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The nonlinear propagation of an intense ultrafast laser pulse in atmosphere

or other gas media leads to filamentation, a phenomenon useful for applications

such as remote sensing, spectral broadening and shaping of ultrashort laser pulses,

terahertz generation, and guiding of electrical discharges. Axially extended optical

filaments result from the dynamic balance between nonlinear self-focusing in the gas

and refraction from the free electron distribution generated by laser ionization.

In the air, self-focusing is caused by two nonlinear optical processes: (1) the

nearly-instantaneous, electronic response owing to the distortion of electron orbitals,

and (2) the delayed, orientational effect due to the torque applied by the laser field

on the molecules with anisotropic polarizability. To study their roles in filamen-

tary propagation as well as influences on plasma generation in atmosphere, these

effects were experimentally examined by a sensitive, space- and time-resolved tech-

nique based on single-shot supercontinuum spectral interferometry (SSSI), which is

capable of measuring ultrafast refractive index shift in the optical medium.



A proof-of-principle experiment was first performed in optical glass and argon

gas, showing good agreement between the laser pulse shape and the refractive index

temporal evolution owing to pure instantaneous n2 effect. Then the delayed occur-

rence of the molecular alignment in the temporal vicinity of the femtosecond laser

pulse, as well as the subsequent periodic “alignment revivals” due to the coherently

excited rotational wavepacket were measured in various linear gas molecules, and

the results agreed well with quantum perturbation theory. It was found that the

magnitude of orientational response is much higher than the electronic response in

N2 and O2, which implies that the molecular alignment is the dominant nonlinear

effect in atmospheric propagation when the pulse duration is longer than ∼ 40 fs,

the rotational response timescale of air molecules.

Realizing the possibility of manipulating plasma generation by aligning air

molecules, the molecular orientational effect was further investigated by a technique

developed to directly measure, for the first time, the radial and axial plasma density

in a meter-long filament. The experiment was performed using both ∼ 40 fs and ∼

120 fs laser pulse durations while keeping the peak power fixed under various focusing

conditions, and the alignment-assisted filamenation with∼ 2–3 times plasma density

and much longer axial length was consistently observed with the longer pulse, which

experienced larger refractive index shift and thus stronger self-focusing. Simulations

reproduced the axial electron density measurements well for both long and short

pulse durations, when using a peak magnitude of instantaneous response as < 15%

of the rotational response.
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Chapter 1

Introduction

Filamentation is a nonlinear optical phenomenon in which the self-focusing of

an intense laser pulse is dynamically balanced by optical ionization and plasma re-

fraction when propagating in the medium, resulting in a transversely confined (∼ 100

µm), weakly ionized channel which can be maintained over a long propagation range.

Filamentary propagation in gases, especially in atmosphere, is of great interest due

to the capability of the long-range, high-intensity (∼ 1013 W/cm2) delivery of opti-

cal energies, which has many potential applications such as remote sensing, spectral

broadening and shaping of ultrashort laser pulses, terahertz generation, and guiding

of electrical discharges.

In the monatomic gas, self-focusing is caused by the nearly-instantaneous,

electronic nonlinear optical response. For linear gas molecules such as N2 and O2,

an extra component of optical nonlinearity due to the delayed orientational effect of

the molecules, or rotational Raman process, is also present. Previous studies have

shown that the latter may affect the filamentary propagation of the femtosecond

laser pulse in air. However, due to the fact that there are no reliable and conclusive

measurements to (1) determine the magnitude and temporal evolution of refractive

index shift contributed by both instantaneous and delayed nonlinearity, and (2)

resolve the electron density radially and axially in the extended laser filament, the
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molecular orientational effect on atmospheric filamentation is yet systematically and

quantitatively studied.

This Dissertation will address to these two issues and allow better under-

standing of the physics in laser filamentation. Furthermore, the investigation on

the molecular alignment-assisted filamentation suggests a new way to control the

filamentary propagation as well as the plasma generation in atmosphere.

1.1 Linear optics

The interaction between electromagnetic fields and matter is governed by the

macroscopic Maxwell equations:

∇ ·D = 4πρ, (1.1a)

∇ ·B = 0, (1.1b)

∇× E = −1

c

∂B

∂t
, (1.1c)

∇×H =
1

c

∂D

∂t
+

4π

c
j, (1.1d)

as well as the Lorentz force:

F = q
(
E+

v

c
×B

)
, (1.2)

with D = E + 4πP and B = H + 4πM, where P and M are electric polarization

and magnetization, and where ρ and j refer to the free charge and current densi-

ties, respectively. For dielectric materials without field ionization there are no free
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electrons, therefore the source terms ρ and j can be omitted. For the static field,

if the amplitude is weak compared with the material atomic (bound) electron field

strength, there is a linear relationship between P and E expressed as P = χE with

ǫ = 1 + 4πχ so that D = ǫE, where we assume here isotropic material response.

Also we assume non-magnetic material so that M = 0 and B = H.

The material response to the time-varying electromagnetic field becomes fre-

quency dependent. From the microscopic point of view the electric polarization

comes from the displacement of bound electrons of the atoms under the influence of

the external field. The Lorentz-Drude model treats the atom as a classical harmonic

oscillator, in which a single orbiting electron and the nucleus are attached to each

end of a spring satisfying Hooke’s law. The impinging electromagnetic wave serves

as the driving source, which gives

me

(
ẍ+ Γẋ+ Ω2x

)
= −eE(t), (1.3)

where x is the electron displacement vector, me is the mass of the electron, Γ is

the phenomenological damping constant, and Ω is the resonant frequency given by

the “spring constant” meΩ
2. The nucleus can be considered stationary because it

is much heavier than the electron, and the effect of magnetic field can be ignored

when |ẋ/c| ≪ 1, which is the case when the laser strength parameter (amplitude of

normalized vector potential) a0 ≪ 1, where

a0 =

√
2e2λ2I

πm2
ec

5
(1.4)
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for linear polarization, or intensity I ≪ 2.2×1018 W/cm2 at the wavelength λ = 800

nm. Assuming the incident wave is monochromatic at frequency ω in the complex

time-harmonic field (phasor) notation E(t) = Ẽωe
−iωt, also assuming there are Z

electrons per atom with fj electrons having resonant frequency Ωj and damping

constant Γj, the steady-state solution of Eq. 1.3 gives the complex linear atomic

polarizability α(ω) as well as susceptibility χ(ω) ≡ Nα(ω) in the gas atoms:

Re (χ(ω)) =
Ne2

me

∑

j

fj
Ω2

j − ω2

(
Ω2

j − ω2
)2

+ Γ2
jω

2
, (1.5a)

Im (χ(ω)) =
Ne2

me

∑

j

fj
Γjω(

Ω2
j − ω2

)2
+ Γ2

jω
2
, (1.5b)

with P̃ω = χ(ω)Ẽω, where N is the number density of the atoms, fj is the classical

oscillator strength with
∑

j fj = Z. This can be generalized to polychromatic waves,

giving P̃(ω) = χ(ω)Ẽ(ω), where P̃(ω) and Ẽ(ω) are Fourier transforms of P(t) and

E(t), respectively. Note that in the solid the induced atomic dipole moment can

interact with the nearby atoms, therefore the correction χ = Nα/(1 − 4πNα/3)

must be made [1]. Also note that the quantum mechanical derivation gives almost

the same result as Eq. 1.5, except that a different definition of fj (quantum oscillator

strength) is employed, and that Ωj is defined by the photon energy ~Ωj involved in

the transition between two energy levels, assuming the external field is very weak

so that the electron orbitals are not distorted [2].
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The time domain representation of the linear polarization is

P(t) =

∫ ∞

−∞

dτR(τ)E(t− τ), (1.6)

where the Fourier transform of R(t) gives χ(ω). Simplification can be made at the

adiabatic limit, i.e., the incident field envelope varies much slower than the response

of the bound electron. In fused silica (SiO2), for example, the UV absorption edge

is at λabs ∼ 150 nm [3], and the electron response timescale τ to optical frequencies

can be estimated by 2π/Ωabs = λabs/c ∼ 0.5 fs. In the adiabatic limit, the incident

wave usually satisfies two criteria: (1) all of the constituent frequency components

are far away from any resonant frequency Ωj , and (2) the bandwidth is narrow. The

slowly varying envelope approximation (SVEA) now can be used for time-domain

representation of the electric field

E(t) =
1

2

[
Eω0

(t)e−iω0t + c.c.
]
, (1.7)

where ω0 is the carrier frequency, and Eω0
(t) is the envelope with the bandwidth

∆ω ≪ ω0. If ω0 is far away from any Ωj , Im(χ(ω)) ≈ 0 and χ(ω) ≈ Re(χ(ω)), so

there is nearly no absorption. Also in the range of ω0 ±∆ω0 the variation of χ(ω)

is negligible, which validates the quasi-monochromatic approximation

P(t) = χ(ω0)E(t). (1.8)
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A more quantitative criterion to determine the adiabatic limit is given by [2]

∣∣∣∣∣

d
dω
χ(ω)

∣∣
ω0

χ(ω0)

d
dt
E(t)

E(t)

∣∣∣∣∣≪ 1. (1.9)

Now we examine the solutions of the Maxwell equations leading to the propa-

gating electromagnetic wave. For the uniform, isotropic, and linear medium without

free charge or current, a wave equation can be obtained from Eq. 1.1c and Eq. 1.1d,

assuming M = 0:

∇2E− 1

c2
∂2E

∂t2
=

4π

c2
∂2P

∂t2
, (1.10)

and the simplest solution is the monochromatic plane wave Eω0
cos(k0z−ω0t), where

ω0 is the frequency, k0 = n0ω0/c is the wavenumber in the medium, n0 =
√
ǫ(ω0)

is the index of refraction, and for monochromatic solutions it is legitimate to use

Eq. 1.8. The propagation speed of a monochromatic wave at the frequency ω0 is

determined by the phase velocity vp = ω0/k0 = c/n0.

However the plane wave solution is not realistic because it transversely extends

to infinity with non-vanishing amplitude. Instead, in many occasions it is preferable

to use the Gaussian beam solution E(r, z, t) = Eω0
(r, z)e−iω0t obtained from the

paraxial approximation of Eq. 1.10, with

Eω0
(r, z) =

E0

w(z)
exp

(
− r2

w2(z)

)
exp

(
i
k0r

2

2R(z)

)
exp (i [k0z − φ(z)]) , (1.11)
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where

w(z) = w2
0

(
1 +

(
λ0z

n0πw2
0

)2
)
, (1.12)

1

R(z)
=

z

z2 + (n0πw2
0/λ0)

2 , (1.13)

tanφ(z) =
z

n0πw2
0/λ0

, (1.14)

and λ0 = 2πc/ω0 is the vacuum wavelength. The Rayleigh range zR = n0πw
2
0/λ0

is defined so that when z = zR, the beam radius w =
√
2w0. For the quasi-

monochromatic solutions we can replace Eω0
by Eω0

(t) for the plane wave and

Eω0
(r, z) by Eω0

(r, z, t) for the Gaussian wave, assuming the condition of Eq. 1.9 is

met.

For a multi-coloured wave, such as a femtosecond laser pulse, propagating in

a medium where Eq. 1.9 is no longer valid, i.e., the dispersion is not negligible, each

frequency component experiences different ǫ(ω) and thus has different vp, therefore

it is useful to define the group velocity

vg =

(
dk(ω)

dω

)−1

, (1.15)

which is the propagation speed of the envelope (overall shape) of the field in the

medium. Assume that the propagating wave is in the form

E(r, t) =
1

2

(
E0(r, t)e

i(k0z−ω0t) + c.c.
)

(1.16)

under the slowly-varying envelope approximation, where ω0 ≪ ∆ω and k0 = k(ω0) =
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n0ω0/c. By expanding the dispersion relation k(ω) around the carrier frequency ω0,

k(ω) = k(ω0) + (ω − ω0)(dk/dω)|ω0
+ 1

2
(ω − ω0)

2(d2k/dω2)|ω0
+ · · · , and keeping

the terms up to the second order, from Eq. 1.10 one may obtain the paraxial wave

equation for the envelope in the linear medium:

1

2ik0
∇2

⊥E0 +
∂E0

∂z
+

(
dk

dω

)∣∣∣∣
ω0

∂E0

∂t
+

i

2

(
d2k

dω2

)∣∣∣∣
ω0

∂2E0

∂t2
= 0, (1.17)

where (dk/dω)|ω0
= [vg(ω0)]

−1, and (d2k/dω2)|ω0
is the group velocity dispersion

(GVD). Equation 1.17 takes account of the distortion of the wave envelope when

propagating in the dispersive medium with nonzero GVD. Higher order dispersion

terms such as d3k/dω3, d4k/dω4,... can be also incorporated into Eq. 1.17 when

dealing with highly dispersive media.

1.2 Nonlinear optics

Equation 1.3 assumes a parabolic potential, which is equivalent to a linear

restoring force, experienced by the bound electron. It is only true when the ampli-

tude of the electron oscillation is small compared with the Bohr radius of the atom

in the external time-varying field. Under the strong driving field the spring force

will develop nonlinear corrections, leading to

me

(
ẍ+ Γẋ+ Ω2x+ fNL(x)

)
= −eE(t), (1.18)
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where fNL(x) is the nonlinear restoring force, and the solution gives the nonlinear

polarization per electron (dipole moment) pe(t) = −ex(t). If |fNL(x)| ≪ |Ω2x|, one

can use the series expansion fNL(x) = a2x
2+a3x

3+a4x
4+ · · · and use perturbation

methods to solve Eq. 1.18. Consider the case that the only nonzero expansion

coefficient is a2, and assume x = x(1) + x(2) where x(1) is the linear solution of

Eq. 1.3 and x(2) is the next order correction when the nonlinear force term a2x
2 is

present. It can then be shown that [4]

ẍ(2) + Γẋ(2) + Ω2x(2) + a2
(
x(1)
)2

= 0. (1.19)

If the driving field is composed of two frequencies ω1 and ω2:

E(t) =
1

2

[
Eω1

e−iω1t + Eω2
e−iω2t + c.c.

]
, (1.20)

then the second-order nonlinear polarization P (2) = −Nex(2) has frequency compo-

nents (i) |ω1 ± ω2|, (ii) 2ω1 and 2ω2, and (iii) ω1 − ω1 = ω2 − ω2 = 0. Similarly,

if fNL = a3x3 and the driving wave has three colors ω1, ω2, and ω3, then one can

get the third-order nonlinear polarization P (3) with frequencies ω1, ω2, ω3, and

the combinations ω = | ± n1ω1 ± n2ω2 ± n3ω3|, where integers n1, n2, n3 ≥ 0 and

n1 + n2 + n3 = 3.

The quantum mechanical derivation of induced polarization starts from for-

mulating the total Hamiltonian operator H = H0+hE+HR, where H0 is the atomic

Hamiltonian, hE(t) = eE(t) · r is the potential of the electric dipole moment, and
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HR is the relaxation processes causing energy loss. The next step is to solve the

equation

dρ

dt
= − i

h
[H, ρ] , (1.21)

where [ ] denotes the commutator, and ρ is the density operator

ρ =
∑

q

Pq |Ψq〉 〈Ψq| , (1.22)

where Pq is the classical probability for finding a specific state labeled by q:

|Ψq〉 =
∑

k

aq,k |k〉 , (1.23)

in an ensemble of identical atoms with
∑

q Pq = 1, and |k〉 is the eigenstate of the

electron orbitals. Finally the averaged atomic polarization is p(t) = −e · Tr(ρr)

where Tr denotes the trace operation. The method outlined above is the most

general approach, which can be used for the highly nonlinear electronic response

when hE is comparable with H0.

If hE ≪ H0 then the quantum perturbation theory can be employed. The

density operator can be expanded in a series of smaller and smaller corrections

ρ(t) = ρ(0) + ρ(1)(t) + ρ(2)(t) + · · · , where ρ(0) is the unperturbed density matrix

at thermal equilibrium, and ρ(n) denote the successive corrections. It can then be

shown that the temporal evolution of ρ(n) is [2]

i~
d

dt
ρ(n)(t) =

[
H0, ρ

(n)(t)
]
+
[
hE(t), ρ

(n−1)(t)
]
, (1.24)
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with the solution

ρ(n)(t) =

(−i

~

)n

U0(t)

∫ t

−∞

dτ1

∫ t1

−∞

dτ2 · · ·
∫ tn−1

−∞

dτn

×
[
h′
E(τ1),

[
h′
E(τ2), · · ·

[
h′
E(τn), ρ

(0)
]
· · ·
]]

U0(−t),

(1.25)

where U0(t) = exp(−iH0t/~), and h′
E(t) = U0(−t)hE(t)U0(t). The relaxation pro-

cess HR is not included in Eq. 1.24 and Eq. 1.25, and it can be introduced using the

model
(

d

dt
ρij

)

R

= −γij
(
ρ− ρ(0)

)
ij
, (1.26)

where i, j are the indices labeling the matrix element. Equation 1.26 means expo-

nential decay of a state i when i = j, and it means dephasing between states i and

j when i 6= j.

Note that Eq. 1.25 can be interpreted as expressing that there are 1, 2,..., n

photons with energies ~ω1, ~ω2,..., ~ωn involved in the processes ρ(1), ρ(2),..., ρ(n),

corresponding to the linear susceptibility χ(1) (i.e., χ in Sec. 1.1), and nonlinear

susceptibilities χ(2), χ(3),..., χ(n), respectively. Also note that the nonlinear suscep-

tibilities are tensors, because the medium is no longer isotropic under the influence

of the intense polarized field. For example, assuming the electric field is in the

form of Eq. 1.20 with ω1 > ω2, the nonlinear polarization representing sum- and
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difference-frequency generation has the form

(
P

(2)
ω1+ω2

)
µ
=
∑

α,β

K(ω1 + ω2)χ
(2)
µαβ(ω1 + ω2) (Eω1

)α (Eω2
)β , (1.27a)

(
P

(2)
ω1−ω2

)
µ
=
∑

α,β

K(ω1 − ω2)χ
(2)
µαβ(ω1 − ω2) (Eω1

)α
(
E∗

ω2

)
β
, (1.27b)

where K is the permutation factor, and µ, α, β ∈ {1, 2, 3} are indices of the spatial

coordinates.

Similar to Sec. 1.1, for quasi-monochromatic waves it is possible to find a

time-domain representation of nonlinear polarization, under the adiabatic limit:

(P (n)
ωσ

(t))µ =
∑

α

∑

ω

K(−ωσ;ω1, . . . , ωn)χ
(n)
µα1...αn

(−ωσ;ω1, . . . , ωn)

× (Eω1
(t))α1

. . . (Eωn
(t))αn

,

(1.28)

with ωσ = ω1 + . . .+ ωn, where

P(n)(t) =
1

2

∑

ω′′≥0

[
P

(n)
ω′′ (t)e

−iω′′t +P
(n)
−ω′′(t)e

iω′′t
]
, (1.29)

and

E(t) =
1

2

∑

ω′≥0

[
Eω′(t)e−iω′t + E−ω′(t)eiω

′t
]
. (1.30)

For each carrier frequency ω′, the electric field has slowly-varying envelope Eω′(t)

with bandwidth ∆ω′ ≪ ω′ , and also χ(n) is nearly constant over the range ω′±∆ω′.

This general form emphasizes the fact that multiple combinations of frequencies

contribute to a nonlinear process. Note that because real-valued electric field in
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time domain is decomposed into complex fields at both ±ω, frequencies ω1, . . . , ωn

can be either positive or negative in Eq. 1.28.

1.3 Second- and third-order nonlinearities

The nonlinear polarization becomes significant when the magnitude of the

optical field is comparable with the Coulumb field that the orbiting electron expe-

riences in the atom. Using the Bohr radius of the hydrogen atom a0 = ~
2/mee

2

(in cgs), the atomic field is roughly estimated to be 5.1 × 1011 V/m. The optical

intensity required to reach this upper limit is 3.5 × 1016 W/cm2. It was not until

1960 that the invention of laser [5] made the observation of nonlinear effects in the

optical regime possible. With the aid of the ruby laser, capable of ∼ 1011 W/cm2

(focused) intensity, second harmonic generation [6] and two-photon absorption [7]

were first reported in 1961. This triggered systematic studies in both theory [8] and

experiment, and is thus considered as the onset of modern nonlinear optics. The

most commonly observed nonlinear effects belong to second- and third-order non-

linearity. Higher order perturbative nonlinearities by bound electrons such as χ(5)

[9] also exist but are relatively poorly explored, due to the extremely weak effect

and the complexity of mathematical analysis.

The second-order nonlinear effect usually involves generation of new frequen-

cies. Examples are second harmonic generation (ωσ = ω + ω), frequency mixing

(ωσ = ω1 ± ω2, sum- and difference-frequency generation), optical parametric oscil-

lation (OPO) [10] and amplification (OPA) [11]. These provide a convenient way to
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tune the laser wavelength for various applications. Moreover, parametric frequency

down-conversion [12], where one higher-energy photon converts into two lower en-

ergy ones in the nonlinear medium, can produce entangled photon pairs [13] useful

for the study of quantum optics and quantum computation. Optical rectification

[14], on the other hand, is the extreme case of the difference frequency generation

(ωσ = ω − ω = 0), where the two input frequencies are equal. This is useful when

the input is a femtosecond laser pulse, because the generation of quasi-DC polar-

ization follows the laser pulse envelope and thus emits radiation in the terahertz

frequency range [15]. The field-induced birefringence, or Pockels effect [4], can be

also explained as an extreme case of sum frequency generation by a DC electric

field and an optical field (ωσ = 0 + ω). The resulting optical field keeps its original

frequency but the polarization is rotated.

Second-order nonlinearity yields significant radiation mainly at the surface or

in some anisotropic lattice structures, where the spatial symmetry is broken. The

third-order nonlinearity does not have this restriction and thus should be observable

virtually in any optical material. Third harmonic generation and four-wave mixing

[16] are the principle frequency mixing processes associated with χ(3). Degenerate

four-wave mixing also leads to optical phase conjugation [17], which reverses the

wavefront evolution and is useful for correction of phase distortion induced by optical

systems.

The nonlinear susceptibility tensor χ(3)(−ω;ω,−ω, ω) has an interesting prop-

erty: it modifies the refractive index of the medium according to the optical inten-

sity. Assuming the field is linearly polarized along x direction, the total complex

14



polarization

P (1)
ω (t) + P (3)

ω (t) = χ(1)(−ω;ω)Eω(t) +
3

4
χ(3)
xxxx(−ω;ω,−ω, ω) |Eω(t)|2 Eω(t) (1.31)

gives an effective refractive index

neff(t) = n0

(
1 +

3πχ
(3)
xxxx

2n2
0

|Eω(t)|2
)

≡ n0 + n2I(t), (1.32)

where n0 =
√

1 + 4πχ(1) is the linear index of refraction, n2 = 12π2χ
(3)
xxxx(n2

0c)
−1 is

called nonlinear refractive index, I = n0c|E|2/8π is the optical intensity, and with

the assumption n0 ≫ n2I. The factor 3/4 in the P (3) term of Eq. 1.31 originates

from permutation. This nonlinear process produces a transient shift of refractive

index which has the same temporal evolution as the intensity. Note that this is based

on the assumption that the bound electron reacts much faster than the time scale

of the field envelope. Comparing with commercially available ultrafast lasers with

sub-100 fs pulse duration, the electronic response time in, for instance, optical glass,

is usually < 1 fs as estimated in Sec. 1.1 and can be considered as instantaneous.

