis stage took place in cascade with the modification stage

in a feed-forward manner. However we do not have any evidence suggesting that

the auditory system is working on the same basis. As mentioned earlier there is

no agreement among the neuroscience community about the feature extraction role

of the auditory cortex [11] as some hypothesized about neurons being descriptors

(as opposed to detectors) whose characteristics changes in response to the acoustic

stimuli over time [53]. Indeed it has been shown that units even as low as hair cells

receive feedback from higher regions in the auditory systems that modulates their
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transfer functions [54].

An advantage of such an adaptive description scheme to represent the stimuli would

be “compactness” which is of huge importance in any biological system with a limit

in resources. Inspired by these aspects of the auditory system, in this chapter we

consider an enhancement scheme in which:

1. spectro-temporal patterns are represented by descriptors that are optimized

for speech signals and can adapt themselves for the specific given noisy samples

2. temporal correlations between identified features are used as a criterion to

group them and separate noise from speech.

3. the above two processes take place in conjunction together mimicking their

counterparts in the auditory system.

Based on the work presented in [55], we found nonnegative matrix factorization

(NMF) framework plausible for this purpose. NMF-based enhancement techniques

have recently been investigated and gained interest due to their capability in han-

dling non-stationary noise types common in real-world applications. Standard NMF

first introduced by Lee and Seung [56] simply aimed to approximate a non-negative

matrix X ∈ RM×L
≥0 as the product of two nonegative matrices W ∈ RM×R

≥0 and

H ∈ RR×L
≥0 where R ≤M . With X being a magnitude spectrogram, NMF performs

a linear basis decomposition storing the basis functions (atoms) in the columns

of W and their corresponding temporal evolutions (activations) in the rows of H.

Standard NMF ignores potential dependencies across successive columns of X. In

order to account for temporal context convolutive nonnegative matrix factorization
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(CNMF) was introduced by Smaragdis [57] by extending approximation of X as

following:

X ≈
T−1∑
τ=0

W (τ)
τ→
H (5.1)

where {W (τ)} is a set of time-varying bases, W (τ) ∈ RM×R
≥0 and H ∈ RR×L

≥0

contains the activities. The operator
τ→
(.) performs time-shifting by zero-padding of

its operand with τ columns of zeros to the left and truncating that at the right to

maintain correct dimensionality. Usually the approximation is done by solving a

constrained optimization problem in which a divergence function between the input

and its approximation is tried to be minimized subject to the nonnegativity of the

congstructing matrices. To measure the reconstruction error, in this work we used

the Frobenious norm, ∥.∥F , (i.e., the square root of summed squared matrix entries).

argmin
W (τ),H

D(X∥X̂) subject to W (τ), H ≥ 0 ∀τ. (5.2)

Now assuming additivity in the magnitude spectra domain, NMF-based speech

enhancement methods usually aim to have each basis function (atom) in the final

decomposition of the mixture only describe the speech or the noise spectrograms. In

this way, enhancement would simply be achieved by combining speech components

according to their corresponding activities in the mixture.

We should point out the fact that the additivity assumption about the magnitude

spectra of the speech and noise, i.e. X = S +N , does not generally hold, however

it has been shown that it is acceptable for the goal of source separation [57,58].
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Chickoki in [59] introduced a general NMF framework in which speech and noise

separation in decomposition was achieved by means of regularizing the structure of

the bases and their activations with regularization terms that penalize the recon-

struction error in (5.2). Such regularizations usually take into account statistical

characteristics, e.g. independence, or prior knowledge about the representation of

the signal in hand (i.e. speech). A well-known example for the latter case is the

sparsity of activations in CNMF representation of clean speech. It has been observed

that preserving sparsity of speech activations usually results in better separation of

speech and non-speech components [58] especially in presence of wideband noise.

A common measure to quantize sparsity is ℓ1-norm of speech activations over time.

