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Forest cover change has profound impact on global carbon cycle, hydrological 

processes, energy balance, and biodiversity. The primary goal of this dissertation is to 

improve forest cover change characterization by filling a number of knowledge gaps 

in forest change studies. These include use of Corona data to extend satellite based 

forest cover change mapping back to pre-Landsat years in the 1960s, quantification of 

forest cover change over four decades (1960s – 2005) for a major forested province in 

China using Corona and Landsat data, and development of more accurate patch size-



frequency modeling methods for improved representation of forest disturbances in 

ecosystem and other spatially explicit models. 

With comprehensive data coverages in the 1960s, Corona data can be used to 

extend Landsat-based forest change analysis by up to a decade. The usefulness of 

such data, however, is hindered by poor geolocation accuracy and lack of multi-

spectral bands. In this study, it was demonstrated that combined use of texture 

features and the advanced support vector machines allowed forest mapping with 

accuracies of up to 95% using Corona data. Further, a semi-automated method was 

developed for rapid registration of Corona images with residual errors as low as 100 

m. These methods were used to assess the forest cover in the 1960s in Sichuan, a 

major forest province in China. Together with global forest cover change products 

derived using Landsat data, these results revealed that the forest cover in Sichuan 

Province was reduced from 45.19% in the 1960s to 38.98% by 1975 and further down 

to 28.91% by 1990. It then stayed relatively stable between 1990 and 2005, which 

contradicted trends reported by inventory data. The turning point between sharp 

decreases before 1990 and the stable period after 1990 likely reflected transitions in 

forest policies from focuses on timber production to forest conservation.  

Representation of forest disturbances in spatially explicit ecosystem models 

typically relies on patch size-frequency models to allocate an appropriate amount of 

disturbances to each patch size level. Existing patch size-frequency models, however, 

do not provide accurate representation of the total disturbance area nor the patch sizes 

at each frequency level. In this study, a hierarchical method was developed for 

modeling patch size-frequency distribution. Evaluation of this method over China 



revealed that it greatly improved the accuracy in representing the patch size at 

different frequency levels and reduced error in total disturbance area estimation over 

existing methods from around 40% to less than 10%. 

The significance of this dissertation is the contribution to improve the 

characterization of forest cover change by extending the satellite-based forest cover 

change monitoring back to the 1960s and developing a more accurate patch size 

distribution model to represent the forest disturbance in ecosystem models. The work 

in the dissertation has a broader impact beyond developing methods and models, as 

they provide essential basis to understand the relationship between the long-term 

change of forest and the socioeconomic transitions. They also improve the capacities 

of ecosystem and other spatially explicit models to simulate the vegetation dynamics 

and the resultant biodiversity and carbon dynamics. 
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 Chapter 1: Introduction 

1.1 Information needed for forest cover and change 

Forest, covering about 30% of global land surface, is important in balancing carbon 

cycle, water exchange, and terrestrial energy budget (Defries et al. 1995). Global 

forest plays a role as terrestrial carbon sink sequestering 2.4±0.4 petagrams of carbon 

per year (Pg C year
-1

) from 1990 to 2007 (Pan et al. 2011). Land-use activities have 

caused a great loss of ~7 to ~11 million hectares of forest in the past three centuries, 

which affected the biogeophysical cycles, as well as habitat quality and human 

wellbeing (Foley et al. 2005). The change in forest cover, especially, the deforestation, 

is a major driver of anthropogenic climate change (Bonan 2008) and the major driver 

of biodiversity loss (Pimm et al. 2014). Until 2000, 70% of the remaining forest on 

Earth is within 1 km of the forest’s edge, subject to the degrading effect of forest 

fragmentation (Haddad et al. 2015) and the degradation in carbon stock near forest 

edge (Chaplin-Kramer et al. 2015). Therefore, an accurate monitoring of forest cover 

change over a long-term period is desired to assist the evaluation of the impact of past 

forest change to ecosystem and climate change, to seek for solutions of many 

environmental problems and to assist the prediction of future changes.  

1.2 Changes in China’s forest and its forest policies 

China, the most populous country on Earth, is one of the countries with more 

than 1 million km
2
 of forest (Hansen et al. 2013) and is the largest emitter of fossil-

fuel CO2 into the atmosphere which increased to 1.5 Pg C year
-1

 by 2006 (Piao et al. 

2009). However, China’s terrestrial ecosystem played a role of carbon sink in the 



2 

 

range of 0.19-0.26 Pg C yr
-1

, which is comparable to that in the terrestrial biosphere 

of Europe (Janssens et al. 2003). It also absorbed 28-37 per cent of the fossil-fuel 

carbon emissions during the two decades before 2000 (Piao et al. 2009). Among the 

two carbon sink categories in terrestrial ecosystem, vegetation and soil, the average 

carbon balance in China’s forest is 75.2±34.7 teragrams (Tg) C yr
-1

 during 1982 and 

2003, which is equivalent to the total carbon in soil (Fang et al. 2007; Piao et al. 

2009). As a result, the history and future of forest cover changes in China have 

regional to global consequences considering the country’s sheer magnitude and rapid 

development.  

China has undergone frequent social and economic transitions since the 

founding of the current government in 1949, which at times led it to fast economic 

development and natural resource consumption. At the same time, the frequently 

changed forestry policies, with goals transitioned from providing timber products and 

fuel woods to afforestation and conserving natural resources, have likely caused 

drastic forest cover change in China over decades (Albers et al. 1998; Liu et al. 2008; 

Zeng et al. 2015). However, literature presents sharp controversy on China’s long-

term forest dynamics. Some studies acknowledged the success of China’s 

afforestation programs by citing the official statistics that the national forest cover 

increased from 12.7% in 1976 to 20.36% in 2008 (Fang et al. 2001; FAO and JRC 

2012; Nabuurs et al. 2007). Whereas, others remained critical by showing the 

irreversible destruction to the natural forests (Smil 1984) and the continuous 

deforestation in some key forest regions (Gao and Liu 2012). The rest kept 

conservative by claiming that the reported forest increase due to afforestation has not 
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yet been traceable by satellite observations (Hansen et al. 2013). Little is known 

about the actual forest cover change and hence the effectiveness of the changed 

policies (Vina et al. 2016). Therefore, an accurate and objective estimation on the 

long-term forest cover and change in China is needed to understand the past changes 

and to evaluate the effectiveness of forest policies and conservation programs.  

1.3 Approaches and issues in forest cover change monitoring 

Landsat-based forest cover change mapping 

Remote sensing data have been used to monitor forest cover change from 

regional to global scales at various spatial and temporal resolutions, complementing 

issues in inventory-based estimates such as spatial inaccessibility or temporal 

inefficiency (Friedl et al. 2010; Hansen et al. 2000; Hansen et al. 2013; Kim et al. 

2015; Townshend et al. 2012). Featured with a long-term acquisition and fine spatial 

resolution, remote sensing data acquired by Landsat satellite facilitate the global fine-

resolution land cover mapping. Landsat-based estimates of forest cover in different 

time periods have been published at global scale from the 1970s (Chen et al. 2015; 

Feng et al. 2016; Gong et al. 2013; Hansen et al. 2013; Kim et al. 2014). However, 

there were many forest changes happened before the Landsat era such as in China or 

South America, thus additional datasets are needed to monitor these changes. 

Declassified satellite data for forest cover mapping 

Declassified satellite images acquired by Corona program during the U.S. Key 

Hole (KH) missions (denoted as “Corona” image or data hereafter) from 1960 to 

1972 can potentially be utilized to extend historical land cover mapping back to the 
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1960s. Corona data have a global coverage during the 1960s with repeated coverage 

for most of the Earth surface (Figure 1.1). Acquired during the Key Hole mission, 

Corona data are featured with particularly frequent observations for Eastern Europe 

and Asia, which allows the possibility of regional to global land cover land use 

change (LCLUC) applications in combination with other satellite data obtained at a 

later time. Although Corona data have been declassified for over two decades, the 

application of this legacy data on a broader spatial scale was still hindered by the poor 

geolocation accuracy and lack of multi-spectral bands (Song et al. 2015). Therefore, 

an automated approach suitable for applying Corona data in large area estimation of 

forest cover is desired.  

 

Figure 1.1 Global coverage of Corona images acquired by the forward-looking cameras during the 

KH-4A and KH-4B missions. All coverage maps have been rasterized for display purposes from vector 

format to 1° geographic grid. (a) KH-4A mission between 1962 and 1965; (b) KH-4A mission between 

1966 and 1969; (c) KH-4B mission between 1967 and 1969; and (d) KH-4B mission between 1970 and 

1972 (Source: https://lta.cr.usgs.gov/declass_1). Metadata was downloaded from U.S. Geological 

Survey (USGS) EarthExplorer website. 

Inventory-based forest monitoring  

https://lta.cr.usgs.gov/declass_1
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Forest inventory serves as a valuable source of forest status for a country to 

make forest policies and management plans, but many countries lack the resources to 

conduct a regular survey. For countries where multiple inventories were conducted, 

the statistics derived from inventories are the only data accessible to researches who 

do not have collaborations with the government (Zeng et al. 2015). However, the 

statistics have also been criticized for inconsistencies in forest definitions between 

epochs and inconsistent inventory approaches (Tomppo et al. 2010; Zeng et al. 2015). 

In addition, being reported at the regional scale every few years, the forest statistics 

also lack spatial and temporal details of forest cover, thus the locations and 

occurrence times of forest cover change are not sufficiently reflected (Tomppo et al. 

2010). These insufficiencies underscore the necessity of complementing national 

forest inventory (NFI) statistics with forest cover change estimated from long-term 

satellite data record. 

1.4 Need for accurate representation of the patch-size frequency distribution of 

forest change 

Understanding of past forest cover change is also critical for the projection of 

future changes. In order to predict the future forest change and its ecological and 

carbon consequences, ecosystem or other spatially explicit models is usually used, in 

which the forest cover change is represented by its area and the distribution of patches 

at various sizes composing the total change (Asner et al. 2013; Espirito-Santo et al. 

2014; Fisher et al. 2008; Hurtt et al. 2010). The patch size of forest change has been 

shown to impact carbon dynamics through affecting the forest recovery rate and tree 

species composition after forest disturbance (Putz 1983). The patch-size distribution 
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of forest change is also very important for fragmentation analysis to evaluate the edge 

effect (Haddad et al. 2015). Thus, an accurate representation of the patch size 

distribution is desired for the projection of the future change and its ecological and 

carbon impacts. 

A power-law relationship is often used to model the patch-size frequency 

distribution that a small scaling exponent indicates a flat distribution dominated by 

large disturbance events while a large scaling exponent describes a steep distribution 

dominated by smaller events (Di Vittorio et al. 2014; Espirito-Santo et al. 2014; 

Fisher et al. 2008; Hurtt et al. 2010). The Ordinary Least Square (OLS) and 

Maximum Likelihood Estimator (MLE) are the two most used methods to estimate 

the parameters of a power-law relationship. However, they either underestimated the 

power-law exponent (Lloyd et al. 2009) or were skewed towards the lower-end of 

patch size values, lacking a representation of the “fat-tail” at low frequency levels 

(Clauset et al. 2009). Thus, the modeling of the patch size distribution of forest 

change needs to be improved. Since the remote sensing-based forest cover change 

map provides spatially explicit information of the past change, it could be used in 

developing a new model to describe the patch size distribution.  

1.5 Research questions and objectives 

The overarching question of this dissertation is what is the long-term forest 

cover change in China and how to represent the change for ecosystem modeling? 

To address this question, approaches for using historical satellite images need to be 

developed and the representation of forest cover change need to be improved. The 

following research objectives are sequentially addressed to achieve the goal.  
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Objective 1: Explore the feasibility of using Corona data for mapping forest 

cover and the use of Corona and Landsat data for forest cover change 

monitoring. 

Objective 2: Address the bottleneck problem of the automatic image 

registration in using Corona data for large area forest assessment. 

Objective 3: Derive forest cover estimate in the 1960s and assess the forest 

cover change over four decades for a major forest province in China. 

Objective 4: Improve the representation of the patch size-frequency 

distribution of forest disturbances. 

1.6 Dissertation organization  

The dissertation consists of seven chapters, four of which correspond to the 

specific research objectives.  

Chapter 1 introduces the topic, briefly reviews the methods for forest cover 

change monitoring, discusses issues in China’s forest statistics and issues in the 

representation of forest disturbance in ecosystem models, presents the research 

questions, and sets the research objectives.  

Chapter 2 reviews the satellite-based forest cover change monitoring, and 

presents the issues and challenges in using Landsat and Corona data for mapping the 

change.  

Chapter 3 demonstrates the feasibility of applying Corona data in historical 

forest cover mapping and presents a method to separate forest and non-forest from 
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Corona data with high accuracy. Study areas located in the eastern USA and central 

Brazil were used to develop the algorithms in Chapter 3 considering the availability 

of local reference data. 

Chapter 4 focuses on the registration of Corona data by developing a semi-

automated registration method, leveraging the Corona data to large scale application. 

Four study areas located in the USA, Brazil and China were used featuring terrain 

complexities and land cover transition types. 

Chapter 5 uses the Corona and Landsat data to estimate the forest cover 

change from the 1960s to 2005 in China. The methods developed in Chapter 3 and 4 

for Corona data are adopted and the relevance of the forest cover change to forest 

policies is then discussed. Sichuan province was selected as the study area 

considering the fact that Sichuan hosts both state-run and collective-run forests thus it 

is affected by both government policies and the timber market. It was also a pioneer 

region of multiple afforestation programs. The processing time and the cost of Corona 

data are the other major reasons for conducting the analysis at the province scale.  

In Chapter 6, the modeling of the patch size-frequency distribution for forest 

disturbances is improved by using Landsat-based forest cover change map. The 

spatial variation of the distribution in ecosystems and provinces in China is then 

analyzed to further examine the impact of frequent change in forest policies on forest 

cover change. 

Chapter 7 synthesizes the results of the previous chapters and presents the 

conclusions and implications of the results. The dissertation concludes with a 
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discussion of the limitations of current work and the direction to move the research 

forward.  
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 Chapter 2: A review of remote sensing-based forest cover 

change monitoring 

 2.1 Introduction 

The launch of the first Landsat satellite (originally named the “Earth Resource 

Technology Satellite”, ERTS-1) in 1972 opened an era of monitoring the Earth’s 

terrestrial surface by space-borne, remotely sensed imagery. To date, Landsat archive 

provides the only globally available and internally consistent data record for the past 

four decades. The medium spatial resolution, global coverage, and potential for time-

serial analysis of the Landsat archive record have enabled assessments of forest cover 

change from local to global scales (Brandt et al. 2012; Huang et al. 2009b; Sexton et 

al. 2013b). However, forest cover change happened before the Landsat era remains 

unknown. 

Designed for a reconnaissance purpose, the declassified satellite images 

acquired by Corona program during the U.S. Key Hole (KH) missions from 1960 to 

1972 can extend the global satellite observations effectively by at least a decade 

(Song et al. 2015). 

In this chapter, Landsat-based forest cover change monitoring is reviewed and 

potential issues are discussed. The characteristics of Corona data are then introduced 

and the potential issues hindering the application of Corona data to large area are also 

discussed. The chapter concludes with a recommendation of a combined use of 

Landsat and Corona data to extend remote sensing-based land cover change 

monitoring back to the 1960s. 



11 

 

2.2 Landsat-based forest cover change monitoring  

 Global forest cover change monitoring at Landsat resolution 2.2.1

Benefiting from the public opening of the Landsat archive, Landsat datasets 

have facilitated forest change analysis at the global scale (Townshend et al. 2012). 

Four global forest/land cover products have been developed using Landsat imagery or 

data at a similar resolution (Table 2.1) (Chen et al. 2015; Feng et al. 2016; Gong et al. 

2013; Hansen et al. 2013; Kim et al. 2014). Although forest was defined differently 

by different datasets, almost all products have reached an overall accuracy of above 

80% for the forest class. Three out of four products characterized forest cover after 

2000, with one product produced by Global Land Cover Facility mapped forest cover 

for epochs of 1975 and 1990. 

 The multi-epoch GLCF-GFCC product from 1975 to 2005 2.2.2

The global forest cover change data produced by the Global Land Cover 

Facility (GLCF-GFCC) mapped forest/non-forest cover at 60 m resolution for 1975, 

and the change of forest between 1990, 2000 and 2005 also at 30 m resolution. The 

GLCF-GFCC map is produced by using enhanced Global Land Survey (GLS) data 

collection for epoch 1990, 2000 and 2005 (Channan et al. 2015; Feng et al. 2016; 

Kim et al. 2014; Sexton et al. 2013a). The entire MultiSpectral Scanner (MSS) 

collection during the 1970s are used to make the best pixel composite for removing 

gaps caused by clouds or shadows; thus, the GFCC 1975 spans a range of years but 

represents the nominal year of 1975 (Feng 2015).  
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Table 2.1 Global forest cover and change products at Landsat or similar resolution. Accuracy 

measurements include overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA) and 

standard error (SE). 

Product 

(Reference) 

Temporal 

coverage 

Spatial 

resolution 

Map classes Highest 

accuracy 

Forest 

definition  

Global Forest 

Change 

(Hansen et al. 

2013) 

Annual 

map 

between 

2000 and 

2014 

30 m Tree cover in 2000, forest 

cover loss and gain 

UA = 87% 

PA = 88% 

for forest 

loss 

All trees 

height > 5m  

GLCF-

GFCC* 

(Feng et al. 

2016; Kim et 

al. 2014) 

Circa-

1975, 

1990, 

2000- 

2005 

60m for 

1975,  

30 m 

after 

1990 

Forest and non-forest for 

1975 and 1990; tree cover 

in 2000; forest loss and 

gain after 2000  

OA = 91% 

(SE = 1%) 

after 1990 

Tree cover > 

30% 

GlobeLand30  

(Chen et al. 

2015) 

2000, 

2010 

30 m Water bodies, wetland, 

artificial surfaces, 

cultivated land, permanent 

snow/ice, forest, shrubland, 

grassland, bareland, tundra 

UA = 84% 

PA = 92% 

for forest 

Not provided 

FNF* maps 

(Shimada et 

al. 2014) 

Annual 

map 

between 

2007 and 

2010 

25 m Forest and non-forest  OA = 85% 

- 95% 

Crown cover > 

10%, area > 

0.5 ha 

FROM-GLC* 

(Gong et al. 

2013) 

Circa 

2010 

30 m Cropland, forest, grassland, 

shrubland, wetland, water 

bodies, tundra, impervious 

surface, barren land, snow 

and ice 

UA = 80% 

PA = 76% 

for forest 

Tree cover > 

15% and 

height > 3m 

*Note: GLCF-GFCC: Global Land Cover Facility, Global Forest Cover Change; FNF: Forest and Non-

Forest; FROM-GLC:  Finer Resolution Observation and Monitoring of Global Land Cover. 

 

The GFCC collection is featured with consistent forest definition, consistent 

training and classification algorithms across different epochs (Kim et al. 2014; Sexton 
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et al. 2013a). Thirty meter resolution tree cover layers circa 2000 and 2005 were 

generated by integrating Landsat surface reflectance and the Moderate Resolution 

Imaging Spectrometer Vegetation Continuous Field (MODIS VCF) tree cover data 

with a regression tree algorithm (Sexton et al. 2013a). Subsequently, forest cover in 

the 2000 and 2005 epochs were derived by translating percent tree data to categorical 

forest/non-forest cover with the International Geosphere-Biosphere Program (IGBP) 

forest definition (Belward 1996). Forest cover loss and gain between 2000 and 2005 

were estimated using a probability-based bi-temporal change detection algorithm 

(Sexton et al. 2015). For the 1990 epoch, stable pixels that were either persistent 

forest or persistent non-forest between 2000 and 2005 were identified and used as 

training to classify the forest cover with 1990 Landsat surface reflectance as input 

(Kim et al. 2014). A similar algorithm was developed for the 1975 epoch by adding 

training samples collected from 1990 (Feng 2015). Forest cover data in the 1990, 

2000 and 2005 as well as the forest cover change data between 2000 and 2005 are 

publicly available from the Global Land Cover Facility (GLCF) (www.landcover.org), 

while the production of forest cover circa 1975 epoch is still in progress.  

A comprehensive accuracy assessment for the forest cover and change layers 

was carried out based on a global, design-based sample of 27,988 points which were 

marked as forest/non-forest by visual interpretation based on Landsat and high-

resolution satellite images, vegetation index profiles, and field photos. The overall 

accuracies (OAs) was consistent across epochs, equaling 91% and the overall 

accuracy of forest cover change was over 88% (Feng et al. 2016). Both commission 

http://www.landcover.org/
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error and omission error were low for static forest class in each epoch, but errors were 

larger for forest change classes (Feng et al. 2016).  

 Issues in using Landsat data for forest cover change monitoring 2.2.3

As techniques improve during the past four decades, the Landsat collection 

comprises data acquired by multiple sensors including the MultiSpectral Scanner 

(MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and the 

Operational Land Imager (OLI). The multi-sensor characteristic also brings issues in 

monitoring forest cover change when using data comprised from different sensors.  

First, the varying resolution from 60 m MSS data to 30 m TM/ETM+/OLI 

makes the forest cover and change be mapped at different resolutions. It also indicates 

that changes at sub-pixel level with size smaller than 0.36 ha or 0.09 ha may be 

omitted when using MSS data or data from the other sensors separately (Lechner et 

al. 2009; Townshend and Justice 1988).  

Second, the bandwidths as well as the calibration of spectral bands are not 

consistent among different sensors, making it difficult to assess changes by directly 

comparing the differences in images (Holden and Woodcock 2016). Images acquired 

by different sensors are usually converted to a common variable, such as tree cover or 

vegetation indices, to estimate the change (Kim et al. 2014; Sexton et al. 2013a).  

Third, explicit atmospheric correction of MSS data is hindered by the lack of 

concurrent aerosol parameters. Instead, a radiometric matching approach or the top-

of-atmospheric (TOA) reflectance data are usually adopted when using a MSS data 

together with a TM/ETM+ data to detect forest change (Feng 2015; Townshend et al. 
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2012). Another difficulty in using MSS data is the problems in cloud detection and 

separating cloud from snow due to its lack of shortwave infrared and thermal bands 

(Dozier 1984; Jorgensen 2000).  

Fourth, the geolocation accuracy varies among different sensors, particularly 

between MSS and the other sensors. A difference of up to two MSS pixels (~120 m) 

in geolocation between MSS and TM both onboard of Landsat 5 was observed (He et 

al. 2016). The misregistration among images poses risks of detecting false change or 

obscuring small changes (Roy 2000; Townshend et al. 1992). Given the inconsistent 

geolocation accuracy, an additional image-matching process is usually adopted 

(Huang et al. 2010a). However, the Global Land Survey dataset consisted of precisely 

registered Landsat image for five epochs, 1975, 1990, 2000, 2005 and 2010, provides 

variable option for mapping forest cover change over a long-term period (Gutman et 

al. 2013; Kim et al. 2014). 

