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We present an appearance model for establishing correspondence between

tracks of people which may be taken at different places, at different times or across

different cameras.

Illumination insensitive color features, i.e., RGB rank feature and brightness-color

feature are used. Path-length feature is added for structural information and invari-

ance to motion and pose. The appearance model is constructed by kernel density

estimation. Kullback-Leibler distance measures the similarity between the models.

To further exploit the information in video sequence, key frame selection method

and online hierarchical clustering algorithm are proposed to construct appearance

model from video. Key frame selection use the frames with large information gain to

represent the appearance model. Online hierarchical clustering algorithm condense

the model into a few clusters in the framework of our appearance model.

Experimental results demonstrate the important role of the path-length feature in

the appearance model and the effectiveness of the proposed appearance model and

matching method.
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Chapter 1

Introduction

Nowadays visual surveillance systems are widely deployed for security purpose

in public places such as a subway, airport, or parking lot. While in traditional visual

surveillance systems video data are directly interpreted by humans, there is growing

interest in developing automated video understanding techniques to both reduce

the cost of the system and relieve the burden of tedious analysis by humans. These

techniques automate the analysis of video data in a variety of settings and config-

urations. For example, in the simplest case, cameras are stationary and moving

objects are to be detected, which usually requires background subtraction. More

elaborate applications such as tracking try to follow an object through a sequence

by analyzing the sequence of video frames. The most sophisticated scenarios involve

interpreting the event in the video such as leaving an unattended luggage, theft or

violence.

Different surveillance systems have different configurations. In a basic visual surveil-

lance system, only a single camera is mounted to cover the scene of interest. Some

visual surveillance systems have multiple cameras observing the same scene at differ-

ent angles. Finally, in systems of wide areas such as airports, highways or shopping

centers multiple cameras are distributed to cover the area under surveillance. To
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automatically understand the activities of the surveillance systems, which is the

ultimate goal of automated visual surveillance, one of the important sub-problems

is to establish correspondence between observations of people who might appear,

disappear and reappear at different times, within different scenes or across different

cameras. For instance, one person may first appear in the entrance of a building,

and then later the same person may appear in the hallway of the building, finally

the person may exit from the entrance of the building. To know the activity of the

person, such as when the person enters, where he/she has been to, and whether

he/she leaves with a baggage, we should be able to know whether the observed per-

son in the different cameras at different places is in fact the same individual.

The objective of this thesis is matching of a person, as it moves within different

scenes, at different times or across different cameras. In most surveillance systems

the appearance of a person does not change very much in spite of the temporal

and spatial separation between observations from possibly different cameras. For

example, people may first enter a building, then after a short time they may exit

wearing the same clothing; or people may walk toward a camera at one end of a

hallway, then toward another camera at the other end of the hallway with little

appearance change. So in this thesis appearance feature is utilized to solve the

problem. Although the appearance of people does not change very much between

observations, there are still large variations induced by various factors, including

the illumination conditions being different from cameras in different places, appear-

ance variations caused by changing body postures and views, etc. Thus a successful
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matching approach must have effective representations of appearance to accommo-

date the variations caused by illumination, pose and view changes.

This thesis aims to address the above appearance matching problem. The con-

tribution of the thesis is summarized as follows:

1. The illumination invariance of color feature is studied. RGB rank feature and

brightness-color feature are shown to be illumination invariant. Path-length

feature is proposed to use together with the color feature. The path-length

feature provides the structure information and is invariant to human poses

and motions.

2. Kernel density estimation is employed to construct the probability model of

human appearances. Then Kullback-Leibler distance, which measures the in-

formation gain, is used to do matching.

3. To extract the information in video sequence to further elaborate the appear-

ance of people in video, a key frame selection algorithm is proposed. The key

fram is defined to be the frame with large information gain to the previous

key frame. A matching algorithm between the key frames of different people

is proposed.

4. An online hierarchical clustering algorithm is proposed to construct the ap-

pearance model of people in video. Unlike the traditional hierarchical cluster-

ing algorithm, the data to be clustered are composed of feature samples which
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cannot be described by simple parametric models. The merging algorithm and

distance measure between clusters in this case are discussed and proposed.

The organization of the thesis is as follows. In chapter 2 the basics of the

proposed appearance model are discussed. This includes the feature used, the dis-

tribution estimation method and distance measure employed. The effectiveness of

the model is proved by matching between snapshots. In chapter 3 the construction

of appearance model from video is discussed. The algorithms of key frame selection

and online hierarchical clustering are proposed, and their experimental results are

demonstrated. Finally chapter 4 summarizes and concludes the thesis.
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Chapter 2

Human Appearance Modeling from Snapshot

2.1 Overview

This chapter presents our human appearance model, which is the basis of the

thesis. Our appearance model is based on spatial /color statistical features. The

color and path-length features of the pixels inside the silhouette of a person are used

to construct an appearance model. Path-length, the length of the shortest path from

a distinguished point, which is the top of the head here, to a point constrained to

lie entirely within the body, captures the structural information of appearance. It

has the property of an inner-distance [19], so is invariant to 2D-articulations. This

makes it less sensitive to human motion than the spatial positions of the features. To

cope with illumination change, color features robust to illumination change are com-

bined with path-length to build the appearance model. We consider the illumination

insensitive color features and path-length to be probabilistic random variables and

estimate the color path-length distribution using kernel density estimation. Once the

appearance model is built, correspondence between observations are found by mini-

mizing the Kullback-Leibler distance, which measures the information gain between

observations. We will show how the Kullback-Leibler distance is obtained when the

probability density is approximated with kernel density estimation. Experimental

results are demonstrated to show the effectiveness of our model.
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2.2 Review of existing human appearance models

The most common appearance model is the color histogram [3, 8]. Although

histogram-based approaches are very flexible and robust to non-rigid deformations,

they do not contain any geometric appearance information. So, they cannot dis-

criminate appearances that are the same in color distribution, but different in color

structure. For example, these approaches cannot differentiate a person wearing a

brown shirt and blue pants from a person wearing a blue shirt and brown pants.

To achieve illumination invariance, [14] proposed to learn the brightness transfer

functions across cameras through a training sequence and match appearances ac-

cording to the probability of the color and the space and time relationship among

the cameras.

To incorporate structure information, [6] proposed to use a joint feature-spatial

space, where both the feature values and the spatial position of the features are

taken as probabilistic random variables. Although this approach can discriminate

differences due to structure, it is very sensitive to pose. For example, a walking

person with left foot down and right foot up will be different from the same walking

person with right foot down and left foot up. A person walking from left to right

is different from the same person walking from right to left. So appearance features

that are invariant to human pose are preferable. [18] proposed applying functionals

over appropriate geometric sets for appearance modeling, which they refer to as

geometric transforms. If a geometric transform is applied to different parts of the
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human body, then a pose invariant appearance model can be obtained. Their ap-

proach requires automatically decomposing a human body into natural parts, which

is itself a very difficult problem.