One issue about this and in general other sparsity measures used in this context

is that they are only useful to minimize the global sparseness of the representation

without accounting for how the occurrence of different components of clean speech

are mutually correlated to each other. The importance of incorporating such infor-

mation becomes specifically highlighted when the noise components resemble those

of speech (e.g. second talker or babble noise) and hence are susceptible to activating

speech bases. Wilson in [60] took advantage of prior information by assuming a nor-

mal distribution with known parameters for both speech and noise activations. In

addition to being noise-dependent, one major shortcoming of this method was that

their assumption implicitly mandated a certain value for both speech and noise sig-

nal powers. To incorporate prior information about activations without facing such

issues, in this work, we introduce an extended notion of sparsity ,namely cosparsity.

Having this measure quantize relative activation of bases pairs, the new regular-
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ization on activations forces the components that are cosparse in clean speech not

to co-occur in the denoised segment. We will show through some experiments how

the new regularization can improve estimation of the speech spectrogram, Ŝ, when

used along with the standard sparsity term. In the following two sections, we first

explain the cosparsity and the corresponding penalty function and then describe the

regularized-CNMF method based on that.

5.2 Cosparsity

We define cosparsity between the activations of i-th and j-th components at

the time instance l, in the following manner:

clij =
h2il + h2jl
hilhjl

(5.3)

with hil being the activation of the i-th component at the time instance l. Note that

for nonnegative activations the cosparsity measure always takes nonnegative values

greater than or equal to 2. It takes its minimum value of 2 when activations are

equal and approaches infinity as the ratio between the activations gets bigger and

bigger or simply when the two components are cosparse. Note that the cosparsity

is a symmetric relation and being only a function of relative strength, its value does

not vary by scaling activations.

We shall maintain different levels of cosparsity among all pairs of components ac-

cording to their record of cosparsity learned from an available clean speech dataset.

This is done by prioritizing having larger cosparsity between pairs that are seldomly

active at the same time in clean speech. We assume that there is a speech cor-
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pus available for training that can be used to learn the prior knowledge on speech

components. A basis, W̃S(τ), and the corresponding activation matrix, H̃S(τ) are

pretrained on the speech corpora using standard CNMF.

We use the codebook activations, H̃S, to calculate a matrix P , keeping track of

cosparsity of component pairs. In order to maintain the high cosparsity for pairs

with corresponding low entries in P, we minimize a regularization term. This new

term is basically the sum of the bounded inverse of cosparsity measure,
hilhjl

h2
il+h2

jl
, for all

pairs weighted by the entries in P. Entries in P are between 0 and 1, where a value

close to 1 reflects a cosparse pair and one close to 0 occurs when the activations are

very similar. Having these properties in mind, we formed the entries in P as:

pij = (1− h̃i.h̃j

|h̃i||h̃j|
)ζ (5.4)

with h̃i being the i-th row in the matrix H̃S and h̃i.h̃j and |h̃i| respectively being

the inner product and the ℓ2-norm of the vectors. The constant ζ simply controls

the distribution of the entries of P on the interval [0, 1]. High values of ζ enforces

cosparsity on smaller number of pairs with very high records of cosparsity while a

very low value enforces cosparsity to all the pairs evenly.

5.3 CNMF with cosparsity regularization

Given a noisy speech spectrogramX ∈ RM×n
≥0 , the proposed regularized CNMF

forms the estimate spectrogram as following:

X̂ =
T−1∑
τ=0

[
WS(τ)WN(τ)

]
τ→
HS

τ→
HN

 (5.5)
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Figure 5.1: A schematic of CNMF with cosparsity regularization method

Here, WS(τ) ∈ RM×RS
≥0 and WN(τ) ∈ RM×RN

≥0 respectively denote speech and

noise bases while HS ∈ RRS×L
≥0 and HN ∈ RRN×L

≥0 represent their activations. The

estimate spectrogram X̂ is then computed by minimizing the following cost function

with respect to the nonnegative basis and activation matrices:

