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Gross job flows dynamics, defined as the behavior of creation and destruction of jobs 

at the establishment level, has become a topic of great interest in economics during 

recent years and researchers have resorted to different empirical methodologies in 

order to tease out its causes and consequences, as well as its connections to overall 

economic activity. In this context, my dissertation attempts to contribute to the debate 

by advancing the usefulness of frequency-domain techniques. I emphasize not only 

the relevance of the economic questions being examined, but also the unique 

perspective that frequency-domain techniques can provide. There are three major 

questions I pursue. The first is why equilibrium search models of labor market 

frictions have trouble explaining the observed persistence in employment 

fluctuations. I implement a frequency-domain decomposition of the employment 

growth rate to isolate the contributions coming from the job creation spectrum, the 

job destruction spectrum, and the cross-spectrum between the two. Among other 

results, I show that the failure to generate a negative contemporaneous correlation 

between job creation and job destruction at business cycle frequencies is behind the 



  

inability of the Mortensen-Pissarides (1994) canonical model to reproduce the 

empirical spectral shape of the employment growth series.   The second question I 

tackle relates to the direction of causality between aggregate employment fluctuations 

and gross job reallocation. Recent macroeconomic models suggest an active role for 

reallocation dynamics over the business cycle, and my results can be interpreted as 

supporting evidence that such a role indeed exists, but at a low frequency range. The 

basic idea is to look for different causality relationships at different time-scales by 

combining wavelet techniques with a standard Granger causality test. Finally, the 

third question I address investigates the connections between labor productivity 

growth and the frequency content of the job reallocation series for four-digit level US 

manufacturing industries. My results indicate that industries with relatively more 

influential low frequencies display inferior productivity growth. I relate these findings 

to the literature and propose a simple theoretical model to explain them.  
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Chapter 1: Introduction 

 

In his autobiography written on the occasion of the 2003 Nobel Prize in Economics, 

Clive Granger recounts how his pioneering book “Spectral Analysis in Economic 

Time Series” (1969) - co-authored with Michio Hatanaka - was produced. According 

to Granger, when he joined the “Time Series Project” led by Oscar Morgenstern at 

Princeton, Von Neumann (a close friend of Morgenstern) felt strongly that 

“economists should be using the Fourier methods with their data”. As a result, 

Granger and Hatanaka pursued that line of research by repeatedly interacting with 

Princeton statistician John Tukey, whose modus operandi was to prescribe a series of 

computer calculations, provide interpretation for the results, and restart the cycle by 

asking another batch of work. After a while, a solid body of knowledge emerged and 

a book was clearly warranted.1  

 

The story as told suggests that Granger and Hatanaka’s book came to existence partly 

because Von Neumann had a gut feeling about the potential benefits of spectral 

analysis in economics. Although I cannot possibly speak to his reasons, it is fair to 

say that much of the appeal underlying frequency-domain analysis stems from its 

promise to generate new and rich insights by looking at the data from a different, and 

yet simple, perspective. Throughout the years, research has reaffirmed that spectral 

                                                 
1 Granger and Hatanaka told Tukey that they would wait for him to publish his own research first 
(which included seminal work on the cross-spectrum for a pair of series) before publishing their book. 
Tukey replied “he was far too busy doing new research to publish, and that they should just go ahead”. 



 

 2 
 

techniques are indeed powerful and that they can be used not only as descriptive 

tools, but also for model analysis.  

 

In this context, Watson (1993) articulates how modern dynamic macroeconomic 

models can be explicitly tested using frequency-domain concepts. More recently, 

papers such as Christiano and Vigfusson (1999), Otrok (2001a,b), Otrok, Ravikumar 

and Whiteman (2002), and Figura (2002, 2001) all relate spectral concepts to 

particular features of macroeconomic models to be improved, without having the 

development of formal statistical testing procedures as their main goal. These papers 

exploit the natural association between some aspects of macroeconomic theory and 

the frequency-domain.  

 

My dissertation shares this same spirit and it is founded on the idea that models of job 

flows dynamics have inherent frequency content to be exploited. Each one of the next 

three chapters is a self-contained essay that pursues a different dimension of this 

argument. By the end of the dissertation I hope to have instilled in the reader more 

than a gut feeling (as Von Neumann may once have had) that the frictional nature of 

the adjustment process underlying job flows dynamics calls for a greater attention to 

frequency-domain methods.       
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Chapter 2: Persistent employment fluctuations and the structure 
of search models: a frequency-domain perspective 

 

2.1 Literature review and motivation   

 

Employment fluctuations are the result of a complex mix between exogenous shocks 

and the institutional/decision environment in which firms and workers trade labor 

services. At the aggregate level, the well-documented positive persistence observed in 

employment fluctuations is an important sign of how efficiently an economy makes 

use of its labor input over time. The way we interpret this persistence depends 

fundamentally on what we believe to be the cause of fluctuations. For example, if 

exogenous technology shocks shift the demand for labor in a persistent fashion, 

persistent employment dynamics may be nothing more than healthy Walrasian 

fluctuations. In contrast, if we believe that persistence results from matching frictions, 

then policies geared towards improving job finding rates may be socially desirable. 

So we care about persistence in employment fluctuations because it ultimately 

reflects deeper structural features of the economy, and the ability of our models to 

“get persistence right” is crucial for our understanding of labor market dynamics.  

 

As pointed out by Cogley and Nason (1995), early dynamic stochastic general 

equilibrium models achieved persistent fluctuations without resorting to any internal 

propagation mechanisms, by simply assuming persistent (exogenous) driving forces. 

Despite being successful at times, this approach has been criticized for assuming what 
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should be explained. Modern macroeconomic models of employment fluctuations, 

however, have fully embraced a key non-Walrasian feature of labor markets: time-

consuming matching. The main idea behind these models is that escaping the 

unemployment pool may not be possible even if the agent is willing to accept the 

current wage and, even though, there are vacancies. A willing-to-work unemployed 

agent and a willing-to-hire employer need to overcome the problem of finding each 

other before production can start. Such matching frictions generally take the form of 

probabilistic hiring, which may be a function of economy-wide variables such as 

unemployment and vacancies. This friction implies that the stock of employed 

workers displays sluggish adjustment over time, potentially generating persistent 

employment dynamics.  

 

A workhorse model in the macroeconomic literature on matching frictions is 

Mortensen and Pissarides (1994). This model can easily be adapted to study a host of 

different issues, such as the response of job flows to different labor market policies 

and institutions. Although the original version of the model is capable of matching 

important aspects of job flows behavior, recent studies have found important 

shortcomings in its ability to replicate a broader set of stylized facts.2 As a result, 

recent work has attempted to make matching models more reliable tools for policy 

design. While suggesting modifications and additions to the structural model is an 

important part of this task, equally important is to pinpoint empirically the source of 

misalignments present in the baseline framework. This paper does the latter using 

frequency-domain tools.   
                                                 
2 These studies include Cole and Rogerson (1999), Shimer (2005, 2003), Pries (2004) and Hall (2005). 
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The particular shortcoming we focus on here is the lack of persistent fluctuations in 

the employment growth rate generated by the model vis a vis those observed in the 

data. While the first-order auto-correlation coefficient of the employment growth rate 

is 0.68 for US manufacturing (calculated at a quarterly frequency for the period 1947 

to 1993), the counterpart measure obtained from simulations of the Mortensen and 

Pissarides model is slightly negative, despite the fact that the simulations use a highly 

persistent driving force. In order to understand the empirical roots of this result, we 

propose a frequency-domain decomposition of the employment growth spectrum into 

the job creation spectrum, the job destruction spectrum and their cospectrum. To help 

us interpret the decomposition results, we suggest a canonical reduced-form model 

that illustrates the differences between achieving persistence in levels and in growth 

rates.  

 

The fact that many models generate weak persistence in employment dynamics has 

been already pointed out by Hall (1995). More recently, Pries (2004) addressed this 

problem using a structural model in which match-learning effects induce recurring 

job losses and sluggish adjustment in employment. In contrast to these papers, we 

pursue a more descriptive route by comparing model and data spectra for the 

decomposition of the employment growth rate. We also consider Cole and 

Rogerson’s (1999) reduced-form representation of the Mortensen and Pissarides 

model to ascertain the limits of re-parameterization in fighting the lack of persistence. 
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Our results show that temporal decoupling between job creation and job destruction is 

a quantitatively important element behind the employment growth persistence 

observed in the data, and that the Mortensen-Pissarides model fails to capture it. 

Additionally, we show that generating persistence in the employment growth rate is 

not equivalent to generating decoupling between the creation and destruction 

margins, and although Cole and Rogerson’s parameterization clearly succeeds in the 

former, it appears to be less successful in the latter. Finally, we perform an exercise 

applying the Method of Simulated Moments (Gourieroux and Monfort (1996)), in 

which the moments to be matched are the empirical spectral densities estimated from 

the data. We find that the deviations between the spectrum implied by Cole and 

Rogerson’s reduced-form model and the data can be further reduced by assuming 

lower job-finding probabilities. Finally, we relate our empirical findings to a 

particular structural feature of the Mortensen-Pissarides model: the frictionless 

determination of meeting rates implied by the zero-profit condition on vacancy 

posting.  

 

The chapter is organized as follows. Section 2.2 presents an outline of Mortensen and 

Pissarides (1994), emphasizing how employment dynamics are determined within the 

model. Section 2.3 describes the dataset used and provides a quick overview of 

concepts and spectral techniques employed in the paper. Section 2.4 proposes a 

decomposition of the employment growth rate in the frequency-domain and performs 

comparisons between the Mortensen-Pissarides model and data spectra. Section 2.5 

studies the limits of re-parameterizing the Mortensen-Pissarides model using the 
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reduced-form representation proposed by Cole and Rogerson (1999). Section 2.6 

concludes the paper and discusses directions for future research.  

 

2.2 Mortensen-Pissarides model and employment dynamics 

2.2.1 The environment  

 
 
The Mortensen-Pissarides (1994) model features an environment populated by risk-

neutral entrepreneurs and risk-neutral workers. Existing jobs can either be matched to 

a worker or vacant, and workers can either be matched to an employee or searching 

for a job.3 Job creation takes place when a searching worker meets a vacant job. The 

meeting process is assumed to be time-consuming, and is modeled according to a 

matching function which depends on the aggregate levels of unemployment and 

vacancies. Additionally, vacancies are costly to maintain and any entrepreneur is free 

to post a vacancy or destroy one already posted. The match surplus generated by 

labor market frictions is shared via period-by-period wage renegotiations following a 

Nash bargaining solution.  

The productivity of each existing match depends on aggregate and idiosyncratic 

components. While all new matches are assumed to be created at the maximum 

idiosyncratic productivity, they experience new idiosyncratic shocks over time and 

can be terminated at any moment if their corresponding productivity falls below a 

certain threshold endogenously determined by the model (known as the reservation 

                                                 
3 The model assumes one worker per firm (entrepreneur), which is generally justified on the grounds of 
constant returns to scale technology. 
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productivity). Such terminations contribute to job destruction. A non-degenerate 

distribution of filled-job productivities is fully consistent with optimizing individual 

behavior, as matches experience idiosyncratic shocks that are below the upper limit at 

which they are created but above the threshold level for destruction. Essentially, labor 

market frictions make it optimal for firms and workers to tolerate filled jobs that are 

not as productive as brand new jobs. 

 

Mortensen and Pissarides add cyclical dynamics to this setup by allowing the 

aggregate productivity component of a filled job to follow a three-state Markov 

process. As a result, the endogenous reservation productivity and matching rates will 

also fluctuate in response to the current aggregate state. Flows into unemployment 

will be given by the interaction between the actual distribution of idiosyncratic 

productivities and the fluctuating reservation productivity values, whereas flows out 

of unemployment will be given by the interaction between the level of unemployment 

and job-finding rates implied by the matching function. Once calibrated, the model 

can be used to generate series of job creation, job destruction and employment. Below 

we present and briefly discuss basic features of the model affecting the determination 

of employment dynamics in the presence of aggregate state fluctuations.4 

 

 

                                                 
4 The presentation of the main features of the model is intentionally brief and focuses only on what is 
relevant for our purposes. The interested reader is encouraged to refer to Mortensen and Pissarides 
(1994).  



 

 9 
 

2.2.2 Basic features  

 

Let L denote the total number of workers in the labor force (which is fixed in the 

model), u the unemployment rate (unemployed workers as a fraction of the labor 

force), and v the vacancy rate (total vacancies as a fraction of the labor force). The 

total number of matches at any point in time is given by Lm=m(Lv,Lu), in which 

m(.,.) is a matching function assumed to be increasing in both arguments and linearly 

homogenous. The rate at which vacant jobs are filled is given by q=m(v,u)/v, which 

can also be written as q(v/u) where q’(v/u)<0. The job-finding probability for workers 

is given by m(v,u)/u or, equivalently, vq(v/u)/u. Because of the linear homogeneity in 

the matching function, the vacancy to unemployment ratio v/u (which we will refer to 

as θ) is sufficient to pin down worker finding and job finding probabilities. 

 

The productivity of a filled job is given by σε+p , where p is an aggregate shock 

common to all filled jobs and ε  is an idiosyncratic shock. The aggregate shock 

follows a three-state Markov process with transition probabilities given by ijπ  (where 

i,j=1,2, or 3), which are calibrated to display strong persistence.5 Changes in the 

idiosyncratic shock follow a Poisson distribution with arrival rate λ . Once an 

idiosyncratic shock takes place, a new draw for ε  is taken from a fixed distribution 

F(ε ). The parameter σ  controls the amount of dispersion in the job productivity 

implied by the idiosyncratic shocks. 

 

                                                 
5 The transition matrix is constructed to match a first-order auto-correlation coefficient of 0.93. 
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Let V(i) be the asset value of a vacancy in aggregate state i (that is, the present 

discounted value of expected returns associated with a vacant job under a particular 

aggregate shock) and let ),( iJ ε  be the asset value of a filled job with idiosyncratic 

productivityε  in aggregate state i. Under perfect capital markets and for any state i, 

V(i) must satisfy:  

 

⎥
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−+

+
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==

3

1

3

1
)())(1(),()(
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j
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r
ciV πθεπθ        (1)  

 

Where r is the interest rate, c is the vacancy flow cost, )( iq θ  is the state-contingent 

job-meeting probability, and ),( iJ uε  is the asset value of a filled job, evaluated at the 

upper bound ( uε ) of the distribution of idiosyncratic productivity shocks and at the 

aggregate state i. Because any firm is free to post a new vacancy (free entry) or 

destroy an existing one in equilibrium, V(i) will be instantaneously driven down to 

zero and equation (1) will determine the value of the endogenous variable iθ  - which 

in turn determines job finding and worker finding probabilities. The instantaneous 

adjustment of iθ  is an important feature of the model to which we will come back 

later in the paper.   

 

Because of labor market frictions, matches are valuable objects and they command 

positive rents in equilibrium. Wages adjust to split the rents between employer and 

employee according to a Nash bargaining solution. The total match surplus ),( iS ε  

equals what both parties get from keeping the employment relationship alive, minus 
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their outside opportunities. If  ),( iW ε  is the asset value for an employed worker 

enjoying idiosyncratic productivity ε  in aggregate state i, and )(iU  is the asset value 

for an unemployed worker in aggregate state i, the match surplus can be written as:  

 

)(),()(),(),( iUiWiViJiS −+−= εεε      (2)  

 

Job destruction takes place whenever the match surplus falls below zero, which can 

happen in response to negative shocks in the aggregate or the idiosyncratic 

components of a job. The state-contingent reservation productivity dε  is 

endogenously determined by the condition 0),( =iS dε .6 One can solve for dε  by 

using the definitions of ),( iJ ε , )(iV , ),( iW ε , and )(iU  to write (2) as a Bellman 

Equation whose right-hand side includes the state-contingent iθ  from (1) and the 

match surplus ),( jxS . The state-contingent reservation productivities can be 

recovered by iterating on the Bellman Equation to convergence.   