Last, the spatial coverage especially for MSS and TM in the 1980s and 1990s 

is limited due to data acquisition strategy and sharing policy in the early years of the 

Landsat program (Gutman et al. 2013; Townshend et al. 2012), hindering a spatially 

complete mapping for those time periods.  

 Needs for forest cover monitoring before the 1970s 2.2.4

Some of the technical issues in using Landsat data for forest cover change 

monitoring discussed above may be solved if appropriate approaches are adopted or 

developed. However, another issue unsolvable by Landsat is that for many parts of 

the world, large-scale forest changes were already occurring prior to the Landsat era. 
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For instance, eastern Paraguay was once covered by intact forests, but only 73.4±4.9% 

of the original Atlantic forests were left by the 1970s (Huang et al. 2009b; Nagel 

1991; Nickson 1981). In southern Brazil, agricultural developments in the 1960s and 

1970s resulted in the consolidation of small farms and a shift from labor-intensive 

crops to extensive ranching and soy production (Richards 2011), which resulted in a 

large forest area being cleared. In these circumstances, knowledge of land cover prior 

to the Landsat era is important for a complete understanding of the impact of 

socioeconomic activities on natural resources. 

2.3 Corona data in forest cover estimation 

 Characteristics of Corona data 2.3.1

Images acquired by the U.S. Key Hole (KH) missions, which consisted of the 

Corona, Argon, and Lanyard satellites that operated from 1960 to 1972 (McDonald 

1995), have the potential to extend historical land cover mapping from the Landsat 

era into the 1960s. The declassified Corona imagery has worldwide spatial coverage, 

especially in Eastern Europe and Asia (Figure 1.1) (Song et al. 2015). 

KH-4A and KH-4B missions accomplished between the 1960s and early 

1970s acquired most of the high-quality images among all KH missions, and satellites 

launched during these two missions shared similar camera, platform, and image 

parameters. For instance, both the KH-4A and KH-4B cameras are dual panoramic 

camera system, with one pointing 15° forward from the nadir and the other pointing 

15° afterward. This configuration resulted in a 30° angle between the two cameras 

and stereo images were acquired as the satellite moved along the flight direction 
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(Sohn et al. 2004). Both the forward- and backward-looking camera are characterized 

with focal length of 61 cm and wide view angle of 71.16° along the scan direction of 

panoramic image (Galiatsatos 2009a). The images were originally recorded on film 

by panchromatic cameras and then digitized by USGS to 8-bit radiometric precision 

(Galiatsatos 2009a). The panoramic camera worked in the way of scanning rather 

than taking a whole image at a time. It took the camera 0.5 second to scan an entire 

Corona image (Sohn et al. 2004). The flying altitudes were around 180 km for KH-

4A satellites and 150 km for KH-4B, respectively, so the ground resolution of the 

image varies across the scan direction, ranging from 2.7 to 7.6 m for KH-4A image 

and from 1.8 to 7.6 m for KH-4B image. Along the scan direction, the pixels with the 

best resolution are located at the image centers. The nominal ground coverage per 

frame is about 17×232 km
2
 and 13.8×188 km

2
 for the two satellite separately 

(Galiatsatos 2009a).  

 Applications of Corona data in land cover studies  2.3.2

Corona images have been used from studying the boreal forest decline (Rigina 

2003), vegetation dynamics (Kadmon and Harari-Kremer 1999), land resource 

change (Tappan et al. 2000), forest fire carbon emissions (Isaev et al. 2002), ice sheet 

change (Bindschadler and Vornberger 1998), to analyzing the archaeological features 

(Beck et al. 2007; Casana and Cothren 2008; Challis et al. 2002). However, in these 

localized studies, Corona images were analyzed mainly through visual interpretation 

and manually tuned histogram segmentation or were used as stereo image pairs for 

extracting digital elevation models (DEMs). Although the spatial coverage of 

available Corona data may allow large-area applications for many parts of the world, 
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such applications would be possible only using more automated digital image 

analysis methods.  

 Bottleneck problem in using Corona data for large area forest assessment: 2.3.3

image registration 

The biggest challenge hindering the use of Corona data for large area 

assessment remains in the accurate automated georegistration. Since most of the 

satellite parameters are nominal values and vary more or less during the satellite 

operation. The initial geolocation accuracy of Corona images provided by USGS is 

usually very poor (USGS 2009). There are three major factors affecting the procedure 

of an automated image matching based on finding adequate number of tie points 

between Corona and the reference data. First, the accurate satellite orbit information 

is absent and the gesture control is not stable for the historical satellite, so there is not 

an accurate estimation of the geolocation of the Corona scene. The scan time (~ 0.5 s) 

of the image’s panoramic projection brings an additional source of errors in 

determining the exterior orientation parameters due to an unknown flight height and 

velocity. Second, there are four subsets composing a Corona scene distributed by 

USGS which features a moving image center. The panoramic camera also makes the 

resolution of off-nadir pixel different from the pixel at image edge. Third, cumulative 

land cover changes since 1960s bring a lot of uncertainties in matching Corona image 

with other satellite images which are obtained at least a decade later. The poor image 

quality due to the low signal-to-noise (SNR) further makes image interpretation and 

feature selection more difficult.  
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2.4 Summary 

Enabled by multiple Landsat-based forest cover and change products, the 

global forest cover change happened since the 1970s can be effectively estimated. But 

there are still issues in Landsat-based mapping that will affect the change detection, 

including the omission of small patches, inconsistent bandwidths and calibration, 

atmospheric correction for MSS data, geolocation accuracy and limited spatial 

coverage. Specific approaches should be adopted to solve the issue according to the 

mapping purpose. Corona data provides a great change to extend the forest cover 

change mapping back to the 1960s. But before achieving this goal, challenges need to 

be addressed including developing an automated image classification and registration 

method for Corona data. In summary, it is worth to explore the feasibility of building 

a forest cover change record from the 1960s by combining the Corona and Landsat 

data.  
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 Chapter 3: Use of Landsat and Corona data for mapping forest 

cover change from the mid-1960s to 2000s: case studies from 

the eastern United States and central Brazil
1
 

3.1 Introduction 

Building on the conclusion of Chapter 2, this chapter aims to explore the 

feasibility of extending forest change monitoring back to the 1960s using Corona data 

and Landsat data. Focusing on increasing automation relative to earlier approaches, 

major methodological components of this approach include extraction of texture 

features from Corona images, classification of Corona and Landsat images, and 

change detection based on the classification results. The effectiveness of this 

approach is demonstrated by mapping forest cover change between four epochs—

1960s, 1980s, 1990s, and 2000s—in two study areas that have experienced major 

anthropogenic forest changes: an urbanized landscape in the eastern United States and 

a forested area in central Brazil characterized by recent agricultural expansion. The 

following sections provide a brief description of the study areas and datasets, 

followed by a detailed description of the various methodological components and 

results derived using these methods. The chapter closes with a discussion of potential 

improvements and applications of the approach developed in this study. 

                                                 

1
 This chapter has been published in 2015: Song, D.-X., C., Huang, J.O., Sexton, S., Channan, M., 

Feng, J. R., Townshend,  Use of Landsat and Corona data for mapping forest cover change from the 

mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS J. 

Photogram. Remote Sensing (2015). 103, 81-92.  
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3.2 Study area and data  

 Study area 3.2.1

Two study areas with widely different vegetation properties and human land 

uses were selected to determine the feasibility of using paired Corona and Landsat 

images for detecting forest changes. The sites were selected to represent the range of 

forest types and change trajectories that impact forest cover classification of high 

resolution remote sensing images and change detection. The Virginia-Maryland (VM) 

study area in the eastern United States, centered at 39°02´34.63´´ N, 77°23´35.45´´ W 

and spanning 32.6-by-23.6 km, lies within the temperate mixed forest biome and 

experienced forest change due to urbanization and managed forest planting. Forests in 

this region comprise a mix of deciduous (e.g. oak and hickory) and evergreen (e.g. 

loblolly pine) species. The leaf-on season for deciduous forest normally starts in early 

April and ends in October (White et al. 2002). Forest phenology was considered when 

choosing appropriate remote sensing image acquired in leaf-on season. Areal 

coverage of forest and non-forest classes is approximately equal in the VM study area.  

Located in central Brazil, centered at 9°36´52.86´´ S, 50°12´34.69´´ W and 

covering 47.5-by-26.1 km area, the Mato Grosso-Tocantins-Pará (MTP) study area 

lies within the southeastern frontier of the Amazon rain forest and has experienced 

widespread forest loss due to agricultural expansion. The region’s tree species 

diversity is exceptionally high and the predominant evergreen forest phenology is not 

a dominant factor when selecting satellite image dates. Instead, cloud cover is a 

stronger limitation on data quality. Before these forest losses took place, the MTP 
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study area was mainly covered by forest with a very small proportion of other land 

cover classes.  

 Landsat Data 3.2.2

Landsat images were collected from three epochs: mid-1980s, circa-1990, and 

circa-2000 (Table 3.1). For each site, the mid-1980s image was downloaded from the 

USGS. The latter two images were part of the Global Land Survey (GLS), a 

collection of images optimally selected for land cover change detection and 

orthorectified to within one pixel geolocation accuracy (Gutman et al. 2008; Tucker 

et al. 2004). A Landsat Multi-Spectral Scanner (MSS) image, representing a circa-

1970 epoch, was also included for the VM study area but not for the MTP study area 

due to lack of high-quality MSS image.  

Table 3.1 WRS-2 and WRS-1* Path/row numbers, sensors and acquisition dates of Landsat images 

used in this chapter.  

VM study area  MTP study area 

Path Row Acq. date Sensor  Path Row Acq. date Sensor 

16* 33* 10/11/1972 MSS  - - - - 

15 33 09/15/1985 TM  223 67 07/17/1986 TM 

15 33 05/16/1987 TM  223 67 07/25/1992 TM 

15 33 10/05/2001 ETM+  223 67 09/01/2000 ETM+ 

 Corona Data  3.2.3

Corona images used in this chapter were acquired in KH 4A and 4B missions 

in 1966 and 1967 and the major characteristics are listed in Table 3.2. Due to 

variations in pixel size and geometric distortions resulting from the wide view angles 

of the cameras, geometric correction of entire Corona images was very challenging. 

In order to achieve satisfactory geometric correction results, I divided each Corona 
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image into eight subsets along the cross-track direction, and one subset from each of 

the two study areas was selected for analysis. 

Table 3.2 Properties of Corona images (Galiatsatos 2009b; NPIC 1967) used in this chapter. 

  VM study area  MTP study area 

Acquisition Date  09/25/1967  06/22/1966 

Spatial Resolution  6 ft. (~ 1.83m)  9 ft. (~ 2.74m) 

Camera  Forward looking  Afterward looking 

Field of View  5° (along track)  5° (along track) 

Scan Angle  70° (+/- 35° from track)  70° (+/- 35° from track) 

3.3 Methods  

Images gathered by sensors aboard the Corona satellites have different 

spectral coverage (e.g. panchromatic vs. multispectral) and ground resolutions (e.g. 

~2 m vs. 30 m) than images acquired by Landsat Thematic Mapper (TM) or 

Enhanced Thematic Mapper Plus (ETM+) sensors. Change detection methods based 

on directly measuring differences of spectral responses between dates (Coppin et al. 

2004; Macleod and Congalton 1998; Singh 1989) cannot be applied to data of such 

different radiometric and spatial characteristics. Spatial and radiometric differences 

thus necessitated independent image preparation and a post-classification approach to 

change detection.  

Corona images were used to derive forest classifications for the 1960s, and the 

Landsat images were analyzed using an automated change-mapping algorithm to map 

forest-cover change in later periods. The maps derived from Corona and Landsat data 

were then combined to quantify forest-cover changes across the consecutive epochs 

from the 1960s to 2000s. The Landsat methods have been described in previous 

publications (Feng et al. 2012a; Huang et al. 2008b; Masek et al. 2006) and so are 
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only outlined here. The remainder of this section focuses on methods for processing 

Corona images. 

 Landsat Forest Cover Change Mapping 3.3.1

Landsat TM and ETM+ images were atmospherically corrected to estimates of 

surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) implementation of the 6S atmospheric correction algorithm (Feng 

et al. 2012a; Masek et al. 2006). Forest changes between consecutive epochs from 

1980s to 2000s (e.g. 1980s-1990s) were then mapped using the Training Data 

Automation-Support Vector Machine (TDA-SVM) algorithm (Huang et al. 2008b), 

which trains an SVM-based classification on a sample of “forest” pixels 

automatically identified using an a priori dark-vegetation heuristic rule. Clouds and 

their shadows were identified based on visible and thermal properties and masked 

from the dataset (Huang et al. 2010b). Landsat MSS image was classified using SVM 

based on forest and non-forest training samples collected through visual interpretation. 

Post classification change detection method was applied to map forest cover change 

between 1970s and 1980s. Pixels identified as cloud or cloud-shadow in any epoch 

were excluded from further analysis. 

 Corona forest cover mapping 3.3.2

Geometric correction 

Geolocation information distributed with Corona images includes only 

approximate coordinates of image corners, and preliminary inspection revealed that 

images selected in this study had spatial errors of several kilometers. Corona images 
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were therefore registered to orthorectified GLS Landsat images. For each site, the 

Corona image was coregistered to the GLS 2000 image using road intersections and 

other stable ground features as ground control points (GCP). These GCPs (totaling 19 

in the VM site and 8 in the MTP site) were manually selected through careful 

inspection of the Corona and Landsat images. In addition, 15 GCPs in the VM site 

and 10 GCPs in the MTP site were identified and used for independent assessment of 

registration accuracy. Several polynomial functions for coregistering the Corona 

images to Landsat data were tested, and the one with lowest RMSE was selected to 

correct the Corona image. 

Texture-based classification  

Panchromatic Corona images have limited spectral information for forest 

cover classification. However, their high spatial resolution allows calculation of 

texture measures at various spatial resolutions. Many of these texture measures were 

found useful to visually discriminate different land cover types land cover 

discrimination (Figure 3.1).  

 

Figure 3.1 Corona image, aggregated to 27.5m resolution, in the left window has multiple land cover 

types, including forest, cropland, water body and scattered build-ups. Zoom-in windows 1, 2 and 3 
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show non-forest land cover, window 4 and 5 show dense forest cover and scatter forest cover is 

presented in window 6. 

To evaluate the utility of texture measures for separating forest and non-forest 

in Corona data, I evaluated both occurrence (first-order) and co-occurrence (second-

order) texture measures. Five occurrence textures were selected due to their 

effectiveness in land cover classification (Anys et al. 1994). Seven relatively 

uncorrelated and widely used co-occurrence textures (Anys et al. 1994) out of 

fourteen statistical features proposed by Haralick et al. (1973) were also selected. 

Occurrence metrics tested included data range (DR), variance (OC-VAR), mean 

(MN), entropy (OC-ENT) and skewness (SKE): 
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    Eq. 3.5 

where L is the maximum grey level (GL), ( )P i  is the frequency of pixels 

where GL= i in a window, and “max” and “min” are the maximum and minimum 

value within a window. Co-occurrence texture measures included variance (CO-

VAR), homogeneity (HOM), contrast (CON), dissimilarity (DIS), entropy (CO-ENT), 

second moment (SM), and correlation (COR): 

x y
C O V A R       Eq. 3.6 
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where  , , ,P i j d   is the frequency of co-occurrence between pixels where 

GL=i and those where GL=j given distance between the two pixels is d and direction 

of displacement is the angle   (Anys et al. 1994). 
x

  and 
y

  are the standard 

deviation of lines and columns of the Grey Level Co-occurrence Matrix (GLCM), and 

x
  and 

y
  are the means of lines and columns of the same matrix. 

To evaluate the impact of window size on class separability, the texture 

measures were calculated using window sizes (n) of 5×5-pixel, 7×7-pixel, 9×9-pixel, 

11×11-pixel, 13×13-pixel, and 15×15-pixel at the original resolution (r) of the Corona 

images. Each texture image was resampled using the same window size with the 

nearest neighbor (NN) resampling method to produce a texture image at spatial 

resolution of r*n.  
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Table 3.3 Texture measures used in this chapter and their sources of literature. 

References  Texture measurements  

Haralick et al. 

(1973) 

 Angular second-moment (ASM), CON, COR, CO-VAR, inverse 

different moment, sum average, sum CO-VAR, sum CO-ENT, CO-ENT, 

difference variance, difference CO-ENT, information measure of COR, 

max COR. 

Kushwaha et al. 

(1994) 

 ASM, ENT, inverse difference moment 

Anys et al. (1994)  First order: MN, ENT, standard deviation, SKE; 

Second order: absolute value, CO-ENT, CON, COR, CO-VAR, cluster 

prominence; 

Third order: absolute value, OC-ENT, CON, small number emphasis, 

depth emphasis. 

Hudak and 

Wessman (1998) 

 Standard deviation 

Shaban and Dikshit 

(2001) 

 GLCM, grey level difference histogram (GLDH), sum and difference 

histogram (SADH) 

Clausi (2002)  CON, COR, C-ENT. 

Kim et al. (2011)  ASM, CONT, COR, DIS, CO-ENT, HOM, MN, CO-VAR. 

This study   Occurrence texture: DR, MN, OC-VAR, OC-ENT, SKE; 

Co-occurrence texture: CO-VAR, HOM, CON, DIS, CO-ENT, SM, 

COR. 

Texture combination 1(COMB1): HOM + CO-ENT + COR + MN 

Texture combination 2(COMB2): DIS + SM + CO-VAR + MN 

SVM classification of the Corona data 

Reflectance and texture metrics were used to derive forest/non-forest 

classifications using Support Vector Machines (SVM) (Chan et al. 2001; Huang et al. 

2002; Pal and Mather 2005), an advanced machine learning algorithm designed to 

locate an optimal multivariate boundary between classes. Distributed across each 

study area, training data included 4641 forest and 4618 non-forest pixels in the VM 

study area and 2272 forest and 3580 non-forest pixels in the MTP study area (Table 

3.4). The non-forest class comprised bare soil, herbaceous vegetation, water, and 
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other cover features, and so a larger portion of non-forest pixels were sampled than 

their true proportion in the MTP study area in order to characterize the range of 

variability within this complex class. Training pixels were labeled through visual 

interpretation of the Corona images at their native resolution by an experienced image 

analyst. Because SVM requires training samples located near the discrimination 

boundary between two classes in the feature space (Huang et al. 2002), some mixed 

pixels were deliberately included in the training sample. Edge pixels were included to 

represent high texture values near edges. The radial basis function (RBF) kernel was 

used because it has been found to be robust for various classification problems 

(Huang et al. 2002). Optimal values for the cost parameter c and the RBF kernel 

parameter γ were selected through five-fold cross validation following the procedure 

in Chang and Lin (2011). I first varied the parameter values at coarse steps and, once 

the approximate ranges of the optimal parameter values were determined, finer steps 

were used to optimize parameter values within the approximate ranges.  

Table 3.4 Number of training and validating pixels used for forest and non-forest classification using 

Corona data in each study site  

Study site 
 Training pixels  Validating pixels 

 Forest Non-forest  Forest Non-forest 

VM  4641 4618  1064 926 

MTP  2272 3580  1313 184 

To evaluate the utility of various texture measures for forest/non-forest 

classification, I ran the SVM with different combinations of texture measures together 

with the panchromatic brightness values (i.e., MN) (Table 3.5). For each set of texture 

inputs, the SVM parameters that yielded the highest cross-validation accuracy for a 

study area were chosen and used to classify the entire image subset for that area. 
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Since our goal was to use these classifications together with results derived from 

Landsat to estimate forest change, all classifications derived using the Corona data 

were aggregated to 30-m resolution using a majority rule.  

Table 3.5 Texture features used in the classifications, windows sizes to derive textures, scales at which 

classifications and corresponding accuracy assessments were carried out at the VM study area. *Note: 

at MTP study area, window sizes are 5x5, 7x7, 9x9, 11x11, and classification resolution is 13.7m, 

19.04m, 24.66m and 30.14m, other parameters are the same as the VM study site. 

Texture features Window 

size
*
 

Classification 

resolution
*
 

Accuracy assessment 

resolution 

MN 

5×5,  

7×7,  

9×9,  

11×11,  

13×13,  

15×15-pixel 

 

9.14m,  

12.80m,  

16.50m,  

20.12m,  

23.77m,  

27.43m 

 

30 m 

 

DR + MN 

OC-ENT + MN 

SKE + MN 

OC-VAR + MN 

CON + MN 

COR + MN 

DIS + MN 

CO-ENT + MN 

HOM + MN 

SM + MN 

CO-VAR + MN 

ALL TEXTURES 

HOM + CO-ENT + COR + MN 

DIS + SM + CO-VAR + MN 

 Accuracy assessment of classification result 3.3.3

Forest cover and change classifications were evaluated using overall accuracy, 

kappa coefficient, and class-specific user’s and producer’s accuracies derived from a 

confusion matrix (Congalton 1991; Stehman and Czaplewski 1998). Reference data 

were collected by stratified random sampling with strata defined by land cover classes 

in the output forest cover and change maps (i.e. forest, non-forest, forest gain, and 
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forest loss). This approach is commonly incorporated in sampling design for accuracy 

assessment of global to regional land cover maps (Olofsson et al. 2012). Stratified 

random sampling is a probability-based sampling method, which enhances the 

precision of accuracy estimates for minor classes. It is thus advantageous over simple 

random sampling in reducing the standard error for estimating overall accuracy 

(Stehman 1999; Stehman and Czaplewski 1998). For each selected pixel, the true 

forest-change type was determined by visual comparison of the Landsat series against 

high-resolution images from Google Earth, similar to the method described by Feng 

et al. (2012b). A summary of the reference sample for evaluating the Landsat-based 

cover and change maps is provided in Table 3.6. 

Table 3.6 Number of validation pixels for assessing Landsat-based FCC (1980s-2000s) products at 

each study area 

Study 

site 

 1970s FC  1980s-1990s FCC  1990s-2000s FCC 

 
 

Forest 

Non-

forest 
 

Persistent 

Forest 

Forest 

loss 

Forest 

gain 

Persistent 

non-

forest 

 
Persistent 

Forest 

Forest 

loss 

Forest 

gain 

Persistent 

non-

forest 

VM  922 596  977 72 59 874  853 183 81 865 

MTP  -- --  1436  67  6  433   1430  11  1  500  

 

Reference samples for evaluating the Corona classifications were also selected 

randomly within forest and non-forest stratum in both study areas. For the 

classification derived from Corona data, each sample pixel was labeled as forest or 

non-forest at 30-m resolution based on visual analysis of the Corona images at their 

native resolutions. The number of reference samples for each class in each study area 

is listed in Table 3.4. 