The nonlinear refractive index n2 is related to several effects, such as self-phase

modulation, cross-phase modulation, self-focusing, and optical filamentation, which

will be discussed later in this Chapter.
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1.4 Resonant nonlinearities

Most of the optical nonlinearities mentioned in Sec. 1.3 are non-resonant ef-

fects. In a resonant nonlinear process, the overall bandwidth of at least two of the

interacting fields overlaps an energy level separation in the atoms/molecules of the

medium. The transition can be electronic between atomic or molecular orbitals, or

vibrational as well as rotational in the molecule. An example of resonant nonlinear-

ity is two-photon absorption, in which a transition |g〉 → |f〉 with energy absorption

~Ωfg is excited by two photons ω1 and ω2 with ω1 + ω2 = Ωfg.

Another important type of two-photon resonant nonlinearity is Raman scat-

tering. The Raman process can be viewed as inelastic scattering of the photon,

which gains or loses energy with the coupling of a state transition. As shown in

Fig. 1.1, the pump photon with frequency ωp has two possible interaction paths

through an intermediate “virtual state”: (a) |g〉 → |i〉 then |i〉 → |f〉 with emission

of a “Stokes” photon ωS = ωp−Ωfg and (b) |f〉 → |i〉 then |i〉 → |g〉 with emission of

an “anti-Stokes” photon ωA = ωp+Ωfg. Raman spectroscopy and Raman lasers are

important tools in chemistry, biology and medical research, and Raman amplifiers

are widely used in optical communication.

The rotational Raman process has some interesting properties. For non-polar

molecules, it arises from the interaction between the laser field and an ensemble of

randomly oriented molecules with anisotropic molecular polarizability. The laser

electric field toques the molecular axes with highest polarizabity toward the field

polarization direction, giving some time-varying “degree” of averaged alignment,
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Figure 1.1: Energy level diagrams of (a) Stokes, and (b) anti-Stokes Raman scattering.
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Figure 1.2: Energy level diagram showing some j → j ± 2 transitions in the rotational
Raman process.

and it can keep evolving even after the laser field is turned off. In the language of

quantum mechanics, a laser pulse can induce coherence between rotational states

|j〉 and |j ± 2〉 and thus excites a rotational wavepacket. The energy level diagram

of such a process is shown in Fig. 1.2.

The temporal evolution of the rotational wavepacket can be observed via the

transient shift of the refractive index in the ensemble of molecules, which is in

proportional to the average degree of the alignment. When the laser pulse duration

is shorter than a characteristic response time due to the rotational inertia of the

molecule, the transient refractive index will have a delayed response with respect to
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the laser pulse. In other words, the adiabatic approximation is no longer valid, and

the induced refractive index shift, to the zeroth order approximation (which will be

explained in Chapter 4), is contributed by two parts:

∆n(t) = ∆ninst(t) + ∆nrot(t) = n2,instI(t) +

∫ ∞

−∞

n2,rot(t− τ)I(τ)dτ. (1.33)

where n2 = n2,inst is the instantaneous, electronic response, and n2,rot is the delayed

molecular rotational response. Therefore, when studying the ultrashort pulse prop-

agation in a molecular gas such as air, the effect of molecular alignment should be

considered. As ∆nrot is proportional to peak laser intensity, it is sometimes also

considered to be a χ(3)-related process in some literatures. A detailed discussion

on both physics and applications of laser alignment of molecules will be given in

Chapter 3, with both non-perturbative and perturbative treatments using quantum

mechanics, similar to the derivation of nonlinear polarization outlined in Sec. 1.2.

1.5 Self- and cross-phase modulation

The nonlinear refractive index n2 adds nonlinear temporal phase to the prop-

agating light and generates new frequencies through self-phase modulation (SPM).

Consider a laser pulse with a Gaussian intensity profile I(t) = I0 exp(−t2/τ 2) prop-

agating in a nonlinear and dispersionless medium for a distance L, and assume only

instantaneous nonlinear refractive index n2,inst = n2 exists. The accumulated non-

linear phase is φNL(t) = k0Ln2I0 exp(−t2/τ 2), where t is the time coordinate in

the moving frame of the pulse. The nonlinear temporal phase is equivalent to a
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time-dependent frequency shift

∆ω(t) = −dφNL

dt
=

4πLn2I0
λτ 2

te−t2/τ2 , (1.34)

and is plotted in Fig. 1.3(a), along with I(t). Figure 1.3(b) shows the spectrum

of a transform-limited 100 fs laser pulse, and a typical spectrum of the same pulse

after experiencing self-phase modulation is shown in Fig. 1.3(c), with significantly

broadened bandwidth and spectral beating between newly-generated frequencies.

Cross-phase modulation (XPM) is similar to SPM but has two or more laser

pulses with different polarizations or carrier frequencies involved. For example,

consider the following processes:

(
P (3)
ω2

(t)
)
x
=

3

2
χ(3)
xxxx(−ω2;ω1,−ω1, ω2) |(Eω1

(t))x|
2 (Eω2

(t))x , (1.35)

and

(
P (3)
ω2

(t)
)
y
=

3

2
χ(3)
yxxy(−ω2;ω1,−ω1, ω2) |(Eω1

(t))x|
2 (Eω2

(t))y . (1.36)

One can clearly see that one wave can alter the phase of another wave, and this is

especially useful for pump-probe type experiments studying the nonlinear optical

properties of materials, in which the refractive index in the medium is altered by

an intense pump beam and then is recorded as the nonlinear phase shift on a weak

probe beam. This is the fundamental principal of the ultrafast refractive index mea-

surement technique presented in Chapter 2. Note that for electronic nonlinearity,

the permutation factor of XPM in both Eq. 1.35 and Eq. 1.36 is 3/2, which is twice
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Figure 1.3: (a) The time-dependent frequency sweep ∆ω(t) (top panel) experienced by a
Gaussian laser pulse I(t) with 1/e full width 2τ (bottom panel) during self-phase modula-
tion. (b) The spectrum of a transform-limited Gaussian laser pulse with 100 fs full-width-
at-half-maximum (FWHM) duration. (c) A calculated self-phase-modulated spectrum,
using (b) as the input and assuming the nonlinear medium is dispersionless.
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than the value in SPM process in Eq. 1.31.

1.6 Self-focusing and filamentation

The nonlinear susceptibility χ(3) introduces not only a temporal but also a

spatial effect. For a Gaussian beam I(r) = I0 exp(−2r2/w2
0), the center of the beam

experiences more phase shift than the edge does in the nonlinear medium. The laser

beam then undergoes self-focusing because the medium acts like a lens. The effective

focal length can be determined by the n2-induced wavefront curvature. One of the

applications is Kerr lens mode locking of Ti:Sapphire laser [18], which uses self-

focusing in the gain medium to favor short pulse operation rather than continuous

wave (CW) lasing in the cavity.

Self-focusing can balance diffraction when the laser power reaches a certain

threshold, leading to the laser beam maintaining its size over a distance much longer

than the Rayleigh range zR. To show this, consider a linearly polarized Gaussian

beam from vacuum (z < 0 plane) entering a dielectric material with linear refractive

index n0 (z ≥ 0 plane) at normal incidence, and the beam waist w0 is at the interface

z = 0. The electric field for z > 0 is represented by Eq. 1.11.

For a infinitesimal propagation distance ∆z into the dielectric material, diffrac-

tion changes the phase front curvature, and the corresponding phase shift is

∆φdiff(r,∆z) =
n0k0r

2

2R(∆z)
≈ πλr2∆z

n0 (πw2
0)

2 . (1.37)

On the other hand, with the presence of n2, the Gaussian beam also produces a
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radially-varying wavevector

ksf(r) = k0

(
n0 + n2I0 exp

(
−2r2

w2
0

))
≈ k0

(
n0 + n2I0

(
1− 2r2

w2
0

))
, (1.38)

and the phase difference is

∆φsf(r,∆z) = ∆ksf∆z = −4πn2I0
λ

r2

w2
0

∆z. (1.39)

Substituting I = 2P/πw2
0, and requiring that ∆φdiff = −∆φsf , one obtains the

critical power for self-focusing

Pcr =
λ2

8πn0n2

. (1.40)

Note that this threshold depends on power instead of intensity. Moreover, Pcr de-

pends strongly on the beam profile. The critical power given by various prior works

are in the form αλ2/n0n2 and only differ by a multiplicative factor α. In particular,

a popular value Pcr = 3.77λ2/8πn0n2 is given by Ref. [19], and this will be used

throughout this Dissertation.

Such self-sustained, transversely confined nonlinear propagation at the critical

power was first theoretically discussed in 1964 [20], and was later observed in a solid

[21] and a liquid [22], in which the laser beam collapsed into a “filament” with a

typical diameter of sub-100 µm. In 1995 long-range filamentation of a femtosecond

laser pulse accompanied by weak ionization in atmosphere was first reported, and

it was suspected that the plasma also plays a critical role in the extended high
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Figure 1.4: Schematic of laser filamentation.

intensity filamentary propagation [23]. To show this, consider an ideal Gaussian

beam undergoing self-focusing in a gas. The intensity will eventually exceed the

ionization threshold of the gas atoms. As will be seen later, laser ionization rate

is intensity dependent, so the center of the beam generates more plasma than the

edge, where the index of refraction in the plasma is

n(ω) =

√
1−

ω2
p

ω2
, (1.41)

with the plasma frequency

ωp =

√
4πnee2

me

, (1.42)

where ne is the electron density. The plasma acts like a negative lens as illustrated

in Fig. 1.4, which counteracts the self-focusing effect during the propagation.
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1.7 Plasma and laser-induced ionization

Plasma is the gas composed of ions and free electrons, and the charged particles

interact via Coulomb forces. The plasma response to the electromagnetic wave can

be obtained from a special case of Lorentz-Drude model Eq. 1.3 by letting Ω = 0, i.e.,

the electron is no longer bounded to the atom. Again the nucleus (ion) is assumed

stationary, and the electric susceptibility becomes

χ = −nee
2

me

1

ω2 + iων
, (1.43)

where ne is the electron density, and the damping rate Γ is replaced by the collision

frequency ν. Equation 1.43 is valid when there is only electron-ion elastic collisions

without resonance, and also under the assumption that there is no magnetic field. If

there is no collision then ν = 0, and by using the relation n =
√
1 + 4πχ one obtains

Eq. 1.41. Moreover, the electron quiver velocity in the laser field is −vos sinωt,

where vos = eE/meω assuming a E cosωt driving field. The relativistic correction

must be considered under an intense driving field, and the electron peak quiver

velocity becomes vos = eE/(meω
√
1 + a20), where a0 = γvos/c = eE/meωc is the

laser strength parameter (amplitude of normalized vector potential) introduced in

Eq. 1.4, and γ = 1/
√

1− v2os/c
2 is the Lorentz factor. The electron quiver motion

becomes anharmonic and also shows “figure-eight” trajectories owing to the non-

negligible effect of the magnetic field. In the relativistic regime, the plasma frequency
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becomes

ωp =

√
4πnee2

γme

. (1.44)

For the optical phenomena studied in this Dissertation, the intensities are in the

regime of a0 ≪ 1.

To study laser-plasma interactions such as optical filamentation, it is crucial

to understand the physics of laser ionization. Other effects in which laser ionization

plays an important role include high-harmonic generation [24], cluster explosion [25],

optically-pumped X-ray lasers [26, 27, 28], ionization blue-shift [29] and steepening

[30] of the laser pulse. For a short laser pulse, plasma generation is mainly con-

tributed by field ionization. For longer pulse duration the ionization process is more

complicated. The leading edge of the laser pulse first weakly field-ionizes the atoms,

and the free electrons continue wiggling under the influence of the laser field and

produce more plasma through collisional ionization. The criterion that distinguishes

between the two mechanisms is the electron-ion collision given by [31]

νei =
4
√
2πZ2e4Ni ln Λei

3m
1/2
e

(
1

kBTe + 2Up/3

)3/2

, (1.45)

where Ni is the ion density, ln Λei is the Coulomb logarithm for electron-ion colli-

sion, Te is the electron temperature, and Up = e2|E|2/4meω
2 ≈ 9.3×10−14I(W/cm2)

[λ(µm)]2 eV is the electron ponderomotive quiver energy. For low electron tempera-

ture or high laser intensity Up ≫ kBTe, the temperature term can be omitted. For a

typical filament in air, Z = 1, Ni ∼ 1016 cm−3, I ∼ 5×1013 W/cm2, and lnΛei ∼ 13
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[32]. At the laser wavelength λ = 0.8 µm, the characteristic collision interval is then

1/νei ∼ 7 ps and is much longer than the pulse duration (sub-100 fs) of a typical

Ti:Sapphire laser, and in this case the collisional ionization is not important.

There are two different regimes in field ionization when the electron ionization

potential is greater than energy of a photon Ui > ~ω, which is usually true for the di-

electric material at optical frequencies. Multiphoton ionization takes place when an

electron absorbs multiple photons until the ionization threshold is reached. Tunnel-

ing ionization occurs when a laser field substantially distorts the Coulomb potential

of the atom so that the electron can tunnel through the potential barrier. The

schemes of both tunneling and multiphoton ionization are depicted in Figs. 1.5(a)

and 1.5(b), respectively. These two different mechanisms in fact describe the same

physics in the two extreme limits. When the laser period is longer than the time

that the electron takes to tunnel through the barrier, it is in the regime of tunneling

ionization. This condition can be met when the laser frequency is low or the field

strength is high. On the other hand when the laser frequency is high or the field is

weak, the electron is not able to tunnel through the barrier within a single optical

cycle, and this is in the regime of multiphoton ionization. The Keldysh parameter

γK [33] is used to determine which ionization model is more appropriate under the

given conditions:

γK =
ω
√
2meUi

eE
, (1.46)

where Ui is the ionization potential and E is the laser electric field. Tunneling

ionization dominates when γK < 1, otherwise multiphoton ionization plays the
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Figure 1.5: (a) Tunneling ionization, and (b) multiphoton ionization.

major role when γK > 1. The ionization potential of N2 is 15.576 eV [34], and for

typical laser intensity in the atmospheric filament I ∼ 5× 1013 W/cm2 and λ = 800

nm, γK = 1.6, and thus multiphoton ionization is dominant over the tunneling

ionization.

The rate of tunneling ionization is estimated by the Ammosov-Delone-Krainov

(ADK) model [35] and then many other variants later on. The rate shown here is

given by Ref. [36]:

w =
ωat

2
C2

n∗

(
Ui

Uh

)
(2l + 1) (l + |m|)!
2|m| (|m|)! (l − |m|)!

×
[
2

(
Ui

Uh

)3/2
Eat

E

]2n∗−|m|−1

exp

[
−2

3

(
Ui

Uh

)3/2
Eat

E

]
,

(1.47)

where Ui is the ionization potential of the ion of interest, Uh is the hydrogen ion-

ization potential, ωat = me4/~3 and Eat = m2
ee

5/~4 are frequency and electric field

in atomic units, Cn∗ = (2ε/n∗)n
∗

(2πn∗)−1/2, ε = 2.71828 is the base of natural

logarithm, and n∗ = Z(Uh/Ui)
1/2 is the effective principle quantum number.
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The multiphoton ionization rate is modeled by [37, 38]

w = σ(N)(ω)IN(r, ω, t), (1.48)

where I is the laser intensity, N is the minimum number of photons required to

reach the ionization threshold, namely, N = ⌊Ui/~ω⌋ + 1 with ⌊ ⌋ representing the

floor function, and σ(N)(ω) is the frequency-dependent cross section for N -photon

ionization.

1.8 Nonlinear propagation

The general nonlinear propagation problem can be described by using P(t) =

P(1)(t) +PNL(t) in Eq. 1.10, where PNL is the nonlinear polarization. Wave propa-

gation in the presence of χ(3)(−ω;ω,−ω, ω), which is the origin of self-phase modu-

lation and self-focusing described in Sec. 1.5 and Sec. 1.6, is of particular interest. In

this case, adapting the paraxial wave equation Eq. 1.17 and assuming the adiabatic

approximation is valid for χ(3) over the laser pulse spectral range (ω0 ± ∆ω), one

gets

1

2ik0
∇2

⊥E +
∂E

∂z
+

(
dk

dω

)∣∣∣∣
ω0

∂E

∂t
+

i

2

(
d2k

dω2

)∣∣∣∣
ω0

∂2E

∂t2
=

iω0

8π
n0n2 |E|2 E. (1.49)

To deal with nonlinear propagation in the partially ionized medium, one may in-

clude the plasma susceptibility χ(ω) = −nee
2/meω

2 from Eq. 1.43, and the result

is adding a term (4πne(r, t)e
2/me)E on the right hand side of Eq. 1.49. Moreover,
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for propagation in atmosphere, the refractive index contributed by molecular ori-

entational effect ∆nrot(t) =
∫∞

−∞
n2,rot(t − τ)I(τ)dτ should be also considered, and

Eq. 1.49 becomes

1

2ik0
∇2

⊥E +
∂E

∂z
+

1

vg

∂E

∂t
+

i

2

(
d2k

dω2

)∣∣∣∣
ω0

∂2E

∂t2

=
4πnee

2

me

E +
iω0

8π
n0

(
n2,inst |E|2 + n2,rot ⊗ |E|2

)
E,

(1.50)

where ⊗ denotes convolution, and the molecular impulse response n2,rot(t) will be

derived in Chapter 3. To numerically solve this equation, it is more convenient to

first transform the coordinate to the moving frame at group velocity vg with local

time axis τ = t− z/vg, which will be discussed in Chapter 5.

1.9 Outline of the Dissertation

This Dissertation presents experiments and simulations investigating the non-

linear optical response of air molecules and its crucial role in optical filamentation

of intense laser pulses in atmosphere. In this Chapter, a brief review on nonlinear

optics has been given, with the emphasis of the effects leading to nonlinear phase

modulation and propagation. An overview of laser ionization and optical properties

of the plasma has also been introduced.

Chapter 2 describes a single-shot, time- and 1-D-space-resolved method to

measure the ultrafast temporal evolution of refractive index, and demonstrates the

measurement of intensity-dependent index shift n2I originates from instantaneous,

electronic nonlinearity in the optical medium.
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The following chapters focus on laser-induced molecular alignment. A treat-

ment based on quantum perturbation theory is presented in Chapter 3, allowing

the calculation of the ensemble-averaged alignment in the temporal vicinity of the

femtosecond laser pulse, as well as the subsequent periodic alignment revivals due to

the coherently excited rotational wavepacket. By applying the same technique used

in Chapter 2, the transient refractive indices resulting from molecular orientational

effect in some common linear gas molecules are measured in Chapter 4.

Recognizing the significance of the nonlinear index shift contributed by align-

ment of molecules, Chapter 5 investigates the molecular orientational effect on

plasma generation in the femtosecond laser filament in atmosphere. An interfer-

ometric method is developed to directly resolve the radial and axial electron density

along the meter-long filament, and for laser pulse durations longer than the rota-

tional response timescale of the air molecules, the alignment-assisted filamentary

propagation is observed, with increased plasma density and longer filament length.

The experimental results are verified by simulations.
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Chapter 2

Ultrafast measurement of transient refractive index shifts

2.1 Introduction

With the advance of laser technologies capable of delivering high power, the

nonlinear refractive index plays an important role in both laser science and engi-

neering. Solid-state pulsed lasers such as Nd:glass and Nd:YAG systems routinely

generate several GW of power within a ∼ 1 cm beam diameter. The maximum

intensity is limited by Pcr/Aeff , where Pcr is the critical power for nonlinear self-

focusing in the gain media or other optical elements, and Aeff is the effect laser beam

area. When P > Pcr self-focusing beats the natural diffraction so that catastrophic,

filamenting optical damages may occur. In Ti:Sapphire-based chirped pulse ampli-

fication (CPA) systems with sub-50 fs pulse duration and multi-TW peak power,

there are more considerations. The nonlinear phase is introduced to the laser pulse

via self-phase modulation, and if it is accumulated too much throughout the system,

the pulse cannot be compressed properly, with degraded peak power and also tem-

poral contrast [39, 40]. The nonlinear phase shift is given by the so-called B-integral

[39]:

B =
2π

λ

∫ L

0

n2Idz, (2.1)
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where L is the medium length, and B ≪ 1 implies better spatial and temporal

quality of the laser. In optical fiber used in, say, communication, the optical intensity

is usually much lower than in solid-state lasers, so that n2I is smaller. However, the

propagation distance L can be many kilometers so that propagation models must

include the effect of n2.

On the other hand, the nonlinear refractive index can have beneficial effects.

For example, Kerr lens mode-locking, used by all modern Ti:Sapphire oscillators, is

a simple but robust mode-locking technique which does not require any active com-

ponent in the laser cavity [18]. Self-phase modulation (SPM) along with four-wave

mixing are able to transform a narrow band laser pulse into coherent supercontin-

uum with frequency span more than an octave [41]. Optical Kerr gate [42] is the

polarization rotation of a weak probe beam due to induced birefringence by a strong

pump beam, and its application includes ultrafast all-optical switching [43], time-

gated imaging [44], and fluorescence spectroscopy [45]. Nonlinear ellipse rotation [4]

is related to self-induced birefringence and is used to improve the temporal contrast

of ultrashort laser pulses [46]. Other examples of nonlinear propagation phenomena

includes filamentation and optical soliton [47], which are studied extensively and

have many potential applications.

As introduced in Chapter 1, the nonlinear index shift can be caused by prompt

and delayed χ(3) nonlinearities. In addition to the instantaneous electronic nonlin-

earity, the delayed nonlinearity also exists in the molecular gas and liquid, which

is the rotational Raman effect, i.e., the orientational response induced by the fem-

tosecond laser pulse. There are some other mechanisms which also contribute to
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the ultrafast refractive index shift in the optical medium. To name a few: in the

molecular gas, the laser-induced rotational wavepacket produces periodic echoes of

molecular alignment, which will be explained in Chapter 3 in detail. Another ex-

ample is the optical ionization when the intensity at the front edge of a laser pulse

exceeds the ionization threshold in the medium, resulting to rapid generation of

plasma on ∼ fs time scale with an ionization front moving at the group velocity of

the pulse, and the stepwise increase of plasma density could occur when the intensity

exceeds first, second ionization threshold of atoms and so on. After the laser pulse,

the free electrons and ions also recombine on a time scale ranging from ∼ ps to ∼

ns. In the plasma, the laser pulse in the relativistic regime can drive plasma waves

through the ponderomotive force [48] or the Raman instability [49], with oscillation

period 2π/ωp = 111 fs for plasma density ne = 1018 cm−3. Therefore to study

these effects, a technique which is capable of measuring the ultrafast evolution of

refractive index is desirable.

The nonlinear refractive index has been studied since 1960’s, and several meth-

ods were developed to determine its magnitude, including nonlinear ellipse rotation

[50, 51, 52], degenerate four-wave mixing (DFWM) [53, 54], nearly-degenerate three-

wave mixing [55, 56], spectral analysis [57, 58], and Z-scan [59]. These methods all

depend on the assumption of a mathematical relation between the refractive in-

dex variation ∆n(t) and a previously-known laser intensity envelope I(t), hence do

not have temporal resolution to characterize arbitrary changes of refractive index

originated from other effects such as those mentioned above. DFWM and nearly-

degenerate three-wave mixing are to determine χ
(3)
xxxx(−ω;ω,−ω, ω) by sending three
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waves as the input to the material and measuring the output intensity of the fourth

wave. The spectral analysis is to fit the SPM spectrum with the nonlinear propaga-

tion model, and Z-scan is based on measuring the change of laser beam divergence

due to self-focusing. The measurement results from all of the techniques above are

also spatially-averaged and are beam profile dependent, as mentioned, for example,

in Ref. [51], and thus do not have spatial resolution.

