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Market driven product design decisions are receiving increasing attention in the engineering 

design research literature. Econometric models and marketing research techniques are being 

integrated into engineering design in order to assist with profit maximizing product design 

decisions. This stream of research is referred to as “Design for Market Systems” (DMS). The 

existing DMS approaches fall short when the market environment is complex. The complexity 

can be incurred by the uncertain action-reactions of market players which impose unexpected 

market responses to a new design. The complexity can originate from the emergence of a niche 

product which creates a new product market by integrating the features of two or more existing 

products categories. The complexity can also arise when the designer is challenged to handle the 

couplings of outsourced subsystems from suppliers and explore the integration of the product 

with service providers. The objective of the thesis is to overcome such limitations and facilitate 

design decisions by modeling and interpreting the complex market environment. 

The research objective is achieved by three research thrusts. Thrust 1 examines the impact of 

action-reactions of market players on the long and short term design decisions for single category 

products using an agent based simulation approach. Thrust 2 concerns the design decisions for 



 
 

“convergence products”. A convergence product physically integrates two or more existing 

product categories into a common product form. Convergence products make the consumer 

choice behavior and profit implications of design alternatives differ significantly from the 

situation where only a single product market is involved. Thrust 3 explores product design 

decisions while considering the connection to the upstream suppliers and downstream service 

providers. The connection is achieved by a quantitative understanding of interoperability of 

physical product modules as well as between a physical product and a service provider. 
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CHAPTER 1: INTRODUCTION 

1.1 MOTIVATIONS, RESEARCH THRUSTS AND OBJECTIVES 

Design for Market Systems (DMS) is receiving increasing attention in engineering 

design research. Along this line, econometric and marketing research models are 

integrated into decision based design frameworks to represent consumer and firm 

behaviors and estimate demand for design alternatives [e.g., Williams et al, 2008; Shiau 

and Michalek, 2009; Kumar et al, 2009; Frischknecht et al, 2010]. The market systems 

are characterized by the action-reactions of a variety of stakeholders, including 

consumers, competing manufacturers and retailers, who collectively influence the 

demand and profitability of a new product. Market structures can evolve particularly 

when design initiatives are made to blur the boundaries of previous loosely related 

product markets with a new niche product. The evolution of market structure eventually 

reshapes consumer preference and competition, pushing the designers to rethink their 

design decision strategies. Meanwhile, sourcing product subsystems from suppliers and 

integrating consumer products with services are increasingly common in many product 

categories. Such trends are challenging the designer to resolve the couplings of sourced 

subsystems (parts, modules, assemblies) along the upstream market, as well as the 

couplings between the product and service(s) along the downstream market. Yet the 

know-how knowledge for design decisions in engineering design falls short in the 

presence of such complexity. The proposed research aims at overcoming the challenges 

imposed by the complexity of market structures particularly as they affect engineering 

design decision making.   
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This dissertation investigates three research thrusts as shown in Figure 1.1. The first 

thrust, shown with the top panel in Figure 1.1, addresses engineering design decisions 

arising from action-reactions of market players, such as competing manufacturing firms 

and powerful retail channels, for a single product category. The second thrust, the middle 

panel in Figure 1.1, concerns the market driven engineering design decisions for 

“convergence products” which merges the functionalities of existing products and as such 

can open up new market opportunities. The third thrust, the bottom panel in Figure 1.1, 

focuses on the design decisions considering both upstream and downstream market 

system with interoperability considerations, which is particularly important given the 

trends that: (i) increasingly manufacturers are outsourcing subsystems from suppliers (i.e., 

upstream market system), and (ii) in many product markets (e.g., high-tech products such 

as smartphone and tablet computer), the consumers have the option to subscribe to a 

variety of services to use the functionalities of the products (i.e., downstream market 

system). 

 

Figure 1.1 Research Framework and Thrust  

Thrust 1: 
Engineering Design decisions under action-
reactions in the market system for a single 
product category

Thrust 2: 
Engineering design decisions for 
Convergence Products

Thrust 3: 
Engineering design decisions accounting for 
both upstream and downstream market 
systems.

+

Customers

Designer
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Research Thrust 1: Strategic engineering design decisions for uncertain market 

systems using an agent based approach. 

Objective of Thrust 1: Investigate the long and short term design decisions in the 

presence of action-reactions of market players. 

The demand and profit of a new product can be significantly influenced by the market 

players, such as competing manufacturing firms and retail channels. The competing 

manufacturer firms can adjust prices and/or improve product features in order to battle 

the competitions. Retail channels controlling the access to customers can set the retail 

prices in pursuit of their own profits, which drives the demand for each manufacturer’s 

product. Existing methods in DMS which considers such moves of market players use 

game theoretic models that can maximize a firm’s profit with respect to product design 

and price variables given the Nash equilibrium of the market system. However, the 

existing game theoretic approaches can be limited in a number of ways, e.g., incapable of 

handling action-reactions which involve design of engineering system that are in a black-

box form with discrete, non-differentiable and non-convex functions. In this thrust, an 

agent based approach is proposed for DMS that accounts for learning behaviors of the 

market players under uncertainty. A market system that is modeled with agents 

representing competing manufacturers and retailers who possess learning capabilities and 

based on some pre-specified rules are able to react and make decisions on the product 

design and pricing. The design decision integrates long term design decisions with short 

term design and pricing decisions to help a manufacturing firm maintain profitability and 

competitiveness. 
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An article based on this thrust has been published in the Journal of Mechanical 

Design [Wang et al., 2011(a)]. 

Research Thrust 2: Customer driven design decisions  for convergence products. 

Objective of Thrust 2: Construct a profit maximizing design decision framework for 

convergence products. 

Convergence products are multifunctional designs which combine a number of 

distinct functionalities that existing individual products already provide. Examples can be 

found in a broad range of product categories such as office machines (e.g., “all-in-one” 

printers), consumer electronics (e.g., tablet computers) and information products (e.g., 

“Google TV”). Convergence products are becoming popular to both manufacturers and 

consumers for a number of reasons. First, a convergence product is generally built upon 

the technologies of existing products, which can significantly reduce the R&D effort and 

costs. Secondly, a convergence product can be appealing to the consumers who do not 

use the existing products but are interested in a combination of functionalities that a 

convergence product offers. Appealing as it may, a convergence product can be 

complicated to design. A convergence product combines the modules from the existing 

product categories but performs the functionalities in a different way compared to the 

existing products. On the other hand, predicting the demand for convergence products 

can be challenging due to the significant extent of heterogeneity with respect to the 

consumers’ usage and preference of product features. The objective of this thrust is to 

develop a design decision framework that is specifically tailored for convergence 

products and maximizes a company’s profit while considering sustainable future market 
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penetration, by accounting for the consumers’ usages of the functionalities and their 

evolving heterogeneous preferences.  

An article based on this thrust has been published in the Journal of Mechanical 

Design [Wang et al, 2011(b)]. 

Research Thrust 3: Engineering design decisions accounting for both upstream and 

downstream market systems with interoperability considerations. 

Objective of Thrust 3: Develop a mathematical model of system interoperability that 

can be used for product design selection considering: (i) supplier selection along the 

upstream market system, (ii) integration of the physical products with service providers, 

and (iii) both upstream and downstream market systems.  

Outsourcing components, modules, assemblies and so on from suppliers (upstream 

market systems) is replacing “in-house” design and production of many products. Here, a 

product is considered as a system consisting of many coupled components, modules, 

assemblies, or the subsystems. Since the designer does not have the control over the 

design of all the subsystems for a product being outsourced, understanding the 

compatibility (or interoperability) among the subsystems becomes particularly important. 

Variation of the design for one subsystem propagates through to all other subsystems, 

which can be exacerbated when the uncertainties are considered as well. This raises the 

need for a modeling framework in product design selection that accounts for subsystems 

capable of working well with each other under uncertainty. 

Along the downstream market system, consumer product markets are characterized 

by increasingly close connections to the service sectors. Examples include mobile 

electronic devices such as smartphones and tablet computers which enable the consumers 
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to utilize a wide spectrum of services: digital content purchasing, web browsing, social 

network communication, GPS navigation, etc. Selecting service providers to partner with 

in order to achieve the product’s functionalities to the fullest extent possible has become 

a critical task for product designers. On the other hand, consumers enjoy the majority of 

the functionalities of the devices when they are enabled in conjunction with service 

providers’ offerings. The engineering products and the services are thus cast into an 

integral package to deliver value to the customer. Consumer satisfaction is eventually 

driven by the design of the product and the quality of the service in a synergetic manner.  

This thrust aims at a design selection framework which accounts for both upstream 

market system (i.e., suppliers) and downstream market system (i.e., service providers and 

customers) to explore: (i) a mathematical model  for interoperability, (ii) modeling of the 

couplings between the product and the offerings of service providers, and (iii)  the 

integration of upstream and downstream market systems. 

1.2 ORGANIZATION OF DISSERTATION  

This dissertation is organized as in the following (Figure 1.2). Chapter 2 presents an 

agent based approach for design for market systems that accounts for learning behaviors 

of the market players under uncertainty. This chapter addresses the objective of research 

thrust 1. Chapter 3 presents a customer driven optimal design approach for convergence 

products. A modular design decision framework will be presented. Additionally, a 

hierarchical Bayes model is explored to understand the customers’ usage and preferences 

for convergence products. This chapter addresses the objectives of research thrust 2. 

Chapter 4 addresses the third research thrust by investigating a demand/profit 

maximizing design selection method which integrates the considerations for both 
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upstream supplier selection and downstream service provider integration in the market 

system. The integration is based on a mathematical model of system interoperability. 

Finally, Chapter 5 presents concluding remarks, contributions and possible extensions of 

the research presented in this dissertation.  

 

Figure 1.2 Dissertation Overview 
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CHAPTER 2: STRATEGIC DESIGN DECISIONS FOR UNCERTAIN MARKET 

SYSTEMS USING AN AGENT BASED APPROACH1 

Market players, such as competing manufacturing firms and retail channels, can 

significantly influence the demand and profit of a new product. Existing methods in 

design for market systems use game theoretic models that can maximize a firm’s profit 

with respect to product design and price variables given the Nash equilibrium of the 

market system. However, in the design for uncertain market systems, there is seldom 

equilibrium with players having fixed strategies in a given time period. In this chapter, an 

agent based approach for design for market systems is presented that accounts for 

learning behaviors of the market players under uncertainty. By learning behaviors it is 

meant that the market players gradually, over time, learn to play with better strategies 

based on action-reaction behaviors of other players. The objective is to model a market 

system with agents representing competing manufacturers and retailers who possess 

learning capabilities and based on some pre-specified rules are able to react and make 

decisions on the product design and pricing. The proposed agent based approach provides 

strategic design and pricing decisions for a manufacturing firm in response to possible 

reactions from market players in the short and long term horizons. The example results 

show that the proposed approach can produce competitive strategies for the firm by 

simulating market players’ learning behaviors when they react only by setting prices, as 

compared to a game theoretic approach.  Furthermore, it can yield profitable product 

design decisions and competitive strategies when competing firms react by changing 

                                                   
1 This chapter addresses Research Thrust 1, as overviewed in Chapter 1. The material for this 
chapter is borrowed from (and is the same as) the paper: Wang, Z., Azarm, S., and Kannan, P. K., 
2011, “Strategic Design Decisions for Uncertain Market Systems Using an Agent Based 
Approach”, Journal of Mechanical Design, 133(4), pp. 041003.1 to 041003.11. 
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design variables in the short term — a case for which no previous method in design for 

market systems has been reported. 

2.1 INTRODUCTION 

The revenue that can be generated by a new product design is not only closely related 

to its design features but also dependent on the heterogeneous customer preferences and 

competition from competing manufacturing firms. A survey of a number of “Millennium 

Product” prize winning manufacturing companies, most of which small and middle sized, 

has revealed that integrating competitive considerations into product design is a primary 

reason for a firm’s success [Whyte et al., 2003]. Additionally, major retail channels of a 

product category can significantly influence the revenue generation for a product 

[Williams et al., 2008]. It is therefore critical for a designer to consider the market 

environment (i.e., customers, competing firms, retailers) in making product design 

decisions that meet the goals of the firm such as maximizing profit and market 

penetration. While marketing survey techniques such as conjoint analysis [Green and 

Srinivasan, 1978] and others are available to capture customer preferences for a mature 

product category, predicting the behavior of competitors and retailers is more complex. 

An example is a manufacturer who redesigns some of its product features and/or adjusts 

the wholesale price to maintain its competitiveness [Hauser, 1988]. Major retailers make 

acceptance decisions of the new product and may have to rearrange their shelf spaces to 

accommodate a redesigned product [Williams et al., 2008]. These retailers may also have 

to implement pricing strategies such as adjusting retail margins and non-pricing strategies 

such as adding value to products by providing after-sale services [Iyer, 1998]. Major 

design features of a product may remain unchanged for a long time due to the research 
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and development intervals, but action-reactions of market players are observed in a much 

shorter time scale. A seemingly profitable design option at present could become a failure 

when market players make their moves in the future. In order to achieve an overall 

optimal profit, it is therefore vital for the designer to make design decisions on product 

attributes for long term considerations as well as to develop short term design and pricing 

strategies for anticipated reactions from market players. 

Anticipating the reactions from the market players can be challenging in two ways. 

First, the decisions by the rival firms cannot be predicted deterministically. The study by 

Montgomery et al. [Montgomery et al., 2005] of a variety of firms and others [Gurnani 

and Lewis, 2008] reveal that although managers and designers are aware of the past and 

forthcoming actions of rival firms, they seldom can make optimal decisions by taking 

competition into account. It was suggested [Gurnani and Lewis, 2008] that the 

engineering design variables be represented by probability distributions to account for 

possible sub-optimal product design solutions and the probability that market players 

deviate from making optimal decisions. Secondly, market equilibrium arises through a 

process of actions and reactions among market players. Anticipating an action, e.g., a 

pricing decision, from a market player involves solving a decision problem.  For instance, 

when a competing manufacturer makes a move, it solves a decision problem with respect 

to its design and price decisions. Considering the number of market players and their 

corresponding decision space together with the number of their interactions may result in 

a large number of decision options that will have to be resolved.  

Engineering design methods that account for competition are reported in a number of 

existing papers, e.g., [Kumar et al., 2009; Besharati et al., 2006; Luo et al., 2005]. These 
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methods, while accounting for the fact that competing products can influence the demand 

of a new product, ignore potential reactions from competing firms. Several papers, e.g., 

[Hauser, 1988; Ofek and Savary, 2003; Choi et al., 1990; Dawid et al., 2001], consider 

competition for a new product development from a marketing perspective. However, 

these approaches either consider price competition only while ignoring changes in design 

[Choi et al., 1990] or they oversimplify design changes without taking into account 

engineering feasibility [Hauser, 1988; Ofek and Sarvary, 2003; Dawid et al., 2001]. 

Recent literature [Shiau and Michalek, 2009(a); Shiau and Michalek, 2009(b); 

Williams et al., 2011; Luo et al., 2007, Karimian, 2010] introduces product design 

methodologies which account for reactions of competing manufacturing firms and/or 

retail channels using a game theoretic approach. Specifically, a static, non-cooperative, 

one shot game with Nash Equilibrium under pure strategies [Gibbons, 1992] is widely 

used. In the game theoretic models, market players are assumed to pursue their own 

profits and have full information of the other competitors’ strategies in their pursuit of the 

Nash Equilibrium. However, extant work in design for marketing systems using game 

theoretic approaches has three limitations. First, it can lead to a design solution that is 

only guaranteed to be optimal when market players take actions simultaneously. In a real 

world marketplace, such simultaneous moves rarely exist and thus the resulting Nash 

solution can become inapplicable in a real setting. In other words, previous works ignore 

how the equilibrium is arrived at. Secondly, it is assumed that managers and designers are 

able to predict the strategies of rival firms and make appropriate responses accordingly. 

Such assumption contradicts the empirical observations [Montgomery, et al., 2005] 

where managers seldom make decisions by anticipating competitive responses. Finally, 
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the game theoretic approaches [Shiau and Michalek, 2009(a); Shiau and Michalek, 

2009(b); Williams et al., 2011; Luo et al., 2007] rely on formulating first order optimality 

conditions for each player, with respect to the firm’s own decision variables, and solving 

a system of equations for all firms all-at-once. Unfortunately, the first order conditions 

are not applicable to engineering models that are in a black box form with discrete, non-

differentiable and non-convex functions. In the proposed approach, an agent based model 

is used to overcome the shortcomings of the game theoretic approach. An agent based 

model (also referred to as a multi-agent system) refers to a system of agents that 

autonomously make decisions [Wooldridge, 2002] and interact by way of pre-specified 

rules such as learning protocols, to obtain a system level equilibrium [Miller, 2007]. 

Several types of multi-agent learning models are discussed in the literature. These include 

model-based learning, reinforcement learning and no-regret learning [Shoham et al., 

2007]. The first two types have shortcomings that do not fit into our framework. For 

instance, model-based learning entails estimating other agents’ strategies, which can be 

difficult and unrealistic to implement. Also, reinforcement learning is not proved to 

converge in a general setting [Young, 2004]. However, under a no-regret learning 

protocol (also referred to as regret matching), each agent has a probability distribution 

over its decision space representing the chance of making actions in each iteration. This 

distribution (or the potential strategy) can be adaptively updated using a history of past 

actions for all the agents.  The no-regret learning follows the process that a firm devises 

its competitive strategy based on its experience over time. In addition, the no-regret 

learning models have been proved to converge to a “correlated equilibrium” which under 
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certain conditions is equivalent to the Nash Equilibrium under mixed strategies [Moon et 

al., 2008].  

Finally, the literature reports on agent based approaches that have been used in 

solving engineering design problems for a single firm [Moon et al., 2008; Orsborn and 

Cagan, 2009; Campbell et al., 2004; Gorti et al., 1996; Grecu and Brown, 1996; Zhao and 

Jin, 2003]. The market system is either ignored or taken as exogenous in these studies. 

There is no reported product design decision model using an agent based method that 

accounts for the interactions among market players such as competing manufacturing 

firms and retail channels. 

In this chapter, a product design decision making approach is proposed for both long 

term and short term design using an agent based model that is enabled by a multi-agent 

learning scheme. The proposed approach is distinguished from previous literature in that: 

(i) the approach handles competitions that involve designing complex engineering 

products with “black box” functions (i.e., functions that are implicit, discontinuous, non-

differentiable and non-convex); (ii) the design decision accounts for an uncertain market 

system in which players update their strategies by learning; and (iii) an innovative 

concept of integrating long term design decisions with short term design and pricing 

decisions is used to help a manufacturing firm maintain profitability and competitiveness. 

2.2 PROBLEM ASSUMPTIONS AND DEFINITION 

This chapter aims at a single product design decision methodology for a mature 

product category. A mature product category is characterized by a stable market size and 

a fixed number of competing manufacturing firms and retail channels. Customer 

preferences are assumed to be common knowledge to the firms. The products 
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manufactured by different firms share the same set of attributes and are differentiated by 

the level of attributes. A manufacturer’s wholesale prices for all the retail channels are 

assumed to be identical for simplicity. Also, the retailers are assumed to have common, 

stationary assortment compositions of products. That is, it is assumed that all products 

will be carried by all retailers, and that does not change overtime. 

A “short term design” is defined as a manufacturing firm’s strategy in making a 

minor design change that will serve its respective marketing objective (i.e., profit) in 

response to the actions of other firms in a short time period (e.g., weeks or months). An 

example of such strategies would be to redesign the product in a minor way and mimic 

the product features of competing firms while improving them in order to introduce a 

somewhat new and better product. In contrast, for a long term horizon (e.g., years), a 

“long term design” is defined as a firm’s design decision in the long run which accounts 

for the anticipated reactions from a market system after introducing the new design. The 

combination of all long term design decision options (i.e., long term design subspace) and 

short term design options (i.e., short term design subspace) forms the entire design 

decision space. The combination of these two subspaces provides strategic opportunities 

for both long and short term changes in the product design features for a manufacturing 

firm. Such a hybrid pattern of changes is prevalent in the real-world design for market 

systems. For instance, Toyota introduced the 5th generation (long term design) of its mid-

size sedan “Camry” into the North America market in 2001. The vehicle experienced 

minor improvements, for instance, availability of new customizable options annually 

until 2006 when its 6th generation was introduced with significant changes, e.g., 

modified exterior and interior design as well as the availability of a hybrid version. The 



15 
 

time horizon for the design changes can be industry specific. In the automobile industry, 

the “short term” is usually defined by a year while the “long term” can be in a scale of 

about 5 years.  

