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ABSTRACT

In this paper, we propose a component based methodol-
ogy for modelling and design of wireless routing protocols.
Componentization is a standard methodology for analysis
and synthesis of complex systems. Throughout the paper,
we use Optimized Link State Routing (OLSR) protocol as
a case study to demonstrate effectiveness of our method-
ology. We focus on modelling of three main components:
neighborhood discovery, selector of topology information to
disseminate, and the path selection components. For each
component, we identify the inputs, outputs, and a generic
methodology for modelling. Using the neighborhood dis-
covery component, we will present our design methodology
and design a modified enhanced version of the OLSR NDC,
and compare its performance to the neighborhood discovery
component of the OLSR protocol.
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1. INTRODUCTION

We present component based methodology for performance
modelling of the wireless networks. This method provides a
systematic and low complexity approach that can be used
in the study, analysis, design and optimization of wireless
networks.

Despite tremendous research and interest in wireless net-
works, we still do not have systematic methodologies and
tools that would allow us for efficient analysis and cross-
layer synthesis of such networks with the provision of accu-
rate performance bounds. The main reason for this is the
different nature of wired and wireless networks rendering
the use of wired network techniques inappropriate for the
case of wireless networks. Key quantities, such as the link

capacity, that remain constant in a wired network vary in
wireless communication environments with the transmission
power, the interference, the node mobility and the chan-
nel condition. Due to the performance variability and in-
terdependence, design, analysis, optimization, management
and maintenance of such systems are daunting tasks. Mod-
elling and model-based approaches that consider complex
relations, interactions, and interdependencies between con-
nections are needed to help us in achieving deeper under-
standing and greater insight in the fundamental properties
of wireless networks, and in development of a systematic
and scalable methodology for design of wireless networks
and protocols.

The input variables and functions that determine the per-
formance of a wireless communication network can be classi-
fied into four groups associated with the four main sections
of the wireless network architecture, which are: (i) Rout-
ing, (ii) Node scheduling, (iii) MAC layer, and (iv) PHY
layer. Hence, besides inter-dependence and coupling be-
tween the node to node communication channel character-
istics, we should also model the cross-layer (cross-section)
interaction and inter-dependence between the four main sec-
tions of the communication network architecture. It may be
possible to develop packet level simulation tools based on
appropriate physical (PHY), medium access control (MAC),
routing and scheduling models. However, the result would
not be scalable. Further, the developed models are not
appropriate for studying dynamic relation and correlation
between the network parameters and performance metrics.
Therefore we need alternative approaches for synthesis, op-
timization, sensitivity analysis and studying fundamental
properties of wireless networks.

Our overarching objective is to develop low complexity com-
bined analytical and computational (numerical) models, which
can efficiently approximate wireless networks performance.
Since the models are deterministic in addition to zero order
metrics such as throughput and delay, we can use analytical
and numerical methods to approximate the first and second
order metrics (gradient and Hessian of the zero order met-
rics). The higher order metrics enable us to develop efficient
systematic methodologies for sensitivity analysis, synthesis
and optimization of wireless networks.



In this paper, we focus on the routing and present our method
for component based performance modelling of the routing
protocol. In this method, we first identify the main com-
ponents that implicitly or explicitly should be present in
wireless routing protocols. We specify inputs and outputs
of these components and specify how they are interconnected
to each other. We then propose appropriate methodologies
for modelling each one of these components. We use Neigh-
borhood Discovery Component (NDC) as an example and
introduce metrics for the study of its performance. Based on
the introduced metrics, we will also present a methodology
for design and enhancement of the NDC.

Some of the main advantages of the component based Mod-
eling are: (1) It provides a natural and top-down strategy
for structural design of the routing protocols. (2) In the
analysis stage, sources of problems and performance degra-
dation can be detected and fixed faster by using a systematic
component based approach. (3) We can quantify and study
effects of the components and their design parameters on
the system performance, and perform sensitivity analysis to
enhance the performance and/or design a more robust sys-
tem. (4) Since the Modeling is not based on a packet based
discrete even simulation the simulation is much faster and
can be efficiently incorporated in a design by analysis loop.

