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Chapter 1

Introduction

In this thesis, we study arithmetic questions arising from discrete dynami-

cal systems. The techniques used draw on algebraic number theory and algebraic

geometry.

1.1 Discrete Dynamical Systems

A discrete dynamical system is simply a set X with a self-map φ : X → X,

allowing for iteration. For a non-negative integer n, denote by φn the nth iterate of

φ under composition, with φ0 taken to be the identity map. In classical complex

dynamics, the set X is the Riemann sphere P1(C). A morphism is a map given by

π : (x1, ..., xm) 7→ (f1(x1, ..., xm), ..., fn(x1, ..., xm))

where the fi are polynomials. More generally for this thesis, let K be a field with

algebraic closure K. Let φ : P1(K) → P1(K) be a morphism defined over K; then

we may write φ(z) ∈ K(z) as a rational map: φ(z) = F (z)/G(z), F,G ∈ K[z],

gcd(F,G) = 1, deg φ = max{degF, degG}.

The (forward) orbit of a point α ∈ P1 under φ is simply the set of iterates of α:

Oφ = {φn(α) : n ≥ 0}.
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A fundamental problem in dynamics is to classify points according to their orbits.

Some types of points are of particular interest. A point α ∈ P1 is periodic if there

exists an integer n > 0 such that φn(α) = α, and α is preperiodic if there exist

integers n > m ≥ 0 such that φn(α) = φm(α):

Per(φ,P1) = {α ∈ P1 : φn(α) = α for some n ≥ 1}.

PrePer(φ,P1) = {α ∈ P1 : φn(α) = φm(α) for some n > m ≥ 0}.

We say P has period n if φn(P ) = P , and it has primitive period n if n > 0 is the

smallest such integer.

1.2 Arithmetic Questions

One type of arithmetic question arising from discrete dynamical systems is the

analysis of PrePer(φ,K), the preperiodic points of a map φ(z) ∈ K(z) lying in the

field K. Northcott proved in [18] that for a fixed morphism φ : PN(K) → PN(K)

of degree at least 2 defined over a number field K, there are at most finitely many

preperiodic points in PN(K). Lying deeper is the uniform boundedness conjecture

of Morton and Silverman (see [14]).

Conjecture 1. Let K/Q be a number field of degree D, and let φ : PN(K)→ PN(K)

be a morphism of degree d ≥ 2 defined over K. There is a constant κ(D,N, d) such

that

#PrePer(φ,K) ≤ κ(D,N, d).
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This conjecture implies, for example, the uniform boundedness for torsion

points on abelian varieties over number fields (see [7]). Even the special case n = 1

and d = 4 is enough to imply Merel’s uniform boundedness of torsion points on

elliptic curves proved in [12]. Torsion points on elliptic curves are exactly preperi-

odic points under the multiplication-by-2 map on the curve. Points on the elliptic

curve map to P1 via their x-coordinate, and this multiplication-by-2 map induces a

degree-four rational map φ : P1 → P1, with the x-coordinates of the torsion points

mapping to preperiodic points of φ.

1.3 Dynatomic Polynomials

To tackle these arithmetic questions, we require algebraic descriptions of pe-

riodic and preperiodic points. For any φ(z) ∈ K(z), there is a homogeneous poly-

nomial Φn,φ(x, y) ∈ K[x, y] whose roots are precisely points of period dividing n for

φ, where (x, y) is a homogeneous coordinate of z. If we homogenize φ(z) = F (z)
G(z)

to

φ(x, y) = [F (x, y) : G(x, y)] and write φn(x, y) = [Fn(x, y) : Gn(x, y)], then

Φn,φ = yFn(x, y)− xGn(x, y).

If P = [x : y] is a root of this polynomial, then by construction φn(P ) = P .

The polynomial Φn has as its roots all points of period n, including those of primitive

period k < n but satisfying k | n. We would like to examine points of primitive
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period n, so we define the nth dynamical polynomial for φ by

Φ∗n,φ(x, y) =
∏
k|n

(Φk,φ(x, y))µ(n/k) =
∏
k|n

(yFk(x, y)− xGk(x, y))µ(n/k),

where µ is the Moebius mu function. It is not clear a priori that Φ∗n(x, y) is a

polynomial, but this is in fact the case. The roots of Φ∗n(x, y) are points of formal

period n, which include all points of primitive period n. We say that P has formal

period n if Φ∗(P ) = 0. It is clear that

primitive period n⇒ formal period n⇒ period n,

but neither of the reverse implications is true in general (see [23] p.148-149).

1.4 Quadratic Polynomials

Let φ(z) ∈ K[z] be a quadratic polynomial, and assume that char K 6= 2.

Then φ(z) is linearly conjugate over K to some map fc(z) = z2 + c with c ∈ K . To

see this, write

φ(z) = Az2 +Bz + C, A,B,C ∈ K.

Conjugating by h(z) = (2z −B)/(2A) ∈ PGL2(K), we get

φh(z) = z2 + (AC − 1

4
B2 +

1

2
B)︸ ︷︷ ︸

c∈K

.

Thus, studying the dynamics of quadratic polynomials–including the arithmetic

dynamics of these maps–reduces to studying the dynamics of the one-parameter

family fc(z) = z2 + c. This is certainly the most-studied family of rational maps.

The famous Mandelbrot set is a subset of the c-parameter plane for fc, describing
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the fate of Ofc(0).

We now summarize some of the arithmetic results known for the family fc. In his

thesis, Bousch [1] proved the following.

1. Φ∗n,fc(z) = Φ∗n(z, c) ∈ Z[z, c], and this polynomial is irreducible for every n.

2. The affine curve Y1(n) given by Φ∗n(z, c) = 0 is smooth.

3. Let X1(n) be the normalization of the projective closure of Y1(n). Then

genus X1(n) = 1 +
n− 3

4
κ(n)− 1

4

∑
m|n

φ(
m

n
)mκ(m)

where κ(n) =
∑

k|n µ(n/k)2k (κ(n) is essentially the z-degree of Φ∗n) and φ is

the Euler totient function.

Bousch’s genus formula shows that X1(1), X1(2), and X1(3) are all rational. So there

are one-parameter families of c-values giving maps fc with rational fixed points, ra-

tional points of period 2, and rational points of period 3, respectively.

The genus of X1(4) is 2, and in [13] Morton shows that this curve is birational to the

elliptic modular curve X1(16), and that it has no rational points. In other words,

there are no quadratic polynomials defined over Q with a rational point of primitive

period 4. X1(5) has genus 14. This curve is not modular, but in [8] Flynn, Poonen,

and Shaefer show that there are no finite rational points. So there are no quadratic

polynomials defined over Q with a rational point of primitive period 5.