 

Figure 2.1 Problem Definition 

The problem is defined as follows. A focal manufacturer refers to the one, as shown 

on the top of Figure 2.1, who develops a new product. The focal manufacturer selects the 

best long term design option by accounting for short term market responses. In the 

market system, major retail channels control the product’s access to the customers and 

adjust retail margins in pursuit of their own profit. The competing manufacturers would 

immediately react to the changes in the market system (i.e., changes in designs and 

prices) by adjusting their own product features (i.e., their short term designs) and 

wholesale prices. The interactions in the market system foster changing features and 

demands of products and eventually lead the market to equilibrium. The designer needs 
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to answer two main questions, as will be explored in this chapter: (i) what is the most 

profitable long term design? (ii) Given the selected long term design, what is the short 

term design and pricing strategy given the action-reactions in the market system? 

2.3 APPROACH 

In the proposed approach, as shown in Figure 2.2, the outer loop (outside the dashed 

block) searches for the most profitable long term design option. While there are a number 

of approaches for generating design alternatives (e.g., [Bryand et al., 2005]), here it is 

assumed that a finite number of candidate long term design alternatives can be identified 

a priori. Each long term (trial) design alternative is then evaluated by the agent based 

model, inside the dashed. The agent based model (i) simulates the market equilibrium for 

the trial design alternative and (ii) iterates to search for the short term design and pricing 

option for the focal manufacturer. All the long term design options will be evaluated with 

respect to a pre-specified objective, i.e., maximum profit or market share.  The optimal 

long term design option can therefore be evaluated for its optimality (in the diamond 

block of the outer loop, Figure 2.2). The overall design decision for the focal firm is the 

combination of (i) the optimal long term design option and (ii) the short term design and 

pricing decision obtained from the market equilibrium.  

In the agent based model, “action” xi
k for agent i is defined as the decision it makes in 

iteration k. For instance, the actions for a manufacturer agent can represent a short term 

engineering design decision. Additionally, “strategy” Si
k(x) of agent i is defined as a joint 

probability density function indicating the chance of playing a particular action x in 

iteration k. For instance, a 4-dimensional multivariate normal distribution can be used to 

represent a retailer’s strategy and indicate the chances that the retailer sets retail margin 
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for the 4 products on its shelves. When an agent makes an action, it draws a sample from 

the strategy. Additionally, an “empirical action profile” EAPi
k(x) is defined as a 

probability density function representing the actions that agent i has played up to the k’th 

iteration in the simulation. EAPi
k(x) is useful in identifying system convergence and 

interpreting equilibrium. It is different from an agent’s strategy Si
k(x) which implies the 

agent’s belief on how the actions should be played.  

As shown in Figure 2.2, the agent based simulation starts with a long term trial design 

option for the focal manufacturer. Market agents, i.e., manufacturing firms and retail 

channels, are initialized with their strategies being uniform distributions. After 

initialization, the agents go through an iterative learning process. An example of a 

learning process is to iteratively observe the payoffs as a result of actions by other agents. 

In this way, in each iteration, the agents update their strategies using a no-regret learning 

algorithm, given the past actions of all agents. The agents then make actions (each agent 

makes one action), i.e., draw samples from their updated strategies and report the actions 

to the agent based system (which simulates the market). In the initial iteration, the agents 

do not need to update strategies and they directly draw actions from the initial uniform 

distributions. Payoffs and regrets (i.e., important values for the learning  
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Figure 2.2 Approach 

algorithm) of the agents are computed after all agents have played their actions. If the 

agent based system is not convergent, the actions of the agents are stored and the control 

is returned to the next iteration. The focal firm is modeled as one of the agents. Therefore, 

the process that the agent based system uses coincides with the process that the focal 

manufacturing firm uses in updating its strategy and searching for the short term design 

and pricing option. When the convergence of the system is reached, the market 

equilibrium solution (i.e., short term design and pricing strategies) will be forwarded to 

the outer loop for evaluating another long term design alternative. After completing the 
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evaluation of all long term and corresponding short term design alternatives, the long and 

short term design alternative with maximum profit can be selected.  

The proposed agent based model is detailed in the following sections. The actions and 

payoffs for the agents are discussed in Sections 2.3.1 and 2.3.2. In Section 2.3.3, the no-

regret learning protocol is introduced to model the way that the agents interact. Section 

2.3.4 discusses the convergence of the agent based simulation and the interpretation of 

market equilibrium. Section 3.5 discusses the realism and validation regarding the 

proposed agent based model.  

2.3.1 Agents’ Actions  

Three types of agents are considered in this study. These are agents representing 

manufacturers, retailers and customers.  Each agent has its action space which consists of 

all feasible actions.  

Customer agents. In the proposed approach, customers are modeled as “dummy 

agents”. Customer agents simply make choices to maximize their utilities in any iteration 

and thus neither have actions nor update strategies from a profit maximizing perspective.  

A Multinomial Logit (MNL) model [Anderson, 1992] is used to represent customer 

preferences. MNL builds upon the assumption of a random utility comprising an 

observable part which is a characteristic of the choice and an unobservable part which is 

stochastic, i.e.,   iiu . The entries in 
i  represent product attributes which can be 

obtained by a mapping from the engineering design space. When the error term ε has a 

double exponential distribution, the probability that a customer chooses a product i 

among the Nm choices can be given by: 
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Coefficient vector β can be estimated based on choice-based conjoint surveys using a 

latent class estimation to account for heterogeneity among customers [Williams et al., 

2008]. The market share of a product alternative can be obtained by summing up the 

market share in each of the L customer segments weighted by segment sizes: 
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Manufacturer agents. Manufacturer agents are producers of product alternatives in 

the market system. The action of a manufacturer agent at iteration k is represented by a 

vector xi
k combining the engineering design variables zi

k and wholesale price wi
k of its 

product: xi
k=(zi

k, wi
k). The action space Ai for a manufacturer agent is the union of 

engineering design space represented by a set of inequality constraints and the domain of 

non-negative real numbers representing the space of feasible pricing actions: 
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Retailer agents. Typical retailer behavior includes: (i) acceptance [Williams et al., 

2008]—what product to carry in a category given the limited shelf space; (ii) pricing 

[Shiau and Michalek, 2009(b)]—what retail margin for the product should be considered? 

Both acceptance and pricing decisions by the retailers have significant impact on 

manufacturers’ profits. Assuming there are a total number of n products, the action of a 

retailer i at iteration k is a vector in the n dimensional positive real number space:  nRk
i

r . 
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2.3.2 Agents’ Payoffs 

Since manufacturing firms and retailers are all assumed to be profit seeking, their 

payoffs are aligned with profits—in the following sections, the payoffs of all agents will 

be equivalent to their profits.  

In an agent based model, each agent’s payoff is influenced by the joint actions of all 

agents. Therefore, the payoff for an agent is a mapping from the union of all agents’ 

action spaces to the real number space: RAAA: N P 21 . Assuming there are Nm 

manufacturer agents and Nr retailer agents, the joint actions of all agents at iteration k is 

denoted by: xk=(x1
k, x2

k,…, x Nm + Nr
 k). Also, denote the actions of all agents but agent i at 

iteration k as: x-i
k= (x1

k, x2
k,…, xi-1

k , xi+1
k ,x Nm + Nr

 k).  

A preliminary step for the assignment of payoffs for manufacturer and retailer agents 

is to obtain market shares. Consistent with the market structure, market share at iteration 

k can be denoted by an m by n matrix Mk= (mij
k)mxn, with each entry mij

k
 denoting the 

market share of product i sold by retailer j at iteration k. The market consists of L 

segments with the size of each segment denoted by sl. Therefore, out of a total number of 

(
rm N N  ) alternatives, the market share of alternative ij is: 
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Manufacturer agents. The payoff of a manufacturer agent can be obtained by 

summing up the multiplication of net profit and market share at every retail channel that 

carries the firm’s product: 
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Regarding production cost, a zero fixed cost is assumed and marginal production cost 

is denoted by
 

)( k
m

k
m xC . The marginal cost can be formulated as a linear function of design 

features, as practiced in [Williams et al., 2008]. The cost model can be estimated by a 

linear regression procedure using past production data which are easily accessible for a 

mature product category. 

Retailer agents. The payoff of a retailer agent is the summation of profits generated 

by each product on its shelf space. Specifically, a retailer agent’s payoff is given by: 
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2.3.3 Protocol and Agent Strategies  

The following assumptions are made regarding the short term actions of the market 

players: (i) they make decisions independently; (ii) they have no knowledge about the 

payoff functions and strategies of other players, though they know the payoff functions of 

their own and can observe the actions played by other players; (iii) they learn to improve 

their strategies overtime. 

The No-Regret Matching (NRM) algorithm [Hart and Mas-Colell, 2000] is 

implemented to represent the market players’ learning behaviors. The learning is carried 

out by examining “regrets”. Observing the past actions of all the other agents in each 

iteration, the regret value for a specific action is measured by the difference between (i) 

the average payoff that the agent could have received if this action had been played all 

the time and (ii) the average payoff it has actually received. An action having a negative 

regret will not be played in the next iteration since the agent believes that such an action 

may not bring an attractive payoff according to the its experience, i.e., the payoff 

difference. An action with a positive regret, on the other hand, will be assigned a 
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probability proportional to the regret value which implies the likelihood that this action 

will be played in the next iteration. Following the regret update algorithm introduced by 

Marden et al. [Marden et al., 2007], the regret R as a function of action x is given by: 

0
1 R)x(
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Here the subscript “-i” denotes all the agents but agent i. 

The initial regret value R0 is set to 0 because agents do not have regrets when no 

actions have been taken at the first iteration. Once the joint actions are obtained, an agent 

would have access to the updated regret since it has full knowledge of its own payoff 

function. However, the agents cannot guess the regret of other agents. 

Given the regret function, the agents can specify their strategies. Marden et al. 

[Marden et al., 2007] developed the formulation for a finite and discrete action space: 
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denotes the positive regrets. Eqn. (2.8) can be interpreted as follows. The probability of 

playing an action is proportional to its regret value. In order to guarantee that the 

probability over the action space sums to one, the strategy function is weighted by the 

sum of all positive regret values. 

In an engineering product design decision problem, the above formulation is 

insufficient for representing the agents’ actions since pricing decisions belong to the 
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continuous real number domain. An improved formulation is proposed here to address 

the continuous actions as in the following: 

 










]R[
i

Ax

dx)x(k
i

R

)x(k
i

R)x(B
xk

i
S  

(2.9) 

in which B(x) is denoted as: 
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It can be easily verified that  xS k
i

specified by Eqn. (2.9) sums up to one over the 

action space. 

Meanwhile, the product design decisions are characterized by mixed discrete and 

continuous variables. The actions of a manufacturer agent are denoted by separating the 

discrete actions zd which may represent discrete engineering design variables and 

continuous actions zc which represents the continuous engineering design variables and 

wholesale price: z=(zc , zd). Thus, the following equation sets strategy of a manufacturer 

agent over the mixed discrete and continuous action space: 
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Eqn. (2.10) is different from Eqn. (2.9) in that the denominator accounts for both 

continuous and discrete design variables. The denominator is obtained by first integrating 

over the space of continuous variables while taking discrete variables as fixed, then 

summing over all the feasible values of the discrete variables. The denominator of the 
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strategy function in Eqn. (2.10) involves integrations and summations which cannot be 

obtained analytically. Meanwhile, evaluating the probability distribution function of the 

strategy for a manufacturer agent involves assessing its action’s feasibility by evaluating 

engineering constraints. Overall, the strategy functions are in a blackbox form and cannot 

be sampled analytically.  

As discussed earlier, the agents play actions in each iteration by drawing samples 

from their strategies. The strategy as given by Eqn. (2.10) is not in the form of any 

standard distribution, which makes it difficult to sample. For implementation purpose, a 

numerical sampling technique is used, i.e., slice sampler, to draw samples from a black 

box probability density function. A slice sampler [Nean, 2003] is one of the Markov 

Chain Monte Carlo (MCMC) sampling techniques. The sampler creates a chain of sample 

points out of a given density function. When the chain of samples converges, the 

sequence of samples can be taken as an approximation to the original probability density 

function. The slice sampler can bring significant computational convenience to our 

approach because the sampler only requires knowing the density function to a 

proportional constant, that is, only the numerators in Eqn. (2.9) and Eqn. (2.10) need to 

be known. This property of slice sampler offers a way to circumvent the evaluation of 

complicated integrations and summations in the strategy functions. Practically, the 

generation of agents’ actions can be accomplished by plugging the regret value (i.e., the 

numerators in the strategy functions), if positive, into a slice sampler and by obtaining a 

chain of samples representing the agents’ strategy. In this study, the slice sampler is 

applied as a black box function: using the “slicesample’ function from the Statistics 

Toolbox in Matlab 2010a [MathWorks, 2010]. In each iteration of the agent based 
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simulation, an agent creates a chain of samples based on the updated strategy using the 

slice sampler. It takes the convergent portion of the chain and draws one sample from it. 

This sample is taken as the action that the agent will report to the agent based system at 

the current iteration. 

2.3.4 Market Equilibrium and Convergence  

The proposed agent based simulation process needs to be run long enough in order to 

reach an interpretable equilibrium. No-regret matching algorithms, as indicated by the 

terminology, are proved to asymptotically converge to “no-regret” equilibrium where the 

regret for each agent approaches zero [Marden et al., 2007]. The equilibrium is 

interpreted as a “correlated equilibrium” which was first discussed by Aumann [Aumann, 

1974]. Simply put, agents at equilibrium would have “no-regret” of playing random 

draws according to their strategies, given the history of interaction. Hart and Mas-Colell 

[Hart and Mas-Colell, 2000] provided analytical proofs that the empirical distributions of 

agents’ actions (i.e., defined as EAPi
k(x) in this study) will converge to correlated 

equilibrium under the no-regret matching algorithm. Marden et al. proved that NRM 

converged to Nash Equilibrium in a “weakly acyclic game” [Marden et al., 2007]. In our 

case studies, convergence is observed even without those assumptions. However, due to 

the complexity of the decision problems for each agent in this study (e.g., decision spaces 

bounded by nonlinear and even “black-box” constraints), the existence and uniqueness of 

equilibrium can be difficult to prove. 

It is worth noting that the “asymptotical convergence” [Marden et al., 2007] to zero 

regret may not be a desirable convergence criterion since it may require infinite number 

of iterations. As an alternative, an Empirical Convergence Index (ECI) is defined to 
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identify the convergence. ECI is defined as the change of the empirical action profile, i.e., 

EAPi
k(x), in two consecutive iterations. As given by Hart and Mas-Colell [Hart and Mas-

Colell, 2000], the equilibrium strategy of an agent is represented by its EAPi
k(x). When 

the changes of EAPi
k(x) remain small enough for a certain number of iterations, it implies 

the convergence of the system. The ECI can be obtained by the following procedure.  

First, empirical action profile is constructed: EAPi
k(x). The actions that have been 

played by an agent i up to iteration k compose a set of observations: { xi
1 , xi

2,…, xi
k-1 , 

xi
k}. Each observation xi

k is a vector, e.g., containing wholesale prices as well as 

engineering designs for a manufacturer agent. Therefore, EAPi
k(x) will be a multivariate 

density function. For the ease of interpretation, EAPi
k(x) is substituted by univariate 

functions EAPih
k(x) corresponding to the marginal distributions for each dimension of the 

agent’s actions. The observations for the h’th dimension can be obtained by ignoring the 

other dimensions of the observations in { xi
1 , xi

2,…, xi
k-1 , xi

k}. A density function is then 

extrapolated from the observations using the kernel smoothing estimation technique—a 

non-parametric summarization of the underlying distribution structure of the observations. 

A number of numerical estimation toolboxes are available to use, for instance, Statistic 

Toolbox in Matlab offers a normal kernel estimation function. The results of the kernel 

smoothing estimation are vectors of samples representing the smoothed estimate of 

EAPih
k(x).  

Secondly, a vector of quantiles representing the shape of EAPih
k(x) is obtained. For 

instance, quantiles  of 2.5%, 25%, 50%, 75% and 97.5% can be used for computing ECI 

in the case studies. Denote the set of quantiles for EAPih
k(x) by qh

k={qhj
k}, j=1,2,…J, 
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where J is the total number of quantiles to be computed. ECI for agent i in iteration k is 

then defined as: 
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(2.11) 

 

Eqn. (2.11) represents changes in the EAPi
k(x) compared to the previous iteration. It is 

the summation of the changes of empirical profiles in each dimension of an agent’s 

actions. The variations in the shape of profiles are represented by the averaged distance 

between the corresponding quantiles in two consecutive iterations scaled by the term 

“ )min()max( k

hj

k

hj qq  ”.  

The convergence criterion is defined as the following. For a given tolerance value εc 

and step parameter Tc, the agent based simulation is said to be converged up to iteration k 

if the following condition is met for any agent i:  

c
t
icc ECI:}k,k,,Tk,Tk{t  11  

(2.12) 

 

2.3.5 Realism and Validation 

The usage of “no regret” learning behavior is indeed motivated by the fact that 

managers, when making a decision, take the past into account. They tend to give favor to 

the strategies that “could have worked better” in the past—a tendency to reduce “regret”. 

Such type of behavior was reflected in the work by Montgomery et al. [Montgomery et 

al., 2005]. The majority of managers were observed to take the past behaviors of 

competitors into account when making decisions on new product design and/or pricing; 

hardly any managers, on the other hand, were reported to account for future competitor’s 

reactions. However, it is necessary to point out that the learning algorithm in the agent 
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based simulation does not mimic the real world behaviors of individual firms. It is not 

appropriate  to take the agent based simulation process as a “step by step” prediction of 

the future moves of market players.  

Fully validating the agent based simulation can be difficult but it is indeed verifiable. 

The research in behavioral game theory [Camerer, 2003] indicates that learning behaviors 

of social agents are only experimentally observed under limited circumstances. Using the 

real market data (i.e., price adjustments and feature changes) to examine the validity of 

the model can be potentially risky. Additionally, there can be a variety of other forces 

(i.e., entry of new competitors, advertisement and promotions) which are attributable to 

the firms’ behaviors so an isolated market system is rarely available. Although validating 

the dynamic behavior is challenging, verifying the equilibrium is not. For instance, it is 

possible to verify if the result is indeed equilibrium. Upon convergence to equilibrium, 

the strategies (i.e., EAPi
k(x)) of the agents are supposed to remain stable. This can be 

verified by looking at the convergence criterion proposed in the Section 2.3.4. This 

procedure is followed in the case studies. A more rigorous verification can be by 

matching the strategies obtained in the simulation to the definition of correlated 

equilibrium [Aumann, 1974] at which the no regret learning is supposed to converge. Part 

of the model, e.g., the representation of the choice behaviors of Customer agents using a 

Multinomial Logit model, has roots in consumer utility theories and can be verified by 

fitting the data collected from conjoint surveys [Green and Srinivasan, 1978]. 

2.4  CASE STUDY 

The case study is formulated by extending the design problem of a cordless angle 

grinder, which was proposed in the previous literature [Williams et al., 2008]. The angle 
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grinder is a typical engineering product with subsystems such as motor, transmission and 

housing. The market for angle grinders is characterized by a number of major 

manufacturers such as DeWalt, Bosch and Milwaukee and a few powerful retailers such 

as Home Depot and Lowe’s. 

