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The current study aimed to determine the best method for estimating latent variable 

interactions as a function of the size of the interaction effect, sample size, the loadings of 

the indicators, the size of the relation between the first-order latent variables, and 

normality.  Data were simulated from known population parameters, and data were 

analyzed using nine latent variable methods of testing for interaction effects.  Evaluation 

criteria used for comparing the methods included proportion of relative bias, the standard 

deviation of parameter estimates, the mean standard error estimate, a relative ratio of the 

mean standard error estimate to the standard deviation of parameter estimates, the percent 

of converged solutions, Type I error rates, and empirical power.  It was found that when 

data were normally distributed and the sample size was 250 or more, the constrained 



 

 

approach results in the least biased estimates of the interaction effect, had the most 

accurate standard error estimates, high convergence rates, and adequate type I error rates 

and power.  However, when sample sizes were small and the loadings were of adequate 

size, the latent variable scores approach may be preferable to the constrained approach.    

When data were severely non-normal, all of the methods were biased, had inaccurate 

standard error estimates, low power, and high Type I error rates.  Thus, when data were 

non-normal, relative comparisons were made regarding the approaches rather than 

absolute comparisons.  In relative terms, the marginal-maximum likelihood approach 

performed the least poorly of the methods for estimating the interaction effect, but 

requires sample sizes of 500 or greater.  However, when data were non-normal, the latent 

moderated structure analysis resulted in the least biased estimates of the first-order effects 

and had bias similar to that of the marginal-maximum likelihood approach.  

Recommendations are made for researchers who wish to test for latent variable 

interaction effects. 
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Chapter 1: Introduction 

 

Interactions between continuous variables are frequently hypothesized in the 

social science literature.  An interaction occurs when the relation between a predictor and 

a criterion variable changes across varying levels of a third variable (often referred to as a 

moderator variable).  For example, the relation between ability and achievement is 

generally positive, however, it may change depending on the amount of effort students 

put forth.  Specifically, one possible example could be as effort increases, the relation 

among ability and achievement becomes more positive.  Figure 1 shows a graphical 

depiction of one possible relation between these three variables.    

The relation between a predictor and a criterion variable can sometimes vary as a 

function of either a moderator or a mediator.  These two types of third variables are used 

to specify different types of relations.  A moderator variable is introduced when the 

causal relation between two variables is thought to change as a function of a third 

variable.  A mediator variable is introduced when a predictor is thought to influence a 

criterion variable through a third variable (i.e., the predictor indirectly affects the 

criterion variable via a mediator).  Moderators affect the direction and strength of the 

relation between a predictor and a criterion, while mediators account for the relation 

between the predictor and criterion (Baron & Kenny, 1986).  The current study focuses 

only on the use of moderator variables, which is considered to be synonymous with an 

interaction in this context.  

Methods for estimating interactions are frequently encountered in lower-level 

statistics courses in undergraduate and graduate studies.  These methods include analysis 
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of variance (ANOVA) and multiple regression techniques.  When both the predictor and 

moderator variables are categorical, ANOVA is an acceptable choice of statistical 

analysis.  When either the predictor or the moderator variable is continuous, then multiple 

regression analysis can be used to estimate the main effects and the interaction effect 

(Aiken & West, 1991; Cohen, Cohen, Aiken, & West, 1983).  The regression equation for 

estimating interaction effects can be written as 

 

 0 1 1 2 2 3 1 2Y X X X X e        ,     (1) 

 

where Y represents the criterion variable, 0 represents the y-intercept, 1 and 2 represent 

main effects, X1 represents a predictor variable, X2 represents a moderator variable, X1 X2  

represents the interaction between the predictor and the moderator variable, 3 represents 

the interaction effect, and e represents the residual. 

When using ANOVA and multiple regression to examine interaction effects, one 

assumption that is often overlooked is the assumption that the variables are assumed to be 

measured without error.  Contrarily, most social science researchers hypothesize 

interactions between latent variables, which contain measurement error.  Therefore, when 

interactions are hypothesized between latent variables, latent variable analyses (such as 

structural equation modeling (SEM) are more appropriate than the traditional measured 

variable analyses.   

The LISREL specification for the structural portion of a model in which two 

exogenous variables interact with one another can be written as 
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1 1 2 2 3 1 2              ,     (2) 

 

where   is an endogenous latent variable, 1  and 2  are first-order exogenous latent 

variables, 1 2   is a latent interaction term,  represents an intercept term, 1 , 2 , and 3

are the direct path estimates, and   represents the latent residual.    

 

Limitations of Previous Work 

Numerous approaches of testing for latent variable interactions within a structural 

equation modeling framework exist.  These methods typically fall into one of three 

categories: product indicator methods, ordinary-least-squares regression (OLSR) based 

methods, or a “new generation” of methods.  Each of these categories of methods has 

advantages and limitations (discussed in detail in Chapter 2). 

 A number of researchers have conducted simulation studies to compare some of 

these methods.  Three problems exist with previous studies.  First, they have focused on 

comparing a small subset of the latent variable methods available for testing for 

interaction effects rather than examining the wide array of approaches that have been 

proposed.  Second, there has been a lack of consistency in the specification of these 

methods across studies. Therefore, even when researchers have compared multiple 

approaches within a single study, there are discrepancies among the method 

specifications across studies.  Third, these studies do not compare methods across all the 

three distinct categories of methods that have been described.  Some recent studies have 

compared some product-indicator methods with one or two “new generation” methods.  

However, the OLSR-based methods have only been compared to methods in the other 
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two categories in theory or based on a single sample and have not been compared in 

simulation studies.   

 

The Current Study 

 The current study aimed to determine the best method for estimating latent 

variable interactions as a function of the size of the interaction effect, the size of the 

relation between the first-order latent variables, sample size, the loadings of the 

indicators, and normality.  Data were simulated from known population parameters and 

datasets were tested across nine latent variable methods of testing for interaction effects.  

Based on the results, recommendations are made for researchers in deciding which 

method should be used in applied studies. 
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Chapter 2: Literature Review 

 

The Evolution of the Product-Indicator Models 

 The Kenny-Judd model.  Kenny and Judd (1984) were the first to propose a 

fully-latent approach for estimating interactions between continuous latent variables.  In 

their model (referred to as the Kenny-Judd model) the main effects and interaction effects 

on a measured variable y can be conveyed as 

  

  1 1 2 2 3 1 2y            ,      (3) 

 

in which all measured variables (y- and x-indicators) are mean centered, and where 1 , 

2 , and 3   are the regression coefficients, 1  and 2  are exogenous latent variables, 

1 2   is the latent interaction term between 1  and 2 , and  is the residual.  Because the 

measured variables were mean centered, the intercept term was thought to be equal to 

zero and consequently omitted from the equation.   

In their model, Kenny and Judd (1984) used two indicators for the latent variables 

1  and 2 .  In order to compare the Kenny-Judd model to other models that will be 

presented, the current paper will use three indicators for each of the exogenous latent 

variables.  The measurement portion of the six observed variables for 1  and 2 can be 

shown as 
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11 1

22 2

3 33 1

4 44 2

5 55

6 66

   0 

 0 

 0 
,

0    

0   

0   

x

x

x

x

x

x

x

x

x

x

x

x

 

 

 

 





    
    
    
     

      
     

    
    

        

      (4)     

 

in which all measured variables are mean centered.  In the Kenny-Judd model, the 

indicators for the interaction term, 1 2  , were created by using all possible products of 

the measured variables for 1  and 2 .  In the case of our three indicator model this would 

yield nine possible indicators for the interaction term.  The measurement portion for these 

nine indicators for the interaction term can be shown as 

 

   

7 7 71 4

8 8 81 5

9 9 91 6

10 10 102 4

11 2 5 11 1 2

2 612 12

3 413 13

3 514 14

3 615 15

x

x

x

x

x

x

x

x

x

x x x

x x x

x x x

x x x

x x x

x xx

x xx

x xx

x xx

 

 

 

 

   









    
    
    
    
    
    
      
    
    
    
    
    
    

        

11

12

13

14

15

,









 
 
 
 
 
 
 
 
 
 
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  

     (5) 

 

It is not necessary, however, to use all possible products of the measured variables 

to create indicators for the interaction.  In order for the model to be identified, only one 

product variable is necessary (Jöreskog &Yang, 1996).  Several methods for creating 

indicators for the latent interaction variable have been suggested.  A discussion regarding 



7 

 

methods of creating indicators will follow later.  For comparison purposes, the current 

paper will use a matched pairs approach in which one measured variable indicator for 1  

will be paired with another measured variable indicator for 2  (Marsh, Wen, & Hau, 

2004; Marsh, Wen, & Hau, 2006).  Using the matched pairs approach with our three 

indicator model we would end up with three indicators for the interaction term, such as 

 

   
7 7 71 4

8 2 5 8 1 2 8

9 3 6 9 9

,

x

x

x

x x x

x x x

x x x

 

   

 

       
       

  
       
              

     (6) 

 

If we put the equations for all of the indicators of the latent exogenous variables 

together from Equations 4 and 6, this corresponds to 

 

  x
  x   =   Λ       ξ  +   δ  .     (7) 

 

 When first introducing the fully-latent approach to estimating latent variable 

interactions, Kenny and Judd limited their model to effects on a measured variable y.  It is 

more frequently the case, however, that researchers wish to test for interaction effects on 

a latent endogenous variable, .  Hayduk (1987) was the first to expand the Kenny-Judd 

model to using a latent endogenous variable, .  The LISREL specification for the 

structural portion of this model can be written as 

 

1 1 2 2 3 1 2            ,      (8) 
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For the latent endogenous variable model, the measurement portion of the model would 

be expanded to include 

 

 
11 1

2 2 2

3 33

,

y

y

y

y

y

y

 

  



    
    

     
        

      (9) 

 

 Constraints. The Kenny-Judd approach imposed several types of constraints upon 

the model.  First, the loadings of the indicators on the interaction term were constrained 

to be equal to the product of the loadings for the two indicators that created the 

interaction indicator.  That is,  

  

  

7 1 4

8 2 5

x9 3 6

,

,

,

x x x

x x x

x x

  

  

  







        (10) 

 

 This constraint was imposed because the loadings of the product terms are 

functions of the first-order indicators that created them.  For example, algebraically from 

Equation 4 we can write x2 and x5 as 

 

  2 2 1 2xx     ,       (11) 

  5 5 2 5xx     ,       (12) 

 

Using Equations 11 and 12, the product term, x2 x5, can be written as 
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    2 5 2 1 2 5 2 5x xx x         ,     (13) 

 

then we can rewrite Equation 13 to be 

 

  2 5 2 5 1 2 8x xx x       ,       (14) 

 

where  

 

  8 2 1 5 5 2 2 2 5x x           ,      (15) 

 

Equation 14 shows that the loading of x2 x5 on the latent interaction term  ξ1ξ2 is equal to 

2 5x x  , which is why this type of constraint is reasonable. 

 Second, assuming that ξ1,  ξ2,  δ1,  δ2,  δ3,  δ4,  δ5,  δ6, and ζ are in mean-deviation 

form, multivariate normal, and uncorrelated (except ξ1 and ξ2 are allowed to relate to one 

another), then the variance of the interaction latent variable ξ1ξ2  can also be constrained.  

Constraining the variance of the interaction we get 

 

         2

33 1 2 1 2 1 2var var var cov ,            (16) 
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Thus, based on Equation 16, the variance of the latent variable interaction was set equal 

to the product of the variances of 1 and 2  plus the squared covariance between 1  and

2 , and can be written as 

 

  2

33 11 22 21    
 

      (17) 

 

Based on the normality assumption, the covariance between the interaction term and each 

of the first-order terms were set to zero (i.e., 31 32 0   ).  This type of constraint will 

be referred to as the normality constraint for the present study. 

Under these same assumptions that ξ1,  ξ2,  δ1,  δ2,  δ3,  δ4,  δ5,  δ6, and ζ are in 

mean-deviation form, multivariate normal, and uncorrelated (except ξ1 and ξ2 are allowed 

to covary), the errors of the each of the indicators for the interaction latent variable were 

constrained based on Equation 15 such that 

 

     8 8 2 1 5 5 2 2 2 5var var x x             ,   (18) 

 

Therefore, the errors of each of the indicators for the interaction latent variable were 

equal to 

 

2 2

7 1 11 4 4 22 1 1 4

2 2

8 2 11 5 5 22 2 2 5

2 2

9 3 11 6 6 22 3 3 6

,

,

,

    

    

    

        

        

        

  

  

  

     (19) 
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Mean structure.  In order to simplify the derivation of the latent product 

variances and covariances, Kenny and Judd (1984) choose to mean center the observed 

variables in their model.  However, Jöreskog and Yang (1996) argued that even if the 

observed variables were mean centered, their products would not necessarily be mean 

centered.  This has two consequences on the specification of latent interaction model: 1) 

the latent interaction variable, 1 2  , will also not be mean centered, and thus mean 

structure is necessary, and 2) the intercept, , will not necessarily be zero. 

The former implies that mean structure must always be used when specifying the 

latent interaction model.  Under the assumption that ξ1,  ξ2,  δ1,  δ2,  δ3,  δ4,  δ5,  δ6, and ζ 

are in mean-deviation form, multivariate normal, and uncorrelated (except ξ1 and ξ2  are 

allowed to covary), Jöreskog and Yang (1996) noted that the mean of the interaction term 

would be equal to the covariance between 1 and 2  and thus a fourth constraint is 

imposed upon the model such that 

 

  3 = 21,        (20) 

 

where3 represents the mean of the endogenous latent variable , and 21 represents the 

covariance between the first-order latent exogenous latent variables. Consequently, the 

Kenny-Judd model (without mean structure) is only appropriate when the covariance 

between 1  and 2  is approximately zero.  Figure 2 contains a graphical depiction 

corresponding to the model described so far. 

The intercept. The second implication of the non-centered product indicators is 

that the intercept term, , will not necessarily equal zero.  Jöreskog and Yang (1996) 
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pointed out that although it is tempting to set  equal to zero, there is no way of knowing 

what its value actually is.  The value of  impacts the values of 3 and . Consequently, it 

should not necessarily be omitted from the structural model.  Therefore, Equation 2, 

rather than Equation 8, should represent the structural portion of the model. 

Mean centering.   When interactions are tested for in a multiple regression 

context, the interactions are created by taking the product of the predictor and the 

moderator variables.   Adding the interaction into the multiple regression equation could 

introduce a high amount of multicollinearity into the equation.  Multicollinearity could 

potentially lead to computational difficulties estimating the regression coefficients (Aiken 

& West, 1991; Cohen, Cohen, West, & Aiken, 2003).  Mean centering predictor variables 

before conducting an analysis circumvents problems that may be caused by 

multicollinearity between the interaction term and the first-order predictors.  Mean 

centering involves a linear transformation that changes the means of the variables to be 

equal to zero, but does not change the standard deviation of the variables.  Mean 

centering does not change the relation between the predictor variables, nor does it change 

the regression coefficient for the interaction.  Thus, when interactions are tested using 

multiple regression, predictors are usually mean centered before conducting the statistical 

analysis. 

When Kenny and Judd (1984) proposed their method for testing for interaction 

effects using structural equation modeling, the concept of mean centering was carried 

over from the measured variable world to the latent world.  Jöreskog and Yang (1996), 

however, suggested that mean centering was not necessary in the latent world.   This 

algrabraically changes the measurement portion of the model to include means for the 
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observed latent variables.  Thus the measurement portion for the observed indicators of 

the first-order latent variables of the Jöreskog and Yang (1996) model that corresponds to 

Equation 2 is 
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(21) 

 

where 1y  through 3y represent the means of the observed y variables, and 1x  through 

6x  represent the means of the observed x variables.  Equation 21 can be used to derive 

the product variable x1x2  such that  

 

    1 4 1 1 1 1 4 4 2 4x x x xx x             ,    (22) 

 

Then Equation 22 can be rewritten to be 

 

  1 4 1 4 4 1 1 1 4 2 7 1 2 7x x x x x x xx x                 ,   (23) 

 

where  
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  7 1 4 4 1 1 1 4 4 2 1 1 4x x x x                 ,    (24) 

 

and  

 

  7 1 4x x x   ,        (25) 

 

Using Equation 23, the measurement portion for the 3 matched-pairs indicators for the 

interaction can be written as  

 

 

  

7 1 4 71 4 13 1 1 4 7

8 2 5 2 5 5 2 2 5 8 2 8

6 3 2 6 9 1 29 3 6 3 6 9
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(26) 

 

Because using non-centered indicators changes the measurement portion of the model, 

the third constraint placed on the errors of each of the indicators for the interaction latent 

variable also changes to include the 's.  Under the assumption that ξ1,  ξ2,  δ1,  δ2,  δ3,  δ4,  

δ5,  δ6, and ζ are in mean-deviation form, multivariate normal, and uncorrelated (except ξ1 

and ξ2  are allowed to covary), the errors are constrained based on Equation 22 to be 
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(27) 
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A summary of all four types of constraints with and without mean centering is shown in 

Appendix A 

 Correlated errors.  One issue that is not explicitly addressed in the majority of 

previous studies that investigate interaction effects involves allowing the errors of 

observed variables to correlate.  When product-indicator models are used, systematic 

variance is introduced into the data.  Because the product-indicators are functions of the 

indicators of the observed variables that were used to create them, it is reasonable to 

assume they are related.  Therefore, it makes sense to allow the errors of the product-

indicators to correlate with the errors for the observed variables that created them. In 

order to model the shared error variance between the product-indicator variables and the 

observed variables used to create them, the   matrix should be 
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(28) 

 

The constrained approach.  Algina and Moulder (2001) extended the Jöreskog 

and Yang model by mean-centering the independently observed variables for exogenous 

1  and 2 .  Algina and Moulder (2001) referred to this model as the “constrained” 
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model, and found that it was more likely to converge, was less biased, and had better 

Type I error control than the Jöreskog and Yang (1996) uncentered model.  Mean 

centering the observed indicators of 1  and 2  simplifies the measurement portion of the 

model because the means of the observed variables (i.e., the  x’s) do not need to be 

specified in the model. This simplifies both the measurement equations for observed 

indicators of the exogenous latent variables and the correlations of the measurement 

errors for the exogenous variables.  The LISREL specification for the measurement 

portion of the mean-centered constrained model can be written as 
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The Algina and Moulder constrained model imposed all four types of constraints 

discussed previously.   

The partially constrained approach.  The constraints specified in the 

constrained model are based on the assumption that 1 and 2 are normally distributed.  

Wall and Amemiya (2001) pointed out that when this assumption is not met then the 

covariance between 1 and ξ1ξ2 , and the covariance between 2 and ξ1ξ2  are not 

necessarily zero (i.e., 31  0 and 32  0), and the constraint on the variance of 1 2   does 

not necessarily hold true (i.e., 33 = 11 22 + 21
2
).  Based on this premise, Wall and 

Amemiya (2001) proposed a generalized appended product indicator (GAPI) approach in 

which the second constraint was relaxed.  This model is also referred to as the partially-

constrained approach.  In addition to relaxing the second constraint, the partially 

constrained approach relaxes the normality constraint by allowing 1 2   to covary with 1 

and 2.  

 The unconstrained approach.  Marsh et al. (2004) introduced an unconstrained 

model in which all constraints were released.  Similarly to the partially-constrained 
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model, this model allows 1 2   to covary with 1 and 2, and does not require the stringent 

assumption that 1 and 2 are normally distributed.  Marsh et al. (2006) noted that this 

unconstrained model was much easier for researchers to implement than the constrained 

model because it does not necessitate the specification of nonlinear constraints.   

Methods for creating product indicators. In their model, Algina and Moulder 

used a similar approach to Kenny and Judd (1984) for forming indicators for the 

interaction term, by using all possible products of indicators for 1 and 2 to form the 

indicators for the interaction term.  In our three-indicator model this would yield nine 

indicators for the latent variable interaction (see Figure 3). In their model, Jöreskog and 

Yang (1996) used a single product to form an indicator for the interaction term (see 

Figure 4).  In another study, Yang (1998) used a matched-pairs approach in which each 

indicator of 1 was paired with another indicator of 2 .  In the matched-pairs approach, 

each first-order indicator was used in only one product-indicator of the latent variable 

interaction.  In our model with the three indicators for each of 1 and 2 , this would yield 

only three indicators for the latent interaction term, 1 2  . 

Marsh, Wen, and Hau (2004) conducted a simulation study to compare these three 

methods and found that the matched-pairs method yielded the most precise parameter 

estimates.  Based on this finding, two recommendations were made.  First, researchers 

should use all information that is available (i.e., all observed variables that are indicators 

of 1  and 2  should be used to form the interaction indicators).  Second, information 

should not be reused (i.e., once an observed variable has been used to form an indicator 

of the interaction term, that indicator should not be used to form a second indicator of the 
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same interaction term).  This second recommendation was made to avoid inducing 

correlations between the error variances of the indicators for 1  and 2 , and 1 2  .   

The residual-centered approach.  Little et al. (2006) proposed a residual-

centered approach in conjunction with Marsh et al.’s (2004) unconstrained approach.  

The unconstrained residual-centered approach is a two-step process.  Once all product 

indicators have been created, the first step is to regress all product indicators for the 

interaction onto all first-order indicators (i.e., not just the indicators for the variables used 

to create the product).  The second step is to use the residuals from the first step as 

indicators for the interaction effect.  This results in indicators for the interaction that are 

completely uncorrelated with all indicators for the main effects.  

 In their approach, Little, Bovaird, and Widaman (2006) used all possible products 

to form the indicators for the interaction.  Additionally, they allowed the uniqueness of 

interaction indicators and their related first-order indicators to covary (i.e., correlated 

errors).  Furthermore, they did not use mean-structure within their model.     

 Marsh et al. (2004) claimed that if mean-centering was used without specifying a 

mean-structure, then biased estimates could result.  Initially, Marsh, Wen, Hau, Little, 

Bovaird, and Widaman (2007) thought that because Little et al. (2006) did not use mean-

structure in their proposed model, biased parameter estimates could be problematic with 

the residual-centering approach utilized by Little et al. (2006).  Marsh et al. (2007) 

conducted a study that compared two different models:  an unconstrained mean-centered 

approach, and an unconstrained residual-centered approach.  Their paper was a 

“constructive collaboration” effort to synthesize the unconstrained mean-centered 

approach with the residual-centered approach.  They showed that assuming that 1 , 2 , , 
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and all errors for measured variables (i.e., ’s) have zero means and are uncorrelated 

(except that 1  and 2  are allowed to correlate), then the residuals used as indicators for 

the latent variable interaction in the residual-centered approach will also have zero means 

by definition of residual scores (Marsh et al., 2007).  Therefore, the latent variable 

interaction will also have a mean of zero.  Consequently, because 1 , 2 , and 1 2   all have 

zero means,  will also have a mean of zero, and thus a mean structure is not needed with 

the residual-centered approach. 

 

Traditional Methods of Estimating Interaction Effects 

Latent variable scores.  Another method of testing for interactions between 

latent variables involves a two-step process that uses latent variable scores in a least 

squares regression analysis.  Latent variable scores represent estimates of individuals' 

scores on an underlying latent factor.  In the first step, latent variable scores for 1 , 2 ,  

and   are computed.  In the second step, the interaction term is created by multiplying 

the latent variables scores on 1  with the latent variable scores on 2 .  The latent variable 

scores are then used in a multiple regression analysis.  Procedures for testing for 

interactions using multiple regression analyses can be found in Cohen, Cohen, West, and 

Aiken (2003). 

 One limitation of latent variable scores is that there is no unique solution for the 

latent variable scores.  That is, there is more than one set of solutions that satisfy all 

necessary conditions for computing latent variable scores.  This is known as the factor 

score indeterminacy problem (Loehlin, 2004).  This problem occurs because there are 

more latent variables and errors of measurement being estimated than there are observed 
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variables (Bollen, 1989).
  
For example, consider a one-factor confirmatory factor model 

with three observed variables.  In this model, we have four unknowns (i.e., one factor 

score and three error variables) but we only have three measurement model equations 

(i.e., one for each observed variable).  Consequently, there are many possible solutions 

for the given factor score.   

 Another limitation of latent variables scores is that because latent variable scores 

only represent estimates of individuals' scores on an underlying latent factor, they contain 

measurement error (Bollen, 1989).  If the advantage of using latent variable models to 

estimate interactions is that they remove measurement error, then why would one want to 

use an analysis that contains measurement error?   Although estimating latent variable 

scores does not completely eliminate measurement error, it does reduce measurement 

error.  Consequently, this approach for estimating interactions between latent variables is 

still advantageous over using observed scores within multiple regression analyses.   

 Because there is no one unique solution for estimating latent variable scores, there 

are several methods available for estimating latent variable scores.  First, the least square 

regression method can be used to estimate an individual’s score on a latent factor. This 

method is readily available in SPSS as the default option for creating factor scores, and it 

is frequently used within regression analyses.  Additionally, Bartlett (as cited in 

Lastovicka & Thamodaran, 1991) described a method that also used a least squares 

procedure to estimate latent variable scores which minimizes the sum of squared values.  

The Bartlett method is also available as an option in SPSS.  Anderson and Rubin (1956) 

extended upon Bartlett’s method by forcing factor scores to be orthogonal.  The 

Anderson and Rubin (1956) method is also beneficial in that the sample covariance 
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matrix is exactly equal to the estimated factor covariance matrix (Yang, 1998).  The 

Anderson and Rubin (1956) method of computing latent variable scores is available in 

SPSS, and is the method used in PRELIS to compute latent variable scores. 

 Several studies have been conducted to compare the various methods of 

estimating latent variable scores (e.g., Gorsuch, 1974; Lastovicka & Thamodaran, 1991).  

Lastovicka and Thamodaran (1991) conducted a parameter-recovery simulation study 

comparing the least squares regression method, Bartlett’s method, Anderson and Rubin’s 

method, and another method proposed by Thurstone (as cited in Lastovicka & 

Thamodaran, 1991).  Additionally, Lastovicka and Thamodaran (1991) used an ad hoc 

procedure using a factor score extension proposed by Dwyer (1937), as well as the 

commonly utilized method of simply adding up person’s responses on all variables 

(assuming they are coded in the same direction and on a common scale).   

 Similar results were found among the six estimation methods.  The Dwyer 

extension method resulted in the closest recovery of multiple R, and had the lowest 

standard error of measurement associated with the regression beta weights.  The 

Anderson and Rubin (1956) method resulted in the most accurate recovery of the beta 

weights, and had a comparable standard error of measurement associated with the 

regression beta weights to that of the Dwyer extension method.  The method of simply 

summing the scores together resulted in the least accurate recovery of the beta weights, 

and had the highest standard error of measurement associated with the regression beta 

weights.  The other three methods were somewhat comparable to each other. 

 Two-stage least squares (2SLS).  Another method of testing for interactions 

between latent variables that involves ordinary least squares regression is the two-stage 
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least squares (2SLS) method.  Similarly to Equations 2 and 3, The LISREL specification 

for the structural portion of a model in which two exogenous variables interact with one 

another can be written as 

 

 

1 1 2 2 3 1 2y              ,     (29) 

 

where y is a measured variable, 1  and 2  are first-order exogenous latent variables, 1 2   

is an interaction term,  represents an intercept term, 1 , 2 , and 3  are the direct path 

estimates, and   represents the residual.  

 For example purposes we will use three indicators for each of the first-order 

exogenous latent variables.  Figure 5 depicts a graphical display of this model.  The 

measurement equations for each of the observed variables are 

 

1 1 1x    ,        (30) 

  2 2 2 1 2x xx       ,       (31) 

3 3 3 1 3x xx       ,       (32) 

4 2 4x    ,        (33) 

5 5 5 2 5x xx       ,       (34) 

6 6 6 2 6x xx       ,       (35) 

 

where 2x , 3x , 5x , and 6x  are intercept terms for Equations 31, 32, 34, and 35, 

respectively; the i terms have means of zero, and are uncorrelated with 1  and 2  and 

each other.  Equations 30 and 33 do not have xi  values because they were used to set the 
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scale of their respective latent variables. Equations 22 and 25 can be reordered to solve 

for the latent variables such that 

 

1 1 1x   ,        (36) 

2 4 4x   ,        (37) 

 

Now Equations 36 and 37 can be substituted into Equation 29 such that 

 

      1 1 1 1 2 4 4 3 1 1 4 4y x x x x                 ,  (38) 

 

and can be rewritten as 

 

      1 1 1 2 4 3 1 4 1y x x x x u        ,    (39) 

 

where u1 is a linear composite disturbance equal to 

 

 1 1 1 2 4 3 1 4 4 1 1 4u x x                ,    (40) 

 

Similarly to Equation 29, Equation 39 takes the form of a regression equation. Equation 

39, however, involves only observed variables. Ordinary least squares regression is 

inappropriate for Equation 39 because x1, x4, and x1x4 will be correlated with ui unless 

they are measured perfectly with no measurement error (Bollen & Paxton, 1998).  This 

means that the ordinary least squares regression will lead to biased estimates of 1, 2, and 
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3  (Bollen & Paxton, 1998;  Jöreskog, Sörbom, du Toit, & du Toit, 2000).  This bias can 

be either positive or negative, small or large (Jöreskog et al., 2000). 

 To overcome this problem, Bollen and Paxton (1998) introduced a two-step 

process called two-stage least squares.  The first step of this method involves regressing 

each of the right-hand x variables in Equation 39 (i.e., in this case, x1, x4, and x1x4) onto a 

set of instrumental variables.  Instrumental variables are observed variables that are 

correlated with predictors but are uncorrelated with the error in the regression equation 

(Bollen, 1996; Bollen & Paxton, 1998).  In this particular example the instrumental 

values would be x2, x3, x5, x6, x2x5, and x3x6.  Of note, any observed variable that was used 

to set the scale for a latent variable, or is a product of a variable that was used to give a 

latent variable scale, cannot be used as an instrumental variable because it will be 

correlated with u1 and thus violates an ordinary least squares regression assumption.  

Consequently, in the current example x1, x4, and x1x4 cannot be used as instrumental 

variables in this first step.   

The predicted values from each of these regressions are saved (i.e., 1x , 4x , and 

1 4x x ).  These predicted values are linear combinations of the instrumental variables, and 

thus are uncorrelated with the disturbance, u1.  In the second step each of the predicted 

values replaces its respected observed values in Equation 39.  Then ordinary least squares 

regression can be used to estimate Equation 21. 

The two-stage least squares method to estimating interaction effects has many 

advantages.  First, it is easy to understand and is available in many statistical software 

programs, including SPSS and LISREL.  Furthermore, it does not make any distributional 

assumptions about the latent exogenous variables.  This in turn makes the two-stage least 
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squares method an attractive option when observed variables are non-normally 

distributed. 

There are also several disadvantages to the two-stage least squares method.  First, 

the selection of observed variables used as scale indicators for the latent variables may 

lead to different results (Marsh et al., 2004).  Second, the dependent variable, y, in 

Equation 19 is an observed variable.  In practice, however, researchers may wish to use 

multiple indicators of the dependent variable.  There is no way to use multiple indicators 

of the dependent variable with two-stage least squares regression.  If one wishes to use 

multiple indicators of the dependent variable, step two would require a separate 

regression analysis to be run for each indicator of the dependent variable.  This makes the 

two-stage least squares approach only a partially latent approach. 

 

Modern Methods for Estimating Interaction Effects 

One potential problem with the product-indicator models (e.g., constrained, 

partially constrained, unconstrained, and residual-centering approaches discussed above) 

is the requirement that researchers create product indicators to be used as indicators for 

the latent variable interaction.  These product indicators can be viewed as artificially 

measured variables because they are not unique observed variables, instead they are 

created by the researcher and are thus ad hoc. 

Violations of the normality assumption. Another potential problem with the 

product-indicator models involves the distributional assumptions imposed by the models.  

First, the constrained approach is based on the assumption that ξ1,  ξ2,  δ1,  δ2,  δ3,  δ4,  δ5,  

δ6, and ζ are multivariate normal, and uncorrelated (except ξ1 and ξ2 are allowed to relate 
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to one another).  When data are non-normal, then the constraints imposed upon the 

variance of the interaction term (constraint #2) and it's covariance with the first-order 

terms (normality constraint) do not hold, and thus the constrained approach is not 

appropriate. 

Second, even when the indicators of the first-order latent variables, 1  and 2 , are 

normally distributed (and thus 1 and 2 are also assumed to be normally distributed), the 

interaction is known to be non-normally distributed (Jöreskog & Yang, 1996).  The 

product-indicator models use maximum-likelihood estimation which is based on the 

assumption that all indicators in the model are multivariately normally distributed.  

Because the indicators for the interaction are known to be non-normally distributed, this 

assumption is violated when maximum-likelihood is used.  

One potential solution to this violation of multivariate normality has been to use 

weighted-least squares estimation (instead of maximum-likelihood estimation) with the 

product-indicator models.  Weighted-least squares estimation is asymptotically 

distribution-free and therefore provides asymptotically correct standard errors for 

parameter estimates.  Previous simulation studies have found that weighted-least squares 

estimation leads to biased parameter estimates when sample sizes are small and 

underestimates standard errors (Jöreskog & Yang, 1996; Schermelleh-Engel, Klein, & 

Moosbrugger, 1998).  Many SEM software packages are able to provide users with 

robust standard error estimates that are corrected for non-normality.  However, the 

parameter estimates obtained by the weighted-least squares estimation are still biased.  

Studies comparing weighted-least squares estimation to maximum-likelihood estimation 

have found that maximum-likelihood estimation leads to less biased results with small 
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sample sizes than weighted-least squares estimation and is somewhat robust to non-

normality at large sample sizes (Jöreskog & Yang, 1996; Schermelleh-Engel, Klein, & 

Moosbrugger, 1998).   

Latent moderated structural equations.  Another potential solution for the 

violation of multivariate normality when estimating the interaction effect is the latent 

moderated structural equations (LMS) method proposed by Klein and Moosbrugger 

(2000).  The LMS approach is advantageous in that it does not require the creation of 

indicators for the interaction and recognizes the non-normal distribution of the 

interaction.  The LMS method utilizes a mixture of multivariate normal distributions that 

are implied by the interaction model.  The Expectation-Maximization (EM) algorithm 

(Dempster, Laird, & Rubin, 1977) is used to compute maximum-likelihood parameter 

estimates.  

 The general structural equation for an interaction model using the LMS approach 

can be written as 

 

'        Γ Ω ,      (41) 

 

where  is a endogenous latent variable,  is an intercept term,  is a (1 x k) vector of 

coefficients,  is a (k x 1) vector of latent exogenous variables,  is an upper triangular (k 

x k) matrix, and  is a disturbance term.  In Equation 39, the structural parameters have 

been separated into two matrices, one containing the linear effects ( i.e., )  and one 

containing the non-linear effects (i.e.,  ).   
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 In the case of the model with a single interaction, the  matrix is an upper 

triangular matrix, and is specified as 

 

  
30

0 0

 
   

 
,        (42) 

 

where 3 represents the interaction effect and is located in the upper triangular.  Zeros are 

located on the diagonal because there are no quadratic effects in the current structural 

equation model.  If one wanted to simultaneously estimate quadratic effects with the 

interaction effect, then the parameters on the diagonal could be freed. 

Applying the general structural equation shown in Equation 39 to the case in 

which two exogenous latent variables interact and affect a single endogenous latent 

variable, the structural equation model can be written as 

 

   1 13

1 2 1 2

2 2

0

0 0

 
      

 

    
       

    
,   (43) 

 

where  is an endogenous latent variable,  is an intercept term, 1 and 2  are first-order 

exogenous latent variables, 1, 1, and 3 are direct path estimates, and  is a disturbance 

term.    

 The measurement portion of this model can be written as 
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    

        

      (44) 

  

A graphical depiction of this model is shown in Figure 6. 

 The LMS method is based on the assumption that 1, 2, δ1, δ2, δ3, δ4, δ5, δ6, ε1, ε2, 

and ε3 are multivariately normally distributed.  Additionally, it is assumed that δ1, δ2, δ3, 

δ4, δ5, δ6, ε1, ε2, and ε3 have expected values of zero and are uncorrelated with 1 and 2.  