Other appearance models have been proposed for face recognition and vehicle match-

ing applications. [24] measured the similarity between face sequences by the prin-

ciple angle between the subspace spanned by the sequences. However the linear

subspace assumption does not apply to human appearance since the local defor-

mations resulting from motion are quite complicated. [22] proposed to first align

the edges of vehicles and use the alignment features to match vehicles. It would

be challenging to apply this to human appearance since wrinkles of clothing will

result in many edges. [21] use shapeme histograms to construct and match vehicle

representation from image sequences.

2.3 Color path-length profile

As we have pointed out in chapter 1, silhouettes of moving people are obtained

by background subtraction and the tracks of each person have been generated. The

background subtraction results have local errors (typically at the true boundaries

of silhouettes) and occasional “catastrophic” failures, short subsequences of highly

erroneous segmentation. Also as we have mentioned, we assume that the actual

appearance of a person does not change very much between observations.
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The ideal appearance feature should both easily discriminate different appearances

and tolerate changes due to factors such as motion and illumination. The features

we choose here are color and path-length of the pixels inside the silhouette of a

person.

2.3.1 Path-length

The path-length of the pixel inside the silhouette is the length of the short-

est path from a distinguished point, which we choose as the top of the head, to

the pixel. A similar concept to path-length is inner-distance [19] which is defined

as the shortest path between landmark points within the silhouette. In [19] it is

shown that the inner-distance feature captures shape information and is insensitive

to articulation. The path-length feature has a similiar property. It not only reflects

structure information, but is also insensitive to human motion which can be ap-

proximated as articulation. Due to the fact that the human body and clothing are

typically bilaterally symmetric, the path-length is also invariant to poses that are

bilaterally symmetric. For example, the color path-length feature of the front view

of a walking person with left foot up and right foot down is very close to that of the

same walking person with right foot up and left foot down. The color path-length

feature of the side view of a person walking from left to right is close to the side

view of the same person walking from right to left. Instead of using the centroid of

the silhouette as the distinguished point [15] we choose the top of the head as the

base point. The top of the head is easy to detect and relatively stable to movement.
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Compared with the centroid of silhouette, it can discriminate the features of upper

body and lower body because they have different path-lengths and do not produce

mixed distributions. Finally, the top of the head is less sensitive to noise than the

foot point, which can be hard to detect due to shadows.

In [11] the head point is predicted using the major axis of the silhouette, the hull

vertices, and the topology of the estimated body posture. However, we found that

the topmost point of the silhouette is the head point in most cases. So the head

point of each segmented person is located as the middle point of the topmost row of

the silhouette. Although this simple method could be wrong when there are some

parts above the head point, it is usually correct with ordinary postures. Also as we

will see later, our appearance model is a statistical model, which means each feature

happens with a probability. This does not require an accurate path-length for each

feature, or in other words, the head point is not necessarily accurate.

The simplified Dijkstra algorithm is used to find the path-length of each point in

the silhouette to the head point. A queue is first built with the head point being

the head of the queue. When each element of the queue is dequeued, the points

that have not been visited in the neighborhood of the element are insertd into the

queue. Also the distance to the head point, or the path-length, which is actually

the distance to the element plus the path-length of the element is inserted into the

queue at the same time. The psuedo-code of the algorithm is shown in table 2.1
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Table 2.1: Algorithm of Computing Path-Length

Algorithm: Path-length Computation

Q.insert(head point)

Path length(head point)← 0

while Q is not empty

p← Q.removeHead()

for q ← each neibgorhood of p

Path length(q)← Path length(p) + Distance(p, q)

Q.AddTail(q)

end

end

2.3.2 Color feature

As the distance of people to the camera changes, or people move between

different cameras, or get into different places such as in the shade or under the sun,

the illumination changes, thus the values of the colors may change. To obtain correct

matches of appearances, the feature should be invariant to illumination. Here we

will discuss different color features that can be used in human appearance modeling.

2.3.2.1 RGB Color

The most commonly used three color components, RED, GREEN, and BLUE

can be used directly. However, the values of RGB are greatly influenced by illumi-
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nation, which results in incorrect matches.

2.3.2.2 Normalized RGB Color

Normalized RGB is formed independently from varying lighting levels. The

red, green, and blue components of normalized RGB space can be obtained from

the three components of RGB space using the following formulation:

r =
R

R + G + B
(2.1)

g =
G

R + G + B
(2.2)

b =
B

R + G + B
(2.3)

Since r+g+b = 1, the normalized RGB color can also be represented by a brightness

component y, and two color components r and g

y = R + G + B (2.4)

r =
R

R + G + B
(2.5)

g =
G

R + G + B
(2.6)

In this way the color r and g are independent of illumination to some extent [20].

2.3.2.3 RGB Rank

Ranked color feature is based on the assumption that the shape of the color

distribution function does not change very much under different illumination, so the

percentage of image points of object i with color value less than xi is equal to the

percentage of image points of the same object i in a different illumination condition
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Figure 2.1: Brightness distance and color distance between feature value x and the

sample pixel value xi

with color value less than xj [10]. Ranked color feature disregard the absolute

values of the color features and reflect the relative values instead. The ranked color

features are invariant to monotonic color transforms, so are unchanged under a wide

range of illumination changes.

In order to obtain the rank, the cumulative histogram H of the snapshot is first

obtained. The rank O (x) of feature value x is the percentage value of the cumula-

tive histogram

O (x) = �H(x) · 100� (2.7)

where �x� is the largest integer that is less than x.
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2.3.2.4 Brightness and Color Decomposition

Decomposition of color into brightness and color component is based on the

observation of a experiment did in [16]. In this experiment, a color chart is illumi-

nated by a light that can adjust brightness. Different pixels in the color chart have

different colors. As the illumination level of the light changes, the R, G, B values of

the same pixel in the color chart are distributed in a cylinder whose axis goes toward

the origin point of the RGB space and different pixels occupies different cylinders.