32 

 

 Forest cover change rate calculating  3.3.4

The Corona-based, 30-m forest/non-forest classifications with highest 

accuracies were used together with the Landsat-based FCC products to calculate 

forest cover and change rates between the 1960s and 2000s for the two study areas. 

Gross forest loss and gain rate were converted to average annual change rate by 

dividing the rate of gross loss or gain to the total land area by the time difference (in 

years) of each pair of images.  

Average annual loss rate (%) = total loss area / total land area / year difference 

* 100 Eq. 3.13 

Average annual gain rate (%) = total gain area / total land area / year 

difference * 100 Eq. 3.14 

3.4 Results  

 Geometric Correction of Corona Data  3.4.1

For both the VM and MTP sites, second-order polynomial transformations 

yielded the smallest root mean square errors (RMSE) for both the control and check 

GCPs. Corona images for both study areas were coregistered within one half pixel (15 

m) of the Landsat data when measured using the control points (Table 3.7). Although 

the RMSE of check points were higher than those of control points, suggesting some 

model over-fitting. Control-point errors were still less than one 30-m pixel. The 

geolocation accuracy of corrected Corona image was comparable to the Landsat 

images themselves (Tucker et al. 2004), so few spurious change detection would be 

caused due to misregistration. The greater co-registration errors in the MTP site were 
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likely due to lack of road intersections and other stable ground features that could be 

used as GCPs. As a result, river banks and some small water bodies were selected as 

GCPs, some of which could have moved during the period between the Corona and 

Landsat data acquisitions.  

Table 3.7 RMSE of manual image geometric correction for Corona data at two study areas 

Study area  VM  MTP 

Number of points 
 

Control 

points 
Check points  Control points Check points 

 19 15  8 10 

RMSE 

(meters) 

x  8.08 15.29  11.38 20.33 

y  6.05 10.28  4.58 21.18 

total  10.09 18.24  12.29 29.35 

 Effectiveness of Textures for Corona Forest/non-forest Classification 3.4.2

Accuracies of the Corona-based forest/non-forest classifications derived using 

various combinations of texture measures calculated using different window sizes are 

shown in Figure 3.2. The overall accuracies in the VM study area ranged from 90.5% 

to 95%, with Kappa coefficients between 0.81 and 0.90. The maximum overall 

accuracy and Kappa statistic were approximately 95% and 0.9, respectively. Except 

for the classification derived using mean reflectance (MN) alone, the overall 

accuracies and Kappa coefficients in the MTP ranged from 94.5% to 96.5% and from 

0.75 to 0.82 respectively.  

Some of the texture measures may not be suitable for forest/non-forest 

classification using Corona data. In the MTP site, accuracies derived using MN alone 

within window sizes > 5 pixels were substantially lower than those derived using 

texture measures. MN also yielded lower accuracies when calculated using window 
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sizes of 5 × 5 and 9 × 9 pixels. In the VM site, occurrence (OC) and co-occurrence 

(CO-OC) textures calculated using a window size of 15 pixels also yielded markedly 

lower accuracies. Accuracies derived using the other texture measures differed by up 

to 4% (or 0.04), but no individual texture measure had consistently better accuracies 

than the others. Interestingly, and likely due to model over-fitting, use of all texture 

measures (ALL) did not yield the best accuracies. However, in the VM site, the 

combination of HOM, CO-ENT, COR and MEAN (COMB2) calculated using 

window sizes of 9 pixels or larger seemed to have slightly better accuracies than all 

other texture combinations, while in the MTP site, the combination of DIS, SM, CO-

VAR, and MEAN (COMB1) had marginally better accuracies. 

Performances of different textures calculated at the same window size usually 

do not vary much but the impact of varying window size on accuracies had obvious 

patterns (Figure 3.2). In the VM site, windows of 7 × 7 to 9 × 9 pixels (or ~13 × 13m 

to ~16 × 16m) yielded best accuracies for most texture measures, but accuracy 

decreased with window size. In the MTP site, the window size of 11 × 11 pixels (or 

~30m x 30m) yielded the best accuracies for most texture measures. Although land 

cover in the VM study area shows more heterogeneous pattern than that in the MTP 

site, patch size of forest land in eastern U.S. is much smaller than that in the 

undeveloped Amazon rainforest. In the VM site, small forest patches result in more 

mixed pixels, which can be better captured by textures calculated from relatively 

small window sizes. Overestimation of forest was caused as window size increased to 

15 × 15 pixels. On the other hand, peppered non-forest pixels were mapped as 

random speckle in homogeneous forests in the MTP site when small window sizes 
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were used. The use of windows as large as 11 × 11 pixels avoided the 

misclassification of non-forested pixels caused by poor image quality in this site. 

 

Figure 3.2 Classification accuracies and kappa coefficients of Corona forest/non-forest classifications 

using single and multiple textures in the VM and MTP study areas. Abbreviations are defined in Table 

3.5. For the MTP study area, the value of classification using MN fell below the range of y-axis, kappa 

coefficients were 0.52, 0.57 and 0.46 at window sizes of 7×7 to 11×11, and classification accuracies 

were 88.0%, 89.6% and 85.1% correspondingly. 
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 Accuracy of Landsat Forest Cover Change Map 3.4.3

Overall accuracies were >91% for both the 1980s-1990s and 1990s-2000s 

periods in the VM study area, and were 96% and 87% for the two periods in the MTP 

area. Both persistent forest and persistent non-forest had user’s accuracies >90% in 

all periods and producer’s accuracies >90% in the majority of periods. The forest-loss 

class had slightly lower accuracies, but its user’s and producer’s accuracies were >70% 

in both sites during both periods. The forest-gain class had lower user’s accuracies in 

the MTP site (62.5% and 50%), likely because the coverage of forest gains was very 

low, so only a small number of reference points were randomly sampled for 

estimating the accuracy for this class. Commission error increased significantly when 

the forest class was overestimated in time two; this led to reduced user’s accuracy 

especially in forest gains. Overall accuracy of GLS1975 image classification achieved 

94% with overall kappa coefficient of 0.89. 

 Forest Cover Change Rate  3.4.4

The highest-accuracy of the 30-m resolution map of forest cover based on 

Corona images was obtained by using the second texture combination (COMB2), 

calculated with window size of 9 for the VM study area and using the first texture 

combination (COMB1), calculated with window size of 11 for the MTP study area. 

Although both study areas lost substantial forest cover between the 1960s and 2000s, 

they had different forest change histories (Figure 3.3). Located in the suburbs of 

Washington, DC and the Chesapeake Bay region, the VM study area comprised areas 

in Fairfax and Loudoun Counties, Virginia and Montgomery County, Maryland 

(Figure 3.4). The annual forest loss rate during mid-1980s doubled to 2%. Most of the 
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loss happened before the 1980s and after the 1990s, especially in Loudoun County in 

Virginia. Annual forest gain rates were ~1% during the 1960s and the 1970s, then 

increased to ~2%—exceeding forest loss rate during the 1980s—and dropped 

afterwards. Most trees appear to have been planted around residential areas. As a 

result, forest cover in the VM study area slightly increased around late 1980s and then 

continued decreasing. 

  

Figure 3.3 Forest cover change rates during three epochs for two study areas, forest loss (or gain) 

percentage = forest loss (or gain) area/forest area of beginning year * 100. 

In contrast, the rate of annual forest loss in the MTP study area was relatively 

low (~0.6-0.76%) from the 1960s to the 1990s and dropped to ~0.2% during the 

period of 1992-2000. However, the patch size of cleared forest was much larger than 

in the VM study area (Figure 3.5), which was mainly cleared for cattle ranching and 

mechanized agriculture. The rate of forest gain was quite low (~0.1-0.26%) and was 

largely due to trees growing in abandoned agricultural land. Decrease of forest cover 

in the MTP study area continued from the 1960s to the early 1990s, driven by logging 

activities and gradually ceased till 2000.  
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Figure 3.4 Georeferenced Corona, GLS 2000 images with band 4, 3, 2 in color R, G, B, and sequential 

forest cover change maps of each two epochs in the VM study area. (1) is Montgomery County in 

Maryland, (2) and (3) is Loudoun and Fairfax County in Virginia separately.  
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Figure 3.5 Georeferenced Corona, GLS 2000 images with band 4, 3, 2 in color R, G, B, and sequential 

forest cover change maps of each two epochs in MTP study area.  

3.5 Discussion  

In this study, Corona images were used with Landsat images to monitor forest 

cover and its changes in a suburban study area and a tropical forest area. Co-

registration against terrain-corrected Landsat images yielded high georegistration 

accuracy of Corona images using manually selected GCPs and polynomial 

transformation functions. The co-registered Corona images were deemed to have 

adequate geolocation accuracy for comparison against Landsat images for mapping 

forest change without introducing excessive spurious changes (Townshend et al. 

1992). However, more rapid or automated georeferencing methods, such as the 

Automated Registration and Orthorectification Package (AROP) (Gao et al. 2009), 

will be required to deal with large volumes of images necessary for studying larger 

regions. Any such method must be capable of overcoming spectral and resolution 
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differences between Corona and Landsat, as well as real differences in land cover 

accumulated over long times. 

The classification method I developed here has improved in processing 

efficiency compared to visual interpretation and/or manual delineation of land cover 

used in previous studies (Bindschadler and Vornberger 1998; Challis et al. 2002). The 

use of texture measures increased the accuracy of classification compared to only 

using image grey-scale values alone. The combination of co-occurrence textures 

representing different spatial patterns with grey-scale value is recommended for 

studies in the future. While, different forest classes can hardly be separated so far 

using only texture information. Additionally, although the best window size for 

extraction of textural measurements is usually affected by image spatial resolution, 

vegetation structure, and forest patch sizes in landscape (Lu et al. 2008), small 

window sizes (e.g., 9 × 9 pixels) are recommended for both complex and 

homogeneous landscapes. Beyond the texture measurements I used for separating 

forest and non-forest class, automatic tree crown identification algorithm proposed by 

Palace et al. (2008) could potentially be applied to Corona image, given its very high 

spatial resolution and panoramic, to estimate tree crown width and percent tree cover 

in 1960s. Given the availability of adequate, representative training data, effective 

classification features and improvements in automated image registration, forest 

classification and change detection using Corona image can be automated for large 

areas around the globe.  
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3.6 Conclusions 

The Landsat satellites have generated a primary source of information for 

studying changes in Earth’s land surface that now spans four decades since the 1970s. 

Using data acquired from Corona satellites, which have spatial resolutions better than 

Landsat data and are available for most of the land areas of the globe, this record can 

be extended a decade further, to the 1960s. I demonstrated the feasibility of paring 

Corona with Landsat images for mapping forest cover changes between the 1960s and 

2000s through case studies conducted in two areas, Virginia-Maryland (VM) in the 

US and Mato Grosso-Tocantins-Pará (MTP) in Brazil. For each area, the Corona 

image was accurately co-registered to an orthorectified Landsat image. Combination 

of metrics to represent multiple aspects of spatial texture achieved classification 

accuracies of ~95%. Forest changes during the Landsat era were mapped with overall 

accuracies around 90%. Different forest-cover change rates and trends were observed 

between the two study areas, with 18.9% and 16.8% net forest loss in the VM and 

MTP study area respectively from 1960s to 2000s. Results based on Corona data 

indicate that forest area in a suburban study area of Virginia and Maryland increased 

from the 1960s to the 1970s, before being converted to residential area. In contrast, 

severe forest loss in the Amazon region started from scattered small forest land 

cleared during 1960s and 1970s and eventually expanded thereafter.  

These results demonstrate the potential of Corona data in land cover and 

change studies. However, using Corona imagery for land cover change studies over 

larger areas will require more automated georegistration and classification methods. 

Georeferencing Corona images must be automated to avoid overwhelming human 
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involvement, especially in the identification of ground control points. Automatic 

training data selection methods, similar to others used for Landsat-based 

classification, also need to be further developed for regional to global retrievals.  
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 Chapter 4: Towards automated registration of historical satellite 

images for land cover land use change applications
2
 

4.1 Introduction 

 Background  4.1.1

Concluded from Chapter 3, the biggest challenge remains in the accurate 

automated georegistration of the Corona image, mainly due to the following aspects. 

First, accurate satellite orbit information is currently not available; besides the 

satellite gesture, including satellite’s location and height, and sensor’s roll, pitch and 

yaw, was not as well controlled in the 1960s as for recent satellites. As a result, it is 

not possible to get an accurate estimate of the geolocation of each Corona scene. The 

prior knowledge on geolocation information of Corona data provided by the United 

States Geological Survey (USGS) is usually with errors ranging from several to tens 

of kilometers. Second, each Corona scene was originally recorded on a film and then 

digitalized into four overlapping subset images. Each pair of adjacent subsets has a 

slight offset in their image locations along-track and also differs in spatial resolutions 

due to the panoramic projection of the Corona data. In addition, there is no 

radiometric calibration parameter available, and the signal-to-noise ratio (SNR) is 

predictably low. The poor radiometric quality of the Corona image makes it difficult 

to identify image feature based on spectral characteristics. Third, cumulative land 

cover changes caused by urbanization, agricultural expansion, forest disturbances, or 

                                                 

2
 This chapter has been prepared for submission to the journal of Remote Sensing. 
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climate change since the 1960s bring a lot of uncertainties in matching Corona image 

with other satellite images obtained at least a decade later. Traditional image 

matching approaches relying on identification of consistent land features are usually 

unsuccessful for registering the Corona image against other satellite images. Last, 

there is significant geometric distortion due to the panoramic design of the camera 

system and low-orbit feature of satellite in the Corona program (e.g., 150- and180-km 

for KH-4A and KH-4B satellites separately) (Galiatsatos 2009a). Low orbit satellite 

missions and large field-of-view (FOV) resulted in large view angles for the side 

looking part of image, which led to significant surface anisotropic effects (also 

different effects over different land cover types). All these factors make it difficult to 

apply the existing approaches for the automated georegistration of the Corona images. 

To partially solve the above-mentioned issues, the existing method for 

georegistering high/medium resolution image are mainly based on two elements, 1) 

ground control points or tie points collected from either field measurements or 

reference image, and 2) the transformation function, such as polynomial function or 

mathematical collinearity function (Richards and Jia 2006). Due to the large amount 

of time consumed by collecting ground points and the inaccessibility of the remote 

region, control points are usually collected from reference data such as the 

georeferenced remote sensing image or topographic map, which is usually known as 

image matching procedure. Correlation, describing the greyscale similarity of two 

spatial windows in target and reference images, has been widely used to search for 

the tie points (Gao et al. 2009). This method is more suitable for images acquired 

from the same platform or multi-sensor images with similar characteristics such as 
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viewing angle, band setting, and so on. Preliminary registration of the target image is 

also required in order to limit the searching distance as well as to avoid generating 

pseudo points. In addition, significant LCLUC may also prevent the application of 

methods that are based on grey scale matching for the registration of historical images. 

To overcome these limitations as well as to reduce the human effort involved 

in the georegistration, I propose a semi-automated approach to correct the Corona 

images. First, each Corona scene that consists of four overlapping subset images is 

mosaicked into one whole image. Second, each mosaic Corona image is resized to 30 

m based on the nominal coverage provided by USGS, and then manually registered to 

a Landsat reference image with four control points. The purpose of this step is to 

constrain the initial registration error up to ~4.5 km. The third step is the precision 

registration, which relies on tie points selected manually or from the state-of-art 

feature extraction and matching algorithms to achieve a high level of registration 

accuracy by using a transformation function (e.g., polynomial, collinear functions) 

designed for Corona. 

 Objectives  4.1.2

The objectives of this chapter include: 1) evaluating the use of collinear 

function and Landsat reference data to register Corona image and 2) exploring the 

possibility of semi-automated registration of Corona data based on a feature matching 

algorithm. The resultant registered Corona data are expected to satisfy land cover 

change mapping between Corona and Landsat data at a spatial scale not coarser than 

250 m. This chapter presents the first attempt towards automated georegistration of 

the Corona images with Landsat data as references. Targeting at the georegistration of 
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the Corona image for the large area change detection application, this chapter 

proposed methods for preliminary processing, manual/automated tie point selection 

and matching, precision georegistration based on a transformation function (including 

the polynomial function and collinear function), and error estimation, respectively in 

the following sections.  

4.2 Data 

 Corona data 4.2.1

Four Corona images, located in North America, South America, and Asia, 

were selected to demonstrate the capability of the registration method across different 

landscapes and regions with different types of land cover and change (Table 4.1). 

Images in Maryland, USA (VM, hereafter), and Mato Grosso do Sul, Brazil (MGdS, 

hereafter), are characterized by flat terrain and significant land cover changes caused 

by urban expansion and tropical forest cutting, respectively. The image in St. Louis, 

USA (SL, hereafter), has very rich features comprised by regular-shaped crop field, 

while changes were also observed in crop fields and in rapidly developed suburb 

areas since the 1960s. The most complicated terrain among the four study regions 

happened in Sichuan, China (SC, hereafter), where elevation varied from 1800 m to 

5500 m and was covered by temperate and sub-tropical forests.  

 Landsat and elevation data 4.2.2

Global Land Surveys (GLS) data (https://landsat.usgs.gov/science_GLS.php) 

was used as references to register Corona images, considering the potential for 

generating a change product by combining the two datasets. Five epochs of the GLS 
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dataset, 1975, 1990, 2000, 2005, and 2010, are featured with high geodetic accuracy 

against each other, and quality of GLS2000 and afterwards is better than the previous 

two collections (Gutman et al. 2013). This dataset has been widely used to generate 

the finest national or global land cover and change products (Hansen et al. 2013; Kim 

et al. 2014; Sexton et al. 2013a). GLS2000 data was chosen as a result of its global 

data availability and mitigation of land cover change impact (Gutman et al. 2013). 

More important, the RMSE of GLS2000 is less than one Landsat pixel, i.e., 30 m for 

Landsat Thematic Mapper (TM) (Gutman et al. 2013).  

Table 4.1 Basic information of the three Corona images used in this study. 

 Manual method Automatic method 

Image ID 
DS1101-

2157DF026 

DS1021-

2093DF063 

DS1035-

1046DF018 

DS1105-

2248DF067 

Mission No. KH-4B KH-4A  KH-4A KH-4B 

Acquisition 

date 
9/25/1967 4/24/1965 9/23/1966 11/19/1968 

Covered 

region 

Virginia/Maryland, 

USA 

Mato Grosso do 

Sul, Brazil 
St. Louis, USA Sichuan, China 

Abbreviation VM MGdS SL SC 

Spatial 

resolution 
6 ft. (~1.83 m) 9 ft. (~2.74 m) 9 ft. (~2.74m) 6 ft. (~1.83 m) 

Camera Forward looking Forward looking Forward looking Forward looking 
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Figure 4.1 The actual Corona coverage (b/w image) overlaid by the estimated footprint provided by 

USGS (red frame, downloaded from http://earthexplorer.usgs.gov/). 

http://earthexplorer.usgs.gov/
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As the Corona greyscale image covers only the visible spectrum, only the first 

three bands of Landsat TM images are potentially suitable for image matching. To 

find the best band for feature matching, pure samples of water, forest, crop, and urban 

areas were collected from the collocated Corona and Landsat images and compared 

their sensitivities to the surface reflectivity. Experiments show that Landsat visible 

bands and its mean have higher correlations with Corona than SWI and pan bands. As 

a result, band 3 (red band) of the Landsat TM image is selected in searching for tie 

points against Corona image. Elevation information is derived from the 1-arc second 

data (~30 m) from SRTM data (USGS 2004).  

4.3 Methodology  

 Data preparation (1): Automated mosaicking of Corona data 4.3.1

Each Corona image was scanned by USGS using a Leica scanner that is 

commonly used for digitizing a 241×241 mm aerial film size. As a result, the 

approximately 750mm length of each declassified Corona film was divided into four 

subsets. There is an overlap among each adjacent pair of subsets, the size of which 

varies depending on the magnitude of tilting at the head of the image or along the 

edge (Personal communication with USGS personnel). In addition, there is a 

difference in geolocation for the overlapping area between adjacent subsets. To 

remove such overlaps and to reconstruct the complete Corona scene, an automated, 

feature-based panoramic image stitching algorithm was applied (Brown and Lowe 

2007). After this step, a complete Corona scene is generated as shown in Figure 4.2, 

however, the Corona image still lacks of geolocation information. 
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Figure 4.2 Image mosaicking for scene DS1105-2248DF067. Four subset images are shown in the 

upper panel and the final mosaic image is shown in the lower panel. Approximate overlapping areas 

are shaded in blue in the subsets and mosaic image. 

 Data preparation (2): Preliminary registration of Corona data 4.3.2

The purpose of this step is to assign the Corona data a rough geolocation with 

maximum error of 150 Landsat pixels at 30 m resolution (~4500 m), which will allow 

an accurate image matching against referenced Landsat data. Although being lack of 

accurate geolocation information, the initial coordinates provided by USGS can help 

locate the Corona image and roughly link it to Landsat images. The image tilting 

angle (t) can be calculated from the nominal coordinates of four corners, which can 

then be used to rotate the Corona mosaic and to reproject it to a Universal Transverse 

Mercator (UTM) projection. I did not assign the coordinates of four corners directly 

to the Corona image in order to minimize the image signal loss due to multiple 

transformation steps. The rotated Corona image was then resized to 30m, the scaling 

factor (SF), of which was decided by the best resolution of its mission (e.g., 

SF=30m/1.8m used for the image of KH-4B and SF=30m/2.74m for KH-4A). This 

rotation and rescaling processing will not be used directly in the following 

registration, but serves as a reference for us to identify the preliminary tie points 

between Corona and Landsat data. As a result, the reprojected Corona data often 

intersects with 2 to 4 Landsat scenes due to its rectangular shape and wide coverage. 

1 1 2 2 3 3 

1 2 3 
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To satisfy the needs for preliminary registration, the overlapped Landsat scenes were 

mosaicked into one image. 

Preliminary registration of the Corona image to GLS2000 data was carried out 

based on four manually selected tie points at the corners of the Corona image, in 

order to constrain the initial geolocation accuracy to <150 Landsat pixels (~4500 m) 

in both along-track and cross-track directions. Then, the intersected area to the 

preliminarily registered Corona data was extracted from the reference GLS2000 

mosaic. Considering that the preliminary registered Corona data still carries a 

geolocation error of up to 150 Landsat pixels, to maintain a reasonable image-

matching accuracy only a subset of the corresponding Landsat mosaic image was 

extracted with a 150-pixel (4500 m) buffer zone to the range of preliminary registered 

Corona data. The preliminary registered Corona data and the Landsat subset with a 

buffer zone were used together as input data for tie point selection and georegistration. 