In [19] Poonen conjectures that no quadratic polynomial φ defined over Q has ra-

tional points of primitive period n > 3. He shows that if the conjecture is true, then
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for such maps,

#PrePer(φ,Q) ≤ 9.

The set PrePer(φ,K) of preperiodic point of φ defined over K can be represented by

a directed graph, with an arrow from P to φ(P ), and Poonen provides a complete

analysis of directed graphs that occur as PrePer(φ,Q) for points of primitive period

n ≤ 3 and φ ∈ Q[x] a quadratic polynomial.

1.5 Summary of the Results

In Chapter 2, we consider the 4-cycles of quadratic polynomials. Morton proves

in [13] that there are no rational values of c for which the quadratic map f(x) = x2+c

has a rational 4-cycle. However, Flynn, Poonen, Schaefer give an example in [8]:

φ(x) = x2 − 31
48

has a 4-cycle over a quadratic field Q(
√
−15) described by the

following diagram

1

4
+

√
−15

6
→ −1 +

√
−15

12
→ 1

4
−
√
−15

6
→ −1−

√
−15

12
→ 1

4
+

√
−15

6
.

We generalize this example to the following result:

Theorem 1.5.1. Let {x1, x2, x3, x4} be a 4-cycle for the quadratic polynomial

φ(x) = x2 + c, where c ∈ Q. If xi’s are in a quadratic field, then x1 and x3 are

Galois conjugates.

Parametrization of 4-cycles was proved by Netto, Erkama and Morton (see

[6, 13, 17]) using Galois theory. We show this result by a different approach, namely

Groebner bases. Moreover, equipped with Theorem 1.5.1, for c ∈ Q we can generate

all 4-cycles over quadratic fields.
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Theorem 1.5.2. Let φ(z) = z2 + c. Then

(a) c and the points of period 4 can be parametrized over C by the following:

c =
1− 4t3 − t6

4t2(t2 − 1)
,

x1 =
t4 − t2 +

√
(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
, x2 =

1− t2 + t
√

(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
,

x3 =
t4 − t2 −

√
(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
, x4 =

1− t2 − t
√

(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
,

where t = x1 + x3.

(b) Assume that c ∈ Q and x1, x2, x3, x4 lie in a quadratic field, then t ∈ Q. There-

fore, as t ranges through Q, we obtain all 4-cycles over quadratic fields.

Another interesting result in arithmetic dynamics is that we can use periodic

points of rational functions to produce units, called dynamical units, over fields with

valuations (see [15]). In Chapter 3, we will consider the converse problems of the

results in [15]. To be more precise we consider the following question:

What are the forms that can produce units from periodic points of rational func-

tions?

We prove that, under certain conditions, the form is unique.

Theorem 1.5.3. Let K be number field and let T be a finite set of places of K that

includes the archimedean places. Let T̃ be the set of places of Q lying above the

places in T. Suppose a, b, c, d ∈ K are such that

B([x1, y1], [x2, y2]) = ax1x2 + bx1y2 + cx2y1 + dx2y2
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is a T̃ -unit whenever φ is a rational function of degree at least 2 defined over K with

everywhere good reduction, [x1, y1] ∈ P1(Q) is a normalized point of order 2 and

[x2, y2] ∈ P1(Q) is a normalized point of order 3 for φ. Then a = 0 = d and b = −c.

Moreover, b, c are T-units.

Morton and Silverman prove in [14] that for φ(x) ∈ Q(z) with good reduction

at 2 and 3, if φ(x) has a rational primitive n-cycle, then n | 24. We will use

dynamical units (with a stronger assumption) to give an improved bound.

Theorem 1.5.4. Let φ ∈ Q(z) with good reduction everywhere (outside ∞). As-

sume that φ has a rational n-cycle. Then n | 6.
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Chapter 2

Rational Periodic Points

2.1 Rational Periodic Points of Quadratic Polynomials

Polynomials φ(z), ϕ(z) ∈ Q[z] are linearly conjugate over Q if there exists a

linear polynomial l(z) ∈ Q[z] such that l(φ(l−1(z))) = ϕ(z). In this case, l maps

the rational preperiodic points of φ(z) bijectively to the rational preperiodic points

of ϕ(z), also preserving the graph that describes the cycles and preperiodic points.

Every quadratic polynomial in Q[z] is linearly conjugate over Q to one of the form

z2 + c with c ∈ Q, so from now on, it is sufficient to consider φ(z) = z2 + c. In the

subsequent theorems for polynomials, we disregard ∞, which is always a rational

fixed point.

Theorem 2.1.1. [19], [21] Let φ(z) = z2 + c with c ∈ Q. Then

1. φ(z) has a rational point of period 1 (i.e., a rational fixed point) if and only if

c = 1/4−ρ2 for some ρ ∈ Q. In this case, there are exactly two, 1/2+ρ and 1/2−ρ,

unless ρ = 0, in which case they coincide.

2. φ(z) has a rational point of period 2 if and only if c = −3/4−σ2 for some σ ∈ Q,

σ 6= 0. In this case, there are exactly two, −1/2 + σ and −1/2− σ (and these form

a 2-cycle).
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3. φ(z) has a rational point of period 3 if and only if

c = −τ
6 + 2τ 5 + 4τ 4 + 8τ 3 + 9τ 2 + 4τ + 1

4τ 2(τ + 1)2

for some τ ∈ Q, τ 6= −1, 0. In this case, there are exactly three,

x1 =
τ 3 + 2τ 2 + τ + 1

2τ(τ + 1)
,

x2 =
τ 3 − τ − 1

2τ(τ + 1)
,

x3 =
τ 3 + 2τ 2 + 3τ + 1

2τ(τ + 1)

and these are cyclically permuted by φ(z).

Theorem 2.1.2. [19] Let φ(z) = z2 + c with c ∈ Q. Then

1. φ(z) has both rational points of period 1 and rational points of period 2 if and

only if

c = −3µ4 + 10µ2 + 3

4(µ2 − 1)2

for some µ ∈ Q, µ 6= −1, 0, 1. In this case the parameters ρ and σ of Theorem 2.1.1

are

ρ = −µ
2 + 1

µ2 − 1
, ρ =

2µ

µ2 − 1
.

2. If φ(z) has rational points of period 3, it cannot have any rational points of period

1 or 2.