In other words, illumination level change makes the R, G, B value move along the

axis of the cylinder, and color change makes the R, G, B value move radially away

from the axis of the cylinder. Based on this observation, we decompose the distance

of the feature value to a sample pixel value into a brightness component and a color

component as shown in figure 2.1. So the brightness and color component can be

obtained as follows

d2
B (x,xi) = (‖xi‖ − ‖x‖ cos θ)2

=

(
‖xi‖ − 〈x,xi〉

‖xi‖
)2

(2.8)

and

d2
C (x,xi) = ‖x‖2 − ‖x‖2 cos2 θ

= ‖x‖2 −
(〈x,xi〉
‖xi‖

)2

(2.9)

where ‖x‖2 = R2+G2+B2, ‖xi‖2 = R2
i +G2

i +B2
i and 〈x,xi〉 = R·Ri+G·Gi+B ·Bi.
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2.4 Appearance Model

In this section we will first discuss the construction of the statistical appearance

model using kernel density estimation. Then Kullback-Leibler distance is used to

match the appearances.

2.4.1 Appearance Model Using Kernel Density Estimation

Statistical modeling is a useful tool to represent appearances. In statistical

modeling, feature values are modeled as random variables in feature space with an

associated probability density distribution. There are two types of statistical mod-

els, parametric models and nonparametric models. In parametric models, a specified

statistical distribution is assumed to approximate the actual distribution and the

assciated parameters are estimated from the data. Gaussian model is the most com-

monly used parametric model. More complex parametric models involve multiple

Gaussians, i.e., Gaussian mixture model. Alternatively, nonparametric models es-

timate the density function directly from the data without any assumptions about

the underlying distribution, that is, slection of a model is avoided and estimation of

the parameters is not needed.

The human appearances are so complex that it is very hard to describe using a

specific distribution with several parameters. So in this thesis nonparametric model

is employed. Particularly kernel density estimation (KDE) is used to estimate the
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underlying density. In KDE, the underlying pdf is estimated as

f (x) =
∑

i

αiK(x− xi) (2.10)

where K is the kernel function which typically is a Gaussian centered at the data

points in feature space, xi, i = 1 . . . n, and αi are weighting coefficients. Formula

(2.10) is actually estimating the p.d.f by averaging the effect of a set of kernel func-

tions centered at each data point. It asymptotically converge to any density function

with sufficient samples [4].

As we have discussed in the above section, color path-length profile is used as the

feature to build the appearance model. Each pixel inside the silhouette of a snap-

shot is represented by the feature vector (x, l) where x is the feature value or color

of the pixel and l is the path-length of the pixel. To achieve invariance to the size of

image, the path-length feature is normalized by the height of the silhouette. Given

all the pixels of a snapshot of a person, we estimate the distribution or p.d.f p (x, l),

of the feature vector by kernel density estimation

p(x, l) =
1

N

N∑
i=1

k

(∥∥∥∥x− xi

hx

∥∥∥∥
2
)

k

⎛
⎝
∥∥∥∥∥ l − li

σl

∥∥∥∥∥
2
⎞
⎠ (2.11)

where k (.) is the kernel function, and hx and σl are bandwidths of the feature value

and path-length respectively. x is the color feature. For example, if RGB color

feature is used,

p (x, l) =
1

N

N∑
i=1

k

(∥∥∥∥r − ri

hr

∥∥∥∥2
)

k

⎛
⎝
∥∥∥∥∥g − gi

hg

∥∥∥∥∥
2
⎞
⎠

k

⎛
⎝
∥∥∥∥∥b− bi

hb

∥∥∥∥∥
2
⎞
⎠ k

⎛
⎝
∥∥∥∥∥ l − li

σl

∥∥∥∥∥
2
⎞
⎠ (2.12)
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If brightness and color feature is used as described in section 2.3.2.4, the appearance

model is

p (x, l) =
1

N

N∑
i=1

k

⎛
⎝
∥∥∥∥∥dB (x,xi)

σB

∥∥∥∥∥
2
⎞
⎠

k

⎛
⎝
∥∥∥∥∥dC (x,xi)

σC

∥∥∥∥∥
2
⎞
⎠ k

⎛
⎝
∥∥∥∥∥ l − li

σl

∥∥∥∥∥
2
⎞
⎠ (2.13)

where dB (x,xi) and dC (x,xi) are obtained as in (2.8) and (2.9), and σB and σC are

their bandwidths. To achieve invariance to illumination, a large bandwidth is ap-

plied to the brightness component so that the differences resulting from illumination

changes can be given less weight.

2.4.2 Matching of Appearances

Given a human appearance, we need to find its best match in an appearance

gallery already built. This requires to compute the similarity of the appearance to

the appearance models in the gallery. We choose Kullback-Leibler distance (cross en-

tropy) [17] to measure the similarity of two appearances. Kullback-Leibler distance

measures the similarity of two distributions. Let P (x) and Q(x) be the distribution

of two feature spaces, then their Kullback-Leibler distance is defined to be

D(P (x)||Q(x)) =
∫ +∞

−∞
P (x)log

P (x)

Q(x)
dx (2.14)

where D(P (x)||Q(x)) ≥ 0 and equality holds when the two distributions are identi-

cal. In the following we will discuss in the detail how Kullback-Leibler distance is

applied in appearance matching, especially in the above proposed appearance model

with kernel density estimation.
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Suppose in the gallery there are n appearance models built from n snapshots S(J)(J =

1, 2, 3, . . . , n) of n different appearances, and that the distribution p(J)(x, l) of the

feature space (X,L)(J) of the snapshot of appearance J is obtained as described

in section 2.4.1. Then the similarity of the model distribution p(J) (x, l) and the

distribution p(K) (x, l) of a test image K can be measured by their Kullback-Leibler

distance

D
(
p(K)||p(J)

)
=
∫

p(K) (x, l) log
p(K) (x, l)

p(J) (x, l)
dxdl (2.15)

Formulae (2.15) can be rewritten as follows

D
(
p(K)||p(J)

)
= − ∫ p(K) (x, l) log p(J) (x, l)dxdl

−
(
− ∫ p(K) (x, l) log p(K) (x, l)dxdl

)
(2.16)

The first term in (2.16) measures how unexpected the feature space (X,L)(K) of

distribution p(K) (x, l) was from the model distribution p(J) (x, l), and the second

term measures how unexpected (X,L)(K) is from the true distribution. So (2.16)

is also a measure of information gain [9]. K is a true correspondence with J ,

or snapshot K and snapshot J are of the same person, if the unexpectedness of

(X,L)(K) from model p(J) (x, l) is minimized or the Kullback-Leibler distance is

minimized, that is,

J = arg min
J∈S

D
(
p(K)||p(J)

)
(2.17)

where S is the set S =
{
S(J), J = 1, 2, . . . , n

}
of the snapshots in the database. Here

we should note that in (2.15) the integral is over the entire feature space. We can
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rewrite (2.15) as

D
(
p(K)||p(J)

)
= E

(X,L)
(K)

[
log

p(K) (x, l)

p(J) (x, l)

]
(2.18)

which reflects the fact that the Kullback-Leibler distance is an average log-likelihood

ratio over the feature space (X,L)(K). In practice we have the sample feature values

of the pixels inside the silhouette. From the weak law of large numbers

D
(
p(K)||p(J)

)
=

1

N (K)

N(K)∑
i=1

log
p(K) (xi, li)

p(J) (xi, li)
(2.19)

with probability 1, where (xi, li) are the sample feature values of the pixels from the

snapshot of appearance K. Here we should note that it is not necessary to use all

the pixels inside the silhouette to calculate (2.19). As long as the number of samples

is large enough, (2.19) is true with probability 1. So, we can sample the pixels inside

the silhouette and average the log-likelihood ratio, saving significant computation.