Finally, ζ has an expected value of zero and is assumed to be uncorrelated with 1, 2, δ1, 

δ2, δ3, δ4, δ5, δ6, ε1, ε2, and ε3.  In contrast to the product-indicator methods (i.e., the 

constrained, partially constrained, unconstrained, and residual-centered unconstrained 

methods), η is not assumed to be normal. 

 The elementary interaction model case (in which two exogenous latent variables 

interact and affect a single endogenous latent variable, and there are three indicators for 

each of 1, 2, and η) has a nine-dimensional indicator vector (x, y) = (x1, . . . , x6, y1, . . ., 

y3) and can be represented as a finite mixture of multivariate normal distributions.  The 

indicator x is assumed to be normally distributed, whereas indicator y is not assumed to 

be normally distributed because the product term 12 is in the structural equation.  Thus 

linear and non-linear effects are separated and decomposed into independent random z 
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variables using the Cholesky decomposition of the covariance matrix Φ.  z is made up of 

vectors z1 and z2 which represent the nonlinear and linear effects, respectively.  From 

this, a continuous mixture of normal densities with z1 as the mixing vector can be 

derived.  Then the partitioned mean vector and covariance matrix can be obtained.  If an 

interaction exists, and thus γ3 differs from zero, then the integral of the mixture cannot be 

solved analytically.  In this case it is approximated by Hermite-Gaussian quadrature 

formulas of numerical integration, which are used to calculate mixture probabilities and 

mixture components (Klein & Moosbrugger, 2000). 

The LMS method can be implemented using the software program Mplus 

(Muthén & Muthén, 1998-2005).  One limitation of the LMS approach is that it is based 

on the assumption that indicators of first-order effects are normally distributed (Klein & 

Moosbrugger, 2000). 

 Quasi-maximum likelihood (QML).  Klein and Muthén (2007) developed a 

Quasi-Maximum Likelihood (QML) approach to handle more complex models with 

multiple interaction and quadratic effects that could not be handled by the LMS approach.  

Like the LMS approach, the QML approach does not require researchers to create 

product-indicators of the latent variable interaction, no distributional assumptions of the 

interaction effect are made, and indicators of first-order effects are assumed to be 

normally distributed (Klein & Muthén, 2007).  However, while the LMS approach 

utilizes a mixture of multivariate normal distributions, the QML approach utilizes a 

product of normally distributed and conditionally normally distributed distributions.  

 For a model in which two exogenous latent variables interact and affect a single 

endogenous latent variable, and there are three indicators for each of 1, 2, and η, the 
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structural equation and the measurement portion of the model is the same as that used for 

LMS and is shown in Equations 41 and 42, respectively.  The QML method is based on 

the same assumptions as the LMS method.  That is, it is assumed that 1, 2, δ1, δ2, δ3, δ4, 

δ5, δ6, ε1, ε2, and ε3 are multivariately normally distributed; δ1, δ2, δ3, δ4, δ5, δ6, ε1, ε2, and 

ε3 have expected values of zero and are uncorrelated with 1 and 2; ζ has an expected 

value of zero and is assumed to be uncorrelated with 1, 2, δ1, δ2, δ3, δ4, δ5, δ6, ε1, ε2, and 

ε3; and η is not assumed to be normal. 

 In the QML method the nine-dimensional indicator vector (x', y')' is transformed 

so that only the variable used to set the scale for η (in this case this would be y1 with a 

loading set to 1.0) is non-normally distributed.  Then the conditional mean and variance 

of the non-normal y1 are derived.  The conditional mean and variance are then used to 

develop the QML estimation procedure.  Thus the non-normal density function f(x, y) of 

indicator vector (x', y')' is approximated by the non-normal density f*(x, y), which is a 

product of a normal and conditionally normally distributed densities.  QML maximizes 

the quasi-log-likelihood function which is the log likelihood function based on the 

maximization of the non-normal density f*(x, y) (Klein & Muthén, 2007).   

The QML approach is not available in any commercial software programs.  

However, a stand-alone unpublished software program, QML, is available by request 

(Klein, unpublished).  Currently, the program is a time-limited prototype version, in 

which the numbers of indicators, latent exogenous variables, latent endogenous variables, 

and sample size is limited. 

 Two-stage method of moments (2SMM).  Another approach in which no 

distributional assumption of the interaction effect is made, was proposed by Wall and 
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Amemiya (2000, 2003).  In their two-stage method of moments (2SMM) approach a 

general polynomial structural equation is represented as 

 

   = ’h() + ,       (45) 

 

in which  represents an endogenous latent variable,  represents a (r x 1) vector of 

unknown coefficients,  represents a (k x 1) vector of latent variables, h() represents a (r 

x 1) vector with each component being a pure mixed power of elements of , and  

represents a disturbance term (Marsh et al, 2004).  Equation 45 becomes Equation 2 when 
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'
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α  

 

 The 2SMM involves a two-stage process in which in the first stage the parameters 

of the measurement model are estimated using linear factor analysis.  In the second stage, 

the conditional moments of the products of latent variables are calculated, and the 

method-of-moments procedure is used with the conditional moments to estimate the 

structural equation parameters.   
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 In the first stage, confirmatory factor analysis is used to estimate the loadings of 

the measurement model in Equation 44 and the variances and covariances of the errors of 

the indicators.  These are used to calculate latent variable scores for each individual using 

Bartlett's method.  Then the variances of the estimation error of the latent variable scores 

are estimated for 1, 2, and η.  Finally, the higher-order moments of e = (e1, e2, e3)' are 

estimated.  For a model in which two exogenous latent variables interact and affect a 

single endogenous latent variable the higher moments needed are 
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        (47) 

 

 In the second stage the factor scores and errors obtained in the first stage are used 

to fit the structural model.  To do this, Equation 2 needs to be rewritten as an errors-in-

variables model 
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Using the errors-in-variables model values, M and m must be found such that 

 



35 

 

   

   

1

1

1
| ,

1
| , ,

n

i

n

i n i

i

E
n

E
n

  





 
  
 

 
  
 





'

1 n i i

'

1 n i

M X …X X X

m X …X X

    (49) 

 

where 

 

 1 2 1 21, , , ,i i i i i   X        (50) 

 

The equation MΓ = m can then be used to estimate Γ without bias.  The final part of the 

second stage is to obtain the 2SMM estimator  1 2 3' , , ,   Γ using 

 


-1

Γ M m ,        (51) 

 

 The 2SMM approach can also be used with more complex models that involve 

multiple interaction and polynomial effects.  Similarly to the LMS and QML approaches, 

the 2SMM method is beneficial in that no assumption regarding the distribution of the 

interaction effect is made.  Unlike the LMS and QML approaches, the 2SMM does not 

make distributional assumptions about ξ1 and ξ2.  The 2SMM method is not currently 

available in any commercial software programs, although a version of the method is 

outlined by Wall and Amemiya (2003). 

 Marginal maximum likelihood (MML).  Another approach which makes no 

distributional assumption regarding the latent variable interaction is the marginal 
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maximum likelihood (MML) approach.  While MML is not a new method, it was only 

recently introduced as an approach for testing for latent variable interaction effects by 

Cudeck, Harring, and du Toit (2009).  The MML approach uses Gaussian-Hermite 

quadrature to approximate a multidimensional integral and compute the marginal 

distribution of the measurement model then uses the result to obtain maximum-likelihood 

estimates.  

 The general structural equation shown in Equation 2 can be rewritten as a 

function with one nonlinear and one linear latent variable (Jӧreskog, 1998).  For example, 

the regression of η on ξ1 for a given ξ2 can be written as 

 

   2 2 1 3 2 1             ,     (52) 

 

In Equation 52, ξ1 is the linear latent variable, and ξ2 is the nonlinear latent variable.  The 

measurement model in which three indicators represent each latent variable is similar to 

Equation 44 and can be rewritten as 
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 Because ξ2 is nonlinear, one cannot simply use algebra to integrate over ξ2.  The 

MML approach uses Guassian-Hermite quadrature in which an integral over a function of 

the type u(t) = f(t)exp(-t
2
) is approximated by a sum 
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( )exp( ) ( )
Q

k k

kt

f t t df w f x


  ,     (54) 

 

where wk and xk are the weights and nodes of the Hermite polynomial of degree Q 

(Cudeck et al., 2009; Harring et al., under review).  The log-likelihood function with a 

sample of N observations, y1, . . . , yN, can be written as 

 

 1

1

ln | , , ln ( )
N

N i

i

L f


y y y ,     (55) 

 

To estimate the structural model, the MML approach maximizes the log-likelihood 

function, shown in Equation 55, using any of several optimization techniques.  The MML 

approach can be implemented in SAS using PROC NLMIXED.  SAS uses the dual quasi-

Newton algorithm as the default optimization technique for maximizing the log-

likelihood function.   

 One limitation of the MML approach is that it becomes increasing slow to 

converge as the number of latent variables increases.  Specifically, Harring et al. (under 

review) suggested that when the number of latent variables is greater than three or four 

the MML approach may be very slow to converge.  In the current study the structural 
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model shown in Equation 2 has one nonlinear term (i.e., a single interaction effect) and 

three latent variables.  Therefore, using the MML approach to estimate Equation 2 seems 

feasible.  However, the MML approach may be inappropriate for structural models 

containing multiple nonlinear effects. 

 

Advantages and Limitations of Three Categories of Methods 

Numerous approaches of testing for latent variable interactions within an SEM 

framework exist.  These methods typically fall into one of three categories: product 

indicator methods, ordinary-least-squares regression (OLSR) based methods, or a “new 

generation” of methods.   

 The product-indicator methods (i.e., the constrained, partially-constrained, 

unconstrained, and residual-centered approaches) use products of observed variables as 

indicators of the latent variable interaction.  They are advantageous in that they are fully-

latent approaches, and can be implemented in some SEM software programs (e.g., 

LISREL).  These product-indicator approaches are limited in that they can be 

computationally intensive to specify.  This limitation particularly applies to the 

specification of the constraints on the errors of product indicators for the interaction term 

(constraint #3 in Appendix A).  While the specification of these constraints is feasible 

when the number of indicators is small (e.g., 2 or 3 indicators per latent variable), 

researchers are still prone to make mistakes specifying them (Schumacker, 2002).  The 

complication of specifying these constraints becomes more complex and infeasible as the 

number of observed indicators per latent variable increases.   
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Additionally, these product-indicator models are limited in that they necessitate 

the use of special SEM software programs that allow for the use of constraints, such as 

LISREL.  Frequently utilized SEM software programs such as AMOS and EQS cannot be 

used with the constrained and partially constrained models because they do not allow for 

researchers to specify non-linear constraints.  Furthermore, these models require 

researchers to alter their measurement model to fit their structural model by creating 

artificial observed variables (i.e., the product-indicators) to represent the latent variable 

interaction.  Finally, these product-indicator models are typically used with maximum-

likelihood estimation which is based on the assumption that the latent variables are 

multivariately normally distributed. The interaction effect, however, is known to be non-

normally distributed (Jöreskog & Yang, 1996).  Therefore, this assumption is violated 

when maximum-likelihood is used.  Although, robust standard error estimates can be 

obtained, the parameter estimates will still be biased. 

The OLSR-based methods (i.e., latent variable scores with moderated multiple 

regression, and the two-stage least squares approach) are often viewed as inferior because 

they are not considered to be fully latent approaches (i.e., they do not completely remove 

measurement error from the model).  However, they are beneficial in that they are easy to 

understand, easy to implement, and readily available for practitioners in commonly 

utilized statistical software packages (e.g., SPSS, SAS, STATA, and LISREL).  

Furthermore, these methods are beneficial because least squares regression is not based 

on the assumption of multivariate normality as maximum-likelihood estimation is, thus 

the non-normality of the latent variable interaction can be incorporated into the model 

without violating any assumption (Schermelleh-Engel, Klein, & Moosbrugger, 1998). 
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 More recently, a “new generation” of methods for estimating interactions between 

latent variables has evolved (e.g., latent-moderated structural equations, quasi-maximum 

likelihood, the two-stage method of moments, and marginal-maximum likelihood).  

These methods are beneficial in that they provide alternative approaches to estimating 

interaction effects that do not require the creation of product indicators.  Consequently, 

researchers do not have to alter their measurement model to fit their structural model.  

This also makes these methods somewhat easier to specify in comparison to some of the 

product-indicator methods because they do not necessitate the specification of non-linear 

constraints.  Additionally, these newer methods are not based on the assumption that the 

interaction effect is multivariately normally distributed (Schermelleh-Engel, Klein, & 

Moosbrugger, 1998). 

One of the major disadvantages of these newer methods is that most of these 

methods are not currently available in commercial software programs (with the exception 

of the latent moderated structural equations (LMS) procedure which is available in 

Mplus), making it infeasible for researchers to use in practice.  SAS PROC NLMIXED 

can be used as one-way to estimate the MML approach.  Some of these methods are also 

limited in that they are based on the assumption that indicators of first-order effects are 

normally distributed (Klein & Moosbrugger, 2000). 

        

 Comparing the Methods 

 The current paper presented nine different proposed approaches for estimating 

latent variable interaction effects in structural equation modeling.  With the numerous 

approaches available for testing for latent variable interactions, how is a researcher 
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supposed to decide which method to use?  A number of simulation studies have been 

conducted that compare some of the methods discussed (e.g., Algina & Moulder, 2001; 

Jaccard & Wan, 1995; Klein & Moosbrugger, 2000; Klein & Muthén, 2007; Little et al., 

2006; Marsh et al., 2004; Moulder & Algina, 2002; Wall & Amemiya, 2003).  Results 

from these studies have been mixed.  A list of the simulation studies that have been 

conducted to compare the models discussed within the current paper is shown in Table 2. 

 Schermelleh-Engel et al. (1998) found that the 2SLS approach was relatively 

unbiased for standard error estimates, but it had low power to detect interaction effects 

and higher standard error of measurement than the constrained approach (with the 

normality constraint released) and the LMS approach.  Similarly, Moulder and Algina 

(2002) also found that the 2SLS approach had low power to detect interaction effects and 

high standard error estimates.  However, Moulder and Algina (2002) found that the 2SLS 

procedure resulted in biased estimates of the interaction effect in comparison to the 

constrained approach with- and without mean-centering. 

 Marsh et al. (2004) found similar results in terms of bias, and standard error 

estimates for the constrained, partially constrained, unconstrained, and QML approaches.  

They found that the constrained approach was slightly less biased than the partially 

constrained and unconstrained approaches.  The QML approach had higher power to 

detect an interaction effect, however, it also had higher Type I error rates.   

 Klein and Muthén (2007) found that the QML approach was less biased in terms 

of parameter estimates and standard error estimates than the constrained, partially 

constrained, unconstrained, and LMS approaches.  They also found that the QML 

approach had higher statistical power. 
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 Only one study was found that compared the 2SMM approach to other types of 

approaches for testing for interaction effects.  Wall and Amemiya (2003) found that the 

2SMM and the partially constrained approaches resulted in similar bias to each other.  

They found that both the 2SMM and the partially constrained approaches were less 

biased than the 2SLS and the constrained approaches. 

 After a review of the literature, only one study was found that compared the latent 

variable scores approach using the Anderson and Rubin (1956) method to the constrained 

approach (without mean centering) of testing for interactions among latent variables 

(Schumacker, 2002).  Schumacker (2002) generated data for a single sample and 

compared these two methods.  Results indicated that the same estimates for 1 and 2 

were found across the two methods.  The estimate of 3 was slightly, but not notably, 

closer to the value in the population-generating model.  Of interest, was the smaller 

standard error of measurement values associated with the estimation of 3 using the latent 

variable scores approach in comparison to the constrained approach.  Based on these 

outcomes, Schumacker (2002) suggested that future research should be conducted to 

examine the differences of the standard errors associated with the parameter estimates of 

the interaction effect. 

 Little et al. (2006) conducted a simulation study to compare their unconstrained 

residual-centered approach with Marsh et al.’s (2004) unconstrained mean-centered 

approach.  They found similar results using both methods.  However, they did not use 

mean structure with the unconstrained mean-centering approach.  Marsh et al. (2007) 

showed that because residuals are mean-centered, mean structure is not necessary when 

residual centering is used.  However, Jöreskog and Yang (1996), showed that even when 
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indicators for first-order terms are mean-centered, their products will not necessarily be 

mean-centered.  Therefore, mean structure is always necessary with the product-indicator 

models.  Thus, results based on the Little et al. (2006) study cannot be interpreted 

because they compared the residual-centered model to an unconstrained model which is 

known to be incorrect.  Therefore, it is unknown how the unconstrained residual-

centering approach compares to the unconstrained mean-centering approach with mean 

structure.   

 

Limitations of Previous Studies 

 Although many studies have been conducted to compare the various approaches 

for testing for interaction effects, there has been a lack of consistency across these studies 

in recommending which method results in the least biased parameter estimates and has 

the most accurate standard error estimates.  Therefore, it is still unclear as to which 

method should be recommended for researchers to use in applied studies.  Additionally, 

eight problems exist with previous studies.   

 First, these studies do not compare methods across the three distinct categories of 

methods.  Some recent studies have compared some product-indicator methods with one 

or two “new generation” methods.  Klein and Moosburgger (2000) conducted the only 

study that compared methods across the three distinct categories.  They compared the 

constrained, 2SLS, and LMS methods in a simulation study, but they only used one 

condition.  Consequently, it is unknown how robust these methods are across factors such 

as effect size, sample size, size of loadings, and violations of normality.  Table 2 shows 

the simulation studies that have been conducted to compare methods of testing for 
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interaction effects and the methods that have been compared in each of those studies. 

Second, previous studies have focused on only comparing two to four methods rather 

than examining the wide array of approaches that have been proposed.   

 Third, there has been a lack of consistency in the specification of these methods 

across studies (e.g., mean-structure, centering, correlated errors for product indicators,  

methods of forming interaction indicators, and whether or not an intercept term in 

specified in the structural equation). Therefore, even when researchers have compared 

multiple approaches within a single study, there are discrepancies between the model 

specifications across studies.   

 Fourth, in regards to interaction effects, the latent variable scores approach has 

never been compared to any of the other methods using simulation studies.  Simulation 

studies have compared the latent variable scores approach to several other methods for 

quadratic effects and have found that the latent variables scores approach may be 

promising (Weiss & Hancock, 2009; Harring, Weiss, & Hsu, under review).  The only 

study that has compared the latent variable scores approach to other approaches for 

testing for interaction effects used a single sample (Schumacker, 2002). 

 Fifth, there was only one simulation study that compared the residual-centered 

unconstrained approach to the mean-centered unconstrained approach (Little et al., 2006).  

However, this study incorrectly specified the mean-centered unconstrained approach 

because mean structure was not used.  Therefore, it is unknown how the unconstrained 

residual-centered approach compares to the unconstrained mean-centered approach with 

mean structure. 
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 Sixth, only one study has been conducted to compare the 2SMM method to 

product-indicator methods for testing for interaction effects (Wall & Amemiya, 2003).  

They found that the 2SMM and the partially constrained approaches were less biased 

than the 2SLS and the Kenny-Judd model.  However, the Kenny-Judd model is known to 

be incorrect because it does not use mean structure (Jöreskog & Yang, 1996).  

Additionally, they used the all-possible-products method to create indicators of the 

interaction term, which is known to be an inferior method compared to the matched-pairs 

approach (Marsh et al., 2004).  Furthermore, the only feature that was manipulated in the 

Wall and Amemiya (2003) was sample size, meaning they only compared these four 

methods across three conditions.  Thus, it is unknown how the 2SMM method compares 

to other methods when other conditions are manipulated such as: effect size, loading size, 

correlation between ξ1 and ξ2, and normality. 

 Seventh, the marginal maximum likelihood method has not been compared to 

other methods in simulation studies in the context of interaction effects.  One study was 

conducted to compare the marginal maximum likelihood method to several other 

methods for testing for quadratic effects (Harring, Weiss, & Hsu, under review).  Results 

from this study showed that when data for the first-order factor was normally distributed, 

the marginal maximum likelihood approach was less biased and had more accurate 

standard error estimates then the unconstrained, latent variable scores, and LMS 

approaches.  It is unknown whether this will be true for interaction effects. 

 Finally, previous studies have only investigated the impact of mild non-normality 

on estimating interaction effects (Marsh et al., 2004; Klein & Moosbrugger, 2000; Klein 

& Muthén, 2007; and Wall & Amemiya, 2001).  Specifically, for the non-normal 
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conditions within these studies, data were generated for ξ1 and ξ2 from distributions with 

skew ranging from -2.0 to 1.5, and kurtosis ranging from -1.5 to 6.0.  Kline (2005) 

suggested that extreme skew is defined by skew values greater than an absolute value of 

3.0, and extreme kurtosis is defined by absolute kurtosis values ranging from 8.0 to over 

20.0.  He further suggested that kurtosis values greater than the absolute value of 20.0 

may indicate serious problems with non-normality.  Based on Kline's rule-of-thumb 

values for skew and kurtosis, the skew and kurtosis values for previous studies have been 

considered to be mild. 

The current study aimed to explore similarities and differences among the 

methods of testing for interaction effects discussed: the constrained, partially-constrained, 

unconstrained, residual-centered unconstrained, latent variable scores using moderated 

multiple regression, two-stage least squares, latent moderated structural equations, quasi-

maximum likelihood, two-stage method of moments, and the marginal-maximum 

likelihood approaches.  
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Chapter 3: Methods 

 

The current study aimed to explore similarities and differences among the 

following methods of testing for interaction effects in structural equation modeling: the 

constrained approach, the partially-constrained approach, the unconstrained approach, the 

residual-centering approach, the latent variable scores with moderated multiple 

regression, two-stage least squares, latent moderated structural analysis, two-stage 

method of moments, and marginal-maximum likelihood approaches.  

The goal of the current study was to compare all current methods of testing for 

interaction effects, including the quasi maximum likelihood approach (QML).   The QML 

approach is not available in any commercial software programs.  However, a stand-alone 

unpublished software program, QML, is available by request (Klein, unpublished).  

Currently, the program is a time-limited prototype version, in which the numbers of 

indicators, latent exogenous variables, latent endogenous variables, and sample size is 

limited.  Additionally, the version of the QML software program that was provided to us 

by Klein is limited in that in can only be used with single samples, and therefore cannot 

be used in simulation studies.  Sometimes when a software program can only be used 

with single datasets, DOS can be used to run the statistical software (Gagné & Furlow, 

2009).  In this manner, a DOS batch file can be used to automate the process of running 

analyses for multiple datasets.  For the current study, DOS was used to call the QML 

prototype version, however, the attempt was unsuccessful.  DOS was able to open the 

QML program, but would not open or run the input file for QML.  This same procedure 

was used to successfully run the analyses using LISREL for the constrained, partially 
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constrained, unconstrained, residual-centered, and latent variable scores approaches, as 

well as to successfully run the analyses using Mplus for the LMS approach.  Thus, it was 

concluded that the problem existed with the currently available version of QML.  

Because it would be nearly impossible to analyze the 54,000 datasets used in the current 

study with QML one-at-a-time, QML was not used for the current study. 

 

Simulation Design 

 The different methods of estimating latent variable interaction effects were 

compared using Monte Carlo simulation.  Monte Carlo simulation empirically generates 

random samples from known populations (Mooney, 1997).  By generating many random 

samples of data, one can monitor the behavior of a fit statistic across varying data 

conditions (e.g., differing numbers of manifest and latent variables, effects sizes, and 

sample sizes).  All variables were simulated to come from a population in which 

 

1 2 3 1 20.4 0.4          ,     (56) 

 

where 1 and 2 are standard normal variables. Thus, while the 1 and 2 paths were set 

equal to 0.4 based on values used by Marsh et al. (2004), the 3 path and ζ varied 

depending on the magnitude of the interaction effect.  As stated by Marsh et al. (2004), 

varying the values of 1 and 2  will not affect the estimation of the interaction effect. This 

is because the latent interaction effect is uncorrelated with the latent first-order effects 

(Algina & Moulder, 2001; Jaccard & Wan, 1995; Jӧreskog  Yang, 1996; Kenny & Judd, 
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1984; Marsh et al., 2004; Schermelleh-Engel et al., 1998; Wall & Amemiya, 2001) Thus 

these values were not altered in the current study.    

The effect size represents the additional variance that the interaction effect 

explains in  above and beyond that which can be explained by the first-order effects, 

and is equal to the value expressed by (Marsh et al., 2004) 
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Jaccard and Wan (1995) did a review of the social science literature and found 

that interaction effect sizes typically accounted for 5% and 10% of the variance in the 

dependent variable.  Several other studies found that interaction effects accounted for 3% 

to 8% of the variance in the dependent variable in multiple regression analyses 

(Champoux & Peters, 1987; Chaplin, 1991).  Table 3 shows the previous studies that 

have been conducted to compare methods of testing for latent variable interaction effects.  

The 
3

2R  values used by Jaccard and Wan (1995) are similar to the values that have been 

used in other studies investigating interaction effects (Little et al., 2006; Klein & Muthén, 

2007; Marsh et al., 2004; Moulder & Algina, 2002).  These values are also typical of 

what have been used in previous studies investigating quadratic effects (Harring, Weiss, 

Hsu, under review; Weiss & Hancock, 2009).   The current study investigated similar 

effect sizes for interaction effects in which the proportion of variance in   accounted for 

by the interaction effect was set equal to .0 (to investigate Type I error rates), .05, and .10 

(to investigate power). 
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Three different sample sizes were used in the current study (small, medium, and 

large) which corresponded to n = 100, 250, and 500, respectively.  These sample sizes 

were chosen for several reasons.  First, past simulation studies investigating interactions 

between latent variables have used similar (but not exactly the same) sample sizes 

(Jaccard & Wan, 1995; Klein & Muthén, 2007; Marsh et al., 2004; Moulder & Algina, 

2002; Schermelleh-Engel et al., 1998).  Second, Hu and Bentler (1998; 1999) found that 

RMSEA and SRMR fit indices tend to over-reject true population models with small 

samples and recommended using samples greater than 250.  Based on this finding 

researchers may aim to have complete data for at least 250 cases.  Third, Wall and 

Amemiya (2003) evaluated methods using sample sizes as large as 1000.  However, little 

difference was found in the bias of parameter estimates between sample sizes of 500 and 

1000.  Fourth, Little et al. (2006) used a large sample size of 1500 in their study and 

found that their residual-centered approach performed similarly to the unconstrained 

approach (without mean structure).   

Previous simulation studies using smaller sample sizes with quadratic effects have 

found that the residual-centered approach did not perform well with small sample sizes 

(Weiss & Hancock, 2009).  This has not been evaluated with interaction effects yet.  

Because the OLS regression approaches are not based on iterative processes with 

convergence criterions, they can be used with small samples.  Thus, a sample size of 100 

was used in the current study in order to investigate whether the OLS regression methods 

were less biased at small sample sizes than the product-indicator and newer generation 

methods. 
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The loadings relating each indicator to its latent variable were also manipulated.  

Based on past research the loadings were set to either 0.5 (constant across all indicators) 

or 0.8 (constant across all indicators) within the population-generating model.  The 

loading of 0.5 was selected to investigate the impact that measurement error had on 

estimating the structural parameters.  Although measurement error is taken into account 

by the models, parameter estimates will be more accurate when indicators are more 

psychometrically sound (Kline, 2005).  Thus using low loadings allows researchers to 

evaluate the methods under reasonably difficult conditions (Klein & Muthén, 2007).  The 

loading of 0.8 was selected to represent adequate loading size and is comparable to what 

has been used in previous studies (Jaccard & Wan, 1995; Klein & Muthén, 2007; Little et 

al., 2006; Marsh et al., 2004; Moulder & Algina, 2002; Schermelleh-Engel et al., 1998). 

The correlation between the two first-order latent variables 1 and 2  was also 

varied.  Jaccard and Wan (1995) conducted a review of social science literature and 

found correlation values of .20 and .40 were typically observed.  Previous studies used 

similar values in the .20 to .40 range (see Table 3; Jaccard & Wan, 1995; Klein & 

Moosbrugger, 2000; Klein & Muthén, 2007; Little et al, 2006; Marsh et al., 2004; 

Moulder & Algina, 2002; Schermelleh-Engel et al., 1998).   

In addition to the values .20 and .40, the current study manipulated the correlation 

between the two first-order latent variables 1 and 2  to be .60.  When first-order latent 

variables are strongly related, the standard errors associated with the gamma estimates 

will become very large (Cohen et al., 2003).  Thus, for the current study a larger value for 

12  was selected to investigate the robustness of the standard errors when 12  was high.  

Therefore, the current study manipulated 12  to be either .20, .40, or .60 in the 
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population-generating model (given that the latent variables have unit variance and11 = 

22 = 1).   

Finally, the distributions of 1 and 2  were manipulated to be either normal or 

severely non-normal.  The distributions at the indicator level were not manipulated.  This 

decision was based on the premise that if latent variables are non-normally distributed, 

then indicators formed from them would also be non-normally distributed, and is 

consistent with previous studies (Klein & Moosbrugger, 2000; Klein & Muthén, 2007).  

The distributions of the errors were also not manipulated.  The normality of the errors 

does not effect the structural relations between the latent variables.  Because the focus of 

the current study was on the estimation of the structural interaction effect, it was not 

necessary to manipulate the distribution of the errors. 

When 1 and 2  are non-normal, the second constraint on the variance of 12  and 

the normality assumption (i.e., 31 = 32 = 0) do not hold true.  Consequently, the 

constrained approach should result in systematically biased parameter estimates.  

Furthermore, because 12  is known to be non-normally distributed, product-indicator 

methods (i.e., the constrained, partially constrained, unconstrained, and residual-centered 

unconstrained methods) that use maximum likelihood estimation may result in biased 

parameter estimates.  The LMS approach allows for the non-normal distribution of 12.  

However, the LMS approach is still based on the assumption that 1 and 2  are normally 

distributed.  Consequently, when 1 and 2  are non-normal the LMS approach may lead 

to biased parameter estimates.  Unlike the LMS approach, the 2SMM approach does not 

require the assumption that 1 and 2  are normally distributed.  Therefore, it may be less 

biased than the other approaches when 1 and 2  are severely non-normally distributed.   
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While a small number of simulation studies have investigated the impact of mild 

non-normality on estimating interaction effects (Marsh et al., 2004; Klein & 

Moosbrugger, 2000; Klein & Muthén, 2007; Wall & Amemiya, 2001), none of these 

studies have investigated the impact of severe non-normality on estimating interaction 

effects.  Most of these studies generated data using either a uniform distribution, chi-

square (df=6) distribution, or a chi-square (df=9) distribution to simulate non-normal data 

for ξ1 and ξ2 (Marsh et al., 2004; and Wall & Amemiya, 2001).  Using  distributions such 

as these generates data with skew ranging from 0 to 1.15 and kurtosis ranging from -1.5 

to 2.0.  Two studies used slightly more extreme values with skew values as large as -2 

and kurtosis as large as 6 (Klein & Moosbrugger, 2000; Klein & Muthén, 2007).   Kline 

(2005) suggested that extreme skew is defined by values greater than an absolute value of 

3.0, and extreme kurtosis is defined by absolute values ranging from 8.0 to over 20.0.  He 

further suggested that kurtosis values greater than the absolute value of 20.0 may indicate 

serious problems with non-normality.  Based on Kline's rule-of-thumb values for skew 

and kurtosis, the skew and kurtosis values for previous studies have not been considered 

to be extreme.  Consequently, the current study manipulated the distribution of 1 and 2  

to be either normal, or severely non-normal with skew of 3.0 and kurtosis of 22.0.  For 

the severely non-normal condition, data were generated using Fleishman's (1978) 

polynomial transformation procedure with Vale and Maurelli's (1983) intermediate 

correlation procedure. 

In summary, the following features were manipulated in a fully-crossed factorial 

design: a) the magnitude of the interaction as represented by the amount of variance that 

the interaction explains in  above and beyond the first-order latent variables (
3

2R  = .00, 
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.05, or .10); b) sample size (n = 100, 250, or 500); c) factor loadings on first-order latent 

variables (0.5 or 0.8); d) the correlation between the two first-order latent variables (12  = 

.2, .4, or .6); and e) the normality of the first-order latent variables (normal or skew=3, 

kurtosis=22).  Nine methods were used to analyze each of the datasets as a within-design 

method.  Based on the manipulations of these five features, a 3 x 3 x 2 x 3 x 2 x (9) 

factorial design was utilized.  This resulted in 108 conditions across 9 different methods 

of estimating latent variable interaction effects.  A summary of the manipulated features 

is shown in Table 4. 

The variances of 1 and 2 were set equal to 1 (i.e., 11  = 22  =  1).  The variance 

of the interaction term varied depending on the correlation between the two first-order 

latent variables 1 and 2  (i.e., 12).  Specifically, the variance of the interaction term 

was set equal to  33 = 11 22 + 21
2
.  The variance of  was set equal to 1 (i.e.,  = 1). 

Three indicators were used for each of the latent variables where y1, y2, and y3 

were indicators of  ,  x1, x2, and x3 were indicators of 1, and x4, x5, and x6 were 

indicators of 2.  All errors were normally distributed and variances of y1, y2,  y3; x1, x2, 

x3, x4, x5, and x6 were equal to 1.0.  Errors were chosen to give unit variance to the 

indicators and thus were chosen based on the size of the loadings.   

 The squared multiple correlation is dependent upon γ3 (which changed depending 

on 
3

2R ) and 12, and therefore it was not directly manipulated for the current study.  The 

squared multiple correlation is equal to the value expressed by (Marsh et al., 2004) 
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Corresponding to the three values of 
3

2R and the three values of 12, the resulting R
2 

values were .384, .448, .512; .434, .498, .562; and .484, .548, and .612, respectively.  

These values are consistent with what has been used in other studies (see Table 3; Jaccard 

& Wan, 1995; Klein & Muthén, 2007; Marsh et al., 2004). 

Although data were simulated to come from a population in which Equation 56 is 

true, and thus  = 0 in the population,  is not necessarily zero when the model is 

estimated.  Thus, the structural model that was estimated using each of these methods 

included  and was equal to Equation 2.  Based on recommendations by Marsh et al. 

(2004), the “matched-pairs” method was used in the current study to create three product 

indicators of the interaction latent variable, 12, for the product-indicator methods. 

Data were generated in SAS 9.00.  To check the data simulation process to ensure 

results were plausible, several approaches were taken.  First, several datasets of sample 

size 100,000 were simulated.  Parameter estimates based on the large sample sizes of 

100,000 were equal to the population generating parameters.  Second, to ensure that the 

non-normal data generated using Fleishman's (1978) polynomial transformation with 

Vale and Maurelli's (1983) intermediate correlation procedure for the several datasets of 

100,000 were also generated.  The means, standard deviations, skew, and kurtosis values 

of these datasets were equal to the means, standard deviations, skew and kurtosis values 

from the population generating model.  Additionally, the correlation coefficients between 

the latent variables were also equal to the correlation coefficients from the population 

generating model.  
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The program used to test for interaction effects varied for each type of approach.  

Simulated covariance matrices and mean vectors were analyzed using LISREL 8.8 

(Jӧreskog & Sӧrbom, 2001) for the constrained, partially constrained, unconstrained, and 

residual-centered approaches.  Mplus version 4.2 was used for the latent moderated 

structural equations approach.  SAS 9.00 was used to analyze data for the two-stage least 

squares, the two-step method of moments, and the marginal-maximum likelihood 

approaches. 

As discussed earlier, there are many approaches for estimating factor scores.  In 

previous simulation studies comparing latent variable scores approaches for estimating 

first-order effects, the Anderson and Rubin (1956) method resulted in the most accurate 

recovery of the first-order effects.  Additionally, the Anderson and Rubin (1956) 

approach is frequently utilized and is available in LISREL and SPSS.  Comparing the 

numerous latent variable scores approaches was not a research question addressed in the 

current study.  For these reasons the latent variable scores were estimated in the current 

study using the Anderson-Rubin (1956) method within PRELIS and LISREL.  While 

comparing the various latent variable scores methods was not part of the current study, it 

is an interesting question and could be investigated in future studies.   

After predicting latent variable scores for 1 and 2  from a corresponding 

confirmatory factor analysis (CFA) model, the interaction term was created by 

multiplying the latent variable scores on 1 and 2 together for each case.  These derived 

values were used to test for interaction effects between two continuous predictors, 

following methods described by Cohen, Cohen, West, and Aiken (2003) and were 

computed in SAS. 