The paper is organized as follows: In section 2, we intro-
duce the three main components and the high-level model
architecture. In section 3, we review OLSR and introduce
its functionality based on the component based Modeling
framework. In sections 4, 5, 6, we present our methodology
for Modeling of the three main routing components by using
OLSR as an example. In section 7, we explain how we can
use the component models for the design of routing protocols
and will use the developed models to evaluate performance
(throughput) of the designed routing protocols. In section
8, we summarize the results and discuss future research di-
rections.

2. THE PERFORMANCE MODEL ARCHI-
TECTURE

In this section, we introduce the main components of our

performance model, their inputs, outputs, and inter-connections.

Consider a network that consists of N nodes, i =1, -+, N.
The probability of successful packet transmission from node
i to node j is s45, and fi;; = 1 — s;; is probability of trans-
mission failure. For simplicity, we are assuming that packets
have fixed length; hence, we can specify the probability of
successful packet transmission.

There are three main components in our performance model
for routing protocols, which are: (i) Neighborhood Discovery
Component (NDC), (ii) Selector of Topology Information to
Disseminate Component (STIDC), (iii) Route or path Se-
lection Component (RSC). Figure 1 illustrates how these
components are connected to each other and to the Packet
forwarding/scheduling and PHY and MAC layer models.
Paper [1] presents a methodology for modelling the 802.11
MAC layer in a multi-hop/multi-path wireless network. In
this paper, we present methodologies for modelling the first
3 mappings that corresponds to the three components of the
routing protocol.
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Figure 1: Architecture of the Component Based
Model.

The main purpose of the first mapping, NDC is to detect
neighbors and bidirectional links between the nodes. The
input to NDC is the probability of failure in transmission
of a packet, fi; on the link between node ¢ and j for i,j =
1,---,N. More precisely, input is the probability of fail-
ure in transmission of HELLO messages between the nodes.
Note that nodes broadcast HELLO messages to inform other
nodes about their presence and to identify neighboring re-
lations among themselves. The output of this model is, p;;
for 4,7 = 1,--- , N, which is the detection probability of
bidirectional links among nodes i and j.

The probability of bidirectional link detection is the input
to the second mapping, STIDC. STIDC specifies the topol-
ogy graph that is presented to the network nodes that they
use to select the paths and/or next-hop toward the desti-
nation nodes. In the link-state routing protocols, which we
consider in this work, nodes broadcast a subset of their con-
nected links in the network. For instance, in OSPF state of
all links are flooded into the network, hence every node has
access to the complete network topology and use it to select
the optimal next-hop node for each destination. In the wire-
less networks, due to the capacity scarcity, it is desirable to
select a subset of the nodes to perform the topology infor-
mation dissemination and to select a subset of the links to
broadcast their information in the network. Thus, instead
of broadcasting every link information, STIDC component
selects a subset of the connected links of a node to dissem-
inate their information. We say state of node i, C; is its
connected links that are selected by STIDC. Clearly, C; is
a random process. Thus, the natural output for the STIDC
is P(C}), the probability mass function (pmf) of the node
state. Note that there are finite possible combinations for
the state vector, and the pmf will have finite non-zero values.

The inputs to the RSC are the outputs of the NDC and
STIDC components. The main task of RSC is to select
paths or the next-hops in the paths to the destination nodes.
The decision is based on the local neighboring information
provided by the NDC and global network topology informa-
tion provided by the STIDC component. In this paper, we
consider hop-by-hop routing protocols; hence, the output of
RSC is the probability of selecting node j as the next-hop
of node 4 to destination k, which is denoted by «; (k).



3. OLSR COMPONENTS

OLSR [2] is a proactive, link-state routing protocol that uses
periodic message flooding in the network to disseminate and
update topology information in the network. Each node uses
the topology information to find the shortest path and the
corresponding next-hop node for each destination in the net-
work. In this section, we describe the OLSR functionality
based on the component based architecture that was pre-
sented in section 2. For details on the operation of OLSR,
refer to [2].