 

So far we have discussed how the state-contingent job-finding probabilities and 

reservation productivities are determined by the model. Another important 

endogenous variable is unemployment, which is determined by the intersection in the 

v-u space between the Beveridge curve and the equilibrium vacancy-unemployment 

ratio (θ). Note that the model is able to pin down employment dynamics because total 

job creation and total job destruction are fully determined by job-finding 

                                                 
6 The match surplus is monotonically increasing in the idiosyncratic shock.  
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probabilities, reservation productivities and unemployment.7  In particular, total job 

creation is obtained by multiplying the stock of unemployed workers by the current 

job-finding probability, while total job destruction is given by the mass of jobs with a 

non-negative surplus at time t-1 that no longer exist at time t. The evolution of total 

employment (N) is related to total job creation (C) and total job destruction (D) 

through a simple identity:   

 

111 +++ −+= tttt DCNN          (3)   

 

From (3) one can calculate the growth rate of employment and compare its 

frequency-domain properties to the data.  

 

2.3 Data and methodology 

2.3.1 Data 

 
 
We work with quarterly seasonally-adjusted job creation and job destruction rates for 

US manufacturing from 1947 to 1993 (188 observations), taken from Davis and 

Haltiwanger (1999). The job creation rate is defined as the sum of employment gains 

at the plant-level normalized by average employment at all plants in the current and 

previous period, whereas the job destruction rate is defined as the absolute value of 

employment losses at  the plant-level also normalized by average employment in the 

                                                 
7 Strictly speaking, both the employment level and the current distribution of filled-jobs across 
idiosyncratic productivities matter for employment dynamics.  
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current and previous period.8 A variable of particular interest in this paper is the net 

employment growth rate, defined as the job creation rate minus the job destruction 

rate. 

2.3.2 Spectral Analysis   

 
The potential benefits of spectral techniques in economics were first outlined by 

Granger and Hatanaka (1964). Since then, frequency-domain methods have become 

popular in the profession as an exploratory tool and a device for empirical validation 

of theories.9 

 

Spectral analysis provides an alternative way of looking at time series data. Its appeal 

as a valid investigative procedure relies on the spectral representation theorem, 

which asserts that any covariance-stationary process can be described as a weighted 

sum of periodic functions.10 Once a series can be expressed as a summation of cycles 

that overlay one another, it is possible for potential regularities in the series to be 

buried under a cumulative chain of distinct periodic movements. 

 

Spectral techniques are potentially quite useful in studying fluctuations. In particular, 

they can uncover the contribution of cycles with different frequencies to the behavior 

of a series (or to the joint behavior of two series). This is accomplished by 

decomposing the variance of a series (or covariance between two series) according to 
                                                 
8 This normalization yields what is known as symmetric growth rates.  
9 Examples include Granger (1966, 1969), Nerlove (1964), Engle (1974), Watson (1993), Diebold, 
Ohanian and Berkowitz (1998), Christiano and Vigfusson (1999), Figura (2001, 2002), Otrok (2001a, 
2001b), and Otrok, Ravikumar, and Whiteman (2002).   
10 The reader can find more information about Spectral Analysis in Priestley (1981), Stoica and Moses 
(1997), Hamilton (1994), or Brockwell and Davis (1996). 
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their frequencies, which in turn reveals the existence of influential periodic 

components.11  

 

2.3.3 Multivariate spectrum   

 
Let { }∞ −∞=ttW  be a covariance-stationary vector process, where ]',[ ttt XYW =  is a (2 x 

1) vector and its associated kth autocovariance matrix is defined as:      
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      (4)  

 

Assuming that the sequence of autocovariance matrices { }∞ −∞=Γ kk  is absolutely 

summable, the autocovariance-generating function of W can be appropriately 

transformed to yield the multivariate spectrum, which in this case is a (2 x 2) matrix 

with complex elements:   

 

ki

k
kW eS ωπω −

∞

−∞=

− ∑Γ= 1)2()(        (5)  

 

Using De Moivre’s theorem and standard mathematical properties of trigonometric 

functions, the multivariate population spectrum )(ωWS  can be rewritten as:   

                                                 
11 A word of caution is necessary. Multivariate spectral techniques alone cannot be used to prove the 
existence of structural relationships between variables. In particular, such techniques are not able to 
detect common cycles in two series, but simply whether there are influential cycles of common 
frequency between them. Spectral analysis is essentially a different way of looking at the variance-
covariance matrix of a series. 
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2.3.4 Univariate spectrum  

 
The diagonal elements of matrix (6) are real-valued functions of ω representing the 

(individual) univariate spectra of Y and X, and they can be used to recover any 

autocovariance γ(k). As an illustration, to obtain the kth autocovariance of the variable 

Y, apply the following inversion formula:  
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Where )(ωYS  denotes the univariate spectrum of Y. In particular, the variance of the 

series can be obtained as a special case of (7):      
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Where the last equality exploits the symmetry of the univariate spectrum. As 

indicated above, the area below the univariate spectrum, when integrated over its 
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entire period, is equal to the variance of the variable. More importantly, equation (8) 

can be easily transformed to investigate what portion of the variance of Y is due to 

cycles that lie within a certain frequency range. This is accomplished by simply 

setting the integration limits appropriately. Thus, by plotting the spectral function 

against its angular frequency ω one can obtain an assessment of how different 

frequencies contribute to the variance of Y. Frequency regions commanding humps in 

the spectrum are of particular interest as they suggest important periodic components 

(or cycles) of a series.      

 

2.3.5 Cross spectrum    

 
The off-diagonal elements of matrix (6) are complex-valued functions of ω, and they 

represent the cross spectra between both series. For interpretation purposes, it is 

convenient to define, respectively, the cospectrum and the quadrature spectrum: 

 

∑
∞

−∞=

−=
k

k
YXYX kc )cos()2()( )(1 ωγπω          (9)   

 

∑
∞

−∞=

−−=
k

k
YXYX kq )sin()2()( )(1 ωγπω         (10) 

  

Now the cross spectrum can be written in terms of its two components, which are the 

cospectrum and the quadrature: 
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YXYXYX iqcS +=)(ω             (11)  

 

The cospectrum between Y and X decomposes the contemporaneous covariance 

between both series by frequency. As in the case of the univariate spectrum, it is 

possible to show that integrating (9) over [-π,π] yields the contemporaneous 

covariance between Y and X.12 Once again, one would be particularly interested in 

frequency intervals corresponding to humps of the cospectrum, since they reveal the 

existence of influential frequencies underlying the contemporaneous correlation 

between any two series. For our purposes, the cospectrum will help us to address the 

issue of decoupling between the job creation and destruction margins.  

 

2.3.6 Estimation   

 
A natural estimator of the spectrum is the sample multivariate periodogram: 

 

ki
T

Tk
kW eS ωπω −

−

+−=

− ∑Γ=
1

1

1 ˆ)2()(ˆ           (12)  

 

Where T is the sample size and kΓ̂  and W  are: 
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1 )')((ˆ     (13)  

                                                 
12 In this paper, we will be interested in decomposing the contemporaneous covariance by frequency. 
So we do not discuss the concept of coherency, which would be important if one wants to assess the 
importance of cycles of frequency ω controlling for out-of-phase (non-contemporaneous) dynamics.    
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Although it can be shown that the sample periodogram is asymptotically unbiased, its 

variance is often very large and, most critically, does not decrease with the sample 

size. Indeed, the number of autocovariances to be estimated increases together with 

the sample size rendering the sample periodogram an inconsistent estimator of the 

spectrum. As a result, other approaches are usually employed to achieve consistency. 

One possibility is to estimate a Vector Auto Regression (VAR) and take advantage of 

its rational spectra – see Hamilton (1994: chapter 6). This approach is said to be 

parametric, as it assumes that the process under investigation can be captured by a 

(preferably low-order) VAR structure. If such an assumption is correct, estimates can 

be substantially improved given the simplified structure of the auto-covariance 

matrix. In contrast, if the process cannot be well described by a VAR representation, 

non-parametric techniques are better. Because they do not rely on restrictive 

assumptions regarding the data-generating-process, non-parametric methods are 

generally preferred when one is unsure about the mechanism generating the data.13  

 

Under the typical nonparametric strategy, the spectrum at a given frequency ω is 

estimated by averaging values of the spectrum evaluated in a neighborhood around 

that frequency. This is sometimes referred to smoothing the spectrum. The researcher 

must first choose a kernel ),( jmjk ωω +  (also known as the spectral window), which 

defines a weighting scheme associated with the frequencies being considered. The 
                                                 
13 Non-parametric methods have their own hurdles as well and we discuss them in the text.   
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kernel assigns specific weights according to the distance between the frequency jω  

and its neighbors miij ≤+ ,ω .  Hence, a nonparametric estimator of the multivariate 

spectrum can be calculated as:  

 

∑
−=

++=
h

hm
mjWjmjNP SkS )(ˆ),()(ˆ ωωωω ,  where ∑

−=
+ =

h

hm
jmjk 1),( ωω      (15)                                 

 

Where )(ˆ
mjWS +ω   denotes the sample periodogram, computed as in (12) – (14). The 

particular non-parametric approach adopted in this paper is Welch’s averaged 

periodogram method.14 An important step of the estimation procedure is to choose the 

shape of the spectral window and the bandwidth parameter h (or alternatively, to 

choose the lag window and its length if the spectrum is estimated by weighting auto-

covariances). Although there are several window shapes one can adopt, our estimates 

are robust across different choices, so we do not discuss issues related to the trade-off 

between smearing and leakage that underpin the choice of window shape.15  

 

In contrast, the choice of the bandwidth parameter h merits a more careful discussion, 

as this parameter matters for our results. A wide spectral window (large h) means that 

spectral estimates at “many” neighbor frequencies are used to estimate the spectrum 

at each particular ω. This reduces the variance of the estimated spectrum, but at the 

                                                 
14 See Stoica and Moses (1997) for an in-depth discussion of Welch’s method. The process of 
obtaining a consistent non-parametric estimator of the spectrum can be equivalently described as 
weighting the auto-covariances in the sample periodogram (12). In this case, the weighting scheme is 
called the lag window instead of the spectral window. To avoid peaks at zero-frequencies, all variables 
are linearly detrended prior to estimation. 
15 See Stoica and Moses (1997) for a discussion on this issue. 
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same time causes loss of resolution (bias) as a result of strong smoothing.16  A narrow 

spectral window (small h) has the opposite effect, and generates high resolution with 

large variance. The same trade-off between resolution and variance can be described 

from the perspective of lag windows. A wide lag window means that long auto-

covariances are being used to form an estimate of the spectrum at each particular ω, 

which delivers high resolution (long auto-covariances can capture richer dynamics) 

and large variance (long auto-covariances reduce degrees of freedom). A narrow lag 

window considers only short auto-covariances, which implies smoother estimates and 

lower variance.17            

 

There is no clear-cut best value for the bandwidth parameter h, and Hamilton (1994: 

167) points out that “one practical guide is to plot an estimate of the spectrum using 

several different bandwidths and rely on subjective judgment to choose the bandwidth 

that produces the most plausible estimate”. While addressing this problem, we follow 

the common practice of looking at estimation results across different bandwidth 

parameters and window types. Overall we believe we have a reliable set of results.  

 

2.4 Model and data spectra 

2.4.1 Employment decomposition and comparisons among spectral densities  

 
The first-order auto-correlation coefficient of the simulated employment growth 

series is around -0.2 for the original baseline parameterization of the Mortensen-

                                                 
16 The concept of resolution is related to the ability of distinguishing close (but distinct) influential 
frequencies.  
17 Note that a wide spectral window corresponds to a narrow lag window, and vice-versa. 
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Pissarides model, compared to a first-order auto-correlation coefficient of 0.68 for US 

quarterly manufacturing data. This is a dramatic failure of the model. This section 

resorts to spectral techniques in order to pinpoint the source of the problem and to 

provide a quantitative assessment of the factors leading up to this counterfactual 

result. We start by proposing a frequency-domain decomposition of the employment 

growth rate based on the following identity linking the employment growth rate 

(NET) to job creation (JC) and job destruction (JD) rates:  

 

ttt JDJCNET −=    (16)  

 

The autocovariance-generating function (ACGF) of NET can be written as a 

combination of auto-covariances and cross-covariances:  

 

)()()()()( ,, zGzGzGzGzG JCJDJDJCJDJCNET −−+=     (17)  

 

One can translate the time-domain decomposition above into the frequency-domain 

by applying Fourier transforms. This will provide a decomposition of the employment 

growth rate spectrum as the sum of job creation and job destruction spectra minus the 

real part of each cross-spectrum:    

 

)}({)}({)()()( ,, ωωωωω JCJDJDJCJDJCNET SrealSrealSSS −−+=    (18) 
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Where ω denotes frequency and real {.} represents the real part of the cross-spectrum 

at each frequency. The equation above can also be written as:   

 

)}({*2)()()( , ωωωω JDJCJDJCNET SrealSSS −+=     (19)  

 

This decomposition is applied to both data and simulated series extracted from the 

Mortensen-Pissarides model. We initially adopt the parameterization of the original 

paper, except that we use a 10-state aggregate shock representation (instead of a 3-

state representation). We do so to avoid the possibility that few aggregate states with 

large persistence would naturally deliver long spells without any state change and 

artificially tilt the spectrum to lower frequencies.18 Table 2.1 presents a summary of 

parameter changes resulting from using a 10-state version of the model. 

 

The first set of results is reported in Figure 2.1.19 The first column presents spectra for 

the data and the second column for the simulated series. The estimated spectra 

indicate that actual employment growth rate fluctuations are largely the result of (1) 

influential business cycle frequencies observed in job creation and job destruction and 

(2) the negative correlation between creation and destruction (decoupling) at business 

                                                 
18 In order to implement this modification we used the algorithm proposed by Tauchen (1986) to 
generate a 10-state markov chain for the aggregate productivity shocks. The parameters describing the 
underlying auto-regression for the shocks were the same as in Mortensen and Pissarides (1994) – zero 
unconditional mean, first-order auto-correlation coefficient of 0.93 and a standard error of the 
innovation equal to 0.011. After increasing the dimension of the state space we re-solved the model 
numerically adjusting the distribution of idiosyncratic productivities accordingly. The model was 
simulated for 212 periods – a power of two is computationally efficient.  
19 The empirical spectral densities were estimated using a Hanning 20 window and spectral densities 
for the simulated series were estimated with a Hanning 40 window (this is also the case in figures 2.2 
and 2.8). Results are robust across alternative window shapes and a wide range of window lengths. 
Confidence intervals (95 % level) presented in the picture are narrower for the model because we are 
able to simulate much longer series, which also explains why we can afford to use a wider lag window.   
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cycle frequencies. Note that this negative correlation adds to the hump in the 

employment growth spectrum because of the minus sign in the decomposition 

formula (19).  

 

When one compares the empirical and model spectra, several differences emerge. 