57 

 

 

Justification for Number of Replications 

Data were simulated using data simulated in SAS.  Each of the 108 conditions
 
was 

replicated 500 times.  This decision was based on the number of replications used in 

previous studies, and factors that are known to influence the number of necessary 

replications for Monte Carlo simulations.  Powell and Schafer (2001) conducted a meta-

analysis of 219 simulation studies in structural equation modeling that investigated the 

robustness of the likelihood ratio chi-square.  They reported that the number of 

replications used in these studies ranged from 20 to 1,000, with the median number of 

replications being 200.  Similarly, Bandalos (2006) stated that 500 replications was large 

for structural equation modeling Monte Carlo simulation studies, and this number of 

replications would provide stable standard error estimates even when data were generated 

to come from a non-normal distribution.  Table 3 contains the number of replications 

used in previous studies investigating interaction effects.  These values range from 150 to 

1000. 

The necessary number of replications depends upon many factors, including:  the 

desire to obtain stable parameter estimates (i.e., reduce sampling variability), the purpose 

of the study, the a priori type I error rate (), a priori power (1 - ), and the size of the 

effect one wishes to test for (Bandalos, 2006; Robey & Barcikowski, 1988; Serlin, 2000).  

When conditions are unstable making estimation difficult, then a large number of 

replications may be necessary (Bandalos, 2006).  Based on previous studies investigating 

interaction effects and non-linear effects in structural equation modeling, estimation has 

not been problematic and convergence rates have been high (i.e., 99% to 100%; Weiss & 
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Hancock, 2009; Harring, Weiss & Hsu, under review; Marsh et al., 2004).  Thus, it was 

not anticipated that a large number of replications were necessary for the current study.   

Bandalos (2006) stated that if the purpose of the Monte Carlo simulation is to 

compare the parameter estimates of models, then a large number of replications are not 

necessary.  However, if the primary focus of a study is to obtain an empirical sampling 

distribution for use in hypothesis testing, than a larger number of replications may be 

necessary (Bandalos, 2006).  The primary purpose of the current study was to compare 

parameter estimates between the nine methods.  Therefore, a large number of replications 

was not necessary.  

In studies that use too small a number of replications, then power may be too 

small to detect true differences.  On the other hand, if the number of replications is too 

large, then the study may have excessive power.  Some studies have suggested methods 

of conducting rudimentary power analyses to determine an adequate number of 

replications (Bradley, 1978; Robey & Barcikowski, 1988; Serlin, 2000).  These studies 

use a priori type I error rates (), a priori power (1 - ), and the size of the effect one 

wishes to test for to help determine the number of replications that should be used for 

Monte Carlo simulations.  Generally, for power of .7 to .8, with an a priori  of .05, and 

an effect size that is classified as being intermediate or liberal (as classified by Bradley, 

1978) the number of replications ranges from 400 to 2000.  Serlin (2000) stated that as  

increases, more liberal effect sizes can be used to determine an adequate number of 

replications for a study.  Based on this statement, in conjunction with the number of 

replications used in previous studies conducted in this area of structural equation 
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modeling, and the purpose of present study, a more liberal number of replications were 

used for the current study. 
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Chapter 4: Results 

 

Criteria for Evaluating Models 

 Proportion relative bias.  The bias of the parameter estimates was the primary 

measure that was used to compare the nine different methods of testing for interaction 

effects.  Bias is defined by the average difference between the parameter estimates and 

the population-generating value.  For the current study bias was reported in a proportion 

relative bias form, meaning that the bias values were divided by the population-

generating parameter value. In the conditions in which the population-generating 

parameter value 3 was equal to zero the bias cannot be divided by zero, therefore the 

proportion relative bias was equal to the difference between the average parameter 

estimates and the population-generating. While the bias of the 3 parameter was the 

primary interest, bias was also examined for the first-order effects 1 and 2.  Tables 4 

through 39 contain the proportion of relative bias for all 9 methods across the 108 

conditions.  The proportion of relative bias for each condition will be discussed in more 

detail later. 

 Precision.  Previous studies have examined the precision of the parameter 

estimates for 1 , 2, and 3 using some combination of three measures:  the observed 

standard deviation, the estimated standard error, and the relative ratio of the estimated 

standard error divided by the observed standard deviation. The observed standard 

deviation represents the standard deviation of the parameter estimates across the 500 

replications within a given cell.  This is informative because it shows the true variability 

of parameter estimates in the sampling distribution.   
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The estimated standard error represents the mean of the standard errors estimated 

for each solution.  Simply averaging the standard error estimates together yields a biased 

estimate of precision even if the variances were unbiased to begin with.  This is because 

the standard error estimates that statistical software programs provide are equal to the 

square root of the variances, and taking the square root of a value is a non-linear 

transformation. To provide an unbiased estimate of the standard error one must square the 

standard errors for each solution, take the average of the those variances, and then take 

the square root 

 

 
2

XS E
i


 


        (59) 

 

where 
X

 represents the estimated standard error for a given replication, and i represents 

the number of replications that converged within a given cell (e.g., in the current study i 

equaled 500 if the solutions for all replications converged).   

 The estimated standard error and the observed standard deviation were used to 

compute a relative ratio calculated as 

 

( )
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


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where ( )S E  represents the estimated standard error, and ( )SD  represents the observed 

standard deviation of the parameter estimates.  This relative ratio indicates how the 
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average standard error estimates compare to the average empirical variance estimates.  

Values close to zero are desirable because they indicate that the standard error values that 

are computed based on the model, are representative of what is in the population.  Values 

less than zero indicate that the model underestimates the standard error estimates, while 

values greater than zero indicate that the model overestimates the standard error 

estimates.   

 The relative ratio was the primary measure of precision that was of interest for the 

current study.  The observed standard deviations and the estimated standard errors were 

only used as a secondary interest to the relative ratios.  The observed standard deviations,  

the estimated standard errors, and the relative ratios for each condition are reported in 

Tables 4 through 39 and will be discussed in more detail later. 

 Convergence.  The percent of times a model converged were also kept track for 

each of the 9 estimated methods across all 108 conditions.  The convergence rates are 

shown in Tables 40 through 43.  Because the latent variable scores (LVS) and the two-

stage method of moments (2SLS) approaches use ordinary least squares regression, 

convergence is not an issue with either.  Similarly, there were no convergence problems 

with the latent moderated structural equations (LMS), two-stage method of moments 

(2SMM), or marginal maximum likelihood (MML) approaches.  For the product-

indicator models, 
2

3R  and ϕ12 did not impact convergence rates.  Sample size, normality, 

and loading size, however, did impact convergence rates for these methods. Of these 

methods, the constrained approach resulted in convergence the most frequently.  When 

data were non-normally distributed, loadings were low, and sample size was 100, the 

constrained approach was unable to converge for approximately 7 to 10% of the datasets.  
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When sample size increased to 250, or the size of the loadings increased, the constrained 

approach reached convergence for almost all datasets.   

 When the loadings were low, the partially constrained, unconstrained, and 

residual-centered approaches had some issues with convergence, particularly when the 

sample size was 100.  Convergence was not an issue for these approaches when the 

sample size increased or when the size of the loadings increased.  Of the four product-

indicator methods, the constrained and partially-constrained approaches had the fewest 

issues with convergence. 

 Type I error rates and empirical power.  As previously stated, the proportion of 

variance in   accounted for by the interaction effect was set equal to .00 (to investigate 

Type I error rates), .05, and .10 (to investigate power).  Type I error rates and power were 

compared across the 9 approaches and 108 conditions.  To compute Type I error rates and 

power, the null hypothesis H0: 3 = 0 was used.  The Type I error rate was represented by 

the proportion of converged solutions that had a statistically significant interaction effect 

in the simulated data when H0 was true.  Power was represented by the proportion of 

converged solutions that have a statistically significant interaction effect in the simulated 

data when H0 was false (Marsh et al., 2004).   

 Type I error rates.  The Type I error rate is represented by the proportion of 

converged solutions that have a significant interaction effect in the simulated data when 

the population interaction effect is zero.  Type I error rates were computed using an α 

level of .05, and are shown in Tables 44 and 45.  

 When the loadings were equal to 0.50, the unconstrained and residual-centering 

approaches had had high Type I error rates, with between 9% to 25% of the models as 
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having significant 3 paths.  When the sample size was large (i.e., N=500) and data were 

normally distributed, the type I error rate for the unconstrained approach improved a 

little.  In general, these rates increased as 12 increased.   

 When data were normally distributed and loadings were equal to 0.50, the 

partially constrained, LMS, and 2SMM had low Type I error rates, and rejected about 0% 

to 3% of the models.  When loadings were low and the sample size was 100, the LVS and 

2SLS methods had Type I error rates closest to the desired α level.  When the size of the 

loadings and the sample increased, all methods (except the MML approach) had Type I 

error rates close to the desired α level, provided that data were normally distributed.  In 

these conditions the MML approach had very high Type I error rates, rejecting 11% to 

30% of true models. 

 When data were non-normally distributed, the partially constrained and 

unconstrained approaches had better Type I error rates.  When loadings were high, the 

LVS and 2SLS approaches also had Type I error rates close to the desired α level.  In 

general, the partially constrained approach resulted in lower Type I error rates than the 

unconstrained approach when data were non-normally distributed. The constrained, 

residual-centered, LMS, 2SMM, and MML approaches had high Type I error rates when 

data were non-normally distributed. 

 Empirical power.  Empirical power is represented by the proportion of converged 

solutions that have a significant interaction effect in the simulated data when the 

population interaction effect is not equal to zero.  Empirical power rates were computed 

using an α level of .05, and are shown in Tables 46 through 49.  
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 In general, all of the approaches had very low power when loadings were low.  

When loadings were low and data were normally distributed, the LVS approach had the 

highest power to detect true interaction effects.  Power for the LVS approach increased as 

loadings increased, sample size increased, and as ϕ12 decreased.  When data were 

normally distributed, and loadings were low, the LMS and MML approaches had power 

levels nearing that of the LVS approach provided that the sample size was 500.  When 

loadings were .80, and data were normally distributed all of the approaches had 

acceptable levels of power except for the 2SMM approach.   

 In general all of the approaches had very low power when data were non-

normally distributed.  The MML approach had the only acceptable level of power, 

provided that the sample size was 500.  In general, power for the MML approach 

increased as 
2

3R   increased, loadings increased, sample size increased, and ϕ12 increased. 

 

Results by Type of Method 

 Overall, the features that impacted the type of method that most accurately 

detected the interaction effect were the effect size (represented by the proportion of 

unique variance that the interaction effect explained in η, i.e., 
2

3R ), and the size of the 

loadings.  The accuracy of parameter estimates changed depending on sample size and 

the value of the correlation between the two first-order latent variables (i.e., ϕ12 ).  

However, in almost all conditions the sample size did not impact the type of method that 

most accurately detected the interaction effect, and the value of ϕ12  never impacted the 

type of method that was the least biased in detecting the interaction effect. 
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 Constrained approach.  The constrained approach was the least biased method 

when data were normally distributed, loadings were low, and 
2

3R was .05.  It was one of 

the least biased methods when data were normally distributed and loadings were high.  

The relative ratio was approximately zero when data were normally distributed, the 

correlation between the two first-order latent variables was .4 or .6, and sample size was 

at least 250.   

 The constrained approach is based on the second constraint imposed upon the 

variance of the interaction term and the assumption that ξ1 and ξ2 are normally 

distributed.  Therefore, theoretically the constrained approach should be biased when data 

is non-normal.  As expected, the constrained model resulted in biased parameter 

estimates of γ3 in almost all conditions when data were non-normally distributed.  When 

data were non-normal, 
2

3R  was .00, and loadings were .80, the constrained method 

resulted in unbiased estimates of γ3 and performed similarly to all of the other approaches 

except for MML.  Surprisingly, the constrained approach resulted in the only unbiased 

estimates of γ3 when data were non-normal, loadings were low, 
2

3R  was .05, and ϕ12 was 

.40 or .60.   

 The constrained approach resulted in unbiased estimates of first-order effects in 

nearly all normal and non-normal conditions.  Estimates of γ1 and γ2 were a little biased 

when the sample size was 100.  The relative ratios for first-order effects were close to 

zero when data were normal and when the sample size was 250 or greater.  When data 

were non-normal the relative ratios were large. 

 The constrained approach had high convergence rates across all conditions, even 

when the sample size was 100.  When data were normally distributed, the Type I error 
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rates associated with the constrained approach were approximately equal to the desired 

alpha level.  When data were non-normally distributed, Type I error rates were a little 

high (around .10 to .16 when ϕ12 was equal to .20), and increased as ϕ12 increased.  The 

empirical power was low when data were non-normal, loadings were low, or when the 

sample size was low.  In the normal conditions power tended to decrease as ϕ12 increased, 

while in the non-normal conditions power increased as ϕ12 increased.   

 Partially constrained approach.  Similarly to the other product-indicator 

methods and the ordinary-least-squares methods, the partially constrained approach 

resulted in low bias when the data were normal and the loadings were high.  The relative 

ratio was very large when the sample size was low or when the loadings were low, 

indicating that in these conditions the partially constrained approach overestimated the 

standard error associated with the interaction by as much as 745%.  Even in the 

conditions in which the relative ratio was low, other methods resulted in similar bias and 

more accurate standard error estimates.   

 The partially constrained approach relaxes both the second constraint on the 

variance of the interaction term, and the assumption that ξ1 and ξ2 are normally 

distributed.  Therefore, theoretically, the partially constrained approach should be 

unbiased in the non-normal conditions.  In comparison to the constrained approach, the 

partially constrained approach resulted in less biased parameter estimates in the non-

normal conditions, when 
2

3R was .00.  When 
2

3R was .00, the bias for the partially 

constrained approach was a little high when the sample size was 100 and when the 

loadings were .50, however, this bias decreased when the sample size was 250 or greater, 

or when the loadings increased to. 80.  Even though bias was small for the partially 
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constrained approach when 
2

3R  was .00, the 2SLS and LVS approaches estimated γ3 

more accurately than the partially constrained approach did.  Surprisingly, the partially 

constrained approach resulted in more biased parameter estimates than the constrained 

approach when 
2

3R  was .05 or .10.  When data were non-normally distributed, and
2

3R  

was .05 or .10, all approaches, including the partially constrained approach, resulted in 

biased parameter estimates (underestimating γ3 by 20% or more).   

 When the sample size was 100 and the loadings were low, the partially 

constrained method had convergence rates between 77% to 84%.  Convergence was not a 

problem once the sample size was 250 or more, or the loadings were .80.  The partially 

constrained approach was one of the few methods that had stable Type I error rates, even 

when data were non-normal.  For some of the other methods (e.g., constrained, residual-

centered, LVS, LMS, 2SMM, and MML), the Type I error rates increased as  ϕ12 

increased.  For the partially constrained approach, however, the Type I error rates 

remained relatively stable across ϕ12 levels.  The partially constrained approach resulted 

in low empirical power, particularly when the sample size was low, the loadings were 

low, or when data were non-normally distributed.   

 Unconstrained approach.  Similarly to the partially constrained approach, the 

unconstrained approach was unbiased when data were normally distributed and loadings 

were high.  There were no conditions in which the unconstrained approach was the only 

unbiased method, meaning that in all conditions in which the unconstrained approach was 

unbiased, there were several other methods that were also unbiased.  In most of the 

conditions in which bias was low, the relative ratio was high in comparison with that 

resulting from other methods.   



69 

 

 Similarly to the partially constrained approach, the unconstrained approach should 

theoretically lead to more accurate parameter estimates than the constrained approach 

when data is non-normally distributed.  This is because the second constraint on the 

variance of the interaction term, and the assumption that ξ1 and ξ2 are normally 

distributed are both relaxed.  When data were non-normal and 
2

3R was .00, the 

unconstrained approach resulted in more accurate estimates of γ3 than the partially 

constrained approach and the constrained approach, provided that ϕ12 was .20 or .40.  

When ϕ12 was .60, the partially constrained approach resulted into less biased estimates 

of γ3 than the unconstrained approach.  Even though bias was small when 
2

3R  was .00, 

the 2SLS and LVS approaches resulted in more accurate estimates of γ3.  When 
2

3R  was 

.05 or .10, the unconstrained approach was biased and was more biased than the partially 

constrained approach, underestimating γ3 by as much as 30%. 

 When the sample size was 100 and loadings were low, the unconstrained 

approach did not convergence for between 20% to 30% of the datasets.  Convergence 

was not a problem once the sample size was increased or the loadings were increased.  

Type I error rates were high when the sample size was 100 or when loadings were low.  

When data were non-normally distributed, the Type I error rates were approximately 

equal to the alpha level.  The unconstrained approach resulted in low power when the 

sample size was 100, loadings were low, or the data were non-normally distributed.   

 Residual-centered unconstrained approach.  Similarly to the other product-

indicator methods and the ordinary-least-squares methods, when the data were normally 

distributed and the loadings were high (i.e., λi = .80), the residual-centered approach 

resulted in minimal bias for both first-order effects and interaction effects.  The residual-
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centered approach resulted in biased estimates of γ3 when data were non-normal.  In most 

conditions the residual-centered method resulted in high relative ratios compared to the 

other methods, particularly when the sample size was low or the loadings were low.   

 When the sample size was 100 and the loadings were low (i.e., λi = .50), the 

residual-centered approach had low convergence rates (as low as 73%).  Type I error 

rates were high, and power was low, when the loadings were low, or when the data were 

non-normal.   

 Latent variable scores approach (LVS).  When data were normally distributed , 

2

3R  was zero, and the loadings were low, the LVS approach was the least biased 

approach for estimating γ3 and had the lowest relative ratio.    The LVS approach was one 

of the least biased approaches when data were normally distributed and loadings were 

.80,  or when data were non-normally distributed, and 
2

3R  was zero.  When estimating γ3, 

the LVS approach had a relative ratio close to zero for all conditions, and the lowest 

relative ratio when data were non-normal.   

 For estimating first-order effects, the LVS approach was one of the least biased 

approaches in all of the conditions, across 
2

3R , sample size, loading sizes, ϕ12,  and 

normality.  However, relative ratios associated with first-order effects were high and 

negative in all conditions, indicating that the LVS approach underestimated standard 

error estimates for first-order effects in all conditions.  These standard error estimates 

became more accurate as loadings increased.  Sample size, ϕ12,  
2

3R , and normality did 

not seem to impact the standard error estimates for first-order effects. 
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 Because the latent variable scores approach uses ordinary least square regression, 

convergence was not an issue.  The Type I error rates were close to the desired  level 

when data were normally distributed and when data were non-normal with sample size 

100.  Type I error rates were a little high when data were non-normally distributed and 

the sample size was 250 or 500, but it was not as high as some of the other approaches 

(e.g., constrained, residual-centered, LMS, and MML).  When data were non-normally 

distributed, the partially-constrained, unconstrained, and 2SLS methods had slightly 

better Type I error rates than the LVS approach.  Power was low when the loadings were 

low or when data were non-normal.  Even though the power was low when loadings were 

low, the power was still higher than it was for other methods. 

 Two-stage least squares approach (2SLS).   When data were normally 

distributed and 
2

3R  was either .00 or .05, the 2SLS method was one of the least biased 

methods for estimating the interaction effect γ3.  In the normally distributed conditions in 

which the 2SLS approach was not biased, the constrained approach or the LVS approach 

also led to unbiased estimates of γ3.  When data were non-normally distributed and 
2

3R  

was zero, the 2SLS approach was the least biased method for estimating γ3 along with the 

partially constrained and the unconstrained approaches.  In these conditions, the 2SLS 

approach was less biased than the partially constrained and unconstrained approaches 

when the sample size was 100. The relative ratio associated with γ3 was small when the 

sample size was 250 or less in both the normal and non-normal conditions.   

 For estimating first-order effects, the 2SLS approach was one of the least biased 

methods.  Although most approaches (with the exception of the 2SMM and MML 

approaches) resulted in unbiased estimates of first-order effects, the 2SLS along with the 
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LVS method resulted in the most accurate estimates of γ1 and γ2.  Additionally, the 

relative ratios associated with γ1 and γ2 were close to zero in most conditions, indicating 

that the standard error estimates resulting from the 2SLS approach were fairly accurate. 

 Because the 2SLS approach uses ordinary least square regression, convergence 

was not an issue.  Type I error rates were slightly high when loadings were low (Type I 

error rates were about .06 to .07).  Even though at times the Type I error rates were a little 

high, when data were non-normally distributed the Type I error rates were consistent 

across sample sizes and ϕ12 levels, and were often closer to the desired alpha level then 

the other approaches.  Empirical power was low when the loadings were low, or when the 

sample size was 100 or 250, or when data were non-normal.   

 Latent moderated structural equations (LMS).  The latent moderated structural 

equations (LMS) approach resulted in somewhat biased parameter estimates of γ3 in all 

normal conditions.  It was the least biased method for estimating γ3 when data were non-

normal, 
2

3R was .10, and the loadings were .50.  Bias decreased as ϕ12 decreased and as 

sample size increased. In these conditions (i.e., non-normal, 
2

3R = .10, and loadings of .5) 

the LVS and the 2SLS approaches were more biased, but had more accurate standard 

error estimates than the LMS approach as evidenced by their relative ratio values being 

closer to zero.  In these conditions, the relative ratio was high and positive, indicating that 

although unbiased, the LMS approach overestimated standard errors, particularly at small 

sample sizes.  The standard error estimates were fairly accurate when the sample size was 

500.  In comparison to the constrained, partially constrained, unconstrained, residual-

centered, and 2SMM approaches, the LMS approach had relative ratio values closer to 

zero.  When the sample size was 100, the LMS approach resulted in very high and 



73 

 

inaccurate standard error estimates for γ3 (up to 57,600%).  This overestimation 

decreased as ϕ12 increased.  Therefore, with small sample sizes (i.e., n=100), the standard 

error estimates for γ3 resulting from the LMS approach cannot be trusted.   

 In most conditions the LMS approach lead to unbiased results when estimating 

the first-order effects, particularly as 
2

3R  increased, as loadings increased, and when the 

sample size was greater than 100.  When the data were normally distributed, the Type I 

error rates were close to the desired alpha level.  The Type I error rates tended to become 

large when data were non-normal and the sample size was 250 or 500 (Type I error rates 

up to .558).  The empirical power was low when the loadings were low (i.e., λi = .50), but 

increased as the sample size increased.  The empirical power was acceptable when 

loadings were high, particularly when the sample size was 250 or more.  In all of the non-

normal conditions, the empirical power for the LMS approach was low.  However, aside 

from the MML approach, the LMS approach had a higher empirical power rate than the 

other methods in the non-normal conditions.  Surprisingly, in the non-normal conditions, 

the power for LMS became larger as the correlation between the first-order latent 

variables (i.e., ϕ12) increased. 

 Two-stage method of moments (2SMM).   Overall, the 2SMM approach 

resulted in the most biased parameter estimates for first-order and interaction effects in 

all conditions.  Additionally, in most conditions the standard error estimates were 

drastically inaccurate, particularly when the loadings were low or when the sample size 

was low.  The Type I error rates were close to the desired alpha level when data were 

normally distributed or when the loadings were low.  However, the method had very low 

power to detect interaction effects when they were present.   
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 Marginal maximum likelihood (MML).  The MML approach resulted in 

parameter estimates that were biased for both first-order effects and interaction effects in 

all of the normal conditions and most of the non-normal conditions.  Although, the MML 

approach was biased, it was the least biased method for estimating γ3 , when the data 

were non-normal, the loadings were .80, and an interaction effect was present (i.e., 
2

3R ≠ 

.00).  In these conditions, the MML approach underestimated the value of γ3 by between 

5% to 17%.  However, while it was the least biased approach for estimating γ3 when data 

were non-normal, loadings were 0.80, and 
2

3R  was .00, it resulted in a much higher 

relative ratios, inaccurately estimating the standard error by between 40% to 1263%.   

 For first-order effects the MML approach was unbiased when data were normally 

distributed and when the sample size was 250 or more.  Surprisingly, the MML approach 

resulted in high relative ratios associated with first-order effects when loadings when 

loadings were 0.80, but was one of the most accurate methods of estimating standard 

error for first-order effects when loadings were 0.50. The Type I error rates were high 

(i.e., between .11 and .81) in the non-normal conditions, especially in comparison to the 

other approaches.  Although Type I error rates were high, the MML approach had the 

highest power to detect interaction effects when data were non-normal, provided that the 

sample size was 500.   
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Chapter 5: Discussion 

 

 

 The current study aimed to determine the best method for estimating latent 

variable interactions.   Data were simulated from known population parameters and 

varied as a function of the size of the interaction effect, sample size, the loadings of the 

indicators, the size of the relation between the first-order latent variables, and normality 

in a fully-crossed design.  All datasets were analyzed using nine latent variable methods 

of testing for interaction effects: the constrained, the partially-constrained, the 

unconstrained, the residual-centering, the latent variable scores with moderated multiple 

regression, two-stage least squares, latent moderated structural analysis, two-stage 

method of moments, and marginal maximum likelihood approaches.  

  

Non-Normality 

 In the current study, when data were non-normally distributed and an interaction 

effect was present in the population-generating model (present (i.e., 
2

3R  ≠ .00), all 

methods led to biased estimates of the interaction effect in almost all of the conditions, 

incorrectly estimating the interaction effect by as much as 10% to 40% in most cases.  

While previous studies investigating the impact that non-normality had on parameter 

estimates found that bias tended to increase when data were non-normal, they found that 

the bias was still minimal for some approaches (Klein & Moosbrugger, 2000; Klein & 

Muthén, 2007; Marsh et al., 2004; Wall & Amemiya, 2003). This supports the 

importance of the current study in investigating the impact that severe non-normality has 

on estimating interaction effects. Consequently, rather than discussing which approaches 
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were unbiased, the question becomes which of the methods resulted in the least biased 

estimates of the interaction effect.   

 The constraints specified in the constrained model are based on the assumption 

that 1 and 2 are normally distributed.  Wall and Amemiya (2001) pointed out that when 

this assumption is not met then the second constraint imposed upon the variance of the 

interaction term does not hold true.  The partially constrained, unconstrained, and the 

residual-centered unconstrained approaches are not based on the assumption that 1 and 

2 are normally distributed, and thus relax the second constraint.  Therefore, when 1 and 

2 are non-normally distributed the partially constrained, unconstrained, and residual-

centered unconstrained approaches should theoretically be less biased than the 

constrained approach.  

 In the current study, the constrained approach resulted in biased estimates of the 

interaction effect in almost all of the non-normal conditions.  This finding is not 

surprising due since the constrained approach is based on the assumption that the first-

order latent variables are normally distributed, and is similar to findings in previous 

studies (Marsh et al., 2004).  The residual-centered approach resulted in biased estimates 

of the interaction effects in all non-normal conditions.  This finding is unique to the 

current study because the residual-centered approach had not previously been evaluated 

under non-normal conditions. 

 Surprisingly, the constrained approach was the only method that resulted in 

unbiased estimates of γ3 when data were non-normal, loadings were low, 
2

3R  was .05, 

and ϕ12 was .40 or .60.  In all other non-normal conditions, the partially constrained and 

unconstrained approaches were less biased than the constrained approach.  When data 



77 

 

were non-normal and an interaction effect was present, the partially constrained approach 

resulted in less biased parameter estimates of the interaction effect than the unconstrained 

and constrained approaches.  This finding contradicts Marsh et al.'s (2004) finding in 

which under non-normal conditions the unconstrained approach was found to result in 

slightly less biased estimates of the interaction effect than the partially constrained 

approach.  These contradictory findings could be due to the severity of the non-normality 

in the current study. 

Even when 1 and 2 are normally distributed, the interaction is known to be non-

normally distributed (Jöreskog & Yang, 1996).  The product-indicator models use 

maximum-likelihood estimation which is based on the assumption that all indicators in 

the model are multivariately normally distributed.  Because the indicators for the 

interaction are known to be non-normally distributed, this assumption is violated when 

maximum-likelihood is used. Although standard SEM software packages are able to 

provide users with robust standard error estimates, the parameter estimates obtained from 

maximum-likelihood estimation are still expected to be biased.  The LMS and MML 

approaches do not make any distributional assumptions regarding the interaction effect, 

and thus should theoretically lead to more accurate parameter estimates than the product-

indicator approaches in non-normal conditions. 

 Although all methods were poor at detecting a true interaction effect, the MML 

approach led to the least biased estimates of the interaction effect when the loadings were 

adequate.  In these conditions the MML had the highest power to detect interaction 

effects.  However, the MML approach had high Type I error rates and very large relative 

ratios indicating that standard errors were inaccurately estimated by as much as 1263%.  
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This finding is important because the MML approach has not been compared to other 

methods in any previous simulation studies. 

 The LMS approach led to the least biased estimates of the interaction effect when 

data were non-normal, an interaction effect was present (i.e.,  
2

3R  ≠ .00), and the 

loadings were low.  Parameter estimates for the LMS approach became less biased as the 

size of the interaction effect increased and as the size of the correlation between the first-

order latent variables decreased.  This contradicts previous findings in which the LMS 

approach was found to result in unbiased estimates of the interaction effect across all 

sizes of the interaction effect (Klein & Moosbrugger, 2000; and Klein & Muthén, 2007).  

These contradictory findings could be due to the severity of the non-normality used in the 

current study.  Also, previous studies set the size of the relation between the first-order 

latent variables to be .235, and in the current study the LMS approach led to less biased 

results at this level then when this value was increased to be .4 and .6. In the current 

study, even when bias was low, the LMS approach led to large standard error estimates, 

particularly with small sample sizes.   

 The constrained, LMS, and MML approaches are based on the assumption that 1 

and 2 are normally distributed.  The constrained, partially-constrained, unconstrained, 

and residual-centered approaches are based on the assumption that the interaction effects 

is normally distributed.  Therefore, when all exogenous latent variables (i.e., 1, 2, and 

12) are non-normally distributed, the constrained, partially-constrained, unconstrained, 

residual-centered, LMS, and MML approaches violate at least one distributional 

assumption necessary for their use.  The 2SMM, LVS, and 2SLS approaches make no 

distribution assumptions regarding the exogenous latent variables and the latent 
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interaction.  Therefore, when the latent variables are non-normally distributed, 

theoretically the 2SMM, LVS, and 2SLS approaches should result in more accurate 

parameter estimates than the constrained, partially-constrained, unconstrained, residual-

centered, LMS, and MML approaches.  Furthermore, because the 2SMM approach is 

considered to be fully-latent while the LVS and 2SLS approaches are partially-latent, one 

would expect that the 2SMM would provide more accurate parameter estimates than the 

LVS and 2SLS approaches. 

 When data were non-normally distributed and an interaction effect was not 

present, the 2SLS approach, partially constrained, and unconstrained approaches resulted 

in the least biased estimates of the non-existent interaction effect.  When the sample size 

was 100 in these conditions, the 2SLS resulted in the only unbiased estimates of the non-

existent interaction effect.  When data were non-normal, the 2SMM and the LVS 

approaches led to biased estimates of the interaction effect in all of the conditions. The 

2SMM approach had very inaccurate standard error estimates associated with the 

interaction effect.  The LVS approach, however, had the most accurate standard error 

estimates associated with the interaction effect out of all of the methods.  Thus, for non-

normal data, the LVS approach gave more precise (more accurate standard error 

estimates) estimates of the wrong value (larger bias of the interaction effect). 

 When estimating first-order effects, the LVS and 2SLS approaches led to the least 

biased estimates of the interaction effect in most of the non-normal conditions.  The LVS 

approach tended to underestimate standard errors associated with first-order effects, 

however, the standard error estimates based on the 2SLS approach tended to be fairly 

accurate.   
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 These findings are important because previous studies have not examined the 

2SMM and LVS approaches under non-normal conditions.  Only one previous study 

investigated the impact of non-normality on the 2SLS approach (Klein & Moosbrugger, 

2000).  For the single condition reported in their study, the 2SLS was found to result in 

biased estimates of first-order effects and the interaction effect when data were non-

normally distributed.  Thus regarding the 2SLS approach, findings for the current study 

support and build on findings reported by Klein and Moosbrugger (2000).   

 These findings suggest that even though the 2SMM and LVS approaches make no 

distributional assumptions regarding the latent variables, these methods tended to lead to 

inaccurate parameter estimates and standard error estimates.  The 2SLS approach 

accurately estimated first-order effects, the interaction effect, and standard errors in the 

conditions in which no interaction effect was present (i.e., 
2

3R  was .00).  However, when 

an interaction effect was present (i.e., 
2

3R  ≠ .00), the constrained, LMS, or MML 

approaches resulted in less biased estimates of the interaction effect than the 2SLS 

approach. 

 

Recommendations 

 Selecting which method one should use to test for interaction effects depends 

largely upon whether or not data are normally distributed. When data is normally 

distributed the constrained model is recommended for use.  In the conditions considered 

in the current study, the constrained approach led to the least biased estimates of the 

interaction effect, and accurate standard error estimates, particularly when the sample 

size was 250 or greater and when the correlation between the first-order effects was .4 or 
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greater.  Additionally, the constrained approach accurately estimated first-order effects 

provided that the sample size was 250 or greater.  High convergence rates were 

associated with all normal conditions using the constrained approach.  Type I error rates 

were close to the desired alpha level, particularly when the sample size was 250 or 

greater.  When loadings were low and the sample size was 100, the constrained approach 

had low power to detect true interaction effects.   If the loadings were low, a sample size 

of at least 500 was necessary to have acceptable power.  If the loadings were adequate 

then a sample size of 250 led to acceptable levels of power.  Based on these findings, the 

constrained approach is recommended for use when data is normally distributed.  A 

sample size of 250 or more is recommended for use with the constrained model, although 

it performs fairly well with sample sizes of 100 too, provided that the loadings are 

adequate. 

 When data is normally distributed and loadings are adequate, the LVS approach is 

acceptable for use as well.  In these conditions, the LVS approach resulted in unbiased 

estimates of the interaction effect and accurate estimates of the standard errors associated 

with the interaction effect.  The LVS approach resulted in the least biased estimates of 

first-order effects in all of the normal conditions.  The relative ratios associated with the 

first-order effects were low and negative indicating that the LVS approach 

underestimated standard errors associated with first-order effects.  When loadings were 

adequate, the LVS approach resulted in acceptable Type I error rates and power, 

particularly when the sample size was 250 or greater.  Out of all the approaches, the LVS 

and constrained approaches had the highest power to detect true interaction effects at 

small sample sizes.  The LVS is also beneficial in that there are no convergence problems 
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because it is based on ordinary least squares regression.  When data is normally 

distributed, the LVS approach may be preferable to the constrained approach because it is 

easier to understand, easier to implement because it does not necessitate the use of 

nonlinear constraints, and readily available for practitioners in commonly utilized 

statistical software packages (e.g., SPSS, SAS, STATA, and LISREL). 

 When data were non-normally distributed, it was more difficult to decide which 

method should be used.  When an interaction effect was present, all of the methods 

resulted in biased parameter estimates, inaccurate standard error estimates, poor Type I 

error rates, and low power.  Therefore, recommendations for the preferred method to use 

when data are non-normally distributed are based on relative comparisons rather than 

absolute comparisons.  That is, the following recommendations are based on which 

method performed the least poorly. 

 When data is non-normal and loadings are of adequate size, then the MML 

approach has potential.  It provided the least biased estimates of the interaction effect, 

underestimating the interaction by 5% to 17% in these conditions.  Additionally, the 

MML resulted in the highest power to detect true interaction effects in comparison to the 

other approaches.  This high power, however, was accompanied by large Type I error 

rates.  Furthermore, the standard error estimates associated with the interaction effect 

were vastly underestimated by between 10% to 100%.  The interaction standard error 

estimates based on the MML approach tended to be the most accurate when the sample 

size was 250.  While the bias for interaction effect decreased as the loadings increased, 

the standard errors associated with the interaction estimates increased as the loadings 

increased.  This finding was surprising because one would expect the standard error 
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estimates to become more accurate as indicators became more reliable.  The MML 

approach also led to biased estimates of first-order effects and high relative ratios 

associated with first-order effects.  This is an indication that the MML approach gave 

imprecise estimates (large relative ratios) of the wrong value (large bias) for first-order 

effects.   