The NDC component of OLSR is responsible for detection
of changes in a node neighborhood. A node is said to be
a neighbor of another node if there exists a bidirectional
communication link between them. The link is bidirectional
if communication in both directions are possible. Node k # ¢
is said to be the second order neighbor of i, if it is not a
neighbor (or first order neighbor) of ¢, but it is a neighbor
of one of the node i’s neighbors.

NDC relies on periodic transmission of HELLO messages
for detection of first and second order neighbors. A HELLO
message from node i contains the transmitting node ID, and
the list of detected nodes by node i, and the status of the
links (directional or bidirectional) between node i and its
detected nodes. Thus, from the received HELLO messages a
node can detect its first and second order neighbors. When a
node j receives a HELLO message from node i that contains
its own ID, it will add node i to its neighbor list. Node j
removes ¢ from its neighbor list if it does not receive any
HELLO message from ¢ for the Neighbor Hold Time (NHT)
period.

The STIDC component of a node in OLSR is responsible
for selection of Multi-Point Relay (MPR) nodes among the
neighbors. Every node selects its MPRs such that the se-
lected neighbors cover all of its second order neighbors. The
MPR selector set of a node i is the set of node i neighbors
that have selected node i as their MPR. All nodes with non-
empty MPR selector set periodically generates a topology
control message that is sent to all nodes in the network and
contains the ID of the generating node and all MPR selec-
tors of that node. In this way, a node advertises that it
can forward packets to its MPR selectors. Upon reception
of the topology control messages every node has access to a
partial topology of the network that contains all nodes and
a subset of the links. Furthermore, if the original network
is connected, every node is reachable through the partial
topology too.

In our modelling, we consider a simple heuristic that is com-
monly used in the OLSR implementations for selection of
MPR nodes [4]: At every node i, the algorithm starts with
an empty set M PR(7). It first selects the neighbors as MPR,
which are the only neighbor for some second order neigh-
bors. Then, while there are some second order neighbors
that are not covered by the selected MPRs, it adds the neigh-
bor node, which covers most number of not covered second
order neighbors to its MPR list.

The RSC uses the partial topology that is produced by
STIDC to estimate the distance (hop-count) of the detected
neighbors to every destination. For each destination the

neighbor with minimum distance is selected as the next-hop.
It is crucial to note that the next-hop is selected among all
detected neighbors and not only the MPR selectors. Hence,
while the partial topology is used for distance approxima-
tion, all detected bidirectional links are considered in the
next-hop selection process.

4. NDC MODELING

In wireless networks where the underlying topology is con-
stantly changing, we need a reliable mechanism to detect the
neighbor nodes. This is the role of neighborhood discovery
component (NDC) of routing protocols. Delay and/or error
in the NDC results in missing links in the topology which
in turn affects the routing performance. It is shown that [3]
neighborhood discovery has profound impact on the perfor-
mance of the routing algorithm. Thus, it is crucial in our
performance modelling to study and consider the effects of
NDC carefully.

In general, a node periodically broadcasts HELLO messages
containing information about its detected neighbors. By us-
ing this local information nodes can establish bidirectional
links and also identify their second order neighbors. Each
HELLO message contains the list of detected neighbors of
a node. When a node receives a HELLO message from an-
other node that contains its own ID, it realizes that there is
a functional bidirectional link between them and add that
node to its neighbor list.

We model the NDC as a Finite State Machine (FSM), so that
we can use Markov Chain machinery to derive the desired
steady state probabilities for NDC. A simple Markov Chain
Model for the link between nodes i and j is depicted in
Figure 2. The parameter s;; is the probability of success in
sending hello messages and f;; is the probability of failure.
In states U to U + D — 1 (blue states), NDC considers that
the link is (detected) and node ¢ will add j in its HELLO
messages; in states 1 to U — 1 and state U + D (red states)
we consider that the link is DOWN (not detected). Suppose
that we are initially at state U + D; only after U subsequent
successful reception of HELLO messages we move to state U,
and a directional link is declared detected. Similarly, when
we are in state U, there should be D subsequent failures
in reception of HELLO messages before a directional link is
removed from the list.