J :=
1

2
∥X − X̂∥F + α · JS(HS) + β · JC(HS) (5.6)

where JS(HS) and JC(HS) respectively represent sparsity and cosparsity reg-

ularization terms computed as:

JC(HS) =
∑
i ̸=j

pij

L∑
l=1

clij
−1

(5.7)

and

JS(HS) =
L∑
l=1

∥hl
S∥1 (5.8)
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with ∥hl
S∥1 denoting the ℓ1-norm of the l-th column inHS and P being the cosparsity

penalty matrix. α and β are two constants determining the amount of punish for

the sparsity and cosparsity terms. A higher value for the constant α yields in lower

value/number of active components for the speech part, and for the constant β

results in a generally higher degree of cosparsity maintained between components.

Similar to standard CNMF, the optimization will be performed through initializing

the entries in each of these matrices and then a series of alternating updates on

the basis and activation matrices according to multiplicative rules [61]. In order to

preserve the nonnegativity of these matrices, this procedure updates them by gains

that are a function of the terms in the corresponding gradient of the cost function

J . For any of these matrices say A, considering that the partial derivative matrix

of the objective function with respect to elements in A can be decomposed into two

nonnegative parts as:

∂J
∂A′

∣∣∣∣
A′=Aold

= ∇+ −∇− (5.9)

In this way, we will have the multiplicative update rule as:

Anew = Aold ⊙
∇−

∇+
(5.10)

where ⊙ is the Hadamard product (element-wise multiplication), and division be-

tween the matrices is also an element-wise operation. For the cosparsity term, these

two nonegative parts ∇+
C and ∇−C can be element-wise derived as:

∂JC
∂hil

=
∑
j;i̸=j

pijh
3
jl

(h2jl + h2il)
2
−

∑
j;i ̸=j

pijhjlh
2
il

(h2jl + h2il)
2
= δ+il − δ

−
il (5.11)

Thus following [59], the new multiplicative update for speech activations would be
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expressed by:

HS ←

⟨
HS ⊙

W T
S (τ)

←τ

X +∇−C

W T
S (τ)

←τ

X̂ +β · 1RS×L +∇+
C

⟩
τ

(5.12)

Since noise activations only appear in the error term of J the multiplicative update

for them would be:

HN ←

⟨
HS ⊙

W T
S (τ)

←τ

X

W T
S (τ)

←τ

X̂

⟩
τ

(5.13)

Following the same procedure, the basis matrix W (τ) =

[
WS(τ)WN(τ)

]
is also

updated in the following way:

W (τ)← W (τ)⊙ X
τ→
H

T

X̃
τ→
H

T
(5.14)

with H =

HS

HN

. We also normalize the basis columns after each multiplicative

update so that they all have their ℓ1-norms equal to one. The entries in the basis are

initialized by the pretrained codebook, W̃S. It should be noted that the initialization

is necessary not only for its known importance in optimization but also as kind of a

labeling of speech components whose pairs are supposed to have uneven degrees of

cosparsity. All other three matrices are initialized with random nonnegative values.

The alternation between updates on the basis and activations is continued until

either the relative change in J is lower than 1% or the number of iterations exceeds

150 (whichever happens first). The speech spectra is then simply estimated as:

Ŝ =
T−1∑
τ=0

WS(τ)
τ→
HS (5.15)

Using the phase info from the noisy spectra and the overlap-add method, ∠X, we

then generate the enhanced waveforms.
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Figure 5.2: Optimal value for the sparsity term weight α computed for

pink noise at different SNR levels.