 The MML approach became slow to converge as the number of latent variables 

increases.  In the current study, the MML approach took up to 20 minutes for a single 

dataset to converge.  Therefore, using the MML approach with models with multiple 

nonlinear effects or very large sample sizes may be impractical because models with 

more latent variables or more people will inevitably take a longer period of time to 

converge. 

 When data is non-normal the LMS approach also has potential, particularly when 

the loadings are low.  In these conditions, the LMS approach lead to the least biased 

estimates of the interaction effect, incorrectly estimating the interaction effect by between 

5% to 20%.  The bias tended to decrease as sample size increased, the size of the 

interaction effect increased, and the size of the relation between the first-order latent 

variables decreased.  The standard error estimates associated with the interaction effect 

were very high, particularly when the sample size was small.  The LMS approach 

resulted in unbiased estimates of first-order effects, and the standard error estimates of 

first-order effects were accurate provided the sample size was 500.  All methods had low 

power to detect true interaction effects when data were non-normally distributed.  The 

LMS approach had the second highest power, following only the MML approach.  The 

power for the LMS approach increased as the relation between the first-order latent 



84 

 

variables increased and the sample size was 500.  Based on these findings, the LMS 

approach may be appropriate for use when data is non-normally distributed and loadings 

are low, but it is recommended that a sample size of at least 500 be used. 

 Although the MML approach had the least biased estimates of the interaction 

effect when the loadings were of adequate size, the LMS approach had the second least 

biased estimates of the interaction effect while having more accurate standard error 

estimates than the MML approach.  In these conditions, the sample size did not impact 

the amount of bias resulting from the LMS approach, but bias did tend to decrease 

slightly as the relation between the first-order latent variables decreased.  Additionally, 

when the loadings were of adequate size the LMS approach resulted in unbiased 

estimates of first-order effects, whereas the MML generally resulted in biased estimates 

of first-order effects.  Therefore, if a researcher wishes to obtain parameter estimates of 

both first-order effects and interaction effects, the LMS approach may be preferable to 

the MML approach when data is non-normally distributed.   

 A summary of these four recommended methods (e.g., the constrained, LVS, 

MML, and LMS approaches) is shown in Table 51.  Figure 7 shows a flowchart that can 

be used by applied researchers to aide them in deciding which approach they should use 

to test for interaction effects.  Of note, the recommendations for the normal conditions are 

absolute and relative, while the recommendations for the non-normal conditions are only 

relative.  In the non-normal conditions all methods resulted in biased results, inaccurate 

standard error estimates,  large type I error rates, and low power.  Thus, recommendations 

for the non-normal conditions could only be based on comparing the performance of the 

methods with each other, rather than ideal outcomes. 
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 The partially constrained, unconstrained, and residual-centered approaches 

resulted in high relative ratios in most conditions.  Even in conditions in which the 

relative ratio was low, other methods resulted in similar bias and more accurate standard 

error estimates.  Additionally, these two approaches had the lowest convergence rates 

when the sample size was 100 and the loadings were low.  Based on this information, the 

partially constrained, unconstrained, and residual-centered approaches are not 

recommended for use to test for interaction effects. 

 When data were non-normally distributed, the 2SLS approach accurately 

estimated first-order effects, the interaction effect, and standard errors in the conditions in 

which no interaction effect was present in the population-generating model (i.e., 
2

3R  was 

.00), and was the least biased approach in these conditions when the sample size was 100.  

When data were normally distributed and an interaction effect was present in the 

population-generating model (i.e., 
2

3R  ≠ .00), the constrained, LMS, or MML approaches 

resulted in less biased estimates of the interaction effect than the 2SLS approach.  The 

relative ratios for first-order effects and interaction effects based on the 2SLS approach 

were small in all conditions, particularly when the sample size was 250 or less.  Based on 

these findings the 2SLS approach is not the preferable method to use to test for 

interaction effects.  While in many conditions parameter estimates were unbiased, and 

standard error estimates were fairly accurate, the 2SLS was unsuccessful at accurately 

detecting true interaction effects when they actually existed (i.e., 
2

3R  was .05 or .10). 

 The 2SMM approach resulted in the most biased parameter estimates for first-

order effects and interaction effects.  Additionally, the standard errors were drastically 
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inaccurate in most conditions, and power was low.  Therefore, the 2SMM approach is not 

recommended for use when testing for interaction effects.  

 

Limitations 

 Number of indicators. Previous simulation studies have used two or three 

indicators to represent each latent variable.  The current study used three indicators for 

each latent variable.  No studies have been conducted to investigate the impact that 

varying the number of indicators per latent variable has on the bias and precision of 

parameter estimates.  This is likely due to researchers being more concerned with the 

quality of the indicators (i.e., the size of the loadings) rather than the quantity of the 

indicators.   

 One would expect that there is a relation, however, between the quality and 

quantity of indicators.  For example, the current study used a low-indicator condition 

with loadings being equal to .50.  Using low loadings allows researchers to evaluate the 

methods under reasonably difficult conditions (Klein & Muthén, 2007).  As seen with the 

current study, low indicators led to more biased parameter estimates across all methods in 

almost all conditions.   Kline (2005) suggested that having an insufficient number of 

indicators per latent variable could lead to specification errors in the model.  While three 

indicators per latent variable is enough for identification purposes, more indicators may 

be necessary to avoid problems such as non-convergence and inaccurate parameter 

estimation (Kline, 2005).  In the current study, the low-indicator loadings condition often 

led to biased parameter estimates, however, parameter estimates may have been less 

biased if more indicators had been used per latent variable. 
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 While using a greater number of indicators for each latent variable may be 

feasible for some methods, it is more difficult for the constrained and partially 

constrained approaches.  This is because the third type of constraint, which is placed on 

the errors of the product indicators for the interaction term, is computational intensive to 

specify.  While the specification of these constraints is feasible when the number of 

indicators is small (e.g., 2 or 3 indicators per latent variable), it becomes exponentially 

difficult and infeasible when the number of indicators per latent variable increases.   

 Non-convergence.  There is disagreement between methodological researchers 

about whether or not to remove replications that do not converge.  For the current study 

replications for that did not converge were removed from the analysis.  This decision was 

made because it is most consistent with what would occur with real datasets, and is 

consistent with past research using Monte Carlo simulation.  However, as is frequently 

the case when a dataset is analyzed using multiple different methods, convergence may 

be reached for a single dataset with one method, but not for another method.  This means 

that the methods would not be comparing the same datasets for any cells in which 

convergence was not reached for all replications.  

 When loadings were adequate or when the sample size was 500, nearly all cases 

converged for all methods (i.e., approximately 95% to 100% of the replications 

converged).  However, in the few conditions when loadings were low and sample size 

was small, the partially constrained, unconstrained, and residual-centering approaches 

converged for approximately 75% to 85% of the replications.  Because the replications 

that did not converge were removed from the analyses, it is difficult to make comparisons 

across the methods for the conditions in which the loadings were low and the sample size 
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was small.  When convergence is not reached, some researchers add additional 

replications until they get the same number of converged replications for all conditions.  

In the current study, however, convergence was only problematic for the partially 

constrained, unconstrained, and residual-centered approaches.  Because these four 

methods also had higher bias, more inaccurate standard error estimates, higher type I 

error rates, and lower power, it is reasonable to assume that adding additional cases 

would not improve the results obtained from these methods.   

 Limitations of software.  Analyses were conducted for the current study in SAS, 

LISREL, and Mplus.  Because all methods could not be analyzed using the same software 

program, there may be differences in the outcomes for the current study due to the type of 

software used.  For example, the different software programs use different numbers of 

maximum iterations and different starting values.  For the current study the default 

settings within a given software program were used.  The default settings were used 

because it was thought to be most representative of what applied researchers may do.  

Applied researchers may choose to change the default settings, but this decision would be 

specific to their particular dataset.   

 The default number of maximum iterations with Mplus is 1000, while the default 

for LISREL is set equal to three times the number of free parameters.  Therefore, for the 

product-indicator methods conducting using LISREL not only does the number of 

maximum iterations change depending on the software program, but it also changes 

depending on the method used as well, since each method has a different number of free 

parameters.  This means that maximum number of iterations would have been 87, 96, 
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114, and 114 for the constrained, partially constrained, unconstrained, and residual-

centered approaches, respectively.   

 The default starting values also differ across software programs and could 

potentially impact results.  The default starting values within the respective program were 

used for all methods with the exception of the MML approach.  One limitation of the 

MML approach is that it becomes increasing slow to converge as the number of latent 

variables increases.  Specifically, Harring et al. (under review) suggested that when the 

number of latent variables is greater than three or four the MML approach may be very 

slow to converge.  In the current study the structural model had one nonlinear term (i.e., a 

single interaction effect) and three latent variables.  Pilot analyses revealed that the MML 

approach took up to 20 minutes to converge to a solution for a single dataset.  The length 

of time it took to reach convergence was positively related to the sample size.  That is, as 

sample size increased, the amount of time to reach convergence also increased.  In an 

attempt to reduce the amount of time it took the computer to analyze the 54,000 datasets 

using the MML approach, starting values were provided for the program for the errors, 

loadings, covariance between the first-order exogenous latent variables, the variances of 

the exogenous latent variables, and the structural paths.  The starting values were set 

equal to the values in the population-generating model. 

 Normality. One of the goals of the current study was to investigate the impact 

that severe non-normality had on estimating interaction effects.  In the current study, 

when data were normally distributed, the constrained and LVS approaches were 

favorable.  When data were severely non-normal, all methods were poor, but the LMS 

and MML approaches resulted in the most favorable outcomes.  Because only two 
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normality conditions were used in the current study (i.e., normal vs. severely non-

normal), it is unknown how non-normal distributions need to be for parameter estimates 

and their precision to change.   

 Four previous studies were conducted that compared normal conditions to non-

normal conditions (Marsh et al., 2004; Klein & Moosbrugger, 2000; Klein & Muthén, 

2007; and Wall & Amemiya, 2001).  These previous studies investigated the impact that 

mild non-normality had on estimating interaction effects.  In these studies skew for the 

non-normal conditions ranged from -2.0 to 1.5, and kurtosis ranged from -1.2 to 6.0.  

These studies investigated the effects of mild normality deviations in a small number of 

conditions (see Table 3 for the conditions that were investigated previously).  For the 

current study skew was set at 3, and kurtosis was set at 22 in the population-generating 

model.  More research should be conducted to investigate the impact of mild non-

normality across a wider variety of conditions than those used in previous studies to 

determine how non-normal data needs to be for parameter estimates to become 

excessively biased. 

 Methods not examined.  The goal of the current study was to compare the 

current methods for testing for interaction effects in structural equation modeling.   

Unfortunately, the current study did not include the QML approach.  While the QML 

approach is not available in any commercial software programs, it is available by request 

as a stand-alone unpublished software program (Klein, unpublished).  Unfortunately, the 

version of the QML software program that was made available by Klein was limited in 

that it could only be used with single datasets, and therefore could not be used in the 

current simulation study.   



91 

 

 The QML approach does not make distributional assumptions about the 

interaction effect, and thus is theoretically expected to perform better than the product-

indicator methods when data is non-normally distributed.   In the current study, all 

methods resulted in biased estimates of the interaction effect when data were non-

normally distributed.  However, the estimates of the interaction effect based on the LMS 

approach were less biased than those resulting from the other approaches in many of the 

conditions when data were non-normally distributed.   One study found that when data 

were non-normal, the QML approach resulted in more biased estimates of the interaction 

effect than the partially constrained approach, however, it had smaller standard error 

estimates, smaller standard deviations of parameter estimates across the replications, and 

higher power than the constrained, partially constrained, and unconstrained approaches 

(Marsh et al., 2004).  The higher power of the QML approach was accompanied by 

higher Type I error rates (Marsh et al., 2004).   

 Another study found that when data were non-normally distributed the LMS 

approach was slightly less biased than the QML approach (Klein & Muthén, 2007).  The 

QML approach, however, resulted in more accurate estimates of standard errors than the 

LMS approach did when data were non-normal (Klein & Muthén, 2007).   Findings from 

previous studies suggest that the QML approach may be appropriate when data is non-

normally distributed.  However, more research needs to be conducted to evaluate this. 

 The current study compared nine methods of testing for interaction effects in 

structural equation modeling using an elementary interaction model (i.e., an interaction 

model that included a single interaction term and no covariates).   Previous studies 

investigating the elementary interaction model had many limitations within studies and 
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many inconsistencies across studies (discussed earlier). Thus, based on findings from 

previous studies, the question of "Which method is best," had not been thoroughly 

answered.  In practice, however, researchers may hypothesize questions that include 

multiple interaction effects, nonlinear terms, and covariates.  The type of method that 

most accurately detects a true interaction effect may change when the structural model 

becomes more complex.  The QML approach was developed to handle more complex 

models with multiple interaction and quadratic effects that could not be handled by the 

LMS approach.  Klein and Muthén (2007) found that the QML approach provided 

slightly better estimates of interaction effects than the LMS approach when three, two-

way interactions were included in the structural model.  The 2SMM was also developed 

to be able to handle more complex models.  Although the 2SMM performed poorly in 

comparison with the other approaches in the current study, it may have potential when 

testing more complex models.  

 When conducting research it is inevitable that other researchers are also 

attempting to answer similar research questions as your own.  In July, a study by 

Mooijaart and Bentler (2010) was published which introduced a new method to test for 

interaction effects in structural equation modeling.  Their method is a "minor extension" 

of standard structural equation modeling.  In addition to using means and covariances, 

their model fits a selection of third order moments.  The third order moments are chosen 

to reflect the non-normality (specifically the amount of skewness) of the indicators of the 

latent variable interaction.  They conducted a small, preliminary, simulation study 

investigating a single condition with sample size 400.   They compared their method to 

the LMS method and found that both methods resulted in unbiased estimates of the 
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interaction effect.  They found that the LMS approach resulted in slightly smaller 

standard error estimates.  However, their method was advantageous in that it provided a 

model goodness-of-fit chi-square test statistic, and Lagrange Multiplier tests which were 

able to detect the presence of an interaction effect, and are not currently available with 

some of the newer methods of testing for interaction effects (i.e., LMS, MML, and 

QML).  The Mooijaart and Bentler (2010) method is currently available in an 

experimental version of EQS and will be made available in EQS 7.0.  Because their paper 

was just published, the Mooijaart and Bentler (2010) method was not included in the 

current study. 
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Table 1 

 

Summary of Indicator Models for Testing for Interaction Effects 

 

 
Mean  

Structure 
Centering 

Method of Forming 

Interaction Indicators 
Constraints Other Information 

Kenny-Judd No Mean All possible products #1, #2, #3, normality  

Jöreskog & Yang Yes None Single product #1, #2, #3, #4, normality  

Algina-Moulder 

(Constrained) 
Yes Mean All possible products #1, #2, #3, #4 normality  

Wall & Amemiya 

(Partially Constrained) 
Yes  

All possible products & 

Single product 
#1, #2, #3  

Marsh et al. (2006) 

(Unconstrained) 
Yes Mean 

Matched Pairs 

(no overlapping) 
None  

Little et al. 

(Residual Centered) 
No Residual All possible products Normality Correlated errors 
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Table 2 

 

Summary of Methods Used in Previous Simulation Studies 

 Cons PC UC RC LVS 2SLS LMS QML 2SMM MML 

Jaccard & Wan (1995) X
a
          

Schermelleh-Engel et al. (1998) X     X X    

Klein & Moosbrugger (2000) 

(study 1) 
X     X X    

Klein & Moosbrugger (2000) 

(study 2) 
     X X    

Wall & Amemiya (2001)  X         

Moulder & Algina (2002) X     X     

Wall & Amemiya (2003)
b
  X    X   X  

Marsh et al. (2004) 

(study 1) 
X X X        

Marsh et al. (2004) 

(study 2) 
X X X        

Marsh et al. (2004) 

(study 3) 
X X X        

Marsh et al. (2004) 

(study 4) 
X X X     X   

Little et al. (2006)   X
c 

X   X    

Klein & Muthén (2007) 

(study 1) 
      X X   

Klein & Muthén (2007) 

(study 2) 
      X X   

Klein & Muthén (2007) 

(study 4) 
X X X     X   

Note. Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
 a
 They did not use mean-structure with the constrained approach.  

b
 They also examined the Kenny-Judd model without the constraint on Kappa (constraint #4).  

c
 They did not use mean-structure with the unconstrained approach  
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Table 3 

 
Summary of Population-Generating Model Features Used in Previous Simulation Studies 

 
# of 

Methods 

# of 

Reps
 

# of 

conditions 
Rγ3

2 Multiple 

R
2 N

 
Loadings ϕ12 Normality 

Jaccard & Wan (1995) 1 150 48 0, .05, & .10 .30 or .50 
175 & 

200 
.949 & .837 .2 and .4 Normal 

Schermelleh-Engel et al. 

(1998) 
3 500 9 

small, 

medium, 

large 

N/A 
200, 400, 

800 

.6 or .7 

(within) 
.235 N/A 

Klein & Moosbrugger 

(2000; study 1) 
3 200 1 

zero, small, 

medium, 

large 

N/A 400 
.6 or .7 

(within) 
.235 Normal 

Klein & Moosbrugger 

(2000; study 2) 
2 500 4 

zero, small, 

medium, 

large 

N/A 400 
.6 or .7 

(within) 
.235 

Ksi1 

skew=-2.0 

kurt=6.0 

Ksi2 

Skew=1.5 

kurt=5.0 

Wall & Amemiya (2001) 1 1000 9 N/A N/A 
200, 500, 

1000 

.3, .4, .5, .7,.8 

(within) 
N/A 

Normal 

Uniform (skew=0, kurt=-1.2) 

χ
2
 (df=9, skew=0.94, kurt=1.33) 

Moulder & Algina (2002) 2 200 144 0, .05, & .10 .2 or .5 
175 or 

400 
.71, .84, or .95 .2 or .4 Normal 

Wall & Amemiya (2003) 3 1000 3 N/A N/A 
200, 500, 

1000 

.3, .4, .5, .7,.8 

(within) 
.5 Normal 

Marsh et al. (2004) 

(study 1) 
3 250 9 .047 .46 

100, 200, 

500 
.7 .3 Normal 

Marsh et al. (2004) 

(study 2) 
3 250 9 .047 .46 

100, 200, 

500 

.5, .7 or .9 

(within) 
.3 Normal 

Marsh et al. (2004) 

(study 3) 
3 250 12 0 to 0.101 

.384 to 

.552 

100, 200, 

500 
.7 &.9 .2 & .4 Normal 

Marsh et al. (2004) 

(study 4) 
4 250 36  0 & .047 

.384 to 

.46 

100, 200, 

500 
N/A .3 & .7 

Normal,  

Uniform (skew=0.0, kurt=-1.2), 

χ
2
 (df=6, skew=1.15, kurt=2.0) 

Little et al. (2006) 3 1000 1 .047 N/A 1500 .7 .3 Normal 

Klein & Muthén (2007) 

(study 1) 
2 500 1 .33 N/A 400 .837 &.728 .235 Normal 
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Klein & Muthén (2007) 

(study 2) 
2 500 1 .33 N/A 400 .837 & .728 .235 

ksi1 

skew=-2.0 

kurt=6.0 

ksi2 

Skew=1.5 

kurt=5.0 

Klein & Muthén (2007) 

(study 4) 
4 250 12  0 & .047 

.384 to 

.46 
200 N/A .3 & .7 

Normal,  

Uniform (skew=0.0, kurt=-1.2), 

χ
2
 (df=6, skew=1.15, kurt=2.0) 

 

  



98 

 

Table 4 

 

Summary of Manipulated Features 

 1 2 3 

R3
2 .00 .05 .10 

N 100 250 500 

loadings 0.50 0.80  

21 .20 .40 .60 

distributions of 1 and 2 Normal skew =3, kurtosis = 22  
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Table 5 

 

Parameter Estimates for 1 for the Normally Distributed, R3
2
 = .00,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  % Bias SE SD 

Rel. 

Ratio 

.00 .50 100 Cons -0.001 0.736 0.545 0.350  -0.022 7.184 0.654 9.979  0.002 1.343 0.691 0.943 

   PC 0.002 40.165 2.034 18.746  -0.010 1954.366 2.508 778.105  0.005 11.287 1.202 8.386 

   UC -0.005 12.056 1.062 10.354  -0.027 10.771 1.502 6.170  -0.019 559.646 7.285 75.824 

   RC 0.003 0.783 0.474 0.653  -0.013 3.805 0.637 4.970  -0.002 18.657 0.815 21.879 

   LVS 0.040 0.123 0.396 -0.688  0.018 0.126 0.488 -0.743  0.026 0.141 0.509 -0.723 

   2SLS -0.079 0.415 0.456 -0.089  -0.067 0.429 0.465 -0.078  -0.073 0.420 0.446 -0.057 

   LMS 0.061 17.015 0.453 36.585  0.021 0.802 0.497 0.615  0.060 125.235 0.549 227.294 

   2SMM 0.350 535.825 3.359 158.497  0.288 1109.998 2.712 408.316  -2.324 408.677 50.258 7.132 

   MML 2.425 1.145 52.916 -0.978  0.049 0.599 0.573 0.045  0.057 1.076 0.691 0.558 

  250 Cons -0.027 0.200 0.220 -0.090  -0.031 0.218 0.219 -0.006  -0.018 0.237 0.229 0.039 

   PC -0.017 2.011 0.339 4.928  -0.014 2.768 0.373 6.430  -0.003 69.143 0.421 163.104 

   UC -0.012 4.617 0.416 10.102  -0.023 0.889 0.297 1.995  -0.015 5.396 0.624 7.646 

   RC -0.022 0.246 0.213 0.155  -0.035 0.234 0.213 0.101  -0.030 0.217 0.223 -0.025 

   LVS 0.020 0.061 0.214 -0.717  0.018 0.063 0.215 -0.706  0.017 0.065 0.226 -0.712 

   2SLS -0.015 0.270 0.283 -0.046  -0.021 0.278 0.280 -0.011  0.013 0.314 0.316 -0.008 

   LMS 0.023 0.221 0.218 0.013  0.021 0.252 0.215 0.171  0.023 0.270 0.232 0.162 

   2SMM 0.121 2.896 0.528 4.488  0.033 5.533 0.393 13.062  -0.059 0.595 0.264 1.251 

   MML 0.020 0.211 0.225 -0.063  0.028 0.246 0.241 0.023  0.017 0.251 0.244 0.027 

  500 Cons -0.021 0.128 0.126 0.013  -0.025 0.131 0.132 -0.013  -0.012 0.140 0.143 -0.018 

   PC -0.013 2.399 0.159 14.078  -0.018 0.338 0.177 0.908  -0.005 1.789 0.204 7.790 

   UC -0.011 1.606 0.161 8.951  -0.015 0.430 0.173 1.484  -0.001 1.665 0.211 6.881 

   RC -0.023 0.125 0.131 -0.043  -0.022 0.131 0.130 0.007  -0.013 0.146 0.141 0.033 

   LVS 0.018 0.041 0.128 -0.677  0.003 0.041 0.130 -0.683  0.014 0.042 0.144 -0.706 

   2SLS -0.003 0.182 0.187 -0.027  -0.003 0.189 0.214 -0.117  0.003 0.207 0.221 -0.063 

   LMS 0.021 0.137 0.130 0.051  0.006 0.139 0.131 0.056  0.016 0.149 0.145 0.028 

   2SMM 0.074 0.152 0.143 0.063  0.042 0.152 0.156 -0.022  -0.071 0.569 0.177 2.205 

   MML 0.019 0.134 0.135 -0.006  0.008 0.137 0.137 0.001  0.013 0.145 0.146 -0.010 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 6 

 

Parameter Estimates for 1 for the Normally Distributed, R3
2
 = .00,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .80 100 Cons -0.021 0.127 0.140 -0.093  -0.016 0.130 0.134 -0.030  -0.017 0.136 0.146 -0.068 

   PC -0.020 0.130 0.139 -0.065  -0.012 0.134 0.138 -0.029  -0.017 0.142 0.152 -0.060 

   UC -0.018 0.128 0.136 -0.058  -0.009 0.133 0.136 -0.021  -0.014 0.142 0.150 -0.058 

   RC -0.016 0.125 0.131 -0.047  -0.011 0.129 0.134 -0.032  -0.013 0.135 0.141 -0.041 

   LVS 0.008 0.092 0.131 -0.303  0.019 0.094 0.134 -0.301  0.010 0.097 0.141 -0.311 

   2SLS 0.002 0.151 0.161 -0.062  0.013 0.157 0.158 -0.007  -0.003 0.167 0.178 -0.061 

   LMS 0.010 0.130 0.134 -0.030  0.018 0.135 0.133 0.015  0.010 0.140 0.142 -0.018 

   2SMM 0.062 0.141 0.148 -0.048  0.017 0.136 0.141 -0.034  -0.076 0.124 0.128 -0.038 

   MML 0.042 0.130 0.184 -0.293  0.053 0.136 0.197 -0.312  0.044 0.144 0.207 -0.307 

  250 Cons -0.033 0.079 0.082 -0.037  -0.028 0.080 0.082 -0.026  -0.019 0.082 0.081 0.018 

   PC -0.032 0.080 0.081 -0.019  -0.028 0.081 0.083 -0.023  -0.018 0.083 0.081 0.027 

   UC -0.032 0.080 0.082 -0.027  -0.027 0.081 0.082 -0.017  -0.018 0.083 0.081 0.029 

   RC -0.032 0.079 0.081 -0.027  -0.027 0.080 0.082 -0.021  -0.018 0.082 0.081 0.016 

   LVS -0.003 0.058 0.082 -0.292  -0.004 0.058 0.081 -0.285  -0.001 0.059 0.082 -0.278 

   2SLS -0.012 0.094 0.102 -0.074  -0.001 0.095 0.097 -0.014  0.003 0.099 0.101 -0.017 

   LMS -0.005 0.080 0.081 -0.020  -0.002 0.080 0.082 -0.015  -0.002 0.083 0.081 0.031 

   2SMM 0.059 0.086 0.086 0.000  0.014 0.083 0.082 0.009  -0.074 0.077 0.079 -0.032 

   MML 0.026 0.089 0.117 -0.235  0.024 0.090 0.122 -0.267  0.012 0.089 0.115 -0.230 

  500 Cons -0.023 0.055 0.057 -0.034  -0.021 0.056 0.056 -0.005  -0.020 0.058 0.059 -0.013 

   PC -0.022 0.056 0.057 -0.025  -0.021 0.056 0.057 -0.001  -0.019 0.058 0.059 -0.014 

   UC -0.022 0.056 0.057 -0.019  -0.021 0.057 0.056 0.010  -0.021 0.059 0.058 0.006 

   RC -0.022 0.056 0.057 -0.021  -0.021 0.056 0.055 0.018  -0.019 0.058 0.058 0.003 

   LVS 0.007 0.040 0.057 -0.294  0.005 0.041 0.056 -0.269  0.000 0.042 0.058 -0.285 

   2SLS 0.006 0.066 0.069 -0.042  0.004 0.067 0.069 -0.027  0.002 0.070 0.075 -0.074 

   LMS 0.008 0.056 0.057 -0.022  0.005 0.056 0.055 0.018  0.000 0.059 0.058 0.010 

   2SMM 0.061 0.060 0.066 -0.085  0.016 0.058 0.058 0.007  -0.074 0.054 0.054 0.003 

   MML 0.041 0.063 0.079 -0.212  0.036 0.063 0.086 -0.263  0.021 0.064 0.080 -0.198 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 

2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum 

likelihood. 
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Table 7 

 

Parameter Estimates for 1 for the Normally Distributed, R3
2
 = .05,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .50 100 Cons -0.033 15.511 1.012 14.328  -0.019 3.711 0.832 3.460  0.007 4.997 0.967 4.168 

   PC -0.015 14.851 1.266 10.735  0.005 41.903 1.259 32.282  0.019 24.101 4.664 4.168 

   UC -0.025 7.675 0.821 8.346  -0.014 5.767 0.968 4.959  0.021 24.088 3.526 5.832 

   RC -0.041 1.815 0.569 2.191  -0.019 0.911 0.469 0.942  0.004 8.981 0.883 9.167 

   LVS 0.014 0.126 0.542 -0.767  -0.137 4.204 3.713 0.132  0.061 0.134 0.509 -0.737 

   2SLS -0.054 0.421 0.415 0.014  -0.035 0.422 0.492 -0.142  -0.019 0.428 0.539 -0.206 

   LMS 0.037 2.155 0.452 3.767  0.033 1.845 0.523 2.526  0.058 1.245 0.538 1.316 

   2SMM 0.568 9378.216 10.209 917.656  0.338 1652.907 2.909 567.176  0.153 52.071 1.514 33.384 

   MML 0.086 0.563 0.685 -0.178  3.709 0.597 81.661 -0.993  0.076 0.700 0.539 0.299 

  250 Cons -0.031 2.396 0.803 1.985  -0.018 0.212 0.206 0.029  -0.022 0.235 0.216 0.090 

   PC -0.006 2.115 0.357 4.931  0.006 3.620 0.511 6.085  0.003 6.218 0.548 10.354 

   UC -0.019 6.217 0.426 13.600  -0.005 1.660 0.332 3.996  0.013 14.496 0.774 17.740 

   RC -0.037 0.375 0.210 0.783  -0.017 0.272 0.203 0.340  -0.019 0.282 0.209 0.349 

   LVS 0.013 0.062 0.207 -0.702  0.026 0.064 0.202 -0.684  -0.005 0.061 0.206 -0.706 

   2SLS -0.021 0.265 0.294 -0.099  0.010 0.282 0.301 -0.064  -0.013 0.291 0.297 -0.022 

   LMS 0.021 0.335 0.217 0.545  0.034 0.231 0.206 0.120  0.001 0.241 0.206 0.171 

   2SMM 0.005 317.188 1.558 202.638  0.012 1.304 0.351 2.719  -0.036 0.609 0.294 1.073 

   MML 0.020 0.217 0.235 -0.077  0.034 0.216 0.220 -0.017  -0.003 0.221 0.216 0.025 

  500 Cons -0.030 0.126 0.139 -0.088  -0.020 0.132 0.143 -0.077  -0.009 0.141 0.142 -0.006 

   PC -0.017 0.232 0.173 0.341  -0.020 0.249 0.186 0.338  0.008 1.293 0.224 4.761 

   UC -0.016 9.441 0.319 28.606  -0.020 1.487 0.231 5.443  -0.002 0.442 0.182 1.434 

   RC -0.030 0.139 0.136 0.025  -0.018 0.158 0.140 0.129  -0.006 0.145 0.146 -0.005 

   LVS 0.005 0.041 0.137 -0.699  0.011 0.041 0.140 -0.704  0.016 0.042 0.144 -0.706 

   2SLS -0.014 0.192 0.206 -0.070  0.009 0.193 0.219 -0.118  0.001 0.199 0.220 -0.097 

   LMS 0.008 0.132 0.135 -0.016  0.014 0.138 0.139 -0.003  0.021 0.150 0.145 0.036 

   2SMM 0.053 0.161 0.153 0.054  0.016 0.161 0.160 0.010  -0.074 0.151 0.140 0.074 

   MML 0.006 0.130 0.139 -0.060  0.008 0.133 0.134 -0.007  0.015 0.145 0.141 0.025 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood.  
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Table 8 

 

Parameter Estimates for 1 for the Normally Distributed, R3
2
 = .05,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .80 100 Cons -0.024 0.127 0.135 -0.060  -0.044 0.127 0.133 -0.047  -0.011 0.135 0.146 -0.076 

   PC -0.021 0.131 0.137 -0.043  -0.041 0.131 0.136 -0.035  -0.008 0.140 0.151 -0.072 

   UC -0.020 0.130 0.136 -0.046  -0.038 0.129 0.135 -0.044  -0.005 0.139 0.152 -0.082 

   RC -0.021 0.126 0.141 -0.104  -0.043 0.126 0.135 -0.064  -0.010 0.134 0.146 -0.084 

   LVS 0.013 0.091 0.135 -0.326  -0.021 0.092 0.132 -0.299  0.012 0.096 0.144 -0.336 

   2SLS 0.009 0.153 0.168 -0.091  -0.019 0.154 0.165 -0.065  0.003 0.164 0.177 -0.072 

   LMS 0.016 0.133 0.136 -0.020  -0.016 0.133 0.132 0.008  0.016 0.139 0.143 -0.023 

   2SMM 0.053 0.146 0.137 0.070  0.005 0.140 0.139 0.004  -0.088 0.131 0.132 -0.005 

   MML 0.041 0.132 0.192 -0.312  -0.002 0.130 0.182 -0.285  0.045 0.137 0.202 -0.321 

  250 Cons -0.029 0.077 0.084 -0.075  -0.022 0.078 0.088 -0.117  -0.013 0.081 0.084 -0.029 

   PC -0.030 0.079 0.084 -0.071  -0.021 0.079 0.088 -0.103  -0.014 0.082 0.084 -0.021 

   UC -0.028 0.079 0.084 -0.062  -0.020 0.079 0.088 -0.100  -0.012 0.082 0.083 -0.010 

   RC -0.028 0.078 0.084 -0.075  -0.022 0.078 0.091 -0.137  -0.012 0.081 0.085 -0.037 

   LVS 0.000 0.056 0.081 -0.306  0.001 0.056 0.089 -0.366  0.001 0.058 0.083 -0.304 

   2SLS -0.002 0.093 0.104 -0.103  0.005 0.094 0.106 -0.109  0.000 0.098 0.102 -0.035 

   LMS 0.003 0.080 0.082 -0.026  0.003 0.080 0.088 -0.090  0.003 0.083 0.082 0.005 

   2SMM 0.035 0.089 0.087 0.015  0.000 0.086 0.089 -0.033  -0.072 0.080 0.077 0.045 

   MML 0.031 0.087 0.123 -0.290  0.025 0.087 0.119 -0.275  0.028 0.091 0.114 -0.203 

  500 Cons -0.031 0.054 0.057 -0.036  -0.021 0.055 0.056 -0.016  -0.016 0.057 0.060 -0.055 

   PC -0.032 0.055 0.058 -0.059  -0.022 0.056 0.056 -0.010  -0.015 0.057 0.060 -0.051 

   UC -0.031 0.055 0.057 -0.026  -0.022 0.056 0.056 -0.006  -0.014 0.057 0.060 -0.049 

   RC -0.030 0.055 0.058 -0.053  -0.020 0.056 0.057 -0.023  -0.014 0.057 0.060 -0.051 

   LVS -0.004 0.040 0.055 -0.283  0.001 0.040 0.055 -0.274  -0.002 0.040 0.059 -0.318 

   2SLS -0.004 0.065 0.072 -0.101  0.003 0.066 0.068 -0.025  0.000 0.069 0.074 -0.073 

   LMS -0.001 0.056 0.056 0.000  0.004 0.057 0.055 0.027  0.000 0.058 0.059 -0.029 

   2SMM 0.037 0.062 0.065 -0.036  -0.002 0.061 0.060 0.017  -0.075 0.056 0.060 -0.056 

   MML 0.028 0.061 0.080 -0.232  0.028 0.063 0.078 -0.191  0.018 0.063 0.084 -0.246 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 

2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum 

likelihood. 
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Table 9 

 

Parameter Estimates for 1 for the Normally Distributed, R3
2
 = .10,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .50 100 Cons -0.014 13.417 0.843 14.907  0.003 1.061 0.593 0.790  0.015 7.656 1.513 4.059 