2.2 Parametrization of Periodic Points

Parametrization of 4-cycles was proved by Netto, Erkama and Morton (see

[6, 13, 17]) using Galois theory. We will show this result by different approach;

namely Groebner bases.
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Theorem 2.2.1. Let φ(z) = z2 + c. Then c and the points of period 4 can be

parametrized over C by the following:

c =
1− 4t3 − t6

4t2(t2 − 1)
,

x1 =
t4 − t2 +

√
(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
, x2 =

1− t2 + t
√

(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
,

x3 =
t4 − t2 −

√
(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
, x4 =

1− t2 − t
√

(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
,

where t = x1 + x3.

Proof. We will solve the system of equations generated by periodic points of quadratic

functions by the means of Groebner bases. Let φ(x) = x2+c, φ(x1) = x2, φ(x2) = x3,

φ(x3) = x4, φ(x4) = x1, t = x1 +x3. Assume that x1 is of primitive period 4. Recall

that the 4th dynatomic polynomial of φ(x) is

Φ∗4(x) = x12 + 6cx10 +x9 + (3c+ 15c2)x8 + 4cx7 + (1 + 12c2 + 20c3)x6 + (2c+ 6c2)x5 +

(15c4 + 3c2 + 4c+ 18c3)x4 + (1 + 4c2 + 4c3)x3 + (6c3 + 6c5 + 12c4 + c+ 5c2)x2 + (c4 +

c2 + 2c+ 2c3)x+ 2c2 + c6 + 1 + 3c3 + 3c5 + 3c4

and Φ∗4(x) = 0 if and only if x is a point of primitive period 4. Let G be the

ideal in C[x1, x3, c, t] generated by {φ(φ(x1))− x3,Φ∗4(x1), t− (x1 + x3)}. Then the

Groebner basis with the lexicographic ordering (x3, x1, t, c), i.e., x3 > x1 > t > c is

B1 = {−1+4t3−4ct2 +4t4c+ t6, 2c−4ct+5t2−2tx1 +2x21 +4t3c+ t5,−t+x1 +x3}.

We may observe that B1 contains a bivariate polynomial, −1+4t3−4ct2 +4t4c+ t6,

which yields

c =
1− 4t3 − t6

4t2(t2 − 1)
.
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To find the parametrization of x1, we will reorder the lexicography. The correspond-

ing Groebner basis with respect to the lexicographic ordering (x3, c, t, x1), i.e., x3 >

c > t > x1, is B2 = {1−2t3−2t−4t2x21+4x1t
3−2t4+4t4x21−4t5x1+t6, 2+2x21−2tx1+

3t2+2c+4tx21−4t2x1+2t3−4t3x21+4t4x1−t5,−t+x1+x3}.We may again observe that

B2 contains a bivariate polynomial: 1−2t3−2t−4t2x21+4x1t
3−2t4+4t4x21−4t5x1+t6.

It follows that

x1 =
t4 − t2 +

√
(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
.

Since we can parametrize c and x1, by applying φ, we can also parametrize x2, x3

and x4.

In [13] Morton shows that there is no rational point of primitive period 4 for

quadratic polynomials p(x) ∈ Q. We state his result as the following theorem:

Theorem 2.2.2. [13] There are no finite rational solutions (x, c) of the equation

Φ∗4(x, c) = 0. In other words, there are no rational values of c for which the quadratic

map f(x) = x2 + c has a rational 4-cycle.

However, by Theorem 2.2.1 there are infinitely many quadratic 4-cycles for

c ∈ Q. We investigate this in the next section.

2.3 Points of Period 4 in Quadratic Fields

By Theorem 2.2.1, it is easy to see that if t ∈ Q, then c ∈ Q and x1, x3 (also

x2, x4) are Galois conjugate. However, it is not obvious that this is true without the

rationality of t. In the following we will prove that it is the case. For c = 0, the
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dynatomic polynomial of φ(x) = x2 is x12 +x9 +x6 +x3 + 1 which has no quadratic

roots. For the rest of this chapter we will assume that c 6= 0.

Lemma 2.3.1. Let xi’s be periodic points of period 4 for the quadratic polynomial

φ(x) = x2 + c, where c ∈ Q. If x̄1 6= x3, then {x1, x2, x3, x4} ∩ {x̄1, x̄2, x̄3, x̄4} = ∅.

Proof. Assume to the contrary that {x1, x2, x3, x4} ∩ {x̄1, x̄2, x̄3, x̄4} 6= ∅. If xi is in

the intersection, then applying φ the appropriate number of times shows that x1 is

in the intersection. In [13] Morton proved that there is no rational point of period

4 for φ(x) = x2 + c. This implies that x1 6= x1. Assume that x1 = x2. Then

x̄3 = φ(φ(x1)) = φ(x̄2) = φ(x1) = x2 = x̄1. Therefore, x1 = x3, contradiction.

If x1 = x4, then x2 = φ(x1) = φ(x4) = x1, which we just proved cannot happen.

Let c ∈ Q and φ(X) = X2 + c. Let x be a point of primitive period 4. We let

z be the trace of x: z = (1 +φ+φ2 +φ3)(x). A straightforward computation shows

that

z = x8 + 4cx6 + (1 + 2c+ 6c2)x4 + (1 + 2c+ 4c2 + 4c3)x2 + x+ 3c+ 2c2 + 2c3 + c4.

By computation, c =
(−z3 − 3z − 4)

4z
(see [13]).

By factoring Φ∗4(x, c) = Φ∗4(x,
(−z3 − 3z − 4)

4z
) we find that x is a root of the poly-

nomial

pz(X) : = p(X, z)

= X4 − zX3 − z2 + 3z + 4

2z
X2 +

z3 + 2z2 + 5z + 8

4
X

− z6 + 2z5 + 4z4 + 6z3 − 5z2 − 8z − 16

16z2

(this polynomial is computed in [13]).
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Lemma 2.3.2. Let c ∈ C. Let z1, z2, z3 be the roots of z3 + (4c+ 3)z+ 4 = 0. Then

the four roots of the polynomial pj(X) = pzj(X), for j = 1, 2, 3 form an orbit of

φ(X) = X2 + c.

Proof. Let j ∈ {1, 2, 3} Note that it is possible for pj(X) /∈ Q[X]. Let x1 be a

4-periodic point of φ(X) and a root of pj(X). A calculation shows that pj(φ(X)) =

pj(X)pj(−X). Therefore, pj(φ(x1)) = 0. This implies that φ(x1) is also a root of

pj(X). Since pj(X) is of degree 4 and x1 is a 4-periodic point of φ(X), the roots of

pj(X) are the orbit generated by x1.