The samples should be chosen according to the distribution of path-length so that

they are evenly distributed over the whole silhouette. To achieve that, the pixels are

first ranked in order of path-length , then the sampling is performed so that more

samples are taken at path-lengths with larger probabilites.

In (2.19) both p(J) (x, l) and p(K) (x, l) are derived by kernel density estimation

using the sample pixel values of the image in the respective snapshot. They can be

expressed as follows

p(J)(x
(K)
i , l

(K)
i ) =

1
N(J)

∑N(J)

m=1 k

(∥∥∥∥x(K)
i −x(J)

m

hx

∥∥∥∥2
)

k

(∥∥∥∥ l
(K)
i −l

(J)
m

σl

∥∥∥∥2
)

(2.20)
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hr = hg = hb 10 10 10 10 10 15 15

σl 0.01 0.02 0.05 0.1 0.2 0.01 0.02

PI + PII 85.71 83.04 90.63 90.63 91.07 79.46 73.66

PI 12.5 25 25 43.75 0 25 25

PII 73.21 58.04 65.63 46.88 91.07 54.46 48.66

hr = hg = hb 15 15 15 20 20 20 20

σl 0.05 0.1 0.2 0.01 0.02 0.05 0.1

PI + PII 87.05 89.29 90.63 78.13 81.7 82.59 88.84

PI 25 37.5 0 18.75 12.5 0 0

PII 62.05 51.79 90.63 59.38 69.2 82.59 88.84

Table 2.2: Bandwidth selection for R,G,B color and pathlength

p(K)(x
(K)
i , l

(K)
i ) =

1
N(K)

∑N(K)

m=1 k

(∥∥∥∥x(K)
i −x(K)

m

hx

∥∥∥∥
2
)

k

(∥∥∥∥ l
(K)
i −l

(K)
m

σl

∥∥∥∥
2
)

(2.21)

where the superscript indicates from which person the sample feature value is drawn.

So formulae (2.20) provides the probability of feature value (x
(K)
i , l

(K)
i ) appearing in

the feature space of appearance J , and formulae (2.21) provides the probability of

feature value (x
(K)
i , l

(K)
i ) appearing in the feature space of appearance K.

2.5 Evaluation

In this section we will evaluate the proposed appearance model. We will

first study the influence of bandwidth on appearance matching and the optimal

bandwidth is selected. Then the appearance model is evaluated and effectiveness of

the proposed appearance model is demonstrated.
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hBright 10 10 10 10 20 20 20 20

hColor 3 3 5 5 1 1 1 3

σl 0.02 0.05 0.02 0.05 0.02 0.05 0.1 0.02

PI + PII 68.75 75.89 69.2 75.89 34.38 42.86 50.89 45.09

PI 37.5 31.25 18.75 18.75 12.5 12.5 12.5 18.75

PII 31.25 44.64 50.45 57.14 21.88 30.36 38.39 26.34

hBright 20 20 20 20 20 35 35 35

hColor 3 3 5 5 5 1 1 1

σl 0.05 0.1 0.02 0.05 0.1 0.01 0.02 0.05

PI + PII 53.13 56.7 51.79 59.82 63.39 23.21 25.45 33.48

PI 6.25 6.25 18.75 31.25 6.25 6.25 0 0

PII 46.88 50.45 33.04 28.57 57.14 16.96 25.45 33.48

hBright 35 35 35 35 35 35 35 50

hColor 1 3 3 3 5 5 5 1

σl 0.1 0.02 0.05 0.1 0.02 0.05 0.1 0.01

PI + PII 39.73 28.57 34.82 40.18 31.7 36.61 39.29 18.75

PI 0 0 6.25 6.25 6.25 6.25 6.25 0

PII 39.73 28.57 28.57 33.93 25.45 30.36 33.04 18.75

hBright 50 50 50 50 50 50 50 50

hColor 1 1 1 3 3 3 5 5

σl 0.02 0.05 0.1 0.02 0.05 0.1 0.02 0.05

PI + PII 26.79 33.93 40.18 20.98 27.23 30.36 21.88 29.46

PI 0 0 0 0 0 0 0 0

PII 26.79 33.93 40.18 20.98 27.23 30.36 21.88 29.46

Table 2.3: Bandwidth selection for brightness and path-length
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2.5.1 Bandwidth Selection

Bandwidth selection has been studied under different scenery. In [23], the op-

timal bandwidth is the one that minimize the mean integrated squared error, which

is of little practical use since it depends on the estimate of the Laplacian of the un-

known density. In [2], a bandwidth selection algorithm is proposed to maximize the

mean shift vector to fit the scale of the underlying data, which is useful for segmenta-

tion applications. Here our bandwidth selection is for getting the optimal matching

rate. We hope that the bandwidth should both give good resolution to discriminate

difference in feature and tolerate some changes brought by factors such as brightness.

We assume that we have some training sequences before we do the actually match-

ing, which is possible in most cases. From these training sequences we can calculate

the Kullback-Leibler distances between images of both the same person and different

person. So we have two sets of distances, the distance between images of the same

person Ds and the distance between images of different person Dd. From these two

sets of distances, we can calculate two types of error, type I error is the error of

taking the same person as different and type II error is the error of taking different

person as the same. These two types of error can be calculated respectively as

PI(hx, σl, T ) =
# of Ds > T

total # ofDs
(2.22)

PII (hx, σl, T ) =
# of Dd ≤ T

total # ofDd
(2.23)

21



where T is a threshold. By varying T , we can get different type I and type II error.

We hope that both types of error should be small. So the optimal bandwidth should

minimize both type I and type II error

(hx, σl) = arg min
hx,σl

min
T

PI + PII (2.24)

Table 2.2 and table 2.3 show type I and type II error at different bandwidth when

different features are used. In table 2.2 path-length and R, G, B values are used

for kernel estimation. Table 2.3 employs the feature of path-length and brightness

and color which are obtained from R, G, B values as described in section 2. In both

tables we use two sets of images of eight people. The two sets of images are taken

from two different places by two different cameras. From table 2.2 we can see that

when hr = hg = hb = 15 and σl = 0.02 both types of error are small. Table 2.3 shows

that the optimal bandwidth should be hbrightness = 50, hcolor = 1, and σl = 0.01.