Our proposed model is more comprehensive than OLSR neigh-
borhood discovery. In OLSR the value of U is fixed to 1,
since after the reception of only one HELLO message, the
recipient assumes that a directional link exists, and after re-
ceiving a HELLO message which contains the recipient 1D, it
declares that there is a bidirectional link between the nodes.
Therefore, in OLSR we can only control the D parameter
by changing NHT.

Let 7, be the steady state probability that NDC is in state
k of the Markov Chain. We can use the generalized global
balance equations to derive the steady state probabilities.
The probability of detecting a directional link to node j at
node 1 is:



Figure 2: Markov chain model for the NDC detec-
tion mechanism.

U+D—-1

g = Y (1)
k=U

and if we assume that the probability of successful transmis-
sion from ¢ to j and from j to ¢ are independent from each
other, then the probability of a bidirectional link detection
is:

pij = gy (2)

From the global balance equation, we can derive the proba-
bility of every state as a function of state U + D — 1:

Tork = muyp/f5TF k=0, ,D -2
()
k=1,--

TU—k = fijTrUJerl/Si'cj U -1

Now we use the fact that the summation of states probabil-
ities should be one to get,

1

MTU+D—-1 = (slfU + fS*U + (1 _ fD*Z)f27D871 + fl,D)— .

(4)
For simplicity, we have dropped the ij index for f and s in
the above equation.

The design (or control) parameters for NDC are U and D
parameters that can be set to achieve the desired perfor-
mance. We can consider a number of performance metrics
for NDC. Delay in the detection of a neighbor and delay
in removing a node from the neighbor list are good exam-
ples. We can use the Markov chain analysis techniques to
approximate and/or compute lower and upper bounds for
these parameters. Here, we consider predictability of the
link status as the performance metric.

Many of the problems that arise in wireless networks routing
protocols are related to the unpredictability of the link sta-
tus. In a link state routing protocol, such as OLSR, changes
in the link status result in changes in the set of links (MPRs
for OLSR) that are presented in the partial topology. These
changes should be disseminated to all nodes in the network
and will increase the traffic overhead, contention and con-
gestion in the network, and can also cause disruption in
forwarding of the packets.

Our design methodology is based on the,selected perfor-
mance metric; links are divided into three groups based on
the probability of success in sending the HELLO messages,
sij. If 855 < Pp, we assume that the link is not stable and de-
tection probability should be close to zero. If s;; > P,, then
the link is stable and detection probability should be close
to 1. The threshold values P, and P, should be set based on
the overall performance of the wireless network protocols.
The status of links in the transition region, i.e. links with
P, < sij < P, is still unpredictable, but for other regions
links status are with high probability predictable. Thus, the
transition region should be as narrow as possible. In sec-
tion 7, we will illustrate our design methodology through a
simple example.

In OLSR, we can only control the D parameter and U is
always one. Hence, as we demonstrate in section 7, with
respect to the link status predictability, OLSR does not pro-
vide us enough control.

S. STIDC MODELING

This component is responsible for selection of the links that
are represented in the partial topology that network nodes
use to estimate their distances and next-hops toward de-
sired destination nodes. In section 3, we explained that in
OLSR, the links are selected through the selection of the
MPR nodes. Every node selects a subset of its detected
neighbors as its MPRs. Node i selects its MPRs such that
all its second order neighbors (neighbors of neighbors) are
covered by them, i.e. there is at least one MPR node that
connects node ¢ to each one of its second order neighbors.
In the current implementation, we consider a simple greedy
algorithm for MPR selection, which is commonly used for
MPR selection and introduced in section 3; however alter-
native algorithms can also be implemented with the same
methodology.