Let D(f) denote the discriminant of the polynomial f and let R(f, g) denote

the resultant of polynomials f and g.

Lemma 2.3.3. Let f , g and h be monic polynomials. Then

D(fg) = D(f)D(g)R2(f, g)

and

D(fgh) = D(f)D(g)D(h)R2(f, g)R2(g, h)R2(h, f).

Proof. See [20] pp.23-24.

Theorem 2.3.4. Let {x1, x2, x3, x4} be a 4-cycle for the quadratic polynomial

φ(x) = x2 + c, where c ∈ Q. If xi’s are in a quadratic field, then x1 and x3 are

Galois conjugates.

Proof. Assume that x1 and x3 = φ(φ(x1)) are not Galois conjugates. Since c ∈ Q,

the Galois conjugates of xi’s, called x̄i’s, must also be periodic points of φ(X).
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By Lemma 2.3.2, the dynatomic polynomial of φ(X) is of the form Φ∗4(X) =

p1(X)p2(X)p3(X), where the roots of each pi(X) form an orbit. Assume that the

roots of p1(X) are x1, x2, x3, x4. By Lemma 2.3.1, these roots are disjoint from

x1, x2, x3, x4. Without loss of generality, we may assume these are the roots of

p2(X). Let zj be the coefficient of X3 in pj(X) for j = 1, 2, 3. Thus, z1 and z2 are

conjugate. By Lemma 2.3.3,

D(p1(X)p2(X)) = D(p1(X))D(p2(X))R2(p1(X), p2(X)).

Since R(p1(X), p2(X)) =
∏

(xi − x̄j),

R(p1(X), p2(X)) = (−1)16R(p1(X), p2(X))

= R(p1(X), p2(X)).

Thus, R(p1(X), p2(X)) = r ∈ Q. A calculation shows that

D(pj(X)) =
(zj + 2)2(z2j + 4)3

z4j
,

for j = 1, 2. Note that p1(X)p2(X) can be written as

p1(X)p2(X) = q1(X)q2(X)q3(X)q4(X),

where qi(X) = (X − xi)(X − x̄i) for i = 1, 2, 3, 4 are rational quadratic polynomials

(and their roots lie in the same quadratic field.) Therefore, D(qi) = ds2i , i = 1, 2, 3, 4,

with d, si ∈ Q. This implies that

D(p1(X)p2(X)) = D(q1(X)q2(X)q3(X)q4(X))

= d4s21s
2
2s

2
3s

2
4R

2,

15



where R is a product of resultants of qi’s. The above implies that

D(p1(X)p2(X)) =
(z1 + 2)2(z21 + 4)3

z41

(z2 + 2)2(z22 + 4)3

z42
r2.

Since z1 and z2 are quadratic conjugate,
(z1 + 2)(z21 + 4)

z21

(z2 + 2)(z22 + 4)

z22
∈ Q. It

follows that (z21 + 4)(z22 + 4) = s2, for some s ∈ Q.

Since zi’s satisfy h(Z) = Z3 + (4c + 3)Z + 4 = 0, we have z1 + z2 + z3 = 0 and

z1z2z3 = −4. Since z1 and z2 are quadratic conjugate, u = z1z2 and v = z1 + z2 are

rational. Note that z3 = −(z1 + z2) = −v. This implies that uv = −z1z2z3 = 4.

Thus,

s2 = (z21 + 4)(z22 + 4).

= u2 + 4(v2 − 2u) + 16

= u2 + 4(
16

u2
− 2u) + 16.

This becomes u4 − 8u3 + 16u2 + 64 = t2 for some t ∈ Q. This changes to an

elliptic curve with equation y2 = x3 + x2 − x (see [25], pages 37-38), which has

6 torsion points generated by (−1, 1) (namely, {(−1,±1), (1,±1), (0, 0),∞}.) This

is the whole Mordell-Weil group (see [3], pages 110). The corresponding u, v are

u = 16(x+16)
y

and v = −8 + u2x
16

. Thus, u = 0, 4. Since uv = 4, u = 4 and

v = 1. The only values of zj’s are (1 +
√
−15)/2 and its conjugate. However,

when zj = (1 ±
√
−15)/2 we have c = −z3−3z−4

4z
= 0, contradiction. Thus, x1 and

x3 = φ(φ(x1)) are Galois conjugate.

The Theorem 2.3.4 can be used to consider factors of Φ∗4(x) = Φ∗4(x, c) for

c ∈ Q. We have a partial result on the factorization of Φ∗4(x) by the following
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theorem.

Theorem 2.3.5. For c ∈ Q the dynatomic polynomial Φ∗4(x) = Φ∗4(x, c) cannot

be factored in Q[X] as {2, 2, 2, 2, 4}, i.e., a product of four quadratic and one (not

necessarily irreducible) quartic polynomials.

Proof. Assume to the contrary that the 4th dynatomic polynomial Φ∗4(X) can be

factored as Φ∗4(X) = q1(X)q2(X)q3(X)q4(X)r(X), when qi’s are quadratic poly-

nomials and r(X) is a quartic polynomial (not necessarily irreducible). By Theo-

rem 2.2.2, qi’s are irreducible. Let x1 be a 4-periodic point of φ(X) over a quadratic

field. Let x2 = φ(x1), x3 = φ2(x1) and x4 = φ3(x1). Without loss of general-

ity, assume that q1(x1) = 0. By Theorem 2.3.4, q1(x3) = 0. Similarly, we can

assume that q2(x2) = 0 = q2(x4). Now assume that x′1 is a root of q3(X). Let

x′2 = φ(x′1), x
′
3 = φ2(x′1) and x′4 = φ3(x′1). Then q3(x

′
1) = 0 = q3(x

′
3) and

q4(x
′
2) = q4(x

′
4). Note that the xi’s lie in the same quadratic field and the x′i’s

also lie in the same quadratic field (possibly different from the one containing xi’s).