Examples of the Corona data after preliminary registration and the referenced Landsat 

image are shown in Figure 4.3. To maintain a reasonable accuracy in both tie point 

selection and precision georegistration in the following section, every Corona scene 

was equally divided into three subsets with the same dimensions and the preliminary 

registration process was carried out for each subset individually. 



52 

 

 

Figure 4.3 Preliminary registered Corona (left) and reference Landsat (right) images in Sichuan. Each 

pair of windows (windows in the same row) represents the same range according to the geoinformation 

of Corona and Landsat images. 
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 Transformation model  4.3.3

Polynomial function has been widely used in correcting image distortion 

considering it simplicity in application. However, lower degree polynomial function 

(e.g., 2
nd

 order) is not efficient to describe the complex distortion embedded in an 

entire Corona scene, especially over rugged terrains. The solution for higher degree 

polynomial function (e.g., 3
rd

 to 5
th

 order) may sometimes be an alternative but is 

usually unstable, although it can result in a small fitting error (Galiatsatos et al. 2008) 

if the polynomial coefficients can be well constrained. 

The 2
nd

-order polynomial function was chosen as one of the two 

transformation models in this study, which is described as: 

2 2

0 1 2 3 4 5
x a a X a Y a X Y a X a Y     

 Eq. 4.1 

2 2

0 1 2 3 4 5
y b b X b Y b X Y b X b Y     

  Eq. 4.2 

Where (x, y) are the image coordinates of target image, (X, Y) are the ground 

coordinates derived from the coordinates of control points on reference image, 
i

a  and 

i
b  are the regression coefficients. 

Usually, the collinearity equations are used for modeling the relationship 

among the center of the camera, the coordinates on the perspective plane (image), and 

the ground coordinates with the use of a digital elevation model.  
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  Eq. 4.4 
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Where (x, y) are the image coordinates, (X, Y, Z) are the ground coordinates, 

(X0, Y0, Z0) are the ground coordinates of the camera, f is the focal length of Corona 

camera, and 
1

a  to 
9

a  are coefficients given by the following rotation matrix: 

1 2 3

4 5 6

7 8 9

1 0 0 c o s 0 s in c o s s in 0

0 c o s s in 0 1 0 s in c o s 0

0 s in c o s s in 0 c o s 0 0 1

a a a

a a a

a a a

   

   

   

        

       


       
       

         Eq. 4.5 

In Eq. 4.5,  ,  ,  are the rotation angles of the camera. However, there is 

no native collinearity equation for the panoramic camera on board of Corona satellites. 

To account for the distortions caused by the panoramic projection, satellite flight 

velocity, film scanning time, and non-nadir pointing camera, the above equations 

(Eqs. 4.3-4.5) need to be revised to model the Corona data by adding several 

correction terms, which is used to convert the Corona image coordinates from the 

panoramic image to the perspective plane. A set of modified collinear equations were 

proposed by Sohn et al. (2004): 

To convert the image coordinates in the panoramic film  ,
p p

x y  to the 

corresponding coordinates in the perspective plane  ,
f f

x y  for a particular pixel, the 

pixel’s scan angle   and camera’s focal length f  are used here: 

p
x f 

  Eq. 4.6 

ta n
f

x f 
 Eq. 4.7 

se c
f p

y y 
  Eq. 4.8 
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The image coordinates in the perspective plane  ,
f f

x y  are usually used in 

Eqs. 4.3 and 4.4 for frame cameras. For Corona data, two types of image distortion 

need to be corrected following the equations proposed by Sohn et al. (2004). 

One type of distortion is the scan positional distortion caused by the moving 

of the camera’s position during the scan, which is corrected using the following 

equations:   

c o s
s

f
y V t

H


  Eq. 4.9 

t





  Eq. 4.10 

c o s

s

V f
y

H

 




   Eq. 4.11 

where 
s

y  is the scan positional distortion component for a given scan angle 

 , V  is the velocity of the platform, t  is the scan time of the camera,   is the 

angular velocity of the camera scan arm, and H is the flight height.  

The other distortion is caused by the image movement during the exposure 

time and can be compensated with the following equations: 

c o sfV
v

H




  Eq. 4.12 

s in
im

fV
y

H



 

  Eq. 4.13 

where v  is the velocity of the image and 
im

y  is the corresponding distortion 

component. 
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Taking into account of these two types of distortion, the corrected image 

coordinates in the perspective plane  ,
f f

x y   can now be expressed as: 

ta n
f f

x x f   
  Eq. 4.14 

   s e c ta n
c o s

p

f f s im

y V f
y y y y

H
  

 
      

  Eq. 4.15 

Detailed descriptions of the derivation for the distortion correction can be 

found in Sohn et al. (2004). 

The collinear function, by combining Eqs. 4.3, 4.4, 4.5, 4.14, and 4.15, was 

chosen as another transformation model to register the Corona data with Landsat in 

comparison against polynomial function, with the help of a digital elevation model.  

Cost function is formulated as the least-squares of differences between 

measured image coordinates and simulated values from transformation function 

(either the 2
nd

-order polynomial function or collinear function):  

   
2 2

1

n

i i i i

i

x x y y

F
n



 
  

  




  Eq. 4.16 

Where  ,
i i

x y  and  ,
i i

x y  correspond to the measured and estimated image 

coordinates of the ith   1,i n selected tie points on the Corona image plane. 

There are seven unknown parameters to solve the modified collinear function, 

including three for exterior orientation, three for interior orientation, and one for 

satellite velocity (the ratio between V  and   in Eq. 4.15). Initial values of exterior 

position elements were determined based on the center coordinates of the preliminary 
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registered Corona data and the nominal flight height. Gesture elements were 

initialized to be zero. Initial values of interior elements were assigned based on 

approximate image center identified by visual interpretation. It is difficult to 

accurately estimate the initial values of the unknown variables since the orbit control 

was poor during KH missions and the orbit varied among different missions. To 

mitigate the risk of finding only a local minimum of the cost function, the modified 

collinear function was built for each of the three subsets, respectively. In other words, 

for each Corona subsets one set of unknown parameters of the cost function is 

assumed and retrieved, which is to reduce the complexity of collinear equations for 

Corona (Sohn et al. 2004). 

 Tie points extraction  4.3.4

Two types of tie point extraction of Corona and Landsat images were tested in 

this study for the georegistration of Corona data. Manual tie point selection was 

chosen to examine the accuracy of the proposed method based on collinear equation 

transformation function with Landsat data as references. Automatic tie point (feature) 

extraction and refinement method was investigated in order to explore the 

applicability of large scale automated registration between Corona and Landsat data. 

Manual tie points selection 

Two Corona images, located in Maryland, USA and Mato Grosso do Sul, 

Brazil, were used to test the georegistration accuracy for the two transformation 

models with manually selected tie points between Corona and Landsat data. Elevation 

values for tie points were extracted from SRTM. Tie points were designed to evenly 

locate across whole Corona scenes.  
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The unknown variables in both the collinear function and polynomial function 

of the Corona camera were retrieved using the collected tie points, after which the 

registration of Corona image can be done using the forward calculation. Two 

experiments were carried out to assess the retrieving accuracy of the exterior elements. 

First, the whole scene was treated as one model (i.e., method 1). All selected tie 

points were included in the retrieval process. Second, the whole scene was divided 

into three parts with the same dimension (i.e., method 2), each of which has its own 

model and the exterior elements for each part were retrieved separately. The reason of 

doing this is that it takes 0.5 second for the Corona camera to scan the whole area. 

During the scan period, the satellite can actually fly a relatively long distance so that 

it cannot be assumed the camera position remains the same and, hence, the flight 

speed was unknown. The result will demonstrate the accuracy of revised collinear 

function in the registration of Corona image using reliable tie points collected from 

reference Landsat and elevation value derived from SRTM data. Through the 

comparison, it is also possible to find out which method can achieve higher 

accuracies and whether the image partition can improve the results.  

Automated tie point extraction and refinement  

Having the transformation models tested with tie points selected manually, the 

question remains whether tie points can be generated automatically and whether an 

automated tie point selection allows the accuracy of Corona registration at a large 

spatial domain. 

Due to the geometric and radiometric characteristics of Corona camera, our 

experiments on testing the traditional image matching approach, such as Automated 
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Registration Orthorectification Package (AROP) (Gao et al. 2009), failed to find 

enough tie points between the Corona and reference image. Thus, a more 

sophisticated approach is needed, which would suffer less from the image distortion 

(scaling, offsetting, transforming, topographic effects, etc.) and difference in spectral 

response functions between Corona data and reference image. The Scale Invariant 

Feature Transform (SIFT) (Lowe 1999, 2004), an efficient feature selection algorithm 

characterized with invariant feature to spatial scale and image rotation, is used here to 

minimize the above-mentioned effects of image distortion in image matching. The 

SIFT feature is described by the SIFT descriptors consisting of gradient information 

in the detected regions. The selected feature points are partially invariant to change in 

illumination, camera projection, occlusion, clutter, or noise (Lowe 1999, 2004) 

enabled by a four-step process in the tie point (feature) selection, which consists of 

scale-space extrema detection, feature localization, orientation assignment, and 

feature descriptor calculation (Lowe 2004). 

The SIFT descriptor has been demonstrated to be the most robust local 

invariant feature descriptor for images with different geometrical properties 

(Mikolajczyk and Schmid 2004), which allows the feature to be matched between 

multiple images acquired by different satellites or at different time periods assuming 

there are no surface changes. The SIFT algorithm has been applied to the registration 

of both high and medium-resolution images such as QuickBird and HuanJing (HJ) 

images, resulting in georegistration errors of less than one satellite pixel (Wang et al. 

2012).  
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To mitigate the errors in the preliminary registration and improve tie point 

(feature) matching accuracy, the entire Corona scene was evenly partitioned along the 

long side into three subsets and the SIFT algorithm was applied to each Corona subset 

and buffered Landsat subset separately to generate their own feature point set. The 

SIFT matching process was then carried out over the feature point sets of target 

Corona and reference Landsat subsets to search for tie point pairs which satisfied the 

predefined requirement on similarity measurement. However, the collected SIFT 

matches may sometimes contain pseudo matches or do not follow an even distribution. 

Two key steps were carried out to mitigate the impacts. First, the pair of SIFT 

matches with a geolocation difference of more than 150 30m pixels are considered as 

pseudo matches and thus excluded. Second, a 2
nd

-order polynomial transformation 

function is estimated between the image coordinates of SIFT points in the Corona 

image and Landsat image. A fitting residual is calculated for each of the SIFT 

matches. The matched SIFT tie points were considered as “pseudo” matches if their 

residuals calculated from polynomial functions exceed a certain threshold. Based on 

our experiments over multiple scenes, the threshold was set to six pixels at 30m 

resolution. The searching will be iterated only until the defined threshold was 

achieved. The coordinates of refined SIFT features on the Corona and Landsat images 

were recorded and used to solve the transformation models and estimate error in the 

following step. The whole process is illustrated in Figure 4.4. 
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Figure 4.4 Method of the semi-automated registration of Corona image with Landsat image as 

reference. SIFT: the Scale Invariant Feature Transform. USGS: the United States Geological Survey. 

 Error estimation 4.3.5

Two types of error estimation were carried out: one is to evaluate the fitting 

accuracy of transformation model with matched SIFT tie points and the other is the 

independent accuracy assessment with manually selected tie points from the corrected 

Corona and Landsat data. RMSE along two dimensions (
X

R M S E  and 
Y

R M S E ) and 

total 
X Y

R M S E  are calculated using the following equations: 
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Where  ,
C C

i i
X Y  and  ,

L L

i i
X Y represent the geographic coordinates of the i

th

( 1, . . . , )i n  selected feature center or tie point from Corona and Landsat image, 

respectively. 
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For the accuracy assessment using manually selected tie points, the same set 

of tie points were selected for preliminary registered Corona data, Corona data 

registered with 2
nd

-order polynomial function, and Corona data registered with 

collinear function. 

4.4 Results  

 Manual point selection and collinear function accuracy  4.4.1

There are 87 and 56 tie points selected for MGdS scene and VM scene, 

respectively, which are located across the whole Corona scenes on purpose. 

For method 1, which treated the whole Corona scene as one model, results 

showed large RMSEs in both x (247.7 m) and y (139.0 m) directions for the MGdS 

case (Table 4.2). The VM case showed better results with lower RMSEs in x (177.9 

m) and y (57.8 m), which however are still too large to meet the accuracy requirement 

for land cover change detection at a medium to coarse resolution particularly along 

the x direction. This is probably due to the fact that the change in image center 

(satellite position) during the scanning period was not considered. Since the x 

dimension approximates the camera scan direction, larger uncertainties happened in 

the x direction (RMSEX) due to failing to consider the change in scan center. 

In method 2, the whole scene was divided into three parts with the same size, 

each of which has its own collinear model and the exterior elements for each part 

were retrieved separately. In this experiment, the accuracies of georegistrations 

improved much, where the total RMSEs dropped to 40~53 m in both x and y 

directions (Table 4.2). This demonstrated the high accuracy of using manually 
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selected tie points from reference Landsat and SRTM data in the correction of Corona 

image. It also indicates that multiple sets of parameters of collinear equations are 

needed for different Corona subsets of a complete scene and accurate geolocation 

could be achieved individually. In other words, dividing the Corona image into three 

subsets can help reduce the errors resulted from the change in satellite position during 

the scanning period. It is noteworthy that the accuracy for the central subset (RMSE 

less than 20 m) is better than the subsets on two sides (RMSE less than 70 m) likely 

because the image distortion is larger at the edge. 

Table 4.2 RMSE for collinear transformation test using manually selected tie points  

 Method 1 Method 2 

MGdS Total Total West Center East 

RMSE_X (m) 247.7 39.9 48.7  18.9 41.4 

RMSE_Y (m) 139.0 44.3 58.5  16.5 42.0  

Number of tie points 87 87 31 23 33 

VM Total Total West Center East 

RMSE_X (m) 177.9 52.9 47.9  11.3 67.5  

RMSE_Y (m) 57.8 43.9 40.2  14.6 55.3  

Number of tie points 56 56 26 9 21 

 Automated tie point (feature) extraction and refinement  4.4.2

Another two Corona scenes were chosen here to evaluate the effectiveness of 

SIFT feature matching based automated procedure of georegistration for the Corona 

data with Landsat data as a reference. One scene is located at a mountainous region in 

Sichuan, China and the other is located at a suburban-agriculture region in St. Louis, 

USA. 

After preprocessing, the geolocation difference between the preliminarily 

registered Corona and reference Landsat images was constrained up to 4500 meters 
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(i.e,. ~150 Landsat 30m pixels). The SIFT algorithm found features from each 

individual image and successfully matched pairs of feature points with the largest 

similarity. For the three subsets of the mountainous scene in Sichuan (DS1105-

2248DF067), SIFT algorithm exported 677, 625, and 2000 “qualified” matching 

points individually from the west-to-east subset. The refinement step reduced the 

matching points to 183, 279, and 928 separately which are still adequate to solve the 

collinear function. 

Examples in Figure 4.5 demonstrated the distribution of refined SIFT matches 

in a zoomed-in view. Different from the feature points usually selected by experts 

through visual interpretation, SIFT did not tend to pick features such as river turning 

points, mountain ridge or valley; instead, the algorithm selected features at multiple 

scales and finalized the location at the center of a multi-scale feature. Although the 

feature is not as “obvious” as manually selected features, the accuracy is usually high, 

as it reports the location of feature at sub-pixel scale, and the number of feature points 

is ensured.  
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Figure 4.5 Refined matching points selected by SIFT shown on Corona (left) and referenced Landsat 

(right) image for Sichuan. 
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Figure 4.6 Refined matching points selected by SIFT shown on Corona (left) and referenced Landsat 

(right) image for St. Louis. 

For the three subsets of the scene in St. Louis (DS1035-1046DF018), SIFT 

algorithm exported 198, 53, 39 matched features from west to east, which dropped to 

151, 13, and 13, respectively, after the refinement (Figure 4.6). This significant 

reduction in matching points was due to the removal of a large number of “pseudo” 

matches resulting from similar image patterns and land cover changes, particularly at 
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the east part of the scene where was covered by agriculture lands. The refined number 

of SIFT matches remain adequate to solve the collinear function. 

Table 4.3 Fitting accuracy of polynomial and collinear function separately based on refined SIFT 

matching points.  

Sichuan 2
nd

 order polynomial Collinear function 

Subset 

Number 

of 

points 

RMSE_X 

(m/pixel) 

RMSE_Y 

(m/pixel) 

RMSE_XY 

(m/pixel) 

RMSE_X 

(m/pixel) 

RMSE_Y 

(m/pixel) 

RMSE_XY 

(m/pixel) 

1 183 
34.2  

(1.14) 

53.7  

(1.79) 

63.7  

(2.12) 

26.64 

(0.89) 

33.85 

(1.13) 

43.08  

(1.44) 

2 279 
45.6  

(1.52) 

63.9  

(2.13) 

78.5  

(2.62) 

30.81 

(1.03) 

36.04 

(1.20) 

47.41  

(1.58) 

3 928 
49.5  

(1.65) 

75.3  

(2.51) 

90.1  

(3.00) 

41.76 

(1.39) 

38.18 

(1.27) 

56.58  

(1.89) 

St. Louis 2
nd

 order polynomial Collinear function 

Subset 

Number 

of 

points 

RMSE_X 

(m/pixel) 

RMSE_Y 

(m/pixel) 

RMSE_XY 

(m/pixel) 

RMSE_X 

(m/pixel) 

RMSE_Y 

(m/pixel) 

RMSE_XY 

(m/pixel) 

1 151 
50.9  

(1.70) 

38.13 

(1.27) 

63.59  

(2.12) 

46.0  

(1.53) 

54.5  

(1.82) 

71.3  

(2.38) 

2 13 
15.1  

(0.50) 

25.6  

(0.85) 

29.7  

(0.99) 

43.3  

(1.44) 

61.0  

(2.03) 

74.8  

(2.49) 

3 13 
20.2  

(0.67) 

15.3  

(0.51) 

25.3  

(0.84) 

41.4  

(1.38) 

106.2 

(3.54) 

114.0  

(3.80) 

 Comparison of model fitting accuracies   4.4.3

Based on the refined SIFT matching points, the overall error of collinear 

function is lower than 2
nd

 order polynomial function by 30-40% with same set of 

match points for Sichuan (as shown in Table 4.3). Both the RMSEs in x and y 

directions have been reduced by using collinear function for all three subsets in the 

two regions. The test Corona scene in Sichuan used here covers a region with 
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complex topographic relief, which increased the difficulty in image registration. In 

this circumstance, collinear function outperformed the polynomial function by 

correcting the image distortion caused by terrain as it accounts for the elevation of 

terrain. Although higher order of polynomial function is also capable of modeling 

complex distortion (Galiatsatos et al. 2008), they are a lot more unstable than the 

collinear function, and thus not suitable for large scale application.  

On the contrary, the 2
nd

 order polynomial function has lower RMSEs than the 

collinear function in two out subsets in St. Louis. It noteworthy that the numbers of 

selected tie points are only 13 in those two subsets, which is likely the reason why the 

retrieved polynomial equations tend to have lower fitting RMSEs. For the first subset 

in the scene, the fitting accuracies are much closer between the two transformation 

models when the sample size was 151.  

 Accuracy assessment 4.4.4

The accuracy of SIFT-based georegistration with different transformation 

functions was further examined based on manually selected tie points at the two 

regions, Sichuan and St. Louis. Manually selected tie points distributed across the 

whole scene (Figure 4.7), allowing a reliable accuracy assessment of the 

transformation models.  

Table 4.4 shows the accuracy assessment for the two cases with two 

transformation models. Although the modeling accuracy of collinear function did not 

show much improvement over the polynomial function, results from manually 

selected tie points showed better accuracy from using collinear function than those 
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using 2
nd

-order polynomial functions in both cases. The collinear function method 

could serve the requirement on accuracy for the land cover change mapping purpose 

with the maximum RMSE being around 100 m.  

For the Sichuan case, RMSEs for the results using polynomial function are in 

general two to three times larger than those using collinear function. This is not 

surprising because topography effects are well-accounted for in the collinear function 

with the help of elevation data.  

 

 

Figure 4.7 The distribution of manually selected validation points in Sichuan (upper) and St. Louis 

(lower) overlaid on a registered Corona image. 

Unlike the fitting RMSEs for the St. Louis case, manual accuracy assessment 

showed much smaller RMSEs for the results using collinear function, which are also 

similar in magnitude compared with the fitting RMSEs for the case using collinear 

function. This demonstrates that the use of collinear function over polynomial 

function can still generate reasonably accurate results when the number of 

automatically selected tie points is not high. Examples of registered Corona image 

after preliminary registration, and precise registrations using 2
nd

 order polynomial 

function and collinear function based on refined SIFT matching points are shown in 
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Figure 4.8 and Figure 4.9 for Sichuan and St. Louis separately. Significant 

improvements of precise registration over preliminary registration were observed and 

the collinear function was preferable to the polynomial function especially at regions 

with complex terrain. 

Table 4.4 Accuracy assessment using manually selected validation points (vpts) for two transform 

models. 

Sichuan 2
nd

 order polynomial Collinear function 

Subset 
Number 

of vpts 
RMSE_X RMSE_Y RMSE_XY RMSE_X RMSE_Y RMSE_XY 

1 11 
141.5 

(4.72) 

82.1  

(2.74) 

163.6  

(5.45) 

49.7  

(1.66) 

32.8  

(1.09) 

59.5  

(1.98) 

2 10 
145.1 

(4.84) 

115.1 

(3.84) 

185.2  

(6.17) 

60.7  

(2.02) 

54.5  

(1.82) 

81.5  

(2.72) 

3 8 
270.6 

(9.02) 

125.9 

(4.20) 

298.5 

(9.95) 

 78.2  

(2.61) 

70.5  

(2.35) 

105.2  

(3.51) 

Total 29 
187.2 

(6.24) 

107.2 

(3.57) 

215.7  

(7.19) 

62.4  

(2.08) 

52.9  

(1.76) 

81.8  

(2.73) 

St. Louis 2
nd

 order polynomial Collinear function 

Subset 
Number 

of vpts 
RMSE_X RMSE_Y RMSE_XY RMSE_X RMSE_Y RMSE_XY 

1 11 
182.6 

(6.09) 

114.5 

(3.82) 

215.5  

(7.18) 

37.5  

(1.25) 

48.5  

(1.62) 

61.4  

(2.04) 

2 12 
851.2 

(28.37) 

550.2 

(18.34) 

1013.5 

(33.78) 

78.4  

(2.61) 

81.2  

(2.71) 

103.0  

(3.43) 

3 9 
1326.4 

(44.21) 

1299.7 

(43.32) 

1857.0 

(61.90) 

58.0  

(1.93) 

87.7 

(2.9.2) 

105.1  

(3.50) 

Total 32 
882.0 

(29.40) 

770.1 

(25.67) 

1170.9 

(39.03) 

57.9  

(1.93) 

70.9  

(2.36) 

91.6  

(3.05) 
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Figure 4.8 Corrected Corona images (red framed) after a) preliminary registration, and registration 

using b) 2
nd

 order polynomial function and c) collinear function based on the refined SIFT matching 

points, overlaid on Landsat reference image in Sichuan. Each window is composed by 200-by-200 

pixels at 30m resolution. 

a. Preliminary registration b. 2nd order polynomial c. Collinear function
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Figure 4.9 Corrected Corona images (red framed) after a) preliminary registration, and registration 

using b) 2
nd

 order polynomial function and c) collinear function based on the refined SIFT matching 

points, overlaid on Landsat reference image in St. Louis. Each window is composed by 100-by-100 

pixels at 30m resolution. 