   PC -0.004 8.587 1.126 6.625  0.005 14.197 1.389 9.222  0.023 19.091 1.645 10.604 

   UC 0.001 29.050 1.405 19.679  0.013 12.081 1.271 8.503  0.011 10.218 0.981 9.414 

   RC -0.012 1.499 0.555 1.699  0.004 19.211 1.222 14.719  0.008 1.095 0.514 1.129 

   LVS 0.091 0.315 0.890 -0.646  -0.151 0.995 4.769 -0.791  0.077 0.127 0.644 -0.803 

   2SLS -0.103 0.432 0.469 -0.078  -0.064 0.435 0.518 -0.160  -0.031 0.439 0.473 -0.073 

   LMS 0.056 1.508 0.448 2.364  0.106 5.343 0.561 8.516  0.046 2.565 0.496 4.167 

   2SMM 0.032 133.568 1.721 76.604  0.144 188.634 3.099 59.861  -0.216 1408.184 5.986 234.260 

   MML 0.035 0.683 0.603 0.134  -0.811 0.685 21.092 -0.968  0.076 0.813 0.662 0.228 

  250 Cons -0.024 0.199 0.208 -0.042  -0.029 0.208 0.213 -0.023  -0.016 0.502 0.268 0.875 

   PC -0.016 5.590 0.460 11.151  -0.020 16.404 0.619 25.507  -0.003 58.294 1.019 56.196 

   UC -0.004 22.029 0.707 30.156  -0.023 7.675 0.697 10.008  0.007 2.797 0.481 4.809 

   RC -0.021 0.337 0.204 0.654  -0.029 0.292 0.206 0.418  -0.014 0.485 0.248 0.958 

   LVS 0.012 0.060 0.203 -0.704  0.002 0.061 0.203 -0.697  0.006 0.062 0.221 -0.719 

   2SLS -0.037 0.268 0.305 -0.119  -0.012 0.273 0.310 -0.121  -0.007 0.309 0.345 -0.104 

   LMS 0.018 0.218 0.197 0.102  0.010 0.222 0.201 0.109  0.016 0.266 0.221 0.204 

   2SMM 0.076 9.042 0.484 17.675  0.020 33.719 0.707 46.681  -0.065 3.389 0.439 6.727 

   MML 0.017 0.211 0.212 -0.007  0.009 0.207 0.206 0.008  0.014 0.248 0.247 0.001 

  500 Cons -0.025 0.126 0.132 -0.042  -0.026 0.131 0.141 -0.074  -0.011 0.139 0.141 -0.013 

   PC -0.011 0.472 0.199 1.374  -0.018 3.855 0.374 9.321  -0.001 5.472 0.374 13.646 

   UC -0.016 0.343 0.179 0.912  -0.020 0.317 0.195 0.625  0.000 2.450 0.266 8.217 

   RC -0.025 0.145 0.131 0.106  -0.024 0.152 0.142 0.071  -0.010 0.160 0.138 0.159 

   LVS 0.009 0.041 0.129 -0.682  0.009 0.042 0.140 -0.703  0.000 0.041 0.137 -0.701 

   2SLS 0.002 0.180 0.203 -0.113  -0.013 0.192 0.248 -0.228  -0.016 0.203 0.235 -0.139 

   LMS 0.017 0.132 0.130 0.013  0.014 0.136 0.137 -0.009  0.007 0.145 0.138 0.049 

   2SMM 0.042 0.172 0.168 0.021  -0.004 0.161 0.160 0.006  -0.074 0.172 0.156 0.104 

   MML 0.015 0.129 0.132 -0.022  0.013 0.134 0.137 -0.021  -0.001 0.140 0.138 0.013 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 10 

 

Parameter Estimates for 1 for the Normally Distributed, R3
2
 = .10,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .80 100 Cons -0.030 0.124 0.135 -0.088  -0.029 0.124 0.143 -0.135  -0.013 0.129 0.140 -0.080 

   PC -0.028 0.129 0.139 -0.069  -0.025 0.130 0.151 -0.141  -0.009 0.134 0.146 -0.078 

   UC -0.024 0.128 0.137 -0.064  -0.025 0.129 0.148 -0.132  -0.008 0.133 0.144 -0.078 

   RC -0.028 0.125 0.138 -0.100  -0.025 0.124 0.146 -0.146  -0.008 0.128 0.143 -0.104 

   LVS -0.001 0.090 0.128 -0.298  -0.005 0.089 0.135 -0.339  0.000 0.090 0.138 -0.347 

   2SLS 0.004 0.151 0.161 -0.062  -0.001 0.152 0.174 -0.122  -0.002 0.159 0.177 -0.098 

   LMS 0.009 0.131 0.132 -0.003  0.002 0.130 0.140 -0.071  0.005 0.133 0.138 -0.036 

   2SMM 0.017 0.147 0.156 -0.059  0.005 0.147 0.165 -0.109  -0.063 0.136 0.136 -0.002 

   MML 0.034 0.129 0.190 -0.318  0.032 0.131 0.191 -0.315  0.017 0.136 0.190 -0.285 

  250 Cons -0.029 0.076 0.080 -0.052  -0.028 0.077 0.077 -0.003  -0.021 0.080 0.083 -0.037 

   PC -0.029 0.078 0.081 -0.037  -0.027 0.078 0.079 -0.004  -0.020 0.082 0.086 -0.046 

   UC -0.028 0.078 0.080 -0.032  -0.026 0.078 0.078 0.008  -0.018 0.082 0.085 -0.038 

   RC -0.028 0.077 0.088 -0.126  -0.026 0.078 0.079 -0.022  -0.020 0.081 0.085 -0.046 

   LVS -0.002 0.055 0.080 -0.308  -0.008 0.055 0.075 -0.256  -0.009 0.057 0.081 -0.305 

   2SLS 0.002 0.092 0.102 -0.098  -0.004 0.094 0.108 -0.135  -0.011 0.098 0.106 -0.074 

   LMS 0.004 0.079 0.080 -0.013  -0.003 0.080 0.075 0.068  -0.006 0.082 0.082 -0.001 

   2SMM 0.009 0.092 0.091 0.018  -0.010 0.089 0.094 -0.051  -0.077 0.083 0.080 0.038 

   MML 0.024 0.086 0.111 -0.223  0.009 0.085 0.105 -0.191  0.011 0.089 0.115 -0.225 

  500 Cons -0.035 0.053 0.055 -0.040  -0.025 0.054 0.060 -0.095  -0.014 0.056 0.055 0.009 

   PC -0.034 0.054 0.056 -0.044  -0.024 0.055 0.060 -0.093  -0.014 0.056 0.055 0.016 

   UC -0.032 0.054 0.055 -0.018  -0.024 0.055 0.060 -0.085  -0.013 0.057 0.056 0.015 

   RC -0.035 0.054 0.057 -0.057  -0.024 0.055 0.062 -0.123  -0.015 0.056 0.057 -0.014 

   LVS -0.011 0.039 0.054 -0.280  -0.005 0.039 0.059 -0.337  -0.004 0.039 0.054 -0.278 

   2SLS -0.008 0.064 0.071 -0.099  -0.002 0.065 0.076 -0.147  0.002 0.068 0.071 -0.048 

   LMS -0.004 0.055 0.055 0.006  0.000 0.056 0.059 -0.052  0.000 0.057 0.055 0.040 

   2SMM 0.019 0.065 0.067 -0.029  -0.015 0.063 0.063 -0.004  -0.073 0.058 0.058 0.003 

   MML 0.014 0.060 0.076 -0.212  0.020 0.061 0.081 -0.245  0.021 0.062 0.076 -0.184 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 

2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum 

likelihood. 
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Table 11 

 

Parameter Estimates for 2 for the Normally Distributed, R3
2
 = .00,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .50 100 Cons 0.029 0.504 0.435 0.157  0.042 7.386 0.685 9.783  0.023 5.244 1.202 3.362 

   PC 0.144 9.793 0.754 11.980  0.098 2927.346 3.546 824.587  0.156 16.768 1.530 9.958 

   UC 0.196 21.661 1.471 13.723  0.125 5.252 0.670 6.834  0.135 416.898 25.857 15.124 

   RC 0.031 0.606 0.425 0.425  0.021 3.303 0.503 5.565  0.036 31.176 1.163 25.796 

   LVS 0.045 0.104 0.389 -0.734  0.029 0.120 0.493 -0.756  0.033 0.159 0.599 -0.735 

   2SLS -0.057 0.400 0.433 -0.077  -0.050 0.426 0.446 -0.046  -0.083 0.489 0.521 -0.062 

   LMS 0.065 1.833 0.446 3.113  0.052 0.985 0.487 1.023  0.032 97.694 0.670 144.837 

   2SMM -0.584 703.363 4.503 155.209  -0.115 851.684 3.893 217.789  -0.097 423.631 3.674 114.299 

   MML 12.764 0.390 284.663 -0.999  0.046 0.540 0.511 0.057  0.057 2.964 0.841 2.526 

  250 Cons -0.003 0.177 0.181 -0.020  -0.017 0.213 0.210 0.013  -0.057 0.313 0.288 0.084 

   PC 0.042 4.908 0.375 12.089  0.011 1.463 0.315 3.647  -0.001 23.799 0.573 40.500 

   UC 0.025 4.190 0.345 11.149  0.019 1.069 0.320 2.335  0.016 4.484 0.694 5.463 

   RC -0.008 0.207 0.181 0.144  -0.007 0.239 0.197 0.214  -0.045 0.273 0.266 0.027 

   LVS 0.013 0.056 0.178 -0.686  0.023 0.063 0.199 -0.685  0.022 0.073 0.269 -0.727 

   2SLS 0.001 0.246 0.276 -0.111  -0.019 0.279 0.279 0.001  -0.051 0.357 0.382 -0.063 

   LMS 0.016 0.196 0.181 0.084  0.028 0.235 0.205 0.146  0.024 0.317 0.276 0.147 

   2SMM -0.291 2.490 0.391 5.376  -0.206 8.858 0.672 12.177  -0.169 0.416 0.262 0.584 

   MML 0.019 0.185 0.180 0.029  0.027 0.226 0.221 0.022  0.034 0.303 0.288 0.051 

  500 Cons -0.012 0.115 0.117 -0.020  -0.019 0.130 0.127 0.028  -0.062 0.167 0.173 -0.033 

   PC -0.004 2.138 0.145 13.742  -0.008 0.356 0.167 1.132  -0.042 1.839 0.274 5.704 

   UC -0.008 0.520 0.141 2.694  -0.006 0.429 0.165 1.592  -0.048 0.606 0.238 1.545 

   RC -0.006 0.113 0.118 -0.047  -0.016 0.130 0.126 0.026  -0.060 0.168 0.174 -0.034 

   LVS -0.004 0.038 0.118 -0.674  0.008 0.041 0.126 -0.674  0.009 0.048 0.173 -0.719 

   2SLS -0.007 0.167 0.180 -0.075  -0.009 0.190 0.207 -0.080  -0.011 0.247 0.289 -0.146 

   LMS -0.001 0.122 0.118 0.035  0.010 0.137 0.128 0.070  0.011 0.178 0.173 0.031 

   2SMM -0.251 0.171 0.147 0.169  -0.240 0.149 0.157 -0.047  -0.180 0.450 0.161 1.804 

   MML 0.001 0.119 0.118 0.007  0.011 0.134 0.129 0.040  0.018 0.172 0.172 -0.005 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 12 

 

Parameter Estimates for 2 for the Normally Distributed, R3
2
 = .00,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .80 100 Cons -0.018 0.120 0.125 -0.036  -0.036 0.129 0.131 -0.020  -0.065 0.156 0.165 -0.054 

   PC -0.015 0.123 0.128 -0.034  -0.034 0.133 0.136 -0.021  -0.060 0.163 0.169 -0.038 

   UC -0.013 0.122 0.126 -0.031  -0.034 0.131 0.132 -0.006  -0.059 0.162 0.169 -0.044 

   RC -0.014 0.119 0.123 -0.031  -0.035 0.127 0.128 -0.003  -0.063 0.154 0.157 -0.016 

   LVS -0.007 0.088 0.124 -0.291  -0.012 0.093 0.127 -0.263  0.002 0.110 0.159 -0.309 

   2SLS -0.011 0.145 0.153 -0.056  -0.018 0.155 0.168 -0.079  -0.004 0.192 0.201 -0.044 

   LMS -0.005 0.123 0.123 0.002  -0.010 0.132 0.128 0.026  0.006 0.162 0.160 0.008 

   2SMM -0.263 0.143 0.147 -0.029  -0.235 0.139 0.143 -0.028  -0.172 0.129 0.140 -0.084 

   MML 0.024 0.117 0.168 -0.307  0.022 0.120 0.182 -0.339  0.044 0.148 0.236 -0.374 

  250 Cons -0.007 0.074 0.074 0.004  -0.023 0.080 0.083 -0.027  -0.061 0.095 0.100 -0.054 

   PC -0.007 0.075 0.073 0.025  -0.022 0.081 0.083 -0.025  -0.060 0.096 0.101 -0.052 

   UC -0.006 0.075 0.073 0.022  -0.020 0.081 0.082 -0.013  -0.059 0.096 0.099 -0.033 

   RC -0.006 0.074 0.073 0.026  -0.021 0.080 0.081 -0.011  -0.059 0.095 0.098 -0.025 

   LVS -0.001 0.054 0.072 -0.250  0.004 0.058 0.080 -0.277  -0.001 0.067 0.098 -0.321 

   2SLS 0.003 0.088 0.090 -0.028  0.000 0.096 0.101 -0.048  -0.003 0.115 0.114 0.009 

   LMS -0.001 0.075 0.072 0.039  0.006 0.081 0.082 -0.006  0.002 0.096 0.098 -0.020 

   2SMM -0.248 0.088 0.092 -0.045  -0.234 0.084 0.085 -0.014  -0.182 0.078 0.081 -0.031 

   MML 0.032 0.078 0.104 -0.253  0.046 0.084 0.122 -0.307  0.060 0.098 0.137 -0.288 

  500 Cons -0.008 0.052 0.055 -0.054  -0.024 0.056 0.056 -0.004  -0.061 0.066 0.068 -0.026 

   PC -0.008 0.052 0.054 -0.043  -0.024 0.056 0.056 -0.001  -0.060 0.066 0.068 -0.024 

   UC -0.007 0.052 0.054 -0.030  -0.023 0.056 0.056 0.010  -0.058 0.067 0.067 -0.012 

   RC -0.008 0.052 0.054 -0.030  -0.024 0.056 0.055 0.012  -0.060 0.066 0.068 -0.020 

   LVS -0.003 0.038 0.054 -0.294  -0.001 0.040 0.055 -0.271  -0.001 0.047 0.068 -0.311 

   2SLS -0.004 0.061 0.065 -0.050  -0.002 0.066 0.066 -0.001  -0.005 0.080 0.085 -0.058 

   LMS -0.002 0.052 0.054 -0.029  -0.001 0.056 0.055 0.016  -0.002 0.066 0.068 -0.019 

   2SMM -0.258 0.062 0.064 -0.034  -0.232 0.060 0.058 0.024  -0.181 0.055 0.056 -0.010 

   MML 0.029 0.055 0.074 -0.249  0.035 0.059 0.077 -0.232  0.054 0.070 0.092 -0.236 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 

2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum 

likelihood. 
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Table 13 

 

Parameter Estimates for 2 for the Normally Distributed, R3
2
 = .05,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .50 100 Cons 0.065 8.362 0.606 12.790  0.031 4.073 0.801 4.082  0.066 4.563 1.152 2.961 

   PC 0.130 18.828 1.221 14.419  0.163 27.880 1.114 24.018  0.233 16.433 10.457 0.571 

   UC 0.154 9.046 0.840 9.775  0.142 6.075 1.060 4.730  0.210 32.328 2.466 12.111 

   RC 0.056 1.164 0.437 1.664  0.020 1.369 0.575 1.383  0.074 14.444 1.311 10.016 

   LVS 0.070 0.111 0.388 -0.715  -0.028 0.344 1.802 -0.809  0.165 0.395 2.521 -0.843 

   2SLS -0.023 0.390 0.411 -0.051  -0.079 0.405 0.430 -0.059  -0.096 0.473 0.509 -0.070 

   LMS 0.086 2.235 0.433 4.166  0.082 2.626 0.475 4.528  0.131 2.144 1.156 0.854 

   2SMM 0.051 6018.238 6.598 911.101  3.533 25036.216 98.458 253.283  -0.404 62.522 1.834 33.088 

   MML 0.036 0.393 0.471 -0.166  2.098 0.579 45.609 -0.987  -0.223 1.227 6.723 -0.818 

  250 Cons -0.006 0.190 0.190 0.000  -0.032 0.205 0.211 -0.030  -0.039 0.305 0.305 0.000 

   PC 0.024 1.903 0.339 4.612  0.037 3.418 0.474 6.218  0.037 8.216 0.640 11.839 

   UC 0.028 4.058 0.332 11.204  -0.005 1.478 0.299 3.947  0.041 20.635 0.768 25.866 

   RC -0.009 0.284 0.188 0.509  -0.030 0.242 0.205 0.183  -0.042 0.356 0.295 0.209 

   LVS 0.010 0.056 0.185 -0.696  0.007 0.064 0.211 -0.697  0.037 0.070 0.283 -0.752 

   2SLS -0.018 0.240 0.268 -0.105  -0.031 0.280 0.302 -0.073  -0.043 0.331 0.348 -0.049 

   LMS 0.012 0.220 0.190 0.163  0.008 0.233 0.216 0.078  0.034 0.326 0.297 0.097 

   2SMM -0.168 285.359 1.354 209.676  -0.205 1.245 0.292 3.263  -0.186 0.454 0.256 0.770 

   MML 0.015 0.185 0.191 -0.032  0.010 0.210 0.214 -0.021  0.042 0.286 0.288 -0.005 

  500 Cons -0.007 0.116 0.117 -0.016  -0.026 0.130 0.138 -0.057  -0.064 0.167 0.155 0.077 

   PC 0.002 0.164 0.138 0.190  -0.007 0.310 0.197 0.572  -0.040 1.847 0.307 5.009 

   UC 0.007 1.918 0.211 8.087  0.003 2.631 0.309 7.506  -0.037 1.235 0.271 3.556 

   RC -0.007 0.123 0.114 0.079  -0.026 0.155 0.135 0.147  -0.065 0.173 0.163 0.060 

   LVS -0.002 0.039 0.115 -0.666  0.001 0.041 0.135 -0.696  0.003 0.048 0.158 -0.695 

   2SLS -0.008 0.171 0.179 -0.045  -0.016 0.193 0.229 -0.157  -0.006 0.237 0.258 -0.080 

   LMS 0.004 0.121 0.114 0.061  0.006 0.137 0.135 0.012  0.006 0.178 0.157 0.133 

   2SMM -0.254 0.149 0.139 0.068  -0.227 0.152 0.149 0.020  -0.180 0.148 0.137 0.076 

   MML 0.009 0.119 0.120 -0.011  0.013 0.132 0.134 -0.013  0.015 0.171 0.161 0.065 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 14 

 

Parameter Estimates for 2 for the Normally Distributed, R3
2
 = .05,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .80 100 Cons -0.009 0.117 0.130 -0.098  -0.019 0.127 0.140 -0.088  -0.079 0.150 0.163 -0.081 

   PC -0.006 0.121 0.133 -0.087  -0.017 0.132 0.142 -0.071  -0.073 0.156 0.168 -0.069 

   UC -0.002 0.120 0.131 -0.086  -0.015 0.131 0.142 -0.075  -0.070 0.154 0.164 -0.061 

   RC -0.006 0.116 0.129 -0.098  -0.015 0.128 0.141 -0.094  -0.075 0.149 0.161 -0.076 

   LVS 0.000 0.085 0.125 -0.321  0.009 0.092 0.135 -0.317  -0.021 0.106 0.159 -0.332 

   2SLS -0.001 0.141 0.157 -0.101  0.002 0.154 0.161 -0.046  -0.019 0.184 0.203 -0.093 

   LMS 0.003 0.121 0.126 -0.041  0.011 0.132 0.138 -0.048  -0.018 0.156 0.160 -0.023 

   2SMM -0.251 0.148 0.151 -0.022  -0.223 0.139 0.144 -0.035  -0.170 0.133 0.145 -0.082 

   MML 0.030 0.115 0.169 -0.318  0.035 0.123 0.190 -0.351  0.011 0.139 0.216 -0.358 

  250 Cons -0.008 0.073 0.074 -0.013  -0.025 0.078 0.083 -0.061  -0.058 0.092 0.094 -0.023 

   PC -0.008 0.074 0.075 -0.014  -0.024 0.079 0.083 -0.043  -0.056 0.093 0.093 -0.005 

   UC -0.007 0.074 0.074 -0.004  -0.023 0.080 0.083 -0.037  -0.055 0.093 0.094 -0.009 

   RC -0.008 0.073 0.075 -0.020  -0.024 0.079 0.085 -0.076  -0.056 0.092 0.097 -0.043 

   LVS -0.002 0.053 0.072 -0.261  0.000 0.057 0.081 -0.306  0.000 0.064 0.094 -0.317 

   2SLS 0.003 0.087 0.090 -0.028  -0.002 0.095 0.098 -0.033  0.000 0.112 0.114 -0.017 

   LMS 0.002 0.075 0.073 0.021  0.003 0.080 0.082 -0.019  0.000 0.094 0.094 0.003 

   2SMM -0.255 0.089 0.088 0.012  -0.231 0.086 0.084 0.018  -0.188 0.080 0.081 -0.020 

   MML 0.030 0.077 0.101 -0.239  0.031 0.082 0.112 -0.267  0.043 0.097 0.127 -0.235 

  500 Cons -0.005 0.051 0.054 -0.048  -0.026 0.055 0.060 -0.087  -0.058 0.064 0.068 -0.055 

   PC -0.004 0.052 0.054 -0.041  -0.026 0.056 0.060 -0.075  -0.057 0.065 0.068 -0.048 

   UC -0.004 0.052 0.053 -0.021  -0.025 0.056 0.060 -0.066  -0.057 0.065 0.069 -0.049 

   RC -0.005 0.051 0.055 -0.057  -0.024 0.056 0.063 -0.112  -0.057 0.065 0.068 -0.042 

   LVS 0.001 0.037 0.052 -0.289  -0.003 0.040 0.060 -0.333  -0.004 0.045 0.067 -0.324 

   2SLS 0.003 0.061 0.064 -0.046  -0.003 0.066 0.074 -0.102  -0.005 0.079 0.087 -0.102 

   LMS 0.004 0.052 0.053 -0.003  -0.001 0.056 0.059 -0.050  -0.002 0.066 0.067 -0.026 

   2SMM -0.251 0.062 0.066 -0.051  -0.230 0.060 0.063 -0.043  -0.186 0.056 0.061 -0.086 

   MML 0.030 0.055 0.073 -0.254  0.035 0.059 0.083 -0.281  0.046 0.069 0.097 -0.291 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 

2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum 

likelihood. 
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Table 15 

 

Parameter Estimates for 2 for the Normally Distributed, R3
2
 = .10,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .50 100 Cons 0.037 24.253 1.378 16.600  0.009 0.916 0.542 0.691  0.068 9.097 1.160 6.841 

   PC 0.192 13.163 1.589 7.283  0.146 25.932 2.070 11.525  0.218 99.153 3.666 26.047 

   UC 0.118 15.686 1.012 14.492  0.156 17.224 1.201 13.338  0.254 22.987 1.595 13.413 

   RC 0.009 1.454 0.519 1.802  0.033 20.148 1.320 14.263  0.061 1.527 0.692 1.205 

   LVS 0.022 0.115 0.431 -0.734  0.048 0.139 0.541 -0.743  0.022 0.145 0.822 -0.823 

   2SLS -0.014 0.397 0.420 -0.054  -0.047 0.427 0.465 -0.082  -0.083 0.473 0.515 -0.081 

   LMS 0.059 0.816 0.461 0.772  0.062 0.917 0.565 0.624  0.089 1.634 0.589 1.776 

   2SMM -0.074 362.960 2.934 122.728  -0.272 274.254 3.238 83.686  -0.052 1766.251 5.032 349.983 

   MML 0.054 0.549 0.520 0.055  4.026 0.797 88.585 -0.991  0.069 1.170 0.849 0.379 

  250 Cons -0.009 0.180 0.188 -0.043  -0.010 0.202 0.200 0.015  -0.031 0.992 0.416 1.386 

   PC 0.059 5.654 0.440 11.855  0.073 15.466 0.716 20.603  0.035 47.663 0.976 47.859 

   UC 0.071 10.777 0.428 24.205  0.068 7.347 0.663 10.082  0.034 3.306 0.622 4.312 

   RC -0.008 0.264 0.187 0.407  -0.012 0.331 0.196 0.687  -0.032 0.948 0.396 1.393 

   LVS 0.010 0.057 0.187 -0.698  0.027 0.060 0.196 -0.695  0.038 0.071 0.304 -0.766 

   2SLS 0.014 0.256 0.298 -0.142  -0.017 0.270 0.304 -0.112  -0.030 0.352 0.363 -0.031 

   LMS 0.017 0.197 0.186 0.059  0.029 0.217 0.191 0.135  0.031 0.334 0.281 0.190 

   2SMM -0.275 4.014 0.356 10.271  -0.220 18.010 0.537 32.568  -0.174 1.847 0.333 4.550 

   MML 0.021 0.186 0.195 -0.047  0.033 0.202 0.196 0.031  0.047 0.321 0.319 0.008 

  500 Cons -0.005 0.116 0.117 -0.001  -0.020 0.130 0.137 -0.050  -0.057 0.165 0.173 -0.044 

   PC -0.001 0.367 0.174 1.116  0.015 4.482 0.436 9.288  -0.016 8.294 0.523 14.859 

   UC -0.004 0.263 0.152 0.734  -0.009 0.275 0.174 0.577  -0.026 2.108 0.421 4.007 

   RC -0.005 0.132 0.116 0.140  -0.019 0.154 0.138 0.122  -0.058 0.198 0.170 0.161 

   LVS 0.005 0.039 0.115 -0.663  0.006 0.041 0.135 -0.694  0.004 0.047 0.170 -0.724 

   2SLS 0.003 0.164 0.202 -0.187  0.003 0.195 0.244 -0.200  0.002 0.251 0.271 -0.072 

   LMS 0.010 0.121 0.113 0.071  0.012 0.136 0.133 0.025  0.008 0.174 0.172 0.015 

   2SMM -0.270 0.152 0.149 0.019  -0.231 0.152 0.148 0.025  -0.181 0.152 0.137 0.114 

   MML 0.011 0.117 0.114 0.026  0.015 0.132 0.136 -0.029  0.015 0.167 0.171 -0.027 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 16 

 

Parameter Estimates for 2 for the Normally Distributed, R3
2
 = .10,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .80 100 Cons -0.013 0.116 0.129 -0.096  -0.018 0.124 0.129 -0.039  -0.050 0.150 0.162 -0.073 

   PC -0.010 0.121 0.132 -0.081  -0.017 0.129 0.133 -0.030  -0.048 0.157 0.163 -0.038 

   UC -0.009 0.120 0.131 -0.085  -0.015 0.129 0.134 -0.038  -0.045 0.155 0.162 -0.043 

   RC -0.014 0.117 0.135 -0.137  -0.017 0.124 0.134 -0.073  -0.048 0.148 0.166 -0.108 

   LVS -0.005 0.085 0.126 -0.327  -0.003 0.089 0.125 -0.292  0.010 0.102 0.157 -0.349 

   2SLS -0.004 0.141 0.150 -0.061  0.001 0.151 0.161 -0.064  0.007 0.185 0.190 -0.026 

   LMS 0.004 0.122 0.127 -0.038  0.005 0.130 0.129 0.010  0.016 0.155 0.157 -0.009 

   2SMM -0.245 0.145 0.152 -0.045  -0.232 0.142 0.147 -0.035  -0.190 0.131 0.129 0.009 

   MML 0.026 0.114 0.173 -0.341  0.023 0.122 0.188 -0.353  0.061 0.146 0.209 -0.301 

  250 Cons -0.014 0.072 0.073 -0.025  -0.020 0.078 0.082 -0.052  -0.052 0.091 0.091 0.004 

   PC -0.013 0.073 0.074 -0.018  -0.019 0.079 0.084 -0.055  -0.050 0.093 0.094 -0.009 

   UC -0.012 0.073 0.074 -0.008  -0.018 0.079 0.083 -0.042  -0.051 0.093 0.092 0.010 

   RC -0.013 0.072 0.076 -0.053  -0.020 0.078 0.083 -0.062  -0.050 0.092 0.090 0.016 

   LVS -0.009 0.052 0.071 -0.267  0.003 0.056 0.079 -0.295  0.001 0.063 0.088 -0.279 

   2SLS -0.003 0.086 0.096 -0.101  0.003 0.094 0.106 -0.114  0.007 0.111 0.112 -0.005 

   LMS -0.003 0.075 0.072 0.040  0.008 0.081 0.080 0.011  0.007 0.094 0.090 0.044 

   2SMM -0.248 0.090 0.091 -0.011  -0.232 0.086 0.092 -0.072  -0.189 0.081 0.081 -0.003 

   MML 0.028 0.076 0.097 -0.217  0.039 0.081 0.107 -0.242  0.048 0.096 0.123 -0.220 

  500 Cons -0.006 0.050 0.054 -0.064  -0.022 0.054 0.055 -0.018  -0.051 0.063 0.067 -0.056 

   PC -0.006 0.051 0.054 -0.061  -0.022 0.055 0.056 -0.022  -0.050 0.064 0.067 -0.044 

   UC -0.006 0.051 0.054 -0.053  -0.022 0.055 0.056 -0.009  -0.050 0.064 0.067 -0.047 

   RC -0.004 0.051 0.058 -0.122  -0.022 0.055 0.057 -0.040  -0.049 0.064 0.069 -0.076 

   LVS -0.002 0.036 0.053 -0.310  -0.002 0.039 0.053 -0.270  0.001 0.044 0.067 -0.341 

   2SLS 0.003 0.060 0.064 -0.071  0.002 0.065 0.070 -0.072  0.001 0.077 0.081 -0.052 

   LMS 0.003 0.052 0.053 -0.018  0.003 0.056 0.054 0.045  0.005 0.065 0.067 -0.029 

   2SMM -0.250 0.063 0.065 -0.030  -0.235 0.061 0.059 0.032  -0.197 0.057 0.056 0.010 

   MML 0.036 0.054 0.072 -0.260  0.038 0.058 0.073 -0.212  0.040 0.066 0.090 -0.262 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 17 

 

Parameter Estimates for 3 for the Normally Distributed, R3
2
 = .00,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .50 100 Cons 0.052 2.288 1.144 0.999  0.045 0.856 0.824 0.039  0.051 4.484 1.521 1.948 

   PC 0.035 100.924 2.938 33.355  0.210 4878.409 6.455 754.792  -0.014 37.816 3.287 10.504 

   UC 0.313 98.037 6.077 15.132  -0.031 15.204 1.978 6.685  0.186 601.501 4.013 148.880 

   RC 0.015 58.963 4.047 13.568  0.166 14.752 2.294 5.430  0.346 27.700 2.033 12.627 

   LVS -0.001 0.253 0.256 -0.011  0.010 0.269 0.226 0.187  0.002 0.314 0.337 -0.069 

   2SLS -0.008 0.681 0.704 -0.032  -0.039 0.697 0.751 -0.071  0.041 0.689 0.791 -0.129 

   LMS 0.038 38.407 0.957 39.144  0.068 1.327 0.653 1.030  -0.016 2.175 1.032 1.108 

   2SMM -0.116 1646.133 9.766 167.558  -0.809 4049.605 12.133 332.776  -1.199 1032.36 21.351 47.351 

   MML 8.079 2.023 184.678 -0.989  0.055 0.753 0.751 0.002  0.029 3.762 1.168 2.220 

  250 Cons 0.014 0.410 0.467 -0.120  -0.004 0.460 0.496 -0.072  -0.012 0.577 0.637 -0.094 

   PC -0.054 16.562 1.606 9.310  0.021 15.442 1.487 9.388  0.046 299.810 1.803 165.315 

   UC -0.047 50.252 2.945 16.065  0.017 8.433 1.588 4.309  -0.112 49.622 3.757 12.209 

   RC 0.047 20.595 1.708 11.057  -0.012 6.809 1.278 4.327  0.197 33.675 2.254 13.941 

   LVS 0.003 0.105 0.099 0.059  0.004 0.114 0.109 0.038  0.001 0.127 0.126 0.008 

   2SLS 0.013 0.543 0.601 -0.096  -0.007 0.537 0.548 -0.020  0.006 0.600 0.602 -0.004 

   LMS 0.009 0.341 0.289 0.179  0.012 0.427 0.351 0.215  0.007 0.465 0.393 0.184 

   2SMM 0.061 5.771 0.683 7.445  -0.010 18.367 1.404 12.078  0.003 2.551 0.688 2.706 

   MML 0.007 0.303 0.297 0.021  0.018 0.343 0.353 -0.026  0.004 0.384 0.395 -0.027 

  500 Cons -0.001 0.258 0.276 -0.063  -0.013 0.286 0.307 -0.067  0.002 0.343 0.351 -0.021 

   PC -0.008 10.405 0.589 16.673  0.037 2.010 0.672 1.989  0.008 33.195 1.314 24.254 

   UC 0.027 7.471 1.274 4.865  0.031 2.119 0.721 1.939  0.013 43.298 1.662 25.045 

   RC 0.029 1.129 0.567 0.991  -0.014 2.940 0.871 2.375  0.032 4.803 0.880 4.460 

   LVS 0.003 0.068 0.067 0.016  -0.004 0.072 0.072 0.000  -0.002 0.081 0.080 0.011 

   2SLS 0.013 0.399 0.427 -0.066  -0.065 0.462 0.524 -0.119  -0.020 0.538 0.575 -0.064 

   LMS 0.002 0.199 0.189 0.053  -0.005 0.210 0.199 0.058  -0.004 0.251 0.224 0.121 

   2SMM -0.015 0.742 0.345 1.148  -0.017 0.312 0.258 0.206  -0.014 1.654 0.414 2.996 

   MML -0.004 0.186 0.193 -0.037  -0.003 0.200 0.199 0.009  -0.002 0.231 0.225 0.027 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 18 

 

Parameter Estimates for 3 for the Normally Distributed, R3
2
 = .00,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .80 100 Cons 0.005 0.135 0.153 -0.115  -0.004 0.143 0.158 -0.096  -0.001 0.161 0.180 -0.101 

   PC 0.004 0.152 0.165 -0.077  -0.002 0.166 0.189 -0.123  -0.001 0.198 0.208 -0.049 

   UC 0.005 0.156 0.175 -0.110  0.000 0.167 0.180 -0.069  -0.001 0.247 0.241 0.028 

   RC 0.004 0.159 0.178 -0.107  -0.002 0.185 0.206 -0.105  -0.001 0.187 0.197 -0.055 

   LVS 0.006 0.100 0.102 -0.017  -0.003 0.106 0.107 -0.012  0.002 0.118 0.120 -0.011 

   2SLS 0.005 0.188 0.207 -0.089  0.003 0.201 0.218 -0.079  0.004 0.225 0.215 0.049 

   LMS 0.004 0.137 0.143 -0.043  -0.005 0.141 0.148 -0.045  0.006 0.164 0.165 -0.002 

   2SMM 0.007 0.136 0.145 -0.065  -0.006 0.132 0.137 -0.037  -0.002 0.121 0.123 -0.014 

   MML 0.000 0.117 0.206 -0.431  0.004 0.122 0.204 -0.401  0.003 0.142 0.233 -0.391 

  250 Cons 0.004 0.082 0.081 0.011  0.005 0.088 0.091 -0.039  0.000 0.097 0.101 -0.034 

   PC 0.003 0.086 0.084 0.025  0.005 0.092 0.095 -0.036  0.000 0.103 0.105 -0.022 

   UC 0.003 0.086 0.084 0.023  0.005 0.093 0.096 -0.035  0.000 0.103 0.108 -0.043 

   RC 0.003 0.086 0.083 0.031  0.005 0.093 0.096 -0.032  -0.001 0.103 0.108 -0.051 

   LVS 0.000 0.061 0.057 0.057  0.005 0.064 0.066 -0.034  0.000 0.070 0.069 0.018 

   2SLS -0.003 0.108 0.110 -0.018  0.009 0.117 0.120 -0.029  0.002 0.130 0.133 -0.025 

   LMS 0.002 0.080 0.078 0.033  0.006 0.084 0.087 -0.035  -0.001 0.093 0.093 0.006 

   2SMM 0.004 0.079 0.073 0.081  0.002 0.075 0.075 0.004  -0.001 0.070 0.074 -0.061 

   MML 0.004 0.079 0.124 -0.359  0.010 0.087 0.127 -0.316  -0.003 0.095 0.147 -0.350 

  500 Cons -0.002 0.057 0.056 0.013  0.002 0.060 0.062 -0.024  -0.002 0.068 0.067 0.018 

   PC -0.003 0.059 0.059 0.005  0.002 0.062 0.063 -0.020  -0.001 0.070 0.069 0.021 

   UC -0.004 0.059 0.059 0.006  0.002 0.062 0.063 -0.017  -0.001 0.071 0.069 0.029 

   RC -0.004 0.059 0.057 0.032  0.002 0.062 0.062 -0.003  -0.001 0.071 0.068 0.035 

   LVS -0.003 0.042 0.041 0.018  0.003 0.044 0.045 -0.025  -0.001 0.048 0.046 0.046 

   2SLS -0.002 0.075 0.075 -0.008  0.004 0.078 0.080 -0.028  -0.005 0.089 0.090 -0.011 

   LMS -0.003 0.055 0.055 0.010  0.004 0.057 0.059 -0.030  -0.002 0.065 0.062 0.047 

   2SMM -0.002 0.055 0.057 -0.040  -0.003 0.053 0.053 -0.012  -0.003 0.049 0.052 -0.066 

   MML -0.001 0.058 0.074 -0.222  0.005 0.060 0.079 -0.242  -0.002 0.069 0.094 -0.261 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 19 