It follows that D(q1)D(q2) = s21 and D(q3)D(q4) = s22, for some s1, s2 ∈ Q. Now

let p1(X) = q1(X)q2(X) and p2(X) = q3(X)q4(X). By definition of the resul-

tant, we have that R(p1(X), p2(X)) =
∏
i,j

(xi − x′j). Since p1(X), p2(X) ∈ Q[X],

R(p1(X), p2(X)) ∈ Q. By Lemma 2.3.3, D(p1p2) = s2 for some s ∈ Q. Since the

roots of each pj contain (only) a 4-cycle of φ(X), by Theorem 2.3.4, the trace of the

roots of pj, say zj, is rational for j = 1, 2. Clearly, u := z1z2 and v := z1 + z2 are

17



rational. By Lemma 2.3.2, we also have that

pj(X) = pzj(X)

= X4 − zjX3 −
z2j + 3zj + 4

2zj
X2 +

z3j + 2z2j + 5zj + 8

4
X

−
z6j + 2z5j + 4z4j + 6z3j − 5z2j − 8zj − 16

16z2j
,

for j = 1, 2. Now we are in the same situation as in the proof of Theorem 2.3.4 (using

that R(p1(X), p2(X)), u and v are rational). Thus, we can use the same argument

as in the proof of Theorem 2.3.4 to show that this is impossible.

The consequence of Theorem 2.3.4 is that we know all 4-periodic points over

quadratic fields for φ(x) = x2 + c, where c ∈ Q.

Theorem 2.3.6. Let φ(z) = z2 + c. Then

(a) c and the points of period 4 can be parametrized over C by the following:

c =
1− 4t3 − t6

4t2(t2 − 1)
,

x1 =
t4 − t2 +

√
(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
, x2 =

1− t2 + t
√

(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
,

x3 =
t4 − t2 −

√
(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
, x4 =

1− t2 − t
√

(t4 − 1)(t2 + 2t− 1)

2t(t2 − 1)
,

where t = x1 + x3.

(b) Assume that c ∈ Q and x1, x2, x3, x4 lie in a quadratic field, then t ∈ Q. There-

fore, as t ranges through Q, we obtain all 4-cycles over quadratic fields.
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2.4 Points of Period 6

From Stoll’s paper [24], assuming the Birch and Swinnerton-Dyer Conjecture,

there are no rational points on Φ∗6(x, c) = 0 for c ∈ Q. To be more precise, there are

no rational points of primitive period 6 for φ(x) = x2 + c where c ∈ Q. However,

there is a quadratic 6-cycle for c = −71
48

. It is natural to ask if the analog of Theorem

2.3.4 holds; namely is x4 = x1 for period 6? For a point (x, c) ∈ X0(6) : Φ∗6(x, c) = 0,

we consider the “trace” of its orbit,

x+ φ(x) + φ2(x) + · · ·+ φ5(x, c).

The resultant with respect to x of Φ∗6(x, c) and t− (x+φ(x) +φ2(x) + · · ·+φ5(x, c))

is a sixth power; one of its six roots is

Ψ6(x, c) =256(t3 + t2 − t− 1)c3 + 16(9t5 + 7t4 + 10t3 + 30t2 − 19t− 37)c2

+ 8(3t7 + t6 + 2t5 + 2t4 − 17t3 + 69t2 + 52t− 48)c

+ t9 − t8 + 2t7 + 14t6 + 49t5 + 175t4 + 140t3 + 196t2 + 448t.

(This polynomial was already computed by Morton in [13].) Assuming the Birch

and Swinnerton-Dyer Conjecture, Stoll [24] proved that there are exactly 10 rational

points on Ψ6(x, c). Only one of them, (t, c) = (−7
2
,−71

48
), can generate a 6-cycle over

a quadratic field. If we also assume that x1 = x4 holds for all quadratic 6-cycles (the

analogue of Theorem 2.3.4), when c ∈ Q, then the traces must be rational. Then

φ(x) = x2 − 71
48

is the only rational quadratic polynomial (up to linear equivalence)

that has a 6-cycle over a quadratic field.
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Chapter 3

Periodic Points and Dynamical Units

3.1 Overview

Fix the nth root of unity µ = e2πi/n. The cyclotomic units can be constructed

using 1 − µj for 1 ≤ j ≤ n − 1. One of our goals in this chapter is to study this

theory for the periodic points of a rational function φ ∈ K(z), or equivalently of a

rational map φ : P1(K) → P1(K). In other words, we will study units in the fields

generated by the periodic points of φ . By analogy with the cyclotomic theory and

in recognition of the dynamical study of periodic points of rational maps, we will

call the units constructed by periodic points dynamical units. Some of these were

originally constructed by Narkiewicz [16], then was reformulated and generalized by

Morton and Silverman [15].

3.2 Background

We study dynamics of rational maps φ over fields K with valuations that have

“good reduction.” This means that the reduction of φ modulo the maximal ideal of

the ring of integers of K is a “well-behaved” rational map φ̃ over the residue field

k of K. Thus, studying the dynamics of φ̃ over k allows us to derive information

about the dynamics of φ over K. We set the following notation:
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K a field with normalized discrete valuation v : K∗ → Z

| · | = c−v(x) for some c > 1, an absolute value associated to v.

R = {α ∈ K : v(α) ≥ 0}, the ring of integers of K.

p = {α ∈ K : v(α) ≥ 1}, the maximal ideal of R.

R∗ = {α ∈ K : v(α) = 0}, the group of units of R.

k = R/p, the residue field of R.

∼ reduction modulo p, i.e., R→ k, a 7→ ã.

The following theorem will provide the notion of “good reduction”, see [23].

Definition 1. Let φ : P1 → P1 be a rational map and write

φ = [F (X, Y ), G(X, Y )]

with homogeneous polynomials F,G ∈ K[X, Y ] and gcd(F,G) = 1. We say that the

pair (F,G) is normalized, or has been written in normalized form, if F,G ∈

R[X, Y ] and at least one coefficient of F or G is in R∗.

Equivalently, φ = [F,G] is normalized if

F (X, Y ) = a0X
d + a1X

d−1Y + · · ·+ ad−1XY
d−1 + adY

d

and

G(X, Y ) = b0X
d + b1X

d−1Y + · · ·+ bd−1XY
d−1 + bdY

d

satisfy

min{v(a0), v(a1), . . . , v(ad), v(b0), v(b1), . . . , v(bd)} = 0.
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Definition 2. Let φ : P1 → P1 be a rational map defined over a field K with

nonarchimedean absolute value | · |v . Write φ = [F,G] using a pair of normal-

ized homogeneous polynomials F,G ∈ R[X, Y ]. The resultant of φ is the quantity

Res(φ) = Res(F,G).

Theorem 3.2.1. [23] Let φ : P1 → P1 be a rational map defined over K and write

φ = [F,G] in normalized form. The following are equivalent:

(a) deg(φ) = deg(φ̃).

(b) The equation F̃ (X, Y ) = G̃(X, Y ) = 0 has no solution [α, β] ∈ P1(k).

(c) Res(φ) ∈ R∗.

(d) Res(F,G) 6= 0.