4.5 Discussion and conclusions 

In this chapter, I explored towards automated georegistering of the historical 

Corona data by presenting a pioneer study of a semi-automated method with Landsat 

data as a reference. It consists of three steps, namely, preliminary registration, feature 

points extraction and matching, and precise registration. The major findings of this 

chapter include: 

a. Preliminary registration b. 2nd order polynomial c. Collinear function
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1) Initial registration is critical in the Corona registration, as it would 

significantly affect the SIFT matching accuracy and efficiency. Our 

experiments show that the errors from the initial registration constrained 

within 150 Landsat pixels at 30 m resolution would be proper for the 

following steps. It can be achieved with limited human intervention by 

locating the four image corners.  

2) Collinear function has been proved to work for Corona data with tie points 

selected from Landsat data. However, it is noteworthy that due to the image 

distortion led by panoramic scanning and unknown flight velocity of Corona 

cameras, an assumption of one set of collinear function for each Corona scene 

would generate large uncertainties. To mitigate this problem, it can achieve 

reasonable georegistration accuracies by dividing the Corona scene into three 

subsets and assigning one set of collinear function for each subset. 

3) The SIFT tie point (feature) extraction and matching algorithm is 

demonstrated to generate not only abundant but also accurate matching points. 

Especially, SIFT features are extracted at subpixel accuracy, which would 

improve the precise registration at a later stage. To account for the errors in 

the preliminary registration, a buffer zone, e.g., 150 Landsat pixels used in 

this study, should be considered in the tie points searching in order to remove 

potential pseudo matches. One limitation of the tie points selection algorithm 

is that due to the poor radiometric performance of Corona data and land cover 

changes that occurred between the acquisition times of Corona and Landsat, 

SIFT feature matching often failed when the study region does not have very 
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clear features and/or dramatic land cover change occurred. In addition, an 

iterative procedure was carried out to remove the potential pseudo tie points 

from the SIFT algorithm, which worked well for the selected Corona scenes. 

However, further efforts are still required to demonstrate the applicability of 

this approach on other Corona scenes. 

Although the total RMSE of around 50 meters does not meet the requirement 

of pixel-to-pixel mapping at Landsat TM resolution (30 m), pixel level mapping at 

MSS level (60 m) or at a slightly coarser resolution could be fulfilled using the 

registered Corona image. Change mapping could still be carried out if the 

corresponding Landsat TMimage is aggregated to a coarser resolution (say, 60 to 240 

m) and the RMSE is constrained to sub-pixel level (Townshend et al. 1992), in order 

to detect the long-term dynamics on Earth surface (as shown in Figure 4.10 and 

Figure 4.11).  

The results demonstrated that collinear function could solve the 

orthorectification problem of historical Corona image and the automated SIFT point 

selection method could successfully select adequate matching points to solve the 

function. There still are unsolved issues hindering a full automation of the Corona 

image registration and further the application over large area.  

First, “pseudo” matches due to land cover change have prevented a more 

adequate number of matches, which can otherwise ensure a more stable fitting of 

transformation models. The current choice of GLS as a reference may suffer more 

from land cover changes than using the MSS data with a smaller temporal gap 

between Corona and Landsat acquisition times. However, the current MSS data also 
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suffers from relatively low georegistration accuracy and poor image quality (e.g., low 

signal-to-noise ratio) compared with TM and ETM+ data. Once an improved MSS 

dataset is provided, an improvement in Corona registration may also be achieved.  

Second, regarding the shortage of SIFT technique, several improvement 

methods (Han et al. 2012; Kupfer et al. 2015; Li et al. 2009; Yu et al. 2008), 

including reducing false matches and enhancing a spatially even distribution of SIFT 

matches, have been recently proposed and could be tested for the Corona image 

registration. Further efforts will be made to incorporate these methods into the current 

Corona registration processing chain and to improve the accuracy. 

Last, although our target of Corona registration does not lie on the 

transformation model parameters, an improvement in constraining the model 

parameters would be of help in reducing the final registration error if the Corona 

flight status (location and gesture) is better understood and considered into the data 

processing. 
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Figure 4.10 Example of land cover change between 1960s and circa 2000 in MGdS and VM study 

areas captured by Corona (left) and Landsat (right) data. 
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Figure 4.11 Example of land cover change between 1960s and circa 2000 in SC and SL study areas 

captured by Corona (left) and Landsat (right) data. 
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 Chapter 5: Remote sensing-based estimation of forest cover and 

change since the 1960s in Sichuan, China
3
  

5.1 Introduction 

China has undergone frequent social and economic changes which at times led 

it to fast economic development and natural resource consumption since the founding 

of the country in 1949. Four of the most important forest-related policies are as 

follows: 1) the Great Leap Forward (1958-1963), known as the second Five Year Plan 

aiming to modernize the Chinese economy through industrialization and 

collectivization, 2) the Cultural Revolution (1966-1976), known as a ten-year 

revolution throughout the entire country with chaotic political and economic policies, 

3) the Reform and Opening (1978-now), resulting in greatly increased income, 

prosperous urban and rural industry, but also polluted environment and generated 

huge wealth inequality, 4) the National Greening Programs (1998-now), two of the 

biggest programs known as the Natural Forest Conservation Program (NFCP), with 

goals of reducing timber harvesting and increasing capacity in natural forest, and the 

Grain to Green Program (GTGP) aiming to restore forest and grassland cover 

especially on steep slopes from cropland (Liu et al. 2008). For the half-century after 

1949, forest sector has been playing role of providing timber products and fuel woods 

to support the nation’s development and population growth, therefore, vast area of 

natural forests were lost (Albers et al. 1998). Hit by the devastating flooding in 1998, 

                                                 

3
 This chapter has been prepared for submission to the journal of International Journal of Digital 

Earth. 
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China set the logging bans and afforestation as the primary focus for the 

implementation of conservation policies and aimed at mitigating environment 

degradation, and conserving natural resources (Liu et al. 2008). 

However, there are controversies on the trend of resultant forest cover change 

due to changes in policy in China. On one side, some studies depicting forests in 

China as carbon pool by citing the official statistics which reported a continuous 

increase in forest cover from 12.7% to 20.36% during 1976 and 2008 (Fang et al. 

2001; FAO and JRC 2012; Nabuurs et al. 2007). On the other side, such increase 

trend is doubted by researchers who criticized that the natural forests in China 

experienced irreversible destruction (Smil 1984). As a result, a spatially and 

temporally comprehensive estimation on the change of forest cover is desirable, in 

order to evaluate the effectiveness of long-term forest policies (Vina et al. 2016).  

As discussed in Chapter 2, remote sensing is an advanced technology in land 

use and land cover change mapping equipped with various spatial resolutions and 

temporally continuous coverages. The combination of Landsat and Corona data 

provides continuous observation of the Earth’s surface from the 1960s until now, 

which enables consistent forest cover mapping and provides spatial explicit 

distribution of where forest cover change have happened.  

The primary objective of this chapter is to assess forest change in Sichuan 

province over four decades (1960s-2005) and examine potential connections between 

the observed change and social economic and policy changes. This is achieved by 

quantifying forest cover in the 1960s using Corona data and analyzing the derived 

results with existing forest cover change products derived from Landsat for 1975 and 



80 

 

afterwards. The satellite-based results are compared with forest cover estimates 

reported by national and provincial agencies. More details of the study region and 

data are described in Section 5.2. Sampling design and the accuracy assessment of 

forest cover change products are presented in Section 5.3. The estimated forest cover 

trend is presented in Section 5.4 and the observed change on forest cover was linked 

to concurrent forest and socioeconomic policies from the 1960s to the 2000s, which is 

discussed in Section 5.5. 

5.2 Study area and data  

 Study area 5.2.1

Sichuan province, located in Southwest China, has a terrestrial area of 

5.66×10
5
 km

2
 before and 4.84×10

5
 km

2
 and after the autonomy of Chongqing city in 

1997. Besides Yunnan and Tibet, Sichuan is another major part of the second largest 

forest of the nation, Southwest forest (Huang et al. 2008a) which accounts for 43.9% 

of timber reserves (Wang et al. 2004) of China and originally had tremendous 

primary forest. Adjoining the Qinghai-Tibetan Plateau forest in Sichuan has terrain 

characterized by high spatial diversity and high sensitivity to climate change. Before 

the 1950s, most forests in China were naturally regenerated and there were large areas 

of old-growth forest (Zhang et al. 2000a). Average carbon density of forest is 38.04 

MgC·hm
-2

. In general, forest carbon density decreases from subalpine coniferous 

forest in western Sichuan (30~40 MgC·hm
-2

) to the montane evergreen broadleaf 

forest located in the east and the edge of Sichuan Basin (20~30 MgC·hm
-2

), and 

increases along altitude and slopes (Huang et al. 2009a).  
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Forests in Sichuan are currently under a mixed management system of state-

run and collective-run forest. Forest disturbance is mainly driven by long-term, 

complex human activities, especially at low-altitude regions and the Sichuan Basin. 

Thus, primary and undisturbed forests are mainly distributed in the high-elevated, 

steep-sloped regions ranging from mid-west to mid-north of Sichuan. With the great 

potential of forest resources, Sichuan has been selected as the pioneer region for 

several forestry programs such as Natural Forest Conservation Program (NFCP), 

Grain to Green Program (GTGP), and Yangtze River Shelter Forest Program (Liu et 

al. 2008). However, the complex terrain hinders the field inventory of forest resources, 

thus making the use of remote sensing technology necessary in forest cover and 

change estimates. Sichuan provides major habitats for many wildlife species such as 

the giant panda. Liu et al. (2001) found that suitable habitat for the giant panda was 

reduced by around 5100 ha before the establishment of the Sichuan Wolong Nature 

Reserve in 1975 and further reduced by 13% (~7300 ha) from its establishment until 

1997 (Liu et al. 2001).  

 Data  5.2.2

Corona data 

The characteristics of Corona data are described in Chapter 2. In this chapter, 

the number and location of Corona data are determined by the sampling strategy 

deliberated in Section 5.3. Corona data acquired by KH-4A and -4B mission are used 

when available.  
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Figure 5.1 Biome map (upper-left), downloaded from the World Wildlife Fund 

(http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world), and GLCF-GFCC 

maps for Sichuan, including forest cover map in the 1975 (upper-right), and change map from 1990 to 

2000 (lower-left), and from 2000 to 2005 (lower-right), downloaded from Global Land Cover Facility 

(http://landcover.org/data/landsatFCC/). 

GLCF-GFCC maps for epoch 1975 and after 

Among different products, the global forest cover change map produced by 

Global Land Cover Facility, named the Global Forest Cover Change (GFCC) map, is 

selected for analyzing the forest cover change trend in Sichuan province. The forest 

cover map in 1975 and change map from 1990 to 2000 and 2000 to 2005 are 

presented in Figure 5.1, along with the ecoregion map of Sichuan. The regional 

100 Kilometers

shadow

cloud

water

persistent forest

forest loss

forest gain

persistent non-forest
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accuracy of the GLCF-GFCC map needs to be evaluated before applying it to 

regional analysis. 

Forest statistical data  

Seven national forest inventories (NFI) have been implemented by the 

Chinese government from 1973 to 2008 (i.e. 1
st
 NFI: 1973-1976, 2

nd
 NFI: 1977-1981, 

3
rd

 NFI: 1984-1988, 4
th

 NFI: 1989-1993, 5
th

 NFI: 1994-1998, 6
th

 NFI: 1999-2003, and 

7
th

 NFI: 2004-2008) and forest statistics were derived from field inventory (SFA 2005, 

2009; Thematic Database for Human-Earth System). This dataset was used to 

investigate the differences in forest cover estimates obtained from remote sensing 

data. NFI reports were downloaded from the Chinese Forest Science Data Center 

(CFSDC, http://www.cfsdc.org/). Sichuan statistical yearbooks were downloaded 

from the Sichuan Provincial Bureau of Statistics (http://www.sc.stats.gov.cn/). Forest 

records for 1949 and 1950-62 were acquired from the Thematic Database for Human-

earth System (TDHS, http://www.data.ac.cn/index.asp). However, it is noteworthy 

that the technical details, especially of TDHS statistics, are not available yet.  

5.3 Methods 

 Sampling strategy for Corona data 5.3.1

Although wall-to-wall mapping has been widely implemented over large 

regions for many satellite data, such as Landsat or MODIS, there are three major 

challenges hindering the wall-to-wall mapping of Corona data. The first issue is the 

time and cost of Corona data processing. A full coverage for Sichuan requires more 

than 200 Corona images (Figure 5.2). Although the developed semi-automated 

http://www.cfsdc.org/
http://www.sc.stats.gov.cn/
http://www.data.ac.cn/index.asp
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registration method could significantly reduce processing cost, further efforts such 

initial registration and refining pseudo matches are still needed to process large 

volume of images. Second, clouds are key sources of contamination for the Corona 

image. The gaps caused by clouds and shadows could hardly be filled by other 

images acquired within a short period of time, because Corona data do not have a 

regular revisit period. Lastly, free Corona images cannot provide a complete coverage 

the study region (Figure 5.2), and additional images need to be purchased in order to 

achieve a wall-to-wall mapping. Considering these limitations, a sampling method is 

applied to the Corona data to estimate forest cover in the 1960s. 

 

Figure 5.2 Footprint of Corona data for 1960s in Sichuan that are freely available for download, 

inquired from EarthExplorer website (http://earthexplorer.usgs.gov/). 

 

A sampling method is commonly adopted for land cover and change 

estimation when data availability is limited (DeFries et al. 2007; Hansen et al. 2008). 

Among different sampling strategies, the stratified random sampling (SRS) method is 

favored over simple random sampling or systematic sampling because of its 

advantages in reducing uncertainty and maintaining the accuracy of the estimate 

http://earthexplorer.usgs.gov/
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(Broich et al. 2009). The major issue with systematic sampling is that it cannot 

provide an unbiased estimate, and the issue with random sampling is that forest loss 

usually does not follow random distribution. Information of the forest cover and 

change in the 1960s, especially with explicit spatial distribution, is needed to define 

the stratum for the SRS method. However, such data is not available over many 

regions including Sichuan.  

Due to the constraints on data availability, a forest cover change (FCC) 

probability map is produced using an experiential model. Assuming that forest cover 

and change after the 1970s along with other factors such as land cover types provides 

a good indication to forest change from the 1960s to the 1970s, a set of independent 

variables were used to predict the change probability between the 1960s and 1970s 

(
6 0

%
s

F C C ), including persistent forest ( %f f ) and non-forest ( %n n ), forest loss 

( %fn ) and gain ( %n f ) between 2000 and 2005, DEM and fractions of land use 

types (including crop, forest, grass, water, buildup, unused land) . The model was 

trained in south Sichuan where forest loss was reported to occur during the 1960s 

(Chinese Academy of Forestry 2016), and was then applied to the entire province. 

The model was trained and applied at block level with a size of 10×10 km
2
. The 

reason for selecting this block size is mainly because it is close to the width of one 

Corona scene. Input images, including GFCC 2000-2005 at 30m resolution and land 

use data in 2000 at 1km resolution produced by the Institute of Geographic Sciences 

and Natural Resources Research, Chinese Academy of Science were aggregated to 10 

km to derive the fractional value. DEM data at 90m resolution (USGS 2004) was also 
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aggregated to 10 km resolution using a spatial averaging method. The derived 

prediction model is as below:  

6 0
% 1 .5 0 .1 4 % 3 .4 1 % 1 .7 5 % 0 .1 7 %

0 0 .0 1 4 % 0 .0 1 4 % 0 .0 1 6 %

0 .0 1 1 % 0 .0 1 2 % 0 .1 3 6 %

s
F C C ff fn n f n n

D E M c r o p f g r a s s

w a te r b u ild u p u n u s e d

        

       

     

    Eq. 5.1 

By applying Eq. 5.1 to the entire study region, the FCC probability was 

predicted for all 10×10 km
2
 blocks in Sichuan. Three change strata including low, 

medium and high change to represent different degrees of forest cover change, plus a 

no-change stratum that was mainly located in regions without forest cover or regions 

with no valid data due to persistent cloud and shadow contamination. Thresholds used 

for separating different strata were derived  following the Dalenius-Hodges rule 

(Cochran 1977) and are listed in Table 5.1. First of all, 10 blocks were selected from 

the no change stratum. For the three change strata, 50 blocks in total were sampled, 

considering the factors such as processing time and image availability. In total, 60 

blocks were sampled for the change and no-change strata in Sichuan, representing a 

sampling ratio of 1.24% to the total blocks. 

Furthermore, an optimal allocation method, called Neyman allocation method 

(Cochran 1977), was adopted to decide the number of sample blocks to be assigned to 

each change stratum. The number of sample blocks for each stratum is listed in Table 

5.1. The distributions of strata and sample blocks are shown in Figure 5.3. 
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Table 5.1 The summary of stratified sampling design, including the boundary, size of total population, 

size of sampled blocks and the ratio of sampling for each stratum. 

Stratum (threshold of FCC%) 
Percent 

of area 

No. of 

blocks 

(
h

N ) 

No. of 

sampled 

blocks 

(
h

n ) 

Percent 

sampled 

Percent of 

total 

sampled 

bocks 

No change (<0.078%) 22.64% 1096 10 0.91% 16.67% 

Low change (0.078-24%) 23.60% 1143 13 1.14% 21.67% 

Medium change (24.01-40%) 41.84% 2026 17 0.844% 28.33% 

High change (40.01-99.08%) 11.92% 577 20 3.47% 33.33% 

Total  100% 4842 60 1.24% 100% 

 

 

Figure 5.3 Strata map (left) and the location of selected sample blocks (right). 

 Block level forest cover estimate from Corona  5.3.2

According to the nominal coverage of the Corona image, 60 Corona images 

were selected to cover all sample blocks. Since the block size is 10×10 km
2
, one 

block can be covered by a Corona subset rather than the entire image. Considering the 

fact that one Corona scene is distributed in four separate files (subsets), only one out 

of four subsets is therefore needed and selected. Thus, image registration and 

classification were applied only to the selected subset, to derive the forest cover for 

the overlapped sample block.  

100 Kilometers

Stratum

no change

low change

medium change

high change 100 Kilometerssample blocks
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Corona image registration 

Because the nominal coverage file and the Corona image are distributed 

separately, an additional step is required to add preliminary geolocation to the Corona 

image. For each selected subset, up to four tie points were manually selected to link 

the Corona image to the reference Landsat data. Here, GLS 1990 was used as 

reference data considering its smaller difference on acquisition time than GLS 2000 

and 2005 with the Corona data, and higher geolocation accuracy than GLS1975 

(Gutman et al. 2013). Following the preliminary registration, the SIFT method was 

applied to automatically select tie points among Corona and Landsat images. After 

the precise registration, 32 out of 60 sampled Corona subsets were successfully 

registered to Landsat images with RMSE up to six Landsat pixels (30m). For the 

remaining 28 images, manual precise registration method was adopted, and 14 images 

were successfully processed. The average RMSE of manual registration is 2.8 

Landsat pixels. The failure in registration of the remaining 14 images is mainly 

caused by the poor quality of the Corona image due to a film exposure problem or 

cloud contamination. Limited by image availability, substitute images could not be 

found for these sample blocks. However, since the 14 failed images appeared to be 

randomly distributed in Sichuan, the 46 registered Corona subsets still follow a 

random distribution and it keeps the predefined SRS strategy valid. As a result, 46 

Corona image subsets were used towards the next step.  

Another issue appeared after I finished the image registration. Since the 

coverage of the Corona image provided by USGS was an approximate range, it was 

observed that there were common shifts between the nominal coverage and the actual 
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location with a degree of several kilometers. Thus, the previously selected sample 

blocks probably could not be covered by the registered Corona data, and forest cover 

could not be estimated on these blocks. To solve this problem, blocks covered by the 

successfully registered Corona subsets composed a new set of samples, facilitating 

the predefined sampling strategy. This set of sample blocks was utilized and the 

inclusion probability of each sample block within each stratum was recalculated. The 

actual number of sample blocks and the sampling percentage is summarized in Table 

5.2. 

Table 5.2 The size of sample blocks and the sampling ratio (%) each stratum by using all blocks 

covered by registered Corona image. 
h

n  and 
h

N are denoted the sample size and size of total 

populations for stratum h. 

 
h h

n N
 

Sample% 

Stratum 1: no change 85/1096 7.8% 

Stratum 2: low change 60/1143 5.2% 

Stratum 3: medium change 113/2026 5.6% 

Stratum 4: high change 74/577 12.8% 

Total  332/4842 6.9% 

Corona image classification  

Concluding from Chapter 3, a combination of texture features, including 

dissimilarity, second moment, co-occurrence variance and mean, is suitable for 

forest/non-forest classification. In addition, a window size of 7-by-7 pixels is 

recommended for classification in complex landscapes such as Sichuan. So, the four 

textures were calculated at the original resolution of the Corona image and aggregated 

using a scaling factor of 7-by-7 pixels. Image classification was implemented at this 
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coarser resolution with SVM classifier and further aggregated to 30 m. 

Georegistration transformation function was then applied to these Corona 

classification images to derive the forest cover maps for each sample block. Since the 

average RMSE of Corona image registration is larger than an MSS pixel (~60 m), 

block-level forest cover estimate is more appropriate than a pixel-to-pixel change 

map. As a result, the fraction of forest cover for each 10-by-10 km
2
 sample block was 

derived.  