The selected MPR nodes depend on the detected neighbors
and their detected neighbors which are random variables.
Therefore, the selected MPR nodes are also random pro-
cesses. Our goal is to derive the statistic characteristics of
this random process. Recall that C;, state of node i, is a
binary vector with A; (degree of node i) elements. Each
element of the state vector is 1 if its corresponding neighbor
is selected as an MPR, and it is 0 otherwise. The output of
this model is the pmf of the state vector for every node i. Let
assume that the link detection probabilities are mutually in-
dependent. Hence, for each possible combination of detected
links, we can find its probability and the selected MPRs, and
in this way, we can derive the state vector pmf. However,
this approach is not scalable in the number of links. For
each node i, we have to consider all possible combinations
of detected links of ¢ and neighbors of i. If degree of node i
and its neighbors are A, then we have to consider O(ZAA)
combination of detected links, which is not scalable. How-
ever, in practice most of these combinations have negligible
probability and we do not need to consider them. Hence, in-
stead of exhaustive search, we use Monte-Carlo simulation
to generate the combination of detected links and from that
we approximate the MPR state vector probabilities.

The MPR selection at each node is based on the local infor-
mation; hence, in the Monte-Carlo simulation for each node
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Figure 3: The star network topology for testing the MPR selection component

we only need to simulate its links and its neighbor node
links. Therefore, our approach is scalable and its complex-
ity increases linearly in the size of the network, as long as the
degree of the nodes is fixed. Furthermore, the Monte-Carlo
simulations for the network nodes can run in parallel. For
the star topology network shown in Figure 3(a), where the
probability of detecting every link is set to 0.7, we have com-
puted the probability of MPR state vectors for the center
node using exhaustive search over all possible combination
of detected links in the network and by using Monte-Carlo
simulation with 10,000 iterations. The results are plotted
in Figure 3(b). On the x-axis we have all possible 64 states
(there are 6 neighbor nodes for the center node) sorted by
their probability and on the y-axis we have the state prob-
abilities. It is clear that the Monte-Carlo approximation is
very close to the result of exhaustive search.

6. RSC MODELLING

This component is responsible for computation of the rout-
ing tables entries at every node, which specifies the next
hop neighbor for all possible destinations in the network. In
OLSR, the routes are selected based on the partial topol-
ogy information that is broadcasted in the network by the
selected MPRs. Every node, advertises that it has a link to
the nodes that have selected it as one of their MPRs. Note
that directions of advertised links are from MPR to the MPR
selector. Every node obtains the partial network topology
from this information and uses it to compute the routes and
populates its routing table. We assume that the nodes are
using minimum hop routing on the partial topology to select
their next-hop. However, anyone of the detected neighbors
can be selected as the next hop. Thus, the topology that
is used for routing by every node is different and consists
of the links in the partial network topology that is adver-
tised by the STIDC, plus the bidirectional links that are
in the HELLO messages received from the neighbor nodes.
This combination of local and global information makes the
OLSR routing protocol resilient to link failures and should
be considered in the RSC modelling.

We divide the RSC modelling into three stages. The first
stage is estimation of the average distance computed at ev-
ery node to the destination. In the second stage, we use
the computed average distance and the minimum possible

Figure 4: A simple 5x5 Grid Topology.

distance that can be computed from the network topology
to estimate the probability mass function (pmf) of the dis-
tances computed at a node. The network topologies that
are used by the nodes to estimate the distance are random
processes, hence the computed distances are also random
process. In the first stage, we estimate the average of these
random processes and in the second stage we estimate their
pmf. Finally in the third stage, we compute the probability
of selecting a neighbor node j as the next-hop for node i in
forwarding the packets to destination k.

6.1 Average Distance Estimation

We use a probabilistic version of the Bellman-Ford (BF) dy-
namic programming computation to compute the average
distance of the nodes on the partial topology. An important
fact that needs to be taken into account is that an MPR
for a node is a neighbor node that forwards packets to it
and not viceversa. This interpretation, as provided in the
RFC of OLSR [2], has prompted us to do the average dis-
tance computations first for a reverse version of the partial
topology network. Thus, we compute the average distances
h(i, k) from node 4 to node k in the reverse network using
the dynamic programming equations and compute the aver-
age distances in the forward network D(i, k) using the fact
that D(i, k) must be equal to h(k,1).