Definition 3. A rational map φ : P1 → P1 defined over K is said to have good

reduction (modulo v) if it satisfies any one (hence all) of the conditions of The-

orem 3.2.1.

Since, in general, periodic points might not lie in the base field, one sometimes

need to study the points in the extension of the base field. The following theorem

enables one to study the extensions of a field with valuation.

Theorem 3.2.2. [10] Let K be a subfield of a field L. Then a valuation on K has

an extension to a valuation on L.
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3.3 Periodic Points and Dynamical Units

Recall that the chordal metric on P1(C), which we now denote by ρ∞, is defined

by the formula

ρ∞(P1, P2) =
|X1Y2 −X2Y1|√

|X1|2 + |Y1|2
√
|X2|2 + |Y2|2

for points P1 = [X1, Y1] and P2 = [X2, Y2] in P1(C). In the case of a field K having

a nonarchimedean absolute value | · |v, it is convenient to use a metric given by a

slightly different formula.

Definition 4. Let K be a field with a nonarchimedean absolute value | · |v, and let

P1 = [X1, Y1] and P2 = [X2, Y2] be points in P1(K). The v-adic chordal metric

on P1(K) is

ρv(P1, P2) =
|X1Y2 −X2Y1|v

max{|X1|v, |Y1|v}max{|X2|v, |Y2|v}
.

It is clear from the definition that ρv(P1, P2) is independent of the choice of homo-

geneous coordinates for P1 and P2.

The following proposition will confirm that ρv is indeed a metric. In fact, it is

an ultrametric, i.e., it satisfies the nonarchimedean triangle inequality.

Proposition 3.3.1. [23]

(a) 1 ≥ ρv(P1, P2) ≥ 0 for all P1, P2 ∈ P1(K).

(b) ρv(P1, P2) = 0 if and only if P1 = P2.

(c) ρv(P1, P2) = ρv(P2, P1).
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(d) ρv(P1, P3) ≤ max{ρv(P1, P2), ρv(P2, P3)}.

Lemma 3.3.2. [23] Let φ : P1(K)→ P1(K) be a rational map that has good reduc-

tion. Then the map φ is everywhere nonexpanding:

ρv(φ(P1), φ(P2)) ≤ ρv(P1, P2)

for all P1, P2 ∈ P1(K).

As their name suggests, rational maps with good reduction behave well when

they are reduced. For the proof of the following theorem see [23].

Theorem 3.3.3. [23] Let φ : P1(K) → P1(K) be a rational map that has good

reduction. Then

(a) φ̃(P̃ ) = φ̃(P ) for all P ∈ P1(K)

(b) Let ψ : P1(K)→ P1(K) be another rational map with good reduction. Then the

composition φ ◦ ψ has good reduction, and φ̃ ◦ ψ = φ̃ ◦ ψ̃.

Proposition 3.3.4. [23] Let φ(z) ∈ K(z) be a rational function of degree d ≥ 2

with good reduction.

(a) Let P ∈ P1(K) be a point of period n for φ. Then ρv(φ
iP, φjP ) = ρv(φ

i+kP, φj+kP )

for all i, j, k ∈ Z, where for i < 0 we use the periodicity φnP = P to define

φiP .

(b) Let P ∈ P1(K) be a point of exact period n for φ. Then ρv(φ
iP, φjP ) =

ρv(φP, P ) for all i, j ∈ Z satisfying gcd(i− j, n) = 1.
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(c) Let P1, P2 ∈ P1(K) be periodic points for φ of exact period n1 and n2, respec-

tively. Assume that n1 - n2 and n2 - n1. Then ρv(P1, P2) = 1.

Definition 5. Let P1, P2, P3, P4 ∈ P1(K), and choose homogeneous coordinates

Pi = [xi, yi] for each point. The cross-ratio of P1, P2, P3, P4 is the quantity

κ(P1, P2, P3, P4) =
(x1y3 − x3y1)(x2y4 − x4y2)
(x1y2 − x2y1)(x3y4 − x4y3)

.

Notice that κ(P1, P2, P3, P4) is independent of the choice of homogeneous coordinates

for the points.

Remark: There are different definitions for the cross-ratios. However, the given

definition seems to suit studying arithmetic dynamics.

Theorem 3.3.5. [23, 15] Let φ ∈ K(z) be a rational map of degree d ≥ 2 with good

reduction. Let P ∈ P1(K) be a periodic point for φ of exact period n, and let i and

j be integers satisfying

gcd(i, n) = gcd(j − 1, n) = gcd(i− j, n) = 1.

Then

κ(P, φ(P ), φi(P ), φj(P )) ∈ R∗.

Theorem 3.3.6. [23, 15] Let φ ∈ K(z) be a rational map of degree d ≥ 2 with good

reduction. Let n1, n2 ∈ Z be integers with n1 - n2 and n2 - n1, let P1, P2 ∈ P1(K)

be periodic points of exact periods n1 and n2, respectively, and write Pi = [xi, yi] in

normalized form. Then x1y2 − x2y1 ∈ R∗.
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Remark: The statement of the Theorem 3.3.5 in [23] incorrectly switches i and j.

The statement in [15] is correct. Theorem 3.3.6 can be extended to the preperiodic

points by the following.

Proposition 3.3.7. Let φ(z) ∈ K(z) be a rational function of degree d ≥ 2 with

good reduction. Let P1, P2 ∈ P1(K) be preperiodic points for φ of exact periods n1

and n2, respectively. Assume that n1 - n2 and n2 - n1. Then ρv(P1, P2) = 1.

Proof. Since P1, P2 are preperiodic points, there is k ∈ N such that φk(P1) and

φk(P2) are periodic points of exact periods n1 and n2, respectively. By Propo-

sition 3.3.4, ρv(φ
k(P1)1, φ

k(P2)) = 1. By Proposition 3.3.1(a) and Lemma 3.3.2,

ρv(P1, P2) = 1.

Theorem 3.3.8. Let φ(z) ∈ K(z) be rational function of degree d ≥ 2 with good

reduction. Let n1, n2 ∈ N with n1 - n2 and n2 - n1, let P1, P2 ∈ P1(K) be preperiodic

points for φ of exact periods n1 and n2, respectively, and write Pi = [xi, yi] in

normalized form. Then

x1y2 − x2y1 ∈ R∗.

Moreover, if φ is even, then x1y2 ± x2y1 ∈ R∗.

Proof. Since Pi are in normalized form, the chordal metric is given by

ρv(P1, P2) =| x1y2 − x2y1 |v .