 Region level forest cover estimate for the 1960s 5.3.3

By adopting the equations for calculating the regional estimate from samples 

(Stehman 2014), forest cover rate and standard error over the entire Sichuan province 

can be inferred from a sample-based estimation of  forest cover percentage. For each 

stratum h, a simple random sample of 
h

n  blocks was selected from all blocks 
h

N . N 

is the total number of blocks in Sichuan. The regional averaged forest cover rate 
ˆ

Y  

was calculated using the following equation:  

1

ˆ
H

h h

h

N y
Y

N

   Eq. 5.2 

h u hu h
y y n


   Eq. 5.3 

where 
h

y  is the average forest cover of all selected sample blocks in stratum 

h. 
u

y  is the forest cover for each sample block  u u h  derived from selected Corona 

classification maps. H is the number of strata and N is the total number of blocks in 

Sichuan. The variance V̂  of the estimated forest cover was calculated following the 

equations: 
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    Eq. 5.5 

where 
2

y h
s  is the sample variance of stratum h. The standard error SE of 

estimated regional forest cover ˆ
Y  is the square root of the estimated variance V̂ .  

 Estimation of forest cover and change for 1975 and after 5.3.4

Since the GFCC product for 1975 used in this study is a pre-released version, 

its accuracy has not been evaluated either at a regional or global scale. Accuracies of 

GFCC at the other three epochs have only been conducted at the global scale (Feng et 

al. 2016). In order to utilize this dataset, accuracy assessment needs to be conducted 

particularly for Sichuan. Four WRS2 path/rows were randomly selected from the total 

of 24 path/rows (Figure 5.4), representing the four biomes of the region. A stratified 

random sampling algorithm with proportional allocation was adopted with the forest 

and non-forest classes as two strata (Olofsson et al. 2014). A sampling percentage of 

0.003% was defined, considering the time and efforts needed in reference class 

labeling. Thus, 384 forest pixels and 572 non-forest pixels in total were randomly 

sampled from the four forest/non-forest maps in 1975. Due to the lack of reference 

data for early 1970s, it is unavoidable to use ancillary information to make the best 

estimation of the forest/non-forest class for the 1970s. Each sample pixel was 

examined by visually interpreting the MSS imagery in the 1970s and high-resolution 

imagery from Google Earth (www.earth.google.com). Forest cover in the 1960s was 

checked to determine if the location was covered by a registered Corona image. 

http://www.earth.google.com/
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Knowledge on the temporal change derived from other GFCC epochs, along with the 

spatial context of the pixel, was used to label each sample pixel. One assumption for 

the labeling is that from the 1970s to the 1990s, forests are more likely to be disturbed 

than regrowth. Therefore, a pixel is likely to be forest in the 1970s if it exhibits 

vegetation characteristics in the MSS image and is classified as forest in the 1990 and 

afterwards. On the contrary, if a pixel is classified as non-forest after 1990, it may be 

a forest pixel depending on the spectral characteristics in the MSS image since forest 

loss could occur during the 1970s and 1990. The set of reference pixels for 1975 was 

reserved for assessing the accuracy of the forest cover maps after 1990.  

 

Figure 5.4 Path/row selected for the accuracy assessment of GLCF-GFCC product in Sichuan, 

displayed on top of the biome map, downloaded from the World Wildlife Fund 

(http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world). 

The common form of error matrix in terms of sample counts is illustrated in 

Table 5.3, accompanied by unbiased estimator of the proportion of area in cell i,j of 

the error matrix: 

http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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ˆ
i j

i j i

i

n
p W

n
  Eq. 5.6 

where 
i

W  is the proportion of area mapped as class i. Estimates of accuracies, 

including user’s accuracy (U or UA), producer’s accuracy (P or PA), and overall 

accuracy (O or OA), based on the stratified random sampling design can be obtained 

by applying the following equations: 

ˆ
ˆ

ˆ

i i

i

i

p
U

p
  Eq. 5.7 

ˆ
ˆ

ˆ

j j

j

j

p
P

p
  Eq. 5.8 

1

ˆ ˆ

q

jj

j

O p



   Eq. 5.9 

The unbiased estimates of forest cover and standard error were then calculated 

using the following equations (Olofsson et al. 2013): 

2

1

1

1

ˆ i

i

i i

n
p W

n

   Eq. 5.10 
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  Eq. 5.11 

 

Table 5.3 Error matrix of sample counts, 
i j

n  and estimated area proportion, ˆ
i j

p . Map classes are the 

rows while reference classes are the columns. 

Class Forest Non-forest Total 

Forest  
 1 1 1 1

ˆn p
  

 1 2 1 2
ˆn p

 
 1 1

ˆn p
 

Non-forest 
 2 1 2 1

ˆn p
 

 2 2 2 2
ˆn p

 
 2 2

ˆn p
 

Total  
 1 1

ˆn p
 

 2 2
ˆn p

 
 1n
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Table 5.4 Accuracy of forest class for GLCF forest cover product at four epochs in Sichuan. The 

biome where each Landsat scene located is also shown. Accuracy measurements include overall 

accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) of the forest class.  

Forest in Sichuan 1975 1990 2000 2005 

p131r039 

Coniferous 

forest 

UA 89.72 96.67 100.00 93.33 

PA 92.27 91.44 95.92 91.57 

OA 92.84 97.15 99.04 96.59 

p129r038 

Temperate 

forest 

UA 92.14 91.40 95.95 93.24 

PA 91.56 94.87 79.96 82.88 

OA 91.64 94.32 89.20 90.13 

p130r041 

Subtropical 

forest 

UA 85.34 92.54 98.55 98.55 

PA 89.97 83.64 83.33 87.12 

OA 87.22 89.49 91.05 93.28 

p131r037 

Mountain 

steppe 

UA 66.67 88.24 94.44 94.12 

PA 80.68 60.02 72.47 55.28 

OA 95.24 97.65 98.54 97.29 

Total UA 88.02 92.27 97.40 95.26 

PA 90.91 88.63 83.13 84.64 

OA 91.52 94.34 93.69 93.86 

5.4 Results 

 Accuracies of forest cover maps in 1975, 1990, 2000, and 2005 5.4.1

Accuracy of forest class in 1975 was consistently high across all biomes in 

Sichuan, with overall accuracy (OA) being 91.5% (SE = 1.57%) (Table 5.4). 

Producer’s accuracy was >90% and user’s accuracy was 88% for forest class. 

Therefore, commission errors (CE = 1-UA) and omission error (OE = 1-PA) were 

~10%. The highest accuracies were found in conifer forests (p131r039), temperate 

forests (p129r038), followed by subtropical moist forests (p130r041) and mountain 

steppes (p131r037) – which respectively had producer’s accuracy (PA) of 92.27%, 

91.56%, 89.97% and 80.68%, and user’s accuracy (UA) of 89.72%, 92.14%, 85.34%, 
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and 66.67% for the forest class. The omission errors were all < 20%. The accuracies 

for epoch 1990 and afterward are consistent with the map of 1975, with maps’ overall 

accuracy of ~94% for all. User’s accuracy for forest class is consistently over 90% 

and producer’s accuracy is slightly lower ranging from 83.13% in 2000 to 88.63% in 

1990. 

Table 5.5 Forest cover (%) from 1960s to 2005 estimated from remote sensing data and statistics of 

forest inventory. The standard error associated with forest cover is reported in parentheses.  

Epoch 

RS 

estimate

d forest 

cover 

NFI stats Yearbook TDHS 

forest 

cover 

forest 

land 

use 

forestla

nd 

forest 

cover 

forestlan

d 

forest 

land use 

forestlan

d 

1949 - - - - - - - 16.92 

1960s 
45.19 

(1.62) 
- - - - - 36.31 12.89 

Circa 

1975 

38.98 

(2.06) 
13.3 36.04 13.26 - - - - 

Circa 

1990 

28.91 

(2.07) 
20.37 47.21 20.37 19.17 - - - 

Circa 

2000 

28.19 

(2.27) 
30.27 46.84 25.51 39.7 24.23 - - 

Circa 

2005 

27.87 

(2.14) 
34.31 47.79 27.15 28.98 27.13 - - 

 Estimates of forest cover from the 1960s to 2005 5.4.2

Table 5.5 reports the estimates of forest cover rate for Sichuan from the 1960s 

to 2005, as well as the measurements derived from multiple statistical reports. An 

estimated forest cover of 45.19 ± 3.11% in the 1960s was derived at the 95% 

confidence level from the sampled Corona classification maps. Using the GFCC 

product circa 1975 yielded an estimated forest cover of 38.98 ± 4.04% at the 95% 

confidence level. For the following epochs, GFCC products also yielded area-
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adjusted estimates of forest cover of 28.20 ± 4.06%, 27.73 ± 4.45% and 27.27 ± 

4.19% at the 95% confidence level in 1990, 2000 and 2005 respectively. Examples in 

Figure 5.5 further illustrate three examples of changes of Sichuan’s forest cover over 

a 40-year period observed from Corona, MSS, TM and ETM+ images, including (a) 

deforestation due to mining, (b) deforestation and regrowth, and (c) conversion of 

forest to cropland.  
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Figure 5.5 Examples demonstrate forest cover dynamics over five epochs in Sichuan, including a) 

forest cover loss due to coal mining; b) forest logging and afforestation; c) conversion from forest to 

agricultural land. ESRI World Imagery maps at very high resolution are shown as references (the last 

row). 
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 Change in forest cover from the 1960s to 2005 5.4.3

Continuous decrease in forest cover during the 40-year period was observed 

from the remote sensing-based estimates. By adopting Eqs. 5.13-14, it is estimated 

that forest cover has totally decreased by 38% from the 1960s to 2005. 31% of the 

total forest loss was due to the loss happened in the first decade (circa 1965-1975), 

and 58% of the total loss happened between 1975 and 1990. Since 1990, forest cover 

has become relatively stable with a much lower decrease rate of 0.24% per year until 

2005.  

1 2

1

to ta l
(% ) 1 0 0

t t

t

F C F C
F C C

F C


   Eq. 5.12 

1 2

1
2 1

(% ) 1 0 0
( )

t t

a n n u a l

t

F C F C
F C C

F C t t


 

 
 Eq. 5.13 

In comparison to the forest cover estimated from satellite data, forest cover 

obtained from various statistical data source presents different trends over the 40 

years. Only TDHS stats contain forest cover before the 1960s, reporting rough 

estimates of 16.92% of forestland in 1949 and 36.31% of forest land use for the early 

1960s. The percent of forest cover reported by NFI stats is 13.3% in the 1970s, which 

was increased to 20.37% until circa 1990. The 6
th

 NFI conducted around 2000 shows 

that forest cover is 30.27%, which was increased to 34.31% in circa 2005 according 

to the 7
th

 NFI statistics. Overall, forest cover increased by 158% from the 1970s to 

2005, with 66% of the total increase occurred after 1990. The Sichuan statistical 

yearbook reports forest cover from after 1990, describing a pattern with the highest 
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forest cover of 39.7% in 2000, increased from 19.17% in 1990 and decreased to 

28.98% in 2005. Definitions of different variables are provided in Figure 5.7. 

5.5 Discussion  

 Differences between satellite- and NFI-based forest cover estimates  5.5.1

The difference between the remote sensing- and NFI-based forest cover 

change estimates for Sichuan mainly existed in the 1960s and circa 1975 and was 

reduced after 1990 (Table 5.5). Similar differences were also identified in the other 

provinces in China between 2000 and 2005 (Figure 5.6). For 2000, NFI reported a 

higher forest cover for provinces especially in north China dominated by sparse forest 

cover. In provinces with medium forest cover, the two data sets have similar 

estimates. For provinces in the south with dense forest cover such as Guangdong and 

Fujian, NFI did not report as much forest as remote sensing estimates. Figure 5.6 also 

shows that almost all provinces experienced big increases in forest cover according to 

two NFI reports, however, net losses were observed from the GFCC maps. The trend 

of forest decline was similar to what was reported by Hansen et al., (2010), which 

stated that the net forest increase reported by China’s government could not yet be 

detected using remote sensing observations.  
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Figure 5.6 Comparison of forest cover rates for 2000 and 2005 and change rates during the five years 

derived from GLCF-GFCC maps and 6
th

 and 7
th

 NFI statistics respectively (Song et al. 2014).  

 Sources of difference in forest cover estimates 5.5.2

The difference on forest cover estimates from the remote sensing and forest 

inventory could be caused by two factors. The first factor is the mismatch of 

definition. In the remote sensing-based estimate, forest cover is defined as parcels 

with area > 1 ha and with tree cover > 30%, measuring the biophysical properties of 

forests. Forest cover in NFI statistics, what the remote sensing estimate was 

compared, is defined as the fraction of forestland, further including “special purpose” 

scrubs in area with annual rainfall less than 400 mm since 2003 (SFA 2003). 

Forestland in NFI is defined as parcels > 0.067 ha in area and comprising a canopy 

cover > 30%, excluding scrubland or urban forest. The definition was changed in 

1994 to a minimum canopy cover of 30% reduced to 20% (Zhang and Song 2006). In 

addition to forestland, forest land use in NFI also includes sparse forest, afforested 
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land, post-disturbance forest land, and other land used for forest purposes (Figure 

5.7).  

 

Figure 5.7 Definitions of major forest land types and key variables in forest inventory and statistics. 

“Forest cover” is used for comparison with remote sensing-based estimate of forest cover. 

Second, the inconsistency in method adopted in different NFIs brings more 

difficulties to understand the statistics. For instance, Sichuan’s first inventory in 1976 

was mainly carried out by people from the non-forest sector, and was based on 

county-level inventory. A standardized inventory procedure was established since the 

3
rd

 NFI in the 1980s, and remote sensing technology was first introduced in NFI by 

2000 (Zhang and Song 2006).  

Regarding accuracy of the two data sources, consistent definition and 

algorithm were adopted in remote sensing-based estimates and the accuracy and 

uncertainty were quantified; however, uncertainty in statistics was not reported. 

Therefore, remote sensing-based estimates are more reliable for analyzing the long-

term dynamics, especially when the field data for deriving statistics is not available. 



102 

 

 Relationships of long-term forest cover change to China’s forest policies 5.5.3

Forest policies have multiple effects on the change of forest area and the 

management intensity, through the impacts of creating secure or insecure tenure 

system, changing incentives for forest production, affecting timer price and taxes, or 

reforestation/afforestation programs (Yin and Newman 1997; Zhang et al. 2000b). 

Forests in China have significant spatial heterogeneity driven by both natural 

conditions and various socioeconomic policies (Yin and Newman 1997). Since the 

founding of the current government in 1949, China has undergone many social and 

economic changes (Table 5.6), which at times led it to fast economic development 

and natural resource consumption. Using the estimates of forest cover change over 

four decades from the 1960s in Sichuan, it is able to connect the change magnitude to 

the forest policies over different time periods. 

Table 5.6 List of key forest and relevant policies in China from late 1950s to 2000s. 

Years Period Key Forest Policies 

1958-

1962 

The Great Leap Forward Establishment of people’s commune (1958) 

The Second Five Year Plan (1958-1962) 

1963-

1977 

Cultural Revolution   “Who plants, who owns” regulation (1964) 

National Forestry Development Plan (1971) 

1978-

1998 

Economic Reform  Green Great Wall program (1978) 

Household production responsibility system (1977 – 1991) 

The forest ownership policy (1981) 

Forestry Law (1985) 

Forestry Reform (1992-1998) 

1998-

2010 

National afforestation and 

deepened reform  

Natural forest conservation program (1998-2050) 

Grain to green program (GTGP) (1999- ) 

Deepened forestry reform (2003-)  
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Tenure change and underpriced logs before 1978 

Forest cover rate in Sichuan province decreased by 13.7% from 45.19 ± 3.11% 

in the 1960s to 38.98 ± 4.04% in the mid-1970s. This falling trend during this period 

could mainly be explained by the tenure system of forest land and the timber output 

from forests. 

From a tenure perspective, forest degradation was mainly due to the lack of 

confidence in tenure security caused by frequent change in forest policies in the 

1960s (Liu 2001). Establishment of people’s communes (1958) caused the entire 

nation get involved in agriculture and steel-making activities by collecting fuel from 

trees. This could have caused the first severe destruction to natural forestry since the 

founding of P.R. China (Liu 2001). In the adjustment of national economy (1961-

1964) period, after the strike of forest loss during the previous period, central 

government carried out series of policies to recover the destroyed forests. 

Afforestation-based forest policy was implemented in 1964 including “who plants, 

who owns” regulation and providing afforestation funding. Forest ownership and 

management were devolved from commune to production team or production brigade, 

and scattered trees were assigned back to households (Liu 2001). This short recovery 

period may not have caused significant changes on forest cover, but at least it could 

cease the severe logging in late 1950s. Another reversal of policy on the house-hold 

ownership of forest happened in the Cultural Revolution period. In terms of forestry, 

forest management institutions were dissolved and experts and technicians in forestry 

institutions were laid off. Exploiting of forest resources was recorded and rampant 

timber cutting happened around the nation, at the same time, afforestation campaigns 
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were highly inefficient, with nominal surviving rate of only 20% (Wang et al. 2004). 

Until 1971, adjustments policies were carried out by drafting the National Forestry 

Development Plan. Rapid-growth forest planting strategy was promoted in southern 

provinces, and national forestry farms were established especially in northern China 

(Liu 2001).  

From a financial perspective, the forest sector in China mainly supplied 

underpriced timber products to support the national economic development during the 

three decades before 1978 (Wang et al. 2004). Deforestation in Sichuan as a whole 

began in the 1950s, and in its major forested regions such as Aba Prefecture in the 

1960s, when it supplied about 84% of timber output of the province, and Garzê 

Tibetan Autonomous Prefecture (Chinese Academy of Forestry 2016; Hayes 2013). 

Another example is Baoxing County, Sichuan, where the timber production was 

100,000 m
3
 in 1960s but increased by 16,000 m

3 
per year during the 1970s-80s (SFA 

2014).  

Demand for timber during 1978 to 1998 

A continuous deforestation trend from the mid-1970s to the late 1990s was 

observed according to the remote sensing-based estimates, composed by a sharp drop 

from 38.98 ± 4.04% to 28.20% during the first fifteen years and a further mild 

decrease to 27.73% during the next decade. The loss of one-third of forest cover 

during the two decades before 2000 is possibly relevant to the high demand for timber 

products during the country’s economic reform and development. 

Economic reforms were carried out around the country since 1978, followed 

by a reform to forestry sector in 1981 that changed the ownership of forests. In 1985, 
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the Forestry Law was finalized, which opened the timber market to meet the demand 

of timber products during the period of rapid economic development. State-owned 

forest companies became more autonomous with increasing controls on timber 

production; on the other hand, collectively-owned woodland was distributed to 

peasants, with entitlements to harvest of the forest land (Wang et al. 2004). To meet 

the demand for timber during the economic reform in the late 1970s and 1980s, 

annual timber harvest increased from 20 million m
3
 in 1950s to 63 million m

3
 in the 

1990s. Total volume of forest harvest from the 1970s to the late 1980s was higher 

than the total volume of forest growth (Zhang and Song 2006), indicating the 

decrease of natural (mature) forest coverage and increase of newly planted young 

trees. Although the large-scale plantation-style forest increased the total forest cover 

in NFI statistics, extensive cutting of forests caused the decline of natural forests in 

1995 to 30% of the total forest area in 1950s (Zhang et al. 2000a). The undetectable 

young trees made the remote sensing estimates show a trend of forest loss from 1975 

to 2000. In Sichuan, forest destruction is most severe along rivers where logged 

timber can be floated downstream to the Sichuan basin, and along major highways for 

transportation purpose. Forest cover has also been estimated to decrease from 30% in 

1950s to 14% in 1980s (Clarke 1998) in west Sichuan, which hosts most of the 

conifer forests.  

Afforestation since 1998 

The drastic demise on forest cover ceased until the late 1990s and the forest 

cover in Sichuan stabilized at around 27% after 2000. This sudden turn around on the 

deforestation trend lasting for three decades could be attributed to the national 
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afforestation programs and conservation activities such as logging bans in the 

important forest regions such as Sichuan. 

Alarmed by the massive floods in China happened in 1998, six key forest 

conservation programs were launched to recover the environment, encompassing 97% 

of the nation. Further reform happened to the forest sector, which was aimed at 

establishing mature timber market in collective-run forests region, and increasing 

ecological values of forests in state-run forests. The Natural Forest Conservation 

Program (NFCP) that was carried out in Sichuan since 1998 was characterized with a 

strict logging ban in natural forest and incentive afforestation. The duty of most 

employment in the forest sector has shifted from logging to tree planting (Liu et al. 

2008). Afforestation accounted 2.34 million ha in area in Sichuan from 1989 to 2000. 

Wildlife habitats, such as the panda habitat, has been recovering since the NFCP 

(Vina et al. 2007). Area converted to forest was 90,700 ha from cropland, and was 

72,100 ha from barren hills by the Grain to Green Program (GTGP) between 1998 

and 2003 (Liu et al. 2008). However, remote sensing data could not yet provide 

observational evidence for the continuous net increase in forest cover as reported by 

NFI (Hansen et al. 2010). It may take more than five years for the large-scale of the 

afforestation area planted in late 1990s to be observable by remote sensing data.  

Although remote sensing provides continuous observations throughout the 

past several decades, the forest cover and change maps do not carry sufficiently fine 

temporal information to address issues in the change analysis compared with forest 

policies, primarily due to issues in data processing such as data availability and gap 
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filling. Thus, there is still a gap to link long-term policies with remote sensing 

estimates of forest cover change. 

5.6 Conclusions 

In this chapter, forest cover in the 1960s was quantified for the first time using 

satellite data, extending the Landsat record of forest cover to the 1960s in Sichuan, 

China. A sampling method facilitates the application of the Corona image to a 

regional estimate by reducing the processing time and quantifying the uncertainty. By 

using multi-temporal Landsat-based forest cover change products, a continuous forest 

cover change trend was estimated for Sichuan province. Continuous forest loss was 

identified with forest cover reduced by 38% from the 1960s to 2005 in Sichuan, 

contradicting with the assertion of continuous forest increase in NFI statistics. The 

remote sensing based estimations are more transparent and consistent than the 

government’s statistics by providing the spatially explicit distribution of changes and 

uncertainty estimation. It is also more consistent in the forest definition and approach 

used for mapping. 

Supplementing the forest statistics, the remote sensing observed decrease in 

forest coverage from the 1970s to 1990 reveals the actual impact of the concurrent 

forest and socioeconomic policies. Timber consumption during economic reform and 

the transition on forest tenure during forestry reform intensified the forest cutting 

during the 1970s and the 1980s, and resulted in the sharp drop of Sichuan’s forest 

cover circa 1990. Since 1998, the Natural Forest Conservation Program and the Grain 

to Green Program have played important roles in conserving forest resources in 

Sichuan and improving the natural habitats of wildlife. Although the large-scale 
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afforested area is not observable in remote sensing images and an increase in forest 

coverage has not been detected yet, stable forest coverage after 1990 can demonstrate 

the positive impact of these forestry programs.   