 

Table 2.1 Design variables of a cordless angle grinder 
Description Design Var. Unit Lower Bound Upper Bound 

Long term design variables 
Armature turns Nc turns 20 300 

Stator turns Ns turns 10 200 
Stator outer radius Ro mm 10 100 

Stator thickness T mm 0.1 100 
Gap thickness Lgap mm 0.05 70 
Pinion Pitch Dp mm 9 30 
Stack length L mm 10 200 
Switch Type S N/A 1 4 

Short term design variables 
Current I amps 6 12 

Gear ratio R N/A 0.2 4 

 

2.4.1 Engineering Design Model  

The design variables for a cordless angle grinder are detailed in Table 2.1.  Some of 

the variables are discrete, i.e., “Armature turns”, “Stator turns” and “Switch Type”. The 

variables “Current” and “Gear Ratio” are assigned to represent short term design changes, 

with the rest representing long term design. Such assignment is in favor of the 

convenience of demonstration since varying the “Current” and “Gear Ratio” is observed 

to change the market share of a product noticeably. Three long term design alternatives 

are considered in the study. Specifically, random values are generated for long term 

design variables except “Switch Type” and make the values identical across all the three 

alternatives. Therefore, the alternatives are differentiated, with respect to long term 

features, exclusively by the variable “Switch Type”. The engineering constraints and the 
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cost model are consistent with those presented in the reference [Williams et al., 2008]. A 

mapping from the engineering design space to the customer observed attributes is also 

available in the literature [Williams et al., 2008]. 

2.4.2 Case Study Scenarios  

Three case study scenarios are considered. The agent based model in each subsequent 

scenario builds upon that of the previous scenario and fosters increasingly complex 

market systems, as summarized in Table 2.2.  

Table 2.2 Case study scenarios 

 
Changing 
Wholesale 

Prices 

Changing 
Retail 

Margins 

Changing 
Product 
Designs 

Scenario 1 X   
Scenario 2 X X  
Scenario 3 X X X 

 

In scenario 1, the manufacturer agents only change wholesale prices and the retailers’ 

margins are fixed. An arbitrarily chosen design alternative will be evaluated by using the 

agent based approach and game theoretic approach, and the results will be compared. 

Specifically, the “correlated equilibrium” market response anticipated by the agent based 

model will be compared to the Nash Equilibrium obtained using a game theoretic 

approach. Scenario 1 mirrors the commonly known price competition problem which can 

be solved using a game theoretic approach. Under the assumption of a multinomial logit 

(MNL) demand model, the price competition problem can be proved to have a unique 

Nash Equilibrium [Anderson et al., 1992]. The Nash Equilibrium can be obtained by 

setting the first order derivatives of the manufacturer agents’ payoff functions with 

respect to their wholesale prices equal to zeros and solving a system of non-linear 
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equations. As such, a numerical minimization approach is adopted and is shown in Eqn. 

(2.13): 

In scenario 2, retailer duopolies are added in and examine their impacts using the 

agent based approach. Since a choice model which incorporates heterogeneity and 

consider retailer duopoly is adopted, to the best of our knowledge there is no analytical 

proof that a unique Nash equilibrium exists under such setting. In contrast, the proposed 

agent based model will be shown to converge to equilibrium solutions of mixed strategies. 

The reason is that the analytical proof [Hart and Mas-Colell, 2000] regarding the NRM 

algorithm does not depend on the properties such as concavity of payoff functions, and 

therefore is not affected by the complications in this setting. This scenario serves as an 

intermediate step between scenarios 1 and 3. 

In scenario 3, long term design alternatives are evaluated and selected using the 

proposed approach. In both scenario 2 and 3, the competition involves either non-concave 

profit functions for the market players or non-convex action spaces for engineering 

design actions. For demonstration purposes, the long term product design decision space 

is kept small with a finite number of design options, as shown in Table 2.3. Each 

alternative will be evaluated using the agent based model for its profitability. Given the 

profit that each alternative generates overtime, the most profitable long term design 

option can then be selected as the long term design. Correspondingly, the strategy of the 

focal firm in the agent based model is selected as the short term design. It is assumed that 

the market size for the product category is 1 million units throughout the case study 

scenarios. 
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2.4.2 Modeling Agents  

Customer agents. In the angle grinder example, the customer’s utility coefficients 

can be estimated through analyzing choice based conjoint surveys, which results in 4 

segments with diverse preferences. The segment sizes (in percentage) are 36.40%, 

26.62%, 13.17% and 23.81%. The values of coefficients for the demand model are 

available in [Williams et al., 2008].  

Manufacturer agents. The agent based system consists of 4 different manufacturer 

agents performing short term designs and pricing of their angle grinders. Manufacturer 4 

is the focal firm. The engineering design action space of each manufacturer is assumed to 

be the same, as defined by the lower and upper bounds in Table 2 and a number of 

engineering constraints [Williams et al., 2008]. In scenario 1 and 2, the designs of 

manufacturing agents are fixed, as given in Table 2.3. In scenario 3, the competitors 

change their short term designs while maintaining the values for long term design 

variables given in Table 2.4.  

Table 2.3 Long term design options 
Design 

Variables 
Nc Ns Ro T Lgap 

Alt. #1 262 97 46.9 34.0 0.28 
Alt. #2 262 97 46.9 34.0 0.28 
Alt. #3 262 97 46.9 34.0 0.28 
Design 

Variables 
I L R Dp S 

Alt. #1 6 126.1 0.47 9.1 1 
Alt. #2 6 126.1 0.47 9.1 3 
Alt. #3 6 126.1 0.47 9.1 4 
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Table 2.4 Design variables of competing 
manufacturers 

 Nc Ns Ro T Lgap 
Mfr 1 297 75 68.1 48.7 0.07 
Mfr 2 286 101 47.6 31.2 0.13 
Mfr 3 300 69 52.1 28.1 0.06 
Mfr 4 262 97 46.9 34.0 0.28 

 Dp L S I R 
Mfr 1 23.7 193.3 1 6 0.35 
Mfr 2 21.0 161.3 4 9 1.14 
Mfr 3 11.7 199 3 12 3.94 
Mfr 4 9.1 126.1 3 6 0.47 

 

Retailer agents. A retailer duopoly setting (i.e., two competing retailers) is used in 

the case study. Specifically, it is presumed that two retailer agents carry all the angle 

grinders produced by the 4 manufacturer agents. In the first scenario, the retailers are 

assumed to have constant retail margins as given in Table 2.5. In scenario 2 and 3, the 

retailers will react to the changes in the market system by setting retail margins over their 

assortments.  

Table 2.5 Default retail margins 
 Product 1 Product 2 Product 3 Product 4 

Retailer 1 $48 $45 $55 $43 
Retailer 2 $30 $31 $30 $43 

 

2.5 RESULTS AND DISCUSSION 

2.5.1 Scenario 1: Anticipating Wholesale Price Responses of Competitors to the New 

Product 

Game theoretic approach yields the Nash Equilibrium prices of a non-cooperative 

game under pure strategies. The equilibrium prices and corresponding profits are 

presented in Table 2.6. The price set by Firm 3 is much higher than the other firms, which 

implies that this firm targets the higher-end market segments and sells expensive products. 
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Table 2.6 Nash equilibrium for price competition 
 Firm 1 Firm 2 Firm 3 Firm 4 (Focal) 

Price ($) 53.5 52.7 352.0 70.3 
Profit ($M) 11.5 4.8 38.8 17.6 

 

The proposed agent based approach simulates a process through which firms 

converge to equilibrium of mixed strategy by learning.  The empirical action profiles (i.e., 

EAPi
k(x)) of the firms are in Figure 2.3 (a) to Figure 2.3 (d).  

There are two significant observations, as can be seen in Figure 2.3, regarding the 

empirical action profiles: shifting and shrinking. The shifting of the profile implies the 

changes in the potentially more profitable pricing option. The shrinking reveals the 

strengthening of an agent’s belief on the pricing strategy, as more action-reaction history 

data becomes available. The “shift” can usually be observed at the beginning of 

simulation when agents learn to find more profitable actions; the “shrinking” often appear 

toward the convergence of the simulation when agents stop shifting the profiles. In Figure 

2.3 (e) the agents’ average profits are presented over iterations.  
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Figure 2.3 Result of scenario 1: (a) to (d) empirical action profile for manufacturer 

agent 1 to 4; (e) agent payoffs; (f) empirical convergence index 

Figure 2.3(f) shows the process that ECI of each agent approaches zero—the criterion for 

the convergence of the simulation. The tolerance and step parameters are set as: εc=0.05 

and Tc=20, respectively. 

Comparing the results in Table 2.6 and Figure 2.3, the mean values of the pricing 

strategies obtained by the agent based approach appear to be close to the Nash 

Equilibrium prices obtained by the game theoretic approach. Therefore, both approaches 
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can be used to model the price competition and obtain similar results. However, it is 

necessary to clarify that this closeness does not imply equivalence. The game theoretic 

approach yields equilibrium in pure strategies—the players’ actions are deterministic. 

The agent based approach, in comparison, leads to the equilibrium in mixed strategies—

the players have probabilities of playing a certain action.  

2.5.2 Scenario 2: Anticipating Wholesale Price Responses of Competitors and Retail 

Margin Changes of Duopoly Retailers 

In this scenario, the first scenario is extended by allowing retailer duopolies to 

respond to the new product by adjusting margins. Adding more agents may make the 

environment more complex to “learn”. It can be more difficult for an agent to see the 

difference in terms of profit between two feasible actions, since any changes in another 

agent’s behavior can flip the comparison between the two. The more agents in the model, 

the more uncertainties are introduced. It is worth noting that the customer choice model 

incorporates the preferences for the two retailers and therefore makes them differentiated 

in the simulation. In the simulation results, retailer 1 tends to set high margins across the 

products it carries, which indicates that it learns overtime that the customers’ purchase 

behaviors are less affected by the its price changes. Meanwhile, it achieves high profit 

over the iterations as compared to retailer 2, which indicates its dominating position in 

the retail market. In contrast, retailer 2 restricts its margins, on the average, to be lower 

than those of retailer 1 except for product 3—a higher-end product expensively priced as 

discussed in scenario 1. The profits of manufacturers 1, 2, and 4 (focal) remain at the 

same level as they did in the first scenario where retail margins are kept constant. The 

profit of manufacturer 3 experienced a significant drop due to the extra margin extracted 
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by retailers which results in an excessively high retail price that drives many customers 

away. 

2.5.3 Scenario 3: Selecting Long Term Design Alternatives under both Price and 

Design Changes in a Market System  

In this scenario, the proposed agent based design approach is applied to select long 

term design alternatives. Each long term design alternative goes through the agent based 

model for evaluation to obtain: (i) the profit for the focal firm towards the equilibrium, as 

shown on the left of Figure 2.4, and (ii) the short term design and pricing strategy for the 

focal firm, as shown on the right in Figure 2.4. The “Long Term Design Alternative 2” 

(which is the same design the focal firm has in scenario 1) is the most profitable one 

among the three options. 

One important observation is that the profit for the focal firm gradually drops to 

around $5M when competitors learn to change prices and short term designs, compared 

to that around $15M when competitors only adjust prices in scenario 1. Based on the 

observation in this case study, the focal firm could be significantly overestimating its 

profit when developing a new product without anticipating the short term design changes 

of the competitors.  

The right half of Figure 2.4 exhibits how the short term competing strategy, i.e., 

pricing and short term design, for the focal firm is obtained given the most profitable long 

term design alternative. The empirical action profile for pricing decision features a “shift” 

from an initially higher price to a less expensive price. Additionally, the “Gear Ratio” 

design strategy changes from an initial bimodal profile to a unimodal profile, which 

reveals the process through which the firm strengthens its belief on profitable short term 
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designs by learning. When competing firms gradually revise some design features and 

change prices to counter the new product, the new product may not generate as much 

profit for the focal firm as it does right after its entrance into the market. The competition 

actually forces the focal firm to consider price cuts and continue to revise the short term 

design features of the new product in order to maintain the profitability. Empirically, the 

short term design and pricing strategies need to be appropriately interpreted. There can be 

noticeable deviations in the distributions (e.g., the gear ratio strategy as shown in Figure 

4) due to the randomizing nature of all the agents. Therefore, the designer should be 

provided not only the “peak” but also the “spread” regarding its strategies. For instance, 

the designer will be suggested to give the peak value priority but still consider other 

options within the 90% confidence interval for the gear ratio design strategy. 

Meanwhile, the overall performance of the firms in terms of market shares and how 

they target the 4 different market segments in the short term horizon are analyzed. 

Manufacturer 1 is a small business with its shares in each segment below 10%. 

Manufacturer 2 dominates segment 2 by a share of 70%. Manufacturer 3 played as a 

monopoly in the third segment with the share of almost 100%. The focal firm 

(manufacturer 4) targets segment 1 with a share of about 30%.   

Finally, it is necessary to point out that only a very limited number of options are 

compared for the focal manufacturer in the long term design space. There can be a much 

larger set of long term options to be considered. For instance, a sensitivity analysis is 

conducted for every long term design alternative by perturbing the outer radius R0 of the 

motor by 5%. As shown in Figure 2.4, by increasing R0 by 5% based on alternative 2, the 

focal firm would have achieved a profit for another $2M. Conversely, the profit for 
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alternative 2 can fall below that of alternative 1 as well, which leads to the change of 

optimal long term design option. Additionally, a long term design alternative can exhibit 

varied sensitivity to different design variables. The sensitivity of alternative 2 is also 

tested regarding the “Stack length” denoted by L. This alternative is shown to be much 

less sensitive to L. 

 

Figure 2.4 Results of Scenario 3 

The simulations are programmed in Matlab and run on a desktop workstation with an 

8 core CPU of 2.99GHz and 4GB memory. Parallel computing is used. For a given long 

term design alternative, the total computational time of the agent based simulation is 

approximately 9.67 hours for 150 iterations.  

2.6 SUMMARY 

In this chapter, an agent based approach is proposed for strategic design decisions in 

an uncertain market environment. The proposed approach overcomes the short comings 
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of previous approaches and is capable of handling competition involving complex design 

problems in which engineering systems is in black box form. Moreover, a more realistic 

perspective is taken in modeling the uncertain market system and accounting for the 

action-reactions among market players with learning behavior. Additionally, the 

approach provides the designer (i) a long term design decision which targets long term 

profitability and (ii) a short term design and pricing strategy which helps to maintain 

competitiveness in a short term horizon. 

The proposed approach evaluates long term design alternatives and searches the short 

term design space using an agent based model. Market players such as competing 

manufacturing firms and retail channels are modeled as learning agents. A no-regret 

learning algorithm is used to model the market system and equilibrium of the system can 

be analytically guaranteed. In the case studies, the proposed approach is compared with 

the game theoretic approach reported in the previous literature. Our current results 

indicate that when competing manufacturing firms compete on pricing, the agent based 

approach results in a similar prediction of the market equilibrium compared to the game 

theoretic approach. The result also suggests that a firm can establish long term advantage 

in profit by strategically selecting design alternatives.  

The next chapter will present a customer driven optimal design method for 

convergence products. Instead of focusing on the action-reactions of an existing (mature) 

product category, the next chapter aims at the design decisions in emerging product 

categories which integrates the features of existing product.   
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CHAPTER 3: CUSTOMER-DRIVEN OPTIMAL DESIGN FOR CONVERGENCE 

PRODUCTS2 

Convergence products are multifunctional designs which are changing the way 

consumers use existing functionalities. Manufacturers’ ventures in developing 

convergence products abound in the marketplace. Smartphones, tablet computers, internet 

TV, are just a few examples. The complexity of designing a convergence product can 

differ significantly from that of single function products which most research in Design 

for Market Systems aims at.  

In this chapter, a new customer-driven approach for designing convergence products 

is proposed to address the following issues: (i) a design representation scheme that 

considers information from design solutions used in existing products: the representation 

facilitates the coupling of and combining multiple functionalities; (ii) a hierarchical 

Bayes model that evaluates consumers’ heterogeneous choices while revealing how usage 

of multiple functionalities impacts consumers’ preferences; and (iii) design metrics which 

help evaluate profitability of design alternatives and account for future market 

penetration given evolving consumer preferences. An example problem for designing a 

tablet computer is used to demonstrate the proposed approach. The data for the example 

is collected by conducting a choice-based conjoint survey which yielded 92 responses. 

The proposed approach is demonstrated with three scenarios differentiated by the 

consideration of consumer heterogeneity and future market penetration, while comparing 

how the resulting optimal design solutions for the convergence product differ. 

                                                   
2 This chapter addresses Research Thrust 2, as overviewed in Chapter 1. The material for this 
chapter is borrowed from (and is the same as) the paper: Wang, Z., Kannan, P.K., and Azarm, S., 
2011, “Customer-Driven Optimal Design for Convergence Products”, Journal of Mechanical 
Design, 133(10), pp. 101010.1 to 101010.13. 
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3.1 INTRODUCTION 

Consumers nowadays are facing a wide variety of new products which combine a 

number of distinct functionalities3 that existing individual products already provide. Such 

products are found in a broad range of categories such as office machines (e.g., all-in-one 

printers), consumer electronics (e.g., tablet computers) and information products (e.g., 

Google TV). These products usually straddle two or more existing product categories by 

merging their previously developed and separate underlying technologies, which give rise 

to their name Convergence Products [Han et al., 2009]. Successfully developing a 

convergence product can greatly benefit a company in a number of ways. First, a 

convergence product is generally built upon the technologies of existing products, which 

can significantly reduce the R&D effort and costs. Secondly, a convergence product can 

attract new customers who do not use the existing products but are interested in a 

combination of functionalities that a convergence product offers. Moreover, convergence 

products can open up new product-market opportunity gaps (Figure 3.1) which can lead 

the firm to a position in the market where little or no direct competition exists. Appealing 

as it may be, a convergence product can be complicated to design. The success or failure 

of a convergence product can be closely related to the decisions in the early stages of 

design, yet little research has been conducted on a customer-driven design decision 

approach that is applicable to convergence products. 

The objective of this chapter is to develop a design decision framework that 

maximizes a company’s profit while considering sustainable future market penetration, 

by accounting for the consumers’ usages of the functionalities and their evolving 

                                                   
3 Functionality here is defined as the capacity of a product to fulfill a useful function and satisfy a 
customer need, e.g., a useful function that an iPad can fulfill is reading a book or magazine. 
Functionality can also refer to a “feature” of a product, e.g., iPad has an “e-book reading” feature. 
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heterogeneous preferences. While some convergence products flourish partly due to their 

improved user interface and software applications (e.g., tablet computers, smartphones), 

this study focuses primarily on the design decisions of the hardware and product features. 

However, studies using prototypes (e.g., Luo et al., 2008) can be employed to focus on 

perceived attributes such as screen quality, software ease of use, etc.. The proposed 

objective and framework differs from existing literature in three significant ways, which 

are elaborated below.  

  

Figure 3.1 Opportunity Gaps for Convergence Products 

 

First, a modular design representation scheme is proposed to integrate the design 

solutions from multiple existing product categories to generate design alternatives for a 

convergence product. The scheme accounts for the coupling of subsystems 

(functionalities) due to the very nature of a convergence product. Chen et al. [Chen et al., 

2010] investigate the planning of fusion products (single product that operates multiple 

functionalities—a definition that is close to that of a convergence product) to maximize 

profit but overlook the engineering design aspect and consumer preferences for such 

products. Existing works in engineering design focus on the design of single category 

products [e.g., Li and Azarm, 2000], product line [e.g., Thevenot and Simpson, 2009] and 

gaps for convergence products
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product platforms [e.g., Fellini et al., 2005]. Single product design methods do not handle 

the couplings of multiple products or functionalities. Product line/platform design 

approaches, on the other hand, consider the connections and variations among multiple 

products but are limited to the design of products falling under a single category. The 

practice of bringing different product categories together is called “bundling” 

[Stremersch and Tellis, 2002; Chung and Rao, 2003]. The recent work by Williams et al. 

[Williams et al., 2010] introduces a methodology to design a bundle of multi-category 

products but does not lead to design concepts that cast the functionalities into a single 

product.  Meanwhile, modular design has been widely applied in the industry and 

existing literature have focused on the analysis of modularity [e.g., McAdams et al., 

1999], and designing product line and/or platform [e.g., Gao et al., 2009; Dobrescu and 

Reich, 2003]. The proposed approach extends these works by enabling the integration of 

modular structures of different products/functionalities into one integrated framework. 