Time-resolved interferometry was employed for transient refractive index mea-

surement [60, 61]. In general, this scheme employs a weak laser beam, which is sent

to an interferometer and is first split into two arms as probe and reference, where

the sample is placed in the probe arm. A strong pump beam overlaps the probe

beam in the sample and induces cross-phase modulation. Then the probe beam is

recombined with the reference, and the spatial interference pattern is sampled by

the photodetector. The effective optical path length of the probe beam changes due

to laser-induced refractive index shift in the sample, resulting to shift of the inter-

ference fringes. The time dependence of the fringe shift can be resolved by scanning

the pump-probe delay, and therefore ∆φ(t) and ∆n(t) can be reconstructed, with

resolution limited by the probe pulse duration. Interferometry is highly sensitive

but also unstable. Perfect spatial and temporal overlaps between two arms are re-

quired, and mechanical damping, ambient air flow reduction, or even active optical

path length stabilization (for example, Ref. [60]) are usually required to compensate

vibration-induced jitter of arm length difference. Careful design of optical system is

also required to minimize wavefront distortion.
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2.2 Single-shot supercontinuum spectral interferometry

Spectral or frequency domain interferometry (SI) [62] is another technique

developed to study the ultrafast transient refractive index change induced by the

interaction of intense short duration pump laser pulse with a medium. This method

has been applied, for example, to measure the pump-induced phase modulation in

absorptive materials [63] and optical fibers [64, 65]. Because of its sensitivity and

also its simplicity as a linear method, SI has also proven useful in the temporal

characterization of intense laser-plasma interactions, including density evolution of

femtosecond laser produced plasma [66, 67], plasma shock waves [68], laser-cluster

interactions [69], and laser wakefields [70, 71, 72].

The apparatus of SI is shown in Fig. 2.1. Two short, weak and identical laser

pulses (“reference” and “probe”) with temporal separation τ propagate collinearly

along with an intense pump pulse through the interaction zone. The probe overlaps

with the transient pump-induced refractive index change of the medium so that it

gains a phase shift, while the reference arrives earlier and is not affected. The pump

is then removed from the beam path and the reference and probe are sent to a

spectrometer. The reference and probe fields Er and Epr are expressed as

Er(z = ∆L, t) = Er0(t) exp [i(k0∆L− ω0t)] (2.2)

and

Epr(z = ∆L, t) = Epr0(t− τ) exp [i (k0∆L− ω0(t− τ))] exp
(
i∆n

ω0

c
∆L
)
, (2.3)

35



where ∆L is the interaction length, Er0 and Epr0 are slowly varying amplitudes.

Defining the Fourier transform as

Ã(ω) =

∫ ∞

−∞

A(t)eiωtdt, (2.4)

and the inverse Fourier transform as

A(t) =
1

2π

∫ ∞

−∞

Ã(ω)e−iωtdω, (2.5)

the recorded spectrum is

∣∣∣Ẽr(ω) + Ẽpr(ω)
∣∣∣
2

=
∣∣∣Ẽr0(ω − ω0)

∣∣∣
2

+
∣∣∣Ẽpr0(ω − ω0)

∣∣∣
2

+ 2
∣∣∣Ẽr0(ω − ω0) Ẽ

∗

pr0 (ω − ω0)
∣∣∣
2

cos
(
ωτ +∆n

ω0

c
∆L
)
,

(2.6)

which produces a frequency dependent series of fringes with frequency spacing 2π/τ

plus a phase shift ∆φ = ∆nω0∆L/c caused by the pump-induced perturbation of

the refractive index ∆n, averaged over the duration of the probe pulse. This phase

shift can be directly extracted from the interferogram using the method proposed by

Takeda et al [73]. First, using a dummy variable t′ to replace ω, a Fourier transform

t′ → ω′ is applied to Eq. 2.6, which produces three peaks located at zero and ±τ

“frequencies”. Then a bandpass filter centered at +τ with proper width is used to

select only the positive frequency component. To ensure correct phase retrieval, the

value of τ should be large enough to prevent overlap of DC and ±τ components, and

its upper limit is determined by 2π/dω, where dω is the spectral resolution per pixel
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Figure 2.1: Schematics of spectral interferometry, after Ref. [72].

on the detector. Larger τ means denser fringes on the detector of the spectrometer,

and there will not be enough detector pixels to represent a fringe if its period is too

small, which causes loss of information. Finally, by performing an inverse Fourier

transform of the filtered signal and subtracting the linear phase ωτ from the result,

the phase shift ∆φ at a certain pump-probe delay can be recovered.

In the standard version of SI (for example, ref. [66]), the full evolution of the

transient refraction index can be retrieved by stepping through relative time delays

between the pump pulse and the reference-probe pulse pair, assuming that the probe

pulse duration is much shorter than the time scale of refractive index modulation.

Thus for such multi-shot method, there are two stringent requirements for obtain-

ing a complete, high temporal resolution trace of refractive index evolution: an

ultrashort probe pulse, and a high degree of shot-to-shot reproducibility. However,

both shot-to-shot fluctuations in the pump pulse and the typically highly nonlinear
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response of the excited medium make good reproducibility difficult. Usually nec-

essary is multi-shot averaging for each probe delay, which is time-consuming and

may also result in the averaging to zero of real but small phase effects swamped by

the shot-to-shot fluctuations. Standard SI is thus almost impractical for measuring

the effects of high intensity laser pulses with repetition rate much lower than 1 Hz.

For higher repetition rate systems, for example, the widely used 10 Hz Ti:Sapphire

tabletop terawatt laser, in addition to fluctuations there may be long term drift of

output energy, frequency and pulse shape, which can introduce systematic errors

during the course of an experiment as the probe is delayed.

To overcome these difficulties, various versions of single-shot spectral inter-

ferometry (SSI) have been developed. These utilize chirped reference and probe

pulses [74, 75, 76], or an unchirped reference pulse and a chirped probe pulse

[77]. For a linearly chirped pulse with a Gaussian spectrum of full width at half

maximum (FWHM) ∆ω centered at ω = ω0 and group delay dispersion (GDD)

β2 = 1/2 (∂2φ/∂ω2)|ω0
, where φ(ω) is the pulse phase in the frequency domain, the

frequency sweep is given by ω = ω0 + bt with chirp parameter [78]

b ≈ 1

2
β−1
2

[
1 + 2β−2

2 (∆ω)−4
]−1

.

The chirped probe pulse is temporally overlapped onto the full transient index evo-

lution, so that the varying phase shift is encoded onto the chirped pulse’s frequency

components. This eliminates the needs of scanning the delay line.

The frequency-dependent fringe shift ∆φ(ω) recorded by the spectrometer al-
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lows extraction of the index-induced phase transient Φ(t = (ω − ω0)/b) from a

single interferogram. However, this frequency-to-time “direct mapping” approach is

resolution-limited to [78]

∆tres ≈ (∆ω)−1
[
1 + 2β2

2(∆ω)4
]1/2

,

indicating that bandwidth-limited resolution of ∆tres ∼ (∆ω)−1 is achievable only

for β2(∆ω)2 ≪ 1. Thus for fixed bandwidth pulses that are stretched longer (smaller

b and larger β2) in order to capture longer duration events, ∆tres increases and time

resolution is degraded [78].

In order to take advantage of a potentially large bandwidth ∆ω and to achieve

the best time resolution, a different approach is needed for analyzing the spectral

interferogram. For chirped probe and reference pulses Ẽpr = Ẽpr0(ω) exp(iφpr(ω))

and Ẽr = Ẽr0(ω) exp(iφr(ω)), where Ẽpr0(ω) and Ẽr(ω) are real and ∆φ(ω) =

φpr(ω) − φr(ω) is the spectral phase difference between probe and reference, the

same technique applied to original SI allows extraction of ∆φ(ω) from the spectral

interferogram

∣∣∣Ẽr0(ω)
∣∣∣
2

+
∣∣∣Ẽpr0(ω)

∣∣∣
2

+ 2
∣∣∣Ẽr0(ω)Ẽpr0(ω)

∣∣∣ cos (∆φ(ω) + ωτ) , (2.7)

where τ is the probe pulse delay with respect to the reference pulse. Combining

∆φ(ω) with the knowledge of probe and reference spectra measured by the spec-

trometer |Ẽpr0(ω)| ∝
√
Ipr(ω), |Ẽr0(ω)| ∝

√
Ir0(ω), and also the chirped spectral
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phase φr(ω) of the reference pulse obtained by cross-phase modulation [78], the

probe temporal phase shift ∆Φ(t− τ) is extracted using Fourier transforms [78]:

∆Φ(t− τ) = Im

[
ln

(∫
Ẽpr0(ω)e

i(φr(ω)+∆φ(ω))e−iω(t−τ)dω
∫
Ẽr0(ω)eiφr(ω)e−iω(t−τ)dω

)]
, (2.8)

and the time-domain probe signal Epr(t) exp(i∆Φ(t)) can be reconstructed. If an

imaging spectrometer is used, the phase shift can be spatially resolved along the

direction of the entrance slit, and a temporally and 1-D spatially resolved phase

shift ∆Φ(x, t) can be used to determine the transient refractive index n(x, t) from

(2π/λ0)n(x, t)L = ∆Φ(x, t), where λ0 is the probe vacuum wavelength, x is the

spatial coordinate transverse to the probe beam (and along the spectrometer slit),

and L is the effective interaction length in the medium.

Essential to SSI is a broadband probe pulse. Specialized Ti:Sapphire oscillators

and optical parametric amplifiers (OPA) might fulfill this requirement for output

bandwidths exceeding 100 nm. However, this would dramatically increase the sys-

tem cost and complexity. A convenient way to obtain broad bandwidth is through

supercontinuum (SC) generation. By focusing a 80 fs, 1 mJ, 800 nm Ti:Sapphire

laser pulse in atmospheric pressure air, ∼ 100 nm bandwidth SC probe and refer-

ence pulses centered at ∼ 690 nm were generated (with total SC energy 10–100 µJ),

making single-shot supercontinuum spectral interferometry (SSSI) feasible [78]. In

SSSI, temporal resolution of ∼ 10 fs was achieved [79], with probe bandwidth and

spectrometer resolution as the only limiting factors. An added feature is that for

experiments using 800 nm pump pulses, the SC probe central wavelength of ∼ 700
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nm introduces negligible pump-probe walkoff owing to the mismatched group veloc-

ities during propagation through the interaction region. Pump-probe walkoff can

degrade the temporal resolution, and the pump and probe wavelengths should be as

close as possible to minimize this effect, thus it can be a problem for schemes using

second harmonic probe pulses [77]. SSSI has been used to measure the transient

Kerr nonlinearity in a solid [78], laser-induced double step ionization of helium [79],

laser-heated cluster explosion [69, 80], and intense laser coupling into plasma waveg-

uides [81]. Recently, SSI with a broadband chirped second harmonic (SHG) probe

pulse at ∼ 400 nm was used to measure laser wakefields induced by 800 nm pump

pulses [82], but with less temporal resolution and more walkoff than with SSSI.

Note that a recent and popular method to generate a broadband supercon-

tinuum is to guide a femtosecond laser pulse through a photonic crystal fiber [83].

However, fiber damage limits the pump laser pulse energy to the nanojoule level [84].

For a single-shot measurement where there may be significant background light, such

as in laser-plasma experiments [69], nanojoule supercontinuum pulse energy is too

low for practical application.

In this chapter, an improved SSSI setup employing a commercial kilohertz re-

generative amplifier system producing 1 mJ, 110 fs pulses is implemented. SC pulses

are generated with much lower pulse energy (than in Ref. [78]) in a sealed Xe gas

cell, leaving sufficient pulse energy to use as a pump in a wide range of experiments.

This new configuration will be discussed in detail, and it has been applied to mea-

surements of the Kerr nonlinearity in optical media. The measurement of molecular

orientational effect on transient refractive index is also presented in this chapter and
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will be further investigated in Chapter 4. The SC pulses also have excellent shot-

to-shot stability, making possible the averaging of results over many thousands of

shots if desired. The measurements shown in Chapter 4 have benefited from direct

averaging of multiple interferograms, especially for laser-induced alignment revivals

of D2 and H2, which produce very weak refractive index shift in our experiment

conditions.

2.3 Experimental setup

Two laser pulses were split at beamsplitter BS1 from the output of a com-

mercial Ti:Sapphire regenerative amplifier (RGA) (Spectra-Physics Spitfire) with 1

kHz repetition rate (see Fig. 2.2). In our previous work [69, 78, 79, 80, 81] SC was

generated by focusing in 1 atm air a ∼ 1 mJ, 70 fs laser pulse split from a 10 Hz,

2 TW Ti:Sapphire laser system based on a 10 Hz regenerative amplifier followed by

two power amplifiers. Pulse-to-pulse output energy fluctuations of ∼ 10–15% were

determined by fluctuations of the 10 Hz, 532 nm pump laser pulses. Here, the 1

kHz RGA is pumped by a CW arc lamp-pumped, intra-cavity doubled Q-switched

Nd:YLF laser (Spectra Physics Merlin), with pulse-to-pulse energy fluctuation less

than 2%. The result is very stable SC on a shot-to-shot basis.

For SC generation, one of the pulses (∼ 300 µJ) was focused at f/6 into

an 11-cm long xenon-filled (0–2 atm) gas cell (XGC) with 1-mm thick fused silica

entrance and exit windows. Xenon gas has previously been observed to generate

very broad supercontinuum spectra under femtosecond laser pulse illumination [85].
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Figure 2.2: Experimental setup. BS1: beamsplitter, XGC: xenon gas cell, MI: Michelson
interferometer, P: 500 µm pinhole, SF4: 2.5-cm thick SF4 glass as dispersive material,
HWP: half waveplate, M: zero degree Ti:Sapphire dielectric mirror, BS2: beamsplitter for
combining pump and SC pulses. The pump beam energy can be tuned by another set of
half waveplate and polarizer, which is not shown in this figure.

The SC pulse (along with the fundamental) emerges from the propagation filament

induced by χ(3) self-focusing. The cell windows were sufficiently far from the beam

waist/filament that they provided no contribution to the SC generation. The conical

emission was transversely spatially chirped, with frequency increasing with radial

position. This emission, with approximately 10 µJ/pulse in the SC component

and the rest at the fundamental frequency, was collected by a lens at f/3 and

converted into weakly converging beam, from which the fundamental component

was removed by passing the beam through a high reflection dielectric mirror (M)

centered at λ = 800 nm. The slightly converging SC pulse was then passed through a

Michelson interferometer (MI) to generate a pair of co-propagating, identical pulses

with variable delay (the reference and probe pulses). Beyond the Michelson, the
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converging beam spot was now small enough to efficiently reduce its spatial chirp and

shape its transverse profile by placing a 500-µm diameter pinhole (P) in its path. By

fine tuning the transverse position of the pinhole, a SC beam with high brightness,

broad bandwidth, good spatial coherence, and uniform beam profile was obtained.

The SC beam was then collimated by a telescope with 2× magnification, and the

pulse duration and chirp parameter were tuned by adding appropriate lengths of

dispersive material in the beam path. In the results shown here, a 2.5-cm thick

optical grade SF4 glass window is used. This stretched the reference/probe pulses

to ∼ 2 ps, providing a 2 ps window for single-shot measurements of refractive index

transients.

The other beam from BS1 was passed through an adjustable delay line and

served as the pump. A half waveplate (HWP in Fig. 2.2) in this beam allowed

independent pump polarization adjustment with respect to the SC beam. The SC

and the pump beam paths were collinearly recombined at BS2, and focused by a

f=41 cm lens into the sample to be measured. In the work presented here, the

sample was either 200 µm thick BK7 window or a 45 cm long high pressure gas

cell with 1 cm thick broadband anti-reflection coated fused silica windows. In the

case of the gas cell, the windows were far enough from the pump focus so as to not

contribute to any pump-induced phase shifts (cross phase modulation) to the probe.

To keep the pump intensity low at the cell windows, the pump beam was expanded

with 2× magnification before the focusing lens. The pump Rayleigh range in the

cell was z0,p = 4.5 mm with a full width at half-maximum (FWHM) focal spot size

of 36 µm by 27 µm. Pump peak intensities were determined by the known pulse
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energy, pulse shape (from SSSI (see below) and independently from a Grenouille

measurement [86]), and relay images of the pump spot recorded on a 14-bit CCD

camera. The SC beam Rayleigh range was z0,sc = 24.6 cm with a FWHM spot size of

270 µm. In the interaction region, the probe beam therefore significantly overfilled

the pump in the transverse plane, allowing observation of the pump-induced phase

shift across the full pump profile. The “exit” plane of the pump interaction region

was imaged beyond the sample onto the spectrometer slit at 6.9× magnification.

Along this beam path, the combined pump/SC beam exiting the sample was passed

through a zero degree dielectric Ti:Sapphire mirror (M) to reject the pump beam.

The f/2 imaging spectrometer consisted of a diffraction grating with 1200 mm−1

groove density and a 10-bit CCD camera (SONY XCD-SX910), which captured full

frame images of 1280× 960 pixels at 7.5 frames per second. The ∼ 72 nm spectral

window projected on the CCD sensor chip ranged from 651.7 nm to 723.2 nm, and

the one-dimensional source spatial resolution was 0.67 µm/pixel along the entrance

slit direction.

As discussed earlier, extraction of the probe temporal phase shift ∆Φ(x, t),

where x is the coordinate along the spectrometer slit axis in the image plane, can be

achieved by either direct frequency-to-time mapping or through Fourier transforms.

For extraction by Fourier transform, the full spectral phase φpr(ω) = φr(ω)+∆φ(ω)

of the probe pulse is required, necessitating knowledge of the reference phase φr(ω).

Determining this through the second order dispersion φr(ω) ∼= β2(ω − ω0)
2 and

neglecting higher order terms has been found to be sufficient for pump pulses > 20

fs [78]. To obtain β2, a calibration procedure using cross-phase modulation, similar

45



to the method in Ref. [78], was applied: interferograms were recorded under varying

delay τ between pump and probe pulses in 100 psi argon, giving a sequence of

identical ∆φ(ω) traces, but shifted in frequency. For each trace the frequency ω′ of

maximum ∆φ(ω) was identified and plotted against τ . A linear fit to this plot gave

for the linear chirp parameter 1/b = a = 2β2

(
1 + (2 ln(2))2β−2

2 (∆ω)−4
)
= 7820 fs2.

This agrees well with the calculated total dispersion introduced by total lengths of

1.1 cm of fused silica, 3.5 cm of BK7, and 2.5 cm of SF4 in the SC beam path. Our

SC probe spectral width of ∼ 100 nm gives β−2
2 (∆ω)−4 ≪ 1, and therefore β2 ≈ a/2.

2.4 Results

Figure 2.3 shows sample spectral interferograms and extracted transient re-

fractive index shifts ∆n(x, t) using the gas cell filled with argon at room temper-

ature. The CCD shutter speed was set to ∼ 1 ms to ensure that only one shot

was recorded per image. Argon is a monatomic gas where the lowest order non-

vanishing nonlinearity (χ(3)) at 700–800 nm is electronic, nonresonant, and nearly

instantaneous, so below the ionization threshold the time- and 1D-space-dependent

nonlinear phase shift due to cross-phase modulation (XPM) is given by ∆ΦAr(x, t) =

k
∫
∆n(x, z, t)dz = k(2n2,Ar)

∫
I(x, z, t)dz, where n2,Ar is the self-phase modulation

(SPM) nonlinear refractive index for argon [2]. It is thus convenient to define an

effective interaction length L by ∆ΦAr(x, t) = k∆n(x, t)L = k(2n2,Ar)I(x, t)L. Thus

the phase shift follows the time and one-dimensional transverse envelope I(x, t) of

the pump pulse intensity.
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Figure 2.3: Spectral interferograms showing laser-induced, wavelength-dependent fringe
shift in argon at (a) 7.8 atm and Ipeak = 4.1× 1013 W/cm2 and (b) 4.4 atm and Ipeak =
7.7×1013 W/cm2, where plasma is observed as a long tail extending to the short wavelength
edge on the interferogram. Note that the SC probe and reference pulses are positively
chirped, thus a shorter wavelength on the interferogram means a later time. The 1D space
and time variations of the effective argon nonlinear refractive index change ∆n extracted
from (a) and (b) are shown in (c) and (d), respectively. The positive index shift is due to
instantaneous electronic nonlinearity, which follows the pump pulse temporal profile. The
plasma-induced negative index shift is seen in (d) following the pump pulse. The baseline
noise in extracted ∆n(x, t) plots is determined by the CCD camera pixel size, which sets
the minimum resolvable fringe shift in (a) and (b).
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In Fig. 2.3(a) the pump pulse intensity was intentionally kept far below the

argon field ionization threshold (∼ 1014 W/cm2 [87]). In Fig. 2.3(b) the intensity

was increased so that plasma was generated. The wavelength-dependent interference

fringe shifts in Fig. 2.3(a) and Fig. 2.3(b) represent the transient modification of re-

fractive index in the argon gas and gas/plasma. Figure 2.3(c) shows the 1D space and

time variation of the argon nonlinear refractive index shift ∆n(x, t) extracted from

Fig. 2.3(a), using an effective nonlinear interaction length LAr = 2.85 mm, which is

explained below: note that for well-defined gas interaction lengths, such as provided

by a thin (≪ 2z0,p) gas jet [79], L could be considered a known quantity and n2 could

be extracted. Here, however, for the longer gas cell, where the effective nonlinear

interaction length is less well-defined, we wish to extract L. The procedure was to

compare the nonlinear Kerr effect phase shift in the gas cell, ∆ΦAr(x, t), to that in

a thin BK7 (borosilicate glass) window ∆ΦBK7(x, t) = k(2n2,BK7)LBK7I(x, t), where

the window thickness is LBK7 = 200 µm≪ 2z0,p. Thus LAr =
(∆ΦAr)(2n2,BK7)

(∆ΦBK7)(2n2,Ar)
LBK7,

using values of n2,BK7 = 1.75 × 10−16 cm2/W obtained from SSSI measurement

described later, and n2,Ar = 9.8× 10−20 cm2 W−1 atm−1 from Ref. [88].

Figure 2.3(d) shows ∆n(x, t) extracted from Fig. 2.3(b), including the gener-

ation of plasma. The initial profile of ∆n is similar to Fig. 2.3(c), then the onset of

plasma generation drives ∆n to a value ∆nplasma ∼ −0.8 × 10−5, corresponding to

an on-axis electron density of 3.8 × 1016 cm−3, which stays effectively constant for

the remainder of the 2 ps probe window. The gas density is 1.2× 1020 cm−3, which

means only ∼ 0.04% of argon atoms are ionized. Plasma recombination occurs on

a longer, nanosecond time scale. As an example of the good shot-to-shot stability
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Figure 2.4: 250 shot average (solid line) and a single shot trace (circles) of refractive index
transient ∆n(x = 0, t) (and extracted phase ∆Φ(x = 0, t)) along the beam axis for 6.4
atm nitrogen. The results agree well, confirming good shot-to-shot stability. The pump
energy was 60 µJ, corresponding to Ipeak = 4.1 × 1013 W/cm2, below the threshold for
nitrogen ionization.

made possible through use of a kHz regenerative amplifier system, Figure 2.4 shows

a 250 shot average and a single shot sample of the phase and refractive index tran-

sient from an unionized 5.1 atm nitrogen sample. The results agree well. Evidence

of shot-to-shot stability of the SC generation in both spectrum and transverse spa-

tial distribution is further demonstrated by Figure 2.5, which shows a comparison

of a single shot spectral interferogram to an interferogram averaged over 300 shots,

of pump interaction with 5.1 atm of N2O.