5.4 Results and Experiments

In order to assess the performance of our proposed method, we used a speech

corpora consisting utterances from the TIMIT database. The speech waveforms

all sampled at their original rate, 16 kHz, were transformed to magnitude spec-

trogram (short-time Fourier transform) using 32 ms Hamming-weighted windows

overlapped by 50%. The speech codebook and the cosparsity penalty coefficients

were computed on about three minute of clean speech from randomly-chosen male

and female speakers in TIMIT train subset. For the testing, we used 20 sentences

from 10 male and 10 female speakers from TIMIT test subset. These sentences

were corrupted by additive noise at four different SNR levels ranging from 0 dB to

15 dB. Three different noise types chosen from NOISEX dataset were evaluated in
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our experiments, Pink (a stationary noise with energy uniformly spread over log

frequency scale), and City and Babble as two cases of nonstationary noise.

Speech qualities were measured by a standard objective metric, perceptual eval-

uation of speech quality (PESQ) [62]. The measure was particularly developed

to model subjective tests commonly used in telecommunications. However it has

been commonly used in assessing quality of speech enhancement algorithms as well.

PESQ takes values between .5 (bad) and 4.5 (no distortion).

In the experiments, we set RS = 100, RN = 50, and T = 3. In order to investi-

gate how the quality of enhancement is effected by selection of the parameters α, β

and ζ, the algorithm was run on corrupted samples in pink noise at different SNR

levels using different combinations of these parameters. We considered α ∈ [0, 5],

β ∈ [0, 10] and ζ ∈ [0.1, 100].

For the sparsity term constant, α, the optimal value was computed by averaging

the PESQ scores across speakers and different values of the two other parameters.

For each SNR level, the value giving rise to the maximum quality was chosen as

the optimal one. Figure 5.2 demonstrates these optimal values of α calculated for

four different SNR levels. This result is consistent with the one reported in [58],

and confirms that in lower SNRs, a more sparse reconstruction of speech results in

a better quality.

Having set α to its optimal values for each SNR condition and averaging PESQ

scores over different values of β, we observed that a value roughly equal to 20 for

the parameter ζ almost always resulted in the highest scores. Finally, using these

optimal values found for α and ζ, we looked at the average PESQ for different values
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Figure 5.3: mean PESQ vs. cosparsity term weight, β.

of β. Figure 5.3 shows how the selection of β affects quality of reconstructed speech

segments. It is observed that for all SNR levels except 15dB the maximum improve-

ment is achieved for a value of β greater than zero suggesting the effectiveness of

having cosparsity regularization term in the CNMF framework. Similar to the trend

for the parameter α, it is observed here that as the intensity of noise is increased, the

optimal value of beta also increase. This means that enforcing cosparsity relations

between speech components becomes more essential as the noise gets stronger and

able to activate speech components more frequently.

We finally compared our proposed method against the regular sparse CNMF

and a baseline speech enhancement method. For the baseline method we chose
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a spectral subtraction algorithm introduced in [63]. The comparison we did was

best versus best, i.e. for the regular sparse CNMF, we simply set β to zero, and

reported the highest mean PESQ score over all values of the parameter α while

for ours it was the highest score over all values of α and all non-zero values of the

parameter β (ζ = 20). The results of the comparison are illustrated in figure 5.4.

The improvement with respect to regular sparse CNMF is obvious for all three noise

types especially in lower SNRs. Our method outperforms the baseline one for Pink

and City noise. However, the results for Babble noise are somehow weaker. We

believe this is related to speech-like statistical properties of this type of noise which

poses a challenge to methods based on a priori knowledge of speech.
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Figure 5.4: PESQ Improvements for different noise types.
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5.5 Discussion

In this chapter, we investigated a offline speech enhancement scheme in which

the spectro-temporal feature detection and modification blocks were merged into

one step performed through the use of nonnegative matrix factorization of noisy

speech representation. For this purpose, we took advantage of NMF framework to

separate noise patterns from speech ones using a new regularization accounting for

pairwise temporal coherence of the patterns, referred to as cosparsity.

In the learning phase, a dictionary of spectro-temporal patterns (features) was first

generated from a general clean speech dataset. Then cosparse feature pairs were de-

tected through a measure of pairwise coherences between them. In the enhancement

phase, we enforced cosparsity between speech feature pairs using the information

captured in the learning phase.