Here the optimal brightness bandwidth is very large which make the scheme tolerate

the brightness change under different cameras. To save the space, we will not list

the two types of errors of all the features discussed in section 2.3.2. We just show

the resulted optimal bandwidth in table 2.4. In the following experiments without

specific indication, the bandwidth of features will be set as in table 2.4.
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(a) Image sequences taken by camera 1

(b) Image sequences taken by camera 2

Figure 2.2: Dataset Honeywell: Indoor image sequences taken by two cameras col-

lected by the Honeywell corporation
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Feature Bandwidth

RGB and
path-length hR = hG = hB = 15, σl = 0.02

RGB rank
and path-length hR = hG = hB = 3, σl = 0.02

Brightness,color
and path-length σB = 50, σC = 1, σl = 0.01

Normalized RGB hr = hg = 0.02, hb = 20

Table 2.4: Optimal Bandwidth of different features

2.5.2 Experiment Setting

In our experiment, codebook based background subtraction [16] was first used

to segment the moving people. Then small noise is filtered and morphological opera-

tions of closings and connected component analysis are used to obtain the silhouettes

of people.

The data set was collected by the Honeywell corporation. Two indoor cameras

captured 30 appearances, each under different lighting conditions, from different

locations and with people moving in different directions with respect to the cam-

eras. Figure 2.2(a) and figure 2.2(b) show example images of the thirty different

appearances taken by the two cameras. Although some appearances are actually

from the same person, they are clothed differently and are treated as different in

our experiments.

In our experiment, we will study the performance of different features, the influ-

ence of illumination and pose to them, the effects of scale and sampling. Finally one
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Feature used

Camera 1
matches with

camera 2

Camera 2
matches with

camera 1

RGB and
path-length 13.33% 23.33%

RGB rank and
path-length 86.67% 100%

Brightness, color
and path-length 76.67% 73.33%

Normalized RGB
and path-length 20% 40%

RGB rank only 66.67% 63.33%

Table 2.5: Performances of different features when snapshots of the two cameras are

of similiar pose

possible application, detection of local appearance difference or change is discussed.

2.5.3 Study of Color-Pathlength Profile

We first manually selected snapshots from the video sequences so that the ap-

pearances have similiar poses in the two cameras with good background subtracted

silhouettes. So, the two sets of data have the same pose and different illumination

conditions. We evaluate different features including RGB, normalized RGB, bright-

ness and color and path-length, and RGB rank with and without path-length as

shown in table 2.5. The cumulative match curves (CMC) are shown in figure 2.3.

From table 2.5 and figure 2.3 we see that the performance of the RGB features are

the worst and RGB rank the best. This is because the sequences are taken indoors
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(a) CMC of different features when camera 1 matches with camera 2
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(b) CMC of different features when camera 2 matches with camera 1

Figure 2.3: CMC of different features when snapshots of the two cameras are of

similiar pose
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where the illumination varies significantly as people move relative to an extended

and proximal light source. This is also reflected in the optimal bandwidths for the

brightness and color features, which are determined to be σB = 50, σC = 1. This

means that the best classification performance used a large brightness bandwidth

to ignore the severe brightness changes between cameras. However large brightness

bandwidths are problematic since sometimes a bright color may be confused with

a dark color. Figure 2.4 shows an example of mismatching when brightness, color

and path-length features are used and a bright color is confused with a dark color.

That is why the feature of brightness color and path-length is not so discriminative

as that of RGB rank and path-length. As RGB rank together with path-length is

the most invariant to illumination, in the following experiments we will usually only

show performance with the feature of RGB rank and path-length.

Table 2.5 and figure 2.3 also show that if only RGB rank feature is used, the per-

formance drops significantly compared with that with the path-length feature, illus-

trating the importance of path-length in discriminating different appearances.

Next, we manually selected two snapshots of each appearance from camera 1

so that the snapshots are taken approximately at the same place but with different

poses. In this way, we have two sets of appearances that are of the same illumination

and different pose. Also we randomly picked snapshots from the sequences of the

two cameras so that we have snapshots of different illumination and different pose.

All the above snapshots have good background subtraction result. Table 2.6 shows
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Figure 2.4: Using a large brightness bandwidth may confuse bright color with dark

color

the matching result of the three sets of snapshots. From the result it is observed

that when illumination invariant color features are used, the influence of pose on

the matching result is marginal. This illustrates the pose insensitivity of the path-

length feature. In the above match, all the snapshots are selected manually with

good background subtraction result. We also perform matching when the snapshots

are randomly selected from video sequences without knowing if the silhouette is

good or not. The matching result is also shown in table 2.6. The matching rate

drops to 70% and 76.67% when the silhouettes of snapshots are not necessarily good.

That means simply matching snapshots are not enough to get correct matches and

we have to use the information in the sequence, which will be discussed in the next

chapter.

In summary the above experiments show that RGB rank is the most illumination

invariant in the color features discussed. Path-length is indispensable to achieve

good matching result. By using path-length feature, the influence of pose difference
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Sequence set

Camera 1
matches with

camera 2

Camera 2
matches with

camera 1

Different illumination
same pose 86.67% 100%

Same illumination
different pose 93.33% 96.67%

Different illumination
different pose 93.33% 86.67%

Snapshots with possible
bad silhouettes 70% 76.67%

Table 2.6: Performance of different sequence sets. Feature of RGB rank and path-

length is used

is negligible.

2.5.4 Study of Scale and Subsampling

To study the performance when snapshots of different size are matched, we

filtered the snapshots of camera 1 and scaled each dimension to 1/2, 1/4, 1/8 of the

original size, then matched them with the snapshots of camera 2. Table 2.7 shows

that only when the size is scaled to 1/8, does the matching rate drop significantly,

which demonstrate the scale invariance of the proposed model.

We also studied the influence of sampling as mentioned in section 2.4.2. Table 2.8

shows that when one fourth of the pixels are used the performance slightly degrades.