Figure 2.6 shows the nonlinear phase shift ∆nBK7(x, t) for the 200 µm thick

BK7 window, which compares quite well to ∆nAr(x, t) in Fig. 2.3(c), as it should:

in BK7 glass, the dominant low order nonlinearity (χ(3)) is also electronic, non-

resonant, and nearly instantaneous. Thus both phase shifts are proportional to

I(x, t), justifying our method above for finding LAr.
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(a)

(b)

Figure 2.5: (a) A sample single-shot spectral interferogram taken in 5.1 atm N2O with
1.4 × 1013 W/cm2 pump intensity. (b) Averaged spectral interferogram image over 300
laser shots, taken in the same condition as (a). The close resemblance between single-shot
and multi-shot-averaged spectra indicates good stability in SC generation.

Figure 2.7 shows a comparison of the pump-induced nonlinear index change

in Ar, N2, and N2O samples for times near the pump laser pulse. Unlike Ar, the

other species are linear molecules with an inertial contribution to their nonlinearity,

which corresponds to delayed molecular axis alignment along the laser polarization

resulting from the torque experienced by the induced molecular dipole in the laser

field [89]. The prompt and delayed refractive index response can be expressed as

∆n(t) = 2n2,SPMI(t) +
∫∞

−∞
R(τ)I(t − τ)dτ , where n2,SPM is the SPM nonlinear

refractive index, and R is a molecular response function [90]. As discussed earlier,

the response of Ar is near instantaneous, as expressed by the first term only. Due

to the inertial effect, the nonlinear responses of N2 and N2O do not follow the laser

pulse intensity envelope, which is represented by the Ar response. The full theory

50



time (fs)

x ( m)m

Dn

0.0

0.5

1.0

1.5

-400 -200 0 200 400

0

1

2

3

time (fs)

D
n

D
F

(r
a

d
)

(x10 )
-3

Figure 2.6: Induced nonlinear refractive index shift ∆n(x, t) from a 200 µm-thick BK7
window with 5 µJ pump pulse energy and 3.4 × 1012 W/cm2 peak intensity. The inset
is the probe phase shift ∆Φ(x = 0, t) with corresponding ∆n(x = 0, t) (solid line). The
temporal phase evolution profile from 7.8 atm argon (Fig. 2.3(a)), normalized to the same
peak phase value, is shown here for comparison (circles).
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Figure 2.7: Measured nonlinear refractive index shift ∆n(x, t) in Ar, N2, and N2O. For
the linear molecules N2 and N2O, part of the nonlinearity is contributed by the inertia
of molecular rotation, which causes a delayed response which does not follow the pump
pulse shape.

explanation on the molecular rotational effect will be given in Chapter 3.

2.5 Conclusion

In conclusion, a spectral interferometer is developed, which is capable of

recording single shot records of refractive index transients with ∼ 10 fs time reso-

lution and 1D space resolution in a 2 ps window. It uses chirped supercontinuum

probe pulses generated from the self-focusing of few hundred microjoule, femtosec-

ond pulses in a Xe gas cell. This diagnostic is suitable for use with modest energy
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femtosecond laser systems such as those based on kHz or multi-kilohertz Ti:Sapphire

regenerative amplifiers, which are the workhorse system in many ultrafast optics and

molecular physics laboratories.
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Chapter 3

Laser alignment of linear molecules

3.1 Introduction

Many species of liquid or gas molecules can be aligned along a specific symme-

try axis with the presence of an external electric field, and a famous example is the

liquid crystal. In fact, the field alignment applies to any molecule with anisotropic

polarizability. Take a simple diatomic molecule without permanent dipole moment,

such as oxygen or nitrogen, for example, in an external electric field. The for-

mal treatment to this problem requires quantum mechanics, but it is intuitive to

show the molecular behavior qualitatively using classical approach. As shown in

Fig. 3.1, the molecular polarizability tensor α can be decomposed into two compo-

nents along the two orthogonal symmetry axes. α‖ is along the molecular “long”

axis (z in Fig. 3.1(a)) and generally is larger than α⊥, which is in the direction of

the “short” axis lying on the plane defined by the field direction (ẑ′ in Fig. 3.1(a))

and the molecular long axis z. When the electric field is applied, the induced dipole

moment is

p = p‖ + p⊥ = α‖E cos θê‖ + α⊥E sin θê⊥, (3.1)
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where ê‖ and ê⊥ are unit vectors along the long and short axes, respectively. The

molecule thus experiences a torque

τ = p× E = ∆αE2 sin θ cos θ(ê⊥ × ê‖), (3.2)

where ∆α = α‖ − α⊥. The stored energy can be calculated by rotating the dipole

against the field:

U =

∫
τdθ′ = ∆αE2

∫ θ

0

sin θ′ cos θ′dθ′ =
1

2
∆αE2 sin2 θ. (3.3)

By choosing U(θ = π/2) = −1
2
α⊥E

2, one can obtain the induced dipole potential

U = −1

2
E2
(
α‖ cos

2 θ + α⊥ sin2 θ
)
= −1

2
p · E. (3.4)

The factor 1/2 comes from the fact that this is induced not permanent dipole mo-

ment, and hence is proportional to
∫
EdE rather than E · E.

If the molecule is treated as a classical rigid rotor and has the moment of

inertia I about a certain rotation axis, then it is rotated by the torque with the

angular acceleration

θ̈ = −τ

I
= −∆αE2

2I
sin 2θ, (3.5)

where I =
∑

mir
2
i is calculated from the mass of ith atom mi and its normal

distance to the rotation axis ri, and the rotation axis intersects the molecular center

of mass. I is assumed constant if the molecule is not deformed by the centrifugal
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Figure 3.1: (a) The classical “dumbbell” model of a diatomic molecule having anisotropic
polarizabilities α‖ and α⊥, with molecule-fixed and space-fixed coordinates labelled. (b)
A linearly-polarized electric field induces a net dipole moment which is generally not in
the same direction as the field. The molecule then experiences a torque from the electric
field and tends to line up along the field direction.

force, which is generally true at room temperature.

If E is a DC field or is varying slowly, then the equation of motion Eq. 3.5

can be solved by integration under the assumption of a constant E, which gives the

angular frequency

ωrot(t) =

√
∆αE2

2I

√
cos 2θ(t)− cos 2θ0, (3.6)

where θ(t0) = θ0 is the initial orientation angle of the molecule with respect to field

direction, and θ(t) under adiabatic limit (slowly varying E(t), i.e., (dE/dt)/E ≪

θ̇/θ) can be obtained by solving the elliptical integral. Note that we have assumed

ωrot(t0) = 0 for simplicity. In fact, Eq. 3.5 has the form ∝ sin 2θ(t) and is similar

to the pendulum equation, which is ∝ sin θ(t). Hence the molecule undergoes pen-

dulum oscillation in a quasi-static field, and the molecular axis periodically aligns
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along the field direction. Using small angle approximation, the oscillation period is

Trot = 2π

√
I

∆αE2
, (3.7)

and as expected, the molecule rotates faster with larger ∆α and E, or smaller I.

Also the temporal variation of E must be much slower than Trot to make adiabatic

limit valid.

On the other hand, if the external electric field turns on and off rapidly, such

as the case of the linearly-polarized femtosecond laser pulse, the molecule could just

rotate a small angle in the duration of the pulse. If this duration is much shorter than

2π/ωrot, the pulse can be approximated by a δ-function E2(t) = (8π/c)Fδ(t − t0)

with a finite fluence F , and the molecule can be regarded stationary when the laser

pulse arrives. After the laser pulse is gone we obtain an angular velocity as a function

of initial molecular orientation, with the magnitude

ωrot =
4π∆αF

cI
sin 2θ0, (3.8)

which is pointing toward φ̂′ direction (azimuthal to the field direction ẑ′) as shown

in Fig. 3.1(a). In an ensemble of liquid or gas molecules at thermal equilibrium,

the molecular orientation (θ0, φ0) is random at any moment before the presence

of the laser pulse, with rotational kinetic energy distribution satisfying Maxwell-

Boltzmann statistics. This extra angular velocity component ωrotφ̂′ introduced by

the “kick” of the laser pulse makes the molecules rotate more preferably about axes
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lying on x′-y′ plane on Fig. 3.1(a), namely, one may find the molecules have higher

probability pointing toward the field direction ẑ′ when taking a snapshot of the

ensemble after the laser pulse is gone.

In the diatomic molecule, the two atoms are indistinguishable if they are the

same species of isotope, so the molecules at angles θ and (π − θ) with respect to

laser polarization are also indistinguishable. In this case, the molecular alignment

rather than orientation is meaningful. The former is defined as the absolute angle

[0, π/2] between the external field direction and the most polarizable symmetry axis

of the molecule, and the latter is defined in the similar way but with angular range

[0, π] and with consideration of swapping non-identical atoms. For instance, for

the linear molecule N2O, N-N-O and O-N-N are two different orientations but have

the same alignment. To evaluate the statistical “degree” of molecular alignment

in the system, average of the quantity cos2 θ over all molecules at a specific time

in the system is frequently used, which is denoted as 〈cos2 θ〉t, with subscript t

indicating the time dependence since the simple classical analysis above shows the

aligning field imposes complex rotational dynamics on the molecules. This is not

only a convenient definition satisfying the requirement of indistinguishable θ and

(π − θ), but also an observable of the quantum mechanical system, which can be

easily measured and will be discussed later in this chapter. Note that it is also

possible to measure the orientation 〈cos θ〉t for polar molecules, i.e., those who do

not have reflection symmetry about the rotation axis, using non-optical methods

such as Coulomb explosion [91].

At thermal equilibrium in the system, the molecular orientation is random,
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then the ensemble average

〈cos2 θ〉t =
1

2π

∫ 2π

0

dφ

∫ π
2

0

cos2 θ sin θdθ =
1

3
(3.9)

is obtained by integrating over 2π solid angle or the upper unit hemisphere and is

a constant at any time. This is justified by the ergodic hypothesis, that ensemble

averages of random systems can be computed as averages over coordinates. The

value 1/3 is the baseline when there is no net alignment in the ensemble, therefore

we can formally define the degree of alignment as 〈cos2 θ〉t − 1/3. The system at

some instance t = t0 is said to have some degree of “alignment” when 〈cos2 θ〉t=t0 −

1/3 > 0, and to have some degree of “anti-alignment” when 〈cos2 θ〉t=t0 − 1/3 <

0. The maximum degree of alignment has the value 2/3 and occurs when every

molecule in the ensemble is aligned along the field direction. On the contrary, the

maximum degree of anti-alignment is −1/3, and happens when the molecules are

all perpendicular to the field direction.

Various laser cooling and optical trapping techniques (for example, Refs. [92,

93, 94]) have been developed to spatially confine or translate atoms, molecules and

small objects such as cells and have wide applications. Similarly, manipulating align-

ment or orientation of molecules is also of great interest. Unlike the single atom, the

molecule generally does not have spherical symmetry, and it is naturally to expect

that its chemical and physical properties are orientation- (alignment-) dependent.

Take two chemical reactions related to methyl iodide Cl− + CH3I → CH3Cl + I−

and Rb + CH3I → RbI + CH3 for example. The former most probably occurs when
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the Cl− ion collides the CH3I molecule at the methyl functional group side [95], and

the latter happens preferably when the Rb atom approaches the iodide end of the

molecule [96]. One can maximize the rate for different reactions by selecting the

proper molecular orientation. In Atomic, molecular, and optical (AMO) physics and

high harmonic generation (HHG), laser alignment helps to study some fundamental

problems such as angular dependence of optical ionization rate [97] and alignment-

controlled high harmonic generation [98] of linear molecules. Moreover, interference

of electron de Broglie waves during the recombination process in laser-aligned and

ionized CO2 molecule is observed via HHG [99]. Other important contributions

with the aid of laser alignment include tomographic reconstruction of molecular

orbitals [100] and electron charge localization in H2 and D2 molecules during the

photoionization by attosecond pulses [101].

3.2 Transient refractive index arises from molecular alignment

In a system of gaseous linear molecules at thermal equilibrium, the molecules

are randomly oriented. At macroscopic scale the system is isotropic because the

anisotropic polarizability from each molecule is averaged out. However birefringence

can occur when some degree of alignment emerges in the system. To show this, we

start from the dielectric response tensor in a gas sample

ǫ = 1 + 4π〈χ〉t = 1 + 4πN〈α〉t, (3.10)

60



whereN is the number density of the molecules, 〈α〉t is the time-dependent ensemble

average of the second rank molecular polarizability tensor α, and the induced dipoles

on each molecule is assumed to have no interaction with each other. Then the index

of refraction becomes

n2 = 1 + 4πN〈ê ·α · ê〉t, (3.11)

with

〈ê ·α · ê〉t = 〈
∑

i

∑

j

eiαijej〉t ≡ 〈eiαijej〉t. (3.12)

Here, ê is the optical field polarization, and for simplicity the summation signs

are omitted. This Einstein summation convention for repeated indices will be used

throughout this Dissertation. The refractive index is in the form of Eq. 3.11 because

the induced polarization is not necessarily in the same direction of the electric field.

One has to find the projection of P onto E to obtain the refractive index along the

field polarization direction.

For a linear molecule, where we choose the body-fixed axis z to be along the

molecular axis as shown in Fig. 3.1, the polarizability tensor can be diagonalized:

α =




αxx 0 0

0 αyy 0

0 0 αzz



=




α⊥ 0 0

0 α⊥ 0

0 0 α‖



. (3.13)

Owing to molecular symmetry about the z-axis, the optical electric field can be taken

as E = x̂Ex+ ẑEz for a particular molecular orientation. Therefore, for an ensemble

of molecular orientations in the space-fixed field, n2 = 1+4πN(〈e2x〉tαxx+ 〈e2z〉tαzz),
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or

n2(t) = 1 + 4πN
(
∆α〈cos2 θ〉t + α⊥

)
, (3.14)

where ∆α = α‖ − α⊥ and ez = ê · ẑ = cos θ is the cosine of the angle between the

molecular (z) axis and the electric field. Since 4πN∆α ≪ 1 in a molecular gas, this

allows an approximation of index shift

∆n(t) =
2πN

n0

∆α

(
〈cos2 θ〉t −

1

3

)
, (3.15)

where we have used the fact 〈cos2 θ〉t=−∞ = 1/3 and n2(t = −∞) = n2
0 = 1 +

4πN(∆α/3 + α⊥) when the molecules initially have random orientations prior to

the presence of the aligning field.

The discussion of transient refractive index here has followed the same coordi-

nate convention as field alignment in Sec. 3.1, so Eq. 3.15 can be directly applied to

a linearly-polarized aligning laser pulse itself, or to a following weak “probe” pulse

with the same polarization. Measuring this transient shift of refractive index using

a probe laser directly leads to the information of alignment in the molecular gas

sample, which will be the topic of Chapter 4. Note that If the probe pulse polariza-

tion is perpendicular to the aligning “pump” pulse, it can be shown that the probe

sees a different transient refractive index

∆n(t) =
2πN

n0

∆α

(
1

2
〈sin2 θ〉t −

1

3

)
, (3.16)

where 〈sin2 θ〉t=−∞ = 2/3. This gives a result similar to Eq. 3.15 with half of the
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magnitude of the transient term, and its sign is flipped.

3.3 Quantum rigid rotor

In quantum mechanics, the molecular rotation is described by the rotational

wavefunction of a free rigid rotor, which has the general form:

Ψ(t) =
∑

j,m

aj,m |j,m〉 e−i(Ej/~)t, (3.17)

with eigenenergies

Ej =
~
2j(j + 1)

2I
(3.18)

where I is the moment of inertia, j and m are integers satisfying j ≥ 0 and −j ≤

m ≤ j. Each Ej corresponds to 2j + 1 degenerate Jz states labeled by m. Using

the convention of rotational spectroscopy, Ej = hcBj(j + 1) = ~ωj, where B is the

rotational constant defined as B = ~/(4πcI), and ωj = 2πcBj(j + 1).

The eigenfunctions |j,m〉 are the spherical harmonics

Y m
j (θ, φ) =

√
2j + 1

4π

(j −m)!

(j +m)!
(−1)meimφPm

j (cos θ) , (3.19)

where

Pm
j (x) =

1

2j · j!
(
1− x2

)m/2 dj+m

dxj+m

(
x2 − 1

)j
(3.20)

is the associated Legendre function. Equation 3.19 is obtained from the eigenvalue
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problems of the pair of commuting operators Jz and J2:

JzY (θ, φ) =
h

i

∂

∂φ
Y (θ, φ) = m~Y (θ, φ) (3.21)

and

J2Y (θ, φ) = −~
2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

]
Y (θ, φ) = ~

2λY (θ, φ). (3.22)

3.4 Density matrix formalism

For a system with a known pure quantum state |Ψ〉, such as a single rigid rotor,

it is possible to obtain the expectation value, i.e., the quantum mechanical average

of an observable Q of this state 〈Q〉 ≡ 〈Ψ|Q|Ψ〉. The wavefunction representation of

|Ψ〉 is Ψ =
∑

j aj |j〉, a linear superposition of its eigenstates, where aj is the complex

amplitude satisfying
∑

j |aj|2 = 1. For a stationary state, aj = αje
iφje−i(Ej/~)t, where

0 ≤ αj ≤ 1 is real, Ej is the eigenenergy of |j〉, and φj denotes the phase relation

between each j state. It is possible to determine the quantum probability |aj|2

for all possible j states by performing measurements on many identically-prepared

systems.

However, consider we have a mixture of N systems which are not necessarily

initially identical, namely, each of them could be Ψa =
∑

aj |j〉, Ψb =
∑

bj |j〉, Ψc =

∑
cj |j〉, etc. If N is very large, for example, a 1-cm3 gas sample at 1 atm pressure

and room temperature which contains ∼ 1020 molecules, it is impossible to gain

the full knowledge to this mixed state and explicitly write down the wavefunction.
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Instead, we can specify the probability Pn of a molecule that is in the state Ψn =

anj |j〉, with the constraint
∑

n Pn = 1. Note that Pn is the classical probability

arising from lack of complete information of the system, which is different from the

concept of quantum probability. The ensemble-averaged expectation value of an

observable Q becomes

〈Q〉 =
∑

n

Pn 〈Ψn|Q |Ψn〉

=
∑

n

Pn

∑

jk

anja
∗
nk 〈k|Q |j〉

=
∑

jk

〈j|
(
∑

n

Pnanja
∗
nk |j〉 〈k|

)
|k〉 〈k|Q |j〉

= Tr (ρQ) ,

(3.23)

where Tr denotes the trace of the matrix, and

ρ =
∑

jk

∑

n

Pnanja
∗
nk |j〉 〈k| =

∑

n

Pn |Ψn〉 〈Ψn| (3.24)

is the density operator, with its matrix element

ρjk =
∑

n

Pnanja
∗
nk. (3.25)

The temporal evolution of density operator has the differential equation form

dρ

dt
= − i

~
[H, ρ] , (3.26)
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where H is Hamiltonian of the system, [ ] is the commutator. For an ensemble of

free rigid rotors without interaction with each other or with external electric field,

H = L2/(2I) ≡ H0. Then the matrix representation of ρ, or density matrix, is given

by

ρ =
∑

j′,j,m′,m

ρm
′,m

j′,j |j′,m′〉〈j,m| , (3.27)

under the basis of angular momentum eigenstates |j,m〉. For simplicity we may

use |p〉 ≡ |j′,m′〉 and |q〉 ≡ |j,m〉 for now. The temporal evolution of each density

matrix element becomes

d

dt
ρpq = − i

~
〈p| [H0, ρ] |q〉 = −iωpqρpq, (3.28)

where we have used the definition ~ωpq ≡ (Ep − Eq) for convenience.

If an external electric field is applied, then the interaction Hamiltonian be-

comes H = H0 + hE, where hE = −1
2
p · E − µ · E contains both induced and

permanent dipole moments of the molecules for generality. Now the calculation

of 〈p| [hE, ρ] |q〉 = (hE)pkρkq − ρpk(hE)kq with (hE)pk = 〈p|hE |k〉 is involved. The

matrix element of permanent and induced dipole terms in hE are given by

(hperm)pk = −µE 〈p| cos θ |k〉 , (3.29)

and

(hind)pk = −1

2
E2
[
∆α 〈p| cos2 θ |k〉+ α⊥ 〈p| 1 |k〉

]
, (3.30)

66



respectively. One may identify that

cos θ =

√
4π

3
Y 0
1 (θ, φ), (3.31)

and

cos2 θ =
1

3

[√
16π

5
Y 0
2 (θ, φ) + 1

]
. (3.32)

Employing the theory of addition of angular momenta [102]

∫ (
Y m
j

)∗
Y m1

j1
Y m2

j2
dΩ

=

√
(2j1 + 1)(2j2 + 1)

4π(2j + 1)
〈j1j2; 00|j1j2; j0〉 〈j1j2;m1m2|j1j2; jm〉 , (3.33)

where 〈j1j2;m1m2|j1j2; jm〉 is the Clebsch-Gordan coefficient for |j1 − j2| ≤ j ≤

j1 + j2 and m = m1 +m2, the matrix element of cos θ and cos2 θ can be calculated.

Moreover, the selection rules are easily revealed from the Clebsch-Gordan coefficient

〈j1j2; 00|j1j2; j0〉 in Eq. 3.33, which is nonzero only when j−j1−j2 is even, using the

symmetry relation 〈j1j2;m1m2|j1j2; jm〉 = (−1)j−j1−j2 〈j1j2;−m1 −m2|j1j2; j −m〉

[103]. For permanent dipole moment only j′ = j ± 1 transitions with m′ = m are

allowed, while j′ = j and j′ = j ± 2 with m′ = m are allowed for induced dipole

moment. The selection rulem′ = m is due to the fact that the Hamiltonian hE is not

φ-dependent when the electric field is linearly polarized, therefore 〈Jz〉 is conserved

since d 〈Jz〉 /dt ∝ 〈[hE, Jz]〉 = 0, where Jz = −i~∂/∂φ. Note that the matrix element

〈p| cos2 θ |q〉 can be viewed as a two-photon process
∑

i 〈p| cos θ |i〉 〈i| cos θ |q〉, where
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|i〉 is a set of intermediate virtual states. This explains the selection rule too: the

two photons induce two successive transitions |q〉 → |i〉 and |i〉 → |p〉, with coupling

between j and j ± 1 states for each. The overall possible j-state couplings are

therefore |j〉 → |j〉 and |j〉 → |j ± 2〉.

Defining 〈j′,m′| cos2 θ |j,m〉 ≡ Qm
j′j and 〈j′,m′| cos θ |j,m〉 ≡ Tm

j′j, we have

dρmj′j
dt

= −iωj′jρ
m
j′j +

i∆α

2~
E2
(
Qm

j′qρ
m
qj − ρmj′qQ

m
qj

)

+
iµ

~
E
(
Tm
j′qρ

m
qj − ρmj′qT

m
qj

)
+

(
dρmj′j
dt

)

diss

,

(3.34)

where the last term on the right hand side represents a phenomenological dephasing

term corresponding to collisions and spontaneous emission. Note that both cos θ

and cos2 θ are Hermitian operators, so (Qm
j′j)

∗ = Qm
jj′ and (Tm

j′j)
∗ = Tm

jj′ . Also

note that we only label one m index because there is no coupling between each

m state. Finally, either ensemble-averaged alignment or orientation of molecules is

determined from

Tr(ρ cos2 θ) =
∑

m

ρmjkQ
m
kj, (3.35)

or

Tr(ρ cos θ) =
∑

m

ρmjkT
m
kj , (3.36)

with an additional summation over all m states.

If the electric field E is contributed by a femtosecond laser pulse E(t) =

E0(t) cosωt, where E0(t) is the slowly varying envelope and ω is the carrier frequency,

then it is the cycle average of the laser field dominating the field-molecule interac-
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tion, because the rotational response of the molecules is much slower than the fast

oscillating optical field component. This results in inefficient coupling between the

laser field and the molecular permanent dipole moment because 〈µ · E(t)〉cycle = 0.