Most evident is that, in the model, fluctuations in the employment growth rate are not 

predominantly driven by business cycle frequencies; its spectrum displays a 

“climbing pattern”. The absence of a dominant business cycle frequency is not 

unexpected given the lack of persistence already revealed in the first-order auto-

correlation coefficient. Indeed, positive persistence implies spectral shapes that peak 

at low frequencies and then decline for higher frequencies. A natural question is how 

the various components of the simulated employment growth rate contribute to this 

odd-looking spectrum. With the help of the decomposition formula (19), we can sort 

out the roles played by job creation, job destruction and their comovement.  

 

The second column of Figure 2.1 indicates that higher-than-business-cycle 

frequencies seem quite influential for employment behavior in the model. This result 

should be interpreted with caution. Firstly, it should be noted that the actual 

employment growth rate is approximately 50% more volatile than its simulated 

counterpart. Even though high frequencies look very important in the model, they in 

fact do not generate an unrealistic amount of variation.20 Hence, influential high 

                                                 
20 It can be verified that the area beneath the spectrum of the actual employment growth rate is 
approximately 1.5 times the area beneath the spectrum of simulated series. 
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frequencies reflect less of a “magnitude” problem and more of a “distribution of 

power” one, which takes us to the next point.   

 

The relatively large role of high frequencies in the model is mostly due to the coupled 

dynamics between creation and destruction at low frequencies, which through the 

negative term in the decomposition formula (19) wipes out the influential lower 

frequencies contained in job creation and destruction. The lack of decoupling is 

crucial to generating the climbing shape of the employment spectrum and the lack of 

persistence in employment growth observed in the Mortensen-Pissarides model. To 

reinforce this point, we simulate the model again assuming less persistence in the 

aggregate shocks, with results presented in Figure 2.2.21 While such a change is 

enough to push the humps of the job creation and job destruction spectra towards 

more realistic ranges, the coupled dynamics between creation and destruction at low 

frequencies once more neutralizes these influential frequencies in the employment 

spectrum.22  

 

2.4.2 A canonical reduced-form model for levels and growth rates  

While the Mortensen-Pissarides model fails to generate persistent employment 

growth rates, it does generate persistence in the employment level.23 We develop a 

                                                 
21 Using Tauchen’s method we generated a 10-state markov chain with an underlying auto-correlation 
coefficient of .53, simulated the model, and then estimated the relevant spectral densities.   
22 High frequencies also become more influential for job destruction dynamics when shocks are less 
persistent, since jobs become less resistant to bad idiosyncratic shocks in “non-persistent” good times 
and because the economy now moves from better to worse states more often (triggering small bursts of 
separations).    
23 Simulations of the Mortensen-Pissarides model indicate a first-order auto-correlation coefficient of 
the employment level of around 0.7. The Cogley and Nason (1995) criticism about persistent driving 
forces applies here. See Figure 2.3 for an illustration. 
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canonical reduced-form model that sheds some light into the differences between 

achieving persistence in levels and growth rates. The model motivates why achieving 

a persistent growth rate is particularly important, and it provides insights as to why 

the Mortensen and Pissarides model has trouble delivering results consistent with the 

data.  

 

Consider the following reduced-form model describing the dynamic behavior of a 

variable y (defined as the log of an economic variable Y): 

 

,1 ttt Ayy += −ρ      (20)  

 

ttt AA εθ += −1         (21)  

 

Where  

 

),0(~,10,10 2σεθρ iid<≤<≤     (22)  

 

Equation (20) states that the value assumed by the variable y at time t is the sum of 

two terms. The term 1−tyρ  is a reduced-form representation of frictions in the 

underlying structural model, whereas the term tA  captures an exogenous shock that is 

potentially correlated across time. The coefficients ρ  and θ  represent the friction 

intensity and the persistence level of the exogenous shock. As we show, both are 
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necessary to produce persistent dynamics in the growth rate of y, even though 

persistence in levels can be achieved by either ρ  or θ  alone.   

 

Equation (21) can be rewritten as an infinite-order moving-average process and 

substituted back into (20). In this case, an ARMA process with a sufficiently high 

order for the MA parameter (q) yields a good approximation of (20). So we can 

approximate the specification above as:  

  

tt Ly εψ )(=        (23)  
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The spectrum of y in levels is given by:24  
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24 See Hamilton (1994, Chapter 6) for details. 



 

 27 
 

Where ω denotes frequency and the expression )(ωH  is the transfer function of the 

ARMA (1,q) model. Equations (25) and (26) describe how the power (variance) of y 

is distributed across frequencies.  

 

Increasing the persistence of a series will lead to humps at lower frequencies in its 

spectrum. This happens because shocks die out slowly and their accumulation across 

time dwarfs the importance of high frequency movements. Increasing ρ and/or θ will 

cause the spectrum of y in levels to shift to the left at higher peaks, eventually 

yielding the celebrated Granger’s “typical spectral shape”. But how does the spectrum 

of the growth rate of y change as the friction intensity (ρ) and the persistence of 

aggregate shocks (θ) vary? This question can be answered using the fact that the 

spectrum of the growth rate of a series can be obtained by applying a first-difference 

filter to its level:  

 

)())cos(22()( ωωω yy ss −=∆           (27)  

 

Now we can calculate the spectral densities for any pair (ρ, θ) satisfying the 

stationarity conditions in (22). To compute the percentage of the variance in the 

growth rate series that is explained by a frequency range ],[ 21 ωω , we integrate over 

the relevant interval and then normalize by the total area beneath the spectrum:  
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To illustrate how persistent dynamics (and more generally different influential 

frequency ranges) arise from the combination of shocks and frictions, we entertain a 

simple experiment. First we define three ranges of frequencies over the domain ],0[ π : 

(i) high-frequency ( ]14.3,8.0[∈ω ), (ii) business-cycle frequency ( )78.0,19(.∈ω ), 

and (iii) low frequency ( )0,19(.∈ω ). For a quarterly series, these ranges correspond 

approximately to zero-to-two, two-to-eight, and over-eight-year ranges. Next, for 

each of these frequency ranges, we consider the value of (28) for all possible pairs (ρ, 

θ). This generates the surfaces presented in the appendix – figures 2.4 to 2.6 –

capturing the percentage of the variance of the growth rate of y that can be explained 

by each of the three frequency ranges, as a function of the friction intensity (ρ) and 

the persistence of aggregate shocks (θ).          

 

Figures (2.4) through (2.6) clearly show that a combination of positive friction and 

persistent shocks is necessary to generate persistent dynamics (or, equivalently, 

influential business cycle frequencies) in the growth rate of y.25 One without the other 

is unable to command strong business cycle periodicities or substantial persistence in 

the ∆y series.26 The pictures indicate that if both elements of the pair (ρ, θ) are pushed 

too close to one, then influential periodicities start to fall into the low-frequency 

range, whereas if the elements of (ρ, θ) are not large enough, the high-frequency 

                                                 
25 The figures where generated with 100 grid-points for ρ and 100 grid-points for θ. The MA parameter 
(q) adopted was 1000. 
26 An important underlying condition for the validity of this statement is that the internal propagation 
mechanism is represented by an AR1. If it was the case, like in Pries (20004), that the internal frictions 
called for an AR2 representation, then even in the absence of persistent exogenous shocks it would be 
possible to generate influential business cycle frequencies. 
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range dominates the spectrum. In other words, to generate influential business cycle 

frequencies in ∆y, one must have a model that features significant internal frictions as 

well as persistent exogenous shocks.27  

 

There is no doubt that the benchmark Mortensen-Pissarides model contains persistent 

exogenous shocks (since the aggregate component of productivity is assumed to be 

highly persistent), but the employment growth rate shows no persistence at all. Our 

canonical model offers guidance for interpreting this result by suggesting that the 

Mortensen-Pissarides model suffers from insufficient internal frictions. Although “the 

need for friction” in search models is a conclusion that can be found elsewhere in the 

literature, we provide here precise links between internal propagation mechanisms, 

driving forces and growth rates. In the next section we further discuss the lack of 

internal frictions within the Mortensen-Pissarides model, demonstrating how the 

“right” combination of persistence in aggregate productivity shocks and magnitudes 

of job-finding probabilities (capturing internal frictions) play a crucial role for 

replicating the persistence of employment growth observed in the data.   

 

                                                 
27 It is important to mention that our canonical reduced-form model does not map directly into the 
corresponding employment equation of the Mortensen-Pissarides model. To put Mortensen-Pissarides 
into a canonical model, we would need to model employment as a Markov switching equation in order 
to account for time-varying coefficients triggered by fluctuating job-finding probabilities and 
reservation productivities. While more realistic, this modification would reduce tractability with no 
impact on the basic message of this subsection. Another point one could raise is that the symmetric 
growth rate used in the job flows literature has a transfer function that is different from the first-
difference filter. We conducted simulation exercises in which we estimated the transfer function of the 
symmetric growth rate, and concluded that it behaves much like the standard first-difference filter. 
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2.5 Parameters and structure 

2.5.1 Can re-parameterization solve the problem?  

 
 
We have shown that the lack of decoupling between job creation and destruction is 

the central element generating insufficient persistence of employment growth in the 

baseline model. Following up on this point, one could ask whether persistent 

fluctuations in employment growth can be achieved by re-parameterizing the model. 

We address this issue in the context of Cole and Rogerson (1999). The authors 

develop a reduced-form representation of the Mortensen-Pissarides model and then 

search for parameter values that allow the model to match certain stylized facts.28 The 

gains from such a “non-structural approach” lie in the ability to search directly over 

key outcome variables of the model, such as job-finding probabilities and reservation 

productivities.  

 

The reduced-form characterization proposed by Cole and Rogerson consists of 

equations for job creation, job destruction and unemployment. The job creation flow 

(c) is determined by:29 

  

)1( 11 −−=
− tst nc

t
α      (29)  

 

                                                 
28 Cole and Rogerson try to replicate the main stylized facts regarding job flows articulated by Davis et 
al (1999): job creation that is more volatile than employment and less volatile than job destruction, 
strong positive autocorrelation in the series for job flows and employment, and negative 
contemporaneous correlation between creation and destruction.    
29 The model is setup in terms of the levels of flows. Before conducting spectral analysis we translate 
these flows into rates to obtain job creation and job destruction rates. 
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where αs is the state-contingent job-finding rate, and (1-n) measures the number of 

unemployed workers. The job destruction flow (d) is given by: 

 

10 )( −+= tst nd
t

φδδ       (30)  

 

⎩
⎨
⎧ ==

= −

otherwise
lsandhsif tt

0
1 1φ      (31)  

 

where δs is the state-contingent destruction rate (determined by state-contingent 

reservation productivities), and φ  is an indicator variable that captures whether the 

economy has just moved from boom (h) to recession (l) - in which case there is an 

extra burst of job destruction.30 Employment dynamics can be inferred from a 

combination of creation and destruction flows:  

 

111 +++ −+= tttt dcnn      (32)   

 

Cole and Rogerson’s preferred parameterization is:31 

 

{ } { }2.0,01.0,044.0,069.0,30.0,21.0,,,,, 0 =πδδδαα hlhl     (33)  

 

                                                 
30 In the Mortensen-Pissarides model, the distribution of jobs over idiosyncratic productivities changes 
depending on the histories of shocks and so the existence of a unique state-contingent δ is valid as an 
approximation only. Cole and Rogerson argue that, for sufficiently persistent aggregate shocks, the 
approximation is good.   
31 The variable π denotes the probability of an aggregate state change.  
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The authors show that, under these values, the proposed reduced-form version of the 

Mortensen-Pissarides model is capable of replicating a broader set of business cycle 

facts characterizing US manufacturing than the parameterization presented in the 

original paper of Mortensen and Pissarides. In particular, the persistence of 

employment growth is now significantly larger and closer to the data – the first-order 

autocorrelation coefficient is estimated to be around 0.57 in the simulated data, 

compared to the empirical auto-correlation of 0.68.  

 

This favorable result was achieved by simply “re-parameterizing” the model; no 

structural modification affecting the reduced-form representation was implemented.32 

Table 2.2 compares the original parameterization of Cole Rogerson (1999) and the 

parameterization implied by a 2-state version of the Mortensen-Pissarides model.33   

Table 2.2   

Cole and Rogerson (Original) versus Mortensen and Pissarides (2-state version) 

 

 
lα  hα  lδ  hδ  0δ  π  

Cole and Rogerson (reduced-form) 0.12 0.30 0.069 0.044 0.01 0.2 

Mortensen and Pissarides (structural) 0.55 0.65 0.054 0.045 0.067 0.06 

 

                                                 
32 Here we are using the term “parameter” in a loose sense. The parameters in the reduced-form 
representation include true parameters in the structural model (like persistence of aggregate shocks) 
and endogenous variables in the structural model (job-finding probabilities and reservation 
productivities).  
33 To produce this last parameterization we applied the strategy described in footnote 17 to produce a 
2-state model. The job-finding probabilities endogenously obtained in the structural model are reported 
in the table. The values for the δ’s – which represent fractions of jobs destroyed in different states – are 
not directly implied by the model’s equations; to retrieve them we (1) simulated long series of job 
creation, job destruction and employment and (2) calculated fractions of jobs destroyed as sample 
averages during good times, bad times (ignoring the first period after good-to-bad state changes to 
purge out initial destruction bursts), and the first periods after good-to-bad state changes.       
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Table 2.2 indicates that to obtain persistence in the employment growth rate, Cole and 

Rogerson reduce the job-finding rates ( lα  and hα ) as well as the one-shot burst in 

destruction following a change from the good to the bad aggregate state ( 0δ ). This 

change of parameterization eliminates the spike in job creation right after the 

economy enters a recession implied by the baseline Mortensen-Pissarides model, both 

by reducing the initial surge in unemployment and by reducing the share of the newly 

unemployed who find jobs quickly. This point can also be seen in Figure 2.7, where 

we compare the two models’ responses of job creation and job destruction rates to a 

permanent switch from the good to the bad state. In Mortensen and Pissarides, job 

creation shoots up so quickly that employment growth becomes positive in the period 

immediately following the bad shock, which explains the counterfactual negative 

auto-correlation of employment growth. In contrast, low job-finding rates together 

with a smaller initial burst of destruction causes the recovery of employment growth 

to be much slower in Cole and Rogerson’s parameterization.  

 

US data for unemployment spells seem hard to reconcile with the job-finding 

probabilities imputed by Cole and Rogerson. Indeed, the spells implied by the 

authors’ parameterization are much longer than the ones observed in the data. 

Nevertheless, Cole and Rogerson argue that their numbers are reasonable if one takes 

into account transitions from out-of-labor-force directly into employment. If one were 

to count out-of-labor force workers as unemployed, the implied unemployment spells 

in the data would be more consistent with those implied by Cole and Rogerson’s 
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parameterization. Let’s accept Cole and Rogerson’s argument for now and use our 

decomposition formula to check whether the frequency content of their simulated 

series fits the data.  

 

As shown in Figure 2.8, Cole and Rogerson’s parameterization can successfully 

produce cyclical (or near-cyclical) decoupling of creation and destruction. However, 

the cospectrum also seems to reveal coupled dynamics at very low frequencies, which 

in turn washes out influential lower-frequencies in the job creation and job 

destruction series that would otherwise lead to a counterfactually large role for low 

frequency shocks to employment growth. The end result is a well-behaved overall 

spectrum for employment growth, but the “composition” of this spectrum is not 

entirely satisfactory. Having said that, it must be acknowledged that this shortcoming 

of the Cole-Rogerson parameterization is much less dramatic than the one observed in 

the original parameterization of Mortensen and Pissarides. 