When only 500 pixels are selected, the performance even improves a little compared

with using one fourth of the pixels. This is partly because when fewer pixels are

sampled, the chance of selecting the noisy pixels due to imperfect segmentation is
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Sequence set

Camera 1
matches with

camera 2

Camera 2
matches with

camera 1

Original Scale 93.33% 86.67%

Snapshots of camera 1
scaled by 1/2

in each dimension 93.33% 86.67%

Snapshots of camera 1
scaled by 1/4

in each dimension 93.33% 76.67%

Snapshots of camera 1
scaled by 1/8

in each dimension 86.67% 63.33%

Table 2.7: Performance of matching when snapshots of camera 1 are scaled. Feature

of RGB rank and path-length is used

reduced. When all pixels are used, it takes about 2.5 hours to conduct the two-way

matching (Intel XEON CPU1.8GHz RAM1GMB). If one-fourth of the pixels are

sampled, only about 1 hour is used for the two-way matching. If 500 pixels are sam-

pled, the time for matching is reduced to about 25 minutes. So by sub-sampling the

image, the time for computation can be reduced significantly with little sacrifice in

matching accuracy.1 So although our algorithm seems to be demanding in compu-

tation, by subsampling the computation can be greatly reduced without sacrificing

too much performance.

1Here in the calculation we did not do any optimization of the program and did not employ

recently developed efficient algorithms of fast calculation of kernel density estimation [7], which

would further improve the speed of modeling and matching.
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Samples used

Camera 1
matches with

camera 2

Camera 2
matches with

camera 1

All pixels are used 86.67% 100%

One-fourth of
the pixels are used 83.33% 86.67%

500 pixels are used 90% 90%

Table 2.8: Matching result of the sequence set of different illumination same pose

when sub-sampling is applied. Feature of RGB rank and path-length is used

(a) (b) (c)

Figure 2.5: The log-likelihood ratio image (c) reflects the local appearance difference

between the test image (a) and the model image (b). Here a brighter pixel indicates

a larger log-likelihood ratio
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2.5.5 Local Appearance Difference

Another interesting observation is that if we compute the pixel based log-

likelihood ratio image as shown in figure 2.5, where the brighter a pixel is the

greater the log-likelihood ratio, we can observe that the image reflects appearance

differences. In figure 2.5 the two people wear different jackets but similiar blue jeans,

so the log-likelihood ratio in the upper part of the body is very large, but very small

in the lower part of the body. So, by analyzing the log-likelihood ratio image, we

can detect local appearance differences.

2.6 Conclusion

We have proposed our statistical human appearance model in this chapter. The

appearance model is based on color path-length profile. Each pixel in the silhouette

of human appearance is represented by the feature of color and path-length. The

color feature can be ordinary RGB color, or illumination invariant color feature

such as normalized RGB, RGB rank or brightness and color decomposition of RGB

space. Path-length not only describes the structural property of each pixel but also

achieves invariance to pose and motion of human body. Our model is nonparametric,

that is, it uses kernel density estimation to get the density of color path-length

feature. Kullback-Leibler distance measures the distance of an example appearance

to the models in the appearance gallery. Our experiment results demonstrate the

effectiveness of the proposed human appearance model. Experiment result also show

that the feature of RGB rank and path-length is the most discriminative among all
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the color path-length features and the importance of path-length in the proposed

appearance model.
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Chapter 3

Human Appearance Modeling of Video Sequence

3.1 Overview

In the last chapter we have proposed the human appearance model built from

snapshot. The experiments there have shown the effectiveness of the proposed ap-

pearance model when the snapshots are selected with good silhouettes. When the

silhouettes in the snapshots are noisy, or background subtraction produces noisy

results, which happens quite often, the matching rate deteriorates significantly. So

matching with just one snapshot is not robust enough. In addition, the color path-

length feature of one snapshot does not contain all the appearance information in

the sequence. For example, when people walk their hands may move and occlude

their torsos, which can change the color path-length features. Additionally a person

may turn around, and new features may appear. So only using appearance features

of one snapshot will result in mismatching. One solution is brute force solution, that

is, to use all the frames in the tracks and then do all-to-all matching. However, this

would require significant storage and computation, and would not take advantages

of the redundacies among frames in video sequences.

In this chapter we try to build human appearance model from video sequence so

that the model contains as much appearance information as possible and at the
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same time the representation of the model is as compact as possible. And ideally

the computation involved is as small as possible. This chapter will propose two

schemes of constructing appearance model from video sequence. In the first scheme

a set of key frames are selected to represent the appearance in the sequence. In the

second scheme similiar appearances are clustered to get several appearance models

from the sequence.

3.2 Key Frame Selection

3.2.1 Algorithm

In this section, multiple key frames are selected from the video sequence to

represent the appearance in the sequence. In video sequences, there are a lot of

redundancies among frames. So it is not necessary to use the appearanaces in all

the frames to build the appearance model. We only need to select those frames

that contains major appearance changes, for example, new features appear, or large

pose change that leads to great color path-length change, which means that the

appearance changes will result in a large information gain. So selecting key frames

is equal to detecting changes of information gain, or Kullback-Leibler distance.

Suppose for appearance J we have one track T (J) containing M consecutive im-

ages T (J) = {I(J)
1 , I

(J)
2 , . . . , I

(J)
M }. The key frame selection process is as follows. The

first frame is selected as the first key frame; it becomes the “current key frame”

35



Ki (i = 1 for the first key frame) for the following steps. Then, we calculate the

Kullback-Leibler distance of the subsequent frames to the current key frame. If

the current Kullback-Leibler distance is greater than a threshold, the current frame

becomes the “next current key frame” Ki+1. In this way, those frames with large

information gain or having new information are selected, and those not selected can

be explained by the key frames.

Considering that sometimes random noise may corrupt the silhouttes and destroy

the temporal coherence of appearance change in the video sequence, we can do some

post-processing to eliminate those key frames that can explain less than a predefined

number (in our experiment in section 3.2.2, the number is set to 3) of video frames.

In this way, some noise appearances can be deleted.

Once the key frames are selected, the distance L of two sequences I, J is defined as

L(I,J) =median
i∈K(I) min

j∈K(J)
D(p

(I)
i ||p(J)

j ) (3.1)

where K(I) is the set of key frames of sequence I. So, for each key frame of sequence

I the closest distance to the key frames of sequence J is first retrieved; then, we

take the median of these closest distances to be the distance of the two sequences.

If a sequence contains some poor segmentations that cannot be filtered out based

on simple shape constraints, then the key frame selection may select outliers in

the sequence as some of the key frames. So, computing the median of the closest

distances of the key frames tends to eliminate the effect of these outliers.
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Feature

Camera 1
matches with

camera 2

Camera 2
matches with

camera 1

RGB rank and
path-length 93.33% 96.67%

Brightness, color
and path-length 86.67% 73.33%

Table 3.1: Matching results of Honeywell sequences when the proposed key frame

selection and matching scheme is used

3.2.2 Experiment Results

We studied performance when key frames are selected from video sequences

as described in section 3.2.1. For each sequence of an appearance, where the length

of the sequence varies from 15 frames to 30 frames, the key frames are picked as

described in section 3.2.1. The threshold of one frame becoming a key frame is

set to 2 when the RGB rank and path-length is used. When brightness color and

path-length is used, the threshold is set to 2.5.