For the dynamic programming equations we use the MPR



state probabilities that are computed in the STIDC perfor-
mance model. However, we have to modify these probabil-
ities for each destination to take into account the fact that
in OLSR every node can select any of its neighbors to for-
ward the packet and not just the links to the MPR selectors.
Hence, in the reverse network, we modify the probabilities
of the MPR configurations, so that every node that is con-
nected to the final destination can forward its traffic to it
directly, even if the destination node is not its MPR. In the
forward network, this modification is equivalent to the as-
sumption that the source node can use any of its neighbors
(and not only its MPR selectors) with minimum distance to
forward the packet.

Let h(i, k,C;) denotes the average hop count from i to k at
state C; (MPR configuration) in the reverse network, and
h(i, k) the average hop count over all states C;. M PR(C;)
denotes the MPR set of node i at state C;. For every destina-
tion, we have to first modify the MPR state vector probabil-
ities for the neighbors of the destination, so that probability
of having connection to the destination is equal to proba-
bility of having a detected link (and not having destination
being selected as an MPR). After this modification in the
state probabilities, to compute average hop counts to the
destination k in the reverse network, we use the following
DP equations:

h(i,k,C;) = 1+jez\g1>i£(ci)(h(j’k))
hi k) = 3 P(Ch(i k, Cy) (5)
C;

After convergence, D(i,k), the average hop count in the
forward network is set equal to h(k,1).

6.2 Distance Distribution Estimation

We explained that every node uses the partial topology and
its local neighbor topology information to estimate its dis-
tance to every other node in the network. Due to the ran-
domness of the network topology the estimated distances are
random variables too. In the previous section, we estimated
the average of these random variables. It is also easy to esti-
mate the minimum of these random variables, m(i, k) from
the network topology. We also assume that the maximum
distance between two nodes is,

M(i, k) = max (2D(i, k) — m(i, k), 2m(i,k))  (6)

Then, we approximate the pmf of this r.v. using maxi-
mum entropy method. Let p; be the probability that the
distance from ¢ to k is j7 hops. In order to approximate
pj,j =m(i, k), -, M(i, k), we solve the following optimiza-
tion problem:

M (i,k)
min >’ p;logp;
j=mlik)
s.t.
M (i,k) 7
pj =1 @)
J=m(i,k)
M (i,k)

>, Jjpi = D(i,k)

j=m(i,k)

Using the lagrange multipliers, we reach the conclusion that

pi=e ) Y e (8)

where p is the solution of the following equation:

M (i,k) M (i,k)
> g Y =Dk, )
j=m(i,k) z=m(i,k)

6.3 Next-hop Probability Estimation

After computation of the distances pmf, we can approximate
the probability of selecting node j as the next hop for node
i to destination k. For every node, we first list all possi-
ble combination of its detected links. If a node has A node
in its communication range, there are 22 possible combina-
tions of its detected links. The probability of each combina-
tion can be computed using the information provided from
the NDC assuming that link status are independent random
variables. For each combination, probability of having a par-
ticular detected neighbor j be the next hop is proportional
to the probability of j having minimum distance among all
detected neighbors. If more than one neighbor has the min-
imum distance, we assume that the neighbor with minimum
index number is selected. We approximate the probability
of j being selected as the next-hop from the distance pmf
that we approximated before.

To illustrate our methodology consider the simple 5x5 net-
work grid in Figure 4. Assume that the detection probability
for every link is 0.6. We focus on the routing table entry of
node 13 for the destination node 1. There are 4 neighbors
of node 13 (8, 12, 14, 18) that can be used for packet for-
warding. Using the iterative DP equations, we can find the
expected delay of the 4 neighbor nodes. These are approx-
imated by the Matlab code and are (4.70, 4.74, 7.42, 7.39)
respectively. Because of the symmetry, distances of 8 and 12
should be equal, and the numerical difference is due to the
finite number of iterations in the software implementation.