 

2.5.2 Spectral loss function: a new metric  

 
In order to provide an assessment of Cole and Rogerson’s specific choice of 

parameters from a frequency-domain perspective, we construct a measure of fit 

designed to capture which combinations of job-finding probability and persistence of 

aggregate shock can best match the joint behavior of the empirical spectra and 

cospectrum for job creation and job destruction. This measure is calculated for a 

limited set of parameter choices and without taking into account the mapping between 

reservation productivities and job-finding probabilities generated by the structural 
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model.34 Let )(ˆ ωd
jS  denote the spectra of job creation (j=jc), job destruction (j=jd) 

or the cospectrum between the two (j=jc,jd) estimated from the data; and let 

);(ˆ Ωωm
jS  be the analogous measures estimated from simulated series of Cole and 

Rogerson’s reduced form model. We experiment with different values of two 

parameters, contained in the vector Ω : the job-finding probability in the low 

aggregate state ( lα ) and the probability of aggregate state change (π ).35 We define 

the following spectral loss function as our equation (34): 
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The upper limit ω  is set to 0.7854, which means that we are considering periodicities 

higher than two years. The loss function measures deviations between model and data 

spectra at each particular frequency up to ω  as a function of the parameter space Ω , 

and it assigns equal weights to all three components of the employment growth rate 

spectrum. We plot the tri-dimensional surface generated by )(ΩΨ  as a function of the 

pair ( lα ,π ).36 Figure 2.9 shows that Cole and Rogerson’s proposed parameterization 

                                                 
34 In particular, the job destruction percentages are held fixed at Cole and Rogerson’s values while we 
vary job-finding probabilities and levels of persistence of the aggregate state. Addressing these points 
would require one to solve for the endogenous relationship between reservation productivities, job-
finding probabilities and persistence. We leave this for future work.   
35 The job-finding probability in the high aggregate state is set to be 50% higher than its low state 
counterpart. We relax this assumption latter.  
36 The window selection for estimating spectral densities from simulated series of Cole and Rogerson 
model was Hanning 40. Results were robust across window shapes. Regarding the window size, we 
found that increasing smoothness of the estimates tilted )(ΩΨ  in favor of more persistent aggregate 
shocks.  
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is in the “valley region” of the function, but that even lower job-finding probabilities 

or less persistent aggregate shocks could further reduce the value of )(ΩΨ . 

 

To investigate further, we minimize the loss function )(ΩΨ  over the pair of job-

finding probabilities ( lα , hα ) keeping all other variables at Cole and Rogerson’s 

original parameterization shown in Table 2.2 (including the persistence of the 

aggregate shock).37 The results indicate that the optimum job-finding probabilities are 

7.41 % in the low aggregate state and 10.46 % in the high aggregate state. These 

values can be used to generate series of job creation and destruction rates from which 

we can check conformity between data and model spectra. Figure 2.10 shows that, 

under these job-finding probabilities, the decoupling pattern is indeed closer to the 

data. Although a more definitive result on the “optimal parameterization” requires a 

more formal investigation, our results indicate that the reduced-form model’s ability 

to reproduce the cospectrum shape from the data calls for even lower job-finding 

probabilities than found by Cole and Rogerson, implying even more unrealistically 

long unemployment spells. For these reasons we do not feel comfortable concluding 

that the persistence issue can be fully resolved by re-parameterizing the model, and so 

we are led to look into the structure of the Mortensen-Pissarides model for answers.  

 
 
 

                                                 
37 This procedure is nothing more than a Simulated Method of Moments procedure (Gourieroux and 
Monfort (1996)), in which the “moments” we are trying to match are the empirical spectral densities. 
We are assuming the identity matrix as our weighing matrix.  
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2.5.3 Are there enough frictions in the Mortensen-Pissarides model?  

 
In section 2.4, we used our canonical reduced-form model to argue that the lack of 

persistent growth rates even in the presence of highly persistent driving forces is a 

symptom of insufficient internal frictions. This view is corroborated by the fact that 

the reduced-form representation could achieve persistent employment growth 

fluctuations by reducing job-finding probabilities (a natural way to increase the role 

of internal frictions). 

 

The problem is that unless we push job-finding probabilities down to unrealistically 

low levels (below the ones proposed by Cole and Rogerson), the Mortensen-

Pissarides model misses the decoupling between job creation and destruction present 

in the data - which is quantitatively very important for employment fluctuations. In 

other words, it seems that the Mortensen-Pissarides model is in need of additional 

sources of friction.  In Section 2, we pointed out that the Mortensen-Pissarides model 

pins down three endogenous variables in each state: the job-finding rate38, the 

reservation productivity, and the level of unemployment. The first two are jointly 

determined by so-called asset equations (a free-entry condition and an optimal job 

destruction condition) and capture the rate at which unemployed workers escape 

unemployment, and the cut-off value for idiosyncratic productivity shocks below 

which it becomes optimal for a worker-firm pair to dissolve their employment 

relationship. The third endogenous variable is unemployment, determined ex post as a 

function of job creation and destruction. 
                                                 
38 This variable is fully determined by the vacancy-unemployment ratio (v/u) given the assumptions on 
the matching function.  
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When the economy is hit by aggregate shocks, the current job-finding rate and 

reservation productivity adjust instantaneously to their new equilibrium levels. This 

happens because of two optimality conditions: (i) exhaustion of all vacancy rents (or 

free-entry) and (ii) no excess surplus on the lowest productivity job. Such conditions 

guarantee that firms will post/close vacancies up to the point where the return is zero, 

and will destroy any marginally non-optimal job immediately, so that the optimality 

conditions are always met. More importantly, this is true for every point in time even 

in the face of fluctuating aggregate states. In a sense, the model is completely 

frictionless when it comes to the determination of the job finding rate and the 

reservation productivity; changes in equilibrium values of these variables occur 

instantaneously.  In contrast, unemployment is a sluggish variable and its 

convergence to new equilibrium levels is not instantaneous. This happens because job 

creation is probabilistic in nature, and so it takes time to fully absorb any changes in 

the job-finding probability caused by aggregate shocks. 

 

Our empirical results can be interpreted as suggesting a need for richer dynamics in 

the determination of job-finding probabilities, which would be a way to introduce 

further frictions into the model.39 Indeed, as shown in Figures 2.11 and 2.12, time 

series of creation and destruction produced by the Mortensen-Pissarides model or 

                                                 
39  Allowing for such modification does not necessarily entail major changes in the modeling approach. 
Indeed, Pries (2004) provides such an example in which the introduction of learning effects creates the 
concept of job-finding probabilities for enduring matches (on top of the traditional period-by-period 
job finding probability). Alternatively, Fujita (2003) suggests the incorporation of vacancy creation 
lags in the Mortensen-Pissarides model to overturn the free entry condition which would then preclude 
job-finding probabilities from being “jump variables”. 



 

 39 
 

Cole and Rogerson’s reduced-form representation do not mimic the data well, which 

can be viewed as a reflection of poor job-finding probability dynamics. While we 

may not have needed spectral techniques to reach this conclusion, such techniques are 

essential to quantify the importance of decoupling, and they provide a natural metric 

for assessing future changes to the model. Our results indicate that marked 

decoupling between creation and destruction is indeed crucial to matching 

fluctuations observed in the data, and that such decoupling poses a non-trivial 

challenge to the Mortensen-Pissarides model.  

 
 

2.6 Concluding remarks and future work 

 

This paper applies frequency-domain tools to pinpoint why the Mortensen-Pissarides 

workhorse model is unable to generate employment growth persistence. By 

comparing model and data spectra, we conclude that a marked decoupling between 

job creation and job destruction at cyclical frequencies is the missing link. We then 

investigate the potential for model re-parameterization to solve the problem. 

Adopting a reduced-form representation proposed by Cole and Rogerson (1999), we 

conclude that replicating the decoupling pattern observed in the data is far from trivial 

even for re-parameterized versions of the Mortensen-Pissarides framework. In doing 

so, we propose a new metric for evaluating how well models can reproduce 

employment fluctuations observed in the data. Such a metric is based on a spectral 
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loss function that measures the extent to which model and data spectra deviate from 

each other.      

 

There are several directions for future work. A first is to incorporate structural 

features of the endogenous mapping between job-finding probabilities and the 

reservation productivities in the minimization of the spectral loss function or, even 

better, to optimize the loss function over deep parameters of the structural model. 

Although the latter is more elegant, computation complexities may lead us to pursue 

the former first. Another future extension is to incorporate richer dynamics for job-

finding probabilities into the reduced-form representation proposed by Cole and 

Rogerson, and then evaluate their contribution to the cospectrum behavior. This 

would be in line with recent research by Fujita (2003), who allows for temporary 

violation of the free-entry condition in the Mortensen-Pissarides model by assuming 

vacancy creation lags.  

 

A third extension would be to model richer dynamics for job-finding probabilities 

from first principles. Although creation lags in the spirit of Fujita (2003) can preclude 

the vacancy-unemployment ratio from adjusting instantaneously to aggregate shocks, 

Fujita does not model the phenomenon from first principles, and a deeper 

investigation into the dynamics of job finding rates could yield a high payoff. 
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Chapter 3: Job reallocation dynamics and aggregate 
employment fluctuations in the US manufacturing: a Granger 
causality study across time-scales 

 

3.1 Reallocation intensity and macroeconomics 

 
Plant-level studies for the US manufacturing show that job reallocation (measured as 

the sum of job creation and job destruction) is largely a within-sector phenomenon. 

This evidence has been rationalized as an indication that idiosyncratic shocks 

dominate aggregate ones along the reallocation process. As a result, there has been a 

renewed interest on models highlighting producer heterogeneity that are capable of 

accounting for diverse fortunes across businesses even when they belong to the same 

narrowly defined sectors. In this context, a question that comes to mind is: should 

macroeconomics as a discipline care about all of this - in other words, do models 

designed to explain aggregate fluctuations have to incorporate producer 

heterogeneity? 

 

Macroeconomic literature certainly provides us with particular examples in which 

modeling underlying heterogeneity is crucial (the study of macroeconomics of 

incomplete markets, for one). Nonetheless, recent studies that emphasize the interplay 

between job reallocation dynamics and the business cycle (e.g. Caballero and Engel 

(1993) and Caballero, Engel and Haltiwanger (1997)) have put forth a much broader 

case for why modeling heterogeneity is indispensable for understanding aggregate 
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fluctuations. A key issue in this debate is whether time-varying reallocation intensity 

actively influences aggregate fluctuations. While theoretical research has already 

identified possible channels through which reallocation intensity can affect cyclical 

dynamics, empirical studies are still trying to fully determine the connections between 

the two. This chapter fits into the latter category.    

 

Our work has a similar motivation to Figura (1999), who uses plant-level data to ask 

whether reallocation is related to the cycle. Through a decomposition based on band-

pass filtering techniques, he argues that “permanent reallocation accounts for 

approximately 30% of cyclical fluctuations in aggregate employment”. In doing so, 

Figura pointed to the existence of so-called “frequency content” in the reallocation 

series and we exploit this same insight, though the technique we use and the precise 

question we consider are different. Our paper investigates whether there is Granger 

causality between reallocation and employment across different frequency bands (or 

time-scales to be more precise) using aggregate data for US manufacturing. In order 

to isolate frequencies of interest we resort to wavelet techniques, which present some 

methodological advantages for carrying out frequency-domain analysis of economic 

series.40   

 

As is well known, a Granger causality test looks for temporal precedence between 

two variables. In our context, we are interested in examining whether lagged values 

                                                 
40 See Gençay, Selçuk, and Whitcher (2002) and Schleicher (2002) for an accessible introduction to 
wavelets in economics. Other useful books are Percival and Walden (2000), Mallat (1998) and 
Vidakovic (1999). Recent papers using wavelets in Economics are Conway and Frame (2000), Ramsey 
(2002), Ramsey (1999), and Ramsey and Lampart (1998a, 1998b). 
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of reallocation have predictive power for aggregate employment (and vice-versa). 

While this approach does not provide information about “structural causation” 

between the variables, it can provide meaningful evidence to check the consistency of 

different theories. More importantly, we examine how (and if) the nature of this 

relationship changes across different frequencies. As an illustration of why this might 

be useful, consider for instance the possibility that high-frequency reallocation 

reflects adjustments of labor input that are mostly reactive to common shocks driving 

employment, and therefore does not play an important role in determining aggregate 

dynamics; while, in contrast, low-frequency reallocation captures a more fundamental 

restructuring behavior in gross job flows which indeed influences future aggregate 

employment dynamics. If this story was true, we would expect to find that 

reallocation does not Granger cause employment at high frequencies, but does at low 

frequencies.  

 

The idea of using wavelets to test for Granger causality across different frequency 

bands has been suggested by Ramsey and Lampart (1998a,b) who studied the 

relationship between (i) money and income and (ii) money and expenses. In a sense, 

it is fair to say that this ides follows the notion of band-spectrum regression – Hannan 

(1963a,b) and Engle (1974) – which is well-suited to deal with a frequency-dependent 

relationship between variables. In the next section we provide a brief overview of the 

empirical approach adopted here, including an intuitive presentation of the multi-

scale decomposition achieved via wavelets.  
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3.2 Empirical methodology 

3.2.1 Wavelets: an overview  

 
Traditional spectral analysis techniques – see Priestley (1981) – allow us to 

decompose the power (variance) of a series across different frequencies. While such 

information may provide useful insights, it leads to what is known as “complete loss 

of time resolution”. In other words, to obtain information about the power distribution 

of a series, we surrender the ability to locate in time the role of different frequency 

components. Additionally, to the extent that conventional frequency-domain methods 

rely on Fourier Transforms and require (second-order) stationarity of the underlying 

data, the contribution of different frequency components is not supposed to vary over 

time. Wavelet techniques can handle these problems – that is, they can provide us 

with frequency information that is localized in time, and they are able to handle non-

stationary data.  

 

We use wavelets in this chapter to generate time-series of reallocation and 

employment that are driven by different frequency components. Mechanically, this 

task can be accomplished within the realms of conventional frequency-domain 

methods by resorting to band-pass filters, but if the chosen technique relies (as most 

do) on Fourier Transforms then the assumption that the frequency components of a 

series are stable across time is necessary. So wavelets provide a more general 
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framework for time-frequency decompositions of an economic series since it can 

naturally accommodate more fundamental changes in its dynamics.41  

 

To accomplish such flexibility, wavelets rely on bases of finite length (Figure 3.1 

display one basis), in sharp contrast to the sine and cosine bases of the Fourier 

transform which run from minus to plus infinity. A generic basis called a “mother 

wavelet” – which we denote by ψu,s(t) - is chosen and can be stretched/compressed to 

capture cycles of different frequencies, and shifted from the beginning to the end of a 

series to provide time localization. Stretching/compression is determined by a scale 

parameter and time position is determined by a location parameter – these correspond 

to s and u, respectively, in the expression for the “mother wavelet” below. Wavelet 

coefficients characterizing a particular series x(t) are obtained through the following 

projection – also known as the continuous wavelet transform (CWT):  

 

∫
∞

∞−

= dtttxsuW su )()(),( ,ψ    (1) 

 

The wavelet coefficients W(u,s) will be relatively large if the series x(t) has an 

important component of scale s at location u. More importantly, these coefficients can 

be used to reconstruct the series x(t) at different scales by using the inverse 

continuous wavelet transform. At low scales (small values of s), the corresponding 

wavelets are very compressed and so they are appropriate for measuring rapidly 

                                                 
41 On the downside, wavelets are a fairly recent technique and, although they have strong mathematical 
foundations, the statistical properties are still being developed.    
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changing movements of the series (high frequencies). The opposite is true for high 

scales where a stretched wavelet captures slow-moving changes (low frequencies).   