Table 3.1 demonstrates the matching results on the Honeywell dataset used

in the snapshot matching in Chapter 2. Comparing table 3.1 to the last row of

table 2.6 in chapter 2 we can see that by employing the proposed sequence match-

ing method, compared with snapshot matching, significant improvement of matching

rate is achieved. Figure 3.1 shows the key frames selected from one sequence with the

sequence segment represented by each key frame and the corresponding Kullback-

Leibler distances. In each image row the first image is the selected key frame. In
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Feature

Camera 1
matches with

camera 2

Camera 2
matches with

camera 1

RGB rank and
path-length 100% 100%

Brightness, color
and path-length 91.67% 100%

Table 3.2: Matching results of outdoor sequences when the proposed key frame

selection and matching scheme is used

the sequence of figure 3.1 we can see that some of the silhouettes are very bad, and

the third key frame, which is corrupted due to segmentation error, is the only frame

in that sequence segment (it actually can be filtered out in post-processing). By use

of the robust distance measure between sequences, the effect of noisy key frames is

reduced.

We also applied the key frame selection algorithm to a dataset that was taken

outdoors, where there are twelve appearances with two different tracks for each

appearance. One track was the sideview of a person walking from left to right and

the other track was the sideview of the person walking from right to left. Example

images are shown in figure 3.2. In this dataset, the threshold of one frame becoming

a key frame is set to 1 and 2.5 respectvely when RGB rank, path-length and the

brightness color, path-length are used. Figure 3.3 shows the key frames of one

sequence together with the sequence segment represented by each key frame and

the corresponding Kullback-Leibler distances. From figure 3.3 we observe that in

the sequence segment of key frame 1 the two legs of the person are almost together.

Then in the next sequence segment, the two legs are largely separated. Finally
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The key frame and its sequence segment

Distance to
the key frame 0 0.6647 1.3096 1.5268 1.7634

Distance to
the key frame 0 0.9276 1.2262 0.8747 1.1314

Distance to
the key frame 1.2436 1.2809 1.6202

Distance to
the key frame 0

Distance to
the key frame 0 0.9897 1.1719 1.3345 1.2613 1.1787

Distance to
the key frame 1.1249 1.2307 1.5913 1.2279 1.8880 1.1999

Distance to
the key frame 1.1217 1.1197 0.9668 1.1354

Figure 3.1: Indoor sequence: example result of key frame selection
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(a) sideviews of people walking from
right to left

(b) sideviews of people walking from
left to right

Figure 3.2: Dataset 2: Outdoor image sequences
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The key frame and its sequence segment

Distance to
the key frame 0 0.9423 0.9423

Distance to
the key frame 0 0.7703 0.7959 0.6666 0.7286

Distance to
the key frame 0.7094 0.7163 0.9101 0.8923

Distance to
the key frame 0 0.7960 0.7967

Figure 3.3: Outdoor sequence: example result of key frame selection
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in the last seqeuence segment one leg is bent which changes the color path-length

profile. Here, in our sequences there are few view changes, so the key frames only

demonstrate pose change. Table 3.2 shows the matching results when RGB rank,

path-length feature and brightness, color and path-length feature are used.

3.3 Online Clustering

In section 3.2, key frame selection was proposed to construct the appearance

model from video sequences. The key frames are selected by finding those frames

with large information gain. However, using key frames to construct the appear-

ance model has the following problems. First to get key frames, we have to select

a threshold of information gain which is hard to decide. If the threshold is set too

small, too many key frames would be produced, which makes matching algorithm

very time consuming. If the threshold is set too large, not enough key frames would

be produced, which leads to an appearance model not accurate enough and finally

results in a lower matching rate. If we were to find an optimized threshold, some

non-on-line algorithm must be used so that all the frames in the sequence are con-

sidered, which would lead to considerate computation. Another problem with the

key frame selection algorithm is that the key frames are not compact enough. In

most cases, people’s pose and views recur. For example, at first the back view of

person is to the camera and after some time the back view is again to the camera.

In key frames selection, key frames are selected in adjacent frames, so those similiar

views in inconsecutive frames will be represented by key frames of similiar content.
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Thuse the key frames have overlapped information.

In this section and the next section, online hierarchical clustering is proposed to

build the appearance model from video sequences. Since we do not know in advance

the number of views or poses of a person may exhibit under a particular camera

view, online clustering is first utilized to subtract the model for the representative

views or poses in the video sequences. Online clustering aslo enables that clustering

is performed on line as the data streams in so that there is no need to store all the

patterns. The number of clustering depends greatly on the threshold for clustering.

Here the strategy is to first use a relatively small threshold to do online clustering,

which will lead to multiple appearance models for different views or poses, then

hierachical clustering is used to further condense the model.

The orgnization of this section is as follows. First our online clustering scheme is

discussed by presenting the traditional online clustering algorithm with an emphasis

on the difference of our scheme. Then the effectiveness of the model is demonstrated

by experiment results.

3.3.1 Algorithm

Table 3.3 shows a basic online clustering algorithm [4], i.e., a leader-follower

clustering algorithm. As we can see from the table, an online clustering algorithm is

composed of two steps. One is finding the nearest cluster, and the other is updating
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the cluster center. We will elaborate these two steps in the following.

Table 3.3: A Classic Online Clustering Algorithm

Algorithm: Basic Leader-Follower Clustering Algorithm

w1 ← x

n← 1

do

accept new x

j ← arg minj′dist(x,wj′)

if dis(x,wj′) < θ

then wj ←update(wj′,x)

else

add new cluster wn+1 ← x

n← n + 1

until no more patterns

To find the nearest cluster, the distance of the new incoming data and the

current cluster centers are to be computed. Here again Kullback-Leibler is used to

measure the distance of the new data and the cluster centers. So the distance of x

and w is calculated as follows

D(x||w) =
1

Nx

Nx∑
i=1

log
px(xi)

pw(xi)
(3.2)

In (3.2), xi, i = 1, . . . , Nx are the samples from the current silhouette, px(xi) is the
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probability density of xi in the feature space of the current data, and pw(xi) is the

probability density of xi in the feature space of the cluster center w, or it is the

probability of appearance of the current data when the model is the current cluster

center.