 

Parameter Estimates for 3 for the Normally Distributed, R3
2
 = .05,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .50 100 Cons -0.018 3.694 1.916 0.928  0.036 2.417 1.499 0.613  0.085 2.193 1.564 0.402 

   PC -0.137 25.741 2.276 10.309  -0.177 70.388 2.948 22.878  0.318 35.956 18.139 0.982 

   UC 0.165 49.355 4.044 11.204  0.176 55.270 5.153 9.727  0.078 64.020 10.440 5.132 

   RC 0.067 34.703 3.223 9.766  -0.011 11.012 1.943 4.668  0.211 9.065 2.172 3.174 

   LVS -0.080 0.247 0.241 0.026  0.202 5.960 5.803 0.027  -0.104 0.498 0.520 -0.041 

   2SLS -0.134 0.679 0.729 -0.068  -0.153 0.647 0.723 -0.105  -0.113 0.739 0.744 -0.008 

   LMS 0.299 2.213 0.787 1.812  0.328 4.458 0.986 3.519  0.240 1.454 0.839 0.733 

   2SMM -4.945 47383.795 71.516 661.565  -4.239 124962.4 74.724 1671.32  0.019 67.000 2.439 26.471 

   MML 0.244 1.086 0.725 0.497  -1.107 0.931 22.849 -0.959  0.352 2.126 2.528 -0.159 

  250 Cons 0.007 4.092 1.971 1.076  -0.003 0.465 0.481 -0.033  -0.009 0.526 0.562 -0.065 

   PC -0.033 5.824 1.033 4.640  0.042 12.378 1.663 6.443  0.013 38.897 2.296 15.945 

   UC 0.199 37.733 3.640 9.365  0.063 5.083 1.250 3.067  -0.041 63.001 2.629 22.962 

   RC -0.033 17.149 1.437 10.937  -0.069 9.883 1.450 5.817  -0.149 12.616 1.493 7.451 

   LVS -0.059 0.105 0.129 -0.186  -0.050 0.115 0.140 -0.176  -0.060 0.119 0.133 -0.102 

   2SLS -0.012 0.540 0.594 -0.090  -0.049 0.558 0.587 -0.049  -0.044 0.594 0.638 -0.068 

   LMS 0.256 0.414 0.376 0.100  0.252 0.399 0.343 0.162  0.219 0.440 0.381 0.155 

   2SMM 0.137 938.854 4.501 207.606  -0.017 5.274 0.799 5.601  -0.053 1.664 0.596 1.791 

   MML 0.236 0.328 0.375 -0.126  0.244 0.352 0.347 0.013  0.210 0.377 0.382 -0.012 

  500 Cons 0.006 0.274 0.299 -0.084  0.001 0.294 0.279 0.053  -0.019 0.347 0.371 -0.064 

   PC 0.014 1.804 0.577 2.126  0.002 1.477 0.668 1.211  -0.025 12.627 1.546 7.169 

   UC 0.053 71.079 2.007 34.410  0.020 10.662 1.417 6.526  -0.018 10.431 1.776 4.873 

   RC 0.008 16.825 1.827 8.210  -0.015 7.028 1.108 5.340  0.006 3.156 1.102 1.864 

   LVS -0.061 0.069 0.081 -0.145  -0.063 0.072 0.078 -0.078  -0.059 0.080 0.089 -0.100 

   2SLS 0.057 0.451 0.493 -0.085  0.010 0.481 0.507 -0.051  0.020 0.497 0.542 -0.083 

   LMS 0.232 0.219 0.213 0.027  0.218 0.228 0.209 0.087  0.208 0.267 0.245 0.090 

   2SMM -0.093 0.313 0.262 0.194  -0.085 0.282 0.255 0.104  -0.090 0.280 0.256 0.097 

   MML 0.223 0.209 0.214 -0.024  0.209 0.214 0.204 0.049  0.197 0.245 0.242 0.011 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 20 

 

Parameter Estimates for 3 for the Normally Distributed, R3
2
 = .05,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .80 100 Cons -0.001 0.135 0.147 -0.084  -0.001 0.143 0.165 -0.132  -0.020 0.161 0.175 -0.078 

   PC 0.006 0.152 0.164 -0.073  0.007 0.163 0.180 -0.098  -0.012 0.190 0.199 -0.044 

   UC 0.001 0.166 0.191 -0.128  0.005 0.171 0.198 -0.138  -0.012 0.210 0.209 0.005 

   RC -0.011 0.168 0.179 -0.060  -0.007 0.171 0.195 -0.120  -0.025 0.355 0.226 0.572 

   LVS -0.020 0.098 0.101 -0.032  -0.012 0.104 0.112 -0.069  -0.019 0.116 0.122 -0.050 

   2SLS 0.033 0.186 0.194 -0.039  0.048 0.197 0.210 -0.060  0.056 0.234 0.252 -0.072 

   LMS 0.050 0.137 0.135 0.012  0.058 0.146 0.149 -0.023  0.048 0.162 0.162 0.004 

   2SMM -0.137 0.141 0.139 0.016  -0.132 0.137 0.142 -0.034  -0.132 0.127 0.133 -0.049 

   MML 0.073 0.127 0.191 -0.336  0.080 0.137 0.223 -0.385  0.070 0.143 0.243 -0.410 

  250 Cons 0.012 0.083 0.081 0.016  0.004 0.086 0.093 -0.077  -0.021 0.097 0.098 -0.010 

   PC 0.015 0.087 0.087 -0.007  0.006 0.090 0.096 -0.065  -0.020 0.103 0.103 -0.002 

   UC 0.013 0.089 0.092 -0.027  0.005 0.092 0.102 -0.092  -0.020 0.105 0.108 -0.020 

   RC 0.008 0.090 0.090 -0.002  0.001 0.094 0.101 -0.073  -0.024 0.106 0.106 0.007 

   LVS -0.010 0.059 0.058 0.028  -0.011 0.061 0.066 -0.075  -0.023 0.068 0.067 0.006 

   2SLS 0.060 0.107 0.113 -0.056  0.050 0.113 0.123 -0.087  0.035 0.129 0.137 -0.056 

   LMS 0.061 0.082 0.077 0.068  0.056 0.084 0.088 -0.038  0.039 0.094 0.092 0.030 

   2SMM -0.134 0.080 0.080 -0.002  -0.138 0.077 0.077 -0.007  -0.138 0.072 0.071 0.007 

   MML 0.085 0.092 0.126 -0.274  0.073 0.091 0.130 -0.298  0.058 0.104 0.138 -0.247 

  500 Cons 0.016 0.057 0.061 -0.064  0.002 0.060 0.065 -0.080  -0.013 0.067 0.068 -0.015 

   PC 0.017 0.059 0.062 -0.051  0.002 0.062 0.067 -0.079  -0.012 0.069 0.069 -0.003 

   UC 0.017 0.061 0.066 -0.079  0.002 0.063 0.069 -0.091  -0.012 0.070 0.071 -0.010 

   RC 0.014 0.062 0.066 -0.068  0.000 0.064 0.068 -0.070  -0.015 0.071 0.070 0.012 

   LVS -0.008 0.041 0.044 -0.063  -0.015 0.043 0.047 -0.095  -0.016 0.047 0.047 -0.014 

   2SLS 0.069 0.073 0.081 -0.092  0.052 0.077 0.085 -0.093  0.040 0.087 0.094 -0.077 

   LMS 0.062 0.057 0.056 0.006  0.052 0.060 0.062 -0.041  0.047 0.065 0.062 0.034 

   2SMM -0.143 0.055 0.058 -0.057  -0.138 0.053 0.054 -0.024  -0.136 0.049 0.050 -0.030 

   MML 0.083 0.064 0.093 -0.312  0.074 0.067 0.096 -0.309  0.066 0.076 0.097 -0.211 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 21 

 

Parameter Estimates for 3 for the Normally Distributed, R3
2
 = .10,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .50 100 Cons 0.002 1.784 1.452 0.228  -0.033 1.665 1.309 0.271  0.029 19.033 3.349 4.683 

   PC -0.079 40.287 3.257 11.369  -0.073 53.803 4.282 11.566  0.007 197.539 6.714 28.421 

   UC 0.075 264.751 5.274 49.200  -0.160 33.927 3.194 9.623  0.082 64.649 6.173 9.473 

   RC -0.019 9.114 1.802 4.057  -0.104 16.815 2.297 6.321  -0.082 41.289 2.441 15.917 

   LVS -0.077 0.744 0.617 0.206  -0.197 2.219 1.480 0.500  -0.140 0.310 0.310 -0.003 

   2SLS -0.218 0.660 0.710 -0.070  -0.123 0.678 0.807 -0.160  -0.206 0.709 0.807 -0.122 

   LMS 0.473 2.903 1.082 1.682  0.408 7.770 0.993 6.824  0.365 1.883 1.038 0.813 

   2SMM 0.270 1833.431 12.291 148.174  -0.136 988.438 7.775 126.130  -0.049 6153.9 8.001 768.15 

   MML 0.446 2.059 1.312 0.569  9.142 0.905 180.358 -0.995  0.320 1.426 1.273 0.120 

  250 Cons 0.017 0.449 0.521 -0.138  -0.005 0.470 0.510 -0.078  0.007 0.623 0.705 -0.117 

   PC 0.073 39.220 2.495 14.718  0.145 66.327 2.819 22.528  -0.121 85.335 2.450 33.824 

   UC -0.070 83.417 2.930 27.467  0.132 26.235 3.152 7.324  -0.028 28.073 2.380 10.793 

   RC 0.288 14.192 2.389 4.941  0.011 15.434 1.606 8.610  0.017 11.076 1.633 5.783 

   LVS -0.089 0.106 0.135 -0.215  -0.092 0.107 0.127 -0.157  -0.080 0.121 0.149 -0.191 

   2SLS -0.018 0.529 0.634 -0.166  -0.074 0.536 0.643 -0.167  -0.133 0.630 0.747 -0.157 

   LMS 0.354 0.439 0.378 0.162  0.329 0.438 0.359 0.221  0.335 0.574 0.445 0.290 

   2SMM -0.093 41.629 1.355 29.724  -0.064 90.446 1.930 45.861  -0.036 8.991 1.073 7.379 

   MML 0.338 0.363 0.367 -0.011  0.317 0.366 0.360 0.016  0.350 0.551 0.544 0.011 

  500 Cons 0.004 0.287 0.315 -0.089  0.007 0.307 0.317 -0.032  -0.008 0.347 0.380 -0.086 

   PC 0.039 2.267 0.772 1.935  0.038 20.320 1.943 9.460  0.024 30.306 1.918 14.799 

   UC -0.010 25.070 1.736 13.438  0.003 2.026 0.901 1.249  0.047 18.026 1.833 8.835 

   RC -0.014 1.789 0.859 1.083  -0.008 3.688 1.141 2.234  0.004 6.995 1.609 3.348 

   LVS -0.091 0.068 0.086 -0.208  -0.085 0.072 0.088 -0.179  -0.084 0.077 0.097 -0.210 

   2SLS 0.107 0.415 0.498 -0.167  0.041 0.494 0.636 -0.223  0.071 0.502 0.590 -0.149 

   LMS 0.319 0.234 0.219 0.068  0.315 0.247 0.237 0.042  0.294 0.275 0.265 0.037 

   2SMM -0.146 0.301 0.263 0.142  -0.118 0.280 0.237 0.184  -0.110 0.399 0.319 0.253 

   MML 0.298 0.218 0.217 0.004  0.304 0.233 0.228 0.021  0.277 0.251 0.254 -0.010 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 22 

 

Parameter Estimates for 3 for the Normally Distributed, R3
2
 = .10,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .80 100 Cons 0.001 0.136 0.149 -0.092  -0.002 0.141 0.155 -0.088  -0.027 0.159 0.172 -0.076 

   PC 0.012 0.154 0.169 -0.088  0.007 0.162 0.174 -0.066  -0.021 0.190 0.194 -0.021 

   UC 0.006 0.167 0.185 -0.099  0.003 0.177 0.191 -0.075  -0.023 0.209 0.219 -0.045 

   RC -0.011 0.218 0.211 0.033  -0.013 0.180 0.201 -0.104  -0.037 0.211 0.224 -0.060 

   LVS -0.028 0.097 0.105 -0.081  -0.023 0.100 0.112 -0.113  -0.038 0.110 0.111 -0.009 

   2SLS 0.065 0.179 0.198 -0.095  0.073 0.196 0.209 -0.066  0.065 0.227 0.244 -0.071 

   LMS 0.071 0.142 0.136 0.039  0.074 0.145 0.146 -0.008  0.056 0.163 0.155 0.053 

   2SMM -0.192 0.139 0.157 -0.118  -0.179 0.136 0.152 -0.102  -0.204 0.124 0.128 -0.026 

   MML 0.107 0.136 0.213 -0.360  0.102 0.139 0.209 -0.335  0.087 0.159 0.242 -0.342 

  250 Cons 0.010 0.083 0.086 -0.045  -0.004 0.087 0.095 -0.085  -0.014 0.097 0.100 -0.028 

   PC 0.014 0.087 0.092 -0.058  0.000 0.092 0.100 -0.078  -0.010 0.104 0.109 -0.047 

   UC 0.013 0.091 0.098 -0.070  -0.001 0.096 0.108 -0.108  -0.013 0.109 0.116 -0.064 

   RC 0.005 0.094 0.101 -0.074  -0.009 0.098 0.107 -0.091  -0.019 0.113 0.123 -0.087 

   LVS -0.020 0.058 0.064 -0.099  -0.023 0.061 0.069 -0.125  -0.017 0.067 0.071 -0.062 

   2SLS 0.073 0.106 0.122 -0.127  0.070 0.113 0.124 -0.093  0.077 0.129 0.146 -0.113 

   LMS 0.078 0.083 0.084 -0.009  0.070 0.088 0.090 -0.021  0.077 0.096 0.095 0.020 

   2SMM -0.193 0.084 0.088 -0.051  -0.201 0.079 0.083 -0.053  -0.193 0.073 0.072 0.008 

   MML 0.123 0.094 0.134 -0.297  0.102 0.095 0.134 -0.291  0.109 0.107 0.148 -0.274 

  500 Cons 0.013 0.058 0.061 -0.058  0.004 0.061 0.067 -0.090  -0.018 0.067 0.070 -0.039 

   PC 0.014 0.060 0.064 -0.065  0.006 0.063 0.068 -0.077  -0.016 0.070 0.072 -0.029 

   UC 0.013 0.062 0.069 -0.102  0.005 0.065 0.073 -0.105  -0.017 0.072 0.076 -0.055 

   RC 0.009 0.063 0.071 -0.103  0.002 0.067 0.073 -0.086  -0.020 0.073 0.078 -0.070 

   LVS -0.020 0.040 0.045 -0.107  -0.017 0.042 0.049 -0.137  -0.025 0.046 0.050 -0.077 

   2SLS 0.076 0.072 0.079 -0.080  0.077 0.077 0.087 -0.114  0.062 0.087 0.093 -0.073 

   LMS 0.076 0.058 0.057 0.023  0.077 0.061 0.062 -0.010  0.066 0.067 0.066 0.009 

   2SMM -0.203 0.057 0.057 0.009  -0.199 0.054 0.056 -0.043  -0.195 0.050 0.051 -0.017 

   MML 0.118 0.067 0.090 -0.258  0.120 0.070 0.094 -0.247  0.104 0.075 0.104 -0.272 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 23 

 

Parameter Estimates for 1 for the Non-Normally Distributed, R3
2
 = .00,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .50 100 Cons -0.026 2.992 1.051 1.848  -0.012 47.100 1.867 24.227  -0.022 17.033 1.954 7.718 

   PC -0.012 10.712 1.194 7.971  -0.009 1671.794 1.621 1030.332  -0.014 31.323 2.089 13.997 

   UC -0.022 10.073 1.065 8.454  0.022 29.339 3.247 8.037  0.000 72.684 2.505 28.019 

   RC 0.003 1.511 0.654 1.308  0.003 3.072 0.660 3.655  -0.007 9.158 1.269 6.219 

   LVS 0.047 0.205 0.977 -0.790  0.055 0.354 0.995 -0.644  0.074 0.298 1.543 -0.807 

   2SLS -0.119 0.447 0.473 -0.055  -0.078 0.505 0.534 -0.054  -0.080 0.519 0.511 0.015 

   LMS 0.060 27.494 0.759 35.239  0.076 854.876 1.015 840.960  0.124 85.949 1.458 57.932 

   2SMM 0.172 700.199 1.983 352.049  0.089 1322.828 3.487 378.380  -0.130 100.607 1.279 77.683 

   MML -5.811 1.637 103.936 -0.984  0.067 3.405 1.885 0.806  -0.008 1.753 1.113 0.576 

  250 Cons -0.013 0.198 0.215 -0.081  -0.042 0.247 0.251 -0.017  -0.037 4.502 0.309 13.578 

   PC 0.002 2.994 0.474 5.320  -0.020 10.795 0.752 13.348  -0.013 7.944 0.740 9.736 

   UC -0.005 8.835 0.466 17.971  -0.021 0.904 0.382 1.366  -0.013 6.639 0.637 9.427 

   RC 0.004 0.229 0.222 0.032  -0.027 0.280 0.268 0.045  -0.021 5.170 0.354 13.619 

   LVS 0.014 0.061 0.211 -0.709  0.018 0.068 0.268 -0.745  0.003 0.084 0.461 -0.819 

   2SLS -0.027 0.291 0.301 -0.032  -0.036 0.312 0.347 -0.101  -0.044 0.374 0.395 -0.051 

   LMS -0.012 0.552 0.224 1.465  -0.022 0.319 0.273 0.167  -0.031 0.506 0.336 0.509 

   2SMM 0.116 22.065 0.556 38.708  0.037 17.568 0.469 36.444  0.277 2993.5 8.225 362.97 

   MML 0.048 0.319 0.296 0.078  0.030 0.387 0.345 0.123  -0.011 0.387 0.375 0.031 

  500 Cons -0.019 0.117 0.126 -0.078  -0.039 0.120 0.137 -0.124  -0.061 0.138 0.160 -0.140 

   PC -0.010 0.574 0.183 2.132  -0.027 1.617 0.247 5.547  -0.040 0.300 0.235 0.275 

   UC -0.004 1.092 0.218 4.004  -0.019 0.856 0.277 2.092  -0.037 5.493 0.243 21.578 

   RC -0.006 0.129 0.131 -0.016  -0.026 0.142 0.155 -0.083  -0.042 0.188 0.189 -0.006 

   LVS 0.002 0.040 0.131 -0.691  0.003 0.044 0.155 -0.714  -0.023 0.050 0.189 -0.736 

   2SLS -0.022 0.188 0.211 -0.107  -0.021 0.217 0.237 -0.087  -0.039 0.276 0.326 -0.152 

   LMS -0.026 0.139 0.135 0.025  -0.037 0.158 0.157 0.002  -0.075 0.200 0.193 0.037 

   2SMM 0.068 0.179 0.166 0.080  0.011 0.198 0.160 0.238  -0.078 0.341 0.157 1.170 

   MML 0.030 0.169 0.174 -0.029  0.010 0.189 0.181 0.046  -0.047 0.213 0.238 -0.107 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 24 

 

Parameter Estimates for 1 for the Non-Normally Distributed, R3
2
 = .00,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .80 100 Cons -0.026 0.139 0.159 -0.128  -0.029 0.148 0.185 -0.200  -0.039 0.169 0.197 -0.141 

   PC -0.020 1.070 0.261 3.105  -0.030 0.210 0.237 -0.113  -0.045 0.235 0.240 -0.021 

   UC -0.016 0.421 0.172 1.450  -0.019 0.224 0.202 0.105  -0.034 0.220 0.231 -0.048 

   RC -0.017 0.131 0.139 -0.054  -0.026 0.148 0.156 -0.055  -0.042 0.184 0.196 -0.063 

   LVS 0.000 0.098 0.145 -0.319  0.006 0.110 0.170 -0.355  -0.014 0.125 0.203 -0.385 

   2SLS -0.011 0.187 0.203 -0.082  -0.005 0.210 0.214 -0.020  -0.024 0.242 0.260 -0.068 

   LMS -0.006 0.142 0.146 -0.031  -0.004 0.165 0.174 -0.052  -0.027 0.200 0.207 -0.035 

   2SMM 0.043 0.191 0.209 -0.084  -0.017 0.170 0.188 -0.093  -0.104 0.151 0.164 -0.075 

   MML 0.083 0.188 0.293 -0.357  0.013 1.854 0.503 2.686  -0.105 0.257 0.473 -0.457 

  250 Cons -0.023 0.077 0.089 -0.132  -0.025 0.079 0.100 -0.214  -0.038 0.091 0.103 -0.119 

   PC -0.026 0.131 0.104 0.256  -0.036 0.095 0.109 -0.129  -0.054 0.113 0.116 -0.025 

   UC -0.020 0.085 0.090 -0.053  -0.030 0.093 0.102 -0.092  -0.049 0.111 0.111 -0.006 

   RC -0.019 0.079 0.081 -0.032  -0.028 0.086 0.097 -0.110  -0.049 0.101 0.105 -0.037 

   LVS -0.002 0.059 0.085 -0.309  -0.004 0.064 0.099 -0.357  -0.020 0.073 0.108 -0.321 

   2SLS -0.006 0.101 0.108 -0.068  -0.003 0.111 0.122 -0.085  -0.012 0.134 0.143 -0.064 

   LMS -0.008 0.082 0.086 -0.052  -0.016 0.090 0.101 -0.109  -0.034 0.105 0.110 -0.043 

   2SMM 0.058 0.126 0.141 -0.109  -0.004 0.113 0.114 -0.011  -0.083 0.100 0.106 -0.060 

   MML 0.086 0.114 0.189 -0.395  0.015 0.126 0.220 -0.429  -0.280 0.335 3.330 -0.899 

  500 Cons -0.012 0.051 0.056 -0.087  -0.022 0.052 0.060 -0.143  -0.022 0.061 0.072 -0.146 

   PC -0.016 0.056 0.056 -0.004  -0.034 0.062 0.066 -0.053  -0.040 0.075 0.079 -0.050 

   UC -0.014 0.055 0.053 0.040  -0.030 0.062 0.065 -0.044  -0.038 0.075 0.078 -0.036 

   RC -0.014 0.053 0.052 0.026  -0.031 0.058 0.058 -0.006  -0.036 0.069 0.072 -0.036 

   LVS -0.005 0.039 0.052 -0.249  -0.010 0.043 0.061 -0.288  -0.011 0.050 0.074 -0.324 

   2SLS -0.003 0.065 0.065 0.012  -0.006 0.074 0.079 -0.067  -0.007 0.091 0.097 -0.059 

   LMS -0.011 0.055 0.054 0.017  -0.021 0.061 0.062 -0.027  -0.026 0.074 0.076 -0.031 

   2SMM 0.054 0.090 0.090 0.007  0.007 0.083 0.088 -0.063  -0.084 0.073 0.078 -0.059 

   MML 0.084 0.081 0.129 -0.370  0.009 0.086 0.133 -0.355  -0.121 0.098 0.176 -0.444 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 25 

 

Parameter Estimates for 1 for the Non-Normally Distributed, R3
2
 = .05,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .50 100 Cons -0.005 6.527 1.147 4.692  0.000 2.248 0.631 2.562  -0.027 21.967 1.416 14.513 

   PC 0.031 8058.158 2.470 3261.642  -0.014 33.333 2.328 13.316  -0.008 33.306 4.698 6.090 

   UC 0.025 7.192 0.869 7.280  0.007 10.315 0.795 11.970  -0.011 160.859 6.605 23.353 

   RC 0.008 0.935 0.536 0.744  0.015 1.849 0.672 1.753  -0.005 66.814 2.870 22.280 

   LVS 0.020 0.217 0.532 -0.593  0.013 0.148 0.735 -0.798  -0.592 3.096 20.406 -0.848 

   2SLS -0.100 0.427 0.494 -0.136  -0.078 0.460 0.478 -0.038  -0.122 0.575 0.669 -0.140 

   LMS 0.062 5.800 0.568 9.214  0.030 13.676 0.817 15.739  0.071 6.464 1.096 4.898 

   2SMM 0.044 64.329 1.619 38.740  -0.014 776.938 2.989 258.909  -0.206 2054.903 6.695 305.910 

   MML -0.391 1.474 9.374 -0.843  21.715 1.047 313.068 -0.997  16.061 1.560 305.920 -0.995 

  250 Cons -0.019 0.455 0.230 0.977  -0.033 10.154 0.552 17.392  -0.028 9.045 1.091 7.290 

   PC -0.006 3.808 0.460 7.269  -0.004 2.857 0.490 4.829  0.002 9.192 0.713 11.897 

   UC 0.007 9.921 0.402 23.671  -0.001 15.631 0.427 35.625  0.003 3.020 0.749 3.030 

   RC -0.008 0.263 0.220 0.199  -0.018 0.403 0.256 0.570  -0.006 0.755 0.372 1.030 

   LVS 0.024 0.068 0.217 -0.688  0.009 0.067 0.250 -0.731  -0.002 0.079 0.378 -0.791 

   2SLS -0.004 0.299 0.328 -0.086  -0.039 0.327 0.342 -0.042  -0.044 0.395 0.423 -0.065 

   LMS 0.001 0.283 0.226 0.253  -0.027 0.333 0.245 0.360  -0.066 0.511 0.332 0.537 

   2SMM 0.070 2.435 0.360 5.759  0.037 4.163 0.351 10.852  -0.066 8.185 0.460 16.808 

   MML 0.069 0.518 0.429 0.208  0.026 0.376 0.368 0.022  -0.059 0.465 0.443 0.051 

  500 Cons -0.014 0.121 0.129 -0.059  -0.042 0.121 0.132 -0.082  -0.052 0.140 0.151 -0.073 

   PC -0.005 2.014 0.256 6.866  -0.019 2.712 0.395 5.864  -0.032 0.575 0.280 1.052 

   UC -0.007 1.141 0.196 4.808  -0.024 26.854 0.560 46.923  -0.029 0.275 0.221 0.245 

   RC -0.007 0.120 0.130 -0.074  -0.029 0.143 0.140 0.020  -0.036 0.191 0.184 0.037 

   LVS 0.007 0.040 0.130 -0.691  0.001 0.044 0.140 -0.686  -0.008 0.050 0.184 -0.726 

   2SLS -0.016 0.185 0.204 -0.093  0.005 0.212 0.220 -0.038  -0.009 0.276 0.296 -0.069 

   LMS -0.020 0.140 0.135 0.033  -0.043 0.155 0.144 0.078  -0.057 0.204 0.189 0.082 

   2SMM 0.083 0.520 0.220 1.360  0.022 0.170 0.174 -0.023  -0.076 0.160 0.148 0.078 

   MML 0.036 0.173 0.177 -0.021  0.011 0.186 0.174 0.069  -0.047 0.207 0.197 0.053 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 26 

 

Parameter Estimates for 1 for the Non-Normally Distributed, R3
2
 = .05,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .80 100 Cons -0.033 0.156 0.174 -0.104  -0.027 0.147 0.173 -0.153  -0.037 0.164 0.187 -0.122 

   PC -0.027 2.267 0.645 2.517  -0.023 2.321 0.254 8.129  -0.040 0.223 0.227 -0.018 

   UC -0.021 30.284 0.193 156.212  -0.015 12.919 0.418 29.923  -0.034 9.091 0.281 31.343 

   RC -0.021 0.134 0.138 -0.029  -0.020 0.146 0.159 -0.084  -0.039 0.178 0.189 -0.058 

   LVS 0.000 0.100 0.141 -0.287  0.003 0.108 0.163 -0.337  -0.013 0.123 0.193 -0.362 

   2SLS -0.007 0.191 0.201 -0.048  0.000 0.210 0.212 -0.010  -0.006 0.249 0.260 -0.042 

   LMS -0.005 0.148 0.145 0.020  -0.009 0.164 0.171 -0.039  -0.027 0.194 0.198 -0.019 

   2SMM 0.046 0.188 0.207 -0.092  -0.011 0.180 0.196 -0.081  -0.090 0.153 0.171 -0.109 

   MML 0.096 0.226 0.327 -0.308  0.038 0.277 0.586 -0.528  0.030 0.537 2.397 -0.776 

  250 Cons -0.019 0.077 0.085 -0.090  -0.020 0.077 0.092 -0.162  -0.029 0.092 0.108 -0.149 

   PC -0.022 0.092 0.090 0.021  -0.029 0.094 0.101 -0.073  -0.044 0.114 0.122 -0.067 

   UC -0.018 0.177 0.098 0.809  -0.025 0.092 0.095 -0.028  -0.038 0.112 0.117 -0.041 

   RC -0.018 0.079 0.080 -0.017  -0.026 0.084 0.088 -0.041  -0.039 0.103 0.108 -0.052 

   LVS 0.002 0.058 0.083 -0.294  -0.006 0.063 0.090 -0.303  -0.007 0.073 0.112 -0.348 

   2SLS 0.004 0.101 0.110 -0.081  -0.002 0.110 0.113 -0.020  0.000 0.136 0.137 -0.002 

   LMS -0.003 0.082 0.084 -0.022  -0.018 0.089 0.092 -0.037  -0.022 0.107 0.114 -0.063 

   2SMM 0.049 0.125 0.132 -0.058  -0.001 0.114 0.123 -0.073  -0.087 0.098 0.108 -0.086 

   MML 0.100 0.117 0.193 -0.394  0.029 0.123 0.259 -0.524  -0.100 0.137 0.233 -0.414 

  500 Cons -0.010 0.051 0.057 -0.114  -0.021 0.052 0.062 -0.161  -0.013 0.060 0.068 -0.116 

   PC -0.014 0.056 0.059 -0.038  -0.032 0.063 0.065 -0.028  -0.034 0.073 0.073 -0.005 

   UC -0.011 0.056 0.056 -0.005  -0.028 0.062 0.061 0.013  -0.031 0.073 0.072 0.014 

   RC -0.012 0.053 0.053 0.017  -0.029 0.058 0.058 0.006  -0.031 0.068 0.068 -0.004 

   LVS 0.000 0.040 0.054 -0.266  -0.006 0.043 0.060 -0.272  -0.007 0.049 0.070 -0.297 

   2SLS 0.001 0.066 0.069 -0.048  0.001 0.074 0.073 0.017  0.003 0.089 0.091 -0.026 

   LMS -0.007 0.055 0.056 -0.008  -0.017 0.064 0.061 0.053  -0.020 0.076 0.075 0.018 

   2SMM 0.049 0.091 0.088 0.030  0.017 0.088 0.094 -0.072  -0.080 0.073 0.076 -0.041 

   MML 0.088 0.082 0.118 -0.307  0.016 0.088 0.138 -0.363  -0.122 0.100 0.250 -0.600 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 27 

 

Parameter Estimates for 1 for the Non-Normally Distributed, R3
2
 = .10,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  % Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .50 100 Cons -0.006 26.353 1.710 14.412  -0.008 10.503 1.371 6.658  -0.017 30.518 1.474 19.708 

   PC 0.002 14.366 1.266 10.344  -0.003 63.145 1.965 31.128  -0.023 45.224 2.280 18.835 

   UC 0.000 8.869 1.317 5.734  0.006 12.800 1.079 10.868  -0.006 40.122 2.308 16.383 

   RC 0.007 2.165 0.757 1.860  0.020 1.293 0.593 1.181  -0.002 21.969 1.892 10.612 

   LVS 0.173 0.279 3.711 -0.925  0.194 0.409 2.615 -0.844  -0.009 0.293 1.065 -0.725 

   2SLS -0.095 0.430 0.474 -0.093  -0.079 0.467 0.534 -0.127  -0.119 0.525 0.525 -0.001 

   LMS 0.054 258.939 0.676 382.043  0.045 10.205 0.795 11.832  0.007 16.055 1.050 14.292 

   2SMM 0.258 485.333 2.970 162.430  69.118 3074646 1536.87 1999.59  -0.299 733.345 5.257 138.508 

   MML -0.542 1.521 13.717 -0.889  0.158 1.916 1.239 0.547  32.970 2.015 512.635 -0.996 

  250 Cons -0.012 0.218 0.227 -0.036  -0.018 0.391 0.308 0.271  -0.024 0.390 0.274 0.424 

   PC 0.004 4.812 0.521 8.241  0.016 3.655 0.445 7.207  -0.004 4.096 0.628 5.519 

   UC 0.012 4.347 0.467 8.310  0.014 3.225 0.434 6.438  -0.005 6.004 0.717 7.373 

   RC -0.006 0.224 0.228 -0.019  0.000 0.285 0.259 0.101  -0.012 1.322 0.421 2.139 

   LVS 0.027 0.061 0.220 -0.722  0.036 0.066 0.253 -0.738  0.079 0.085 0.951 -0.910 

   2SLS -0.011 0.274 0.314 -0.127  -0.052 0.317 0.354 -0.104  -0.050 0.372 0.404 -0.080 

   LMS 0.001 0.272 0.227 0.195  -0.006 0.314 0.257 0.222  -0.031 1.382 0.738 0.872 

   2SMM 0.066 95.395 0.672 140.971  0.001 33.042 1.167 27.317  -0.059 16.935 0.721 22.493 

   MML 0.037 0.285 0.314 -0.091  0.027 0.379 0.375 0.009  -0.025 0.602 0.441 0.366 

  500 Cons -0.019 0.119 0.130 -0.081  -0.028 0.118 0.138 -0.145  -0.043 0.135 0.143 -0.058 

   PC -0.013 6.756 0.339 18.953  -0.007 0.521 0.230 1.259  -0.022 1.811 0.324 4.586 

   UC -0.004 0.548 0.215 1.556  -0.008 0.211 0.169 0.250  -0.017 2.681 0.296 8.043 

   RC -0.014 0.140 0.126 0.108  -0.013 0.140 0.147 -0.047  -0.024 0.192 0.182 0.055 

   LVS 0.007 0.041 0.129 -0.684  0.009 0.043 0.148 -0.710  0.007 0.049 0.183 -0.732 

   2SLS -0.009 0.188 0.198 -0.049  0.006 0.230 0.239 -0.037  -0.011 0.264 0.288 -0.083 

   LMS -0.019 0.140 0.130 0.074  -0.031 0.154 0.153 0.005  -0.046 0.208 0.189 0.101 

   2SMM 0.079 2.195 0.191 10.476  0.032 2.913 0.207 13.043  -0.061 0.514 0.201 1.559 

   MML 0.001 0.151 0.146 0.036  -0.009 0.168 0.176 -0.046  -0.051 0.201 0.195 0.030 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 28 

 

Parameter Estimates for 1 for the Non-Normally Distributed, R3
2
 = .10,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .80 100 Cons -0.036 0.154 0.164 -0.058  -0.030 0.145 0.162 -0.103  -0.034 0.168 0.191 -0.117 