 

Figure 3.1  

 Symlet12 Wavelet 

 

3.2.2 Multi-scale decomposition 

 
Although, the CWT generates coefficients corresponding to all possible scales and 

positions, there are computational advantages in working with a finite subset of 

sample points taken from the (u,s) space. Such points are obtained by critical 

sampling of the two-dimensional space (u,s) and they can be used to generate the 

discrete wavelet transforms (DWT). Theoretical results have established the sampling 

procedures to be followed such that accuracy in reconstructing the series is assured 

when performing an inverse DWT. One of the consequences of such procedures is 

that our scale decomposition will follow a dyadic (power of two) pattern – that is, for 

quarterly data, our scales will be 2 quarters, 4 quarters, 8 quarters, 16 quarters, and so 

on.    

 

We will use the DWT to achieve the following multi-scale decomposition of a time 

series xt:  
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ttttttt ADDDDDx 554321 +++++=       (2) 

 

The series D1t denotes the first-level wavelet detail of series xt, which captures 

movements associated with scale 1 – for quarterly data, scale 1 goes from 21 to 22 

quarters (six months to one year). The second-level wavelet detail D2t captures 

changes associated with the range 22 to 23 quarters (one to two years). Wavelet details 

D3t (two to four years), D4t (four to eight years), and D5t (eight to sixteen years) are 

defined analogously.  The series A5t denotes the wavelet approximation of level 5, 

and provides a smooth series describing the low-frequency behavior of xt – it 

basically adds up all other remaining wavelet details greater than 5. 

 

The decomposition is implemented through a pyramid algorithm due to Mallat 

(1989), based on the idea of sequential filtering of the wavelet approximation 

component – see Figure 3.2. Basically, one starts with the original series xt and then 

performs a single-level discrete wavelet transform to write xt as D1t + A1t. Next, 

another single-level discrete wavelet transform is applied to A1t so that we obtain A1t 

= D2t + A2t. The process goes on until we reach A5t.42  

 

 

                                                 
42 Actually, the sequential filtering of wavelet approximations can be repeated up to J times – where J= 
log2(Sample Size). We chose to stop at scale 5 which already deals with fairly low frequency 
components (eight to sixteen years) for an economic series. In order to keep the exposition 
straightforward we are omitting from the figure 3.2 the downsampling procedure involved in the 
algorithm. Interested readers should refer to Mallat (1989) or Gençay et all (2002) for a discussion 
about downsampling as well as for a formal exposition of the concepts.  
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Figure 3.2  

 Sequential filtering and the Pyramid Algorithm 

 

 

 

When implementing a DWT, it is first necessary to decide which wavelet basis to use. 

There are many possibilities that vary in terms of shape (Haar, Daubechies, Symlet, 

etc) and length (longer wavelet bases display a higher number of oscillations). We 

follow Ramsey and Lampart (1998), who picked a Symlet (12) on the grounds that it 

“is an intermediate choice in that it has reasonably narrow, compact support, is fairly 
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smooth, is nearly symmetric, and has a moderate degree of flexibility”. Our results 

were robust to the choices of Daubechies (4) and Daubechies (12) as well.43    

 

3.2.3 Granger-causality tests across time-scales  

 

Besides wavelets, this chapter also relies upon another empirical methodology: 

bivariate Granger-causality tests. Let xt and yt be the time series of interest and 

assume they are covariance stationary.44 To implement the aforementioned test we 

first estimate a VAR as follows:   
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where the disturbances tx,ε  and ty ,ε  are assumed to be independent white noise 

processes. Using an F-test we can check whether the following null hypotheses are 

rejected or not:  

 

0...: ,3,2,1,0 ===== kyyyyH αααα      (5) 

0...: ,3,2,1,0 ===== kxxxxH ββββ       (6) 

                                                 
43 We used the method of symmetrization to address the problem of border distortion that naturally 
arises when one tries to filter a signal of finite length.  
44 If the series are not stationary, one can still perform Granger causality tests using first-differenced 
series together with an error correction term – see Lutkepohl (1993).   
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The first null is that y does not Granger-cause x, while the second one asserts that x 

does not Granger-cause y. If both hypotheses are rejected, then we say to have found 

evidence of a feedback relationship between x and y (that is, Granger-causality runs 

in both directions); if only one of the null hypotheses is rejected, we say that x (or y) 

Granger-causes y (or x); and if neither hypothesis is rejected, the test is inconclusive. 

As mentioned in the introduction, the concept of Granger-causality captures whether 

lagged values of one variable have predictive power (in the sense of reducing the 

mean square error of forecasts) over the other and should not be viewed as an 

indication of structural causation per se. However, the test can still provide important 

insights into the behavior of economic variables. Moreover, given the multi-scale 

decomposition discussed in the previous section, we can apply the Granger-causality 

test between corresponding wavelet details belonging to different series, exploiting 

richer implications. We now turn to those issues.   

 

3.3 Reallocation and aggregate fluctuations: results  

 

We work with quarterly seasonally-adjusted job creation and job destruction rates for 

US manufacturing from 1947 to 1993 (188 observations) as compiled by Davis and 

Haltiwanger (1999). The job creation rate is defined as the sum of employment gains 

at the plant-level normalized by average employment at all plants in the current and 

previous periods, whereas the job destruction rate is defined as the absolute value of 

employment losses at  the plant-level, also normalized by average employment in the 
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current and previous periods. Variables of particular interest for our purposes are the 

job reallocation rate (the sum of the job creation and job destruction rates) and the net 

employment growth rate (the job creation rate minus the job destruction rate). We 

start by applying the multi-scale decomposition described in the previous section to 

these two variables.   

 

Figure 3.3 shows the decomposition for the employment growth rate. The first-level 

wavelet detail (D1) is associated with sudden changes in the series and roughly 

isolates periods of recession (peak to trough) in the US economy by means of clear 

spikes during such periods. Details 2 through 4 are associated with typical business 

cycle frequencies fluctuations (1 to 8 years) and they drive much of the volatility of 

the employment series. Detail 5 and approximation 5 are much less influential, and 

they indicate that low-frequency components are not important for the dynamics of 

employment. These conclusions change when we consider the reallocation series. In 

fact, approximation 5 indicates a trend toward lower levels of reallocation overtime 

and detail 5 reveals that frequencies between 32 and 64 quarters are important for the 

series. Additionally, details 2 through 4 provide evidence that business cycle 

frequencies do command important fluctuations in reallocation; while detail 1 also 

isolates recession periods.    

 

Figures 3.3 and 3.4 also reveal differences between recession episodes in the 70’s and 

the early 80’s in the US economy. The wavelet details 3 and 4 associated with the 

reallocation series indicate that the recessions of the 70’s generated a “deeper” 
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process of adjustment than the recession of the early 80’s. Such conclusions are 

sensible in light of the permanent restructuring caused by oil price shocks in the 70’s. 

At the same time, it is interesting to note that the difference between the two 

recessions cannot be readily seen when one considers the employment series alone. 

Such contrast can be construed as another example of the advantages associated with 

looking at gross flows.   

 

The multi-scale decomposition also allows us to break the reallocation and 

employment series into frequency-specific components and check for Granger-

causality between corresponding wavelet details of different scales. A priori, one 

could imagine that, at high frequency bands (low scales), reallocation reflects a noisy 

process in which firms make fast-paced decisions about their labor inputs that do not 

affect aggregate net dynamics; while, at low frequency bands (high scales), 

reallocation captures a more fundamental reorganization of production activity which 

affects the evolution of net flows dynamics. The key idea here is to look for 

overlaying relationships across frequency-bands that may be buried in the original 

series. 

 

Before implementing the causality test, we check for non-stationarity in our series by 

applying Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests. 

The Phillips-Perron test allows for possible heteroskedasticity of disturbances through 

Newey-West standard errors. Lag selection in the ADF test is achieved by checking 

the auto-correlation function (ACF) for lack of serial correlation. The tests are 
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specified with a constant and without a deterministic trend, except for the original 

reallocation series, in which case we include a deterministic trend. The results lead us 

to reject the null of non-stationarity for all series – see table 3.1 in the appendix for 

details.  

 

The next step is to determine the number of lags to include in the vector auto-

regressions used to test for Granger-Causality. The Schwartz Bayesian information 

criterion (SBIC) was adopted for this purpose. Given the concern that the SBIC could 

generate “excessively parsimonious” lag order specifications in some cases, we also 

ran a Lagrange-multiplier test to make sure that there was no auto-correlation left in 

the residuals of the estimated VAR’s. Table 3.4 reports results from Granger-

Causality tests between reallocation and employment performed at different time-

scales. Tables 3.2 and 3.3 in the appendix provide more detailed information on the 

estimation results. 

Table 3.4 
Granger causality across time-scales  

 
SERIES GRANGER-CAUSALITY SIGNIFICANCE LEVEL 
Original NET ↔ REL 5 % 

Wavelet Detail 1 (D1) NET → REL 1 % 
Wavelet Detail 2 (D2) NET ↔ REL 1 % 
Wavelet Detail 3 (D3) NET ↔ REL 5 % 
Wavelet Detail 4 (D4) NET ↔ REL 1 % 
Wavelet Detail 5 (D5) REL → NET 1 % 

 

The first row of results indicates that the original series of employment and 

reallocation display a feedback relationship – that is, we reject the null that 

reallocation does not Granger-cause employment as well as the null that employment 

does not Granger-cause reallocation. Interestingly, the feedback relationship between 
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the two series does not hold across all different frequency bands. At high frequencies 

(first wavelet detail) we find that employment Granger-causes reallocation; while at 

low frequencies (fifth wavelet detail) the reverse is true. Nonetheless, the feedback 

relationship between reallocation and employment holds at intermediate frequency 

bands (second to fourth wavelet details), which capture typical business cycle 

frequencies. Hence, the results isolate “eight-to-sixteen years” as a frequency-band in 

which reallocation dynamics have predictive power over aggregate dynamics (and not 

the other way around). These results are consistent with theories emphasizing a 

prominent role for permanent and long-termed gross job flows, and the evidence 

uncovered suggests that wavelets were successful in teasing out overlaying 

relationships contained in the original employment and reallocation series.  

 

3.4 Concluding remarks and Extensions   

 
In this chapter we investigated the causality relationship between aggregate 

employment fluctuations and job reallocation. While a Granger-causality test 

indicated a feedback relationship between the two variables, wavelet techniques 

allowed us to isolate frequency-bands in which such causality goes in one direction 

only.  Moreover, we argued that our findings are consistent with theories emphasizing 

the role of reallocation dynamics in driving aggregate fluctuations.      

 

A natural extension of this chapter is to combine the wavelet details and 

approximation obtained with a structural vector auto-regression (SVAR) approach, 

rather than running Granger-causality tests. By doing so, we would be able to trace 
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movements in the job flows series back to hypothetical structural shocks “more 

easily” by exploiting identifying restrictions that operate in different frequency-bands.  
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Chapter 4: Productivity growth and the frequency content of job 
reallocation: a cross-section study of US manufacturing 
industries. 

 

4.1 Productivity growth and reallocation  

 

The relationship between reallocation and productivity growth has been the focus of 

recent attention in macroeconomics.45 Many studies have examined the sources of 

productivity growth by considering decomposition exercises using plant-level data. In 

contrast, this chapter takes on the issue at a higher level of aggregation and, like 

Schuh and Triest (1998), capitalizes on the opportunity to combine 4-digit level LRD 

data on job flows with the NBER productivity database in order to investigate the 

connection between productivity growth and reallocation. Schuh and Triest’s 

conclusion is that “increased reallocation normally is not correlated with increased 

trend productivity”. The authors also note that their evidence “does not conform well 

to theories that posit improvements in investment and productivity through creative 

destruction channels”. This work revisits the issue of productivity performance and 

reallocation from a frequency-domain perspective.  

 

                                                 
45 References include Dunne, Roberts, and Samuelson (1989); Baily, Hulten, and Campbell (1992); 
Dunne, Haltiwanger, and Troske (1996); Baily, Bartelsman, and Haltiwanger (1996); Olley and Pakes 
(1996); Liu and Tybout (1996); and Foster, Haltiwanger, and Krizan (1998). 
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We first use disaggregated LRD data to estimate the spectral densities for the total 

reallocation series of each 4-digit industry in US manufacturing. Then, we manipulate 

the estimated spectra to generate industry-specific measures of the relative 

importance of low and high frequencies for the fluctuations of the reallocation series. 

These measures are then combined with industry-specific labor productivity growth 

and other control variables, calculated from the NBER productivity database as 

averages over the same period used to estimate the spectral densities. Then, through 

OLS regressions, we investigate whether labor productivity growth and our 

reallocation indices are correlated.   

 

The motivation underlying our empirical approach comes from the idea that 

reallocation has a distinct frequency content that can be mapped into existing 

theories. For example, the hypothesis of technological sclerosis put forth by Caballero 

and Hammour (1996) says that contracting inefficiencies between capital and labor 

may cause excessively slow restructuring. More importantly, the notion of 

inefficiently slow restructuring can be cast in the frequency-domain as the 

reallocation series being driven by sub-optimally low frequencies. Hence, a sensible 

implication to be tested is whether industries with relatively more influential low 

frequencies display lower productivity growth. 

 

An additional link between our testing approach and the literature relates to the 

dichotomy between short- and long-term job flows featured in many macroeconomic 

models. Models of permanent job flows highlight the role of productivity-enhancing 
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and protracted reallocation that is related to the restructuring of assets.46 In contrast, 

models emphasizing short-term job flows feature reallocation mainly as a process of 

accommodation to temporary shocks. This class of models focuses on changes in 

utilization of plant-assets (as opposed to restructuring of assets) which are not 

naturally associated with improvements in productivity. If this dichotomy really 

holds, then one would expect to see industries with a greater share of their 

reallocation driven by lower-frequencies to experience greater productivity growth. 

Existing empirical evidence does not support this view, however. As mentioned 

before, Schuh and Triest (1998) conclude that “increased reallocation normally is not 

correlated with increased trend productivity” and our results indicate that, if anything, 

labor productivity growth is negatively correlated with how influential low-

frequencies are in the behavior of reallocation. Our results are then consistent with the 

phenomenon of technological sclerosis. Next we discuss in detail our three proposed 

measures for assessing the frequency content of the reallocation series. The three 

measures are designed to capture the same basic idea; working with all three adds to 

the reliability of our results, and allows for alternative measurement strategies.     

4.2 Measuring the importance of low frequencies 

4.2.1 Data  

We work with seasonally-unadjusted quarterly job flows series from 1973 to 1993 (83 

observations across time) at the 4-digit level constructed by Davis et al. (1996). As 

usual, the job creation rate is defined as the sum of employment gains at the plant-

                                                 
46 For instance, in Caballero and Hammour (1996), the restructuring process involves getting rid of 
outdated technologies and, in Mortensen and Pissarides (1994), restructuring implies the termination of 
low-productivity job sites.   
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level normalized by average employment in current and previous periods, whereas the 

job destruction rate is defined as the absolute value of employment losses at the plant-

level also normalized by average employment in current and previous periods. We 

also use the NBER manufacturing productivity database, which provides annual 

information on 450 manufacturing industries (4-digit-level) from 1958 to 1996.47 The 

wealth of information provided by this database allows us to control for several 

industry-specific factors during the regression exercises. 