Additionally, the design decision for a convergence product requires bridging the 

parametric design stage and the concept selection stage, while accounting for how 

consumers will react to new designs. Existing engineering design methods in the design 

for market systems [e.g., Shiau and Michalek, 2009; Tucker and Kim, 2008; Kumar et al., 

2009] are primarily useful to make parametric decisions with fixed modular structures of 

the functionality, with design concepts for the functionalities selected a priori.  

Secondly, the approach in this chapter accounts for the consumers’ heterogeneous 

choice behavior using a hierarchical Bayes model with its second level explaining how 

the consumers’ usages of the existing functionalities influence their preferences for the 

attributes of the convergence product. Early approaches such as House of Quality 
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[Hauser and Clausing, 1988] collect customer needs and map them to the design 

specifications in a qualitative manner. Recent works in the area of design for market 

systems adapt econometric models to quantitatively measure the relationship between 

design alternatives and consumer choice [Frischknecht et al., 2010]. However, the 

existing works in product design only explain the heterogeneity of consumer needs in 

limited ways. The preferences of the consumers are assumed to be identical [e.g., 

Orsborn et al., 2009], grouped into a small number of classes [e.g., Williams et al., 2008, 

2011], assumed to be random but having the same probability distribution [Shiau et al., 

2007], or considered heterogeneous by incorporating demographic information as 

explanatory variables in the consumer utility function [Hoyle et al., 2011]. The study by 

Koukova et al. [Koukova et al., 2008; Koukova et al., 2012] shows that consumers do 

react to product offerings differently when they are made aware of usage situations. Some 

consumers may even carry existing products together with the convergence product 

because the products outperform each other in different usage occasions [Kane, 2010]. A 

similar hierarchical Bayes model structure has been used in Yang et al. [Yang et al., 2002] 

where the authors study the consumers’ brand preferences for beverages under a variety 

of objective environment and subjective usage motivations, yet they do not address how 

the usage conditions influence the consumers’ evaluations of the products’ attributes.   

Finally, the proposed approach introduces a design metric called Convergence Index 

(CI) to help position the convergence product with respect to existing product markets 

and use the index to predict the potential market size. The CI metric is used to map 

engineering design variables to a numerical value which reflects how close the 

convergence product is to existing products in terms of product architectures, which has 
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implications for the demand of convergence product relative to the existing products. The 

literature on Commonality Index [e.g., Thevenot and Simpson, 2004; Kota et al., 2000] 

reveals similarity among product line variants. The commonality metrics mostly rely on 

counting the number of shared components among the variants in a product family or 

product line. Counting the number of shared components ignores the variation in 

component attributes and the rearrangement of the modular structure which collectively 

leads to new ways of performing the existing functionalities—a key reason that a 

convergence product differentiates from existing ones. On the other hand, market 

segmentation techniques [e.g., Meyer and Lehnerd, 1997] differentiate products using 

customer level attributes. Ramdas and Sawhney [Ramdas and Sawhney, 2001] measure 

the potential market size for a product line expansion by modeling the probabilities that 

consumers purchase the product given a variety of line expansion options. The proposed 

CI compares products by propagating the variations at different levels of modules 

through a product modular hierarchy, in creating a distance metric that quantifies the 

degree of similarity between the products as a function of their product architectures.  

Moreover, the proposed approach captures a product’s impact on the consumers’ 

usages using a logit model and considers a metric called Impact of Usage Evolution (IUE) 

to predict the effect on a product’s future market performance. The work in marketing 

research by Heilman et al. [Heilman et al., 2000] attributes the consumers’ evolving 

brand preferences to their cumulative purchase quantities of a specific brand. However, 

that work does not reveal the underlying product-consumer interaction process in which 

the consumers change preferences through using the products.  
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Section 3.2 gives the assumptions and problem definition. Section 3.3 presents the 

proposed framework and details of the methodology. Section 3.4 uses a case study for a 

tablet computer to demonstrate an application of the proposed methodology. Results for 

the case study are shown in Section 3.5 and highlights and concluding remarks are made 

in Section 3.6. 

3.2 PROBLEM DEFINITION AND ASSUMPTIONS  

The problem is defined as follows. As shown in Figure 3.2, a manufacturing company 

plans to design a convergence product which integrates the functionalities offered in a set 

of existing categories of products, e.g., Product A and Product B. Functionality refers to a 

feature of usage from the consumers’ perspectives. For instance, a smartphone has the 

functionalities such as “sending emails”, “receiving phone calls” and “browsing the web”. 

The designer (or manager) is assumed to be able to identify the product categories a 

priori. A more detailed discussion of product categories or product markets can be found 

in the Lilien et al. [Lilien et al., 1995]. For instance, a product market can be defined by 

its title, such as “auto market” or “laptop market”; or can be defined from the customers’ 

perspective and consists of products that potentially replace each other, e.g., printers of 

different brands for home usage constitute the home printer category. 

The existing products, based on which the convergence product design is made, are 

assumed to be modular with their design solutions for the functionalities known. Here, a 

modular product refers to one that can be represented by a combination of physical and/or 

software units so that: (i) each unit has one or more functions and (ii) connections 

between the units are well defined [Ulrich, 2000]. The modules can be selected out of a 

“module library” which contains all candidate modules, with each module having a 
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variety of options to choose from. The design solution of a functionality is defined as the 

selection and specification of the modules which collectively enable that functionality. 

The designer can also consider a new functionality that none of the existing products 

provide. For a new functionality, it is assumed that a corresponding design solution is 

known a priori. On the demand side, it is presumed that the convergence product is 

targeted for heterogeneous consumers who will use at least one of the functionalities. The 

consumers use the functionalities in different usage situations and have diverse 

preferences for product attributes. The major cost of the product is incurred by 

purchasing its components or modules from the suppliers. 

  

Figure 3.2 Problem Definition 

3.3 METHODOLOGY 

As shown in Figure 3.3, the proposed approach begins by first constructing a modular 

representation of functionalities after investigating the structures of existing product 

categories that are intended to be merged into a convergence product. This leads to a 

modular hierarchical representation framework and a set of constraints which define the 

engineering design space for the convergence product. The process of developing the 

modular framework is detailed in Section 3.3.1. The design alternatives will be generated 

and selected using a Genetic Algorithm [Deb, 2001]. The design alternatives are first 

Product A Product B

Designer

Convergence 
Product

Consumer Consumer

max Profit

Functionalities

Modules

Functionalities

Modules



50 
 

evaluated from the consumers’ perspective by using a hierarchical Bayes choice model. 

In this hierarchical model, the first level represents how the design attributes influence  

 

Figure 3.3 Design Decision Framework 

 

each consumer’s probability of choosing the product, and the second level reveals how 

the consumers’ usages of the functionalities influence their preferences. Section 3.3.2 

elaborates on the development of the hierarchical Bayes model. Meanwhile, two metrics 

are used to bridge the calculation of enterprise objectives such as profit. The first metric, 

Convergence Index, reveals how similar the convergent product is to existing products, 

which aids in the prediction of potential market size. The second metric, Impact of Usage 
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Evolution, evaluates the changes in a product’s market share when the consumers’ 

preferences change. The second metric takes into account the effect of product-customer 

interaction and indicates whether the market penetration of a design alternative is 

sustainable in the future. The two metrics are detailed in Section 3.3.4. The output of the 

first metric combined with the output of the first level of the choice model leads to the 

computation of the predicted demand. The cost model (Section 3.3.3) takes its inputs 

from both the design attributes and the predicted demand. The design alternatives will be 

selected by maximizing profit subject to the sustainability constraint in which IUE is 

confined to be non-negative. In this study, the price is kept fixed in order to separate the 

effect of changing design features on the profit. 

3.3.1 Modular Design Representation 

This section concerns the representation, generation and selection of engineering 

design alternatives.  

A module is defined to be a functional unit that directly supports a functionality. Each 

module can be further decomposed into sub-modules—physical or software units which 

facilitate their parent module. The modular hierarchy is constructed by decomposing the 

functionalities of existing products into modules/sub-modules in three levels as shown in 

Figure 4. The top level, Functionality Level, contains all the functionalities that the 

products in the existing categories have. The Module Level includes all the modules that 

support at least one of the functionalities in the top level. The Sub-module Level consists 

of the functional units which build up the modules in the middle level.  
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Figure 3.4 Modular Hierarchy Framework 

Design Alternative Representation. A vector F=(Fi)1×f is used to denote the 

inclusion of f functionalities, with each entry Fi set to 1 when the corresponding 

functionality i is present in a design alternative. A binary string M=(Mi)1×n can be used to 

indicate the availability of n modules (e.g., n=8 in Figure 3.4), with each entry Mi set to 1 

when the module i is present in a design alternative. The availability of sub-modules is 

denoted using SM. Each entry of SM, or SMij, is a binary variable denoting the inclusion 

of the j’th sub-module in module i. Additionally, a vector zij is defined to represent the 

attributes of sub-module j of module i. The entries of zij can take numerical values (e.g., 

the diagonal size of “SM71: LCD Panel” in Figure 4) as well as nominal values (e.g., the 

material type of “SM61: Battery” in Figure 4). In summary, a design alternative is 

represented by the collection x = {F, M, SM, z}. 

Functional Enabling Constraint. A functionality is enabled when all its required 

modules are present in a design alternative. An Enabling Matrix, denoted by 

EM=(EMij)f×n, is defined with EMij =1 if implementing function i requires module j and 

EMij =0 otherwise. The matrix EM can be determined by analyzing the modular 

decompositions of functionalities in the existing products. A necessary condition for a 
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design alternative to be feasible is that all the selected functionalities are enabled, which 

can be formulated as (the prime symbol is for transposition): 

FMEM   nnf 1'  
(3.1) 

Module Composition Constraint. When a module is selected in the convergence 

product, its sub-modules need to be selected such that the same composition can be found 

in at least one of the existing products. A necessary condition for a design alternative to 

be feasible can be stated as: 

   .,,...,2,1,1|:,...,1 , xSSniMiiKk ikii   (3.2) 

with k=1,…,K indexing all the existing products. 

Sub-module Feasibility Constraint. The attributes of sub-modules are constrained 

by lower/upper bounds (for numerical values) and set of options (for nominal values). 

Zz is used to represent the feasible region for all the zi,j.  

The engineering design space is therefore bounded by the above mentioned 

constraints: (i) Functional Enabling Constraint; (ii) Module Composition Constraints, and 

(iii) Sub-module Feasibility Constraint.  

Design Alternative Generation and Selection. A Genetic Algorithm is used to 

generate and select design alternatives. The design alternatives are first translated into bit 

strings. The fitness function is aligned with profit and is maximized. The overall design 

optimization problem will be presented in Section 3.3.5. 

3.3.2 Modeling Consumer Choice for Convergence Products: A Hierarchical Bayes 

Model 

In this section, the demand for a design alternative x is evaluated.  
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Explaining Consumer Heterogeneity: Product Usage Conditions. Usage situations 

can drive a consumer’s preference for the product attributes. Belk (1975) proposed a 

number of variables that could characterize usage situations. In this chapter, the 

categorizations in Belk’s study are adapted and denote the usage conditions of 

functionality f for consumer i using a binary vector which includes three elements: ξf
 i=(ξf 

i
,frequency, ξf 

i
,access, ξf 

i
, situation). The element      ξf 

i
frequency represents the usage frequency for 

functionality f. The element ξf 
i
,access represents a consumer’s need to get instant access to 

a certain functionality. The last element ξf 
i
,situation denotes if a consumer considers 

himself/herself to use the product under a series of usage situations, for instance, 

searching, shopping or social networking for the functionality of “web browsing”.  

Hierarchical Bayes Choice Model. A two level model to represent consumers’ 

choices is proposed. In the first level, a Multinomial Logit Model [McFadden, 1980] is 

used to formulate the probability that a consumer i chooses product j out of a set of J 

alternatives: 

 
 

   
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,
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exp
Pr  (3.3) 

in which: 

jijiU Xβ ',   (3.4) 

The no-choice utility UNC is set to 0 for the purpose of identification. The term Ui,k 

denotes the utility for every competing convergence product. Eqn. (3.3) is simplified 

when only one convergence product is in the market. In this case, the consumers will 

choose between buying and not buying the product. 
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The second level model explains how the vector βi is different for each consumer. A 

multivariate linear model is used to relate the usage conditions of consumer i to his/her 

preference: 

    εξξξτβββ  IiIi ,...,,...,,...,,..., 11  (3.5) 

The coefficients to be estimated in Eqn. (3.4) and Eqn. (3.5) are: βi, τ. In the context 

of Bayesian statistics, the coefficients are taken as random variables. The designer 

postulates the prior distributions, updates the prior using consumer choice data, and 

obtains the posterior distributions for the coefficients. The data can be obtained using 

conjoint surveys [Green and Srinivasan, 1978].  

Following the model structure proposed by Rossi et al. [Rossi et al., 2005], the 

hierarchical Bayes model is formulated as the following for Likelihood: 

   
 


I

i

T

t

tii yyL
1 1

,Pr|, βXy  (3.6.1) 

Priors: 

    εξξξτβββ  IiIi ,...,,...,,...,,..., 11  (3.6.2) 

 V0ε ,~ Ni  (3.6.3) 

    1,~| AVτVτ  vecNvec  (3.6.4) 

 00,~ VvV IW  (3.6.5) 

Posterior: 

       εεξετξββXyξXyετβ pppLp  |,,|)|,(,,|,,  (3.6.6) 

The diffuse prior distributions are specified to diminish the influence of bias in the 

prior distributions. For instance, the means of priors were set to 0 and a matrix 100I (I 

denotes identity matrix) is used as the variance matrix. In this way, the probability 

density profiles of the prior distributions are flat so that no significant favor is given to 

any particular value. In the formulation of priors, “N” denotes multivariate normal 
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distribution and “IW” denotes inverse wishart distribution. In Eqn. (3.6.4) the symbol “” 

refers to tensor product; the term “vec” denotes matrix vectorization. 

Since the posterior distributions are usually not in closed forms, the Markov Chain 

Monte Carlo (MCMC) simulation can be applied to draw samples from the posterior. The 

output of MCMC is a chain of samples for all the coefficients: βi
c, τc, with c=1,2,…,C  

indexing the samples in the chain. Considering the fact that a convergence product will 

be the only option in the new category, the choice that a consumer makes is between to 

purchase or not to purchase.  

Given the estimate of parameters βi
c, the expected demand for a design alternative 

with attributes X* can be formulated: 

   
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
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1 1 *exp1

*exp1
*

Xβ

Xβ
X  (3.7) 

The formulation of market size Nc will be elaborated in Section 3.4.1. 

3.3.3 Cost Model 

Under a modular product structure, the production cost can be approximated by the 

summation of the component costs and the assembly cost. Previous literature [Simpson 

and Park, 2005] points out that the manufacturing cost is not only a function of product 

designs but also relates to the quantity produced. This study accounted for the fact that (i) 

the selection of components is dictated by the design specifications and (ii) the unit cost 

of each component can be related to the order quantities. There are different ways to 

explain the discounting effect when the quantity goes up. One way of interpreting it is 

through the economy of scale argument in which increased quantity is considered to 

lower the cost per unit produced. Another explanation is the learning curve effect which 
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models the fact that the manufacturing cost drops down gradually when the production 

process iterates. Additionally, the suppliers do offer discounts when the order quantity is 

large. 

In general, it is assumed that some components exhibit the discounting effect whereas 

others are purchased at a constant unit cost. For the components whose cost relates to the 

quantities, the unit cost, denoted by K, is formulated following the specifications of 

learning curves: 

  bQKQK  1  (3.8) 

Taking the log of both sides, a log–linear cost function in b is obtained: 

  QbKQK logloglog 1   (3.9) 

Inserting relevant attribute of the component Xm, for instance, the diagonal size for the 

LCD display, the above formulation is extended to: 

  mm XbQbKXQK logloglog,log 211   (3.10) 

The above formulation can be estimated by collecting price quotes from component 

suppliers. A linear regression procedure will be used to obtain the coefficient b1 and b2. 

The above formulation can also be extended when a component is characterized by two 

or more attributes. 

The total cost is formulated as the summation of the costs for all the components plus 

the assembly cost: 
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in which i=1,…,I1 denotes the set of components whose unit costs are discountable; 

i=I1,…,I2 denotes the components whose unit costs are constant. K0(X) denotes the 

assembly cost.  
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3.3.4 Design Metrics 

In this section, two design metrics are proposed, Convergence Index and Impact of 

Usage Evolution, to support the evaluation of fitness for a design alternative x. 

A preliminary step to developing the metrics is to define the average product for each 

existing product category. It is assumed that all the competing products in each existing 

category can be identified a priori. The average product is a hypothetical product offering 

that averages the customer observed attributes of all the competing products in a given 

product category.  

Convergence Index (CI) and Market Size. CI serves the purpose of comparing the 

similarity between the convergence product and the existing products. The computation 

of CI is carried out in four steps: 

Step 1:  Compute Di which is the difference in design between the convergence 

product and the existing product i: 
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Step 2: Compute Di,j which reflects how the two products provide the same 

functionality j differently: 



















 


00

1
1

1

21

21

21

j,j,

j,j,

)F(Mm

m,j,i

)F(M

j,j,

j.i

FFif,

FFif,d
N

FFif,

D
jj

 (3.13) 

Eqn (3.13) primarily means the following: when functionality j is available in only 

one of the products being compared, the difference Di,j is set to 1 which is the largest 

possible value of the difference. When none of the products implement the functionality j, 

the difference decreases to the smallest value 0. Otherwise, Di,j sums over the difference 
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with respect to each module that enables functionality j as reflected by di,j,m (to be 

computed in Step 3).  

Step 3: Compute di,j,m : 
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The value of di,j,m is normalized between 0 and 1. The term 
i
smsm zz   measures the 

difference with respect to the sub-module sm of module m. When a sub-module sm is 

built into only one of the products, the difference i
smsm zz   is 1. Otherwise: 
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(3.15) 

That is, when zsm takes nominal values (i.e., as opposed to numerical values i
smsm zz   

is set to 0 if the values zsm and zsm
i are the same; otherwise it is set to 1. When zsm takes 

numerical values, 
i
smsm zz   can be taken as the distance between vectors zsm and zsmi.  

Step 4: Compute CI based the formulations from Eqn. (3.12) to Eqn. (3.15): 

ii DCI 1  (3.16) 

Consider a simple example of computing the convergence index for a tablet computer 

and a laptop. It is first demonstrated how the two products can be compared regarding the 

functionality of reading e-books. Assume that the functionality is enabled by (i) a storage 

module (M1) with one sub-module flash memory (SM11), and (ii) a display module (M2) 
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with one sub-module LCD panel (SM21). The size of the flash memory is denoted by a 

discrete variable z11 taking values such as 8GB, 16GB, etc. The diagonal dimension, in 

inches, of the LCD panel is denoted by a continuous variable z21 taking positive real 

values between 0 and 20. The tablet computer can be represented by {z11=16GB, z21=11} 

and the laptop can be represented by {z11=120GB, z21=15}. Comparing the storage 

module using Eqn. (3.14) and (3.15), one obtains: 
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Similarly, for the display module, evaluating Eqn. (3.14) and (3.15) yields:
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The above results will be put into Eqn. (3.13) to obtain: 
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) 

The above procedure can be carried out for other functionalities such as web 

browsing. Averaging the comparison for all the functionalities using Eqn. (3.12) yields 

DLaptop. Eventually, the convergence index is computed using Eqn. (3.16). 

The convergence index is then used to estimate the potential market size. The market 

size formulation only predicts the number of consumers who will potentially buy the 

convergence product. Whether the consumer will consider the convergence product as a 

complement or substitute to the existing product(s) will depend on his/her usage 

situations and unique preferences reflected by the hierarchical Bayes model in Eqn. (3.6). 

Consider a simple case of converging 2 existing product categories A and B, each with 

the market size of NA and NB. The overlap of the two markets (or number of consumers 
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who purchases both product A and product B) is denoted by NAB. As a result, the 

estimated market size of a convergence product can be formulated as: 

    AB
B
ABBBB

A
ABAAAC NONNCIONNCIN   (3.20) 

The above formulation can be generalized when three or more existing product 

categories are considered. 