The assumptions on n1 and n2 and Proposition 3.3.7 imply that ρv(P1, P2) = 1,

and hence x1y2 − x2y1 is a unit. Now assume that φ is even. Thus, −x2 is also a

preperiodic point. Then x1y2 ± x2y1 ∈ R∗.
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Morton and Silverman show in [15] that we can use periodic points of rational

functions to produce units over fields with valuations. We will consider the converse

problems of the results in [15]. To be more precise, we consider the following ques-

tion:

What are the forms that we can use to produce units from periodic points of rational

functions over fields with valuations?

We will prove that, under certain conditions, the form that can be used to generate

the units is unique.

Proposition 3.3.9. Let K be a number field and let T be a finite set of places of

K that includes the archimedean places. Let T̃ be the set of places of Q lying over

the places of T. Let a, b ∈ K. Suppose p is a prime number and ζp is a primitive pth

root of unity such that

ap
m

ζp + bp
m

is a T̃ -unit of K(ζp) for infinitely many positive integers m. Then each of a, b is a

T-unit or 0. If ab 6= 0 then a/b is a root of unity.

Proof. For each m as in the statement, write

u−1m ap
m

ζp + u−1m bp
m

= 1,

where um is a T -unit. Let S be the set of primes occuring in the factorizations of a

and b plus the places in T. The S-unit theorem (applied to K(ζp)) says that u+v = 1

has only finitely many solutions in S-units u and v (see [11, 22]). Therefore, there

are indices m1 6= m2 such that

u−1m1
ap

m1 = u−1m2
ap

m2 .
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This implies that a power of a is a T -unit, hence a is a T -unit. Similarly, b is a

T -unit.

Let T ′ be the set of places of K(ζp) above T . The group of T ′-units of K(ζp) is

finitely generated, so there are finitely many cosets mod p-th powers. Write each

um in the form wvpm with w from a finite set of representatives mod pth powers.

Some w, call it w0, occurs for infinitely many m. Therefore, for these m,

w−10 (ap
m−1

v−1m )pζp + w−10 (bp
m−1

v−1m )p = 1.

The S-unit theorem implies that there are indices m′ and m′′ such that

ap
m′−1

v−1m′ = ap
m′′−1

v−1m′′

and

bp
m′−1

v−1m′ = bp
m′′−1

v−1m′′ .

The ratio of these two relations (if ab 6= 0) yields

(a/b)p
m′−1−pm′′−1

= 1.

Therefore, if ab 6= 0 then a/b is a root of unity.

We can now prove a converse to Theorem 3.3.6.

Theorem 3.3.10. Let K be number field and let T be finite set of places of K that

includes the archimedean places. Let T̃ be a set of places of Q lying above the places

in T. Suppose a, b, c, d ∈ K are such that

B([x1, y1], [x2, y2]) = ax1x2 + bx1y2 + cx2y1 + dx2y2
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is a T̃ -unit whenever φ is a rational function of degree at least 2 defined over K with

everywhere good reduction, [x1, y1] ∈ P1(Q) is a normalized point of order 2 and

[x2, y2] ∈ P1(Q) is a normalized point of order 3 for φ. Then a = 0 = d and b = −c.

Moreover, b and c are T-units.

Proof. Let p ≡ 1 (mod 3) be prime. Let m ≥ 1 and let n have order 6 in

(Z/pm+1Z)×. Let k be an integer and let φ(x) = k+ (x− k)−n. Then [x1, y1] = [k, 1]

and [1, 0] have order 2 for φ and [k + ζ, 1] has order 3, where ζ is any primitive

pm+1st root of unity.

We have that

B([1, 0], [k + ζ, 1]) = aζ + (ak + b)

is a T̃ -unit in K(ζ) for each primitive pm+1-th root of unity ζ. Fix one such ζ.

The product

um =

pm∏
j=1

(aζ1+jp + (ak + b)) = ap
m

ζp + (ak + b)p
m

is a T̃ -unit (where ζp = ζp
m

). If a 6= 0 then ak + b 6= 0 for sufficiently large k. The

proposition implies that (ak + b)/a is a root of unity for large k. Absolute values

show that this is impossible. Therefore a = 0. Therefore, b is a T -unit.

Now conjugate φ by (1/x) to obtain

ψ(x) =
(1− kx)n

k(1− kx)n + xn
.

Then [x1, y1] = [1, k] and [0, 1] have order 2 for ψ and [1, k + ζ] has order 3, where

ζ is any primitive pm+1st root of unity. We find that d = 0 and c is a T -unit.

Now compute

B([k, 1], [k + ζ, 1]) = (b+ c)k + cζ.
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If b+c 6= 0, we find that (b+c)k/c is a root of unity for all k > 0. This is impossible.

Therefore, b = −c.

3.4 Bounds for Period Lengths

Morton and Silverman show in [14] that a rational periodic point of a rational

map with good reduction at 2 and 3 has period dividing 24. In this section we will

demonstrate a simple form of the boundedness of preperiodic points.

Definition 6. Let K be a number field. Let φ(z) ∈ K(z). We say that φ(z) has

good reduction everywhere, if φ(z) has good reduction modulo v, for all non-

archimedean valuation v defined over K.

Theorem 3.4.1. Let φ ∈ Q(z) with good reduction everywhere (outside ∞). As-

sume that φ has an n-cycle consisting of rational integers. Then n 6 2.

Proof. Assume to the contrary that there is an integral n-cycle and n ≥ 3. Let P be

an integral point in the cycle. By Proposition 3.3.4(b), ρv(φ
n−1P, P ) = ρv(φP, P ).

Since P is a point of exact period n ≥ 3, P, φP and φn−1P are all different. Write

φiP = [xi, yi] and φjP = [xj, yj]. Since φkP ∈ Z for all k ∈ Z, we may take

yi = yj = 1. Thus,

ρv(φ
iP, φjP ) =

| xiyj − xjyi |v
max{| xi |v, | yi |v}max{| xj |v, | yj |v}

= |φiP − φjP |v,

for each valuation v over Q. By Proposition 3.3.4(a), ρv(φP, P ) = ρv(φ
iP, φi−1P ) for

all i ∈ Z. Thus, ρv(φ
n−1P, P ) = ρv(φP, P ) = ρv(φ

iP, φi−1P ) for all i ∈ Z. Therefore,

|φn−1P − P |v = |φP − P |v = |φiP − φi−1P |v
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for all non-archimedean v. Therefore, for the usual absolute value,

|φn−1P − P | = |φP − P | = |φiP − φi−1P |.