In the next step, we have to approximate the distance pmf
for the four neighbor nodes using non-linear equations (8,
9). The minimum distance for node 8 is 3 and maximum is
assumed to be 6 and the probabilities for distances from 3
to 6 are (0.19, 0.23, 0.27, 0.31). Similarly, for node 12 the
probabilities are (0.18, 0.22, 0.27, 0.33). For nodes 14 and
19 the minimum is 5 and the maximum is 10 and the prob-
abilities are: (0.18, 0.17, 0.17, 0.16, 0.16, 0.16) and (0.18,
0.17, 0.17, 0.16, 0.16, 0.16) respectively.

Using the pmf, we can compute probability that neighbor
i is selected over neighbor j as the next hop. In this step,
we assume that if two neighbors have the same hop count,
we select the one with lower index. These probabilities are
given in Table 1 for our example.

At any time, a subset of the four links are active and de-
tected in the network. In total there are 16 different possi-
ble combination of the active links. For each combination,
probability of selecting a particular detected neighbor node
i is proportional to the product of those elements in row %
of Table 1 that corresponds to the detected neighbors (note



Table 1: Probability of selecting node i over node j at node
13 as the next-hop to the destination node 1

Node j
Node i 8 12 14 18
8 0.64 094 0.94
12 0.36 0.94 0.94
14 0.06 0.06 0.58

18 0.06 0.06 0.42

that the computed products for each combination of the de-
tected neighbors should be normalized so that they sum up
to 1).

For instance, let’s consider the combination that all links are
detected. Probability of this combination is 0.6*. Probabil-
ity of selecting each neighbor is proportional to the product
of all entries of the corresponding row. Thus, we can com-
pute the probability of having each neighbor selected as the
next hop, which are: (0.637, 0.359, 0.002, 0.002). These
probabilities are for the combination that all 4 neighbor
links are detected. For the final result, we have to com-
pute these probabilities for all possible 16 combinations of
detected links, and take the weighted average of them.

7. NETWORK MODELING AND DESIGN

Our component based modelling can be used for design and
enhancement of the routing protocols performance. In this
section, we first illustrate how we can use our models and
methodology to enhance and modify the NDC component
of the OLSR. Next, we demonstrate how we can study and
evaluate the proposed methods impact on the overall per-
formance of the routing protocol.

7.1 Enhancement and modification of NDC
In section 4, we presented our Markov Chain Model for
NDC. Recall that the input to the Neighborhood Discovery
Component (NDC) model is, f;;, the probability of trans-
mission failure of hello messages between two nodes. The
output of this model is probability of having a bidirectional
link between two nodes, p;;. The performance metric for
this component is the link detection entropy that we define
as:

Hi; = —pijlogpij — (1 — pij) log(1l — pij). (10)

It is desirable that the links have predictable and stable
status, i.e. the link detection probability should be close to
zero or close to one depending on the transmission success
probability for the link, or the link entropy should be close
to zero for both stable (good) and non-stable (bad) links as
defined in section 4. We say that a link is good (bad) if
probability of HELLO messages success is above(below) a
threshold p,(pq). Consider that we set p,, and pq to 0.7 and
0.6 respectively. Figure 5(a) and 5(b) show the detection
probability for the bad and good links as a function of U
and D respectively. U and D are the NDC component design
parameters and should be set appropriately to achieve the
desired performance. From the figures it can be seen that
(U =120,D =9) is a good design point.

Figure 6(a) and 6(b) show the link detection probability
and entropy as a function of success probability for this set
of design parameters (U=20, D=9). Note that the link en-
tropy always has a maximum equal to one (corresponding
to link detection probability equal to 0.5), but it is desirable
to have abrupt transition from the maximum value to the
values close to zero and the maximum should occur in the
transition region between the bad and good link’s region, so
that entropy is close to zero for both good and bad links.
From the figures, it is clear that these goal are achieved by
our design.

In OLSR, the NDC detects a link after only one HELLO
message is successfully received (U = 1). For comparison
with the OLSR NDC, we have also plotted the link detec-
tion probability and entropy for (U=1, D=9), which can be
realized with OLSR, in Figures 7(a) and 7(b) respectively.
Clearly, the region with large entropy is wider; hence, the
probability of having unpredictable links is higher. Further-
more, this region does not separate good and bad links.