   PC -0.033 0.347 0.187 0.853  -0.032 0.248 0.199 0.245  -0.042 0.490 0.260 0.884 

   UC -0.024 0.290 0.163 0.778  -0.025 0.191 0.183 0.046  -0.035 0.556 0.241 1.308 

   RC -0.023 0.145 0.140 0.031  -0.026 0.150 0.157 -0.045  -0.033 0.188 0.196 -0.043 

   LVS -0.004 0.100 0.141 -0.286  0.000 0.108 0.158 -0.320  -0.007 0.124 0.201 -0.384 

   2SLS -0.005 0.183 0.191 -0.040  -0.005 0.211 0.221 -0.046  -0.017 0.254 0.275 -0.074 

   LMS -0.011 0.149 0.145 0.028  -0.010 0.169 0.161 0.048  -0.022 0.201 0.207 -0.028 

   2SMM 0.041 0.202 0.197 0.023  0.006 0.183 0.195 -0.062  -0.094 0.154 0.174 -0.115 

   MML 0.056 0.182 0.243 -0.254  0.044 0.186 0.261 -0.288  0.000 0.208 0.307 -0.322 

  250 Cons -0.011 0.076 0.089 -0.148  -0.016 0.077 0.090 -0.140  -0.017 0.091 0.102 -0.109 

   PC -0.014 0.089 0.094 -0.055  -0.025 0.095 0.096 -0.016  -0.032 0.112 0.110 0.012 

   UC -0.010 0.128 0.095 0.344  -0.019 0.092 0.091 0.018  -0.027 0.111 0.110 0.001 

   RC -0.011 0.077 0.084 -0.089  -0.019 0.084 0.085 -0.012  -0.028 0.101 0.103 -0.015 

   LVS 0.001 0.057 0.086 -0.332  0.001 0.063 0.087 -0.284  -0.003 0.072 0.107 -0.334 

   2SLS 0.002 0.100 0.108 -0.073  0.003 0.111 0.113 -0.016  0.002 0.135 0.139 -0.034 

   LMS -0.004 0.080 0.086 -0.071  -0.012 0.089 0.090 -0.014  -0.016 0.105 0.109 -0.034 

   2SMM 0.053 0.124 0.132 -0.054  0.004 0.117 0.118 -0.016  -0.083 0.099 0.104 -0.043 

   MML 0.080 0.109 0.145 -0.251  0.055 0.119 0.161 -0.261  -0.002 0.135 0.177 -0.236 

  500 Cons -0.014 0.051 0.060 -0.153  -0.014 0.052 0.061 -0.150  -0.015 0.060 0.069 -0.137 

   PC -0.018 0.057 0.061 -0.065  -0.025 0.063 0.065 -0.032  -0.034 0.073 0.076 -0.035 

   UC -0.015 0.056 0.059 -0.038  -0.023 0.062 0.062 0.000  -0.031 0.073 0.074 -0.014 

   RC -0.015 0.054 0.056 -0.042  -0.024 0.058 0.060 -0.029  -0.031 0.068 0.070 -0.038 

   LVS -0.003 0.040 0.057 -0.304  -0.003 0.043 0.060 -0.280  -0.013 0.049 0.070 -0.310 

   2SLS -0.002 0.066 0.069 -0.045  0.002 0.075 0.076 -0.021  -0.006 0.089 0.096 -0.070 

   LMS -0.010 0.056 0.058 -0.035  -0.014 0.061 0.062 -0.016  -0.027 0.071 0.073 -0.021 

   2SMM 0.062 0.093 0.095 -0.017  0.012 0.086 0.087 -0.015  -0.071 0.075 0.077 -0.030 

   MML 0.079 0.079 0.108 -0.267  0.057 0.084 0.114 -0.263  -0.021 0.094 0.122 -0.229 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 29 

 

Parameter Estimates for 2 for the Non-Normally Distributed, R3
2
 = .00,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  % Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .50 100 Cons 0.030 12.608 2.218 4.685  0.025 18.562 1.830 9.144  0.106 267.403 4.917 53.387 

   PC 0.177 8.860 2.016 3.395  0.192 342.674 1.165 293.152  0.322 57.346 5.551 9.331 

   UC 0.198 15.983 1.723 8.278  0.205 26.696 1.636 15.317  0.337 68.137 2.483 26.437 

   RC 0.072 1.771 0.634 1.795  0.044 2.103 0.602 2.496  0.130 6.450 1.159 4.564 

   LVS 0.092 0.175 0.675 -0.741  -0.035 0.534 0.872 -0.388  -0.014 0.458 1.405 -0.674 

   2SLS -0.095 0.469 0.495 -0.052  -0.050 0.459 0.479 -0.041  -0.076 0.521 0.544 -0.044 

   LMS 0.084 1.585 0.629 1.521  -0.023 399.916 0.635 628.976  -0.042 80.182 1.109 71.311 

   2SMM 16.033 1346417 357.3 3767.6  3.501 10691.7 81.0 131.0  0.982 261.504 21.320 11.266 

   MML 0.080 2.421 0.855 1.831  1.532 0.926 28.580 -0.968  0.176 2.528 1.673 0.511 

  250 Cons -0.026 0.222 0.228 -0.026  -0.032 0.240 0.252 -0.050  -0.035 3.846 0.283 12.611 

   PC 0.033 2.423 0.402 5.029  0.061 19.144 0.952 19.100  0.107 20.566 1.266 15.241 

   UC 0.030 6.456 0.417 14.493  0.012 1.276 0.351 2.637  0.082 13.583 1.054 11.883 

   RC -0.012 0.254 0.222 0.147  -0.016 0.258 0.260 -0.005  -0.008 5.024 0.449 10.189 

   LVS 0.017 0.062 0.221 -0.720  0.012 0.067 0.257 -0.739  0.042 0.084 0.517 -0.838 

   2SLS -0.024 0.289 0.303 -0.047  -0.023 0.298 0.324 -0.079  -0.009 0.377 0.413 -0.087 

   LMS -0.014 0.273 0.232 0.174  -0.029 0.338 0.273 0.239  -0.031 0.545 0.345 0.581 

   2SMM -0.457 356.728 1.619 219.278  -0.253 46.363 1.220 36.988  -0.738 6680.8 18.40 362.09 

   MML -0.015 0.284 0.277 0.027  -0.008 0.325 0.310 0.046  0.029 0.445 0.382 0.165 

  500 Cons -0.024 0.120 0.134 -0.104  -0.038 0.116 0.130 -0.110  -0.039 0.142 0.161 -0.118 

   PC -0.011 0.511 0.206 1.484  -0.015 0.884 0.214 3.130  -0.014 0.572 0.271 1.111 

   UC -0.009 0.693 0.177 2.917  -0.018 0.196 0.165 0.183  -0.018 0.819 0.233 2.510 

   RC -0.018 0.129 0.131 -0.014  -0.024 0.134 0.139 -0.041  -0.023 0.193 0.192 0.008 

   LVS 0.005 0.041 0.133 -0.693  -0.005 0.043 0.141 -0.693  0.007 0.051 0.195 -0.740 

   2SLS -0.005 0.187 0.218 -0.141  -0.015 0.213 0.232 -0.084  -0.001 0.280 0.312 -0.100 

   LMS -0.022 0.142 0.141 0.007  -0.051 0.149 0.144 0.040  -0.043 0.206 0.200 0.030 

   2SMM -0.443 0.248 0.207 0.198  -0.253 0.388 0.216 0.799  -0.047 111.107 0.733 150.492 

   MML -0.019 0.158 0.173 -0.091  -0.024 0.168 0.165 0.022  0.020 0.202 0.211 -0.042 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-

stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 30 

 

Parameter Estimates for 2 for the Non-Normally Distributed, R3
2
 = .00,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .80 100 Cons -0.039 0.138 0.155 -0.112  -0.038 0.147 0.161 -0.089  -0.038 0.172 0.186 -0.079 

   PC -0.022 1.133 0.244 3.648  -0.037 0.197 0.193 0.022  -0.042 0.254 0.238 0.065 

   UC -0.016 4.536 0.297 14.285  -0.030 0.177 0.173 0.022  -0.034 0.228 0.232 -0.019 

   RC -0.024 0.136 0.148 -0.084  -0.036 0.149 0.149 -0.001  -0.039 0.187 0.194 -0.033 

   LVS -0.003 0.101 0.148 -0.322  -0.004 0.110 0.154 -0.287  -0.007 0.127 0.196 -0.352 

   2SLS -0.016 0.189 0.197 -0.045  -0.011 0.212 0.205 0.035  0.006 0.249 0.262 -0.050 

   LMS -0.011 0.151 0.153 -0.012  -0.019 0.163 0.161 0.013  -0.021 0.204 0.200 0.020 

   2SMM -0.403 0.215 0.209 0.029  -0.218 0.214 0.225 -0.047  -0.010 0.267 0.252 0.060 

   MML 0.012 0.212 0.269 -0.209  0.036 0.163 0.274 -0.406  0.100 0.194 0.297 -0.346 

  250 Cons -0.013 0.077 0.086 -0.105  -0.025 0.079 0.091 -0.134  -0.014 0.091 0.106 -0.144 

   PC -0.015 0.089 0.089 0.008  -0.034 0.095 0.096 -0.016  -0.031 0.113 0.119 -0.050 

   UC -0.011 0.083 0.084 -0.009  -0.029 0.093 0.093 -0.006  -0.026 0.112 0.116 -0.033 

   RC -0.013 0.078 0.079 -0.016  -0.028 0.086 0.087 -0.012  -0.028 0.102 0.108 -0.057 

   LVS 0.002 0.058 0.080 -0.269  -0.004 0.064 0.089 -0.286  0.002 0.073 0.109 -0.330 

   2SLS 0.003 0.100 0.111 -0.100  -0.001 0.111 0.113 -0.014  0.006 0.135 0.142 -0.049 

   LMS -0.004 0.081 0.081 0.000  -0.015 0.091 0.092 -0.009  -0.012 0.106 0.111 -0.046 

   2SMM -0.425 0.112 0.124 -0.095  -0.240 0.120 0.125 -0.040  -0.030 0.127 0.134 -0.051 

   MML 0.000 0.095 0.292 -0.673  0.037 0.106 0.157 -0.324  0.142 0.119 0.191 -0.374 

  500 Cons -0.012 0.051 0.054 -0.046  -0.012 0.052 0.056 -0.075  -0.019 0.061 0.068 -0.103 

   PC -0.017 0.057 0.057 -0.004  -0.023 0.063 0.061 0.035  -0.039 0.074 0.074 0.009 

   UC -0.015 0.056 0.054 0.047  -0.020 0.062 0.058 0.070  -0.036 0.074 0.074 -0.007 

   RC -0.014 0.054 0.051 0.056  -0.020 0.058 0.055 0.065  -0.036 0.069 0.069 0.000 

   LVS 0.000 0.040 0.052 -0.234  0.001 0.043 0.056 -0.220  -0.010 0.050 0.072 -0.307 

   2SLS 0.000 0.066 0.068 -0.027  0.007 0.074 0.072 0.031  -0.004 0.090 0.096 -0.066 

   LMS -0.006 0.056 0.053 0.050  -0.011 0.061 0.057 0.077  -0.024 0.073 0.074 -0.017 

   2SMM -0.421 0.075 0.074 0.011  -0.245 0.083 0.088 -0.064  -0.026 0.089 0.091 -0.021 

   MML -0.001 0.070 0.114 -0.389  0.061 0.074 0.114 -0.347  0.148 0.086 0.131 -0.342 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 



125 

 

Table 31 

 

Parameter Estimates for 2 for the Non-Normally Distributed, R3
2
 = .05,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .50 100 Cons 0.052 7.330 1.468 3.995  0.039 3.478 0.942 2.693  0.062 20.610 1.194 16.261 

   PC 0.239 1487.50 4.052 366.112  0.148 25.208 2.671 8.438  0.235 19.431 1.786 9.878 

   UC 0.142 5.768 2.423 1.380  0.157 11.979 1.364 7.782  0.238 17.049 3.323 4.131 

   RC 0.030 0.567 0.505 0.124  0.043 1.600 0.713 1.245  0.098 11.287 0.914 11.344 

   LVS 0.000 0.363 0.674 -0.462  0.046 0.195 0.902 -0.784  0.048 0.201 0.768 -0.739 

   2SLS -0.100 0.444 0.470 -0.056  -0.108 0.479 0.509 -0.058  -0.051 0.533 0.615 -0.133 

   LMS 0.048 178.46 0.703 252.949  0.024 49.143 0.756 63.977  -0.001 6.533 0.880 6.423 

   2SMM -1.450 24084 28.7 838.8  -5.992 16536 114.1 144.0  3.765 6483 71.38 89.82 

   MML 5.288 3.851 100.839 -0.962  0.298 9.120 3.801 1.399  14.196 2.167 252.672 -0.991 

  250 Cons -0.019 0.225 0.236 -0.048  -0.012 23.929 1.182 19.252  0.003 5.136 0.682 6.531 

   PC 0.045 4.070 0.482 7.436  0.017 2.359 0.414 4.696  0.072 17.143 1.162 13.752 

   UC 0.038 5.550 0.409 12.557  0.021 15.441 0.474 31.607  0.048 2.922 0.604 3.835 

   RC -0.015 0.244 0.225 0.083  -0.020 0.695 0.285 1.442  0.001 0.710 0.374 0.902 

   LVS 0.024 0.064 0.227 -0.716  0.018 0.068 0.276 -0.752  0.030 0.081 0.365 -0.779 

   2SLS -0.026 0.298 0.312 -0.045  -0.020 0.313 0.353 -0.116  -0.058 0.401 0.422 -0.050 

   LMS -0.019 0.970 0.501 0.937  -0.025 0.313 0.245 0.275  -0.015 0.561 0.356 0.578 

   2SMM -0.414 3.724 0.653 4.705  -0.232 7.419 0.611 11.152  -0.026 51.754 1.301 38.793 

   MML 0.006 0.367 0.368 -0.002  0.007 0.467 0.426 0.097  0.070 0.465 0.421 0.104 

  500 Cons -0.017 0.119 0.132 -0.102  -0.033 0.122 0.138 -0.117  -0.044 0.142 0.156 -0.092 

   PC 0.010 5.456 0.284 18.201  -0.009 1.008 0.290 2.480  -0.007 1.851 0.317 4.843 

   UC -0.001 1.095 0.201 4.460  -0.001 13.161 0.335 38.245  -0.019 0.305 0.229 0.331 

   RC -0.014 0.120 0.130 -0.079  -0.022 0.141 0.141 0.003  -0.025 0.193 0.191 0.013 

   LVS 0.008 0.040 0.133 -0.699  0.000 0.043 0.145 -0.701  0.008 0.050 0.193 -0.740 

   2SLS -0.008 0.185 0.203 -0.088  -0.013 0.208 0.231 -0.098  -0.021 0.287 0.295 -0.027 

   LMS -0.020 0.141 0.137 0.033  -0.042 0.156 0.152 0.026  -0.046 0.206 0.197 0.048 

   2SMM -0.464 0.970 0.361 1.684  -0.249 0.327 0.233 0.405  -0.019 0.258 0.242 0.064 

   MML -0.017 0.158 0.162 -0.024  -0.025 0.170 0.167 0.022  0.021 0.206 0.204 0.014 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 32 

 

Parameter Estimates for 2 for the Non-Normally Distributed, R3
2
 = .05,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .80 100 Cons -0.032 0.136 0.152 -0.104  -0.038 0.178 0.171 0.041  -0.031 0.168 0.192 -0.129 

   PC -0.013 0.820 0.237 2.457  -0.038 0.646 0.208 2.112  -0.031 0.228 0.236 -0.034 

   UC -0.013 50.559 0.197 256.288  -0.026 1.532 0.190 7.049  -0.021 4.457 0.242 17.390 

   RC -0.018 0.130 0.137 -0.048  -0.033 0.145 0.155 -0.067  -0.032 0.181 0.188 -0.036 

   LVS -0.005 0.099 0.141 -0.301  -0.009 0.108 0.154 -0.301  0.000 0.124 0.195 -0.360 

   2SLS -0.018 0.188 0.207 -0.094  -0.014 0.225 0.219 0.027  -0.007 0.242 0.255 -0.052 

   LMS -0.012 0.145 0.143 0.014  -0.019 0.173 0.166 0.041  -0.014 0.196 0.198 -0.011 

   2SMM -0.420 0.293 0.239 0.226  -0.214 0.383 0.234 0.637  -0.012 0.204 0.220 -0.075 

   MML 0.011 0.150 0.255 -0.412  0.007 1.665 0.402 3.141  0.107 0.199 0.314 -0.364 

  250 Cons -0.019 0.077 0.087 -0.111  -0.023 0.078 0.089 -0.129  -0.023 0.093 0.103 -0.104 

   PC -0.020 0.089 0.091 -0.023  -0.032 0.095 0.100 -0.051  -0.040 0.114 0.116 -0.015 

   UC -0.016 0.091 0.086 0.063  -0.027 0.093 0.095 -0.023  -0.036 0.112 0.113 -0.003 

   RC -0.017 0.078 0.079 -0.013  -0.027 0.085 0.085 0.001  -0.034 0.103 0.102 0.013 

   LVS 0.000 0.058 0.080 -0.277  -0.006 0.063 0.088 -0.282  -0.003 0.073 0.106 -0.312 

   2SLS 0.000 0.100 0.102 -0.024  -0.005 0.111 0.112 -0.011  0.003 0.136 0.140 -0.022 

   LMS -0.006 0.081 0.082 -0.012  -0.018 0.090 0.091 -0.009  -0.017 0.108 0.109 -0.011 

   2SMM -0.424 0.111 0.117 -0.051  -0.239 0.119 0.130 -0.086  -0.030 0.124 0.137 -0.095 

   MML 0.002 0.096 0.153 -0.375  0.041 0.105 0.173 -0.395  0.135 0.122 0.198 -0.384 

  500 Cons -0.015 0.051 0.059 -0.131  -0.008 0.052 0.059 -0.124  -0.021 0.061 0.069 -0.125 

   PC -0.020 0.057 0.061 -0.073  -0.019 0.062 0.064 -0.032  -0.040 0.074 0.076 -0.025 

   UC -0.017 0.056 0.059 -0.046  -0.016 0.061 0.062 -0.008  -0.037 0.074 0.075 -0.017 

   RC -0.017 0.054 0.056 -0.040  -0.017 0.057 0.058 -0.009  -0.036 0.069 0.070 -0.020 

   LVS -0.002 0.040 0.057 -0.304  0.001 0.043 0.059 -0.273  -0.011 0.049 0.072 -0.311 

   2SLS 0.002 0.066 0.072 -0.085  0.007 0.073 0.075 -0.027  -0.005 0.090 0.094 -0.045 

   LMS -0.008 0.055 0.058 -0.049  -0.011 0.062 0.060 0.035  -0.025 0.074 0.074 0.009 

   2SMM -0.424 0.075 0.078 -0.037  -0.253 0.085 0.095 -0.103  -0.037 0.088 0.096 -0.082 

   MML 0.008 0.070 0.114 -0.379  0.054 0.075 0.112 -0.334  0.146 0.085 0.129 -0.338 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 33 

 

Parameter Estimates for 2 for the Non-Normally Distributed, R3
2
 = .10,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .50 100 Cons 0.052 8.745 0.743 10.773  0.111 19.273 1.494 11.898  0.163 411.534 5.410 75.063 

   PC 0.122 17.425 0.918 17.983  0.233 2576.483 3.313 776.715  0.378 24.470 2.031 11.047 

   UC 0.142 7.606 1.575 3.829  0.166 6.876 1.184 4.808  0.287 63.302 3.022 19.946 

   RC 0.038 1.282 0.511 1.508  0.062 3.358 0.756 3.440  0.191 13.189 1.325 8.951 

   LVS -0.183 1.342 3.891 -0.655  -0.212 0.901 5.821 -0.845  0.567 1.490 13.488 -0.890 

   2SLS -0.042 0.442 0.455 -0.028  -0.069 0.479 0.488 -0.017  -0.076 0.519 0.508 0.022 

   LMS 0.030 113.767 0.621 182.168  0.075 18.765 0.882 20.283  0.030 15.028 0.897 15.760 

   2SMM 47.564 1547732 988.8 1564.2  -0.387 6374.7 8.712 730.7  11.506 39005 173.7 223.6 

   MML -0.053 1.077 1.388 -0.224  0.076 2.575 1.300 0.981  -0.052 1.546 1.349 0.146 

  250 Cons -0.028 0.194 0.204 -0.050  -0.042 0.226 0.211 0.075  -0.034 0.380 0.276 0.375 

   PC 0.058 9.909 0.644 14.380  0.024 4.841 0.506 8.566  0.072 7.469 0.745 9.022 

   UC 0.064 5.998 0.595 9.084  0.037 8.802 0.445 18.763  0.077 9.806 0.669 13.649 

   RC -0.016 0.209 0.195 0.071  -0.032 0.237 0.229 0.034  -0.001 0.911 0.359 1.536 

   LVS 0.011 0.063 0.209 -0.699  -0.010 0.066 0.227 -0.712  -0.079 0.086 1.003 -0.914 

   2SLS -0.020 0.280 0.320 -0.124  -0.043 0.327 0.366 -0.107  -0.036 0.379 0.392 -0.032 

   LMS -0.014 0.274 0.224 0.224  -0.052 0.284 0.230 0.233  -0.059 1.036 0.517 1.005 

   2SMM -0.447 138.183 1.506 90.778  -0.193 53.885 1.907 27.255  -0.057 60.576 2.311 25.217 

   MML -0.030 0.244 0.259 -0.056  -0.062 0.263 0.253 0.038  -0.042 0.505 0.378 0.336 

  500 Cons -0.022 0.118 0.127 -0.068  -0.031 0.117 0.138 -0.151  -0.039 0.131 0.142 -0.080 

   PC 0.027 5.212 0.364 13.326  -0.010 0.541 0.200 1.704  0.017 6.442 0.527 11.235 

   UC 0.011 0.814 0.217 2.745  -0.008 0.209 0.162 0.286  0.020 8.610 0.545 14.791 

   RC -0.013 0.123 0.130 -0.057  -0.018 0.135 0.143 -0.054  -0.018 0.184 0.178 0.034 

   LVS -0.001 0.040 0.132 -0.697  -0.001 0.042 0.145 -0.709  0.003 0.048 0.178 -0.729 

   2SLS -0.013 0.194 0.192 0.010  -0.002 0.229 0.221 0.039  -0.003 0.265 0.299 -0.113 

   LMS -0.032 0.140 0.132 0.061  -0.048 0.150 0.151 -0.007  -0.053 0.197 0.181 0.087 

   2SMM -0.445 5.844 0.320 17.285  -0.264 8.560 0.461 17.552  -0.045 0.995 0.359 1.776 

   MML -0.036 0.142 0.143 -0.010  -0.049 0.153 0.162 -0.052  -0.028 0.186 0.177 0.047 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 34 

 

Parameter Estimates for 2 for the Non-Normally Distributed, R3
2
 = .10,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .80 100 Cons -0.025 0.145 0.165 -0.119  -0.031 0.145 0.172 -0.156  -0.035 0.172 0.189 -0.091 

   PC -0.014 1.242 0.246 4.040  -0.032 0.208 0.201 0.035  -0.034 0.552 0.251 1.202 

   UC 0.000 4.400 0.389 10.320  -0.019 0.244 0.207 0.178  -0.022 0.574 0.238 1.407 

   RC -0.017 0.144 0.142 0.012  -0.020 0.146 0.150 -0.024  -0.034 0.195 0.188 0.037 

   LVS 0.011 0.101 0.149 -0.323  0.001 0.107 0.157 -0.321  -0.002 0.125 0.193 -0.356 

   2SLS -0.004 0.187 0.204 -0.088  -0.003 0.209 0.213 -0.020  -0.006 0.241 0.264 -0.087 

   LMS 0.004 0.151 0.157 -0.036  -0.012 0.165 0.164 0.010  -0.017 0.211 0.200 0.055 

   2SMM -0.416 0.241 0.188 0.283  -0.243 0.256 0.207 0.238  -0.010 0.218 0.240 -0.095 

   MML -0.019 0.144 0.235 -0.386  -0.034 0.159 0.253 -0.371  -0.022 0.186 0.265 -0.298 

  250 Cons -0.019 0.077 0.086 -0.112  -0.021 0.077 0.087 -0.118  -0.024 0.091 0.099 -0.081 

   PC -0.019 0.090 0.093 -0.031  -0.029 0.094 0.094 -0.009  -0.041 0.112 0.110 0.020 

   UC -0.016 0.118 0.092 0.293  -0.025 0.092 0.092 -0.005  -0.035 0.111 0.107 0.037 

   RC -0.017 0.078 0.079 -0.011  -0.026 0.084 0.087 -0.028  -0.036 0.102 0.100 0.016 

   LVS -0.001 0.058 0.081 -0.283  -0.005 0.063 0.088 -0.286  -0.008 0.072 0.105 -0.314 

   2SLS 0.001 0.103 0.109 -0.056  0.002 0.110 0.115 -0.045  0.004 0.136 0.136 -0.005 

   LMS -0.006 0.080 0.082 -0.026  -0.015 0.089 0.089 -0.005  -0.023 0.105 0.105 0.002 

   2SMM -0.419 0.108 0.116 -0.069  -0.245 0.118 0.125 -0.053  -0.031 0.124 0.130 -0.050 

   MML -0.034 0.094 0.134 -0.299  -0.037 0.103 0.143 -0.280  0.001 0.121 0.172 -0.299 

  500 Cons -0.008 0.051 0.055 -0.084  -0.012 0.052 0.062 -0.170  -0.013 0.060 0.071 -0.155 

   PC -0.013 0.057 0.057 -0.014  -0.024 0.062 0.066 -0.058  -0.034 0.073 0.078 -0.063 

   UC -0.010 0.056 0.055 0.026  -0.021 0.062 0.063 -0.015  -0.031 0.073 0.078 -0.061 

   RC -0.009 0.054 0.052 0.028  -0.021 0.058 0.058 -0.005  -0.031 0.068 0.071 -0.041 

   LVS 0.003 0.040 0.053 -0.251  -0.002 0.043 0.061 -0.293  -0.007 0.049 0.073 -0.334 

   2SLS 0.002 0.066 0.065 0.011  0.003 0.074 0.078 -0.048  -0.001 0.089 0.097 -0.083 

   LMS -0.004 0.055 0.054 0.029  -0.013 0.061 0.063 -0.034  -0.021 0.072 0.076 -0.053 

   2SMM -0.423 0.076 0.076 -0.003  -0.251 0.085 0.088 -0.030  -0.037 0.090 0.099 -0.088 

   MML -0.029 0.068 0.097 -0.298  -0.023 0.073 0.098 -0.255  0.011 0.085 0.115 -0.263 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 35 

 

Parameter Estimates for 3 for the Non-Normally Distributed, R3
2
 = .00,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .50 100 Cons 0.304 9.426 3.074 2.066  0.273 295.201 5.798 49.910  0.394 557.269 11.414 47.823 

   PC 0.132 47.138 3.586 12.147  0.106 1987.21 2.753 720.737  0.079 24.478 2.268 9.795 

   UC 0.055 80.135 4.305 17.615  0.094 40.111 4.860 7.253  0.106 41.774 2.700 14.471 

   RC 0.064 19.655 2.392 7.217  0.125 9.335 2.354 2.966  0.306 28.790 1.718 15.758 

   LVS 0.050 0.622 0.645 -0.035  0.122 0.939 1.594 -0.411  0.094 1.335 0.919 0.452 

   2SLS 0.043 0.626 0.711 -0.119  0.027 0.612 0.641 -0.046  0.117 0.575 0.605 -0.049 

   LMS 0.367 84.212 2.261 36.240  0.603 43.428 2.671 15.257  0.735 55.538 3.590 14.469 

   2SMM 120.162 11782138 1873.5 6287.7  2.885 19860 76.8 257.5  1.459 239.083 27.524 7.686 

   MML 11.651 158.952 179.045 -0.112  7.749 5.777 110.977 -0.948  0.727 3.932 2.188 0.797 

  250 Cons 0.133 0.658 0.674 -0.023  0.200 0.518 0.570 -0.093  0.257 0.612 0.782 -0.217 

   PC 0.007 13.720 1.303 9.530  0.063 29.346 1.549 17.940  -0.025 16.987 1.334 11.734 

   UC -0.056 42.363 1.912 21.152  0.016 7.469 1.562 3.783  0.086 15.715 1.377 10.416 

   RC 0.157 10.832 1.551 5.984  0.107 2.551 0.863 1.956  0.237 28.836 3.421 7.428 

   LVS 0.049 0.130 0.139 -0.067  0.062 0.105 0.110 -0.042  0.053 0.102 0.091 0.121 

   2SLS 0.032 0.566 0.588 -0.037  0.050 0.442 0.520 -0.149  0.050 0.387 0.474 -0.183 

   LMS 0.327 0.717 0.584 0.228  0.407 0.521 0.407 0.279  0.396 0.505 0.436 0.160 

   2SMM 0.412 1602.0 8.389 189.97  0.073 19.577 0.871 21.484  0.256 2213.877 6.131 360.080 

   MML 0.576 0.625 0.745 -0.161  0.650 0.511 0.522 -0.021  0.631 0.477 0.500 -0.046 

  500 Cons 0.129 0.333 0.360 -0.076  0.189 0.268 0.302 -0.112  0.224 0.201 0.256 -0.215 

   PC 0.019 4.629 0.846 4.468  -0.022 5.497 0.654 7.401  -0.011 0.663 0.264 1.509 

   UC -0.012 60.881 4.591 12.260  -0.012 7.317 1.949 2.753  -0.010 21.353 0.391 53.600 

   RC 0.090 6.063 0.742 7.174  0.118 0.640 0.379 0.686  0.162 1.504 0.333 3.517 

   LVS 0.038 0.075 0.078 -0.034  0.050 0.061 0.066 -0.075  0.056 0.048 0.059 -0.186 

   2SLS 0.009 0.411 0.463 -0.111  0.031 0.324 0.357 -0.094  0.031 0.249 0.275 -0.094 

   LMS 0.320 0.326 0.280 0.166  0.361 0.239 0.223 0.072  0.343 0.193 0.207 -0.067 

   2SMM 0.052 0.350 0.239 0.463  0.074 0.451 0.219 1.054  0.089 147.365 0.948 154.460 

   MML 0.554 0.346 0.368 -0.058  0.612 0.296 0.326 -0.093  0.623 0.261 0.307 -0.149 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 36 

 

Parameter Estimates for 3 for the Non-Normally Distributed, R3
2
 = .00,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.00 .80 100 Cons 0.028 0.206 0.261 -0.211  0.038 0.189 0.205 -0.077  0.060 0.152 0.162 -0.065 

   PC 0.019 17.457 1.887 8.251  -0.020 0.486 0.335 0.450  -0.003 0.346 0.241 0.435 

   UC -0.016 8.602 0.646 12.316  -0.012 0.688 0.434 0.586  -0.004 0.235 0.227 0.035 

   RC 0.028 1.815 0.754 1.407  0.027 0.322 0.256 0.258  0.052 0.184 0.189 -0.026 

   LVS 0.022 0.139 0.139 0.003  0.013 0.127 0.122 0.038  0.025 0.102 0.101 0.008 

   2SLS 0.004 0.351 0.308 0.143  0.004 0.308 0.283 0.087  -0.001 0.232 0.258 -0.102 

   LMS 0.044 0.246 0.204 0.206  0.049 0.223 0.170 0.313  0.063 0.136 0.142 -0.044 

   2SMM 0.008 0.253 0.233 0.086  0.041 0.191 0.210 -0.091  0.071 0.348 0.261 0.330 

   MML -0.714 0.198 18.947 -0.990  0.128 0.180 0.259 -0.302  0.148 0.140 0.239 -0.414 

  250 Cons 0.030 0.103 0.114 -0.093  0.049 0.082 0.084 -0.034  0.049 0.060 0.063 -0.056 

   PC -0.007 0.379 0.208 0.823  0.006 0.094 0.089 0.058  -0.003 0.067 0.064 0.053 

   UC 0.002 0.138 0.136 0.012  0.005 0.097 0.095 0.015  -0.004 0.065 0.063 0.020 

   RC 0.030 0.127 0.132 -0.040  0.047 0.087 0.091 -0.049  0.048 0.058 0.060 -0.029 

   LVS 0.015 0.071 0.072 -0.013  0.022 0.058 0.058 -0.008  0.017 0.045 0.046 -0.037 

   2SLS 0.008 0.167 0.208 -0.198  0.009 0.113 0.118 -0.037  -0.002 0.079 0.079 0.002 

   LMS 0.040 0.097 0.103 -0.058  0.057 0.081 0.081 -0.009  0.047 0.056 0.063 -0.119 

   2SMM 0.022 0.095 0.113 -0.159  0.034 0.092 0.109 -0.156  0.041 0.082 0.108 -0.242 

   MML 0.150 0.099 0.222 -0.555  0.150 0.083 0.144 -0.422  0.128 0.071 0.207 -0.659 

  500 Cons 0.030 0.064 0.068 -0.056  0.042 0.048 0.051 -0.067  0.049 0.036 0.042 -0.131 

   PC 0.002 0.073 0.071 0.025  -0.001 0.048 0.049 -0.022  0.002 0.037 0.041 -0.096 

   UC 0.001 0.076 0.075 0.014  -0.002 0.048 0.049 -0.014  0.001 0.037 0.041 -0.091 

   RC 0.028 0.074 0.077 -0.036  0.041 0.046 0.050 -0.078  0.051 0.034 0.040 -0.135 

   LVS 0.014 0.045 0.045 -0.012  0.016 0.034 0.036 -0.047  0.017 0.027 0.030 -0.093 

   2SLS 0.004 0.092 0.092 -0.003  0.002 0.060 0.063 -0.054  0.004 0.046 0.050 -0.090 

   LMS 0.040 0.061 0.064 -0.050  0.047 0.045 0.053 -0.160  0.044 0.357 0.041 7.599 

   2SMM 0.013 0.056 0.064 -0.130  0.027 0.059 0.072 -0.183  0.032 0.053 0.069 -0.224 

   MML 0.135 0.066 0.107 -0.388  0.129 0.056 0.112 -0.501  0.132 0.049 0.094 -0.476 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 



131 

 

Table 37 

 

Parameter Estimates for 3 for the Non-Normally Distributed, R3
2
 = .05,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .50 100 Cons 0.216 50.720 3.067 15.537  -0.046 4.696 1.986 1.364  0.500 7.873 3.964 0.986 

   PC -0.070 14899 11.131 1337.6  -0.128 65.853 5.515 10.940  -0.192 46.014 10.386 3.430 

   UC -0.203 30.777 3.036 9.136  -0.175 43.448 2.971 13.623  -0.165 20.793 2.547 7.165 

   RC 0.029 31.713 3.107 9.207  -0.141 6.154 1.324 3.649  0.113 10.411 1.490 5.985 

   LVS -0.312 2.044 2.154 -0.051  -0.174 0.391 0.475 -0.177  -0.361 4.914 3.813 0.289 

   2SLS -0.260 0.619 0.638 -0.031  -0.142 0.587 0.653 -0.101  -0.103 0.577 0.634 -0.091 

   LMS -0.042 168.794 2.555 65.074  0.190 26.277 1.052 23.980  0.285 4.597 1.928 1.384 

   2SMM 11.448 12125 358.2 32.8  44.657 11195.372 952.401 10.755  8.873 9580.9 226.3 41.3 

   MML -1.601 3.867 156.836 -0.975  15.615 24.798 292.396 -0.915  3.730 3.521 80.031 -0.956 

  250 Cons -0.120 0.780 0.722 0.082  -0.007 0.695 0.731 -0.049  0.020 0.502 0.498 0.008 

   PC -0.239 34.653 2.774 11.494  -0.195 12.503 1.365 8.160  -0.250 24.493 1.124 20.783 

   UC -0.282 81.521 3.029 25.916  -0.266 62.220 1.133 53.900  -0.263 6.490 0.810 7.010 

   RC -0.200 10.218 1.157 7.832  -0.046 28.077 2.010 12.969  -0.056 1.229 0.479 1.567 

   LVS -0.185 0.139 0.139 -0.003  -0.157 0.107 0.121 -0.115  -0.144 0.086 0.096 -0.102 

   2SLS -0.223 0.583 0.634 -0.081  -0.171 0.432 0.454 -0.048  -0.109 0.394 0.399 -0.012 

   LMS 0.083 1.295 0.663 0.954  0.156 0.589 0.478 0.234  0.163 0.479 0.356 0.345 

   2SMM -0.136 9.730 1.269 6.669  -0.117 7.222 0.787 8.173  -0.075 47.159 1.049 43.964 

   MML 0.382 0.890 0.902 -0.013  0.420 0.553 0.623 -0.113  0.448 0.502 0.572 -0.122 

  500 Cons -0.129 0.362 0.448 -0.190  -0.016 0.284 0.325 -0.124  0.034 0.205 0.246 -0.169 

   PC -0.221 15.814 1.121 13.113  -0.181 7.115 0.848 7.393  -0.202 2.906 0.371 6.833 

   UC -0.234 22.990 2.045 10.242  -0.223 133.369 2.689 48.589  -0.197 0.389 0.249 0.564 

   RC -0.187 1.751 0.644 1.719  -0.106 0.685 0.406 0.689  -0.030 0.178 0.198 -0.100 

   LVS -0.182 0.077 0.081 -0.051  -0.153 0.064 0.072 -0.111  -0.140 0.049 0.053 -0.080 

   2SLS -0.247 0.437 0.488 -0.104  -0.193 0.324 0.353 -0.081  -0.151 0.246 0.253 -0.028 

   LMS 0.115 0.400 0.312 0.282  0.181 0.251 0.249 0.009  0.152 0.239 0.215 0.112 

   2SMM -0.176 1.042 0.394 1.642  -0.142 0.446 0.277 0.614  -0.130 0.191 0.189 0.009 

   MML 0.352 0.357 0.432 -0.173  0.418 0.302 0.321 -0.061  0.419 0.263 0.312 -0.157 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 38 