At terahertz [104] to microwave [105] frequencies the response from the permanent

dipole moment is more significant. On the other hand 〈p · E(t)〉cycle ∝ 1
2
E2

0(t) for

induced dipole moment, so we may replace the full temporal description E2(t) by

the cycle average 1
2
E2

0(t) in Eq. 3.34. Note that femtosecond-laser-induced molec-

ular orientation has also been demonstrated using two-color laser fields [91] or by

combining a ultrashort laser pulse with a DC field [106].

The matrix elements Qm
jk are calculated from either Eq. 3.33 or from directly

performing the solid angle integration of the spherical harmonics. The nonzero

elements are listed below:

Qm
j−2,j = Qm

j,j−2 =

√
(j2 −m2)

(2j − 1)2
((j − 1)2 −m2)

(2j + 1)(2j − 3)
, (3.37)

Qm
jj =

− (j2 −m2)

(2j − 1)(2j + 1)
+

(j + 1)2 −m2

(2j + 1)(2j + 3)
, (3.38)

Qm
j+2,j = Qm

j,j+2 =

√
((j + 2)2 −m2)

(2j + 3)2
((j + 1)2 −m2)

(2j + 1)(2j + 5)
. (3.39)

3.5 Partition function and consideration of symmetry

According to Eq. 3.25, the general form of the diagonal elements in the density

matrix is ρjj =
∑

n Pn|anj|2, which is the ensemble average of quantum probability

for occupation of state j in the macroscopic system and therefore its meaning is
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apparent: it is the population at state j, which is connected to the macroscopic

behavior of the system seen by an observer. For an ensemble of rigid rotors at

thermal equilibrium and not subject to the external field (H = H0), the popu-

lation corresponding to eigenenergy Ej is
∑j

m=−j ρ
m
jj ≡ ρjj, where a summation

over degenerate m states is performed, and ρjj should obey Boltzmann distribution

∝ exp (−Ej/kBT ), where kB is Boltzmann constant and T is temperature. It is also

required that
∑

j,m ρmjj = 1 for normalization.

In statistical mechanics one may define a partition function Z for a many-body

system at thermal equilibrium. The rotational partition function for heteronuclear

diatomic molecules, or more generally, linear molecules without nuclear reflection

symmetry about the rotation axis, is

Z =
∞∑

j=0

(2j + 1)e−hcBj(j+1)/kBT , (3.40)

where 2j+1 arises from counting the degenerate m states. The probability of being

state j with rotational energy Ej is then given by

P (Ej) =
(2j + 1)e−hcBj(j+1)/kBT

Z
. (3.41)

Comparing with properties of the density matrix, one may find ρjj = P (Ej).

For homonuclear diatomic molecules, however, calculating the partition func-

tion is tricky due to the quantum symmetry requirement imposed on the identical
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particles. That is, the total wavefunction of the molecule

Ψtotal = ΨtranΨvibΨelecΨrotΨnucl

should be either symmetric for Bosonic or anti-symmetric for Fermionic nuclei. The

wavefunctions Ψ with subscripts trans, vib, elec, rot, and nucl denote translational,

vibrational, electronic, rotational, and nuclear wavefunction, respectively. More

precisely, Ψtotal has definite parity: the anti-symmetric wavefunction changes its

sign under pairwise particle label exchange, i.e., P (Ψ) = −Ψ with P : (1, 2) →

(2, 1), where 1 and 2 are particle labels or coordinates, whereas P (Ψ) = Ψ for

the symmetric wavefunction. The translational wavefunction is Ψtran ∼ exp(ip ·

r), where p = p1 + p2 and r = (r1 + r2)/2, and the ground state vibrational

wavefunction is Ψvib ∼ exp(−(x2 − x1)
2/x2

0), therefore Ψtran and Ψvib are invariant

under nuclear exchange. Furthermore, most of the common homonuclear diatomic

gases such as hydrogen, deuterium, and nitrogen have symmetric covalent bond

electron wavefunctions Ψelec at their ground states, so the problem is reduced to

parities of molecular rotation and total nuclear spin wavefunctions Ψrot and Ψnucl.

The spherical harmonics Y m
j (θ, φ) form a complete set of orthonormal basis of

the rotational wavefunction, and it is easy to show that

Ψrot = Y m
j (π − θ, φ+ π) = (−1)jY m

j (θ, φ) (3.42)

under parity transformation, which is equivalent here to nuclear exchange for di-
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atomic molecules. Finally, in the diatomic molecule with each nucleus of spin I

possessing 2I + 1 possible M (Iz) states, there are (2I + 1)2 total spin eigenstates,

with I(2I + 1) anti-symmetric and (I + 1)(2I + 1) symmetric states [107]. This

is given by counting the possible combination of nuclear spin states leading to an

anti-symmetric total spin eigenstate |MiMj〉 − |MjMi〉, where 1 ≤ i < j ≤ 2I + 1.

Therefore the nuclear spin statistics force either odd rotational J states associated

with (2I + 1)(2I)/2 = I(2I + 1) anti-symmetric total nuclear spin states, or even

J associated with (I + 1)(2I + 1) symmetric total nuclear spin states for integer

spin (Boson) nuclei (so that Ψtotal is symmetric), and vice versa for half-integer spin

(Fermion) nuclei (so that Ψtotal is antisymmetric). For example, both 14N and D

(2H) have nuclear spin I = 1 (Boson), so the statistical weighting factors of 14N2

and D2 are 6 for even J and 3 for odd J values. Another example is H2, in which

each nucleus has half interger spin I = 1
2
(Fermion), so the weighting factors are 1

for Jeven and 3 for Jodd. Note that I = 0 for 16O, however the ground state electron

wavefunction of the 16O2 molecule is anti-symmetric [108], so only odd J rotational

states can exist at the electronic ground state. To conclude, one may obtain a

spin-statistics-weighted partition function for the homonuclear diatomic molecule:

Z =
∞∑

j=0

Dj(2j + 1)e−hcBj(j+1)/kBT , (3.43)

where Dj is the statistical weighting factor previously discussed (for example, for
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N2, Dj,even = 6 and Dj,odd = 3), and

ρmjj =
Dje

−hcBj(j+1)/kBT

Z
, (3.44)

or

ρjj =
Dj(2j + 1)e−hcBj(j+1)/kBT

Z
, (3.45)

summing over the degenerate m states. This gives the initials values for Eq. 3.34.

3.6 Perturbation theory

Equation 3.34 now is able to be solved numerically, however it can consume a

significant amount of computing power due to its potentially large matrix size. Here

we try to use an approximation method to find a closed-form solution of ρ. Consider

a femtosecond laser pulse interacting with a molecule without permanent dipole

moment (the contribution of any permanent dipole moment cycle averages to zero in

the optical field, leaving only the induced dipole), and assume hE ≪ H0, the density

matrix is calculated to first order in the optical perturbation ρ(t) = ρ(0) + ρ(1)(t),

where

(
ρ(1)(t)

)
kl
= − i

~

∫ t

−∞

dτ
[
hE, ρ

(0)
]
kl
e(iωkl+γkl)(τ−t), (3.46)

is the first order correction to the density matrix induced by the perturbation Hamil-

tonian hE = −1
2
p · E, where p = α · E is the induced molecular dipole moment

and E(τ) is the laser field, whose pulse envelope peak is located at time τ = 0.

In Eq. 3.46, ωkl = (Ek − El)/~ corresponds to rotational states |k〉 = |j,m〉 and
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|l〉 = |j′,m′〉 with energies Ek = Ej,m = hcBj(j+1) and El = Ej′,m′ = hcBj′(j′+1),

γkl is the dephasing rate between states k and l, ρ(0) is the zeroth order density ma-

trix describing a thermal equilibrium distribution of rotational states at t = −∞.

Use of first order perturbation theory is justified by the experimental results in

Chapter 4 showing that 〈cos2 θ〉t deviates from the unperturbed 〈cos2 θ〉t=−∞ = 1/3

by small amounts.

The commutator matrix element in Eq. 3.46 is
[
hE, ρ

(0)
]
kl
= (ρ

(0)
l −ρ

(0)
k )(hE)kl,

where ρ
(0)
l ≡ ρ

(0)
ll (no sum), ρ

(0)
k ≡ ρ

(0)
kk (no sum), and

(hE)kl = −1

2
∆α |E|2 (〈k| cos2 θ |l〉 − α⊥δkl), (3.47)

where δkl is the unity matrix. From Sec. 3.4 we know that the matrix element

〈k| cos2 θ |l〉 = 〈j,m| cos2 θ |j′,m′〉 is nonvanishing only for m′ = m and j′ = j± 2 or

j′ = j. The non-coupling between different m states corresponds to the interaction

symmetry about the molecular (z) axis (or conservation of angular momentum),

while the j coupling corresponds to the two-photon non-resonant Raman excitation

process which results in population of the spectrum of rotational states.

Following the same convention as in Sec. 3.4, Qm
jj′ = 〈j,m| cos2 θ |j′,m′〉 and

noting from above that
[
hE, ρ

(0)
]
kl

is nonvanishing only for the non-diagonal com-

ponents j′ = j ± 2, Eq. 3.46 becomes

ρ
m(1)
j,j−2(t) = − i∆α

2~

(
ρ
m(0)
j − ρ

m(0)
j−2

)

×Qm
j,j−2e

−(ωj,j−2+γj,j−2)t

∫ t

−∞

dτE2(τ)e(iωj,j−2+γj,j−2)τ

(3.48)
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where ωj,j−2 = (Ej −Ej−2)/~ = 4πcB(2j− 1) and ρ
m(0)
j is defined in Eq. 3.44. Note

that the equation for ρ
m(1)
j,j+2 is implicitly included in Eq. 3.48 since ρ

m(1)
j,j+2 = (ρ

m(1)
j+2,j)

∗,

which is equivalent to ρ
m(1)
j−2,j = (ρ

m(1)
j,j−2)

∗.

Finally, from Eq. 3.35, the ensemble-averaged alignment is

〈
cos2 θ

〉
t
=
∑

m

ρmklQ
m
lk|k=l +

∑

m

ρmklQ
m
lk|k 6=l

=
1

3
+
[
ρ
m(1)
j,j−2 +

(
ρ
m(1)
j,j−2

)∗]
Qm

j,j−2,

(3.49)

or

〈
cos2 θ

〉
t
=

1

3
− ∆α

~

[
∑

j,m

(
ρ
m(0)
j − ρ

m(0)
j−2

) (
Qm

j,j−2

)2

× Im

(
e(iωj,j−2−γj,j−2)t

∫ t

−∞

dτE2(τ)e(−iωj,j−2+γj,j−2)τ

)]
,

(3.50)

where we have used the facts that
∑

m Qm
jj = 1/3, and Qm

j,j−2 = (Qm
j,j−2)

∗ = Qm
j−2,j

is real. Summing Eq. 3.50 from m = −j through m = j eliminates m to yield

〈
cos2 θ

〉
t
=

1

3
− 2∆α

15~

[
∑

j

j(j − 1)

2j − 1

(
ρ
(0)
j

2j + 1
−

ρ
(0)
j−2

2j − 3

)

× Im

(
e(iωj,j−2−γj,j−2)t

∫ t

−∞

dτE2(τ)e(−iωj,j−2+γj,j−2)τ

)]
,

(3.51)
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where ρ
(0)
j = (2j + 1)ρ

m(0)
j , and we have used the relation

∑

m

(
Qm

j,j−2

)2
=

2

15

j(j − 1)

2j − 1
. (3.52)

Again, for a femtosecond laser pulse, only the cycle-averaged field torques the

molecules significantly. The laser field is taken to be E(t) = êε(t)(eiωt + e−iωt)/2,

where ω is the optical carrier frequency and ε(t) is the slowly varying field envelope

whose temporal width is much greater than 2π/ω. Therefore 〈E2(t)〉cycle = 1
2
ε2(t)

is the cycle average and should be plugged into Eqs. 3.50 and 3.51.

Several special cases can be calculated. For a delta-function pump pulse having

a fluence F (in erg/cm2), ε2(τ) = (8π/c)Fδ(τ) and Eq. 3.51 becomes

〈
cos2 θ

〉
t
=

1

3
− 8π∆αF

15~c

[
∑

j

j(j − 1)

2j − 1

(
ρ
(0)
j

2j + 1
−

ρ
(0)
j−2

2j − 3

)
e−γj,j−2t sin (ωj,j−2t)

]
.

(3.53)

This case models an extremely short pump pulse with wide bandwidth. For a

Gaussian pump pulse with temporal full width at half maximum (FWHM) τp and

peak field amplitude E0, and for times t ≫ τp, the upper limit of the integral in

Eq. 3.51 can be taken to infinity yielding

〈
cos2 θ

〉
t
=

1

3
−
√

π

ln 2

∆ατpE
2
0

15~

[
∑

j

j(j − 1)

2j − 1

(
ρ
(0)
j

2j + 1
−

ρ
(0)
j−2

2j − 3

)

× e−(ω2
j,j−2−γ2

j,j−2)τ
2
p/(16 ln 2)e−γj,j−2t sin

(
ωj,j−2t−

γj,j−2ωj,j−2τ
2
p

8 ln 2

)]
.

(3.54)
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Both Eqs. 3.53 and 3.54 are appropriate for examining the alignment response

for times well after the laser pulse. For the alignment response during and immedi-

ately after the pump pulse, a simple expression can be obtained by assuming a laser

envelope of the form ε2(τ) = E2
0 cos

2 (π
2

τ
τ0
) for |τ | ≤ τ0 and ε2(τ) = 0 for |τ | > τ0,

with FWHM duration τ0. For times |τ | ≤ τ0, Eq. 3.51 becomes

〈
cos2 θ

〉
t
=

1

3
− ∆αE2

0

15~

∑

j

j(j − 1)

2j − 1

(
ρ
(0)
j

2j + 1
−

ρ
(0)
j−2

2j − 3

)[
a1 + (a2 + a3) cos (πt/τ0)

+ (a4 − a5) sin (πt/τ0) + (a4 + a5 − a6)e
−γj,j−2(t+τ0) sin (ωj,j−2(t+ τ0))

+ (−a1 + a2 + a3)e
−γj,j−2(t+τ0) cos (ωj,j−2(t+ τ0))

]
,

(3.55)

and for |τ | > τ0 it becomes

〈
cos2 θ

〉
t
=

1

3
− ∆αE2

0

15~

∑

j

j(j − 1)

2j − 1

(
ρ
(0)
j

2j + 1
−

ρ
(0)
j−2

2j − 3

)

×
[
(a6 − a4 − a5)e

−γj,j−2(t−τ0) sin (ωj,j−2(t− τ0))

+ (−a6 + a4 + a5)e
−γj,j−2(t+τ0) sin (ωj,j−2(t+ τ0))

+ (a1 − a2 − a3)e
−γj,j−2(t−τ0) cos (ωj,j−2(t− τ0))

+ (−a1 + a2 + a3)e
−γj,j−2(t+τ0) cos (ωj,j−2(t+ τ0))

]
,

(3.56)

where

a1 =
1
2
ωj,j−2/

(
γ2
j,j−2 + ω2

j,j−2

)
,

a2 =
1
4
(ωj,j−2 − π/τ0) /

(
γ2
j,j−2 + (ωj,j−2 − π/τ0)

2),

a3 =
1
4
(ωj,j−2 + π/τ0) /

(
γ2
j,j−2 + (ωj,j−2 + π/τ0)

2),
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a4 =
1
4
γj,j−2/

(
γ2
j,j−2 + (ωj,j−2 − π/τ0)

2),

a5 =
1
4
γj,j−2/

(
γ2
j,j−2 + (ωj,j−2 + π/τ0)

2),

a6 =
1
2
γj,j−2/

(
γ2
j,j−2 + ω2

j,j−2

)
.

3.7 Discussion

The meaning of the diagonal density matrix element ρjj is the population,

which has been discussed in Sec. 3.5. On the other hand, the off-diagonal term of

the density matrix ρjk =
∑

n Pnanja
∗
nk =

∑
n Pn|anj||ank| exp (i(φnj − φnk)) gives the

coherence between two states j and k in the ensemble. If the relative phase φnj−φnk

for each of the possible n states (for j 6= k) in the ensemble is indeterminate, then

ρjk = 0, corresponding to have no coherence between j and k, which is the case for

a collection of air molecules in thermal equilibrium.

Now we can see deeper insight of results derived in Sec. 3.4 and 3.6. For

simplicity we neglect the relaxation parameter γ introduced in Eq. 3.46 for now.

Equation 3.48 shows that under the first order approximation the laser pulse “locks”

the relative phases among all the odd-j and among all the even-j rotational eigen-

functions, and this coherent excitation is proportional to the population difference

between states j and j − 2. As long as ordered initial phase relations between

many rotational eigenfunctions are created from randomness, and the eigenfunc-

tions evolve according to temporal phase exp (−i(Ej/~)t), their superposition forms

a wavepacket |Ψ〉 =
∑

j,m |aj,m|eiφj,m |j,m〉 e−iωjt, where ωj = Ej/~ = 2πcBj(j + 1),

and φj,m is the phase of aj,m. The absolute square of this wavepacket is a train of
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sharp amplitude spikes on time axis at some repetition rate which will be apparent

shortly, due to the fact that the rotational levels (energies and frequencies) are quan-

tized. The train of spikes can last for very long time compared with the laser pulse

duration and decays due to collision. The last term in Eq. 3.48
∫ t

−∞
dτE2(τ)eiωj,j−2τ

represents the initial influence of the laser electric field which is analogous to the

classical torque impulse applied to the molecules. Note that for times t after the laser

pulse is gone, the upper limit of the integral can be replaced by +∞, which makes

it Fourier transform of E2(τ) of the laser pulse. Therefore the maximum degree of

coherence ρmj,j−2 after the laser pulse is proportional to not only ρ
m(0)
j − ρ

m(0)
j−2 but

also the spectral intensity Ĩ(ωj,j−2). Note that to the first order approximation the

laser pulse excitation does not alter the population, so we may drop the superscript

(0) from ρ
m(0)
j for the following discussions.

The effect of finite bandwidth of laser pulse will be discussed later. Here, for

further simplification we consider the impulse response of the molecular rotation by

modeling the laser pulse as a delta function located at t = 0 in Eq. 3.48. At t = 0

all temporal phase components e−iωjt in the wavepacket are in phase. Note that

the coherent spike of the wavepacket actually arises at a time tpeak later due to the

extra constant relative phase φj,m − φj−2,m = −π/2 between |j,m〉 and |j − 2,m〉

coming from the factor of −i in Eq. 3.48, which is the consequence of the rotational

inertia effect. As |Ψ〉 evolves further in time each |j,m〉 state advances with its own

phase factor exp (−iωjt), so that a sum over a large number of states tends to result

in rapid cancellation. However, when time passes through values t = qTrev, where

q is an integer and Trev = 2π/ω1 = (2cB)−1, the phases become ωjt = qπj(j + 1),
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an integer multiple of 2π, causing a “full revival”: all the wavepacket’s constituent

states are rephased to their initial values at t = 0, and produce another coherent

spike at Trev + tpeak, with tpeak ≪ Trev in general. There also exist “partial revivals”

at specific fractions of Trev. When t = q(Trev/2) and q is odd (“half-revival”),

ωjt = qπj(j + 1)/2. This puts the two sets of states with j(j + 1)/2 even (j =

0, 3, 4, 7, 8, 11, 12, · · · ) and with j(j + 1)/2 odd (j = 1, 2, 5, 6, 9, 10, · · · ) separately

in phase, with a phase difference of π. These two sets of j states interfere with

each other, leading to different shape of temporal coherence from the full revival

case. Partial revivals can also occur at times Trev/4, Trev/8, Trev/16, etc., because

j(j+1) is even. For quarter revivals at t = q(Trev/4) with odd q, there are four sets

of rotational states separately in phase. When q = 1, 5, 9, · · · = 4n + 1 where n is

an integer, the four sets of states with their relative phases in the parentheses are

j = 0, 7, 8, · · · (0), j = 1, 6, 9, · · · (π/2), j = 3, 4, 11, 12, · · · (π), and j = 2, 5, 10, · · ·

(3π/2). When q = 3, 7, 11, · · · = 4n + 3 the sets of j states and their relative

phases become j = 0, 7, 8, · · · (0), j = 2, 5, 10, · · · (π/2), j = 3, 4, 11, 12, · · · (π),

and j = 1, 6, 9, · · · (3π/2). This causes different behaviors of the wavepacket at

around (n + 1/4)Trev and (n + 3/4)Trev. Fractional revivals at shorter intervals

than Trev/4 are difficult to observe, because they contain more subsets of in-phase

states possessing different relative phases. These subsets tend to cancel each other

and thus the wavepacket amplitude is much weaker. The peak amplitude of partial

revivals also depends on nuclear spin statistics discussed in Sec. 3.5.

The ensemble-averaged molecular alignment 〈cos2 θ〉t − 1/3 is the measurable

quantity of the system rather than the rotational wavepacket itself. The calculated
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Figure 3.2: Calculated molecular alignment at T = 300 K excited by a delta-function laser
pulse with 1 J/cm2 fluence and successive quarter-, half-, and full-revivals in (a) N2 and
(c) O2. The full-revival periods are Trev,N2

= 8.33 ps for N2 and Trev,O2
= 11.59 ps for O2,

respectively. Panels (b) and (d) are details of (a) and (c) from 0 to 800 fs.

impulse responses of 14N2 and 16O2 molecular alignment from Eq. 3.53 are shown

in Fig 3.2(a) and 3.2(c), respectively, from t = 0 to 16 ps. It can be seen that

the first alignment peak occurs at tpeak,N2
= 77 fs for N2 in Fig. 3.2(b) and at t =

tpeak,O2
= 91 fs for O2 in Fig. 3.2(d) due to the slow rotational response of molecules

(compared with orbital electrons) to the laser field. Moreover, the alignment is

proportional to the superposition of sin (ωj,j−2t) over many j levels, with ωj,j−2 =

(Ej−Ej−2)/~ = 4πcB(2j−1) and a fixed frequency spacing ∆ω = ωj+1,j−1−ωj,j−2 =
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8πcB. Therefore the full revival period of the alignment occurs at times 1
2
∆ωt = q2π,

or t = qTrev, where
1
2
∆ω = 2π/Trev = Ωrev is the fundamental beating frequency, and

this agrees with the observation of ρmj,j−2 from Eq. 3.48. The calculated full revival

periods of N2 and O2 are Trev,N2
= 8.33 ps and Trev,O2

= 11.59 ps, respectively.

Note that Eq. 3.53 has the form
∑

p f(p) sin ((2p+ 1)Ωrevt) with p = 1, 2, 3, · · ·

when γj,j−2 and the DC term 1/3 are neglected, and (2p + 1)Ωrevt = π for each p

when t = qTrev/2 and q is odd, which is called “half-revival” and can be seen in

Fig 3.2. At half-revivals all the frequency components in Eq.3.53 have a π phase

shift compared with those at full-revivals, therefore the alignment peaks near the

half-revivals have the same shape as those near the full-revivals except that their

signs are flipped. There also exist “quarter-revivals”: at t = (4n + 1)Trev/4 with

n = 0, 1, 2, · · · , the phases of the sinusoidal functions in Eq. 3.53 are π/2 for odd j

and −π/2 for even j; at t = (4n+ 3)Trev/4, the phases are −π/2 for odd j and π/2

for even j instead. As discussed in Sec. 3.5, the population ratio of odd-j to even-j

states ρmj,odd : ρmj,even is 1 : 2 for N2 and 1 : 0 for O2. Therefore in N2, the molecular

alignment contributed by even-j states is partially cancelled by the contribution of

odd-j states near the quarter-revivals, resulting to lower degree of alignment (or

anti-alignment) than that near half- and full-revivals. Because O2 only has odd j

levels, there is no such cancellation effect near the quarter-revivals, so the alignment

(anti-alignment) is larger than N2. Also as shown in Fig. 3.2, the alignment quarter-

revivals near t = (4n + 1)Trev/4 and near t = (4n + 3)Trev/4 have opposite signs,

which is again the consequence of sign flipping of sinusoidal functions in Eq. 3.53.