 

4.2.2 Reallocation index one  

This measure is based on the normalized cumulative spectral distribution associated 

with the total reallocation series of each industry. The idea is that if the cumulative 

spectral density sharply increases at low frequencies, then fluctuations in reallocation 

have a more long-term nature. We call this measure reallocation index one (RI_1); it 

is calculated in a three-step procedure: 

 

Step one: Estimate the normalized cumulative spectral distribution associated with the 

total reallocation series of each industry i.  
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The first term on the right-hand-side is the cumulative integral of the spectrum.  The 

more low frequencies are important for a series, the higher the value of its cumulative 
                                                 
47 See Bartlesman and Gray (1996) for technical documentation. 
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integral for small ω ’s. In contrast, for series in which low frequencies are not 

influential, one would expect this term to be close to zero for low values of the 

angular frequency. The second term in parentheses normalizes the cumulative 

spectrum by the total area beneath the spectrum. This forces )(ωiΩ  to take values in 

[0, 1] and allows for comparisons across industries with different reallocation 

variances. Figure 4.1 illustrates the case in which reallocation in industry i is driven 

by lower frequencies than in industry j.  

 

Step two: Integrate the normalized cumulative spectral densities from the zero 

frequency to a cut-off value ω , chosen to minimize the influence of seasonal effects.  

 

πωωωω
ω

≤Ω= ∫ ,)()(
0

dM ii       (15) 

 

We choose ω  to be 1.21 (approximately five quarters).48 Note that, even though we 

determine a cut-off value for seasonal effects, our approach does not require 

establishing cut-offs between cyclical and permanent fluctuations (which is certainly 

much more problematic to do). Indeed, up to a linear trend, we consider the entire 

mass of frequencies below seasonal fluctuations that command variation in the series, 

treating cyclical and permanent fluctuations jointly.  

 

                                                 
48 The use of windowing schemes in non-parametric estimation may lead to what has been called 
“leakages through the edges of the window”. This problem may cause frequencies in the neighborhood 
of four quarters to pick up seasonal effects, so we pick 5 quarters as the cut-off. Inspection of the 
estimated spectra suggests that this cut-off value corresponds to frequencies not substantially affected 
by leakage. 
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It is important to stress that the area beneath the cumulative integral up to ω  conveys 

different information from the value of )(ωiΩ . In particular, even if two sectors 

possess identical values of )(ωiΩ , one of them may accumulate low frequencies at a 

faster rate than the other. Indeed, our index is capable of capturing how fast (in 

comparison to other sectors) a particular cumulative integral “takes off”.49 One 

problem is that industries experience different seasonal effects – that is, they have 

different )(ωΩ  - and this will distort the measure )(ωiM . In fact, those industries in 

which seasonal frequencies are very important (in the food sector, for instance) 

present a cumulative spectral distribution that is relatively flat  up to the cut-off value 

ωω = , and so )(ωiM  will be naturally low - as illustrated by industry j in figure 

4.2. The third step addresses this issue.   

 

Step three: Control for heterogeneous seasonal frequencies by regressing )(ωiM  on a 

polynomial in )(ωiΩ . The estimated residuals of this regression form RI_1. 
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49 Measuring the importance of low frequencies by comparing “how soon” is the cumulative spectral 
density take-off works exactly only if densities that take-off early do not cross others later on. If that is 
not the case, then the argument will still hold as an approximation as long as the area “re-gained” by 
integrals taking-off later is not significant. We ran several checks to see whether this was the case and 
we found that, up to the seasonal frequency, the distortion introduced by “crossing” is minor.            
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Where 1)1(
ˆ

xp+β  is a vector of OLS estimates obtained from a cross-industry regression 

of )(ωiM  on powers of )(ωiΩ . Note that, because OLS can be viewed as imposing 

a moment condition of orthogonality between regressors and the residuals, RI_1 is 

uncorrelated with the seasonal effects )(ωiΩ . The total number of industries (I) in 

the regression is 389.50  

 
 

4.2.3 Reallocation index two  

Our second measure RI_2 is similar to the previous index, but deals with the issue of 

heterogeneous seasonal effects in a different manner. Instead of trying to purge 

seasonals through a polynomial regression, we normalize the cumulative spectral 

distributions (second term on the right-hand-side of equation (14)) by their respective 

non-seasonal variance rather than the total variance – that is, we integrate over the 

range: ωω <<0 , where 21.1=ω . This will force the normalized cumulative 

distributions to assume the value one at ωω =  for all industries, eliminating the need 

to correct for differential seasonal effects. The index can be calculated in two steps.  

 

Step one: Estimate the normalized cumulative spectral distribution associated with the 

total reallocation series of each industry i (but now under a new normalization as 

shown in Figure 4.3):  

 

                                                 
50 Some sectors were dropped due to incomplete job flows series. 
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Where the interpretation is analogous to step one of RI_1.  

 

Step two:  Integrate the normalized cumulative spectral densities from the zero 

frequency to a cut-off value ω : 

 

∫Ω=
ω

ωω
0

)(2_ dRI ii       (18) 

 

Where ω  is again equal to 1.21.  

 

4.2.4 Reallocation index three  

In contrast to the first two, the third measure assumes a frequency cut-off (8 years) 

separating permanent from cyclical fluctuations, and so does not treat the whole mass 

of frequencies jointly. This measure equals the ratio between the percentage of 

variance (of the reallocation series) explained by frequencies lower than eight years 

and the percentage explained by frequencies between eight and two years. This index 

captures the relative importance of low frequencies for fluctuations in reallocation, 

but it relies on an arbitrarily chosen frequency threshold. The index is calculated in 

two steps:   
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Step one: Estimate the normalized cumulative spectral distribution associated with the 

total reallocation series of each industry i.  
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This step is identical to the first one used in the calculation of RI_1.  

 

Step two: Calculate RI_3 as the ratio between the percentage of variance explained by 

low and high frequencies based on a cut-off point of eight years.   
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Where aω  = 0.2271, bω  = 0, and cω  = 0.8327. These numbers correspond to an 

approximate partition of frequency ranges into (i) frequencies lower than eight years 

(the numerator) and (ii) frequencies between eight and two years (the denominator). 

An industry displaying a high RI_3 is one in which low frequencies are relatively 

more influential. Figure 4.4 illustrates a situation in which industry i will have a 

higher RI_3 than industry j.  
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4.3 Empirical results  

4.3.1 Productivity growth and the frequency content of reallocation  

As mentioned before, the three measures are similar in spirit. We choose to work with 

all of them in order to check the robustness of our results and because it is not clear 

which measurement strategy is the best. It is our belief, though, that the first two 

measures are superior because they do not require an arbitrarily set threshold. One 

may argue, for instance, that the threshold for what should be considered “permanent 

fluctuations” may vary across industries. At the same time, the third measure is a 

natural one to consider since the practice of assuming cut-off frequencies is common 

in filtering. We can learn more about how the reallocation indices relate to each other 

by looking at their correlation matrix. As shown in Table 4.1, our last measure RI_3 

is the most dissimilar among the three, even though all the reallocation indices 

display strong positive correlation among themselves. 

 

Next we investigate the connection between industry-specific measures of low-

frequency reallocation and productivity growth. As a starting point, we report simple 

correlation coefficients between productivity growth and our reallocation indices in 

Table 4.2. The correlation coefficients are all negative and statistically significant. 

Next, we include industry-level controls available from the NBER Manufacturing 

Productivity Database. Table 4.3 reports OLS results from estimating the following 

specification:  

 

itoritoritoritor controlsRIconstgrowthprodLabor secsecsecsec__ εγ +Λ++=    (21) 
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Before we address the results of the regressions, it is worthy to discuss the issue of 

which controls to use. Our indices capturing cross-industry differences in the 

frequency content of the reallocation series are supposed to proxy for permanent 

reallocation affected by underlying inefficiencies. Clearly, permanent reallocation and 

low-frequency changes are very different things and we have no hope to use the latter 

as an absolute measure of the former even after controls. However, we do believe that 

it is possible to use our indices as relative measures of permanent reallocation as long 

as we account for differential factors across industries. 

 

For example, it is reasonable to expect that industries will have at least portion of its 

reallocation motive associated to the schedule of replacement/updating of their 

capital. To the extent that industries with higher capital intensity follow a slower 

schedule of replacement/updating than industries with lower capital intensity, this 

effect will show up in their spectral density and we would like to control for it. 

Unfortunately, the list of candidate controls may be quite long. Ideally, we should 

have a theoretical model spelling out the control variables in our context. While later 

in the chapter we present a simple model that helps to organize some of our empirical 

results, we leave for future work this task. Hence, in addressing the issue of which 

controls to use, we start with a minimal specification (table 4.2) and then proceed to 

add variables that could potentially capture differential factors such as the one listed 

above. We report simple correlation coefficients (table 4.2) and a more elaborate 
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specification (table 4.3).  The coefficient on the reallocation index was robust to more 

parsimonious specifications.  

 

Table 4.3 indicates that, even after controlling for several industry-specific features, 

the negative association between productivity growth and our reallocation indices 

persists.51It is interesting to note that the total level of reallocation, though positively 

related to productivity growth, is not significant in any regression (and this is the case 

even if we run the regressions without the reallocation indices). This finding is 

consistent with the conclusions of Schuh and Triest (1998), who find no evidence 

linking reallocation and productivity. Although their empirical strategy is different 

from ours, we may say that our results confirm their message that protracted 

reallocation is not synonymous with superior productivity performance. Indeed, we 

find that, if anything, industries with relatively more influential low frequencies in the 

reallocation series tend to display lower productivity growth.  

 

We are not suggesting that low-frequency-driven reallocation processes cause poor 

productivity growth. A number of factors (such as demand fluctuations, sector-

specific technological change, market structure or the regulatory environment) may 

affect our indices and we make no effort to disentangle this mix. What the results do 

suggest is the existence of a more complex relationship between reallocation and 
                                                 
51 The results were derived using a Hanning window with length 20. They were robust across 
alternative window shapes (Blackman and Bartlett), but different window sizes were found to have 
some influence on the p-value of γ , though never reversing its sign. In particular, the relationship 
seems to be stronger for smoother spectra (generated by a narrow lag window or, equivalently, a wide 
spectral window) than for high resolution spectra (generated by a wide lag window or, equivalently, a 
narrow spectral window). Inspection of estimated spectra revealed that window sizes out of the 20 to 
30 range would either generate very jagged spectra with larger variance (long lag windows) or very 
smooth spectra with non-informative wide humps (short lag windows).    
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productivity than would be suggested by a pure cleansing view that permanent 

reallocation is necessarily productivity-enhancing. Additionally, our results are 

consistent with the phenomenon of technological sclerosis as described by Caballero 

and Hammour (1996), according to whom contracting inefficiencies between capital 

and labor can yield an excessively slow pace of restructuring. Indeed, if this is the 

case, one would expect the reallocation series to be driven by sub-optimally low 

frequencies (or, alternatively, sub-optimally long periodicities) and the negative 

association between productivity growth and our indices could be explained.  

 
 

4.3.2 Synchronization: a further look into inefficiencies  

So far we argued that, under technological sclerosis, low-frequency components of 

the reallocation series would reflect the sub-optimally slow pace of restructuring. The 

reallocation indices we proposed were able to quantify the relative importance of low 

frequencies and we found that they were negatively correlated with productivity 

growth, a result that is consistent with technological sclerosis. In this sub-section we 

further exploit spectral concepts to investigate whether inefficiencies play a role 

along the reallocation process. 

 

According to Caballero and Hammour (1996), technological sclerosis refers to 

excessively slow renovation caused by inefficiencies in the contracting environment 

involving capital and labor. The authors argue that an additional implication of such 

inefficiencies is that the creation and destruction margins become decoupled and 

unsynchronized over the cycle as the economy no longer concentrates restructuring at 
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times of recession (when the opportunity cost is low). We use the concept of phase 

shift, which captures synchronization between any two series, to investigate whether 

less synchronized creation and destruction is associated with lower productivity 

growth.  

 

Using notation from equations (9) and (10) in chapter 1, the phase shift between two 

series X and Y can be calculated by using the cospectrum xyc  and quadrature 

spectrum yxq  as follows:  
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Whenever the phase shift is different than zero, then the series Y and X are not fully 

synchronized at that particular frequency – that is, one series is either leading or 

lagging the other. More importantly, if Y and X are job creation and job destruction 

rates, then we can derive a measure of synchronization between the two margins from 

their estimated multivariate spectrum and investigate its association with productivity 

growth along the same lines of the previous section. We consider two measures based 

on the phase shift concept:  
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Where I1 and I2 denote, respectively, the number of frequencies in the sequence 

},...,0{ 1ω  and },...,0{ 2ω . In words, equations (23) and (24) represent the average of 

absolute values taken by the phase shift across a set of frequency points belonging to 

intervals ],0[ 1ω  and ],0[ 2ω . The two intervals are chosen to include only frequencies 

lower than 8 years (unsync_1) and frequencies lower than seasonals (unsync_2). 

These indices quantify the lack of synchronization between creation and destruction 

rates. The next step is to run an OLS regression similar to (21), but using the new 

indices:  

 

itoritoritoritor controlsusyncconstgrowthprodLabor secsecsecsec__ εγ +Λ++=    (25) 

 

Results reported in table 4.4 suggest that industries with less synchronized job 

creation and job destruction also display lower productivity growth.52 These findings 

provide support for the argument of Caballero and Hammour that unsynchronized job 

flows dynamics are a symptom of inefficient restructuring, which ultimately hinders 

productivity growth.  

 

 

                                                 
52 As in the previous section, results were obtained using a Hanning window with size 20. They were 
robust to alternative window shapes (Blackman and Bartlett), but varying the window sizes affected 
the p-values of  γ . Even though there was no sign reversal of the estimated coefficient, our results in 
this section are less robust to alternative window sizes than the ones we obtained for equation (21).    
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4.4 Insights from a simple theoretical model  

 
In the previous section we presented empirical evidence relating the frequency 

content of the reallocation series for four-digit-level industries to their corresponding 

productivity growth performance. One of our findings was that industries in which 

reallocation is (relatively) “more driven” by low frequencies tend to display lower 

productivity growth. Along the way, we made reference to a story consistent with 

such a relationship: in a model with vintage effects, productivity growth is positively 

affected by how fast reallocation occurs. Although this statement may seem plausible, 

there are several dimensions of the argument that need to be further scrutinized.  

 

This section proposes a simple theoretical model that allows us to examine key points 

of the “vintage story” just mentioned. We do not intend to propose a full-blown 

model and, as will become clear, there are several extensions to be added before we 

can claim success in achieving a satisfactory mapping between theory and the 

empirical evidence presented in this chapter. Although we leave this task for future 

work, the model presented here articulates in clear form some features that are 

important for generating the results seen in the data.  

 

4.4.1 The model  

 
Even though our empirical evidence relies on aggregate sectoral data, the unit of 

analysis in the model is the firm. The firm is subjected to vintage effects, such that 

profits are a decreasing function of the firm’s age. The vintage effects are associated 
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with the match (organizational vintage effects) and not with capital, which is not 

present in the model. There is one worker per firm, and the only decision the firm 

needs to make during the current period is whether it wants to (1) continue producing 

and allow the match to age one more period or (2) to destroy the match, which 

implies paying a fixed cost, relinquishing any production during that period, and 

resetting vintage effects for future production.  