109 

 

 Chapter 6: Improved modeling of the size-frequency 

distribution of forest disturbances based on Landsat forest cover 

change product
4
  

6.1 Introduction  

By altering vegetation cover, structure, and composition, forest disturbance – 

including natural mortality, hazards, logging, and clearing for agriculture or urban 

expansion – impacts the water cycle, surface energy budget, carbon flux, forest 

structure, and habitability for biodiversity (Foley et al. 2005). Spatially continuous 

forest cover change data over large regions have not been used to improve the 

modeling of size and frequency of forest disturbances. Over large regions, 

disturbance regimes are characterized by intensity, frequency, and size of individual 

events, which can range from an individual fallen tree to large clearings of many 

square kilometers. The frequency distribution of disturbance area impacts the 

structure and composition of the remnant forest through effects of edge, area, and 

isolation (Haddad et al. 2015). Large disturbances tend to result in large gaps and 

isolated forest patches, reduce connectivity among them, and make it difficult for 

pollen, and seeds to be dispersed over the gaps. However, if the same amount of 

disturbance area is caused by small disturbance events, it will result in large numbers 

of small patches that create numerous forest edges. Tree mortality in tropical forests 

increases within the first 100 m of forest edge due to microclimate change, wind-

                                                 

4
 This chapter has been submitted to Landscape Ecology and is now under review. 
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throw, and competition with non-forest species (Puetz et al. 2014); and along with 

factors including disturbance severity, pre-disturbance state, and process of 

conversion, the spatial pattern of disturbances determines the subsequent trajectory of 

regrowth and succession (Asner et al. 2013; Frolking et al. 2009). Recovery of large 

disturbance areas is usually slower and more variable due to longer distances for seed 

dispersal than over small disturbance patches (Shure et al. 2006; Turner et al. 1998). 

Disturbance patch size also affects light availability across the resulting gaps, and 

hence may affect post-disturbance species diversity due to different levels of shade 

tolerance by different species (Denslow 1987; Dietze and Clark 2008).  

Accurate characterization of disturbance regimes is needed to understand the 

impacts of disturbances (Asner et al. 2013; Malamud et al. 2005); specifically, 

models of disturbance size-frequency distribution provide a basis for prescribing past 

and future disturbance scenarios in simulations of climate change and land-use 

(Fisher et al. 2008; Hurtt et al. 2016; Moorcroft et al. 2001). To this end, great effort 

has recently been devoted to studying the frequency distribution of forest 

disturbances (Asner et al. 2013; Chambers et al. 2009; Di Vittorio et al. 2014; 

Espirito-Santo et al. 2014; Fisher et al. 2008). The frequency ( y ) of disturbances of a 

given size ( x ) is often modeled by a power law relationship: 

y cx


     Eq. 6.1 

Where x is the area of individual disturbance events, y is the frequency or 

probability of disturbance events of each event-size, c is a linear parameter, and α is 

an exponential scaling parameter (Asner et al. 2013; Chambers et al. 2009; Di 

Vittorio et al. 2014; Fisher et al. 2008). This model characterizes the disturbance 
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regime from common small disturbances (i.e., individual branch losses or treefalls) 

through exponential decreasing size to large disturbances such as timber harvest, 

forest-land conversion, landslides, wildfire, and hurricanes or other windthrow events. 

Average patch size decreases as   increases (Fisher et al. 2008); small α values (e.g., 

α = 1) indicate frequent large disturbances, whereas large values (e.g., α = 2.5) 

indicate dominance by small disturbances.  

Di Vittorio et al. (2014) compared six methods for modeling the size-

frequency distribution of forest mortality in the Central Amazon and concluded that a 

power law fit by ordinary least squares (OLS) or maximum-likelihood estimators 

(MLE) with binned data were the best methods to estimate the exponent. A variety of 

binning methods, such as binning at the original data scale (Chambers et al. 2009; 

Fisher et al. 2008; Lloyd et al. 2009), logarithmic binning (Di Vittorio et al. 2014; 

Milojevic 2010), and normalized logarithmic binning (Di Vittorio et al. 2014), have 

been applied to reduce the impact of heteroscedasticity on model fitting (Di Vittorio 

et al. 2014; Milojevic 2010). However, binning may increase the uncertainty in 

reconstructing the patch-size frequency distribution, especially for very large patches. 

Numerical frequency values have also been converted into cumulative probabilities 

for the same purpose (Clauset et al. 2009; Di Vittorio et al. 2014). A truncated power-

law method was sometimes introduced to fit the size frequency distribution of 

wildfires in order to avoid the overestimation of the frequency of large fires 

(Cumming 2001).  

Existing methods for modeling the patch size-frequency distribution suffer 

from two major issues. First, the power-law model assumes that the regional driver of 
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disturbance is a single, scale-invariant process (Wu and Li 2006). This assumption 

yields large uncertainties when multiple processes are in action – as evidenced by 

non-constant variance, or heteroscedasticity, over the range of disturbance-patch sizes. 

Empirical distributions typically exhibit increasing variation with patch size (Figure 

6.1), and so the power law tends to poorly represent large, rare disturbances, 

especially when multiple disturbance processes are in action. Second, although basing 

the power law relationship on binned data improves representation of regional trends, 

it disregards potentially informative variation contained in the non-constant variance 

around the model. Plotting the patch sizes at each frequency level shows that this 

variation may follow a gamma distribution, especially at low-frequency levels (Figure 

6.1-b, -c, and -d). Our observation of distributions similar to Figure 6.1-a over all 

study regions led us to develop a method to characterize the “noisy” tail in lieu of 

smoothing out the information previously treated as statistical noise.  

Improvements to existing methods should describe the underlying relationship 

between size and frequency while also representing very large patches at low 

frequency levels. In addition, there is a lack of accounting for uncertainty when using 

the single power law model in applications of ecosystem modeling, such as 

disturbance area estimation. Hence, it is necessary to document the uncertainty of the 

existing methods and develop new methods to characterize the size distribution for 

ecosystem models in order to reconstruct the disturbance pattern.  
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Figure 6.1 (a) Size-frequency distribution of forest disturbances in China based on Global Land Cover 

Facility 2000-2005 forest cover change data. b, c, and d show the horizontal slices through part (a) at 

frequency level of 1 (=10
0
), 2 (≈10

0.3
), and 3 (≈10

0.48
) respectively. Number of bins are 50, 30 and 10 

for (b), (c) and (d), respectively, but some bins include zero event. The histograms are fitted using 

gamma distribution (black curves in b, c and d). Note that all dots in (a) are separated when zoomed all 

the way into a resolution where very slight differences in patch size could be resolved.  

In this chapter, I present a hierarchical method to describe the disturbance 

size-frequency distribution. A major goal of this method is to explicitly model the 

disturbance patches at each frequency level using a gamma function, further to 

substantially improve the characterization of the “heavy-tails” typical of disturbance 

size-frequency distributions in many regions (Malamud et al. 2005; Song et al. 2001). 

This method was applied to forest cover loss mapped over China and was compared 

against two existing size-distribution modeling methods.  
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6.2 Data and study region 

 Data  6.2.1

The GLCF-GFCC 2000-2005 (GLCF and GSFC 2014) was used to calculate 

disturbance size and frequency and to prototype the proposed model. The forest-loss 

class represents both natural and anthropogenic forest disturbances that occurred after 

the national forest conservation program started in circa 2000 (Song et al. 2014). 

Disturbance patches are discrete areas composed of connected forest-loss pixels, the 

area of which was used to estimate disturbance size. The forest-cover change maps 

are produced with a minimum mapping unit of 1 ha, which is thus the minimum 

disturbance size used for modeling. Frequency was defined as the number of these 

disturbances of a given size happened during the five-year period. In contrast to 

disturbances < 1 ha monitored from field plots, disturbances > 1 ha are more likely 

driven by human activities such as logging, and natural events like landslides, fire, 

and insects and have been mapped at regional, continental and global scales through 

satellite images (Espirito-Santo et al. 2014; Hansen et al. 2013; Kim et al. 2014; 

Masek et al. 2013). The size and frequency of large disturbances were related to 

environmental and policy factors varying across ecoregions and administrative units.  

 Study region 6.2.2

China’s national forest inventory reported steady growth of forest area, from 

12.7% in 1976 to 18.2% in 2003 (SFA 2005). However, recent satellite-based 

analysis revealed 3.32% of gross loss in forest cover happened in China between 

2000 and 2005, and that net forest loss dominated most provinces over the period 
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(Song et al. 2014). Following extensive flooding in 1998, forest policies across the 

country were strengthened to improve forest ecosystem services and promote 

afforestation (Xu et al. 2006). Although plantations and natural regrowth led to 

increases in densely forested provinces, gross gains were accompanied by losses due 

to human-induced or natural disturbances (Song et al. 2014). Characterizing forest 

disturbances after 2000 is important for evaluating the effectiveness of these new 

policies, implementing forestry programs, and further improving forest management. 

According to the 6
th

 National Forestry Inventory (SFA 2005), fourteen provinces 

with >30% forest cover were therefore selected 1) to examine the validity of the 

proposed method and 2) to compare the forest disturbance size-frequency 

distributions across regions. In addition, 27 ecoregions within three major woody 

biomes were selected to investigate the variation in disturbance patterns across 

different vegetation types (Figure 6.2).  

 

Figure 6.2 Forest disturbance rate and patch size map for China at 5-km resolution. Administrative 

boundary map is produced by National Geomatics Center of China, and terrestrial ecoregion map is 

distributed by World Wildlife Foundation. 
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6.3 Methodologies  

In this section, the model, of the trend and then of the variation, was first 

described in Section 6.3.1, followed by the details of the fitting process. I then 

presented the methods for model assessment and sensitivity analysis in Section 6.3.2 

and 6.3.3, elaborated by the metrics used to compare different methods. The 

workflow on how to utilize the proposed model in ecosystem modeling was then 

presented in Section 6.3.4. The section is ended by presenting the metrics used for 

regional analysis.  

 Modeling process  6.3.1

In this method, a relationship is first established between patch frequency and 

the median patch size at each frequency level. The distribution of patch sizes at each 

frequency level is then modeled following a gamma distribution. Finally, 

relationships between the parameters of the gamma distribution and patch frequency 

are established.  

Modeling the trend in the size-frequency distribution – I used the original, 

non-binned, disturbance-size permutations in units of hectares (ha) as x and their 

frequencies as y for modeling. The frequency of disturbance-patch area decreases 

monotonically in the log-log domain. Using the original, non-binned data can bias 

estimates of the exponent towards that of medium to large disturbance patches (e.g. 

10
2
-10

3
 in Figure 6.4), which are clustered and thus dominate fit. To avoid this, I 

extracted the medians (
m e d

x ) of all patch sizes at each frequency level (y) and then fit 

y   using 
m e d

x   using OLS:  
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1 1 1
( 0 )

m ed
y a x b a           Eq. 6.2 

where y   is the frequency after logarithmic transformation and  is the 

median patch size at each frequency level after logarithmic transformation. A second-

order (quadratic) polynomial was also tested, but the first-order polynomial 

performed sufficiently and so was retained. The coefficient 
1

a  in Eq. 6.2 is 

equivalent to the exponent α in Eq. 6.1, and 
1

b  is the predicted theoretical frequency 

after logarithmic transformation when the disturbance patch size approaches zero in a 

given landscape. For regions with similar values of 
1

b , a large 
1

a  value indicates a 

disturbance pattern dominated by small patches and a small 
1

a  indicates the 

dominance of large disturbance patches.  

Modeling the variation in the size-frequency distribution – The variation 

of patch sizes at each frequency level (Figure 6.1-b, -c and -d) follows the gamma 

distribution (Hahn and Shapiro 1994): 

1

( | , )

1
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y f x g g

x e
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         Eq. 6.3 

where y is frequency, x is patch area, and two coefficients describe shape 

(
sh p

g ) and scale (
sc

g ) . A smaller shape and a larger slope describe a narrower 

distribution, both of which indicate a lower likelihood of large patches at a high 

frequency levels. The coefficients 
sh p

g  and 
sc

g  were found to have a linear 

relationship with log-transformed frequency ( ) and thus may be predicted using the 

following relationships: 

m ed
x 

y 
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2 2sh p
g a y b         Eq. 6.4 

3 3sc
g a y b        Eq. 6.5 

where
3

a  (or
2

a ) describes the change of  (or ) with frequency. 

Regarding regions with the same parameters of Eq. 6.2 (i.e., 
1

a  and 
1

b ), a large 
3

a  

delineates a pattern with a more scattered tail at a low frequency level as a result of 

the occurrences of large disturbances than does a small . When the shape parameter 

is large, the gamma distribution approximates a normal distribution, so a smaller 
2

a  

indicates a more significant characteristic of gamma distribution at a lower frequency 

level. In regions with similar estimates of 
1

a  and 
1

b  but a large , a higher 
2

a  value 

indicates more frequent occurrences of both small and very large disturbance patches.  

The number of disturbance-patch sizes ˆ
n u m

x  at each frequency level to be 

randomly generated from the gamma distribution after logarithmic conversion is 

predicted by: 

4 4
ˆ

n u m
x a y b      Eq. 6.6 

Since the patch-size value retrieved from the gamma distribution naturally has 

a minimum value of zero, it must be adjusted to the observed range of values. The 

minimum value of all patch sizes at each frequency level was also found to be 

linearly related with the medians (
m ed

x ) and can be modeled as:  

m in 5 5m ed
x a x b        Eq. 6.7 

where 
m in

x   is the lower bound of patch size after logarithmic transformation 

and 
m e d

x   is as denoted above. By adding the predicted minimum value to the 

sc
g

sh p
g

3
a

3
a
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simulated size values from gamma distribution, the variability of patch size at each 

frequency can be reconstructed.  

 Model validation  6.3.2

In order to test the fit of the hierarchical model and compare to existing 

methods, I used (1) the hierarchical model to derive the best fit of patch-size 

frequency distribution, and fitted a power-law distribution using (2) a discrete MLE 

method (Clauset et al. 2009) on the original patch-size data permutations, and (3) a 

OLS method to the log10-log10 transformed patch-size values. The minimum patch 

size was set to the minimum mapping unit of 1 ha for all three methods, implying that 

all observed disturbances were preserved in the parameter fitting. After modeling the 

size-frequency distribution, the frequencies ( ( 1, ..., )
i

y i k ) of given patch-size values

( 1, ..., )
i

x i k  were estimated using the three methods individually. I measured the 

performance of each method by comparing the difference between the observed and 

simulated disturbance area, which was calculated as: 

1

01

(% ) 1 0 0

k

i ii

d iff k

i ii

x y
A re a

x y






 






      Eq. 6.8 

where 
0i

y  is the actual frequency of patch 
i

x derived from map. 

In addition to comparing the total area estimation, I also evaluated the 

performance of the three methods at different patch size and frequency intervals, to 

avoid the case that a large patch is missed and compensated by an overestimation of 

small patches. Patch size was divided into five ranges: 10
0
-10

1
, 10

1
-10

2
, 10

2
-10

3
, 10

3
-

10
4
, and 10

4
-10

5 
ha, and the total frequencies of all patch sizes falling in each size 
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interval were calculated. Frequency was likewise divided into six ranges: 10
0
-10

1
, 

10
1
-10

2
, 10

2
-10

3
, 10

3
-10

4
, 10

4
-10

5
, and 10

5
-10

6
. The total area of patches within each 

frequency interval was summed. This interval-based analysis would provide insight 

into where the each method performs well or has large uncertainties. 

 Sensitivity analysis of model parameters and sampling intensities 6.3.3

The impacts of model parameters on disturbance patterns were examined 

through simulations of disturbance landscapes under various parameter combinations. 

Two pairs of parameters were examined separately, the power-law coefficients (
1

a  

and 
1

b ), and the gamma-shape coefficient (
2

a  and 
2

b ), considering their important 

roles in describing the trend and variation of size frequency distribution. 
1

a  was 

increased from 1.9 to 2.3 at 0.1 intervals, while 
1

b  was increased from 3.2 to 4.2 at 0.2 

intervals. 
2

a  was varied between 0.6 and 1.2 with increment of 0.2, and 
2

b  was 

increased in the range between 0.5 and 2.5 at 0.5 intervals. For the other parameters 

in the simulations, I used the model fitted parameters for Zhejiang province (Table 

6.1). For each simulation, the percentage of disturbance area accounted for was then 

calculated by different disturbance sizes ranging from 10
0
 to 10

3
, the change of which 

was used as a sensitivity measurement.  

Because sampling is required to estimate the disturbance pattern of a given 

landscape when complete maps are not available (Asner et al. 2013; Di Vittorio et al. 

2014), I also examined the sensitivity of the hierarchical model to sampling intensity 

by sub-sampling the original data. By increasing the sampling intensities from 10% to 

90%, random sampling was repeated 50 times, and the variance of the estimated total 
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disturbance area was calculated as an indicator of sensitivity; large variance indicated 

sensitive model, while small variance indicated model robustness at that sampling 

intensity level. 

 

Figure 6.3 Flowchart for building a look up table for the patch size xn,i and frequency yi using the 

hierarchical model. The range of patch size [xmin, xmax] is needed as input (for the red box) to initialize 

the procedure and the output is a LUT. Variables with superscripts are after logarithmic transformation 

and the ones without superscripts are of their original value.  

 Model utilization  6.3.4

In order to utilize the hierarchical model to predict the frequency of 

disturbance patches, a look up table (LUT) method is recommended. As demonstrated 

in Figure 6.3, the range [
m in m ax

,x x ] of disturbance patch size values of a given 

landscape is the only input required for a prescribed model with known model 
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parameters ( ,
i i

a b ). Following the procedure described in Section 6.3.1, the patch 

sizes that fall in the given range along with the corresponding frequencies will be 

output in the fashion of a LUT. Therefore, the frequency of any desired patch size 

within the range could be derived by looking up for the closest patch size value.  

 Regional disturbance analysis 6.3.5

Although the hierarchical model is defined by ten parameters 

(
1 5 1 5
, ..., , , ...,a a b b ), 

1
a  (equivalent to the power-law exponent α) indicates the 

dominant disturbance size and defines the overall trend of the size-frequency 

distribution, while the others describe the variation. The power-law exponent has 

been often used to characterize the disturbance regime, such as fire regime, by 

describing the ratio of large to small fires in a given landscape (Malamud et al. 2005). 

For comparison analysis across provinces and ecoregions, I thus used the model 

retrieved α (i.e.
1

a ) to compare the trends of forest disturbance distributions across 

study regions. For modeling purpose, all ten parameters are needed to prescribe the 

hierarchical model.  

6.4 Results  

 Model assessment   6.4.1

From each of the three models, the simulated size-frequency distribution of 

forest disturbances in China from 2000 to 2005 is plotted on top of the observed 

distribution in Figure 6.4. The hierarchical method estimated a power-law exponent 

of 2.28 for China, which was slightly lower than the MLE derived exponent of 2.47. 
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In contrast, the OLS approach underestimated the exponent to be 1.61. The power law 

fit by MLE simulated data with a bias toward small patches, and the one fit by OLS 

simulated data underestimated the frequency of small patches. Compared to the two 

existing models, the hierarchical model estimated patch-size frequencies more 

accurately over the range of patch sizes, as well as their variation at low frequencies 

(Figure 6.4).  

 

Figure 6.4 Comparison of forest-disturbance patterns in China from 2000-2005 simulated using the 

hierarchical method (left), simple ordinary least squares (OLS), (center), and maximum-likelihood 

estimation (MLE) (right). Simulated frequencies less than one were forced to one, and those larger 

than one were rounded to the closest integer value. 

Regional disturbance-area estimates 

The hierarchical method estimated regional disturbance area more accurately 

than the simple MLE and OLS fitted power laws across the provinces (Figure 6.5). 

The MLE and OLS approaches consistently underestimated total disturbance area by 

20-40%, due to their misrepresentation of the frequency of large patches, while the 

hierarchical method estimated area within ±5% against the reference. Large errors of 

-10 and -15% for Heilongjiang and Sichuan provinces, respectively, were probably 

due to the occurrence of very large patches located beyond the assumed range of the 
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gamma distribution. This result indicates that when total disturbance area or 

disturbance rate is the only known knowledge for a landscape where experienced 

multiple disturbance types, our hierarchical method has highest accuracy in 

reconstructing the size-frequency distribution, meanwhile, exports the closest 

approximation of total area. 

 

 

Figure 6.5 The difference between the estimated total disturbance area using different modeling 

methods separately and the true total area for selected provinces (or regions) in China.  

Interval area estimate  

The total disturbance area accounted for by patch sizes with frequencies in 
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ha) was calculated for selected provinces (Figure 6.6). The hierarchical method is 

more accurately and consistently than both the MLE and OLS fitted power laws. The 

hierarchical method mostly coincided with the actual area of disturbances in the 10
1
-

10
2
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3
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occurred, estimates of total area occasionally deviated from the actual values by -40% 

– indicating that, although the gamma distribution was good at simulating the 

frequency distribution over a wide range of patch sizes, it sometimes could not 

simulate the extreme tails of some distributions (e.g. Figure 6.1-b). This might cause 

underestimation at the 10
0
-10

1
 frequency level. The 10

4
-10

5
 level was another interval 

where the maximum difference between the predicted and actual area could reach -

25%. The major reason was error in the frequency estimate, which will be discussed 

in the following section. However, the simple MLE and OLS methods both 

performed worse than the hierarchical method. The OLS significantly underestimated 

the total area in the 10
2
-10

3
 ha level and above due to its monotonic decreasing trend. 