In Chapter 4 we will encounter N2O, a linear molecule without reflection symmetry
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about its rotational axis. The nuclear spin statistics is no longer a concern, so

ρmj,odd : ρmj,even = 1 : 1 and thus the quarter-revivals of alignment does not exist.

The width of alignment or anti-alignment (〈cos2 θ〉t−1/3) peaks is determined

by the number of rotational states contributing to the wavepacket. Similar to the

idea of a mode-locked laser pulse, which has shorter duration with broader band-

width (larger number of constituting longitudinal optical modes), the peak width

of alignment is approximately ∼ Trev/Nrot, where Nrot is the number of rotational

states contributing to the wavepacket, which is a function of temperature and pump

pulse duration (bandwidth). For impulse excitation, Nrot is determined by ther-

mal population of the rotational states, which can be seen as the dependence on

∑
m(ρ

m(0)
j − ρ

m(0)
j−2 )(Q

m
j,j−2)

2 for each j in Eq. 3.50. The population ρj at T = 300

K for N2 and O2 are shown in Figs. 3.3(a) and 3.3(b), respectively, with ρmj shown

in the insets. Their contributions to the molecular alignment in both gases, in

terms of amplitudes of constituent frequency components ωj,j−2, are also shown in

Figs. 3.3(c) and 3.3(d). For finite-bandwidth excitation, Nrot is further limited by

the pulse duration, which is evident from the term exp (−ω2
j,j−2τ

2
p /(16 ln 2)) for each

j (neglecting γj,j−2) in Eq. 3.54, where τp is the pump pulse duration. Therefore

when the rotational thermal distribution bandwidth ∆ωrot is larger than the laser

pulse envelope bandwidth, for those frequencies ωj,j−2 > (16 ln 2)τ−1
p their contribu-

tions to the wavepacket are less significant than those excited by the delta-function

pulse, resulting in wider width of alignment (anti-alignment) peaks. This will be

discussed in detail along with experimental results in Chapter 4.

The location of the first alignment peak tpeak excited by the laser pulse can
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Figure 3.3: Thermal populations of the rotational states ρj = (2j + 1)ρmj at T = 300 K
in (a) N2 and (b) O2, with corresponding ρmj shown in the insets, and calculated spectral
amplitudes for each ωj,j−2 contributing to the molecular alignment in (c) N2 and (d) O2,
excited by the same 1 J/cm2 delta-function pulse as in Fig. 3.2.
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Table 3.1: Selected linear molecular parameters ∆α and rotational constant B from Ref.
[109]. Trev is calculated from (2cB)−1.

Molecule ∆α (10−25 cm3) B (cm−1) Trev (ps)

N2 9.3 2.001 8.33
O2 11.4 1.438 11.59
N2O 27.9 0.4116 40.49
D2 2.92 29.90 0.557
H2 3.02 59.30 0.281

be also estimated. Realizing that Eq. 3.53 can be approximated into the form

sinωct
∑

n f(n) cos (n∆ωt) with n = 0, 1, 2, · · · , where ωc ≫ ∆ω = 8πcB is the

“center frequency” of the alignment spectral component. The first maximum occurs

slightly earlier than t = π/(2ωc) due to the modulation of
∑

n f(n) cos (n∆ωt) over

the more rapid-varying sinωct, and thus we can regard this as the upper limit of

tpeak. From Figs. 3.3(c) and 3.3(d), ωc is found to be at (j, j−2) = (11, 9) for N2 and

(13, 11) for O2, therefore tpeak,N2
∼ Trev,N2

/84 = 100 fs and tpeak,O2
∼ Trev,O2

/100 =

116 fs, which is close to the observation from Fig. 3.2(b) and 3.2(d). The parameters

∆α, B and Trev for selected linear molecules are listed in Table 3.1 and will be used

throughout this Dissertation.
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Chapter 4

Measurement of rotational wave packet revivals of linear gas

molecules

4.1 Introduction

Alignment of molecules has applications in a wide variety of fields including

chemistry, molecular physics, and high harmonic generation mentioned in Sec. 3.1.

Furthermore, molecular alignment in intense laser fields exhibits periodic revival

structures, shifting the refractive index in proportional to the degree of alignment,

as discussed in Chapter 3. A wake of refractive index echoes following an intense

femtosecond pump pulse is produced in the gas medium, which serves as an ultra-

fast phase modulator for another co-propagating laser pulse later in time. When

the delay between the two pulses is appropriately tuned, the second pulse spectrum

can be significantly broadened [110, 111, 112, 113]. Compression of such spectrally-

broadened pulse is also demonstrated by introducing dispersive material after phase

modulation [110]. The refractive index transient also acts like a dynamic lens be-

cause the degree of alignment (anti-alignment) is proportional to the pump beam

profile, which is usually higher near the beam center and lower near the edge. This

molecular lensing effect [112] should be taken into account for correctly modelling

the nonlinear propagation effect, in addition to electronic χ(3)-induced self-focusing.
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In fact, as it will be seen later, for common diatomic gases such as nitrogen and

oxygen, molecular alignment contribute much more than instantaneous nonlinearity

to the refractive index modulation, contradicting results previously reported else-

where. The alignment effect to nonlinear propagation will be explored in Chapter

5.

Many methods have been developed for producing and measuring laser align-

ment of molecules. Thus far, all methods use variations of the multi-shot pump

and probe technique. For very low density molecular samples, an intense laser pulse

(pump pulse) is used to align the molecule, and an intense ultrashort secondary

pulse stepped through a variable delay (probe pulse) is used to remove electrons

by field ionization and initiate coulomb explosion. The ionic fragment velocities

are along the molecular axis direction at the time of electron removal, angularly

resolved with respect to the pump polarization. This “Coulomb explosion imaging”

technique measures the time resolved molecular alignment [114, 115].

All optical multi-shot pump-probe methods have also been used. The earliest

optical measurements of alignment were applied to picosecond optical Kerr gating

in liquids [42, 116]. A linearly polarized pump pulse torqued CS2 molecules into

alignment, creating a transient birefringence sampled by the polarization rotation

imposed on a probe pulse variably delayed in the temporal vicinity of the pump.

Later, it was realized that probe pulse delays long after the pump could sample

quantum echoes of the molecular alignment (also called rotational recurrences) if

this measurement were performed in much less collisional CS2 vapour [117]. A

version of this technique, now called Optical Kerr Effect (OKE) spectroscopy [118],
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depends on the birefringence, or small anisotropic refractive index change in a gas

or liquid induced by the presence of pump-aligned molecules, and has been used

to measure a wide range of molecular alignment dynamics, including the prompt

response near the pump pulse and quantum echoes.

Other optical methods have recently been developed which depend on probe

beam refraction from aligned molecular gas samples [119] and ionization of these

samples [120]. Spectral modulations imposed on sequentially delayed short probe

pulses have also been used to map out wavepacket recurrences, although the time

resolution of these measurements is limited by the relatively long (> 50 fs) probe

pulse duration, and quantitative molecular response is obtained only through prop-

agation model-dependent fits to the shifted spectra [90, 121].

The only technique described above which is capable of direct quantitative

measurement of alignment is Coulomb explosion imaging [114, 115], but this method

is not capable of spatial resolution, and it is a time-consuming multi-shot pump-

probe method. None of the above techniques combine the direct measurement of

alignment, spatially resolved across the laser beam, with alignment evolution mea-

sured in a single shot.

In Chapter 2, a single-shot method for measuring ultrafast refractive index

transient with 1-D space resolution was presented, with temporal resolution only

limited by bandwidth of the supercontinuum probe beam. Here, this technique is

used to measure the ultrafast laser-induced molecular alignment and the following

periodic alignment recurrences that appear long after the laser pulse has passed.

The single-shot measurement is an improvement over previous techniques for several
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reasons. First, in laser systems having even small shot to shot variations in energy

(typical of most femtosecond laser systems) or pulse width, the alignment response

will vary from shot to shot and the result of composite measurements could obscure

low levels of response. Second, in experiments where conditions such as pump laser

pulse energy or gas pressure are varied, collecting the full temporal response for each

set of conditions is far less time consuming than doing shot by shot temporal scans.

4.2 Experimental setup and noise reduction technique

The experimental setup for measuring molecular alignment is the same as

described in Chapter 2, which is partly shown again in Fig 4.1. A broadband (∼ 100

nm FWHM) supercontinuum (SC) pulse is generated using self-focusing of a ∼ 200–

300 µJ, 100 fs, 800 nm Ti:Sapphire laser pulse in a xenon gas cell (not shown). The

SC pulse is split into collinear twin pulses separated by time τ using a Michelson

interferometer (reference pulse followed by probe pulse), which were then passed

through a 2.5-cm-thick window of SF4 glass, dispersively stretching and linearly

chirping them up to ∼ 2 ps. For measuring pump-probe delays longer than the 2 ps

probe pulse window, a delay line was implemented for placing the 2 ps probe window

at delays up to 5 ns with respect to the pump. This allows measuring recurrences

that occurred well after the pump pulse. The probe and reference SC beams were

combined at a beamsplitter with the pump, and the three pulses were collinearly

focused into a 45-cm-long gas cell. The combined pump/SC beam exiting the cell was

passed through a zero degree dielectric Ti:Sapphire mirror to reject the pump beam.
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Figure 4.1: Experimental setup. HWP: half waveplate, BS: beamsplitter for combining
pump and SC pulses, M: zero degree Ti:Sapphire dielectric mirror. The inset shows inter-
ferograms in 3 temporal windows, corresponding to laser field alignment (0 ps), quarter
revival (∼ 3 ps), and half revival (∼ 6 ps) of the rotational wavepacket in 5.1 atm O2.

The SC beam was imaged from the exit plane of the nonlinear interaction zone in the

cell onto the entrance slit of an f/2 imaging spectrometer with a 1200 groove·mm−1

grating and a 10-bit CCD camera at the focal plane, recording interference patterns

in the spectral domain (spectral interferograms). These 2D patterns had a ∼ 100 nm

wide wavelength axis and perpendicular to that, a 0.67 µm/pixel spatial resolution

along the entrance slit direction.

In addition, in anticipation of potentially tiny spectral amplitude modulations

and phase shifts compared to the experiments in Chapter 2, in this Chapter a new

method for interferogram analysis is implemented . For a CCD camera, thermal

excitation of electrons, or dark current, from the CCD chip pixels, and readout

noise from the amplifier and A/D circuit are two dominant noise sources [122]. To

90



single interferogram

300-shot-averaged interferogram

noisy

smoothed

(a)

(b)

Figure 4.2: Sample interferogram images (a) from a single laser shot, and (b) after aver-
aging over 300 shots.

suppress the interferogram noise and reveal the signals possibly smaller than the

noise level of an individual shot, multi-shot averaging is desirable. Figure 4.2 has

demonstrated the SC shot-to-shot stability by comparing a single interferogram with

the averaged interferogram from 300 laser shots, and they appeared to be almost

identical. However when examined closely, it can be seen that the interferogram

image taken from a single laser shot (Fig. 4.2(a)) contains noisy speckles, while

in its multi-shot-averaged counterpart (Fig. 4.2(b)) such noise is averaged out and

results in a cleaner, smoother image with fringe pattern nearly unaffected. There-

fore, instead of averaging spectral phases and amplitudse of probe and reference

pulses retrieved from multiple interferograms, is was found feasible to directly av-

erage 300 consecutive interferograms before phase extraction, which dramatically

increased speed of data processing. An estimate of the error in the extracted phase

is δΦshot/N
1/2
int , where δΦshot is the maximum noise amplitude in the extracted phase
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of an individual shot and Nint is the number of averaged interferograms. Note that

this procedure depends on the excellent shot-to-shot stability of the interferogram

fringe locations and fringe visibility made possible by the very stable kHz pump laser

and SC generation technique. For experiments with more shot-to-shot variability

(such as typical with 10 Hz pump lasers), a much lower noise CCD camera would

be required to achieve in a single shot the low levels of phase shift extracted in

the current experiment. Also note that this methodology is still legitimately called

“single-shot” even when this averaging technique is involved, owing to the fact that

a single interferogram represents a snapshot of phase shift evolution during ∼ 2 ps

interval. By contrast the conventional multi-shot methods acquire information only

at a specific time for each measurement.

4.3 Rotational inertia effect: delayed initial alignment by the laser

field

The transient refractive index due to intense laser pulse interaction with linear

gas molecules given in Chapter 3

n2(t) = 1 + 4πN
(
∆α〈cos2 θ〉t + α⊥

)
(4.1)

only accounts for index variation owing to ensemble-averaged molecular alignment

and neglects the “prompt” contribution of the nonlinear distortion of the molecular

electron cloud by the laser field. Including both effect, it can be shown that, to
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second order in the field, the effective index is given by

n2(t)− 1

4πN
= ∆α

〈
cos2 θ

〉
t
+ α⊥

+ |E(t)|2
[〈

sin4 θ
〉
t
α(3)
xxxx +

1

4

〈
sin2 2θ

〉
t

(
α(3)
xxzz + α(3)

zzxx

)
+
〈
cos4 θ

〉
t
α(3)
zzzz

]
,

(4.2)

where α
(3)
ijkl is the fourth rank molecular polarizability tensor and the “prompt”

contribution is proportional to the square of the field envelope amplitude |E(t)|2.

As seen in, for instance, Eq. 3.55, the angular ensemble averages 〈 〉t consist of

a constant term (from t = −∞) and a term which is second order in peak field

amplitude E0. The prompt response therefore has an isotropic part proportional

to |E(t)|2, and an orientational part proportional to E2
0 |E(t)|2 which is significantly

smaller. The contribution to the refractive index of the prompt isotropic part is

written as

n2I(t) = 2πN |E(t)|2
[〈
sin4 θ

〉
t=−∞

α(3)
xxxx

+
1

4

〈
sin2 2θ

〉
t=−∞

(
α(3)
xxzz + α(3)

zzxx

)
+
〈
cos4 θ

〉
t=−∞

α(3)
zzzz

]
,

(4.3)

where n2 is the isotropic nonlinear index of refraction, I(t) is the laser intensity, and

where
〈
sin4 θ

〉
t=−∞

= 8/15,
〈
sin2 2θ

〉
t=−∞

= 8/15, and 〈cos4 θ〉t=−∞ = 1/5.

The effect of molecular rotational inertia is immediately seen from a compari-

son of the response of various gases during a time window which includes the pump

pulse. The calculated (solid line) and measured (open circles) transient refractive
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index shifts in N2 and N2O near the 110 fs pump pulse are shown in Fig. 4.3(a) and

Fig. 4.3(b). To compare the effect of rotational inertia, the peak magnitudes of ∆n

for both gases are normalized to 1. The calculation employs Eq. 3.55 and Eq. 3.56,

which is the result of first-order perturbation theory with laser pulse shape approx-

imated by the square of a cosine function. This approximation allows a well-defined

envelope with its magnitude vanished at both beginning and end of the pulse. Due

to the difficulty of determining the relative timing between the laser pulse and the

transient refractive index measured from the experiment, the peaks of the normal-

ized ∆n(t) from the experiment are aligned to that in the corresponding calculated

curves on time axis for comparison in Fig. 4.3(a) and 4.3(b), and both measurements

in two gases match the calculations remarkably well. The pulsed laser field gives

an initial “kick” to the molecules, and due to rotational inertia they do not line

up along the laser field instantaneously. Thus in Fig. 4.3(a) and 4.3(b), ∆n peaks

later than the driving laser pulse, with the peak for N2 leading that of N2O. This is

understood from the larger N2O moment of inertia I, where B = h/(8π2cI). More-

over, as the coherently excited rotational wavepacket of N2O evolves more slowly

than that of N2, its ∆n falls back to zero more slowly than the ∆n for N2.

It is important to note that in the calculation of Fig. 4.3, the instantaneous

electronic nonlinear response (χ(3)) is not included, but the measurements still agree

well with the calculations. This implies that the alignment effect of the molecules

dominates the prompt electronic response n2I: there is no pre-spike nor abrupt

change of slope at the rising edge of measured ∆n(t), which are signatures of sig-

nificant instantaneous component, in both gas species. The measured ∆n curves
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Figure 4.3: Normalized transient shift of refractive index ∆n from measurements (open
circles) and calculations (solid line) for (a) N2 and (b) N2O. For comparison, a Gaussian
function centered at t = 0 with 110 fs FWHM duration is shown on each figure (dashed
line) to represent the pump pulse envelope. Un-normalized ∆n traces of (a) and (b),
along with instantaneous electronic nonlinear response in Ar, are shown in (c), under the
experiment conditions of 110 fs pump pulse duration with 95 µJ (6.7× 1013 W/cm2), 60
µJ (4.2 × 1013 W/cm2), and 20 µJ (1.4 × 1013 W/cm2) pulse energy (peak intensity), in
4.4 atm Ar, N2, and N2O, respectively.
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are slightly wider than the calculations, which implies that there may be a small

index change contributed by instantaneous n2I. This differs from Ref. [123], where

the prompt response and the rotational inertia effects for N2 are considered to con-

tribute approximately equally to the transient refractive index. The justification in

Ref. [123] relies on measurements of spectral modulation of an intense, 120-fs laser

pulse passing through the gas sample, and the analysis requires free fitting of two

parameters n2,instant and n2,rotation ∝ ∆α to a detailed propagation model. This issue

is important for studies of long range propagation and filamentation of femtosecond

laser pulses in the atmosphere [90, 123, 124, 125], where the molecular alignment

effect has been long underestimated. This will be further investigated in Chapter 5.

Figure 4.3(c) compares un-normalized ∆n results using 4.4 atm Ar, N2, and

N2O, with 95 µJ pump energy (6.7 × 1013 W/cm2 peak intensity) for Ar, 60 µJ

(4.2 × 1013 W/cm2 peak intensity) for N2, and 20 µJ (1.4 × 1013 W/cm2 peak

intensity) for N2O. These intensities were chosen to produce as large a phase shift

as possible without continuum generation and ionization, which would interfere with

the SC probe and reference spectra. The Ar response is the purely prompt nonlinear

electronic response. N2 and N2O measurements were conducted at lower intensities

than Ar, however they still introduce larger index shifts, again implying that the

orientational effect dominates in N2 and N2O. Note that as seen later in this chapter,

for H2 and D2 the prompt electronic response is larger than the alignment response

under the experiment conditions.
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4.4 Quantum echoes of refractive index due to rephasing of the ro-

tational wave packet

As mentioned earlier, at times past the pump pulse, molecular gases can ex-

hibit echoes in their refractive index response due to the induced temporal coherence

of multiple rotational quantum states. Figure 4.4(a) shows probe beam-center line-

outs of the measured alignment 〈cos2 θ〉t − 1/3 for 6.4 atm of N2 for time windows

centered at t = 0 through t = 1.25 Trev in 0.25 Trev steps (where for BN2
= 2.0

cm−1 [109], Trev = (2cBN2
)−1 = 8.33 ps). The pump pulse was 60 µJ, 110 fs,

with peak intensity I = 4.1 × 1013 W/cm2. Note that preceding the half revivals

(t = qTrev/2, q is odd) and the full revivals (q is even) by an interval δt ∼ Trev/Nrot

are positive and negative excursions corresponding to alignment and anti-alignment,

respectively. Figure 4.4(b) shows the corresponding space-time images across the

probe beam, clearly showing the radial intensity dependence of alignment. Figure

4.4(c) shows a calculation of 〈cos2 θ〉t − 1/3 for N2 (using ∆αN2
= 9.3× 10−25 cm3)

comparing the finite pulse response (Eq. 3.55 and Eq. 3.56) with the impulse pump

response (Eq. 3.53). The finite-bandwidth pulse is modeled by the square of co-

sine function with phase ranging from −π/2 to π/2, and the impulse is modelled

by a delta function representing a laser pulse with extremely short duration and

ultra-broad bandwidth, and for both cases the laser fluence is matched to the ex-

perimental value of 4.5× 107 erg/cm2. The decay constant γj,j−2 in Eqs. 3.53, 3.55

and 3.56 is assumed to be zero in the calculation for both finite pulse and impulse

responses. It is seen that the finite pulse result match to the experimental curves
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Figure 4.4: Measured N2 alignment up to t = 1.25 Trev for 6.4 atm gas pressure and 4.1×
1013 W/cm2 pump peak intensity: (a) probe beam central lineout, and (b) corresponding
2-D space- and time-resolved image across the probe beam. Calculated alignment is shown
in (c), assuming two different excitation pulse shapes: delta function (dashed curve) and
cos2 function with 110 fs FWHM (solid curve). For N2, Trev = 8.3 ps, and the collisional
dephasing of wavepacket is not included in this calculation.
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better, but the delta-function result is still quite reasonable. To explain this, note

that for a thermal rotational distribution, it can be shown that the most populous

state contributing to the wavepacket has j = jmax ∼ 3
4
(1 + (1 + 8

9
kBT
Bhc

)1/2). For

kBT/Bhc ≫ 1, which is the case for N2, jmax ∼ (kBT/Bhc)1/2 ∼ 10. For large jmax,

the frequency width of the thermal distribution of rotational states available for

pumping is ∆ωrot ∼ kBT/~ ∼ 4×1013 s−1. By comparison, the pump laser intensity

envelope bandwidth Ĩ(ω) =
∫∞

−∞
I(t) exp (−iωt)dt (corresponding to ∆λlaser ∼ 10

nm) is ∆ωlaser ∼ 3× 1013 s−1. As ∆ωlaser ∼ ∆ωrot, the bandwidth of the laser inten-

sity envelope adequately overlaps the thermal distribution and therefore one would

expect reasonable agreement in Fig. 4.4(c) with the delta function pump.

Note that the shapes of the calculated finite pulse alignment response curves

for N2 are an excellent match to the experimental results, except with discrepancies

in amplitude. The calculation shows equal peak amplitudes for quarter-revivals and

for half-, full-revivals and the initial response, while the measured amplitudes decay

in time. This is because the dephasing (decoherence) terms γj,j−2 have been omitted

in the calculation.

Figure 4.5 repeats for O2 in the format of Fig. 4.4 for a cell pressure of 5.1

atm and pump pulse energy 40 µJ (peak intensity I = 2.7 × 1013 W/cm2). Figure

4.5(a) shows probe beam-center lineouts of the measured O2 alignment 〈cos2 θ〉t −

1/3 for time windows centered at t = 0 through t = 1.25 Trev in 0.25 Trev steps,

where Trev = (2cBO2
)−1 = 11.6 ps [109]. Note that unlike in N2, the t = 1/4

Trev and t = 3/4 Trev revivals in O2 are comparable in amplitude to the full- and

half-revivals, which originates from the zero nuclear spin of 16
8 O. As discussed in
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Figure 4.5: Measured O2 alignment up to t = 1.25 Trev, where Trev = 11.6 ps for O2, for
5.1 atm gas pressure and 2.7× 1013 W/cm2 pump peak intensity: (a) probe beam central
lineout, and (b) corresponding 2-D space- and time-resolved image across the probe beam.
The dephasing time constant 1/γ = 23.2 ps was obtained by fitting the peak amplitudes
of (a) to an exponential. Calculated alignment is shown in (c), including dephasing by
using the extracted value of γ, and assuming two different excitation pulse shapes: delta
function (dashed curve) and cos2 function with 110 fs FWHM (solid curve).
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Chapter 3, only odd j states are populated, so that at the quarter revivals there is no

cancellation of aligned and anti-aligned states as observed in N2. Figure 4.5(b) shows

the same revivals plotted versus space and time, and Fig. 4.5(c) shows calculations

of alignment (using BO2
= 1.44 cm−1 and ∆αO2

= 1.14× 10−24 cm3 [109]) using the

delta function pulse and the finite duration (110 fs) pulse, where a damping rate

of γj,j−2 = γ = 4.31 × 1010 s−1 (or dephasing time 1/γ = 23.2 ps) was used. The

damping rate was obtained from a fit to the declining peak amplitudes in the time

sequence data of Fig. 4.5(a). Since dephasing is dominated by elastic molecular

collisions, there should be little j dependence of the dephasing rate; hence it is

reasonable to put γj,j−2 = γ. For O2, as for N2 in Fig. 4.4, the best agreement

with the data is obtained with the finite pulse, with the delta function response

fitting the finite pulse response reasonably well. For oxygen at room temperature,

jmax ∼ 13 and therefore, to a similar extent as in N2, the rotational state wavepacket

contribution is thermally limited rather than pump laser spectrum limited.