Without loss of generality, assume φn−1P < P . Thus,

φn−1P < P < φP < φ2P < ... < φn−2P < φn−1P,

a contradiction. Therefore, n ≤ 2.

To improve the bound of [14], we need some identities relating the Fibonacci

numbers to the cross ratio. Recall that the Fibonacci numbers are the sequence of

numbers {Fn}∞n=1 defined by the linear recurrence equation

Fn = Fn−1 + Fn−2

with F1 = F2 = 1.

Theorem 3.4.2. (a) (Catalan’s identity [4] p. 402)

F 2
n − Fn+rFn−r = (−1)n−rF 2

r ,

(b) (d’Ocagne’s identity [5])

FmFn+1 − FnFm+1 = (−1)nFm−n.

Theorem 3.4.3. Let c ∈ C. Let K1(c) = 0, K2(c) = 1, K3(c) = c and

Kn(c) =
cFn−1

Fn−2 + cFn−3

for n ≥ 4. Then

κ(Kn(c), Kn+1(c), Kn+2(c), Kn+3(c)) = −1
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for all n ∈ N where K(a1, a2, a3, a4) is the cross ratio of (a1, a2, a3, a4) (defined in

Section 3.3).

Proof. For n ≤ 3 we can compute directly that

κ(Kn(c), Kn+1(c), Kn+2(c), Kn+3(c)) = −1.

Let n ≥ 4. Then

κ(Kn(c), Kn+1(c), Kn+2(c), Kn+3(c)) =
A×B
C ×D

,

where

A = −FnFn+1 − cF 2
n + Fn+2Fn−1 + Fn+2cFn−2

B = −Fn−1Fn − cF 2
n−1 + Fn+1Fn−2 + Fn+1cFn−3

C = −F 2
n+1 − Fn+1cFn + Fn+2Fn + Fn+2cFn−1

D = −F 2
n−1 − Fn−1cFn−2 + FnFn−2 + FncFn−3.

Applying Catalan’s and d’Ocagne’s identities to numerators and denominators, we

have

κ(Kn, Kn+1, Kn+2, Kn+3) =
(−1)n−2(1− c)(−1)n−3(1− c)
(−1)n−1(1− c)(−1)n−3(1− c)

= −1.

Theorem 3.4.4. Let φ ∈ Q(z) with good reduction everywhere (outside ∞). As-

sume that φ has a rational n-cycle. Then n | 6.

Proof. Let P ∈ Q be a primitive n-periodic point of φ. By Theorem 3.3.5,

κ(P, φP, φiP, φjP ) is a local unit for each v of good reduction, when gcd(i, n) =
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gcd(j − 1, n) = gcd(i− j, n) = 1. Since φ has good reduction everywhere,

κ(P, φP, φiP, φjP ) = ±1. However, from computation,

κ(P1, P2, P3, P4) + κ(P1, P2, P4, P3) = 1,

for all P1, P2, P3, P4 ∈ P1. Since κ(P1, P2, P4, P3) 6= 0, this implies that

κ(P, φP, φ2P, φ3P ) = −1.

Note that κ is invariant under linear transformations f(x) = ax+b ∈ K(x). Without

loss of generality, we can assume that P = 0, φP = 1, φ2P = c and φ3P = d, for

some c, d ∈ Q. We have that κ(0, 1, c, d) = −1. Thus, d = 2c
c+1

. In general, if

κ(a1, a2, a3, a4) = −1, then

a4 =
a1a2 − 2a3a2 + a1a3

2a1 − a3 − a2
.

That means the sequence of periodic points is uniquely determined by the first 3

iterations.

Case 1 n = 4.

Let P be a point in a rational cycle of primitive period 4. Choose i = 3 and j = 2. We

have κ(P, φP, φ3P, φ2P ) + κ(P, φP, φ2P, φ3P ) = 1. Since κ(P, φP, φ3P, φ2P ) = −1

(by Theorem 3.3.5), κ(P, φP, φ2P, φ3P ) = 2. However,

| κ(P, φP, φ2P, φ3P ) |2=
ρ2(P, φ

2P )ρ2(φP, φ
3P )

ρ2(P, φP )ρ2(φ2P, φ3P )
=

(
ρ2(P, φ

2P )

ρ2(P, φP )

)2

.

This is a contradiction, since ρ2(P,φ2P )
ρ2(P,φP )

∈ Q and 2 6= r2 for all r ∈ Q.

Case 2 n ≥ 5 and n 6= 6.

Write n = 2ks, where gcd(2, s) = 1.

If k ≥ 2, we can consider the rational cycle of primitive 4-period of ψ = φn/4 which
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we have proved impossible.

If k ≤ 1, then n is odd, or n
2

is odd. Thus, we can consider ψ = φ2 if necessary.

Without loss of generality, assume n is odd. Choose i = 2 and j = 3. Let P =

0, φP = 1, φ2P = c. Then φ3P =
2c

c+ 1
= K4(c). Since the sequence of periodic

points is uniquely determined by the first 3 iterations, φn−1P = Kn(c) for all n ∈ N.

However, Kn+3(c) =
cFn+2

Fn+1 + cFn
6= 0, for all n ∈ N. Thus, φnP 6= 0 for all n ∈ N.

This contradicts to the periodicity of P .

We can also prove Theorem 3.4.4 without using Fibonacci identities.

Proof. From the proof above we use that the sequence of periodic points is uniquely

determined by the first 3 iterations.

Let P be a rational point of primitive period n. There is at most one positive integer

j < n such that κ(P, φP, φ2P, φjP ) = −1. We will use this to give a proof without

the Fibonacci sequence.

Case 1 n = 4.

Use the same method as the proof above.

Case 2 n = 5k.

If n = 5, we have

κ(P, φP, φ2P, φ3P ) = −1 = κ(P, φP, φ2P, φ4P ).

This yields φ3P = φ4P , contradiction. If n = 5k and k > 1, we can consider ψ = φk.

Case 3 n > 6.

Write n = 2ks, where gcd(2, s) = 1 = gcd(5, s).

If k ≥ 2, we can consider the rational cycle of primitive period 4 of ψ = φn/4 which
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we have proved impossible.

If k ≤ 1, then n is odd, or n
2

is odd. Thus, we can consider ψ = φ2 if necessary.

Without loss of generality, assume n is odd. We choose i = 2, j1 = 3 and j2 = 6.

Since the sequence of periodic points is uniquely determined by the first 3 iterations,

φ3P = φ6P , contradiction.

Remark: We don’t know if n = 6 is impossible.
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