Impact of Usage Evolution (IUE). The product-consumer interaction is 

characterized by two stages. In the first stage, the purchase stage, a consumer makes a 

choice given his/her current preferences. In the second stage, the usage stage, the 

consumer starts using the new product and gradually adjusts his/her usage conditions. 

While the first stage happens at the time of purchasing, the second stage takes place over 

the longer time periods after the consumer buys and uses a product. The two stages are 

assumed to be independent. A separate model will be developed in the following to 

represent the effects in the second stage. 

Specifically, the designer needs to consider how a product x may gradually change a 

consumer’s usages ξi which eventually determines his/her preferences βi for the 

forthcoming purchase occasions.  

The usage condition for consumer i is considered to have an inherent component ξi
0 

specific to this consumer and a variable component ξi
1 that results from using the 

products: 

 10 , iii ξξξ   (3.21) 

In practice, the data on consumer’s usage is usually observed as an ordinal measure. 

For instance, a consumer may claim his/her frequency of checking emails to be “every 1 
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hour”, “every 2 hours” or “every 3 hours”, rather than reporting continuous quantities. 

The term “latent satisfaction” is used to represent the underlying motive that consumer i 

chooses a specific level l for using functionality f. The latent satisfaction is modeled as 

the averaged effect of using all the products that a consumer currently owns, with the 

individual effects modeling linearly in terms of the products’ attributes that he/she 

currently owns: 
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in which P is the total number of products owned by consumer i. 

The consumers are assumed to adapt their future usage levels such that their 

satisfactions are maximized. The Multinomial Logit Model formulation is used to capture 

this situation. Specifically, the probability that consumer i is observed to choose usage 

level l for functionality f is formulated as: 
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in which: 
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The model can be estimated using a Bayesian multinomial logit regression procedure 

[Rossi et al., 2005]. The coefficients to be estimated are i
lf ,γ vectors which are of the 
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same length as product attribute vectors Xi
n. The log likelihood of the model is shown 

below: 
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Now it is discussed how the above model helps a designer to infer the changes in 

consumers’ preferences. For every design alternative with attribute X, the designer will 

be able to predict the consumers’ future usage frequencies (or levels) conditional on their 

purchase of the convergence product: 
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in which : 
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The designer takes *i
fξ  as the prediction of the consumers’ evolved usage conditions 

until the next purchase occasion. The future preferences of consumers are obtained using 

the second level of the hierarchical Bayes choice model shown in Eqn. (3.5). That is: 
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** ii ξτβ   (3.26) 

In addition to considering the profit, the designer needs to guarantee that the newly 

designed product will not lead the consumers to change their usages in a way such that 

their probability of buying the product in the future decreases. In other words, the 

expected market penetration in the future should not decrease. The IUE metric is 

therefore formulated as the difference between the current market penetration and the 

expected future market penetration. Specifically,  

   00010 1 ProbProbProbProbProbIUE   

(3.27.
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in which c=1,…,C denotes a chain of samples obtained using the Bayesian estimation for 

the hierarchical Bayes choice model; Prob0 denotes the current market share; Prob1 

denotes the expected future market share. The metric IUE will be constrained to be non-

negative in the selection of design alternatives.  

3.3.5. The Design Optimization Problem 

Assuming that the company is only marketing the convergence product, the profit 

function is formulated as: 
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      XXx QQKpp P ,;  
(3.28) 

in which p denotes the price, K(Q, X) denotes cost as defined in Eqn. (3.11) and Q(X) 

denotes demand as defined in Eqn. (3.7). 

The overall optimization problem is given as in the following: 
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in which gi(x) denotes the inequality constraint functions  such as engineering constraints 

as well as long term market penetration consideration IUE≥0; hj(x) denotes equality 

constraint functions such as Functional Enabling Constraint represented by Eqn. (3.1). 

The above design optimization problem is solved using a Genetic Algorithm [e.g., 

Williams et al., 2008; Khajavirad et al., 2009]. In this study, the Matlab’s Global 

Optimization Toolbox [MathWorks, 2011] is used to implement the genetic algorithm. 

3.4 CASE STUDY 

A consumer electronics company is interested in developing a convergence product 

based on two of its existing categories: laptop and smartphone. Among the functionalities 

that the existing products have, the following are being considered: (i) 

reading/sending/receiving emails; (ii) web browsing; (iii) playing multimedia contents, 

and (iv) reading e-books. It is assumed that the existing products are mature categories 

whose product and market structures are well known. The annual market sizes of the 

existing categories Laptop (category A) and Smartphone (category B) are assumed to be: 
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NA=17.9M (units) and NB=28M (units) [Mintel Oxygen, 2008; Mintel Oxygen, 2010]. 

Using the data collected in the survey (to be elaborated in Section 4.3), the percentages of 

overlap in the two markets (percentages of consumers in each market who purchase both 

products) are: OAB,A =57.7% and OAB,B=95.3%. The designer’s objective is to find the 

optimal design which maximizes the company’s profit by considering a sustainable future 

market penetration. 

The engineering design model for this example is formulated in Section 3.4.1. Section 

3.4.2 presents the computation of customer observed product attributes as functions of 

engineering design variables. Section 3.4.3 describes the procedure for collecting 

customer preference data. The production cost is modeled in Section 3.4.4. Finally, three 

different design scenarios for comparison are formulated in Section 3.4.5. 

3.4.1. Engineering Design Model 

The first step of designing the convergence product is to construct a modular 

hierarchy for it by investigating how existing categories implement the functionalities. It 

is assumed that an average product can be defined for each category. Figure 3.4 presents 

the modular hierarchy of the product architectures of the two existing product categories. 

Table 3.1 summarizes the design variables and number of bits for each variable when 

translated into a bit string.  

 Some design variables take binary values of 1 or 0, e.g., x1 indicates if function 

“email” is available or not in a design alternative. Some design variables take nominal 

values, e.g., x25 represents the discrete options of memory size such as 8GB, 16GB, 32GB 

and 64GB. The rest of the variables take continuous values, e.g., x31 represents the  
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Table 3.1 Engineering Design Variables 

Var. Notation 
Lower 

 Bound. 
(Option) 

Upper 
Bound. 

(Option) 
Laptop  

Smart 
phone  

x1 F1 0 1 1 1 
x2 F2 0 1 1 1 
x3 F3 0 1 1 1 
x4 F4 0 1 1 0 
x5 M1 0 1 1 0 
x6 M2 0 1 0 1 
x7 M3 0 1 1 1 
x8 M4 0 1 1 1 
x9 M5 0 1 1 1 
x10 M6 0 1 1 1 
x11 M7 0 1 1 1 
x12 M8 0 1 1 1 
x13 SM11 0 1 1 0 
x14 SM21 0 1 0 1 
x15 SM22 0 1 0 1 
x16 SM31 0 1 1 1 
x17 SM32 0 1 1 0 
x18 SM41 0 1 1 1 
x19 SM51 0 1 1 1 
x20 SM52 0 1 0 1 
x21 SM61 0 1 1 1 
x22 SM71 0 1 1 1 
x23 SM72 0 1 1 1 
x24 z31 

(CPU Type) 
1 

 (CPU) 
2  

(GPU) 
2 1 

x25 z41,1 

(Memory size) 

0  
(8GB) 

4  
(64GB) 

250 8 

x26 z41,2 

(Memory type) 
0 

(Flash) 
1  

(Disk) 
1 0 

x27 z61,1  
(Battery material) 

0 
 (Ni-ion) 

1  
(Ni-poly) 

0 1 

x28 z61,2  
(Battery diagonal) 

1'' 11'' 14'' 3.5'' 

x29 z61,3 

(Battery depth) 
0.1'' 1'' 0.5'' 0.1'' 

x30 z71,1 

(LCD Type) 
SD HD HD SD 

x31 z71,2 

(LCD Diagonal) 
3'' 12'' 14'' 3.1'' 

x32 z71,3 

(LCD Ratio) 
4:3 16:9 16:9 4:3 

 

diagonal length of the LCD panel. The last two columns of Table 3.1 show the design 

alternatives corresponding to the average products in the two existing categories.  

Meanwhile, the functional enabling matrix EM is shown in Figure 3.5. As shown in 

Figure 3.5, each entry of the matrix EMij, indicates if functionality i requires module j. 
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For instance, for functionality F4 of “Reading E-books” and module M7 of “Display”, the 

corresponding entry EMij will be set to 1 since reading e-books requires a display module.  

 
Figure 3.5  Functional Enabling Matrix 

 

3.4.2. Mapping of Engineering Design to Product Attributes Observed by 

Consumers  

The engineering design variables need to be translated into attributes that consumers 

observe when making a purchase decision. Such attributes may include size, weight and 

other features of a product. In this study, 13 product attributes are selected to represent a 

convergence product. Table 3.2 enlists all of the attributes and elaborates on how they are 

obtained by a mapping from the engineering design space. Some of the models and 

parameters are obtained from the literature [Haskell, 2004]. Other parameters can be 

obtained from the electronic component distributors’ websites [e.g., Mouser Electronics, 

2011] or estimated.  

F1 : Email

M1 : 
Input

F3 : Media

M6 : 
Power

M5 : 
Wireless

F2: Web

F4 : E-Book

M2 : 
Touch 
Screen

M3 : 
Processor

M4 : 
Storage

M7 : 
Display

M8 : 
Speaker

0 0 1 1 1 1 1 0

0 0 1 0 1 1 1 0

0 0 1 1 0 1 1 1

0 0 1 1 0 1 1 0
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Table 3.2 Customer Level Attributes and Formulations 

1 Email: X1=x1   , 
2 Web Browsing: X2=x2  , 
3 Media Player: X3=x3  , 
4 E-book Reader: X4=x4  , 
5 Product size (Product enclosure size measured by the product’s diagonal in inches): X5=x5 
sizekeyboard +(1-x5)  sizetouch   , 
sizekeyboard=1.4 x31  ,      sizetouch=max{x31,x28} 

6 Product depth (Summation of LCD display thickness, enclosure thickness and the battery 
thickness. The first two dimensions are assumed to be constant): X6= tLCD +tpackaging +tBattery   , 
tLCD=1 ( inch) ,     tpackaging=0.5 ( inch),   tBattery=x29 (inch)  , 
7 Product weight (Summation of the weights of all its components in lbs): X7= wcircuit+ whard 

drive+ wkeyboard+ wpackaging+ wbattery  , 
wcircuit=0.5 (lbs ),   whard drive=1 ( lbs ),   wkeyboard=0.5 ( lbs)  , 
wpackaging=0.5 (lbs),   ρbattery,ni-ion=0.0863 (lbs/inch3)  , 
ρbattery,ni-polymer=0.038 (lbs/inch3),  ρLCD=0.3 (lbs/inch)  , 
wbattery = I(x27=1) ρbattery,ni-ion x28x29+ I(x27=2) ρbattery,ni-polymer x28x29  , 
8 Battery life  
(The battery life is obtained by dividing the battery capacity by the total power consumption. 
The battery capacity depends on the battery material and its power density. The power 
consumption sums over the power consumption of every module, e.g., CPU, Display, Memory 
and etc.):  

X8=Capacity / Power  , 
Capacity=I(x27=1) 0.2543×0.48x28

2ρpower,ni-ion+ I(x27=2) 0.2543×0.48x28
2ρpower,ni-polymer  , 

Power= pcpu+ pLCD+ pMemory+ pWireless   , 
ρpower,ni-ion=120  (w hr/L),   ρpower,ni-polymer=240  (w hr/L )  , 
ρpower,LCD=0.29 (w/inch3),   pcpu=2.5 I(x24=1)+30 I(x24=2)  , 
pLCD=0.48 x31

2 ρpower,LCD ,    pMemory= I(x26=1)+2 I(x26=1)  , 
pWireless =2 x19+1.5 x20  , 
9 Input Module: X9=x5+2x6  , 

10 Wireless Type: X10= x19+2x20  , 

11 Display Type: X11=x30  , 

12 Memory Size: X12=x25  , 

13 Price: X13=$500  . 
 

3.4.3. Collecting Customer Preferences 

The customer preference information is collected using a choice-based conjoint 

survey. The survey consists of three sections: (i) usage condition questions; (ii) 12 choice 

tasks each having three alternatives, and (iii) the existing products the respondent already 

own and their prices.  

Survey Design. The challenge of designing the conjoint survey for a convergence 

product is the large number of attributes. For instance, given a total number of 13 

attributes with each attributes having 3 levels, there are 313 (or 1,594,323) possible 
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product profiles that need to be evaluated by respondents. In this study, the randomized 

design scheme suggested by Sawtooth Software CBC Module [Sawtooth, 2001] is 

adopted. Discussions regarding the efficiency of the design scheme is given by Sawtooth 

[Sawtooth, 2001]. The design scheme is also reviewed by Chrzan and Orme [Chrzan and 

Orme, 2000].  

Survey Distribution and Data Collection. Qualtrics software [Qualtrics, 2010] was 

utilized for online survey interface development, survey distribution and data collection. 

The experimental design was exported into a spreadsheet which the Qualtrics software 

integrates into the web-based surveys. The online distribution was operated through the 

server in Netcentric Behavioral Laboratory in the R. H. Smith School of Business, 

University of Maryland, College Park. The survey was sent to 475 candidate respondents 

out of which a total of 125 responses were collected. After eliminating unusable 

responses, e.g., those with skipped questions, 92 out of the 125 responses were used to 

estimate the model parameters. 

3.4.4. Cost Model Specifications 

The product cost model parameters are obtained from online price quotations of 

electronic component distributors [e.g., Mouser, 2011]. The details of the cost model are 

presented in Table 3.3. For simplicity, the assembly cost is set to 0. 

Table 3.3 Cost Modeling 

Item Cost 

LCD Display 
β1=-0.1032,   β2=0.7965, C0,LCD=50 ($),  
CLCD= C0,LCD Q β1 x31 

β2 

Battery 
Cbattery,ni-ion=1 $/(w hr),  Cbattery,ni-polymer=2 $/(w hr) 
Cbattery=x21 (I(x27=1) Cbattery,ni-ion+ I(x27=2)Cbattery,ni-ion) 

Memory Cost 
Cflash,0=4 ($/GB), Chard drive,0=0.07 ($/GB) 
Cmemory= x25 (I(x26=1) Cbattery,ni-ion+ I(x26=2)Cbattery,ni-ion) 

Integrated 
Circuits 

Ccpu=18.5 ($), Cgpu=6.5 ($), Cwifi=19 ($), C3G=19 ($) 
Cother=37 ($) 

Miscellaneous Ckeyboard=2 ($), Cspeaker=2 ($), Cenclosure=12 ($) 
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3.4.5. Scenario Development 

Three scenarios for the case study were considered, as shown in Table 3.4. In each 

scenario a different design optimization problem is solved.  

Table 3.4 Case Study Scenarios 

 Scenario 1 Scenario 2 Scenario 3 
Optimal Profit    
Heterogeneity    

Impact of Usage Evolution    

 

Scenario 1: In this scenario, it is assumed that consumer preferences are 

homogeneous. That is, a single vector β is used to represent the preference of every 

consumer. This is variation to the model presented in Eqns. (3.3) and (3.4) as a 

benchmark. A design selection is therefore made to satisfy an average consumer. 

Meanwhile, the model has only one hierarchy, that is, the impact of usage conditions on 

the consumers’ preferences is ignored. This scenario serves as a benchmark to compare 

the difference in design solutions with and without consumer heterogeneity 

considerations. 

Scenario 2: The second scenario considers heterogeneous consumer preferences. That 

is, the full model presented in Section 3.3.2 is used to represent the consumers’ choice 

behaviors. The designer optimizes profit but ignores the fact that consumers preferences 

can change over time as they use the convergence product. In this way, the design 

decision is made in favor of current profit without considering the product’s future 

market penetrations.  

Scenario 3: The last scenario extends the decision in Scenario 2 by accounting for the 

impact of usage evolutions or IUE. The design optimization problem is to find the 

optimal design for the convergence product for maximum profit while ensuring that the 



72 
 

future market penetration of the product will not decrease due to the changes in the 

consumers’ preferences. 

3.5 RESULTS 

3.5.1. Estimations of Consumer Choice Models for Three Scenarios 

The hierarchical Bayes model was estimated using a Markov Chain Monte Carlo 

sampling procedure. The procedure introduced by Rossi et al. [Rossi et al., 2005] was 

adapted to obtain the samples for the posterior distributions. The diffuse prior 

distributions were specified to diminish the influence of bias in the prior distributions. 

For instance, the means of priors were set equal to 0 and used 100I as the variance matrix. 

In the case study, the sampling algorithm was run for 20,000 steps and the last 3,000 

samples were used to represent the posterior distributions. Due to the stochastic nature of 

the sampling procedure, the algorithm had to be run multiple times to check the 

consistency of the sample mean of the posterior distributions. More details regarding the 

method to assess such results, e.g., convergence of the chain and robustness of the 

posterior, are discussed by Gill [Gill, 2008]. 

For Scenario 1, interestingly, a homogenous preference model is assumed (using one 

vector to represent the preferences of all the consumers) but a bi-model posterior 

distribution is observed. For instance, the part-worth corresponding to the feature “Email” 

appears to be a mixture of two normal distributions with different mean values. Such 

contradiction reveals that the preferences of the consumers are indeed heterogeneous. 

In Scenarios 2 and 3, the consumer preferences are estimated using the full model in 

Eqn. (3.6). That is, each consumer has a unique vector representing his/her preferences 

and the preference is related to the consumer’s usage of the functionalities. 
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The significance of the estimation results can be revealed by computing Deviance 

Information Criterion (DIC) suggested by Spiegelhalter et al. [Spiegelhalter et al., 2002]. 

DIC is a popular measurement in the Bayesian statistics as an alternative for Hypothesis 

testing. Generally, a model with better goodness of fit can be associated with a smaller 

DIC value. The estimation result yields DIC=2407.7. Meanwhile, the model 

corresponding to the null hypothesis (i.e., setting β=0) yields DIC0=3060.9. The 

noticeable difference between DIC and DIC0 supports the significance of the estimation. 

It also demonstrates that the sample size of the data collected in the survey is sufficient to 

lead to a meaningful result. 

3.5.2. Estimation of Consumer Usage Evolutions 

In the third scenario, the optimal design decision will be made subject to an additional 

constraint that future market penetration of the convergence product should be non-

decreasing. To enforce this constraint, the model discussed in Section 3.3.4 will be 

estimated first. The data include how the consumers are using the relevant functionalities 

now and what products they have purchased. In the online survey, a variety of questions 

were asked regarding usage conditions and at the end asked about their ownership of 

products such as laptops and smartphones. The prices of the products were collected as 

well.  

It is assumed that the variable component of a consumer’s usage is the frequency of 

using the functionalities. For instance, a consumer can adjust how often he/she reads e-

books. This assumption is for simplicity so as to make the size of the regression problem 

manageable. Additionally, the attributes of the products that a consumer already owns are 

inferred using their responses for the prices of the products. The information about the 
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attributes and prices of typical products in the marketplace are collected by visiting the 

websites of major manufacturers and retailers. The attributes of the typical products for 

the laptop and smartphone categories are presented in Table 3.5 (for the prices of 

smartphones showed the price for unlocked versions without service contracts). For a 

product that is not listed, the attributes were estimated using a linear interpolation based 

on price.  

Table 3.5 Typical Products in Laptop and Smartphone Markets 

 Laptops Smartphones 
 1 2 3 1 2 3 

Price $450 $800 $1.2k $359 $400 $599 
Email 1 1 1 1 1 1 
Web 1 1 1 1 1 1 

Media 1 1 1 1 1 1 
Ebook 1 1 1 0 0 0 
Size 10.1'' 15.6'' 13.3'' 4.8'' 3.5'' 4.8'' 

Depth 1.3'' 1.3'' 0.95'' 0.55'' 0.6'' 0.56'' 
Weight 3'' 6.51'' 4.5'' 0.22'' 0.3'' 0.25'' 
Battery 9.5 hrs 9 hrs 10 hrs 4.5 hrs 6 hrs 6 hrs 

Input Keyboard Keyboard Keyboard Touch 
Keyboard 

Touch 
Touch 

Wireless Wi-Fi Wi-Fi Wi-Fi 
Wi-Fi 

3G 
Wi-Fi 

3G 
Wi-Fi 

3G 
Display HD HD HD SD SD SD 
Memory 250GB 500GB 250GB 0.25GB 16GB 1GB 

 

Using the data collected in the survey one is able to estimate the coefficient in the 

model of usage evolution or the γ matrix in Eqn. (3.23). For any given design alternative 

x with attributes X, a consumer’s future usage conditions (or *i
fξ ) are obtained using the 

procedures proposed in Eqn. (3.25). The updated usage conditions eventually lead to a 

mismatch between the present and forthcoming purchase decisions of the same consumer 

and IUE can be computed using Eqn. (3.27). 
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3.5.3. Solutions and Discussion  

The attributes of the optimal design solutions for the three scenarios are compared in 

Figure 6. The results are discussed in the following sub-sections. 