We discussed how selection of parameters can impact the quality of the reconstructed

speech signals, and showed through objective evaluations that accounting for tem-

poral coherence between features i.e. the new regularization can effectively improve

quality of enhancement especially in low SNR conditions.

An advantage of this scheme is that the quality of separation can be easily improved

when prior knowledge about the noise type or target speaker is available. This can

be done through customized dictionaries for both speaker and noise parts. Similar

to other offline NMF-based enhancement algorithms, a natural drawback of this

method is that it’s time and memory expensive making it unsuitable for real-time

application. One future direction for this work would be adapting the existing online
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NMF methods such as [64] possibly with a modified cosparsity regularization term

exclusively for enhancement framework.

It should also be noted that the cosparsity regularization technique introduced in

this chapter can be beneficial for any application dealing with part-based decom-

position of input signals. A few examples are face recognition, text mining and

bioinformatics.
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Chapter 5: Conclusions

5.1 Thesis overview

Throughout this thesis we attempted to bring our knowledge about the au-

ditory system to the field of speech enhancement in the hope of bridging the gaps

between how humans handle the noise in auditory tasks and the engineering models

that can be used in enhancement systems. We investigated different enhancement

schemes that adapted auditory models in different stages of enhancement procedure.

To show the importance of feature extraction in speech enhancement we presented

a method that took advantage of sound representation in auditory cortex to isolate

noise-only segments in noisy sentences and use them to construct the enhancement

filters. We observed using spectro-temporal features along with simple linear mod-

ification rules could be effective for speech enhancement.

We then explored coherence-based model of attention in auditory scene analysis and

saw how a measure of coherence based on mutual information between acoustical

features and the cue signals could be used to form gain functions in a mask-based

enhancement scheme.

We finally saw how the analysis and modification stages could be done simultane-

ously so that the detected spectro-temporal patterns are optimized for speech signals
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and their temporal activities are taken into account to separate noise from speech.

5.2 Future directions

With the advances in our understanding about the auditory system we expect

these methods to be revised and become more convergent with the new findings.

We also believe devising novel engineering tools would be crucial to improve exist-

ing schemes in this context. For example in view of the recent progresses of deep

learning methods in sound processing applications one can ask how to design new

architectures that can serve as computational models for auditory scene analysis.
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[45] A. Kraskov, H. Stögbauer, R.G. Andrzejak, and P. Grassberger. Hierarchical
clustering using mutual information. EPL (Europhysics Letters), 70:278, 2005.
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[58] Ruaiŕı De Fréin and Scott T Rickard. Learning speech features in the presence of
noise: Sparse convolutive robust non-negative matrix factorization. In Digital
Signal Processing, 2009 16th International Conference on, pages 1–6. IEEE,
2009.

[59] Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. New algorithms for
non-negative matrix factorization in applications to blind source separation. In
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, volume 5, pages V–V. IEEE, 2006.

[60] Kevin W Wilson, Bhiksha Raj, Paris Smaragdis, and Ajay Divakaran. Speech
denoising using nonnegative matrix factorization with priors. In Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Con-
ference on, pages 4029–4032. IEEE, 2008.

82



[61] Wenwu Wang, Andrzej Cichocki, and Jonathon A Chambers. A multiplicative
algorithm for convolutive non-negative matrix factorization based on squared
euclidean distance. Signal Processing, IEEE Transactions on, 57(7):2858–2864,
2009.

[62] TP ITU and P Recommendation. Perceptual evaluation of speech quality
(pesq): An objective method for end-to-end speech quality assessment of
narrow-band telephone networks and speech codecs. Recommendation ITU-
T, 2001.

[63] Yang Lu and Philipos C Loizou. A geometric approach to spectral subtraction.
Speech communication, 50(6):453–466, 2008.

[64] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning
for matrix factorization and sparse coding. The Journal of Machine Learning
Research, 11:19–60, 2010.

83