 

We assume a partial equilibrium set-up where prices are exogenous. Each active firm 

faces the following dynamic programming problem:  

 

{ })(),',',1()(),,( sVszaEVzsaMaxszaV inacac ++= βπ       (26) 

 

)',',1()( szEVfsV acin β+−=     (27) 

 

Where the subscripts ac and in appearing in the value functions denote, respectively, 

active and inactive firm.  The variable a indicates age of the firm, while z and s are 

idiosyncratic and aggregate shocks. The former type of shock is i.i.d. and the latter 

Markovian with positive persistence. The function )(aπ  is the profit-vintage 

schedule, which we assume to be a decreasing function of age. In each period, an 

active firm decides whether to remain active and become one period older, or to pay 

the fixed cost f to terminate the job and start a brand-new one in the following period. 
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Note the assumption that if a firm destroys its current match then it will necessarily 

restart production in the next period under a brand new vintage (age 1). We can easily 

relax this assumption by allowing an inactive firm to restart production with some 

positive probability next period. Such modification (under the assumption that the 

restarting probability is an i.i.d. idiosyncratic shock) would not change our qualitative 

results. Nonetheless, incorporating a truly endogenous entry decision process would 

require more structure and we leave it for future work. Because the model features 

i.i.d. idiosyncratic shocks and Markovian aggregate shocks, there is not a unique age 

threshold for destruction, but rather a collection of scrapping ages that vary with the 

current exogenous states.   

 

4.4.2 Dynamics 

 

We numerically solve the model by value function iteration. Once we obtain the 

decision rules, it is possible to simulate a panel of firms by drawing one sequence of 

aggregate shocks and a sequence of idiosyncratic shocks for each firms. Then, using 

the simulated panel of firms we can obtain job reallocation rates and productivity 

growth for the industry (both at the firm-level and averages for the industry).  We can 

then vary the fixed cost of job destruction to see how barriers to vintage updating 

affect productivity growth and the frequency content of reallocation.  

 

Everything else constant, a higher fixed cost will increase the lifespan of firms since 

it becomes more costly to destroy a job. As a result, the contribution of each firm to 
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the industry reallocation process (measured as an individual occurrence of job 

destruction immediately followed by a job creation) is more spaced across time. The 

fact that firms are subject to idiosyncratic and aggregate shocks makes this argument 

less exact (a very bad shock can cut short the operation of a young firm), but it still 

holds on average when we consider a large number of firms. An important issue is 

how this micro pattern translates into aggregate reallocation. Will higher fixed costs 

induce a more slow-moving industry reallocation series – that is, a reallocation series 

in which lower frequencies are more influential? This is essentially an aggregation 

question. If firms are sufficiently synchronized in terms of their destruction decisions, 

then the industry reallocation series will reproduce the positive relationship between 

temporally spaced reallocation and fixed costs that holds at the firm-level. However, 

iid idiosyncratic shocks work against synchronization and so we need a counteracting 

force. This role is played by the aggregate shocks in the model, which once in a while 

promote a burst of destruction and induce some synchronization.53  

 

Another important aspect highlighted by the model is the distinction between 

productivity levels and productivity growth, where our empirical evidence relates the 

latter to properties of the reallocation series. For the sake of the argument, hold 

idiosyncratic and aggregate shocks constant and first consider continuing firms. 

While, by definition, vintage effects contribute negatively to the productivity level of 

a continuously active firm over time, the same cannot be said for productivity growth. 

The behavior of a firm’s productivity growth over its lifetime depends on the shape of 

                                                 
53 Another way to induce synchronization is by assuming that the entire profit schedule is vintage 
specific. This way some firms would lock in a profit vintage schedule for long periods and innovations 
to the schedule itself would generate a stronger motive for updating.  
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the profit-vintage schedule – that is, on how fast profits fall with age. A linearly 

decreasing profit-vintage schedule delivers a constant negative productivity growth 

rate for an individual continuing firm across time, while a concave decreasing profit-

vintage schedule delivers an increasingly negative growth rate. Under a linear profit-

vintage schedule, industry productivity growth of continuing firms is independent of 

the underlying age distribution of firms, since the slope of the profit-vintage is 

constant, but under a concave profit-vintage this is no longer true.54 In this case, an 

increase in the number of old firms will tend to reduce aggregate productivity growth 

among continuing firms since more of them will be sitting on a region with a stronger 

negative slope – see figure 4.5.  

 

Hence, to the extent that a higher fixed cost of destruction causes firms to stay active 

for longer, it will also lead to lower productivity growth for continuing firms under a 

concave profit-vintage schedule. Once we re-introduce idiosyncratic and aggregate 

shocks into the, the profit-vintage schedule becomes stochastic and the argument still 

holds on average for the industry under reasonable parameterizations - that is, for 

parameters values that do not imply a complete dominance of shocks over vintage 

effects. 

 

More importantly, we have articulated the conditions under which an increase in the 

barriers to vintage updating (fixed cost of destruction) can reduce productivity growth 

and tilt the spectrum of the reallocation series to lower frequencies, consistent with 

                                                 
54 Because firms have equal size, employment-weighted industry productivity growth of continuing 
firms can be calculated as simple averages of the underlying individual growth rates. 
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the empirical results shown in the previous section.55 Two features were crucial to the 

argument: a concave profit-vintage schedule and some synchronization of destruction 

decisions.  

Figure 4.5  

 Profit-vintage schedules  

 

Straight line: profit-vintage schedule – dotted line: underlying distribution of firms 

 

Now consider the task of accounting for productivity growth coming from the entry 

margin, temporarily putting aside the occurrence of any shocks. A brand-new firm 

will yield the maximum productivity level, but its productivity growth is not well 

defined since that particular firm was inactive in the previous period. We can obtain 

                                                 
55 Appendix III illustrates by means of an example that this relationship between the spectral shape and 
infrequent updating holds even for an individual firm (in which case adjustment is a binary event for 
our model). Such an example is helpful in motivating the argument, but later we will be concerned 
with the spectral densities of the entire industry, in which case adjustment is not a binary event 
anymore (that is, one may have multiple firms both adjusting or not adjusting at any time).  
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the contribution of entry to aggregate productivity growth by comparing the average 

productivity level of all firms that exited last period with the productivity level of 

brand new firms in the current period.56 Here, the presence of older firms actually 

increases productivity growth coming from entry. This is because the difference in 

average productivity levels between exiting firms and new firms is higher when 

exiting firms are older.57 This fact poses a potential complication since it counteracts 

the link between higher fixed costs and lower productivity growth established for 

continuing firms. We come back to this issue in the next subsection.  

 

4.4.3 Simulation results 

 

As mentioned before, we want to construct a simulated panel of firms and investigate 

whether the simple model proposed here is able to generate the relationship between 

the reallocation index and productivity growth we documented in the data. The idea is 

to simulate panels for different fixed costs parameterizations and assess whether 

industries with stronger barriers to updating can generate (simultaneously) lower 

productivity growth and higher reallocation indices.  In order to perform such an 

exercise, we parameterize the model as in table 4.5.   

 

The first row of table 4.5 indicates that the profit-vintage schedule corresponds to the 

first quadrant of a unit-radius circle – which implies it is concave. The discount factor 
                                                 
56 In order to generate a productivity growth figure for the entire industry we average the contribution 
coming from continuing firms and from the entry/exit process, using the current share of brand new 
firms as weights. The reader should also note the existence of richer productivity growth 
decomposition in the literature – see Foster, Haltiwanger and Krizan (1998). 
57 As a result productivity growth from entry is not independent of age distribution even under a linear 
profit-vintage schedule. 
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is .9 and the aggregate shock (s) is modeled as a two-state Markov chain with a non-

symmetric transition matrix designed to capture strong recessionary periods that are 

not very persistent.58 The idiosyncratic shock follows a uniform distribution, and we 

consider two possible levels for the fixed cost. 

 

Table 4.5  
Model Parameterization 

 

 

 

 

 

 

Figure 4.6 presents the value functions and scrapping age schedules characterizing the 

firms’ decisions at different points of the state space. As expected, the value function 

for an active firm is decreasing with age, and job destruction occurs when the value of 

an active firm is less than or equal to the value of an inactive firm. Destruction also 

depends on the aggregate and idiosyncratic shocks, so to visualize the value functions 

we graph them conditioned on particular realizations of the shocks. The results show 

that, for any given age, good realizations of the exogenous shocks delay destruction. 

Additionally, because idiosyncratic shocks are not serially correlated, there is a 

unique scrapping age schedule for each realization of that shock (conditioned on the 

aggregate state). As indicated in Figure 4.6, the cut-off age for destruction is 

increasing in the magnitude of the idiosyncratic shock for a given aggregate state. The 
                                                 
58 We further discuss the role of aggregate shocks below. 
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figure also confirms that a higher fixed cost causes delayed updating. Finally, 

aggregate shocks have a larger impact on scrapping ages when the fixed cost is low. 

This happens because a near-death firm facing high fixed costs to updating is sitting 

on a region of the profit-vintage schedule in which productivity is already relatively 

low regardless of the aggregate state – recall that the aggregate shock is multiplying 

the profit-vintage schedule. In contrast, a near-death firm facing low fixed costs is 

sitting on a more favorable region of the profit-vintage schedule and changes in the 

aggregate shock have a greater marginal effect on the payoffs to production.     

 

Next, a panel of firms for each parameterization of the fixed cost is generated using 

the decision rules implied by the value functions illustrated in Figure 4.6. The panel is 

then used to produce industry-level time-series for reallocation and productivity 

growth, which in turn generate scalar values for the reallocation index and average 

productivity growth.  

 

The reallocation index adopted is the RI_2 measure discussed in subsection 4.2.3, and 

the average productivity growth for the industry has two components: an average for 

continuing businesses and a component coming from the entry/exit process. The 

former is obtained by (1) calculating the change in productivity levels for each 

continuing firm (firm-level growth rates), (2) averaging the firm-level growth rates 

cross-sectionally in order to generate a time-series for continuing-firm productivity 

growth at the industry level, and (3) averaging this series over time. The contribution 

coming from the entry/exit process is obtained by (1) calculating the average 
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difference between the average productivity of firms that exit in t-1 and firms 

entering in period t, and (2) averaging this figure over time. Finally, by using the 

share of entrants (firms with age 1) in any period we can produce a weighted average 

for productivity growth at the industry level and then generate its average over time. 

 

Table 4.6 
Reallocation index and productivity growth I (simulated data) 

 

 

 

 
 
 

 

                  *Will not deliver figures in weighted average column. See footnote below. 
 

Table 4.6 presents the results of this experiment and indicates that the model is able to 

generate responses of the reallocation index and productivity growth that are 

consistent with the empirical evidence presented earlier.59 Note that the change in the 

fixed cost f from 1 to 3 can be construed as an increase in the barrier for updating that 

causes a more slow-moving reallocation process (higher reallocation index) and 

reduced productivity growth (which arises from the combination of an “older” age 

distribution and a concave vintage-profit schedule). Notice that the impact of fixed 

costs on productivity is stronger for continuing businesses than for the overall 

                                                 
59 Note the positive values of average productivity growth for the continuing businesses. Vintage 
effects off course call for negative productivity growth, but aggregate and idiosyncratic shocks 
override this tendency in the model. Also note that the weighted average column is not readily 
obtained from the information contained in the previous columns. The share figures are averages over 
the period, while the weighted average was produced using period-specific shares.    

Average productivity growth (%)  
Fixed Cost 

 
Reallocation

Index 
Continuing 
Businesses 
(mean share)* 

Entry/exit 
(mean share)* 

Weighted 
Average 

f = 1 42.4451 2.1893 
(0.9834) 

12.4210 
(0.0186) 

3.1060 

f = 3 43.7521 1.9058 
(0.9879) 

34.9166 
(0.0121) 

3.0786 
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economy. This is because the offsetting contribution coming from entry/exit increases 

with fixed costs as discussed above. 

 

 Alternatively, we can measure average industry productivity growth by (1) averaging 

firm productivity level cross-sectionally in any given period, (2) generating a series of 

industry productivity growth, and (3) taking the average of this series. This 

corresponds to a different weighting (based on output rather than employment), which 

means that the productivity growth figures will be different from the ones presented 

in table 4.6. Nonetheless, we obtain the same result as before according to which a 

lower fixed cost is associated to a lower reallocation index and higher average 

productivity growth for the industry. This is shown in table 4.7 below.      

 
Table 4.7 

Reallocation index and productivity growth II (simulated data) 
 

 

 

 

Our objective in this section was to build a simple framework capable of producing 

qualitative results consitent with the empirical evidence presented before. Although 

we leave for future work the task of achieving a realistic parameterization of the 

model such that quantitative implications can be further exploited, we investigated the 

robustness of the findings in table 4.6 across different parameterizations of the model. 

We experimented with a range of different values for the fixed cost, the support of the 

idiosyncratic distribution and the aggregate shock (including its realization values and 

 
Fixed Cost 

 
Reallocation

Index 

Average  
Productivity 
Growth (%) 

f = 1 42.4451 2.3744 
f = 3 43.7521 2.3462 
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the transition matrix). Throughout the exercises it was clear that the particular choice 

of the profit-vintage schedule implies that strong vintage effects only kick in after 

many periods. As a result we need to specify a baseline aggregate state (boom) that is 

sufficiently persistent so that vintage effects have time to operate. At the same time, 

we need a negative aggregate shock to be “sufficiently” bad in order to trigger enough 

synchronization of reallocation decisions. Additionally, idiosyncratic shocks have to 

be limited in magnitude (relative to the aggregate shock) so as not to override the 

synchronization effects. With these constraints in mind, results regarding the 

responses of the reallocation index and the productivity growth were fairly robust.          

 

4.5 Concluding remarks and extensions  

 

This chapter used frequency-domain techniques to document an empirical 

relationship between productivity growth and job reallocation across four-digit US 

manufacturing. I found that industries in which low-frequencies are relatively 

influential in the behavior of reallocation have lower productivity growth. We then 

suggested a theoretical model that can qualitatively accommodate this fact.  

 

The model articulates key features that could generate the relationship documented in 

the data. However, more work is needed before we can fully exploit its quantitative 

implications. A central issue to be addressed regards the parameterization of the 

profit-vintage schedule. This is an empirical question and, as suggested in the last 

section, it can affect the parameterization of the entire model. Incidentally, in the light 
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of firm-learning models, one might even suggest that the profit-vintage schedule 

should feature increasing regions at earlier ages (which would help to dampen the 

contribution coming from the entry/exit margin in our model). Another important 

improvement to be pursued is to make the entry decision endogenous, which will 

require adding a general equilibrium flavor to the model (either through search 

externalities affecting equilibrium job-finding probabilities as in Mortensen-

Pissarides (1994) or through endogenous output price determination that responds to 

fluctuations in the industry supply).  
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Chapter 5:  Concluding remarks 
 

The study of job flows dynamics has become remarkably popular in the last decade, 

assuming a prominent spot in the macroeconomic research agenda. The underlying 

reasons for such popularity are the non-trivial firm-level heterogeneity that impacts 

labor allocation decisions, and the incomplete (often times misleading) picture 

provided by aggregate labor market dynamics. As a result, the last ten years or so 

have witnessed an increasing worldwide effort devoted to the compilation and 

development of rich datasets allowing for the measurement of gross job flows at the 

establishment or firm level. In parallel, theories featuring simultaneous creation and 

destruction of jobs as well as its relationship to the business cycle and productivity 

have emerged.     