Results for N2O, a linear molecule with a much greater moment of inertia (and

lower rotational constant) are shown in Fig. 4.6, for pump energy of 20 µJ (peak

intensity I = 1.4× 1013 W/cm2) and cell pressure 2.4 atm. Beam center lineouts of

the alignment are shown in Fig. 4.6(a) for windows centered at t = 0, t = 0.5 Trev

and t = Trev, where Trev = (2cBN2O)
−1 = 40.5 ps [109]. The 1/4 and 3/4 revivals

are not present owing to the axial asymmetry of the linear N2O molecule, in which

the atoms are ordered N-N-O. Thus even and odd j rotational states are populated

with equal weight, causing the aligned and anti-aligned contributions to cancel.

Figure 4.6 shows the same revivals in full space-time plots, and Fig. 4.6(c) again
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Figure 4.6: Measured N2O alignment up to t = Trev, where Trev = 40.5 ps for N2O, for
2.4 atm gas pressure and 1.4× 1013 W/cm2 pump peak intensity: (a) probe beam central
lineout, and (b) corresponding 2-D space- and time-resolved image across the probe beam.
Note that the 1/4 and 3/4 revivals are not present due to the axial asymmetry of the N2O
molecule. The dephasing time constant 1/γ = 23.8 ps was obtained by fitting the peak
amplitudes of (a) to an exponential. Calculated alignment is shown in (c), using the
extracted dephasing rate γ and assuming two different excitation pulse shapes: delta
function (dashed curve) and cos2 function with 110 fs FWHM (solid curve).
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shows calculations for finite and delta function pulses using BN2O = 0.412 cm−1

and ∆αN2O = 2.79 × 10−24 cm3 [109]. Here the delta function result shows even

better agreement with the finite pulse result and the experimental revival curves.

Here jmax ∼ 22, so the approximation ∆ωrot ∼ kBT/~ applies even better, with

∆ωlaser > ∆ωrot as in the N2 and O2 cases.

Measurements are also performed for D2 and H2, which have the smallest

moments of inertia and largest values of B and therefore rotate the fastest. In

Fig. 4.7(a) is shown a beam center lineout of the alignment recurrences in 7.8 atm

D2 for a pump energy of 65 µJ (peak intensity I = 4.4 × 1013 W/cm2), with the

corresponding time-space plot shown in Fig. 4.7(b). The delta function and finite

pulse calculations are shown in Fig. 4.7(d), where ∆αD2
= 0.292 × 10−24 cm3 [109]

and BD2
= 30.4 cm−1 are used, as determined below in connection with Fig. 4.7(c).

This corresponds to Trev = 548 fs, so that the single-shot temporal window is ∼ 2.5

Trev long. Earlier results for D2 using Coulomb explosion imaging [126] showed

revivals through ∼ 0.5 Trev, with error bars comparable to the revival amplitudes.

In the case presented here, apart from any effects due to probe bandwidth limitation

or phase front distortion [78, 79], the estimated error is (δΦshot/N
1/2
int )(∆Φ)−1 ∼ 2%.

For D2, there are two significant differences with the calculations for the smaller

B molecules discussed earlier. First, the delta-function and finite pulse results are

strikingly different. The large value of B results in much lower j states dominating

the wavepacket so that for D2, jmax ∼ 3
4
(1 + (1 + 8

9
kBT
Bhc

)1/2) ∼ 2–3. Deuterium has

a spin-1 nucleus, so that for the D2 molecule, even rotational j states are twice as

populated as odd j. Dominant coupled ∆j = 2 states near jmax are therefore j = 2
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Figure 4.7: (a) Pump beam center lineout and (b) corresponding x-t perspective plot
of measured D2 molecule alignment recurrences excited by 65 µJ pump energy (4.4 ×
1013 W/cm2 peak intensity), with 7.8 atm gas pressure. (c) Fourier transform of the
signal representing rotational wavepacket revivals after the pump pulse in (a). The peak
frequency is identified as ω2,0 ∼ 3.4 × 1013 s−1, giving the rotational constant BD2

=
30.4 cm−1. (d) Calculated alignment with delta function (dashed curve) and 110 fs cos2

function (solid curve), using BD2
obtained in (c).
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(peak intensity) matching the experimental parameters used in Fig. 4.7.

and j = 4, which have a frequency spacing ω4,2 = ω4 − ω2 = 28πcBD2
= 8.0 × 1013

s−1, or j = 0 and j = 2, with ω2,0 = 12πcBD2
= 3.4 × 1013 s−1. Thus, the pump

intensity envelope bandwidth of 3×1013 s−1 is barely adequate to overlap the latter

two rotation states. Fourier transforming the revivals of Fig. 4.7(a) (ignoring the

first spike representing the initial alignment plus the electronic response) shows

explicitly, as seen in Fig. 4.7(c), the sparse modal content of the wavepacket: the

peak at ω = 3.44×1013 s−1 is immediately identified as ω2,0, and allows us to extract

the value of BD2
= 30.4 cm−1 used in the calculations as discussed above. There is

negligible contribution from other states. The estimation above is also confirmed by

calculating the thermal population of D2 rotational levels ρmj (for each m state, as

defined in Eq. 3.44) and ρj = (2j +1)ρmj (summing over all degenerate m states) at

T = 300 K, and spectral amplitude of alignment revivals (which is in proportional
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to (ρmj − ρmj−2)(j
2 − j)/(2j− 1)) for each constituent frequency component ωj,j−2 by

impulse excitation (using Eq. 3.53) and by a 110-fs finite-bandwidth pulse (using

Eq. 3.54), which are shown in Fig. 4.8(a) and Fig. 4.8(b), respectively.

Results for H2 are shown in Fig. 4.9, for the same pressure and pump laser

conditions as in the D2 measurement. A beam center lineout of alignment is shown

in Fig. 4.9(a), and it is seen that the effect is much smaller than in D2. If not

for the full space-time plot in Fig. 4.9(b), where the revivals are seen to follow

the pulse like a wake, one might not have recognized the small amplitude revivals

in the lineout. For H2, the error in the extracted phase shift is estimated to be

(δΦshot/N
1/2
int )(∆Φ)−1 ∼ 15%. The revivals are well-modelled by the finite pulse

calculation, where the rotational constant that best fits the Fourier-transformed

response is BH2
= 61.8 cm−1, in good agreement with previous values [109], and

using ∆αH2
= 0.30 × 10−24 cm3 [109]. This corresponds to Trev = 270 fs, so that

the single-shot temporal window is ∼ 3 Trev long. As in the case for D2, the delta

function and finite pulse calculations differ substantially because of the insufficient

pump bandwidth of the finite pulse to populate many rotational states.

For the H2 rotational wavepacket, the most populated state is estimated to be

jmax ∼ 2. The spin of the H nucleus is 1/2, so that odd j states are 3 times more

populated than even j states, therefore the likely coupled ∆j = 2 states are actually

j = 3 and j = 1 for a delta-function pulse. However for a 110-fs laser pulse envelope,

the bandwidth is far from adequate to reach ω3,1, and it can only excite alignment

between j = 2 and j = 0 with ω2,0 = 12πcBH2
∼ 7 × 1013 s−1, and the amplitude

is much weaker than that excited by the same pulse in D2. Figure 4.9(c) shows a
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Figure 4.9: (a) Pump beam center lineout and (b) corresponding x-t perspective plot of
H2 alignment recurrences, measured in the same experiment conditions as in Fig. 4.7. (c)
ω2,0 ∼ 7× 1013 s−1 is observed by Fourier transformation of recurrence signal (neglecting
the first peak) in (a), which gives the rotational constant BH2

= 61.8 cm−1. (d) Calculated
alignment with delta function (dashed line) and 110-fs cos2 function (solid line), with
rotational constant given from (c). The calculated cos2 pulse response is shown again in
(e), with proper scaling revealing the small wiggles of revivals.
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(peak intensity) matching the experimental parameters used in Fig. 4.9.

Fourier transform of the revivals of Fig. 4.9(a), confirming that the H2 revivals are

generated by beating of the two low amplitude j = 0 and j = 2 rotational modes.

The calculated alignments excited by the delta-function pulse and by the 110

fs finite-bandwidth pulse are shown in Fig. 4.9(d) and Fig. 4.9(e). Employing the

same methods applied to D2, the thermal population of H2 rotational levels at 300K

and spectral amplitudes of calculated alignment revivals are shown in Fig. 4.10(a)

and 4.10(b), respectively. From Fig. 4.10(a) it can be seen that the most populated

state is j = 1, which is close to the simple estimation above, and for the impulse

response the dominating spectral component is ω3,1, as shown in Fig. 4.10(b). On

the other hand, it can be also confirmed from Fig. 4.10(b) that the major frequency

component of H2 alignment revivals induced by the 110-fs laser pulse is ω2,0, which

is the same as in D2 but has much weaker amplitude compared with Fig. 4.8(b).
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In contrast to the finite pulse calculations (Fig. 4.7(d) and Fig. 4.9(d)(e)), the

experimental results of D2 and H2 alignment (Fig. 4.7(a) and Fig. 4.9(a)) show an

initial peak with much higher amplitude than the following revivals. We note that

the calculation accounts only for the rotational effect on the refractive index. For

D2 and H2, the relative contribution of the isotropic n2I to the prompt response

is much greater than for the smaller B molecules, where the delayed rotational

response dominates near the pump, as seen by the excellent match of calculations

and experiment shown for N2, O2, and N2O.

Measurement of molecular alignment at different angles between the pump and

probe polarization is also demonstrated. The pump polarization is tuned by rotating

a half wave plate in the pump beam path (HWP in Fig. 4.1). The reflectivity of the

dielectric-coated beamsplitter (BS in Fig. 4.1) is not sensitive to polarization over

the pump pulse bandwidth. This is verified by measuring the reflected pump pulse

energy while rotating the pump polarization. As an example, for 5.2 atm of O2,

Fig. 4.11 compares the response near t = 0.75 Trev for pump polarization parallel

(〈cos2 θ〉t − 1
3
) and perpendicular (1

2

〈
sin2 θ

〉
t
− 1

3
) to the probe. The pump energy

and peak intensity are 40 µJ and 2.7× 1013 W/cm2, respectively. As expected, the

measured response from perpendicular polarization case has half the magnitude of

the parallel polarization case with the sign flipped.

Finally, results are presented for the gas pressure dependence of collisional

dephasing of the wavepacket. The first half-revival in N2O is shown in Fig. 4.12(a)

normalized to the first alignment peak near t = 0 for several gas cell pressures: 2.4,

3.7, 5.1, and 6.4 atm. The dephasing rate γ for each pressure was obtained from a

109



-400 -200 0 200 400

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

t-0.75Trev (fs)

a
.u

.

parallel

perpendicular

Figure 4.11: Transient refractive indices of 5.1 atm O2 near 3/4-revival of the rotational
wavepacket for the pump polarization parallel (solid curve) and perpendicular (dashed
curve) to the probe beam. The pump pulse energy and peak intensity is 40 µJ and
2.7× 1013 W/cm2.

-1000 -500 0 500 1000
-0.6

-0.4

-0.2

0.0

0.2

0.4

20psi

40psi

60psi

80psin
o

rm
a

liz
e

d
 <

c
o

s
>

-1
/3

2
q

t-0.5T (fs)rev

(a)

P (atm)

2.4
3.7
5.1
6.4

2 3 4 5 6 7

4

6

8

10

pressure (atm)

g
(s

)
-1

x10
10

(b)

slope=1.46x10
10

Figure 4.12: (a) Measured 1/2-revivals of N2O alignment at pressures of 2.4, 3.7, 5.1, and
6.4 atm, normalized to the peak alignment amplitude near t = 0. (b) Dephasing rate
γ versus N2O pressure (squares) with a linear fit (solid line). The dephasing rate per
unit pressure is 1.46× 1010 s−1 atm−1. The laser pulse energy is 20 µJ, corresponding to
1.4× 1013 W/cm2 peak intensity.

110



fit to the decay of revival amplitudes from t = 0 through t = Trev. The dephasing

rate is plotted versus pressure in Fig. 4.12(b), and it is seen that the dependence

is linear, as expected from the process of binary collisions. The dephasing rate per

unit pressure obtained from a linear fit is 1.46× 1010 s−1 atm−1.

4.5 Conclusion

In conclusion, single-shot supercontinuum spectral interferometry (SSSI) is

applied to measure, for the first time in a single-shot, the space- and time-resolved

quantum rotational echo response of a number of molecular gases to femtosecond

pulse excitation. In particular, these measurements have been achieved for H2 and

D2, for which the low level of the effect could easily have been hidden in the shot-

to-shot fluctuations characteristic of multi-shot pump-probe techniques.
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Chapter 5

Direct measurement of the electron density of femtosecond laser

pulse-induced filament in air

5.1 Introduction

It is shown by a simple model in Chapter 1 that diffraction of a laser pulse can

be balanced by self-focusing, when the peak laser power reaches a critical power Pcr.

This phenomenon was first observed in solids [21, 127, 128], in which fine damage

tracks were formed for an extended length along the direction of laser propagation,

indicating that the laser beam formed a transversely confined “hot spot”, with the

local intensity exceeding the material damage threshold for an axial distance signifi-

cantly longer than the Rayleigh range. In 1995, filamentation of intense femtosecond

laser pulses in gas was reported [23]. In this case, in addition to diffraction, plasma

generation and refraction is also involved and plays an important role to the beam

propagation. When the laser power is above Pcr, the laser intensity will eventually

exceed the ionization threshold of the gas due to self-focusing during the propa-

gation. The resulting plasma provides a negative-lens-like refractive index profile,

which tends to defocus the beam. This dynamic balancing between self-focusing

and ionization defocusing leads to the development of one or multiple highly trans-

versely confined (< 100 µm in diameter) optical “filaments” at a typical intensity
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of ∼ 1013 W/cm2, with self-sustained propagation accompanied by electron density

tracks over distances from centimeters to meters in the laboratory, or even hundreds

of meters in the atmosphere.

Filamentation by femtosecond pulses in gases has been subsequently studied

by many groups pursuing both basic understanding and applications [129, 130, 131].

Because the extended propagation of high intensities in a filament is not constrained

by the need for a guiding structure, it is ideal for applications requiring long-range

delivery of optical fields, such as remote sensing [132], spectral broadening [133]

and shaping [134] of ultrashort laser pulses, and terahertz generation [135, 136].

Moreover, the filament is an ionized channel, which is promising for guiding of

electrical discharges and even for lightning protection [137, 138].

While optical filamentation can be simply interpreted as the dynamic balance

between nonlinear self-focusing of an intense optical pulse and laser plasma-induced

defocusing, the detailed process is rather complicated and requires a full spatio-

temporal model simulation to describe such nonlinear propagation. A simplified

pictorial description of filamentation process is the “moving focus” model [139, 140],

in which during the propagation the different time slices of the laser pulse have

different effective focal length [19]:

zf =
0.367zR√[(

P
Pcr

)1/2
− 0.852

]2
− 0.0219

, (5.1)

where zR is the Rayleigh range, and P is the power at the specific time slice of the
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laser pulse. It is usually preferable to use a lens to aid the self-focusing so that the

filamentation can start within a shorter propagation range. In this case the effective

focal length becomes zf′ = 1/(z−1
f + f−1), where f is the focal length of the lens.

As illustrated in Fig. 5.1, a particular time slice is focused to a high intensity spot,

defocused by the plasma, then is refocused back from the plasma-free region, and

the whole process repeats itself. The filament is therefore formed by the axially

moving hot spot (“core”) originated from each time slice of the pulse undergoing

such defocusing and refocusing, and it is surrounded by a low intensity halo, or

“background reservoir” [23, 140, 141], which is composed of the unfocused and

defocused portion of the pulse. This process significantly distorts the pulse shape

both spatially and temporally, and is accompanied by interesting phenomena such as

continuum generation [133], conical emission [141], and intensity (and also electron

density) clamping [30, 142, 143]. The reservoir is found to be vital for filamentary

propagation [144]. An example of a long-range femtosecond laser filament in air

imaged by a CCD camera is shown in Fig. 5.2(a), and the extended fluorescence

track is due to the radiative recombination [129]. Figure 5.2(b) shows transverse

laser beam profiles at the end of the filament at different pulse energies (peak powers)

[112], and the onset of the filament can be seen when P > Pcr, with the presence of

the bright core surrounded by the background reservoir.

For filamentation formation in atmosphere, simulations [130, 145, 146, 147]

have predicted typical peak electron densities anywhere from ∼ 1012 through 1017

cm−3 depending on laser and focusing conditions. Many experimental methods have

been developed and have also produced estimates in this range, including plasma
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Figure 5.1: A simplified pictorial illustration of the moving-focus model, after Ref. [130].

fluorescence [148], secondary electrical discharges [149], fluorescence spectroscopy

[150], longitudinal spectral interferometry [151], shadowgraphy and optical diffrac-

tion [152, 153], and electron conductivity [154]. However, all of these techniques are

indirect methods, which either have no spatial resolution or require the precise prior

knowledge of the laser pulse, and thus can only be considered as methods for crude

estimation. Given the centrality of the electron density profile to the physics and

applications of femtosecond filaments, the prior literature’s lack of direct space- and

time-resolved measurements is striking.

An issue in the study of atmospheric filamentation is that the physics of the

optical nonlinearity has been long incorrectly perceived. Nonlinear propagation

originates from the distortion of the electron clouds of atoms by the intense laser

pulse, leading to an ensemble-averaged dipole moment nonlinearly increasing with
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Figure 5.2: (a) Measured nitrogen fluorescence originates from a long-range femtosecond
laser filament in air (from Ref. [129]), (b) the transverse beam profiles near the end of
the filament in air at various laser pulse energies (peak powers), showing the onset of the
filament core when P > Pcr ∼ 10 GW, with the surrounding background reservoir (from
Ref. [112]).

field strength. Moreover, as discussed in Chapter 3, in linear gas molecules, the

increase of dipole moment can be also caused by the field-induced molecular align-

ment. As it will be seen later, for air molecules N2 and O2 the response timescale

of the orientational effect at room temperature is δtrot ∼ 20–40 fs, therefore for a

pulse duration ≤ δtrot, the majority of the nonlinearity the laser pulse experiences

is electronic, while the role of molecular inertia emerges when the pulse duration

> δtrot. The results of Chapter 4 showed that the N2 and O2 molecular alignment

contributes much more to the nonlinear index shift than the prompt response n2I in

the vicinity of the pump pulse at longer pulse duration (> δtrot), which contradicts
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the previous result reported in 1997 [123]. As mentioned in Chapter 4, the authors

of Ref. [123] reached a conclusion that the nonlinear index contributions are approx-

imately the same size for prompt and orientational effects, which was measured by

the less adequate method of spectral modulation by propagation. The magnitude

of the nonlinear contribution from alignment of air molecules has been underesti-

mated since then, in both simulation (for example, Ref. [155]) and interpretation of

experimental results (for example, Ref. [154]).

A recent paper reported that the filamentation critical power Pcr in air in-

creased with decrease of the laser pulse duration [156], implying the contribution

of molecular rotation is not negligible for longer pulses. However, this observation

was qualitative, without detailed characterization of the filament nor a quantitative

approach to clarify the delayed effect enhancing the nonlinearity. Another two ex-

periments showed pulse duration effect on filaments by measuring the beam profile

axial evolution [157] and electrical conductivity [154]. This Chapter presents for the

first time direct time-resolved measurements of electron density profiles along and

across the path of the filamenting pulse. These measurements allow the identifica-

tion of the molecular rotational response of nitrogen and oxygen as the dominant

contribution to extended atmospheric filament dynamics.

5.2 Experimental setup

Interferometry is a standard tool in experimental plasma physics, and it has

been successfully employed in the past to transversely probe, for example, plasma
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channels generated from the line-focus of the axicon [158] or relativistic self-guiding

[159] with electron density ne & 1018 cm−3. However in atmospheric filaments the

range of electron density ne ∼ 1012–1017 cm−3 (depending on laser and focusing

conditions) is too low to register a phase shift distinguishable from the background

noise in an optical probe beam. The remedy is to intersect an interferometric probe

beam through the filament at a near-grazing angle, which increases the interaction

length and phase sensitivity. While maintaining excellent radial spatial resolution

as in the conventional method, the price paid for the small probe crossing angle is

reduced axial spatial resolution. However, this is of little concern for meter-scale

length filaments. This technique allows measurement of plasma density as low as

∼ 1015 cm−3.

In the experiment described here, the filament is generated by focusing a

multi-millijoule pump pulse from a Ti:Sapphire laser in air. To produce a single,

long filament, the f number of the focusing system is tuned by an iris immediately

after the focusing lens. The experimental setup is shown in Fig. 5.3. A low energy

probe beam with ∼ 1 ps delay is split from the pump beam, counter-propagated

at an angle θ = 0.75◦ across the filament. The scheme of counter-propagating

pump and probe fully isolates the pump beam from the imaging system, preventing

strong pump light from interfering with the probe imaging. The plane central to the

crossing region is relayed and imaged to a CCD camera by a pair of relay lenses (L)

and a microscope objective (O), with a spatial resolution of 1.55 µm/pixel. During

alignment of the imaging system, a fine metal wire mesh with 12.5 µm wire diameter

and 215 µm grid spacing is placed at the central crossing plane for determining the
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Figure 5.3: Experimental interferometry setup, showing imaging lenses (L) and the mi-
croscope objective (O). The inset shows the filament width d and probe crossing angle
θ.

spatial resolution and calibration. The variable probe delay allows the filament to

be imaged at different times.

A folded wavefront interferometer is installed between the two relay lenses and

splits the probe beam into two replicas with variable delays, and nearly-collinearly

recombines them so that they partially overlap on the CCD camera with slightly

different incident angles, forming an interference fringe pattern on the detector chip.

Because the probe beam size is much larger than the transverse dimension of the

filament, it is possible to spatially overlap a region of the beam containing the

filament-induced phase shift with a region of the replica with no phase shift. The

setup is rail-mounted and is translatable along the full filament, which allows sam-

pling of axial locations.

For the typical measured filament diameters of dfil ∼ 70 µm (shown later), the
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probe path through the plasma is dprobe ∼ dfil/ sin (θ) ∼ 5 mm, the axial spatial

resolution along the filament is ∆zres ∼ dfil/c ∼ 5 mm, the temporal resolution is

∆tres = ∆zres/c ∼ 10–15 ps, and the radial resolution is 5 µm. Crucial to the ability

to extract the very small optical phase shifts imposed by the low filament electron

densities is (i) the extended probe interaction length dprobe and (ii) a very high

quality probe phase front imposed by a spatial filter. It has been verified that dprobe

is sufficiently short for the filament densities that negligible refractive distortion of

the probe phase front occurs. The resolution limit is set by residual phase front noise

|δΦnoise| ∼ 6 mrad in the probe which sets the measurable lower bound density to

∼ 5× 1014 cm−3.