MLE also underestimated the disturbance area at middle frequency levels while the 

accuracy was improved at the 10
0
-10

1
 interval, which benefited from minimum x  

value being set to the actual minimum patch size value of 1 ha in MLE method.  
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Figure 6.6 Model accuracy assessment measured by total area estimate at different frequency intervals, 

FI1 (10
0
-10

1
), FI2 (10

1
-10

2
), FI3 (10

2
-10

3
), FI4 (10

3
-10

4
), FI5 (10

4
-10

5
), and FI6 (10

5
-10

6
) for selected 

provinces (or regions).  
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Interval frequency estimate  

The frequency of patches in each size interval, 10
0
-10

1
, 10

1
-10

2
, 10

2
-10

3
, 10

3
-

10
4
, and 10

4
-10

5 
ha as defined above, was calculated for selected provinces (Figure 

6.7). The hierarchical method resulted in the smallest deviations from the reference 

data, although all three methods captured the overall trend. The hierarchical method 

were much more accurate at 10
0
-10

1
, 10

1
-10

2
, 10

2
-10

3
 ha size intervals, with 

maximum differences of +17%, -4%, and +9% respectively. OLS underestimated the 

frequency for the 10
0
-10

1 
and 10

1
-10

2
 levels by up to 90% and 75%, respectively, 

while MLE underestimated the frequency for the 10
1
-10

2 
and 10

2
-10

3
 levels by 95% 

and 78%, respectively. Occasionally, both methods had lower errors than did the 

hierarchical method for the 10
3
-10

4
 level and above because of their frequency 

estimation for each input size value. The limitation of the hierarchical method at the 

10
3
-10

4
 level and above was because the large patches were sometimes not 

adequately randomized by the gamma distribution.  
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Figure 6.7 Model accuracy assessment measured by frequency estimate at different patch-size 

intervals: SI1 (10
0
-10

1
 ha), SI2 (10

1
-10

2 
ha), SI3 (10

2
-10

3 
ha), SI4 (10

3
-10

4 
ha), and SI5 (10

4
-10

5 
ha), for 

selected provinces (or regions). 

Sensitivity analysis  

Simulation results demonstrated that the power-law coefficients, 
1

a  and 
1

b , 

and the gamma-shape coefficients, determined by 
2

a  and 
2

b , had obvious impacts on 
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the size frequency distribution. When solely increasing 
1

b , the percentage of the total 

disturbance accounted for by patches larger than 10
0.5

 ha increased rapidly from 0 to 

around 25%, indicating a landscape dominated by large disturbances. In contrast, 

when solely increasing , the dominant disturbance size decreased to 1 ha, and the 

landscape was fragmented with many small gaps (Figure 6.8).  

 

Figure 6.8 The percentage of total disturbance area accounted for by different size of patches, 

simulated by increasing two parameters of the size-frequency distribution, a1 from 1.9 to 2.3 with an 

interval of 0.1 and b1 from 3.2 to 4.2 with a step of 0.2 respectively.  

 

1
a
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Figure 6.9 Simulation of the percentage of total disturbance area accounted for by patches when 

varying gamma distribution parameters in size-frequency modeling. The horizontal axes is disturbance 

and the vertical axes is the percentage of disturbance area accounted for by disturbances within each 

size interval.  

On the other hand, the percentage of the total disturbance area accounted for 

by small disturbances (1 ha) decreased and was eventually replaced by large 

disturbances (>10
3
 ha) when only increasing 

2
b  from 0.5 to 2.5 (Figure 6.9). The 

intercept referred to the shape at a frequency of 1, and both spread and likelihood of 

large patches increased with shape. In contrast, an increase of the absolute value of 

2
a  caused a slight drop in the percentage of the total area composed of larger patches 

and a consequent increase in the contribution of smaller patches. The larger the 
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absolute value of 
2

a , the faster the decrease in the gamma-shape in relation to 

frequency.  

Although the hierarchical method successfully modeled the size frequency 

distribution, it was established based on complete maps of the entire study region. 

However, when the proportion of sampling was around 10-20%, the hierarchical 

method resulted in errors of 30-50% in total disturbance area (Figure 6.10). The 

difference was reduced to <10% when the sampling proportion was >30%. This 

suggests that >30% of the disturbance area must be sampled in order to reconstruct a 

reliable size-frequency relationship using the hierarchical method.  

 

Figure 6.10 Differences in total estimated area using proposed, hierarchical method when increasing 

sampling proportion from 10 to 90% at 10% intervals. 

 Spatial pattern of forest disturbance in China  6.4.2

Disturbance pattern of China 
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In general, the forest disturbance regime in China from 2000 to 2005 was 

dominated by small events. Nationally, the slope of the log-log relationship between 

forest-disturbance area and frequency, α, was estimated to be 2.275 using the 

hierarchical method. Previous studies have suggested an α value of 2.0 to be the 

boundary between forest landscapes dominated by small (α > 2.0) and large (α < 2.0) 

disturbances (Asner et al. 2013; Fisher et al. 2008). Across the country, 10.99% of the 

total disturbed area was in sizes of 1 ha or less, while 40.10% came from 1- to 10-ha 

disturbances, 33.62% came from 10- to 100-ha disturbances, and 9.56% came form 

100- to 1000-ha disturbances. Although large disturbances (>1000 ha) were rare, they 

comprised 5.73% of the total loss area.   

Disturbance pattern across ecoregions 

Across different forest types, Jian Nan subtropical evergreen forests in 

southern China experienced the most extensive loss in area (~0.7 million ha) from 

2000 to 2005, followed by Manchurian mixed forests of the temperate forest region in 

the northeast of China with > 500,000 ha lost (Figure 6.11-a). The estimated power 

law exponent was > 2 for most ecoregions (Figure 6.11-b), indicating that small 

disturbances dominated the forest landscape and that large disturbances were 

relatively rare. However, the disturbance regimes of most ecoregions in central and 

western China, where vegetation cover is comparatively sparse, were dominated by 

large events (α < 2). Tropical forest ecoregions in southern China generally had larger 

exponents (α > 2.2) than temperate forests in the north (α = 2.0-2.2), except the three 

subtropical evergreen forests near the southern boundary of China.   

 
(

a) 

(

b) 
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Figure 6.11 Forest disturbance areas (a) and the α estimates (b) for terrestrial forest ecoregions in 

China. Biome 1: tropical and subtropical moist broadleaf forests; Biome 2: temperate broadleaf and 

mixed forests; Biome 3: temperate coniferous forests. 

Disturbance pattern across administrative provinces  

Among the provinces, Heilongjiang and Sichuan experienced the highest rates 

of forest-cover loss between 2000 and 2005, followed by Guangxi, Yunnan, 

Guangdong, and Fujian provinces in the south of China (Table 6.1, Figure 6.12-a). 

Other provinces with dense forest cover (e.g., Jilin, Zhejiang, and Liaoning) each lost 

approximately 0.1 million ha of forest cover as well. However, α did not change with 

the variation in forest loss rates and ranged from 1.8 to 2.5 (Figure 6.12-b). Three 

northern provinces, Heilongjiang, Jilin, and Liaoning, had α values from 2.1 to 2.3, 

generally smaller than that of the central and southern provinces e.g. Shaanxi, 

Sichuan, and Yunnan with α values of 2.2-2.3, and Hunan with α of 2.45. Zhejiang 

and Taiwan also had large α estimates of > 2.2. Guangdong, Fujian and Hainan 

provinces had the lowest α estimates from 1.98 to 2.07.  
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Table 6.1 Model parameters of size-frequency distribution for selected provinces in China. They are 

listed for reference of the value range of model parameters at regional scale. 

Province 
1

a
 1

b
 

 

2
b

 3
a

 3
b

 4
a

 4
b

 5
a

 5
b

 

Fujian 1.98 3.59 0.96 1.89 0.07 0.18 -0.94 1.92 0.71 0.27 

Guangdong 2.07 3.79 1.22 2.27 0.06 0.17 -1.10 2.15 0.63 0.37 

Guangxi 2.09 3.96 1.24 2.45 0.05 0.17 -1.02 2.14 0.66 0.35 

Hainan 1.99 3.24 1.15 2.05 0.06 0.18 -1.00 1.91 0.65 0.28 

Heilongjiang 2.08 4.05 1.07 2.17 0.07 0.18 -1.09 2.25 0.65 0.38 

Hunan 2.29 3.83 1.08 2.01 0.04 0.15 -0.97 1.93 0.66 0.32 

Jiangxi 2.13 3.68 0.96 1.89 0.05 0.15 -0.96 1.93 0.71 0.27 

Jilin 2.11 3.71 0.80 1.77 0.05 0.13 -0.79 1.77 0.78 0.19 

Liaoning 2.22 3.62 0.79 1.59 0.06 0.16 -0.89 1.78 0.70 0.26 

Shaanxi 2.19 3.80 1.22 2.24 0.09 0.20 -1.10 2.07 0.57 0.44 

Sichuan 2.19 4.15 0.82 1.82 0.07 0.18 -0.95 2.05 0.70 0.31 

Taiwan 2.24 3.41 0.67 1.36 0.10 0.21 -0.94 1.78 0.70 0.24 

Yunnan 2.21 4.04 1.26 2.42 0.07 0.16 -1.05 2.14 0.63 0.39 

Zhejiang 2.17 3.62 1.03 1.94 0.05 0.15 -0.92 1.82 0.67 0.30 

 

 

Figure 6.12 Forest disturbance areas (left) and the estimated α (right) for selected provinces in China. 

6.5 Discussion  

The relationship between disturbance size and frequency is key to 

understanding the disturbance regime. Given the synoptic coverage of remote sensing 

products at large regions, models of the size-frequency distribution of forest 
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disturbances should describe the regional relationship while also representing very 

large patches at low frequency levels. Developed from the general method of fitting 

size-frequency distribution with a power-law function, I is able to interpret more of 

the information in the original data and quantitatively describe the distribution by 

developing a hierarchical model. The power law exponent was estimated by 

extracting the median value of sizes at each frequency level; and the distribution of 

patch sizes at lower frequencies, usually considered noise, was kept and modeled to 

supplement the simple power law function. The model is “simple”, since all model 

parameters are able to be derived from the frequency level, but also accurate in 

estimating the total disturbance area and frequency across the region. 

The estimated exponent (α) of 2.275 indicates that between 2000 and 2005, 

forest in China was dominated by small disturbances with occasional occurrence of 

large disturbances. The higher exponent in the southern ecoregions revealed that 

larger disturbances dominated the north while smaller disturbances dominated the 

southern ecoregions, which could be related to environmental factors, such as 

topography, geology, and soils, and socioeconomic factors such as population and 

forest management types. It is speculated that the collective forest management and 

complex terrain in South China contributed to this disturbance pattern. The deciduous 

and coniferous forests managed by State forest farms in Northeast China are mainly 

for industrial timber production, which leads to the harvest over large areas of forest 

land. Forest fires are more frequent in the north than in the south (Lu et al. 2006), 

potentially contributing to the comparatively large disturbances in the north. 

Population density is another possible driving force of different disturbance patterns 
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in the south and northeast forests; the higher population density in the south requires 

more residential area in forested areas, causing small disturbances and reducing forest 

carbon storage (Wang et al. 2001). Among provinces, the different disturbance 

patterns are also caused by political factors, especially by the specific implementation 

of forestry policies and management activities by local governments and forestry 

bureaus.  

Regarding the disturbance data, the estimates of model parameters are 

expected to be further improved if a dataset is available at improved spatial and 

temporal resolutions, and with detailed disturbance types. Partial samples of plot data 

can lead to biases toward biomass gains when the frequency of large-scale 

disturbances increases (Di Vittorio et al. 2014; Fisher et al. 2008), while disturbance 

maps covering entire regions can potentially avoid these errors and uncertainties. 

High-resolution, continental and global maps of forest cover and change (Hansen et al. 

2013; Huang et al. 2010a; Kennedy et al. 2010; Kim et al. 2014; Sexton et al. 2013a) 

enable quantitative understanding of forest disturbances over large areas (Townshend 

et al. 2012). Multi-temporal satellite remote sensing can detect losses of tree canopy 

cover that result in significant deviations of the canopy’s reflectance over time. 

Further efforts should thus be devoted to assess alternative forest disturbance data for 

the size-frequency distribution modeling and to investigate the driving forces of 

different disturbances distributions. For example, the model could be extrapolated to 

estimate the frequency of patch sizes < 1ha if including multiple data sources, such as 

plot data and LiDAR (Asner et al. 2013; Espirito-Santo et al. 2014). For regional 

studies, disturbance data with higher temporal resolution, such as yearly data, should 
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be collected to investigate the size frequency distribution and its dynamic through 

time. 

Overall, the modeled patch-size frequency distribution is useful for studying 

forest disturbance patterns over large regions to investigate the impacts of 

environmental and forest policy on forest disturbances. The application of the size 

frequency distribution model in ecosystem modeling will be greatly enhanced by 

having individual size-frequency models for different disturbance types, such as 

insects, fire, and logging.  

6.6 Conclusions 

Variation around the widely used simple power-law relationship can be 

modeled and interpreted to better characterize the size-frequency distribution of forest 

disturbances. A hierarchical method incorporating five linear relationships to describe 

the trend and variation of disturbance sizes improved fit and interpretation of the 

power law and outperformed current methods in reconstructing forest disturbance 

patterns, especially at low frequency levels. All model parameters were able to be 

derived from a single variable, the frequency level. The hierarchical model 

significantly improved representation of the size-frequency distribution and 

accurately estimates total area and frequency of disturbances. Applying the 

hierarchical method across China and a selection of provinces therein revealed 

different disturbance patterns that coincided with spatial variation in forest 

management and natural disturbance patterns across the regions. In general, large 

disturbances (>10 ha) were rare, and small disturbances (<10 ha) dominated the forest 

landscape. Forest disturbances in the southern provinces were typically smaller than 
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in the north – except Guangdong, Fujian and Hainan provinces, which were 

disproportionately dominated by large disturbance patches. This hierarchical 

approach can be applied to maps of any land-cover or disturbance type and at any 

time period to fulfill the purpose of better characterizing and understanding size-

frequency characteristics of ecosystem disturbance regimes. 
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 Chapter 7: Conclusion 

The studies presented in this dissertation addressed a range of issues towards 

improving forest cover change characterization. Original contributions include 

demonstrating the usefulness of Corona data for extending satellite-based forest cover 

change mapping back to pre-Landsat years in the 1960s, developing a semi-

automated registration method to achieve efficient geometric registration of Corona 

data for large area forest cover assessment, quantifying forest cover change in 

Sichuan, China from the 1960s to 2005, and developing a new patch size-frequency 

method for improving the representation of in ecosystem and other spatially explicit 

models forest disturbance. The developed approaches provide potential solutions to 

quantify the long-term forest cover change, and hence have significant impact on 

understanding the interaction between the changes in ecosystem and dynamics in 

social environment. This final chapter briefly summarizes the key findings from each 

chapter, presents the significance and implications of the findings, and suggests 

several essential aspects that could be explored in future research.  

7.1 Major findings of the dissertation  

After briefly reviewing the Landsat-based forest cover change mapping and 

proposing to extend forest cover change record back to the 1960s using Corona data 

in Chapter 2, the issues hindering the usefulness of Corona data were addressed in 

Chapter 3. It was demonstrated that a combined use texture metrics and the support 

vector machine allowed forest mapping with accuracies of up to 95% using Corona 

data. Then, a semi-automated georegistration procedure, including a modified 
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collinear function and the automated SIFT feature selection and matching method, 

was developed in Chapter 4. The proposed method implemented a rapid registration 

with error of up to 100 m for Corona image. The proposed classification and 

registration methods enabled the forest/non-forest mapping for the 1960s and the 

Landsat-based forest cover record was successfully extended by a decade. 

In Chapter 5, forest cover in the 1960s in Sichuan Province, a major forested 

province in China was estimated using the developed methods. Combined with a 

Landsat-based forest cover products, the results revealed that forest cover in Sichuan 

was reduced by 38% during the forty years from 45.19% in the 1960s to 28.91% by 

1990 and then stayed relatively stable until 2005. Although the derived estimates 

contradicted the trend reported by the inventory data, they were shown to be more 

reliable and transparent than the government’s forest statistics as a consistent 

definition and method was adopted and the uncertainty of the forest cover for each 

epoch was provided. This observed decline in forest cover over forty-year period 

provides evidence showing the impact of the changed forest policy during drastic 

socioeconomic transitions to forest. The turning point between sharp decreases before 

1990 and the stable period after 1990 could possibly be explained by the decline in 

deforestation and the increase in afforested area during the afforestation and 

conservation programs since late 1990s in China, and likely reflected the transitions 

in forest policies from focuses on timber production to forest conservation.  

Representation of the patch-size frequency distribution of forest disturbances 

was improved in Chapter 6 by developing a hierarchical method. The method was 

more accurate in representing both the major trend and patch size at different 
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frequency levels than the existing methods and had smaller errors in the estimation of 

total disturbance area as well. By applying the developed method across China, it was 

found that although the total area of forest loss in the southern ecoregions were 

similar to that in the north, the dominant disturbance patch in the southern forests was 

smaller than that in the north.  

7.2 Significance and implications of this dissertation 

The first significance of this dissertation is the development of solutions to 

extend satellite-based forest cover change mapping back to pre-Landsat years in the 

1960s using the historical satellite data – Corona. Maps of historical forest cover 

provide critical baseline for monitoring the change in Earth’s forest. The derived 

long-term (50 years) trend of forest change is necessary for assessing the impact of 

forest change, understanding the natural and anthropogenic causes of change, 

evaluating the effectiveness of conservation policies. 

The second contribution of this research is that it advances the understanding 

of the trends of forest cover change since the founding of the current government of 

China in 1949. The results from Chapter 5 presented an overall opposite trends of 

forest change contradicting the statistics reported by inventory data, showing that 38% 

of forest was lost during the four decades since the 1960s. Besides the opposing 

estimates, my research is distinguished from the statistics as 1) it adopted a spatially 

and temporally consistent definition of forest, enabling a direct comparison of forest 

cover among epochs together with known uncertainties and 2) it used publicly 

available datasets to estimate the forest cover, enabling the expansion to other regions 

and spatial analysis. Thus, it is indicated that satellite data should be increasingly 
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used in evaluating the effectiveness of forest policies because the satellite-based 

mapping is advanced with the use of a consistent forest definition and a consistent 

method in monitoring the forest cover change over a long-term period. Enabled by the 

first significance, the fifty-year forest cover change map provides opportunity to 

understand the drivers of forest change and to evaluate the effectiveness of forest 

policies in various regions under different socioeconomic contexts around the world, 

as the understanding of the relationship between the long-term change of forest and 

the its driver is particularly hindered by the lack of accurate forest estimate in the 

early epochs.  

The last contribution of this dissertation is that it further improved the 

characterization of forest cover change, in particular the patch size distribution of 

forest disturbance, for ecosystem and other spatially explicit models. With ever 

increasing advances in forest cover change maps derived from remote sensing 

imageries, the capacity to simulate vegetation dynamics using ecosystem models 

could be improved by accurate measurement of change area and representation of the 

geolocation of forest change at fine resolution. The patch-size distribution modeling 

method developed in the last research chapter inherited the advances of forest cover 

change maps derived from fine resolution satellite data. It improved 1) the static 

representation of forest disturbance by more accurately estimated the total disturbance 

area over a long-term period, and 2) the spatial representation of disturbance by 

allocating an appropriate amount of disturbances to each patch size level, hence the 

capacities of spatially-explicit simulation of the vegetation dynamics and the resultant 

biodiversity and carbon dynamics. 
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7.3 Implications for future research  

A long-term forest cover change record is desired to cover the entire land 

surface, while both opportunities and difficulties rely on the successful processing of 

Corona data. Enabled by the global coverage and repeated acquisitions, application of 

Corona data on a continental or global scale is possible to establish the baseline of 

global forest cover in the 1960s. Moving forward from the registration and 

classification methods for Corona data developed in this dissertation, there are still 

challenges, particularly regarding image registration, that need to be overcome in 

order to achieve the goal of mapping global forest in the 1960s. There are three 

directions that could be explored. First, the image registration method needs to be 

further automated, especially to address issues in a pseudo match of tie points, and in 

an uneven distribution of tie points. More accurate information on flight location and 

gesture is also very important for accurate registration. Second, the reference image at 

an earlier date, such as the Landsat Multispectral Scanner (MSS)-based GLS1975 

dataset, can be used, to avoid a pseudo match of tie points caused by land cover 

change. Third, a sub-pixel level registration accuracy should be obtained in order to 

derive a pixel-to-pixel change mapping at Landsat resolution. Without accurate sub-

pixel level registration accuracy, the pixel-to-pixel change detection is only possible 

at a resolution of hundreds of meters.  

The remote sensing-based estimate provides a more reliable and transparent 

quantification of forest cover change in China than the government-reported forest 

statistics, as a consistent forest definition was adopted and uncertainty measurements 

were provided. However, the value of the continuous forest inventory from the 1970s 
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is not denied. Forest inventory often provides the measurements of multiple variables, 

such as tree height, volume, age, which are collected at plot scale, complementing 

remote sensing. The difference between the remote sensing-based estimates and 

statistics could be explained with the availability of plot data and a more 

comprehensive estimate of long-term changes could be derived (Tomppo et al. 2008). 

The inclusion of plot data could also make the remote sensing-based estimate more 

comparable with the government report by capturing the changes, such as the gain in 

immature forest, which are beyond the biophysical definition of forest increase 

(Sexton et al. 2016).  Although the strict data policy in China poses a big challenge in 

accessing these plot data, it is worth to put more effort in accessing the plot data.  

Another important application of quantifying the historical baseline of forest 

cover and the long-term change is to understand the cause of the changes. Forest 

change can be caused by both socioeconomic factors, such as forest policies and 

economic growth, as well as the interaction with biophysical factors such as wildfires, 

droughts and floods. In this dissertaion, Sichuan province was subject to the analysis 

of forest cover change from the 1960s to 2005, and the effects of policies were 

qualitatively evaluated. Inclusion of more provinces will enable the evaluation of the 

effectiveness of forest policies and the spatial variations. A quantitative approach 

linking the forest cover change rate and the socioeconomic factors is particularly 

desired, which brings another challenge of collecting long-term socioeconomic data, 

such as polices and their status of enforcement, starting from the tumultuous period of 

the 1950s-60s. At a broader spatial scale, many possible changes happened during the 

1960s around the world will be verified with substantial evidence from remote 



145 

 

sensing observations. The spatial pattern of forest loss and gain could also be mapped, 

which would reveal different forest cover change trends under various social and 

economic environments among countries after World War II.  

When predicting future forest dynamics and its impact on carbon balance 

using ecosystem models, forest disturbance is mostly represented by rate. Quite a few 

models have adopted the simple power-law model to characterize the patch size-

frequency distribution. This dissertation has demonstrated that using a power-law 

model could make the estimates of total disturbance area and total frequency deviated 

from the actual scenario. Thus, I proposed a hierarchical model to improve accuracy. 

Possible improvements to the proposed model include incorporating the disturbance 

attribution (Kennedy et al. 2015; Zhao et al. 2015) to separate the projection by 

disturbance types and specifying the patch size-frequency distribution for different 

time periods. Application of the hierarchical method in ecosystem models is 

straightforward and desirable, which will improve the allocation of disturbances with 

various patch sizes, and further enhance the prediction of forest fragmentation, forest 

edge effect, post-disturbance resistibility and recovery of forest and hence the carbon 

balance following the forest disturbances. This is also a future research direction to be 

explored based on the findings of this dissertation.  
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