Scenario 1: Effect of CI. In Scenario 1, the optimal design is a hand-held electronic 

device with relatively small size and light weight, and is capable of sending/receiving 

emails, browsing the web and reading e-books. It is worth noting that the convergence 

index with respect to laptops is above 0.6 whereas for smartphones it is about 0.2, which 

is counterintuitive since the hand-held device seems to be closer to a smartphone in terms 

of size and weight. This effect is explained by looking at how the convergence indices are 

computed. The CI metric considers not only a number of customer observed attributes but 

also the engineering designs for each functionality. The selection of the modules for each 

functionality turns out to be much closer to that in a laptop and therefore results in a 

larger value of convergence index to laptops. In this scenario, the consumer choice model 

is a single level model which assumes the usages of functionalities have not influence on 

the consumers’ preferences. As a result, the metric IUE is not computed.  

Scenario 2: Effect of Consumer Heterogeneity. In the second scenario, the 

consumers are considered as heterogeneous and the heterogeneity is due to their different 

ways of using the functionalities. The optimal design differs significantly from that in 

Scenario 1. A tablet size device was obtained which can only be used for media playing 

and e-book reading. The device therefore lacks wireless communication. The expected 

profit has improved from $8,092.8M in Scenario 1 to $8,624.9M, though the unit cost 

also increases from $114.4 to $135. The device operates with fewer functionalities (2 

functionalities in Scenario 2 versus 3 in Scenario 1) but incurs higher cost, which reflects 
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the designers intention to concentrate on a small number of functionalities but deliver 

higher satisfaction to the consumers for each functionality (e.g., providing consumers a 

larger screen to watch videos and read e-books). The sustainability of market penetration 

is ignored in this scenario. That is, the designer only considers short term profitability 

while ignores how consumers will change their preferences. As a result, a negative IUE 

of -0.9% was obtained. In other words, the future market penetration of the optimal 

design will decrease. 

Scenario 3: Effect of IUE. In Scenario 3 the designer extends the design 

optimization problem in Scenario 2 for a sustainable market penetration. The 

functionalities of the optimal design in this scenario include email, web and e-book. 

Another difference in comparing to the design in Scenario 2 is the inclusion of keyboard 

as another input module. The rearrangement of the functionalities results in an increase of 

unit production cost from $135 to $149.3 and the short term profit drops from $8,624.9M 

to $8,013.5M. The decrease in short term profit is justified by a positive IUE value of 

0.32% which indicates an increase of the market penetration in the long run. From an 

optimization perspective, considering a sustainable market penetration imposes an 

additional constraint to the design decision problem and shrinks the feasible region. As a 

result, the maximum profit cannot be as high as that in a less constrained problem. In 

terms of convergence indices, the optimal design resides in a place between the optimal 

designs in the previous scenarios. The distinction is due to consumer heterogeneity as 

well as sustainability of future market penetration.  

It is worth noting that the attribute values of “battery life” of the three designs are 

very small. Although these values do not violate engineering feasibility constraints, they 
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contradict the product attributes observed in the real world market. In the conjoint survey, 

the attribute levels of “battery life” are presented at “2 hours”, “6 hours” and “10 hours”. 

The partworths for “battery life” at other values are obtained using a linear interpolation 

method. In other words, the customer survey does not accurately capture the consumers’ 

responses for battery life values smaller than 2 hours. One way of correcting this is to add 

more attribute levels into the conjoint survey in order to obtain a more accurate 

measurement of the consumers’ responses. Another solution is to impose a constraint on 

the attribute “battery life”, for instance, an inequality constraint which screens out the 

design alternatives with battery life values smaller than, say, 2 hours. The above three 

scenarios each represents a different design decision problem. Therefore, it may not be 

legitimate to make a choice among the three optimal design solutions. The designer needs 

to identify the appropriate scenario based on the market trend then derive the optimal 

solution as the design decision. For instance, if the technology forecasts indicate that the 

market might change very fast (that is, new developments are imminent which might lead 

to paradigm shifts) then the designer might as well take a short term approach to 

maximize profit and not consider IUE as in Scenario 3. There is no right or wrong 

scenario between 2 and 3, it is just the question of which scenario meshes well with 

management objectives for the convergence product. 
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Figure 3.6 Comparison of Optimal Designs 

3.6 SUMMARY 

In this research thrust, a design decision framework is proposed for designing 

convergence products. A modular design framework is developed to integrate design 

solutions from multiple existing product categories and handle the couplings of 

functionalities for the convergence product, a problem that has not been addressed in 

extant literature but is an important one given the proliferation of convergence products. 

There are two important distinctions vis-à-vis prior work in that the proposed approach (1) 

accounts for the heterogeneous consumer choice behaviors by using a hierarchical Bayes 

model with its second level relating the consumers’ preferences to their diverse ways of 

using the functionalities, and (2) considers two design metrics, Convergence Index (CI) 
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and Impact of Usage Evolution (IUE) to assist the designer’s profit maximization 

decision. CI predicts the potential market size for the convergence product by measuring 

its similarity to existing product categories; IUE considers the changes in consumer usage 

conditions and their preferences in the forthcoming purchase occasions and predicts how 

such adaptation influences future market penetration. An optimal design is obtained to 

maximize the company’s profit while considering a sustainable future market penetration. 

In this chapter, the feasibility of combining modules from different product categories 

is implicitly assumed. For instance, the design method does not account for the fact that 

combining the “processor” of a smartphone and the “memory” of a laptop may not be 

necessarily feasible. In general, the capability of two (or more) systems to work together 

particularly under uncertainty can be challenging to analyze. The next chapter will 

mathematically model such capabilities of coupled systems. Additionally, both upstream 

market system (i.e., suppliers) and downstream market system (i.e., service providers) 

will be considered in the design selection decision. 
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CHAPTER 4: DESIGN FOR UPSTREAM AND DOWNSTREAM MARKET 

SYSTEMS WITH INTEROPERABILITY CONSIDERATIONS 

The economic globalization and emerging high tech markets are pushing product 

design decision makers to account for both upstream and downstream market systems. 

Sourcing different components, modules, assemblies (or subsystems) of a product from a 

variety of domestic and overseas suppliers is becoming increasingly common. Consumer 

electronics companies such as Apple, Dell and others outsource the majority (if not all) of 

the components they need from their suppliers. Such practice has also been prevalent in 

other industries such as automobiles for decades. In this context, the specification of each 

module and the coupling or interoperability among different modules has become 

critically important particularly when the manufacturer does not have full control over its 

supply chain. Moreover, the product designer is often challenged to account for the 

interoperability by determining how well the sourced modules can work with each other 

under uncertainty. One example of such uncertainty can be the variations of usage 

conditions: using a cordless power tool to drill a piece of wood versus a piece of metal 

incurs different levels of loading on the motor, which in turn propagates through the 

couplings among the subsystems such as the transmission (gears) and battery.  

Additionally, emerging high tech product markets are becoming increasingly 

connected to the service sector. Many consumer products, for instance, smartphones and 

tablet computers, rely on a variety of service providers to deliver their functions. 

Selecting service providers to partner in order to achieve the product’s functionalities to 

the fullest extent possible has become a critical task for product designers.  
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With a focus on interoperability, this chapter aims at a design selection framework 

which accounts for both upstream market system (i.e., suppliers) and downstream market 

system (i.e., service providers and customers) to devise and explore: (i) a modeling 

approach that can be used for analysis of interoperability among subsystems of a product, 

(ii) a modeling approach that accounts for the couplings between the product design 

decisions and the offerings of service providers, and (iii) an integration of design 

decisions with respect to both upstream and downstream market systems. 

The chapter is organized as following. Section 4.1 reviews the related research and 

positions the proposed method against the previous works. Section 4.2 defines the 

terminologies and describes the problem definition. Section 4.3 discusses the proposed 

method. Section 4.4 presents two case studies, namely, design selection of a cordless 

angle grinder where only upstream interoperability is considered and the design selection 

for a tablet computer where both upstream and downstream interoperability are 

considered. Conclusions are provided in Section 4.5.  

4.1 INTRODUCTION  

This chapter extends the existing research along three directions as discussed in the 

following.  

I. Proposing a mathematical model of interoperability.  

A major challenge in design selection with a supply chain based market is to manage 

the couplings among the modules so that each module can operate well in concert with 

other modules. Examples of methods that handle couplings are reported in a different 

context, as in Multidisciplinary Design Optimization (MDO), e.g., Analytic Target 

Cascading method [Kim, 2001] and Collaborative Optimization method [Braun, 1996]. 
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Particularly, the concept of “systems of systems” has been proposed [Sobieszczanski-

Sobieski, 2008; Arroyo et al., 2009] to address the analysis of a set of closely coupled 

systems. MDO approaches usually assume the designer has control over all subsystems. 

Yet these methods can become difficult to implement in a market system where 

manufacturers source modules from different suppliers instead of having full control 

(designing and building all of the modules in-house).   

This chapter proposes a new approach for handling coupling or interoperability 

among subsystems of a product sourced from supplies. Interoperability refers to the 

capabilities of different systems (or subsystem) to work together [IEEE, 2000]. A 

commonly agreed definition of interoperability is not available. Existing works have 

proposed standards and qualitative recommendations to improve interoperability, for 

instance, for software engineering applications [e.g., Morris et al., 2004] and for a 

network of systems to exchange information [e.g., Tolk and Muguira, 2003]. Here, 

interoperability is referred to as the capabilities of subsystems (or modules of a product) 

to maintain their engineering feasibility when coupled with other subsystems under 

uncertainty. A quantitative metric for evaluating interoperability, particularly as 

applicable to product design, has not yet been reported.  

On the other hand, multidisciplinary robust optimization methods have been 

investigated to consider both interval [e.g., Li and Azarm, 2008] and probabilistic [e.g., 

Liu et al., 2006] uncertainties, particularly with interdisciplinary uncertainty propagations 

(i.e., transmission of uncertainties among subsystems through the coupling variables). 

Robust optimization methods [e.g., Li and Azarm, 2008] obtain a design solution in such 

a way that the coupling variables stay within an acceptable range. Such conditions can be 
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difficult to achieve if there are significant variations in the parameters such that the 

coupling variables are no longer consistent across the systems. Meanwhile, in a design 

selection problem where the subsystems are procured from different suppliers, the 

product designer can hardly confine the coupling variables because the subsystems are 

provided by different suppliers. In this study, each subsystem is considered to have a 

range of operations under which the system operation remains feasible (or acceptable) 

given the uncertainties in the inputs.  

The objective for this part of the research thus becomes formulating a general 

mathematical model for selecting a combination of subsystems (or modules) such that the 

ranges of operation among the subsystems (couplings) overlap as much as possible (or 

are acceptable). 

II. Accounting for the couplings between products and services to address 

downstream interoperability with service providers.  

There is an increasing number of products whose functionalities are closely coupled 

with functionalities offered by service providers, for instance, smartphone (coupled with 

wireless services) and tablet computers (coupled with digital content services). For such 

products, the main issue in the design selection is the interoperability between the design 

of the product and the associated service(s). This area has received little attention in the 

existing literature. On the other hand, Product-Service Systems (PSS) have been 

investigated as the manufacturers’ initiatives to introduce a variety of services as add-ons 

to the product offering in order to improve profitability [Baines et al., 2007]. Examples 

include automobiles with financing services [Williams, 2006], elevators with 

maintenance services, copiers with leasing and rental services, etc. However, the reported 
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PSS methods overlook products whose functions are closely coupled with the services, 

particularly from the designer’s point of view. For instance, the quality of digital video 

streaming services depends on the capabilities of the mobile devices or computers 

through which the service is delivered. In contrast to the previous works, this study 

explicitly models such couplings by accounting for the interoperability between the 

product functions and service activities.  In addition, service providers are considered as a 

different player in the downstream market system, as opposed to the existing PSS 

frameworks in which the manufacturer itself is considered as the service provider [Baines 

et al., 2007].  For example, wireless services are usually offered by telecommunication 

service providers rather than the mobile phone manufactures. The practice of marketing 

combinations of products and services has also been studied in the business domains. For 

instance, Shanker et al. [Shanker et al., 2009] review a number of strategies of combining 

products and services. Aribarg and Foutz [Aribarg and Foutz, 2009] study the consumer 

choice decision when purchasing a product (e.g., a cell phone) and the corresponding 

service (e.g., wireless service plan). But the reported works do not consider the 

implications of combining products and services from the perspective of product design.  

The objective for this part of the research is thus to exploring a method that accounts 

for interoperability among the product modules and the services while making product 

design selection. 

III. Integrating the considerations of upstream market players (suppliers) and 

downstream market players (service providers and customers) for design selection with 

interoperability  
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Existing works in engineering design have accounted for upstream and downstream 

market systems. For instance, the upstream market system has been considered by 

combining design decisions and supply chain configuration decisions [Chiu and Okudan, 

2011]. Downstream market system is considered by integrating consumer choice 

behavior and the action-reactions of competitors like manufacturers and retailers [e.g., 

Hoyle et al., 2010; Shiau and Michalek, 2009; Williams et al., 2011] for design decisions. 

Meanwhile, despite the efforts to adapt engineering design methods to design product-

service systems [Kim et al., 2010], no previous work has been found that considers the 

integration of service providers as downstream market players combined with upstream 

supply chain players with interoperability considerations.  

The objective for this part of the research is to devise an integrated decision 

framework which considers: (i) interoperability of modules sourced from upstream 

suppliers, (ii) downstream customer demand, and (iii) interoperability of the product with 

downstream service providers’ offerings.   

4.2 TERMINOLOGY, PROBLEM DEFINITION AND FRAMEWORK  

4.2.1 Terminology 

The term “system” refers to a mathematical representation of an engineered system. 

Every system i can be modeled as a “black-box” with inputs xi, outputs oi, and parameters 

pi defining the system as shown in Figure 4.1(a). The input xi is usually interpreted as 

design variables whose values can be specified by the designer. For instance, xi can 

represent the physical dimensions of a component. Parameters (i.e., pi) are values which 

the designer cannot control, e.g., density of steel, conductivity of cooper, material’s yield 

strength, usage conditions and so on. For the majority of engineered system, the values of 
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the parameters are uncertain. In this way, instead of a fixed value, a parameter can be 

considered to have either finite or infinite number of possible values. Denote the set of all 

possible values of pi using Pi.  Vector p = { p1, p2 , ……} is used to denote the collection 

of pi for all i. In this study, each system is assumed to have its own design variables (i.e., 

xi) and parameters (i.e., pi). The shared variables and parameters among different systems 

(or subsystems) are not considered. 

Another type of input (or output) is a coupling variable, denoted by yij . A coupling 

variable is usually the input of one system (or subsystem) and the output of another. The 

values of the output coupling variables for a system can be determined once the design 

variables, parameters and input coupling variables of the coupled systems are given. 

Figure 4.1(b) presents an example of two coupled systems, namely, System 1 and System 

2. The coupling variable y12 is an output from System 1 and an input to System 2. 

Meanwhile, the coupling variable y21 is an output from System 2 and input to System 1.  

The mapping from system input to output can be denoted by (oi, yij)=fi (xi , pi , yji). The 

system output oi can include a number of constraint functions, i.e., gi (xi , pi , yji) ≤ 0.  

The term “module” refers to a physical or software unit of a product which performs 

one or more functions. In general, a product can be considered as an integrated system 

with several (or many modules) with each module being considered as one of the 

subsystems of the product. In this study, the term “subsystem” and “module” are used 

interchangeably. 

The term “interoperability” is a range reflecting the extent to which two (or more) 

coupled systems (or subsystems) can operate together seamlessly. The formulation of 

interoperability will be presented in Section 4.3. In this study, “upstream interoperability” 
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refers to the interoperability among the product modules; “downstream interoperability” 

refers to the interoperability between the product and the service(s). 

 

 
(a) (b) 

Figure 4.1 Definitions: (a) system, (b) two coupled systems 
 

4.2.2 Problem Definition, Assumptions and Framework 

The problem is defined as following. As shown in Figure 4.2, a manufacturing 

company is positioned in the market system with both upstream and downstream market 

players. Along the upstream, the manufacturer sources product modules designed by a 

variety of suppliers. Each module has a number of candidate suppliers to choose from. It 

is assumed that, for each subsystem (or module), the design specifications from the 

candidate suppliers are different. Along the downstream, the product is purchased by 

customers having heterogeneous choice behaviors. The customers purchase the product 

and subscribe to the associated services in order to perform the functionalities of the 

product. 

The following are the key assumptions. (i) The product is modular with all the 

modules sourced from suppliers. Thus the product design problem is essentially a module 

selection problem. There is a “library” of modules with each module having a variety of 
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options (or suppliers) to choose from. (ii) the product has at least one function which 

requires the consumers to subscribe to services, for instance, a smartphone requires the 

consumers to subscribe to the wireless data service from the service providers. (iii) each 

service can be decomposed into a number of activities. For instance, an activity for the 

service of “digital video streaming” can be “transmitting digital content”. The service 

activities are supported by the corresponding modules of the product. For instance, the 

activity “transmitting digital content” may require a “wireless connectivity” module of 

the product. Additionally, the product designer should decide which service provider to 

integrate with. (iv) For both upstream and downstream market systems, the competitors 

are considered to be static. That is, the action-reactions of market players are not 

considered. 

The objective of the designer is to achieve the optimal demand (D) and/or market 

share, when accounting for the interoperability for both upstream and downstream 

markets, as shown in Figure 4.2. 

  

Figure 4.2 Problem Definition 
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The design selection framework is presented in Figure 4.3. A vector xp denotes the 

design specification of all the product modules. A finite number of feasible values for xp 

are available from a lookup table which contains the design specifications from all the 

suppliers’ offerings. The function g(xp)≤0 represents engineering constraints such as  the 

upper limit on the maximum torque input to a gear set. Likewise, a vector xs denotes the 

service attributes available from a lookup table containing the attributes of all the service 

providers’ offerings. The designer selects the alternative with the maximum demand 

subject to the condition that interoperability is within an acceptable threshold specified by 

the designer. The threshold for upstream and downstream interoperability can be different. 

The market share can be estimated by the aggregation of probability of choice at the 

individual consumer level. The consumers’ purchase decisions are determined by both 

the product attributes (i.e., Xp) and service attributes (i.e., Xs). The attributes are 

functions of design specifications of selected product modules and services. For instance, 

the attribute of “product weight” for an angle grinder is a function of the design 

specifications for material selection, geometrical dimensions, etc.  
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Figure 4.3 Design Selection Framework  

4.3 METHODOLOGY 

This section describes the design selection method. A mathematical formulation of 

interoperability, along with a numerical procedure to estimate interoperability will be 

presented in Section 4.3.1. The proposed model is then used for computing the 

interoperability along the upstream market system and then extended to analyze the 

interoperability along the downstream market system in Section 4.3.2. The consideration 

of customers along the downstream market system borrows the methods from the 

previous research [e.g., Williams et al., 2008] and will be discussed in Section 4.3.3.  

4.3.1 Modeling Upstream Interoperability 

The mathematical formulation of interoperability is discussed in four steps. 