7.2 Network level performance evaluation

So far, we have illustrated that the proposed component
model can be used to modify and enhance the performance
of the NDC component. In this section, we illustrate how
the models can be used to study the overall performance of
the routing protocol.

We consider throughput, which is one of the main and pri-
mary performance metrics of wireless networks. We illus-
trate how our models can be used to evaluate and estimate
network throughput. We define throughput from node i to
node k, t;r as the ratio of the packets received to the packets
transmitted from source ¢ to destination k. Recall that s;;
is the probability of successful transmission from node 7 to
node j, and «;;(k) is probability of selecting node j as the
next-hop of ¢ for destination k. Thus, for every destination
k and source node i,

tie = > aij(k)(1 = fij)tin,
j#i (11)
tee = 1.

We are assuming that there is no MAC layer re-transmission
at every node in 11. If the MAC layer retransmits the failed
packet up to m times, then f;; should be replaced with f/7'.
We can use a simple fixed point iteration to find the solution
of the above equations. We consider again the 5x5 grid net-
work shown in Figure 4; however we increase the number and
type of the links that are present in the network. We assume
that there 3 types of the links in the network, with successful
transmission probabilities of 0.9, 0.6, 0.5 respectively. The
corresponding links for node 13 are shown in Figure 8(a),
where links to nodes (8, 12, 14, 18), (7, 9, 17, 19), and (3,
11, 15, 23) are type, 1, 2, and 3 respectively. Since type 1
links are more reliable, our design objective is to only use
these links with high probability for routing. In section 7.1,
we set the NDC parameters U = 20, D = 9, so that the de-
tection probability for links with success probability lower
than 0.6 is close to zero and for links with success probabil-
ity larger than 0.7 is close to 1. Thus, the same set of NDC
parameters are appropriate for this example too, i.e., using
only type 1 links for routing with high probability. We used
(U,D) = (20,9) and for comparison (U, D) = (1,9) in our
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Figure 5: Design curves for U and D based on the link detection probabilities.
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Figure 6: Link Predictability Metrics Curves for (U = 20,D =9).

model and derived the next-hop probabilities, a;; (k). Next,
we used equations 11 to derive the network throughput be-
tween every pair of nodes. Figure 8(b) shows the throughput
from every node in the network to destination node 25. As
we expect, the first set of parameters (U, D) = (20,9) pro-
vides better end-to-end result, while the other design that
resembles OLSR NDC functionality suffers from using bad
links in the design.

8. SUMMARY AND FUTURE WORK

In this paper, we presented a modular and component based
model for the wireless proactive routing protocols. We used
OLSR routing protocol as an example and developed a com-
ponent based model for this protocol. For the design, we
focused on the Neighborhood Discovery Component (NDC)
and provide a methodology for design and modification of
this component that results in a routing protocol with re-
liable and predictable performance. We also illustrate how
we can use our models to derive and approximate network
throughput. We used this methodology to derive the per-
formance of a modified version of OLSR that works based
on our proposed NDC and compared it performance with
regular OLSR protocol.

The component based modelling for the routing that we pre-

sented here is one of the main blocks that we are developing
for modelling and performance study of wireless networks.
The other main blocks are PHY, MAC, scheduling [1] and
mobility models. The overarching objective of these projects
are development of efficient approximation models for wire-
less network protocols that can be used for the analysis,
design, and optimization of cross-layer protocols and algo-
rithms.

Currently, we are comparing results of our models with sim-
ulation models in order to study and enhance the accuracy
of our models. As illustrated in Figure 1, we are also in
the process of integrating the MAC and PHY models with
the routing protocol models that we discussed in this pa-
per. For the design, optimization and sensitivity analysis,
we need to compute derivative of the performance metrics
with respect to the inputs and network parameters. We have
used Automatic Differentiation for that purpose in [1] and
we intend to integrate AD software tools with our routing
protocol models too.
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