 

In this context, this dissertation illustrates the high payoff associated with the 

application of frequency-domain techniques to study job flows dynamics. We believe 

that the high payoff stems not only from the relatively small number of studies 

pursuing such methods, but because many of the relevant questions have an inherent 

frequency-domain flavor or, at least, can be significantly refined through spectral 

methods.  We hope to have demonstrated such claims throughout the chapters and, 

also importantly, to have convinced the reader about the potential benefits of 

combining frequency-domain techniques with the study of job flows dynamics.  
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Appendices  

Appendix I: Tables 

 
Table 2.1 

Mortensen and Pissarides Model (10- vs 3-state Aggregate Shocks) 
Aggregate Shock 

 
Discretized grid 

 
     -0.0917   -0.0713   -0.0509   -0.0306   -0.0102    0.0102    0.0306    0.0509    0.0713    0.0917 

     (10 state) 
 

     -0.0530   0.0000    0.0530 
     (3 state) 

 
Transition Matrix 

 
      0.6435    0.3433    0.0132    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
      0.0868    0.6018    0.3019    0.0095    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
      0.0010    0.1071    0.6229    0.2622    0.0068    0.0000    0.0000    0.0000    0.0000    0.0000 
      0.0000    0.0015    0.1315    0.6374    0.2249    0.0048    0.0000    0.0000    0.0000    0.0000 
      0.0000    0.0000    0.0022    0.1593    0.6448    0.1904    0.0033    0.0000    0.0000    0.0000 
      0.0000    0.0000    0.0000    0.0033    0.1904    0.6448    0.1593    0.0022    0.0000    0.0000 
      0.0000    0.0000    0.0000    0.0000    0.0048    0.2249    0.6374    0.1315    0.0015    0.0000 
      0.0000    0.0000    0.0000    0.0000    0.0000    0.0068    0.2622    0.6229    0.1071    0.0010 
      0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0095    0.3019    0.6018    0.0868 
      0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0132    0.3433    0.6435  

     (10 state) 
 

     0.9330    0.0670    0.0000 
     0.0170    0.9660    0.0170 
     0.0000    0.0670    0.9330 

     (3 state) 
 

Outcome Variables 
 

Reservation Productivities  
 

     0.6680    0.5440    0.4360    0.3400    0.2440    0.1480    0.0600   -0.0320   -0.1200   -0.2240  
     (10 state) 

 
     0.4840    0.2440   -0.0160 

     (3 state) 
 

Job-Finding Probabilities 
 

     0.3048    0.3737    0.4443    0.5094    0.5695    0.6255    0.6781    0.7278    0.7749    0.8165 
     (10 state) 

 
     0.4374    0.5983    0.7325 

    (3 state) 
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                                                      Table 3.1 
                                                  Unit root tests  
 

Series Augmented Dickey-Fuller 
 (p-value) 

Phillips-Perron 
(p-value) 

NET 0.0065 0.0000 
REL 0.0467 0.0163 
NET (Detail 1) 0.0001 0.0000 
REL (Detail 1) 0.0000 0.0000 
NET (Detail 2) 0.0000 0.0000 
REL (Detail 2) 0.0000 0.0000 
NET (Detail 3) 0.0000 0.0297 
REL (Detail 3) 0.0000 0.0134 
NET (Detail 4) 0.0000 0.0225 
REL (Detail 4) 0.0000 0.0056 
NET (Detail 5) 0.0000 0.0103 
REL (Detail 5) 0.0004 0.0577 

 
Results on lag coefficients not reported. Linear trend included for reallocation series. Number of 
Newey-West lags: 14. H0: Series is non-stationary 
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Table 3.2  
Bivariate VAR between employment and reallocation at different time-scales 

 
VARs estimated with constant (omitted from the table). 1: significant at 1%, 2: significant at 5%; 
N: not significant. Criterion for lag selection: SBIC. 
  Linear trend included for original series (omitted from the table).    
 

Original 
Series 

Detail 1 Detail 2 Detail 3 Lag  
Order 

 
Coefficient 

NET REL NET REL NET REL NET REL 
NET .821 -.271 -3.211 .02N 1.741 -.132 2.881 .01N Lag 1 

 REL .302 .371 .08N -3.31 -.351 1.731 -.412 3.011 
NET -.06N .062 -6.871 .20N -4.621 .301 -3.221 -.01N Lag 2 
REL .09N .261 .11N -7.01 .821 -4.661 1.192 -3.681 
NET   -11.11 .632 5.341 -.721 1.251 -.11N Lag 3 

 REL   .07N -11.11 -2.21 5.531 -.93N 1.611 
NET   -14.71 1.231 -9.031 1.251 -.911 .312 Lag 4 
REL   .08N -14.51 3.321 -9.151 -.09N -.67N 
NET   -16.61 1.831 7.571 -1.811 2.991 -.27N Lag 5 

 REL   .24N -16.01 -5.561 7.971 -.56N 2.661 
NET   -15.91 2.261 -10.01 2.361 -2.941 .03N Lag 6 
REL   .62N -15.11 6.141 -10.11 1.952 -3.101 
NET   -13.11 2.291 5.131 -2.231 -.36N -.07N Lag 7 

 REL   1.20N -12.51 -7.731 5.901 -.28N -.56N 
NET   -9.301 1.991 -5.981 2.091 1.461 .35N Lag 8 
REL   1.57N -8.931 6.251 -6.251 -3.181 2.451 
NET   -5.531 1.441 -.46N -.81N .52N -.34N Lag 9 

 REL   1.50N -5.361 -6.051 .85N 3.051 -.03N 
NET   -2.691 .861 -.36N .04N -.902 .01N Lag 10 
REL   1.09N -2.621 2.50N -1.04N .18N -1.651 
NET   -.971 .381 -4.781 1.692 -1.251 .14N Lag 11 

 REL   .58N -.941 -1.22N -2.902 -1.42N -.19N 
NET   -.231 .101 2.661 -2.101 1.771 -.01N Lag 12 
REL   .18N -.181 -2.37N 1.74N .21N 1.231 
NET     -5.061 3.061 -.30N -.04N Lag 13 
REL     2.87N -3.371 -.35N .14N 
NET     2.291 -2.531 -.30N -.08N Lag 14 
REL     -4.391 1.743 2.041 -1.081 
NET     -2.931 2.511 -.44N .15N Lag 15 
REL     3.281 -1.952 -2.561 .24N 
NET     .90N -1.501 .691 -.10N Lag 16 
REL     -2.901 .78N 1.431 .40N 
NET     -.991 1.091 -.281 .02N Lag 17 
REL     1.48N -.693 -.342 -.251 
NET     .13N -.391   Lag 18 
REL     -.801 .19N   
NET     -.191 .181   Lag 19 
REL     .18N -.12N   

REL→NET 0.00 (p-value) 0.55 (p-value) 0.00 (p-value) 0.00 (p-value) Granger 
Causality NET→REL 0.00 (p-value) 0.01 (p-value) 0.00 (p-value) 0.04 (p-value) 

Lagrange Multiplier 
test  (Ho: no auto-corr.) 

0.715 (p-value) 
(lag2) 

0.064 (p-value) 
(lag12) 

0.923 (p-value) 
(lag 19) 

0.081 (p-value) 
(lag 17) 

Number of Obs 186 176 169 171 
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Table 3.3  
Bivariate VAR between employment and reallocation at different time-scales 

  
           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
VAR’s estimated with constant (omitted from the table). 1: significant at 1%, 2: significant at 5%; 
                       N: not significant. Criterion for lag selection: SBIC. 

 
 
 
 
 
 

Detail 4 Detail 5 Lag  
Order 

 
Coefficient NET REL NET REL 

NET 2.151 -.122 2.351 -.10N Lag 1 
 REL -.431 2.461 -.281 2.371 

NET -.851 .421 -.991 .19 N Lag 2 
REL 1.131 -1.581 .681 -1.051 
NET -.741 -.631 -.941 .01 N Lag 3 

 REL .815 -.26N -.20N -.781  
NET .06N .531 .13N -.15 N Lag 4 
REL -.12N -.13N -.541 -.05N 
NET .412 -.15N .551 -.07 N Lag 5 

 REL .20N 1.131 .18N .462 
NET .09N -.24N .08N .16 N Lag 6 
REL .13N -.831 .372 .35N 
NET -.445 .312 -.191 -.04 N Lag 7 

 REL -.01 N .06N -.201 -.311 
NET .23N -.05N   Lag 8 
REL .02 N -.18 N   
NET .32N -.20N   Lag 9 

 REL -.13 N .871   
NET -.07N .23N   Lag 10 
REL -.40 N -.542   
NET -.28 N -.07N   Lag 11 

 REL .64 N .09N   
NET -.10 N .07N   Lag 12 
REL -.23 N -.17N   
NET .01 N -.12N   Lag 13 
REL .49 N -.432   
NET .13 N -.10N   Lag 14 
REL -.725 .492   
NET .19 N .282   Lag 15 
REL .18N .31N   
NET -.181 -.121   Lag 16 
REL .08N -.331   

REL→NET 0.00 (p-value) 0.00 (p-value) Granger 
Causality NET→REL 0.00 (p-value) 0.36 (p-value) 

Lagrange Multiplier 
test  (Ho: no auto-corr.) 

0.802 (p-value) 
(lag 16)   

0.597 (p-value) 
(lag 17) 

Number of Obs 172 181 
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Table 4.1  

 Correlation Matrix for Reallocation Indices 
 

 RI_1 RI_2 RI_3 
RI_1 1   
RI_2 0.8541 1  
RI_3 0.6449 0.5935 1 

 

 

Table 4.2  
Correlation Coefficients between Reallocation Indices and Productivity Growth 

 
 Correlation with labor 

productivity growth and 
(p-value) 

RI_1 -0.1688 (0.0008) 
RI_2 -0.1093 (0.0311) 
RI_3 -0.1204 (0.0139) 

 

Table 4.3 
OLS Results for Productivity Growth and Reallocation Index  

 
itoritoritoritor controlsRIconstgrowthprodLabor secsecsecsec__ εγ +Λ++=  

 
 RI_1  RI_2  RI_3  
Labor Productivity 
Growth 

Coefficient P-
value 

Coefficient P-
value 

Coefficient P-
value 

Reallocation Index (RI) -0.4763 0.005 -0.1253 0.066 -1.2481 0.022 
Total reallocation rate 0.0049 0.728 -0.0011 0.934 0.0042 0.763 
Capital-Labor ratio 0.0044 0.011 0.0045 0.009 0.0042 0.014 
Employment -0.0025 0.329 -0.0028 0.27 -0.0032 0.211 
Employment growth rate -13.909 0.002 -13.748 0.003 -14.438 0.003 
Standard dev emp. growth 7.4603 0.004 7.5463 0.002 7.4308 0.002 
Inventory to output ratio 0.5581 0.639 0.4752 0.691 0.3972 0.739 
Energy to output ratio -3.5056 0.19 -3.5836 0.182 -3.3387 0.213 
Labor force composition -1.0819 0.193 -0.9987 0.233 -1.2004 0.152 
Capital stock composition 0.3083 0.15 0.3306 0.125 0.3049 0.156 
Investment  0.0007 0.083 0.0007 0.071 0.0007 0.064 
Investment growth 0.3256 0.623 0.2896 0.664 0.4850 0.472 
Constant 1.8156 0.012 2.7645 0.002 2.2256 0.003 
Number of Observations 389  389  389  
F(11,377) statistic 6.17  5.73  5.45  
R-squared  0.16  0.15  0.15  
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Table 4.4 
OLS Results for Productivity Growth and Synchronization Index  

 

itoritoritoritor controlsusyncconstgrowthprodLabor secsecsecsec__ εγ +Λ++=  

 

 

 

 

 
 

 Usync_1  Usync_2  
Labor Productivity 
Growth 

Coefficient P-
value 

Coefficient P-
value 

Synchronization index -0.0599 0.077 -0.19085 0.11 
Total reallocation rate 0.0007 0.956 0.00151 0.914 
Capital-Labor ratio 0.0046 0.007 0.004696 0.007 
Employment -0.0024 0.34 -0.00266 0.303 
Employment growth rate -12.601 0.002 -12.9664 0.001 
Standard dev emp. growth 7.4538 0.001 7.464958 0.001 
Inventory to output ratio 0.5088 0.671 0.426591 0.722 
Energy to output ratio -3.5705 0.184 -3.50674 0.193 
Labor force composition -0.8414 0.319 -0.85811 0.31 
Capital stock composition 0.3222 0.135 0.329547 0.127 
Investment  0.0006 0.14 0.000636 0.129 
Investment growth 0.1266 0.849 0.129276 0.847 
Constant 2.0550 0.005 2.150036 0.004 
Number of Observations 389  389  
F(11,377) statistic 5.71  5.65  
R-squared  0.15  0.15  
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Appendix II: Figures 

Figure 2.1 
Data and Model Spectra I (Mortensen and Pissarides) - Original Calibration  

Frequencies lower than 8 years (0 to 0.19), Frequencies between 8 and 2 years (0.19 to 0.78)  
 Frequencies higher than 2 years (0.78 to π) 
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 Figure 2.2 
Data and Model Spectra II (Mortensen and Pissarides) - Less Persistence ρ=0.53 

Frequencies lower than 8 years (0 to 0.19), Frequencies between 8 and 2 years (0.19 to 0.78)  
 Frequencies higher than 2 years (0.78 to π)  
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Figure 2.3 
Levels and Growth Rates - Simulated Series 
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Figures 2.4, 2.5, and 2.6 
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Figure 2.7 

Response to Permanent bad shocks in alternative models 
 Cole and Rogerson (1999) versus Mortensen and Pissarides (1994) 
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Figure 2.8 
Data and Model Spectra III  (Cole and Rogerson) 

Frequencies lower than 8 years (0 to 0.19), Frequencies between 8 and 2 years (0.19 to 0.78)  
 Frequencies higher than 2 years (0.78 to π)  
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Figure 2.9  
Measure of fit )(θΨ   

Alternative values of job-finding probabilities and persistence of aggregate shocks. 
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Figure 2.10 
Data and Model Spectra IV (optimal job-finding probabilities) 

 Cole and Rogerson with job-finding probabilities as the minimum of )(θΨ  
Frequencies lower than 8 years (0 to 0.19), Frequencies between 8 and 2 years (0.19 to 0.78)  

 Frequencies higher than 2 years (0.78 to π)  
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Figure 2.11  
Job Creation and Job Destruction Rates I 

Data and Simulated Paths for Mortensen and Pissarides   
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Figure 2.12  
Job Creation and Job Destruction Rates II 

Data and Simulated Paths for Cole and Rogerson  
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Figure 3.3  
 Multi-scale Decomposition for Employment  
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Figure 3.4  
 Multi-scale Decomposition for Reallocation 
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Figure 4.1  
 Reallocation Index One 

  

 

Figure 4.2  
 Reallocation Index One - Heterogeneous Seasonal Frequencies 
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Figure 4.3  
 Reallocation Index two 
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Figure 4.6 

Value functions and scrapping ages 
First Column: fixed cost f =3 – second column: fixed cost f=1 
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Appendix III: Infrequent Updating and Spectral Shape 

 
Consider two firms that need to decide whether to update or not in each period. Due 

to different fixed costs, one firm updates every 5 periods on average (low fixed cost 

firm) while the other updates every 10 periods on average (high fixed cost firm). 

Even though the decision to update is a binary event, spectral techniques as described 

in the chapter still reveals that slow updating is associated with influential lower 

frequency components. The example below illustrates this point. It was constructed 

by simulating a 5000-period path of updating behavior for each firm and then 

estimating the corresponding spectral densities. 

 

Figure III.1 – Updating and spectral Shape 
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