(i) Definition of Interoperability. Interoperability is defined as a capability of two (or 

more) systems to maintain their feasibility when coupled under uncertainty. Consider the 

example of two coupled systems as shown in Figure 4.1(b). Each system has a set of 
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functions fi which maps the inputs (i.e. xi, pi  and  yji) to outputs (i.e., oi,and yij). Each 

system has a set of engineering constraints gi (xi , pi , yji) ≤ 0 denoting the feasibility of the 

system. Consider the example presented in Figure 4.1(b). The two systems are coupled by 

the variables y12 and y21. Therefore, the two systems are said to be interoperable for a 

given design (x1, x2) and parameter (p1, p2), if there exists values of coupling variables 

(y12, y21) such that: 

    0,;,,; 112111121112  pxygpxyfy  , and 

    0,;,,; 221222212221  pxygpxyfy  
(4.1) 

A point (y12, y21) which makes two systems interoperable is named as an 

Interoperable Point. In general, two coupled systems can have more than one 

interoperable point when their designs (x1, x2) are given. This is because the position of 

the interoperable point can change as the value of system parameters (p1, p2) varies. 

Meanwhile, the interoperable point(s) changes as the design (x1, x2) changes.  

(ii)  Region of Operation (ROO) and Region of Interoperability (ROI). In a design 

selection problem defined in Section 4.2.2, the designer of the product only has a finite 

number of options for the values of design variables due to the fact that the modules are 

sourced from suppliers. Additionally, there can be uncertainties in the parameters. It is 

thus desirable that a module i can be interoperable with another coupled module at a 

variety of interoperable points for the entire range of uncertainties in system parameters. 

To begin with, the Region of Operation (ROO) for a module (or subsystem) i is defined 

as: 

    ijiiiiiiijiii  ,0,;,,;:| pxygpxyfyPpyROO  (4.2) 
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The above equation defines a region in which subsystem i is feasible for any given 

value of input coupling variables and uncertain parameters. The variations in the 

parameters can be characterized by probabilistic density functions. For instance, the 

parameter pi can be assumed to be normally distributed: pi ~N(μ, σ2). Or pi can be 

considered to have an interval uncertainty and assumed to be uniformly distributed: 

],[ iii ppp   with ip  and ip   being the lower and upper bounds.  

By comparing Eqns. (4.1) and (4.2), it can be understood that the interoperable points 

are essentially the intersections of regions of operations of the two systems for a range of 

uncertain parameters. The designer’s interest is therefore in such intersections because 

these intersections are the regions where the subsystems can be interoperable. The 

intersection is called the Region of Interoperability (ROI), defined as following: 

i
Ii
ROOROI

,...,1
   (4.3) 

More specifically: 

    jiij  ,,0,;,,;:| iiiiii pxygpxyfyPpyROI  (4.4) 

Consider the two system example shown in Figure 4.1(b). A graphical interpretation 

of region of operation and region of interoperability is shown in Figure 4.4. At a given x1, 

ROO1 consists of all the points (y12, y21) such that for any given value for y21 and a range 

of p1: y12=f1(y21,x1, p1) and g1(y21,x1, p1) ≤ 0, is feasible. Likewise, ROO2 consists of 

points such that for any given y12 and a range of p2, the input-output mapping and 

feasibility of System 2 are maintained. The region of interoperability is therefore the 

intersection of the two ROO’s   
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Figure 4.4 Regions of Operation (ROO) and Region of Interoperability (ROI) 

ROO and ROI can be interpreted in many ways depending on the area of application. 

In the design of a cordless angle grinder (to be presented in Section 4.4 as a case study), 

System 1 is an electric motor and System 2 is a bevel gear transmission. The two systems 

are coupled by the coupling variables “Torque” and “Shaft mass” as presented in Figure 

4.5.  

 

Figure 4.5 Interpretation of ROO and ROI: A Cordless Angle Grinder Example 
 

 (iii) Interoperability Metric. The interoperability of system i can be reflected by the 

area ratio of the region of interoperability (i.e., ROI) over the summation of regions of 

operation (i.e., ROOi for all i). In general, the area ratio will become volume ratio (for 

three dimensions) or hyper volume ratio (for more than three dimensions) when the 

coupling variables have more than two dimensions. 
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The interoperability metric is thus a numerical value between 0 and 1. Denote the 

area of ROI as AROI and area of ROOi as AROO,i. The interoperability metric (IM) can then 

be formulated as: 




i
iROO,

ROI

A

A
IM  

(4.5) 

 

 (iv) Calculating the Interoperability Metric: A Monte Carlo Method. The input-

output mappings of many engineering systems are nonlinear, discrete or in a black-box 

form. In general, the region of operation may not be of any particular shape, which makes 

the area of ROO and ROI difficult to obtain in a closed form. A numerical method based 

on a Monte Carlo sampling procedure is proposed to approximate the value of IM.  

As shown in Figure 4.6, the procedure can be carried out in two steps.  

  

Figure 4.6 Calculate IM: A Monte Carlo Procedure 

Step 1: Perform the following operation for each subsystem (xi is fixed). First 

generate random samples of coupling variables yji and parameters pi for system i. Next, 

obtain a corresponding system output yij using yij=fi (yji , xi , pi). The samples will be 

evaluated based on Eqn. (4.2) to decide if it belongs to ROOi. The samples which do not 
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belong to any ROOi will be deleted. Denote the number of points in ROOi as Ni with 

i=1,…,I where I denotes the total number of coupled systems. 

Step 2: This step aims at finding out the points in each ROO which fall into the ROI 

using its definition in Eqn. (4.4). For each given point y from the ROO of a subsystem i, 

verifying Eqn. (4.4) means the following: if there exists a ii Pp *  (for all i) such that: 

yij=fi(yji,xi, pi*) and gi (yji,xi, pi*) ≤ 0 (for all i and all j), then y is indeed a point in ROI. 

This verification is equivalent to solving the following problem:   

    iiiiiiij ,,,max,,min pxygpxyfy
ii Pp

0


 (4.6) 

 

This optimization problem should be solved for every point in ROOi (for all i). Denote 

the number of points in ROOi that falls into ROI with NROI, i. This can be 

computationally expensive. As such an alternative (heuristic) procedure is proposed next. 

Step 2—an alternative heuristic procedure. For each point y in ROOi, check the 

samples of p obtained in Step 1 and find out if there exists one (or multiple)  ..., ,21 ppp   

such that: (i)    jjjjk pxyfy ,;  for all j ≠ i and k, and (ii)   0,; jjijj pxyg  for all j. 

The tolerance ε needs to be specified by the designer. If both conditions are satisfied, the 

point y can be considered to satisfy Eqn. (4.4). After repeating the above for every point 

in ROOi , denote the total number of points of subsystem i falling into ROI (i.e., 

satisfying Eqn. (4.4)) with  NROI, i. The above needs to be conducted for every subsystem i. 

In this way, IM can be approximated by: 




i iROI,

i 

i ROI

i ROO,
i

i ROO,

ROI

N

N

A

AA

A
IM

11
 

(4.7) 
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4.3.2 Modeling downstream interoperability 

Service by a provider (e.g., wireless by Verizon, video streaming by Amazon) is a 

process consisting of interrelated activities. This definition follows the research in service 

modeling [e.g., Shostack, 1984]. For instance, a digital video streaming service can be 

considered to be composed of activities such as “transmitting/receiving video signal”, 

“processing video data signal” and “playing video content”. The implementation of 

activities depends on the functionalities of the product. For instance, an activity for the 

service of “digital video streaming” can be “transmitting digital content”. Performing 

such an activity requires a product function of “send/receive wireless signal”. The 

interoperability of a product and a service is ultimately determined by the interoperability 

between the product modules and service activities. The concept of the interoperability 

metric discussed in 4.3.1 can be extended to service domain to measure the 

interoperability, as discussed by the following three steps: 

(1) Construct Activity Function Dependency Matrix. An activity needs to be 

supported by function(s) which the product modules implement.  Note that for some 

activities two or more product functions may be needed. An “Activity Function 

Dependency Matrix” is defined to represent such dependency between service activities 

and product functions. Specifically: AF=(AF)ij, i=1,…I, j=1,…J, where AFij=1 if activity 

i depends on function j, AFij=0 if it does not. The entries in the matrix AF indicates all 

the activity-function pairs for which interoperability needs to be calculated. 

(2) Identify Key Performance Attributes. For each activity-module pair as denoted by 

AFij=1, Key Performance Attributes (KPA) is defined as a vector characterizing the 
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interface between the activity and the module. Index the activity-module pairs using 

t=1,…,T. Similarly to the region of operation for a module, the region of operation for an 

activity is defined as a region in the space of KPA parameters in which the activity can 

operate. The KPA is comparable to the coupling variables for analyzing physical systems. 

(3) Calculate Interoperability. The interoperability metric is obtained by calculating 

the percentage of intersecting areas between the ROO of service activities and product 

modules, and aggregating the ratio over all the dependent activity-module pairs: 




t
tROO,

ROI

A

A
IM

 

(4.8) 

where a index of  t=1,…,T denotes the activity-function pairs. 

4.3.3 Modeling individual level customer choice behavior 

Another group of critical players along the downstream market are the customers. 

The designer’s objectives, either the profit or market share, depend heavily on the 

customer’s purchase decision. A popular model representing the purchase decisions is 

Multinomial Logit model [McFadden, 1980]. In this study, the customers’ choice 

behavior is modeled using the latent class Multinomial Logit model proposed in the 

previous literature [Williams et al., 2008]. 

Denote the customers using i (i=1,…,I) and the choice alternatives using j (j=1,…,J). 

Following the model in [McFadden, 1980], a customer’s preference can be represented 

by a random utility function: 

isjsipjpiji   ,,,,, XXU  (4.9) 

in which Ui,j denotes the utility for customer i for choosing alternative j, Xp represents the 

attributes of the product and Xs represents the attributes of the service(s). Xp can be 
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obtained using a mapping from the product design specifications. The term εi is the error 

term with a double exponential distribution. Assume that the customer makes the 

purchase decision by choosing the alternative with the maximum utility. The probability 

that the customer i chooses alternative j can be formulated as: 

 
    



k
i,NCki,

ji,

ji,
UexpUexp

Uexp
Pr  

(4.10) 

where Ui,NC denotes the utility of “no-choice” option (i.e., to purchase none of the 

alternatives). 

The above formulation can be extended. For instance, a latent class model can be 

used to account for the heterogeneity of the customers. Specifically, the customers are 

grouped into unique “segments”. The preferences are identical within a segment but 

different across segments. A latent class model is formulated as: 

 
   







k
NCi,ki,

ji,
S

1s
s

UexpUexp

Uexp
mji ,Pr  

(4.11) 

in which ms represents the size of segment s in percentage. It can also be interpreted as 

the probability that a customer belongs to segment s. By summing the probability in Eqn. 

(4.11) over all the customers, the market share can be obtained as the aggregated 

probability of choice. 

4.4 EXAMPLES 

The proposed design selection method is demonstrated by two case studies. In the 

first case study, a design selection problem for a cordless angle grinder is considered. 

This example is used to demonstrate the application of the interoperability metric for 

modeling upstream (supplier) interoperability while considering the demand in the 
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downstream market system. In the second case study, a tablet computer design selection 

problem is presented which considers both upstream (supplier) and downstream (service 

provider) interoperabilities. 

4.4.1 Design Selection for Cordless Angle Grinder 

A cordless angle grinder is a handheld electric power tool which can be used to 

remove surface material from a work piece. The example considered consists of three 

subsystems: a battery (or subsystem 1), an electric motor (or subsystem 2), and a bevel 

gear set (or subsystem 3). The engineering design model is adapted from the previous 

work by Li et al. [Li et al., 2010] with the following changes. Specifically, the shared 

input for the three subsystems as presented in [Li et al. 2010] are converted into inputs 

for individual subsystems; additionally, the one way coupling between the “battery pack” 

and “electric motor” subsystems are changed from “Current” to “Voltage”.   The design 

variables for each subsystem are shown in Table 4.1.  The battery and the motor 

subsystems are coupled by the coupling variable “Voltage” (or y12) which is an output 

from the battery. The motor and the bevel gear subsystems are coupled by the coupling 

variables “Torque Load” (or y23) and “Shaft Mass” (or y32). Each subsystem has its own 

set of constraints including lower and upper bounds of the design variables, as well as 

inequality constraints (equality constraints are converted into two equivalent inequality 

constraints.). For instance, the bevel gear system is constrained by the condition that the 

maximum stress on the gear teeth does not exceed the limit. The parameters are 

considered to have interval uncertainty. The range of uncertainty for all parameters is 

assumed to be -50% to +50% around the nominal values. 
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Table 4.1 Angle Grinder Subsystems and Design Variables 
Battery (Subsystem 1) Motor (Subsystem 2) Bevel Gear (Subsystem 3)  

xp,1 Battery cell height (mm) x p,8 Armature turns x p,16 Gear ratio 

x p,2 Ni reactant sheet thickness (um) x p,9 Stator turns x p,17 Pinion pitch (m) 

x p,3 Cd reactant sheet thickness (um) x p,10 Stator outer radius (m) x p,18 Motor-gear shaft length (m) 

x p,4 Separator sheet thickness (um) x p,11 Stator thickness (m) y 23 Torque load 

x p,5 Battery cell coil turns x p,12 Gap length (m)   
x p,6 No. of cells x p,13 Stack length (m)   
x p,7 Current  (amps) x p,14 Motor-gear shaft diameter (m)   

  x p,15 Load  RPM   
  y12 Voltage (v)   
  y32 Shaft mass    

 

The design selection problem is shown in Figure 4.7. The three key subsystems (or 

modules) are assumed to be sourced from suppliers. Each module has 10 candidate 

suppliers and there is only one option available from each supplier. Thus the total number 

of design alternatives equals 103 or 1000. Table 4.2 presents the design specifications of 

the suppliers’ offerings. The design specifications are randomly generated under the 

condition that the feasibility constraints of each subsystem are satisfied. 

 

Figure 4.7 Case Study 1: Cordless Angle Grinder 

Along the downstream, the product is targeted at a heterogeneous customer 

population with diverse preferences. The latent class multinomial logit model proposed 

Angle 
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by Williams et al. [Williams et al., 2008] is applied. The model categorizes the market 

into 4 segments. Customer observed product attributes include price, brand, amp, battery 

life, girth, weight and retail channel. The customers’ choice decisions are made out of 

four competing cordless angel grinders including the new product. In this study, the price 

is fixed at $50. The proposed method can be easily extended to handle pricing decisions 

by adding one additional decision variable. 

The design selection proceeds as follows. The designer evaluates all combinations of 

battery, motor and gear from different suppliers. Each alternative is evaluated against the 

interoperability metric as well as downstream market share. The alternative which yields 

the maximum market share is selected if it is feasible and leads to a value of the  

Table 4.2 Angle Grinder Suppliers’ Design Specifications 
             Battery Suppliers 
 1 2 3 4 5 6 7 8 9 10 

xp,1 50.993 18.905 64.819 27.657 19.512 58.965 19.795 78.364 79.995 74.464 

x p,2 4.711 3.917 23.891 40.693 42.524 33.087 15.326 28.551 39.325 5.029 

x p,3 47.822 64.835 33.854 53.659 53.113 75.258 34.933 94.657 64.585 59.595 

x p,4 15.601 76.095 38.877 66.209 28.930 21.725 40.959 75.463 26.079 68.609 

x p,5 1.073 1.694 1.518 1.565 1.891 1.102 1.532 1.735 1.482 1.739 

x p,6 1.881 1.603 1.443 1.593 1.510 1.124 1.150 1.006 1.827 1.760 

x p,7 2.032 1.543 1.985 1.048 1.858 1.708 2.215 2.031 1.042 1.115 

             Motor Suppliers 
 1 2 3 4 5 6 7 8 9 10 

x p,8 165.051 128.302 55.602 216.380 126.107 24.216 194.793 69.877 185.981 175.139 

x p,9 173.732 174.796 190.834 69.362 121.356 188.606 99.047 90.141 73.929 129.414 

x p,10 0.009 0.006 0.007 0.009 0.006 0.008 0.003 0.010 0.008 0.008 

x p,11 0.031 0.057 0.041 0.031 0.035 0.037 0.034 0.057 0.023 0.052 

x p,12 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

x p,13 0.014 0.016 0.013 0.012 0.019 0.018 0.012 0.013 0.016 0.018 

x p,14 36109 32471 50429 54408 49670 67044 14830 70898 77829 19055 

x p,15 0.001 0.003 0.002 0.004 0.001 0.004 0.003 0.004 0.003 0.005 

             Bevel Gear Suppliers 
 1 2 3 4 5 6 7 8 9 10 

x p,16 0.321 0.233 0.262 0.343 0.215 0.390 0.317 0.231 0.235 0.369 

x p,17 0.013 0.014 0.014 0.018 0.012 0.019 0.009 0.010 0.010 0.013 

x p,18 0.010 0.006 0.007 0.006 0.005 0.005 0.006 0.009 0.005 0.005 
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interoperability metric higher than a given threshold. In this case study, the thresholds for 

the interoperability metric are obtained by finding out the Pareto frontier with two 

objectives: (i) maximize upstream interoperability, and (ii) maximize downstream 

demand. The interoperability metric values of the Pareto points are used as the thresholds. 

The design selection decisions obtained at all the thresholds will be shown. 

The design selection results are presented in Table 4.3. First, a benchmark design 

decision is obtained by assuming that the subsystems are manufactured in-house rather 

than being sourced from the suppliers. That is, the designer can choose the design 

variable values (since they are assumed to be continuous) without being limited by the 

suppliers’ options. Therefore, the design space is larger than that in the design selection 

problem as defined in Figure 4.7. The objective in the benchmark problem is to minimize 

cost. The cost model is borrowed from the attribute based model proposed by [Williams 

et al., 2008]. Neither the upstream interoperability nor the downstream demand is 

considered in the benchmark. 

Figure 4.8 presents the scatter plot of all the 1000 candidate designs. Note that there 

are only a finite number of combinations of product attribute values. Therefore, the 

demand (or market share) for the design selection alternatives as shown in Figure 4.8 

form a number of parallel lines. The Pareto frontier is highlighted using black diamonds. 

The “Pareto point 1” in Table 4.3 represents the design having the maximum demand 

along the Pareto frontier.  The “Pareto point 2” in Table 4.3 represents the design having 

the maximum upstream interoperability along the Pareto frontier. 

By looking at the benchmark design, the interoperability is low comparing to either 

one of the two Pareto design points. Even though the modules are all produced in-house 
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by a single manufacturer, the interoperability is not necessarily better since the design 

decision is only driven by the cost. This is observed in other real world situations as well: 

when the designer tries to reduce the production cost, the product performance may be 

sacrificed.  Note that the benchmark design actually achieves a higher level of demand 

than both Pareto designs. This is primarily due to the fact that the design space is larger in 

the benchmark problem. Comparing the two Pareto designs, the interoperability metric 

values are very close. Following this observation, the designer is given the freedom to 

pursue better market penetration without decreasing the interoperability significantly.  

Table 4.3 Angle Grinder Design Results 

System 
 

Design Variables 
 

Benchmark 1: 
Min Cost 
(in-house) 

Pareto point 1: 
Maximum  

demand 

Pareto point 2: 
Maximum 

interoperability 
 Supplier No. N/A 9 4 

Battery 

xp,1 13.188 79.995 27.657 

x p,2 2.127 39.325 40.693 

x p,3 4.343 64.585 53.659 

x p,4 5.274 26.079 66.209 

x p,5 849.788 1.482 1.565 

x p,6 1.044 1.827 1.593 

x p,7 1.000 1.042 1.048 

 Supplier No. N/A 6 6 

Motor 

x p,8 158.784 24.216 24.216 

x p,9 10.000 188.606 188.606 

x p,10 0.010 0.008 0.008 

x p,11 0.076 0.037 0.037 

x p,12 0.001 0.001 0.001 

x p,13 0.020 0.018 0.018 

x p,14 1002.256 67044 67044 

x p,15 0.005 0.004 0.004 
 Supplier No. N/A 2 7 

Bevel 
gear 

x p,16 3.804 0.233 0.317 

x p,17 0.030 0.014 0.009 

x p,18 0.010 0.006 0.006 

Interoperability  
metric 

0.103 0.265 0.266 

Demand  
(market share) 

0.515 0.434 0.433 
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Figure 4.8 Pareto Frontier of Angle Grinder Example 

One important decision which a designer (manufacturer) usually has to deal with is: 

how to choose a supplier and establish a long term contract? Using the proposed 

interoperability metric, the designer can evaluate the suppliers from an engineering 

design perspective. The “average interoperability” of each supplier’s module can be 

obtained by combining the module with available options from all the other subsystems, 

and calculate the mean value of the interoperability metric of all such combinations. For 

instance, for a motor supplier’s offering, the motor can be potentially combined with 10 

battery options and 10 bevel gear options (100 combinations in total). Average 

interoperability reflects the ability of a supplier’s offering to be compatible with all the 

other suppliers. Knowing the average interoperability is particularly important if for those 

subsystems which cannot be easily modified for an extended period of time—either due 

to the manufacturer-supplier contract or due to the long research and development 
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interval. In this way, for instance, the designer may want to choose a motor with the 

highest average interoperability so that the design can be easily adapted if changes are 

made with respect to the supply of the battery or the bevel gear subsystem. As shown in 

Figure 4.9, the best suppliers are, respectively: supplier 10 for battery (average 

IM=0.246), supplier 6 for the motor (average IM=0.251), and supplier 4 (average 

IM=0.245), for the gear.  