The interferograms are analyzed by standard techniques as seen in, for exam-

ple, Ref. [158]. First the phase shift is retrieved using the Fourier transform method

developed by Takeda et al. [73]. A sample raw interferogram obtained at ∼ 1 ps

probe delay and the corresponding retrieved phase shift are shown in Fig. 5.4(a)

and Fig. 5.4(b), respectively. Note that the 2-D phase in Fig. 5.4(b) shows a shape

corresponding to the left half of a “bow tie”. The narrowest region to the right rep-

resents the section of the filament crossing the object plane of the imaging system,

and more detail of this feature will be discussed later. The radial electron density

profile is extracted from the vertical lineout of the phase shift at this in-focus region

using Abel inversion. For fast inversion speed we use an algorithm based on fast

Fourier transform proposed by Kalal and Nugent [160]. The retrieved phase shift

was averaged over 200 laser shots before Abel inversion.

The fluctuation of pump beam pointing is unavoidable due to ambient air flow
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Figure 5.4: (a) A sample interferogram of a single filament, and (b) the retrieved phase.

and mechanical vibration in the laboratory environment, leading to slight shot-to-

shot transverse movement of the filament as well as random shift of the “bow tie”

on the retrieved 2-D phase images. Therefore prior to averaging, all the “bow-tie”

shapes on the phase images were spatially aligned by an algorithm based on 2-D

cross-correlation. The procedure is to choose a phase image φ1(x, y) as the reference

and compute its autocorrelation

C11(x, y) =

∫ ∞

−∞

∫ ∞

−∞

φ∗
1(x

′, y′)φ1(x
′ + x, y′ + y)dx′dy′, (5.2)

and find out its peak location (x1, y1). Also compute the cross-correlations between

φ1(x, y) and the rest of the N − 1 images φq(x, y) (q ∈ 2, 3 · · ·N):

C1q(x, y) =

∫ ∞

−∞

∫ ∞

−∞

φ∗
1(x

′, y′)φq(x
′ + x, y′ + y)dx′dy′, (5.3)

121



and find out the peak locations (xq, yq). Assuming that the “bow-tie” feature on each

image is nearly identical and that the background noise is negligible, then the relative

shift of the “bow ties” on two images φq(x, y), φ1(x, y) is (∆x,∆y) = (xq−x1, yq−y1).

One can substantially speed up the computation using fast Fourier transform with

the cross-correlation theorem C̃pq(kx, ky) = φ̃p
∗
(kx, ky)φ̃q(kx, ky), where C̃pq, φ̃p, and

φ̃q are Fourier transforms of Cpq, φp, and φq, respectively. Moreover, data binning

was performed by rejecting those “bow tie” images with in-focus lineout widths and

peak phase shifts that fall beyond a standard deviation of the mean.

5.3 Results

As has been well-visualized by simulations [145, 146, 147, 130], a femtosecond

filament in gas starts as a result of rapid self-focusing instability arrested by plasma

formation and defocusing. This abrupt beam collapse and electron density onset

have been observed as shown in Fig. 5.5, for the case of a 2.85 mJ, 72 fs pulse (40

GW) focused at f number = f# = 345 (lens focal length f = 224 cm, beam diameter

= 6.5 mm) by using a probe delay ∆tprobe = 50 ps. The frames show a sequence of

1-cm-spaced axial positions of the interferometer object plane, (i) z = −39 through

(vi) −34 cm, where z = 0 is the lens focal plane.

It is first worth explaining the characteristic “bow-tie” shape of the phase

images. These reflect the short (∼ 1 mm) depth of field of the imaging system: the

wide sections are out-of-focus regions on either side of the object plane, which is

tightly imaged at the bow-tie center. The local filament axial and radial density
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profile (see Fig. 5.8) is obtained from phase extraction only at the center of the bow

tie. In frame (i) of Fig. 5.5(a) , at z = −39 cm, only the right side of the bow tie

is visible; there is no filament electron density at the object plane and upstream of

it. Inspection of the object plane and upstream region in frames (ii) and (iii) shows

the abrupt onset of ionization at z > −38 cm, while frames (iv)–(vi), looking back

along the filament at increasing distances, show the filament’s continued upstream

development. The terminated right side of the bow tie is the leading temporal edge

of the filament; the interferometer probe temporal delay was here adjusted to catch

the filament midflight. Both far downstream from the collapse point and at longer

probe time delays, the bow tie extends and widens to both the left and right edges

of the frame. Note that in this specific measurement shown in Fig. 5.5(a) the probe

delay is ∼ 50 ps, which is much longer than that in Fig. 5.4 (∼ 1 ps), hence the right

part of the “bow tie” is more significant on the phase images. Also note that this

experimental apparatus is capable of resolving two or multiple filaments, as shown

in Fig. 5.5(b).

Although the temporal resolution of this experimental apparatus is limited to

∼ 10 ps, it is sufficient to study the plasma density decay which is typically in sub-

ns timescale in the filament, due to radiative and non-radiative recombination of

electrons and ions [161], and electron attachment to neutral atoms (molecules) such

as O2 [152]. In the radiative recombination an electron is captured by an ion with

emission of a photon. The non-radiative recombination is a three-body process in

which two electrons and an ion are involved, resulting in an electron and an neutral

atom. The measured on-axis electron density decay of a filament at z = −3.5 cm in
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Figure 5.5: (a) Spatial sequence of bow-tie phase images showing filament collapse, for a
2.85 mJ, 72 fs pulse focused at f# = 345. The frames show a sequence of 1-cm-spaced
axial positions of the interferometer object plane, (i) z = −39 cm through (vi) z = −34
cm, (b) two filaments are generated and recorded at the same time, showing the capability
of spatially-resolved measurement.
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Figure 5.6: On-axis plasma density decay (squares) in a filament at the axial distance
z = −3.5 cm to the focus, for pulse duration τ = 40 fs, peak power P = 19 GW, lens focal
length f = 95 cm, and f# = 240. An exponential decay time constant 244 ps is obtained
by fitting the measured density vs probe delay (solid curve).

the first 100 ps probe delay is shown in Fig. 5.6, and it can be seen that at 110 ps

delay the density drops by more than 30%. In this measurement, the laser and the

focusing parameters are: pulse duration τ = 40 fs, peak power P = 19 GW, lens

focal length f = 95 cm, and f# = 240. An exponential decay fit gives a 1/e time

constant 244 ps, which is close to the results given by Ref. [153] using transverse

optical diffraction method.

The ability to directly measure the electron density with good axial resolution

allows a sensitive test of filament propagation physics. One of the most discussed

aspects of filamentation has been the nature of the neutral gas nonlinearity first

leading to beam collapse and later contributing to the dynamic stabilization. Part

of the air nonlinearity is an instantaneous response owing to electron cloud nonlinear
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distortion in argon atoms and within N2 and O2 air molecules. It has also long been

recognized [123] that molecular rotation in the laser field contributes a delayed

nonlinearity resulting from the increased dipole moment as the molecular axis is

torqued toward the laser polarization. In Chapter 4, it has been suggested that

the orientational effect is in fact dominant at the typical ∼ 100 fs pulse lengths

and ∼ mJ energy levels used for a majority of air filamentation experiments. This

is because the filamenting pulse, in the intensity range 1013–1014 W/cm2, typically

excites ∼ 20–30 rotational quantum states in N2 and O2, resulting in a refractive

index response time due to rotation alone of δtrot ∼ 2π/ωjhigh = 2Trev/jhigh(jhigh +

1) ∼ 20–40 fs, where ωjhigh is the angular frequency of the wavefunction associated

to the highest rotational eigenstate |jhigh〉 excited by the laser pulse, and Trev is

the fundamental molecular rotation period (or alignment revival period) defined in

Chapter 3 (Trev,N2
= 8.3 ps for nitrogen and Trev,O2

= 11.6 ps for oxygen [109]).

To illustrate the profound effect of changes in the laser pulse duration on air

filamentation, experiments with two different focusing geometries were performed,

keeping the peak laser power fixed for each: (a) f = 95 cm, f# = 240, laser peak

power P = 17 GW, τshort = 40 fs, and τlong = 120 fs and (b) f = 306 cm, f# = 505,

P = 19 GW, τshort = 44 fs, and τlong = 132 fs. Here, τ refers to the FWHM pulse

widths measured immediately after the lens by a field envelope and phase diagnostic

[86] and a single-shot autocorrelator. The pulse width was adjusted by translating

the laser’s compressor grating, and it was verified that this amount of chirp had no

effect on the results. In all experiments, the power was carefully adjusted to avoid

development of hot spots in the beam prior to the lens or multiple filamentation as
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Figure 5.7: 200-shot-averaged radial electron density profiles vs axial distance for (a) lens
focal length f = 95 cm, f# = 240, laser peak power P = 17 GW, τlong = 120 fs (upper
panel), and τshort = 40 fs (lower panel) and (b) f = 306 cm, f# = 505, P = 19 GW,
τlong = 132 fs (upper panel), and τshort = 44 fs (lower panel).

seen by multiple white light spots on a screen in the far field. The interferometer

probe delay was set to tprobe ∼ 1 ps (rapid drop of the density in the first 100 ps was

measured as shown earlier). It is observed that the length, structure, and density of

measured filaments is quite sensitive to minor distortions in the beam, either from

optics or from hot spots due to accumulation of nonlinear phase in air in advance

of the lens. A clean beam is essential for comparing experiments to propagation

simulations.

The measured radial profiles of the electron density with respect to the axial

positions for conditions (a) and (b) mentioned above are shown in Fig. 5.7(a) and

Fig. 5.7(b), respectively, with results for τlong in upper panels and τshort in lower
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panels. Figure 5.8(a) shows the on-axis filament electron density (left panel) ne and

FWHM diameter dfil (right panel) as a function of axial position, corresponding to

f# ∼ 240 and conditions (a) above. Peak ne ∼ 6.5 × 1016 cm−3 (corresponding

to fractional ionization η ∼ 2.4 × 10−3) occurs at z ∼ −9 cm for τlong, while peak

ne ∼ 2.4× 1016 cm−3 (η ∼ 10−3) occurs at z ∼ −3 cm for τshort, with τlong resulting

in stronger self-focusing and more rapid collapse, higher peak density, and longer

overall filament length. For both pulses, dfil is quite stable over the filament length,

except near the end. A notable difference is a secondary electron density peak at

z ∼ 5 cm for τlong. Both filaments are quite different from the case of propagation in

very low air density, where a simulation (described below) for τshort shows an axial

density distribution peaking at η = 10−5, with an axial FWHM of ∼ 10 cm centered

at z = 0. For τlong, the low density simulation shows an even smaller η and axial

extent.

For f# ∼ 505 and conditions (b) above, Fig. 5.8(b) shows an earlier axial

beam collapse and filament onset for τlong than for τshort, with the entire measurable

filament located in advance of z = 0 in both cases. The peak density for τlong is

3.6 × 1016 cm−3 (η ∼ 10−3), while that for τshort is 1.1 × 1016 cm−3. dfil for both

pulses is in the range ∼ 65–80 µm, with widening near the end of the measurable

filament. Here, as in the small f# case, τlong results in stronger self-focusing, higher

peak density, longer overall filament length, and the appearance of a prominent

secondary density peak. By contrast, low density simulations for these conditions

show η < 10−7 centered at z = 0.

Figure 5.9 compares filament output on-axis spectra for τlong and τshort for
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Figure 5.9: On-axis filament spectra corresponding to the conditions of Fig. 5.8, with (i)
f# = 240 and (ii) f# = 505. Also shown are the input spectra. The insets in (ii) show
the filament spots on a far field screen for τshort and τlong.

the two focusing cases. The input spectra for the long and short pulses are shown

as thinner curves. In all cases the output spectrum for τlong is wider and more

intense, owing to the greater effective nonlinearity and extended interaction length

experienced by that pulse. For the f# ∼ 505 filament of panel (ii), the enhanced

spectral broadening for τlong is particularly strong, and images of the filament white

light spots are shown as insets.
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5.4 Simulation

The intense femtosecond pulse propagation in air is simulated by using the

code WAKE [147, 162], assuming a cylindrically symmetric, extended paraxial wave

equation for the laser pulse:

2

c

∂

∂s

(
iω0 +

∂

∂τ

)
a− β2

∂2a

∂τ 2
+∇2

⊥a =

(
4πq2ne

mc2
− k2

0δε

)
a. (5.4)

Here, a(x⊥, τ, s) is the complex envelope of the laser electric field, k0 and ω0 are

the central wave number and frequency of the initial pulse, respectively, x⊥ is the

transverse coordinate, s = z is propagation distance, τ = t − z/vg is time local to

the pulse frame moving at group velocity vg, β2 = k0(d
2k/dω2)|ω=ω0

is the group

velocity dispersion of air, q = −e is the electron charge, ne is the electron density

generated by laser ionization, and δε(x⊥, τ) = δεrot+δεinst is the nonlinear dielectric

response. δεrot is modeled as a damped oscillator

(
d2

dτ 2
+ 2γD

d

dτ
+ ω2

m

)
δεrot (x⊥, τ) = 2ω2

mn20I (x⊥, τ) (5.5)

with I(x⊥, τ) ∝ |a|2, and where 2π/ωm = 400 fs, γD = 120 fs, and n20 = 2.6× 1019

cm2/W are obtained from fits to the prior ultrafast measurements of weighted N2

and O2 rotational response in Chapter 4. Ignored are later-time rotational quan-

tum revivals. In the prior measurements, a comparatively negligible instantaneous

response in N2 and O2 was observed for τ < δtrot, and here δεmax
inst /δε

max
rot < 0.15 is

used as an upper bound setting the value of n2 in δεinst = 2n2I(x⊥, τ). Therefore,
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at long times τ ≫ 2π/ωm, δε(x⊥, τ) ∼ 2(n20 + n2)I(x⊥, τ), where the value for

n20+n2 ∼ 3.0×1019 cm2/W corresponds closely with measured “n2” values for long

pulses [130]. The apertured beam is modeled as a flat top with a smooth intensity

transition to zero at 90% radius, while the phase was taken as a quadratic function

of radius determined by the lens focal length. A fit to tunneling and multiphoton

rates [163] was used to simulate air ionization, as this rate is higher than tunneling

alone in the expected intensity range of mid-1013 W/cm2. For the parameters used

in the simulation, the paraxial approximation is sufficient.

Simulation results for on-axis filament density and filament diameter vs axial

position are shown in Fig. 5.10 for the focusing geometries, peak powers, and pulse

widths of Fig. 5.8, plus additional runs at 20% higher power. The additional runs

were performed because, for f# ∼ 505 and τshort, experimental filament onset was

quite sensitive to energy: For the lower power case for τshort, it is seen that the peak

filament density drops by almost half.

The main qualitative features of the simulations are in agreement with the

measurements. For the same peak power, the τlong filaments start earlier and more

abruptly, have significantly higher density, and are longer than those for τshort. In

addition, the τlong filaments have multiple peaks as in the experiments. The abso-

lute density values and filament extents are in good agreement for the f# = 240

case. For f# = 505, while the peak densities differ by ∼ 50%, the qualitative be-

havior is well-followed. Note that varying the simulation’s ionization model varies

the detailed shape of the radial electron density profile (but not the peak density;

see further discussion below). A specific measure of width (such as FWHM) can
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then show variation for different ionization models used. The need to refine the

ionization model may explain the difference between experimental and simulated

filament FWHM.

The difference in long and short pulse results is a direct consequence of the

dominance of the delayed nonlinear response of the air molecules, which leads

to stronger nonlinear focusing and more extended propagation. The double elec-

tron density peaks originate from the variation of nonlinear focusing and refraction

through the temporal envelope of the pulse: The leading portion loses energy and

refracts away from its self-generated plasma, causing a dip in the electron density,

while the trailing part accumulates sufficient nonlinear phase in the filament periph-

ery to self-focus and cause a plasma resurgence [145, 146, 147]. In air, this effect

is enhanced for longer pulses, since the later slices of the pulse experience increas-

ing molecular rotational nonlinearity. The multiple density peaks are associated

with pulse temporal splitting, which we have measured on-axis and will present in

a future publication. The higher electron density for τlong is simply the filament’s

dynamical offset of the stronger nonlinear focus of the excited molecular lens. The

simulation’s sensitivity to ionization model was tested by multiplying the rate by a

factor of 20. This resulted in negligibly increased peak densities, reinforcing the idea

that the density and intensity are clamped by a dynamic balance of plasma-induced

refraction and self-focusing.

The experiments and simulations presented in this Chapter suggest a method

to control density or intensity clamping in atmosphere by controlling the molecular

excitation. To estimate the upper limit of the plasma density in molecular alignment-
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assisted filamentation, assuming that −∆nplasma,max = ∆nrot,max, where ∆nrot,max =

(4πN/3)(0.8∆αN2
+ 0.2∆αO2

) ≈ 10−4 is the maximum shift of refractive index in

air when every molecule is aligned along the laser polarization direction, leading

to the electron density ne,max ≈ 3.5 × 1017 cm−3. High degree (nearly 100%) of

alignment has been demonstrated in N2, using excitation of a pulse train spaced

by the rotational revival period Trev [164]. This may provide a route toward high-

density, long-range filamentation in atmosphere.

Recently, it was claimed that filamentation in atmosphere takes place without

plasma stabilization, based on the speculative assumption of negative higher-order

Kerr indices [165]. The laser and focusing parameters for τshort in Fig. 5.8(a) corre-

spond closely to parameters simulated in Ref. [165] by that group. Their simulations

predict electron densities almost 2 orders of magnitude smaller than experimental

and simulation results in Fig. 5.8(a) and Fig. 5.10(a), casting doubt on the impor-

tance and perhaps existence of the negative higher-order Kerr indices.

5.5 Conclusion

In conclusion, the first direct space and time-resolved electron density mea-

surements is presented for a nonrelativistic femtosecond laser pulse nonlinearly fil-

amenting in gas, here the atmosphere. This has allowed a detailed elucidation of

the nonlinear physics leading to atmospheric filament formation and a route to its

enhancement.
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Chapter 6

Conclusions and future directions

6.1 Optical nonlinearities of linear gas molecules

An improved, highly stable version of SSSI is developed for single-shot, 1-D-

space- and time-resolved measurement of ultrafast evolution of refractive index in

the optical medium. The rotational responses of various linear gas molecules to a

femtosecond laser pulse are measured, and the results agree well with the calculations

using quantum perturbation theory. In particular, the improved sensitivity of SSSI

enables the measurement of laser-induced alignment revivals of D2 and H2, which

are very weak in magnitude, for the first time at room temperature. However the

experiments were conducted by focusing the laser pulse into a gas cell much longer

than the Rayleigh range, giving rise to the difficulty of determining the interaction

length. This problem can be solved by focusing the laser pulse in vacuum onto a

gas jet produced by a nozzle with narrow exit orifice. As long as the width of the

jet is much shorter than the Rayleigh range, the laser intensity can be regarded

as constant when propagating through the gas. This makes direct extraction of

refractive index shift ∆n from the measured phase shift ∆Φ possible, eliminating

the calibration process requiring a n2 value of Ar from other literatures, as shown

in Chapter 2.

It is found that for N2, O2, and N2O, the delayed molecular effect dominates
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the prompt electronic response in nonlinear shift of the refractive index induced

by a ∼ 100 fs laser pulse. However the magnitude of the prompt response is not

determined because the pulse duration used in the experiment is much longer than

the characteristic response timescale of the molecule (∼ 40 fs for N2 and O2), so

that the small prompt index shift n2,instI cannot be distinguished from the relatively

larger orientational response. Using a very short (< 40 fs) laser pulse, it is possible

to identify the contribution of the prompt nonlinearity and extract n2,inst values of

these linear gas molecules from SSSI measurement. Because the prompt and the

delayed nonlinearities result in different polarization dependence of the refractive

index (birefringence), one can perform two measurements with pump polarization

parallel and perpendicular to the probe, which may further help to discriminate

both nonlinearities.

6.2 Laser filamentation in atmosphere

This research also presents the first space- and time-resolved electron density

measurements for a non-relativistic femtosecond laser pulse nonlinearly filamenting

in gas, here the atmosphere, with the lower detection limit of electron density ∼

5×1014 cm−3. This is achieved by using optical interferometry with a nearly-grazing

incident probe beam, while maintaining reasonable axial and temporal resolutions.

The probe wavelength used here is 800 nm, and a possible improvement is to extend

the detection limit by increasing the wavelength. For example, by employing a

femtosecond fiber laser at 1.5 µm as the probe, the minimum measurable electron
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density will be lowered by a factor of ∼ 2, enabling better study of extremely weak

ionization, which is the case near the end of a long filament in air.

Dramatically different filaments are observed from both experiments and sim-

ulations when using the same laser peak power but different pulsewidth, leading to

the conclusion that the dominant nonlinearity responsible for extended air filamen-

tation is rotational. This suggests that the properties of a filament in atmosphere,

such as density or intensity clamping, can be controlled by manipulating the orien-

tational effect of air molecules. As mentioned in Chapter 5, one may use a train

of pulses to excite high degree of molecular alignment, which may be helpful for

long-range filamentary propagation with higher electron density.

This work also helps to clarify whether the higher order Kerr effect plays a

significant role in the filamentation process [165], as the author noticed that re-

cently there is a debate over this issue [166, 167, 168, 169, 170]. In Chapter 5, the

experiment results show satisfactory agreement with the simulations based on the

”standard” (plasma refraction with reduced role of instantaneous n2) model, thus

it is found unnecessary to introduce negative high order Kerr indices claimed by

Ref. [171].
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Appendix A

List of publications by the Candidate

1. Y.-H. Chen, S. Varma, I. Alexeev, and H. M. Milchberg, “Measurement of tran-
sient nonlinear refractive index in gases using xenon supercontinuum single-
shot spectral interferometry,” Opt. Express 15, 7458 (2007).

2. Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, “Single-shot, space-
and time-resolved measurement of rotational wavepacket revivals in H2, D2,
N2, O2, and N2O,” Opt. Express 15, 11341 (2007).

3. B. D. Layer, A. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng, and
H. M. Milchberg, “Ultrahigh-Intensity Optical Slow-Wave Structure,” Phys.
Rev. Lett. 99, 035001 (2007).

4. Y.-H. Chen, S. Varma, and H. M. Milchberg, “Space- and time-resolved mea-
surement of rotational wave packet revivals of linear gas molecules using single-
shot supercontinuum spectral interferometry,” J. Opt. Soc. Am. B 25, B122
(2008).

5. S. Varma, Y.-H. Chen, and H. M. Milchberg, “Trapping and Destruction of
Long-Range High-Intensity Optical Filaments by Molecular Quantum Wakes
in Air,” Phys. Rev. Lett. 101, 205001 (2008).

6. B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg, “Peri-
odic index-modulated plasma waveguide,” Opt. Express 17, 4263 (2009).

7. Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A.
Ting, “Direct measurements of the nonlinear index of refraction of water at
815 and 407 nm using single-shot supercontinuum spectral interferometry,”
Appl. Phys. Lett. 94, 211102 (2009).

8. S. Varma, Y.-H. Chen, and H. M. Milchberg, “Quantum molecular lensing
of femtosecond laser optical/plasma filaments,” Phys. Plasmas 16, 056702
(2009).

9. Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct Mea-
surement of the Electron Density of Extended Femtosecond Laser Pulse-Induced
Filaments,” Phys. Rev. Lett. 105, 215005 (2010).
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