 

Parameter Estimates for 3 for the Non-Normally Distributed, R3
2
 = .05,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.05 .80 100 Cons -0.194 0.226 0.310 -0.269  -0.162 0.197 0.229 -0.142  -0.143 0.136 0.157 -0.132 

   PC -0.217 8.891 1.150 6.730  -0.227 8.528 0.703 11.132  -0.214 0.209 0.203 0.031 

   UC -0.218 224.099 0.791 282.378  -0.206 41.236 1.250 31.988  -0.206 50.904 1.015 49.165 

   RC -0.204 0.570 0.413 0.381  -0.169 1.995 0.528 2.776  -0.151 0.176 0.174 0.015 

   LVS -0.200 0.143 0.160 -0.107  -0.186 0.122 0.117 0.042  -0.174 0.096 0.099 -0.028 

   2SLS -0.224 0.382 0.382 -0.001  -0.189 0.322 0.344 -0.064  -0.185 0.220 0.222 -0.010 

   LMS -0.179 0.225 0.240 -0.062  -0.144 0.200 0.178 0.121  -0.139 0.127 0.137 -0.075 

   2SMM -0.159 0.499 0.344 0.452  -0.168 0.631 0.202 2.126  -0.135 0.141 0.197 -0.283 

   MML 0.158 71.124 5.217 12.633  -0.050 1.431 0.384 2.724  -0.088 0.162 0.265 -0.388 

  250 Cons -0.190 0.103 0.115 -0.102  -0.163 0.076 0.081 -0.067  -0.139 0.064 0.064 -0.004 

   PC -0.215 0.257 0.172 0.494  -0.210 0.087 0.089 -0.022  -0.190 0.069 0.064 0.079 

   UC -0.231 1.221 0.318 2.834  -0.211 0.088 0.088 0.000  -0.191 0.068 0.065 0.053 

   RC -0.191 0.297 0.211 0.408  -0.167 0.081 0.081 -0.002  -0.141 0.065 0.071 -0.088 

   LVS -0.203 0.073 0.070 0.038  -0.189 0.054 0.057 -0.043  -0.172 0.047 0.045 0.042 

   2SLS -0.216 0.171 0.204 -0.164  -0.202 0.106 0.105 0.005  -0.189 0.085 0.080 0.066 

   LMS -0.179 0.099 0.097 0.018  -0.154 0.071 0.079 -0.106  -0.139 0.059 0.064 -0.071 

   2SMM -0.199 0.090 0.110 -0.183  -0.168 0.085 0.107 -0.208  -0.156 0.076 0.105 -0.281 

   MML -0.075 0.103 0.193 -0.468  -0.076 0.082 0.396 -0.791  -0.056 0.077 0.143 -0.460 

  500 Cons -0.190 0.063 0.068 -0.079  -0.167 0.048 0.047 0.038  -0.145 0.035 0.038 -0.091 

   PC -0.218 0.071 0.075 -0.053  -0.210 0.050 0.047 0.067  -0.192 0.035 0.035 0.024 

   UC -0.218 0.074 0.081 -0.097  -0.210 0.051 0.049 0.041  -0.192 0.035 0.034 0.027 

   RC -0.192 0.073 0.079 -0.071  -0.167 0.048 0.048 0.012  -0.143 0.033 0.036 -0.100 

   LVS -0.206 0.045 0.046 -0.027  -0.192 0.035 0.032 0.073  -0.177 0.026 0.027 -0.022 

   2SLS -0.217 0.090 0.095 -0.051  -0.208 0.062 0.057 0.096  -0.190 0.044 0.044 -0.005 

   LMS -0.179 0.062 0.065 -0.053  -0.162 0.838 0.046 17.387  -0.149 0.035 0.064 -0.454 

   2SMM -0.208 0.055 0.066 -0.176  -0.177 0.058 0.073 -0.202  -0.160 0.053 0.066 -0.196 

   MML -0.070 0.069 0.135 -0.488  -0.064 0.056 0.103 -0.455  -0.065 0.049 0.086 -0.432 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 39 

 

Parameter Estimates for 3 for the Non-Normally Distributed, R3
2
 = .10,  = 0.50 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  % Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .50 100 Cons 0.428 7.837 2.982 1.629  0.222 27.148 8.679 2.128  0.240 1637.924 20.812 77.700 

   PC -0.288 13.120 2.307 4.686  -0.249 3957.9 6.392 618.222  -0.268 30.584 2.681 10.408 

   UC -0.262 28.496 3.665 6.776  -0.275 112.030 6.735 15.634  0.010 68.231 3.043 21.421 

   RC -0.103 6.209 1.278 3.859  0.046 6.267 1.425 3.396  0.054 14.668 1.786 7.214 

   LVS -0.359 1.467 1.446 0.015  -0.503 4.801 5.242 -0.084  -0.135 1.258 1.308 -0.038 

   2SLS -0.378 0.640 0.676 -0.054  -0.239 0.626 0.662 -0.055  -0.182 0.531 0.561 -0.054 

   LMS 0.084 965.6 1.7 576.2  0.028 27.579 1.685 15.364  0.176 3.041 1.502 1.024 

   2SMM 36.211 986235 583.3 1689.7  -82.324 4759550 1831.7 2597.4  -4.963 109070 104.7 1040.8 

   MML 0.778 2.024 9.303 -0.782  0.425 4.348 3.538 0.229  38.679 1.803 557.758 -0.997 

  250 Cons -0.201 0.615 0.684 -0.101  -0.096 0.564 0.661 -0.146  -0.038 0.445 0.535 -0.168 

   PC -0.275 33.062 2.112 14.651  -0.322 17.023 1.377 11.366  -0.300 14.856 1.112 12.357 

   UC -0.399 19.988 1.811 10.035  -0.309 13.065 1.378 8.482  -0.303 13.045 1.081 11.063 

   RC -0.222 14.395 1.722 7.358  -0.173 2.594 0.668 2.882  -0.095 3.020 0.620 3.871 

   LVS -0.274 0.129 0.138 -0.062  -0.234 0.108 0.113 -0.052  -0.223 0.086 0.098 -0.120 

   2SLS -0.338 0.521 0.576 -0.094  -0.239 0.456 0.501 -0.090  -0.226 0.405 0.453 -0.106 

   LMS 0.023 0.784 0.557 0.409  0.120 0.551 0.433 0.273  0.098 0.637 0.440 0.448 

   2SMM -0.301 326.387 3.587 89.984  -0.190 35.183 1.869 17.828  -0.193 52.454 1.893 26.704 

   MML 0.172 0.585 0.701 -0.165  0.274 0.487 0.531 -0.084  0.280 0.424 0.491 -0.136 

  500 Cons -0.190 0.339 0.394 -0.138  -0.106 0.267 0.280 -0.047  -0.044 0.191 0.239 -0.200 

   PC -0.306 49.483 2.121 22.328  -0.331 4.745 0.500 8.490  -0.310 20.743 1.468 13.125 

   UC -0.350 15.582 1.829 7.518  -0.309 0.823 0.369 1.227  -0.271 11.460 0.687 15.672 

   RC -0.223 5.231 0.573 8.130  -0.154 0.907 0.358 1.530  -0.103 0.219 0.192 0.143 

   LVS -0.272 0.075 0.079 -0.053  -0.246 0.060 0.066 -0.083  -0.223 0.047 0.055 -0.147 

   2SLS -0.307 0.432 0.433 -0.004  -0.300 0.413 0.386 0.071  -0.244 0.243 0.288 -0.156 

   LMS 0.027 0.356 0.331 0.076  0.059 0.270 0.218 0.238  0.062 0.194 0.191 0.016 

   2SMM -0.269 5.321 0.325 15.354  -0.209 3.881 0.363 9.692  -0.194 1.371 0.331 3.137 

   MML 0.195 0.320 0.406 -0.211  0.246 0.257 0.286 -0.102  0.287 0.225 0.263 -0.144 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 2SLS=Two-stage 

least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 40 

 

Parameter Estimates for 3 for the Non-Normally Distributed, R3
2
 = .10,  = 0.80 Conditions 

    12 = .20  12 = .40    12 = .60 

R3
2
  N Method 

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio  

% 

Bias SE SD 

Rel. 

Ratio 

.10 .80 100 Cons -0.285 0.218 0.274 -0.204  -0.242 0.181 0.215 -0.155  -0.210 0.146 0.191 -0.236 

   PC -0.314 5.370 0.682 6.874  -0.289 0.665 0.362 0.839  -0.269 0.723 0.344 1.102 

   UC -0.319 11.907 1.850 5.437  -0.306 0.862 0.519 0.662  -0.280 0.495 0.265 0.867 

   RC -0.265 4.579 0.804 4.695  -0.247 1.241 0.409 2.037  -0.221 0.333 0.319 0.043 

   LVS -0.301 0.143 0.145 -0.016  -0.270 0.118 0.118 0.003  -0.249 0.098 0.100 -0.018 

   2SLS -0.288 0.365 0.416 -0.123  -0.286 0.291 0.305 -0.043  -0.257 0.229 0.279 -0.178 

   LMS -0.276 0.223 0.219 0.014  -0.227 0.188 0.179 0.053  -0.209 0.135 0.146 -0.075 

   2SMM -0.258 0.594 0.353 0.682  -0.232 0.550 0.243 1.264  -0.208 0.146 0.189 -0.228 

   MML -0.177 0.171 0.306 -0.441  -0.134 0.164 0.253 -0.355  -0.115 0.136 0.227 -0.399 

  250 Cons -0.284 0.100 0.111 -0.094  -0.251 0.078 0.077 0.006  -0.221 0.061 0.062 -0.021 

   PC -0.312 0.205 0.165 0.238  -0.297 0.088 0.083 0.061  -0.274 0.070 0.064 0.101 

   UC -0.312 1.231 0.460 1.679  -0.298 0.088 0.080 0.113  -0.275 0.087 0.069 0.262 

   RC -0.283 0.145 0.157 -0.078  -0.255 0.081 0.077 0.049  -0.221 0.061 0.063 -0.029 

   LVS -0.297 0.070 0.072 -0.023  -0.278 0.055 0.054 0.020  -0.254 0.045 0.043 0.048 

   2SLS -0.308 0.182 0.190 -0.043  -0.296 0.109 0.114 -0.048  -0.274 0.084 0.081 0.030 

   LMS -0.271 0.097 0.099 -0.026  -0.241 0.074 0.079 -0.066  -0.223 0.055 0.059 -0.061 

   2SMM -0.298 0.085 0.101 -0.159  -0.259 0.085 0.115 -0.265  -0.234 0.075 0.090 -0.174 

   MML -0.169 0.102 0.164 -0.378  -0.131 0.085 0.155 -0.451  -0.113 0.083 0.142 -0.413 

  500 Cons -0.279 0.063 0.067 -0.071  -0.254 0.048 0.051 -0.052  -0.225 0.034 0.039 -0.118 

   PC -0.309 0.069 0.072 -0.039  -0.297 0.049 0.048 0.027  -0.273 0.034 0.036 -0.051 

   UC -0.309 0.072 0.079 -0.093  -0.297 0.049 0.047 0.048  -0.274 0.034 0.036 -0.052 

   RC -0.281 0.068 0.073 -0.068  -0.254 0.047 0.048 -0.010  -0.224 0.032 0.037 -0.149 

   LVS -0.295 0.044 0.044 0.007  -0.279 0.034 0.034 0.007  -0.257 0.026 0.028 -0.072 

   2SLS -0.303 0.087 0.089 -0.022  -0.296 0.062 0.063 -0.015  -0.271 0.043 0.043 -0.011 

   LMS -0.266 0.060 0.062 -0.032  -0.249 0.046 0.048 -0.045  -0.231 0.349 0.039 7.930 

   2SMM -0.298 0.057 0.064 -0.114  -0.266 0.060 0.072 -0.171  -0.245 0.052 0.066 -0.206 

   MML -0.150 0.070 0.119 -0.409  -0.128 0.062 0.123 -0.500  -0.097 0.055 0.109 -0.493 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable scores. 

2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. MML=Marginal maximum 

likelihood. 
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Table 41 

 

Convergence for Normally Distributed Data and =.5 

  12 = .20  12 = .40    12 = .60 

N Method R3
2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10 

100 Cons 97.0 96.8 96.4  98.0 96.0 95.8  93.8 94.6 97.0 

 PC 84.4 79.2 80.2  80.4 80.2 80.2  80.2 78.8 76.8 

 UC 76.2 75.0 73.0  70.0 72.8 76.2  72.6 72.6 71.2 

 RC 77.2 78.4 78.2  81.4 81.0 79.8  75.8 72.2 80.0 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

250 Cons 99.6 100.0 98.8  99.8 100.0 98.8  99.8 99.6 99.6 

 PC 92.8 90.0 90.6  92.0 90.8 93.4  91.4 89.8 90.0 

 UC 83.4 82.0 86.0  81.8 81.8 81.2  80.4 80.8 82.2 

 RC 87.8 87.6 89.6  86.4 86.2 88.4  83.8 85.6 87.6 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

500 Cons 99.2 99.6 100.0  99.8 100.0 99.8  99.2 100.0 100.0 

 PC 97.8 96.0 96.6  97.0 97.0 96.8  97.6 96.8 92.8 

 UC 95.2 92.6 93.0  92.6 93.4 90.6  89.2 90.8 88.4 

 RC 92.8 95.4 96.4  92.4 92.0 94.6  92.4 92.4 93.4 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable 

scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. 

MML=Marginal maximum likelihood. 
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Table 42 

 

Convergence for Normally Distributed Data and =.8 

  12 = .20  12 = .40    12 = .60 

N Method R3
2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10 

100 Cons 99.4 100.0 99.4  99.6 100.0 99.8  99.4 100.0 100.0 

 PC 100.0 99.8 99.8  98.8 100.0 100.0  98.4 99.8 100.0 

 UC 99.2 99.6 98.6  99.8 99.0 99.6  100.0 100.0 99.4 

 RC 99.8 99.8 100.0  100.0 99.6 100.0  99.6 99.8 99.8 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

250 Cons 99.8 99.8 99.4  99.2 99.2 100.0  99.8 99.6 100.0 

 PC 98.8 99.8 100.0  100.0 99.6 100.0  100.0 99.0 100.0 

 UC 99.8 100.0 99.4  100.0 100.0 99.2  99.8 100.0 99.6 

 RC 100.0 100.0 99.8  100.0 100.0 99.6  99.2 100.0 100.0 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

500 Cons 99.8 99.4 100.0  99.8 99.4 100.0  99.8 99.2 100.0 

 PC 100.0 98.4 100.0  100.0 100.0 100.0  100.0 100.0 99.0 

 UC 99.0 100.0 99.8  97.8 100.0 99.8  99.0 98.8 100.0 

 RC 99.8 99.8 99.6  99.8 99.8 99.6  99.8 100.0 100.0 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable 

scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. 

MML=Marginal maximum likelihood. 
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Table 43 

 

Convergence for Non-Normally Distributed Data and =.5 

  12 = .20  12 = .40    12 = .60 

N Method R3
2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10 

100 Cons 90.8 92.0 89.6  90.4 93.0 90.4  91.6 91.4 93.0 

 PC 70.4 72.6 70.8  76.6 78.0 77.8  82.4 81.6 83.2 

 UC 71.8 69.6 70.2  73.4 72.4 74.0  79.0 78.2 80.0 

 RC 73.6 76.0 74.2  78.4 80.6 77.0  75.4 80.0 82.6 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

250 Cons 100.0 100.0 100.0  100.0 99.8 99.6  100.0 99.4 99.6 

 PC 89.4 89.0 89.2  94.2 94.4 93.8  96.6 94.4 94.6 

 UC 83.0 86.0 86.4  88.6 94.4 90.4  95.4 95.0 93.2 

 RC 86.4 87.6 89.8  91.4 91.2 91.0  93.6 92.2 94.8 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

500 Cons 100.0 100.0 100.0  100.0 100.0 99.8  99.8 100.0 100.0 

 PC 96.6 94.4 94.8  97.2 99.4 97.8  99.4 99.6 99.2 

 UC 90.6 89.6 90.0  96.4 97.0 96.0  98.0 99.6 99.4 

 RC 93.4 90.8 91.2  97.0 96.4 95.6  98.6 98.2 99.0 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable 

scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. 

MML=Marginal maximum likelihood. 
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Table 44 

 

Convergence for Non-Normally Distributed Data and =.8 

  12 = .20  12 = .40    12 = .60 

N Method R3
2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10  R3

2
=.00 R3

2
=.05 R3

2
=.10 

100 Cons 99.8 100.0 100.0  99.8 99.8 99.8  100.0 99.6 99.6 

 PC 99.0 97.2 97.4  99.4 98.2 98.8  99.6 99.8 98.8 

 UC 95.4 95.6 93.4  97.0 97.0 96.4  98.6 99.8 98.8 

 RC 93.4 94.8 94.8  95.2 97.0 96.8  98.8 99.0 99.2 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

250 Cons 99.8 100.0 100.0  100.0 100.0 99.8  99.8 100.0 100.0 

 PC 99.8 99.2 98.6  99.8 100.0 98.2  99.8 99.8 99.6 

 UC 98.8 99.4 96.8  99.2 100.0 100.0  99.4 99.6 100.0 

 RC 98.4 99.4 99.2  99.6 99.8 99.8  99.8 99.8 99.8 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

500 Cons 100.0 100.0 100.0  100.0 100.0 100.0  100.0 100.0 100.0 

 PC 99.8 99.8 100.0  99.0 100.0 100.0  99.6 99.8 100.0 

 UC 99.4 99.2 99.8  100.0 99.2 100.0  100.0 99.2 100.0 

 RC 99.6 99.8 100.0  100.0 99.8 100.0  100.0 99.0 99.0 

 LVS            

 2SLS            

 LMS            

 2SMM            

 MML            

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. LVS=Latent variable 

scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-step method of moments. 

MML=Marginal maximum likelihood. 
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Table 45 

 

Type I error rates for R3
2
=.00 and =.50 

    Normally Distributed  Non-Normally Distributed 

R3
2
  N Method 12 = .20 12 = .40   12 = .60  12 = .20 12 = .40   12 = .60 

.00 .50 100 Cons 0.025 0.033 0.038  0.073 0.073 0.138 

   PC 0.000 0.005 0.005  0.011 0.010 0.015 

   UC 0.129 0.123 0.118  0.095 0.063 0.020 

   RC 0.161 0.133 0.179  0.201 0.161 0.164 

   LVS 0.066 0.068 0.044  0.070 0.046 0.082 

   2SLS 0.056 0.070 0.060  0.076 0.070 0.082 

   LMS 0.018 0.018 0.024  0.026 0.022 0.074 

   2SMM 0.000 0.000 0.000  0.008 0.010 0.034 

   MML 0.050 0.046 0.032  0.084 0.116 0.118 

  250 Cons 0.050 0.048 0.038  0.108 0.198 0.308 

   PC 0.006 0.004 0.000  0.007 0.019 0.019 

   UC 0.091 0.066 0.107  0.082 0.041 0.023 

   RC 0.180 0.218 0.255  0.236 0.206 0.235 

   LVS 0.038 0.052 0.054  0.100 0.106 0.106 

   2SLS 0.072 0.064 0.068  0.056 0.092 0.072 

   LMS 0.024 0.018 0.028  0.096 0.138 0.204 

   2SMM 0.006 0.010 0.010  0.034 0.036 0.050 

   MML 0.024 0.024 0.040  0.206 0.308 0.400 

  500 Cons 0.052 0.044 0.042  0.166 0.382 0.579 

   PC 0.012 0.012 0.012  0.017 0.033 0.054 

   UC 0.065 0.082 0.083  0.091 0.048 0.063 

   RC 0.144 0.195 0.247  0.203 0.285 0.465 

   LVS 0.026 0.044 0.046  0.098 0.176 0.262 

   2SLS 0.076 0.062 0.062  0.072 0.082 0.078 

   LMS 0.026 0.036 0.028  0.298 0.458 0.558 

   2SMM 0.036 0.014 0.010  0.052 0.102 0.104 

   MML 0.032 0.032 0.028  0.496 0.676 0.812 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. 

LVS=Latent variable scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 

2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 46 

 

Type I error rates for R3
2
=.00 and =.80 

    Normally Distributed  Non-Normally Distributed 

R3
2
  N Method 12 = .20 12 = .40   12 = .60  12 = .20 12 = .40   12 = .60 

.00 .80 100 Cons 0.078 0.066 0.074  0.106 0.104 0.094 

   PC 0.080 0.063 0.059  0.048 0.044 0.034 

   UC 0.073 0.064 0.056  0.059 0.047 0.037 

   RC 0.070 0.058 0.060  0.077 0.086 0.075 

   LVS 0.068 0.042 0.046  0.060 0.058 0.052 

   2SLS 0.060 0.056 0.036  0.026 0.044 0.054 

   LMS 0.074 0.070 0.074  0.092 0.124 0.124 

   2SMM 0.082 0.070 0.088  0.140 0.182 0.242 

   MML 0.304 0.238 0.276  0.404 0.414 0.394 

  250 Cons 0.056 0.065 0.052  0.120 0.144 0.140 

   PC 0.051 0.054 0.054  0.064 0.054 0.058 

   UC 0.046 0.058 0.050  0.073 0.052 0.060 

   RC 0.042 0.068 0.044  0.104 0.137 0.122 

   LVS 0.046 0.052 0.038  0.078 0.072 0.076 

   2SLS 0.058 0.070 0.062  0.066 0.050 0.044 

   LMS 0.048 0.056 0.052  0.142 0.198 0.202 

   2SMM 0.040 0.044 0.070  0.158 0.186 0.236 

   MML 0.230 0.186 0.200  0.488 0.556 0.526 

  500 Cons 0.050 0.056 0.030  0.106 0.166 0.232 

   PC 0.048 0.052 0.032  0.036 0.053 0.060 

   UC 0.053 0.049 0.022  0.040 0.062 0.066 

   RC 0.046 0.042 0.026  0.102 0.164 0.238 

   LVS 0.060 0.040 0.022  0.062 0.094 0.124 

   2SLS 0.042 0.072 0.046  0.046 0.068 0.080 

   LMS 0.068 0.060 0.030  0.160 0.250 0.296 

   2SMM 0.066 0.060 0.070  0.124 0.174 0.264 

   MML 0.110 0.130 0.164  0.580 0.640 0.714 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. 

LVS=Latent variable scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 

2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 47 

 

Empirical power estimates for R3
2
=.05 and =.50 

    Normally Distributed  Non-Normally Distributed 

R3
2
  N Method 12 = .20 12 = .40   12 = .60  12 = .20 12 = .40   12 = .60 

.05 .50 100 Cons 0.058 0.046 0.047  0.054 0.088 0.118 

   PC 0.010 0.010 0.008  0.017 0.005 0.020 

   UC 0.099 0.113 0.061  0.078 0.055 0.049 

   RC 0.143 0.151 0.219  0.163 0.144 0.190 

   LVS 0.126 0.132 0.092  0.076 0.076 0.104 

   2SLS 0.068 0.084 0.078  0.056 0.078 0.078 

   LMS 0.050 0.044 0.030  0.030 0.030 0.052 

   2SMM 0.000 0.002 0.002  0.010 0.018 0.026 

   MML 0.074 0.074 0.046  0.098 0.104 0.124 

  250 Cons 0.196 0.130 0.127  0.090 0.182 0.290 

   PC 0.058 0.007 0.020  0.007 0.015 0.021 

   UC 0.105 0.125 0.104  0.081 0.055 0.025 

   RC 0.208 0.174 0.227  0.256 0.213 0.245 

   LVS 0.406 0.318 0.258  0.074 0.122 0.132 

   2SLS 0.112 0.080 0.074  0.066 0.074 0.070 

   LMS 0.300 0.228 0.166  0.078 0.190 0.208 

   2SMM 0.010 0.014 0.020  0.038 0.050 0.070 

   MML 0.330 0.264 0.174  0.202 0.304 0.400 

  500 Cons 0.408 0.316 0.220  0.142 0.360 0.562 

   PC 0.204 0.132 0.072  0.017 0.026 0.040 

   UC 0.181 0.120 0.110  0.083 0.037 0.046 

   RC 0.189 0.187 0.188  0.225 0.259 0.436 

   LVS 0.670 0.570 0.414  0.104 0.190 0.232 

   2SLS 0.162 0.104 0.112  0.074 0.068 0.080 

   LMS 0.632 0.540 0.374  0.278 0.474 0.538 

   2SMM 0.048 0.042 0.044  0.040 0.062 0.102 

   MML 0.632 0.570 0.370  0.476 0.718 0.794 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. 

LVS=Latent variable scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 

2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 48 

 

Empirical power estimates for R3
2
=.05 and =.80 

    Normally Distributed  Non-Normally Distributed 

R3
2
  N Method 12 = .20 12 = .40   12 = .60  12 = .20 12 = .40   12 = .60 

.05 .80 100 Cons 0.560 0.514 0.360  0.100 0.130 0.106 

   PC 0.509 0.482 0.335  0.043 0.053 0.028 

   UC 0.504 0.473 0.338  0.075 0.060 0.030 

   RC 0.487 0.470 0.325  0.095 0.085 0.107 

   LVS 0.554 0.526 0.364  0.062 0.048 0.056 

   2SLS 0.332 0.330 0.218  0.060 0.070 0.064 

   LMS 0.560 0.536 0.388  0.108 0.108 0.106 

   2SMM 0.090 0.118 0.116  0.118 0.174 0.240 

   MML 0.648 0.606 0.530  0.392 0.442 0.362 

  250 Cons 0.946 0.861 0.697  0.076 0.118 0.130 

   PC 0.940 0.853 0.681  0.040 0.050 0.050 

   UC 0.932 0.848 0.682  0.050 0.048 0.042 

   RC 0.930 0.840 0.672  0.060 0.110 0.134 

   LVS 0.946 0.888 0.716  0.036 0.076 0.062 

   2SLS 0.762 0.644 0.432  0.062 0.064 0.048 

   LMS 0.944 0.890 0.714  0.118 0.180 0.216 

   2SMM 0.188 0.156 0.118  0.152 0.194 0.246 

   MML 0.862 0.802 0.658  0.480 0.550 0.568 

  500 Cons 0.996 0.986 0.950  0.114 0.126 0.212 

   PC 0.996 0.986 0.948  0.056 0.042 0.052 

   UC 0.994 0.982 0.945  0.054 0.046 0.056 

   RC 0.994 0.982 0.942  0.106 0.122 0.206 

   LVS 0.998 0.988 0.976  0.078 0.058 0.084 

   2SLS 0.964 0.904 0.758  0.060 0.038 0.058 

   LMS 0.998 0.990 0.968  0.164 0.224 0.284 

   2SMM 0.304 0.272 0.232  0.168 0.208 0.218 

   MML 0.982 0.964 0.896  0.600 0.690 0.686 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. 

LVS=Latent variable scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 2SMM=Two-

step method of moments. MML=Marginal maximum likelihood. 
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Table 49 

 

Empirical power estimates for R3
2
=.10 and =.50 

    Normally Distributed  Non-Normally Distributed 

R3
2
  N Method 12 = .20 12 = .40   12 = .60  12 = .20 12 = .40   12 = .60 

.10 .50 100 Cons 0.083 0.088 0.029  0.067 0.082 0.101 

   PC 0.012 0.015 0.005  0.014 0.023 0.002 

   UC 0.077 0.110 0.090  0.100 0.054 0.035 

   RC 0.128 0.135 0.198  0.181 0.148 0.121 

   LVS 0.216 0.198 0.126  0.068 0.084 0.078 

   2SLS 0.084 0.088 0.076  0.094 0.078 0.058 

   LMS 0.088 0.086 0.034  0.026 0.056 0.056 

   2SMM 0.006 0.004 0.004  0.004 0.008 0.018 

   MML 0.148 0.134 0.068  0.108 0.110 0.134 

  250 Cons 0.374 0.273 0.203  0.096 0.185 0.317 

   PC 0.128 0.079 0.027  0.004 0.026 0.023 

   UC 0.130 0.116 0.097  0.067 0.066 0.032 

   RC 0.176 0.158 0.226  0.218 0.204 0.245 

   LVS 0.636 0.500 0.384  0.096 0.122 0.148 

   2SLS 0.150 0.116 0.078  0.080 0.078 0.070 

   LMS 0.514 0.378 0.278  0.092 0.200 0.262 

   2SMM 0.028 0.022 0.020  0.022 0.048 0.088 

   MML 0.572 0.416 0.300  0.202 0.338 0.458 

  500 Cons 0.642 0.567 0.406  0.168 0.369 0.622 

   PC 0.340 0.295 0.121  0.032 0.022 0.036 

   UC 0.265 0.214 0.122  0.089 0.044 0.040 

   RC 0.253 0.245 0.193  0.252 0.276 0.459 

   LVS 0.872 0.834 0.692  0.116 0.158 0.248 

   2SLS 0.244 0.226 0.168  0.068 0.096 0.078 

   LMS 0.872 0.802 0.652  0.304 0.456 0.596 

   2SMM 0.060 0.062 0.046  0.062 0.100 0.130 

   MML 0.904 0.838 0.678  0.478 0.700 0.802 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. 

LVS=Latent variable scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 

2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 50 

 

Empirical power estimates for R3
2
=.10 and =.80 

    Normally Distributed  Non-Normally Distributed 

R3
2
  N Method 12 = .20 12 = .40   12 = .60  12 = .20 12 = .40   12 = .60 

.10 .80 100 Cons 0.835 0.806 0.610  0.114 0.126 0.153 

   PC 0.812 0.770 0.546  0.053 0.055 0.059 

   UC 0.799 0.743 0.533  0.058 0.071 0.067 

   RC 0.776 0.730 0.539  0.082 0.083 0.107 

   LVS 0.856 0.790 0.584  0.066 0.058 0.072 

   2SLS 0.628 0.554 0.366  0.074 0.046 0.072 

   LMS 0.822 0.764 0.588  0.112 0.130 0.140 

   2SMM 0.160 0.174 0.110  0.136 0.186 0.236 

   MML 0.828 0.796 0.636  0.396 0.402 0.428 

  250 Cons 0.998 0.986 0.962  0.078 0.104 0.156 

   PC 0.994 0.980 0.960  0.053 0.026 0.050 

   UC 0.996 0.978 0.954  0.058 0.024 0.054 

   RC 0.996 0.982 0.948  0.075 0.084 0.134 

   LVS 0.998 0.982 0.970  0.056 0.048 0.088 

   2SLS 0.938 0.880 0.776  0.068 0.056 0.062 

   LMS 0.998 0.978 0.962  0.126 0.180 0.230 

   2SMM 0.292 0.242 0.182  0.140 0.216 0.216 

   MML 0.978 0.958 0.898  0.414 0.532 0.532 

  500 Cons 1.000 1.000 0.998  0.106 0.148 0.224 

   PC 1.000 1.000 0.998  0.050 0.046 0.052 

   UC 1.000 1.000 0.998  0.050 0.058 0.042 

   RC 1.000 1.000 1.000  0.104 0.154 0.232 

   LVS 1.000 1.000 1.000  0.064 0.080 0.100 

   2SLS 1.000 0.992 0.970  0.066 0.060 0.056 

   LMS 1.000 1.000 1.000  0.160 0.228 0.322 

   2SMM 0.478 0.412 0.334  0.118 0.168 0.198 

   MML 1.000 0.996 0.992  0.608 0.702 0.748 

Note.  Cons=Constrained. PC=Partially constrained. UC=Unconstrained. RC=Residual-centered unconstrained. 

LVS=Latent variable scores. 2SLS=Two-stage least squares. LMS=latent moderated structural equations. 

2SMM=Two-step method of moments. MML=Marginal maximum likelihood. 
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Table 51 

 

Recommendations for Type of Method Applied Researchers Should Use 

 

 Minimum 

N 

First-Order Effects  Interaction Effect  Loadings 

 Bias Relative Ratio  Bias Relative Ratio  0.50 0.80 

Normal (absolute comparisons) 

 Constrained 250+ Slight Good  None OK if N > 250  Yes Yes 

 LVS 100 None Good  None Good  No Yes 

Non-Normal (relative comparisons, not absolute) 

 MML 500+ Biased Poor  Most accurate Poor  Yes No 

 LMS 500+ Most accurate Poor  2nd most accurate Poor  Yes Yes 
Note.  LVS=Latent variable scores. MML=Marginal maximum likelihood. LMS=latent moderated structural equations.  
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Figure 1: Relation of Achievement and Ability Moderated by Effort 
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Figure 2: Matched-Pairs, Product-Indicator Model 
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Figure 3: All Possible Pairs, Product-Indicator Model 
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Figure 4: Single Best Pair, Product-Indicator Model 
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Figure 5: Two-Stage Least Squares Interaction Model 
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Figure 6: Interaction Model 
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Figure 7: Recommendations for Type of Procedure 

 

 

Is data 

multivariately 

normally 

distributed? 

Constrained 

Approach 
LVS MML LMS 

Effects you are 

interested in 

testing for 

All methods perform poorly.  Thus the 

following recommendations are based on 

relative comparisons not absolute. 

interaction effects 
interaction effects 

and first-order effects 

NO 

N ≥ 250 N  250 

 4 

YES 

Sample 

Size 

# of indicators 

per latent 

variable 

≥ 4 



154 

 

Appendix A: Summary of Constraints for 3-indicator Interaction Model 

 

1. Constraint #1 - the loadings for each of the interaction effects indicators is 

constrained to equal the product of their associated loadings on 1 and 2 
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2. Constraint #2 - the variance of the interaction latent variable is equal to the 

product of the variances of 1 and 2 plus the squared covariance between 1 and 

2 [imposed in conjunction with the normality constraint] 
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3. Normality Constraint – The second constraint is based on the assumption that 1  

and 2  are normally distributed.  If this assumption holds true then the covariance 

of 1 2   and each of the first-order terms (i.e., 1  and 2 ) is zero, (i.e., 31 = 0 and 

32 = 0)].  Thus, the second constraint should also be imposed in conjunction with 

the normality constraint in which 31 and 32 are constrained to equal zero. 

 

4. Constraint #3 – constrains the errors of the each of the indicators for the 

interaction latent variable 

No Mean Centering: 
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5. Constraint #4 - the mean of the interaction latent variable is constrained to equal 

the covariance between 1 and 2 

3 = 21, 

   

 

 

 

 

  

NOTES 

 Constrained = constraints #1, 2, 3, 4, normality 

 Partially Constrained = constraints #1, 3, & 4 

 Unconstrained = no constraints   
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