 

Figure 4.9 Average Interoperability of Angle Grinder Suppliers 

4.4.2 Product Design Selection and Service Integration for a Tablet Computer 

In the second case study, the product design selection for a tablet computer 

considering both the upstream (suppliers) and downstream (service providers) is 

considered. The designer sources the electronic components such as: microprocessor, 

LCD display panel, wireless connectivity module and battery. Table 4.4 lists the suppliers 

and the attributes of each supplier’s offerings. The upstream interoperability involves the 

coupling between the processor and LCD display. Specifically, the processing capability 

of the processor in terms of resolution will be compared with the LCD display resolution. 
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Table 4.5 presents a simple model for computing engineering characteristics such as 

battery life, product weight and bit rate. 

Table 4.4 Tablet Computer Suppliers  
Module 1: LCD  
Supplier No. 

xp,1  
Size   
(inches)  

xp,2 
Resolution  
(horizontal px)  

xp,3 
Power consumption 
(watts) 

xp,4 
Weight 
 (g) 

1  5.7  480  5.6  250 
2  7  480  5.75 175 
3  9.7  768  9  165 
4  10.1  800  10  185 
Module  2: 
Microprocessor  
Supplier No. 

xp,5 
Color processing capacity 
 (Bits per pixel) 

xp,6 
Resolution processing capacity 
(horizontal px) 

  

1   24  1080    
2   16  1050    
3   60  1080    
Module 3: Battery  
Supplier No. 

xp,7 
Weight (g)  

xp,8 
Capacity (Watt Hour)  

xp,9 
size  (inches) 

 

1  150  37  6   
2  200  50  7   
3  250  60  10   
Module 4: Wireless  
Supplier No. 

xp,10 
Connection options 

   

1  4G     
2  Wi-Fi     
3  Wi-Fi + 4G     

  

Along the downstream, the designer also needs to make the decision of selecting the 

service providers. Two categories of digital services are to be supported by the product, 

namely, video streaming and electronic newspaper subscription. Each category of service 

has two candidate service providers to select from. The video streaming is a service 

which instantly transmits video contents (e.g., TV episodes and/or movies) to electronic 

devices through internet connections. Examples of existing service providers include 

Netflix and Hulu. The newspaper subscription service delivers the digital copies of 

newspapers to the electronic devices. Major players in the market include Amazon 

Kindle and Barnes and Noble. The interoperability along the downstream involves the 

couplings between the product functions and service activities. For instance, the 
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microprocessor provides functionalities such as processing video signal, the wireless 

connectivity module transmits and receives signal from service providers, the LCD 

display present sthe video contents to the user and the battery provides power for the 

other modules. Table 4.5 presents a list of KPAs for each service and their corresponding 

product modules. The corresponding product modules for each service activity are shown 

in the parenthesis. The KPAs have both numerical and categorical values. For the 

numerical values, the numbers in Table 4.6 indicates the upper bounds of the 

corresponding KPA.  

Table 4.5 Tablet Computer Engineering Attribute Calculations 
Bit rate (Mbs) Br=R*C*F, where: 

R: resolution (total pixels) 
C: Color (bits per pixel) 
F: Frame rate (frames per second) 

Power Consumption P=P0+Pprocessor+Plcd 
Battery Life BL=Bc/P, where: 

Bc: battery capacity (Watt Hour) 
Product Weight W=WLCD+Wbattey+W0 

 

The demand model is a basic Multinomial Logit model as formulated in Eqn. (4.11). 

The customer level attributes include: LCD screen size and resolution, price, product 

weight, battery life, wireless connection, video streaming service picture quality and 

selection range, newspaper subscription content quality and selection range. The values 

of the coefficients in the demand model are simulated.  

Table 4.6 Downstream Service Providers 
Video Streaming  xs,1   

Transmit Content (Wireless) 
xs,2  
Display Content (Microprocessor) 

Service Provider 1 Bit rate: 2.5 Mbs 720 px 
Service Provider 2 Bit rate: 5 Mbs 1080 px 
Newspaper Subscription xs,3  

Display Content (Microprocessor) 
xs,4  
Newspaper Delivery (Wireless) 

Service Provider 1 Color Instant/Download 
Service Provider 2 Black and White Download 
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Table 4.7 presents the design selection results. The design selection involves the 

evaluation of 432 design alternatives (i.e., combinations of 4 suppliers for LCD module,  

Table 4.7 Tablet Computer Design Selection Results 

Modules Attributes/Parameters 
Design #1 

max  
Demand 

Design #2 
max downstream 
interoperability 

Design #3 
max upstream 

interoperability 

LCD Display 

supplier No. 2 4 4 
Size (inches) 7 10.1 10.1 
Resolution 

(horizontal pixels) 
480 800 800 

Processor 

Module supplier No. 3 1 2 
Color (bits per pixel) 60 24 16 

Resolution 
(horizontal pixels) 

1080 1080 1050 

Battery 

supplier No. 1 3 3 
Battery weight (g) 150 250 250 
Battery capacity 

(wh) 
37 60 60 

Battery size 
(inches) 

6 10 10 

Wireless 
Connection 

supplier No. 2 3 3 
Wireless 

connection 
Wi-Fi only Wi-Fi and 4G Wi-Fi and 4G 

Digital 
Video 

Streaming 
Service 

Video streaming service 
provider No. 

1 2 2 

Transmission bit rate 
(Mbs) 

2.5 5 5 

Content resolution 
(pixels) 

720 1080 1080 

Newspaper 
Subscription 

Service 

Newspaper subscription 
provider No. 

1 2 2 

Content color 
(B&W/Color) 

Color B&W B&W 

Delivery 
(Wi-fi, 4G or both) 

Wi-Fi and 4G Wi-Fi Wi-Fi 

Upstream interoperability 0.422 0.231 0.222 
Downstream interoperability 0.170 0.426 0.432 

Demand (market share) 0.999 0.714 0.354 

 

3 suppliers for the Processor module, 3 suppliers for the Battery module, 3 suppliers for 

the Wireless module, 2 service providers for Digital Video Streaming, and 2 service 

providers for Newspaper Subscription). Each alternative is evaluated against three 

objectives: (i) to maximize downstream demand, (ii) to maximize downstream (service) 

interoperability and (iii) to maximize upstream (product) interoperability. The Pareto 



109 
 

frontier consists of 12 design alternatives. Three Pareto points having the highest value 

for each objective are presented in Table 4.7. The demand maximizing design (or design 

#1) integrates the smallest LCD display with the lowest level of resolution. It also 

involves a wireless module having Wi-Fi only even if its downstream service providers 

offer both downloading (requiring either Wi-Fi or 4G) and instant access (requiring 4G) 

to the digital contents.  Therefore, the downstream interoperability metric value is less 

than 50% of those of the other two designs. The designs maximizing upstream and 

downstream interoperability differ only in terms of the selection of processors. The 

downstream interoperability maximizing design (i.e., design #2) selects a processor with 

slightly better color and resolution processing capabilities. As a result, it “over qualifies” 

regarding the newspaper subscription service which only provides black and white 

contents, which leads to a small decrease in the downstream interoperability.  

4.5 SUMMARY 

This chapter presents a solution to the challenges of design selection in the context of 

both upstream and downstream market systems while considering interoperability. A 

model for system interoperability is proposed that can help the designer measure the 

compatibility of product modules and selecting upstream suppliers. The formulation is 

general and can be applicable to other fields of study such as analyzing “system of 

systems” (system engineering) and mechanical tolerancing (mechanical design). 

Additionally, the framework contributes to the existing literature in engineering design by 

filling the gap of quantitatively understanding the couplings between physical (tangible) 

product modules and intangible service components.  Considering both product design 

and downstream service providers is increasingly important as evidenced in many high-
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tech product markets where the products’ functions heavily rely on the customers’ 

subscription to associated services. Finally, this study links the upstream and downstream 

market systems by considering the key market players such as: suppliers, manufacturer 

(designer), service provider and customers in the product design selection decisions.  

In the next chapter, the dissertation will be concluded. Contributions will be 

summarized and future research directions will be discussed. 
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CHAPTER 5: CONCLUSION 

This dissertation investigates the product design decisions for market systems by 

integrating engineering design and marketing considerations. The design decisions 

attempt to maximize manufacturer profit and/or demand by accounting for: (i) the action-

reactions of market players, such as competing manufacturers, retail channels; (ii) 

convergence of existing product categories into a new niche market and (iii) 

interoperability along both upstream and downstream market systems. 

This chapter is organized as following. Section 5.1 provides concluding remarks for 

each research thrust. Section 5.2 highlights the contributions of the dissertation research. 

Section 5.3 discusses the limitations of the methods and present future research directions.  

5.1 SUMMARY OF DISSERTATION 

In Chapter 2, an agent based approach is presented to support design decisions in the 

market system with interactive market players. Specifically: 

 The design decision method supports the designers for both long term and short term 

decisions. Long term decisions involve selecting the product features that cannot be 

changed in a long term horizon; whereas short term decisions concerns the strategies 

to react to the moves of market players for the short term, for instance, price 

competition, product feature improvements,  retail channels’ pricing changes, etc. 

 An agent based simulation is proposed in order to (i) obtain market equilibrium in 

terms of demand and profit for the short term horizon, and (ii) devise short term 

design and pricing strategies for the focal manufacturer. Market players such as 

competing manufacturing firms and retail channels are modeled as learning agents. 

By learning it means the market players gradually learn to react to the moves of each 
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other. A no-regret learning algorithm is used to model the market system and 

equilibrium of the system can be analytically guaranteed.  

 In the case studies, the proposed approach is compared with game theoretic approach 

reported in the previous literature. The results indicate that when competing 

manufacturing firms compete on pricing, the agent based approach results in a similar 

prediction of the market equilibrium compared to the game theoretic approach. 

Additionally, the proposed method is shown to be applicable when competing 

manufactures also react by improving designs—a situation where the game theoretic 

approach cannot be applied. The result also suggests that a firm can establish long 

term advantage in profit by strategically selecting design alternatives.  

In Chapter 3, a profit maximizing design decision framework is investigated for 

convergence products. Specifically: 

 A modular design method is introduced for designing convergence products by 

selecting the modules from related existing product categories. The convergence 

product is designed by merging the modular structures of the existing product 

categories. The engineering design framework ensures that a selected product 

functionality will be supported by the product modules and sub-modules.  

 A hierarchical Bayes choice model is investigated to account for the heterogeneity of 

consumer preferences. Specifically, the model (i) represents the consumers’ purchase 

decisions at the individual customer level and (ii) explains the heterogeneity of the 

preferences of different consumers. The coefficients representing the consumers’ 

preferences for product attributes are formulated as functions of the individual 

specific usage situations of product functionalities. The model assumes that the 
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consumers devote significant cognitive effort to the evaluation of candidate products. 

This assumption is enforced in the choice-based conjoint survey where the 

respondents are asked to report their usage conditions of product features, consider 

the product attributes and then select the favorite product alternatives. However, in 

the real world market, there are consumers who make purchase decisions without 

devoting much cognitive effort, for instance, those who make impulsive purchase 

decisions. Such exceptions are not accounted for in the proposed model. Other 

models need to be explored to study the choice behavior of such customer segments. 

 Two metrics are proposed to assist the designer’s profit maximizing decision. The 

“Convergence Index” quantitatively reflects the similarity of the product architecture 

of a convergence product with respect to existing product categories. The index helps 

the designer to anticipate the size of the market for a convergence product—a new 

niche market which does not exist within any existing product categories. “Index of 

Usage Evolution” (IUE) considers the changes in consumer usage conditions and 

their preferences in the forthcoming purchase occasions and predicts how such 

adaptation influences future market penetration. IUE can be used align the design 

decision with not only the profit in the short run, but also a sustainable market 

penetration in the future.  

 The design optimization approach in Chapter 3 is demonstrated by solving a case 

study of designing a tablet computer and comparing the optimal designs under three 

different scenarios. It is worth noting that convergence products are potentially 

applicable to many product categories beyond consumer electronics—home 

appliances, power tools, medical devices—just to name a few.  
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In Chapter 4, the proposed design selection method adopts a more holistic perspective 

by considering both upstream and downstream market systems while considering 

interoperability. Specifically: 

 A mathematical model of interoperability is presented which defines (i) the Region of 

Operation (ROO), and (ii) the Region of Interoperation (ROI) which reflects the 

intersection of the ROO for the coupled systems—the region where the systems can 

work with each other. The formulation of interoperability is general and can be 

applicable beyond the design for market systems.  

 Using the mathematical formulation of system interoperability, the proposed method 

can help the designers make selection decisions when the product modules are to be 

outsourced. In other words, the method accounts for the suppliers along the upstream 

market system by analyzing the interoperability among outsourced subsystems (or 

modules). This idea is also extended to the downstream market system to evaluate the 

interoperability between a physical product and a service. The extension is of 

particular importance given the emerging trend in many high-tech product markets 

where customers utilize the features of the product by subscribing to a variety of 

services.  

5.2 SUMMARY OF CONTRIBUTIONS 

The proposed agent based approach in Research Thrust 1 addresses the strategic 

design decisions in an uncertain market environment. Specifically: 

 This dissertation provides a new approach for strategic product design decisions 

for uncertain market systems when the existing game theoretic methods cannot 

provide solutions. In other words, the proposed design decision method can 
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handle competitions involving complex design problems in which engineering 

systems is in black-box form. 

 The agent based method provides a more realistic perspective in modeling the 

uncertain market system as compared to existing game theoretic models, by 

accounting for the action-reactions among market players with learning behavior. 

 The approach provides the product designers, for the first time in literature, a 

method to pursue profitability by simultaneously determining: (i) the product 

features that cannot be changed for a long term horizon and (ii) the strategies to 

compete in the short term horizon by changing prices and product features that 

can be rapidly changed. 

The customer driven design decision framework proposed in Research Thrust 2 

addresses the challenges arising from the converging product markets. Specifically: 

 A modular design framework is developed to integrate design solutions from 

multiple existing product categories and handle the couplings of functionalities 

for the convergence product, a problem that has not been addressed in extant 

literature but is an important one given the proliferation of convergence products.  

 A new way of accounting for the heterogeneous consumer choice behaviors in 

product design decisions is investigated. The proposed hierarchical Bayes model 

considers the preference of each individual consumer and relates the preference to 

their unique ways of using the product functionalities. 

 The proposed Convergence Index (CI) predicts the potential market size for the 

convergence product by measuring its similarity to existing product categories; 

the proposed Index of Usage Evolution (IUE) considers the changes of consumer 
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usage conditions and their preferences in the forthcoming purchase occasions, 

which helps the product designers to focus beyond the objective of maximizing 

profit and pursue a sustainable market penetration in the future.  

Finally, the approach proposed in research thrust 3 provides a general formulation for 

analyzing system interoperability, which facilitates the design selection decision for both 

upstream and downstream market systems. Specifically: 

 A general model of system interoperability is proposed to analyze the ability of 

coupled systems to work together under uncertainty. The method fills the gap of a 

quantitative model to analyze system interoperability whereas the existing 

methods are primarily qualitative. 

 For the first time in Design for Market Systems, the downstream service providers 

are considered by accounting for the couplings between a physical product and 

intangible services using the proposed interoperability model.  

 The dissertation proposes the first method to connect the decisions regarding both 

the upstream supplier selection and downstream integration with service providers. 

The method addresses the challenges arising from the increasingly common 

practices of outsourcing product modules from suppliers (along the upstream 

market system) and bundling products with services (along the downstream 

market system). 

5.3 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

Research Thrust 1: For demonstration purpose, the case study in this thrust only 

presented a finite number of design alternatives. The addition of an optimizer to the outer 

loop (i.e., the selection of long term design options) will enable the proposed approach to 
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search the long term design space systematically particularly when there are numerous 

(perhaps even infinite) number of long term alternatives. There are also many other 

directions for extending the current approach. For instance, the current approach can be 

computationally expensive when a large number of agents with multiple action 

dimensions enter into the model. The agents’ strategies are represented by probability 

density functions in black box form and therefore require Monte Carlo Markov Chain 

(MCMC) sampling steps to draw samples in every iteration in the simulation. This 

disadvantage can be alleviated to some extent by utilizing computers with multiple 

processors and perform agents sampling in parallel. Additionally, using approximation 

assisted optimization techniques [e.g., Hu et al., 2012] can overcome the issue by 

replacing the computationally expensive simulations with meta-models.  

Research Thrust 2: The results of this research thrust suggest that when consumer 

heterogeneity is considered, the design decision is in favor of concentrating on fewer 

functionalities while providing better performances for each functionality. That is, instead 

of designing a product that has many functionalities to satisfy every consumer, the design 

is more focused on the needs of a subset of consumers and creates better value for this 

sub-population. (This, of course, is an empirical result dependent on the population 

surveyed).   Such an observation motivates a need for designing a line of convergence 

products to further exploit the heterogeneous consumer needs.  Additionally, the 

proposed method does not account for competitors’ actions. The attributes of the 

competing products are assumed to be static and the subsequent entrants into the 

convergence product market are ignored. The action-reactions of competitors as well as 

the new entrants into the new niche market can be considered in the future research. 
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Moreover, the optimal design can be sensitive to the definition of “existing product 

categories” and corresponding average products. Finally, the proposed modular structure 

primarily reflects the configuration of physical modules. For many product categories 

such as consumer electronics, software modules are also critical features of product 

differentiation. One future direction is to explore how the designer can sustain the market 

penetration by selecting the appropriate hardware platform and a series of future 

improvements for the software modules. 

Research Thrust 3: There are a few ways to address the limitations of this research 

thrust in the future. First, the numerical procedure discussed in Section 4.3.1, in general, 

cannot be analytically proved to provide an accurate approximation to the value of 

interoperability metric. The future research can be conducted to determine the validity as 

well as the accuracy of the numerical procedure.  Meanwhile, the computational 

efficiency of the numerical method which computes the interoperability metric should be 

improved so as to integrate the model with an optimizer and explore a much larger design 

decision space.  Additionally, a more comprehensive understanding of consumer choice 

behavior is needed, particularly with respect to how consumers account for their 

subscriptions of services when they make purchase decisions for physical products. 

Finally, the assumption of “static competitions” can be relaxed to extend the framework 

by accounting for strategic action-reactions of the upstream market players (e.g., the 

suppliers) and downstream market players (e.g., service providers and retail channels). 
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APPENDIX: CHOICE BASED CONJOINT SURVEY FOR CASE STUDY IN 

RESEARCH THRUST 2 

 This appendix presents the design of the customer survey as discussed in Chapter 

3 (research thrust 2). The response data can be obtained from the online electronic 

companion for [Wang et al., 2011(a)] at http://dx.doi.org/10.1115/1.4004977.  

 
 

 
Section 1. Welcome Page and Brief Introductions 
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Section 2.1. Product Usage Questions: Email 

 

 
Section 2.2. Product Usage Questions: Web Browsing 
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Section 2.3. Product Usage Questions: Media Player 

 
 

 
Section 2.4. Product Usage Questions: E-Book 
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Section 3.1. Introduction to Choice Tasks 

 
 

 
Section 3.2. Example Choice Task 
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Section 4. Question Regarding the Products Which the Respondent Already Owns 
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