Usually the cluster is updated as a weighted average of the current cluster cen-

ter and the current data. Here our scheme of cluser center updating cannot simply

be the weighted average of the cluster center and the data. As we can see from

the above explanation of (3.2), we use the model of the cluster center to predict

the probability of the current data. So when the cluster center is updated with the

current data, a revision of the model of the cluster is expected. As we use kernel

density estimation to build the distribution model, or samples are used to compute

the probability density of a specific feature value, the cluster center is updated by

adding samples from the current data. We hope that every data or every silhouette

plays an equal important role in the model of the cluster center. So a new clus-

ter center is formed by the samples from the old cluster center and the samples of

the new streamed-in silhouette. Suppose currently the cluster center is composed

of samples from N silhouettes, then the cluster center is subsampled by N
N+1

and

current new silhouette is subsampled by 1
N+1

and the union of the samples from the

two parts form the new cluster center. Table 3.5 shows the cluster center update

algorithm. Here number of samples or sample size of the new cluster center is set to

be the minimal of the sample size of the old cluster center and that of the incoming

silhouette. Then the old cluster center and current incomming silhouette are sub-
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sampled. The updated cluster center is the union of the subsampled sample sets.

Table 3.4: The Proposed Cluster Center Update Algorithm

Algorithm: Cluster Center Update Algorithm

Get new appearance model m and get matched cluster center c

c.SampleSize =min(m.SampleSize, c.SampleSize)

N =c.MemberNumber

SampleSet1 = SubSample m by SampleSize× 1
N+1

SampleSet2 = SubSample c by SampleSize× N
N+1

c.SampleSet = Union(SampleSet1, SampleSet2)

c.MemberNumber= N + 1

To save the time of computation, we make use of the fact that those appearances

that are adjacent in time are similiar and tend to be clustered into the same cluster.

So cluster centers are put into a queue. Whenever a cluster center is updated, it is

moved to the head of the queue so that when the next frame comes in it first matches

with the head of the queue, or the most likely cluster center. If the Kullback-Leibler

distance of the current appearance and the head of the cluster center queue is less

than a threshold, which is quite likely due to the temporal correlation nature of

video frames, the current appearance is clustered into the cluster and the cluster

center should be updated. Otherwise, if the distance is greater than the threshold,

those cluster centers in the queue are all matched. In this way, a lot of computa-
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tion can be saved. If the distances of all the cluster centers are greater than the

threshold, a new cluster is formed and added to the head of the queue. Table 3.5

summarizes the proposed online clustering algorithm.

Table 3.5: Proposed Online Clustering Algorithm

Algorithm: Online Clustering Algorithm

Get one NewAppearanceModel

if Q.IsEmpty

Q.AddHead(NewAppearanceModel)

elseif KLdistance(Q.Head, NewAppearanceModel)< T

UpdateClusterCenter(Q.Head)

else

(MinimalKLDistance,BestMatchCluster)=Match(NewAppearanceModel, Q)

if MinimalKLDistance< T

UpdateClusterCenter(BestMatchCluster)

Q.MoveToHead(BestMatchCluster)

else

Q.AddHead(NewAppearanceModel)

47



3.3.2 Experiment Results

Figure 3.4 and figure 3.5 show the online clustering results of two sequences.

Let us denote the name of the sequence in figure 3.4 sequence A and the name of the

sequence in figure 3.5 sequence B. From figure 3.4 and figure 3.5, we observe that

those appearances of similiar poses or views are clustered into the same cluster. For

example, in figure 3.4, those frames of back view and front view are clustered into

different clusters. cluster one two, three and six are the appearances of back views,

and cluster four and five are the appearances of front views. For those back views

of figure 3.4, in cluster one, the legs of the person are parted. In cluster two and

three, the legs are crossed. And in cluster six, the legs are merged together. Another

observation is that those appearances that are in the same cluster are not necessarily

adjacent in time, which can be seen from the frame number. For example in cluster

1 of figure 3.4, silhouettes from frame 1 to 16, silhouettes from frame 34, 35 and

silhouettes from frame 42 to 47 are in the same cluster. Similiar observations can be

acquired from figure 3.5. In the above examples, the threshold of online clustering

is 1.5. Apparently if the threshold is larger, fewer clusters will be produced. So here

we have the problem of deciding threshold. In the next section, we will discuss how

to avoid the decision of threshold.

3.4 Online Hierarchical Clustering

In section 3.3, online clustering algorithm has been discussed. In the discus-

sion, we have observed that the threshold of clustering plays an important role in
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cluster 1

1 2 3 4 5 10 11 12 13 14

15 16 34 35 42 43 44 45 46 47

cluster 2

6 7 8 9 36 37 38 39 40 41

cluster 3

17 18 48 49 50

cluster 4

19 20 21 22 23 24 25 26 32 33

cluster 5

27 28 29 30 31

cluster 6

51 52 53

Figure 3.4: Online clustering result of sequence A

49



cluster 1

1 35 36 37 38 39 40 41 42

cluster 2

2 3 4 5 6 7

cluster 3

8 9 10 11 12 13 14 15 16

43 44 45 46 47

cluster 4

17 18 19 48 49 50 51

cluster 5

20 21 22 23 24 25 26 27 28

cluster 6

29 30 31 32 33 34

Figure 3.5: Online clustering result of sequence B
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clustering. At the same time, the threshold is not trivial to decide. If the threshold

is too small, a lot of clusters are produced or a lot of sub-models for appearances are

constructed. When appearances are matched, this will involve a lot of computation.

If the threshold is set too large, few clusters are created. Then the appearance model

is not descriptive enough, which will result a lot of mismatching. In this section, we

will discuss how to avoid the selection of threshold. We propose online hierarchical

clustering to solve the problem. Again, we will first discuss the algorithm, then

experiment results are presented.

3.4.1 Algorithm

Hierarchical clustering is one of the best known methods in unsupervised learn-

ing. Given a set of data points, the output is a binary tree (dendrogram) whose

leaves are the data points and whose internal nodes represent nested clusters of

various sizes. The tree organizes these clusters hierarchically so that this hierarchy

agrees with the intuitive organization of real-world data. Hierarchical structures

are ubiquitous in the natural world. For example, the evolutionary tree of living

organisms is a natural hierarchy. Here the intuition of using hierarchical clustering

to construct appearance model is that when people move around, different views

(front views, side views, or back views etc.) may be shown to the camera, under

each view, there are different poses for example, sometimes the hands may be lifted

up, or sometimes the hands may be inserted to the pockets etc. So human appear-

ances have hierarchical structure.

51



Table 3.6: Agglomerative Hierarchical Clustering Algorithm

Algorithm: Agglomerative Hierarchical Clustering Algorithm [4]

initialize m, m̂← n, Di ← xi, i = 1, 2, . . . , n

do m̂← m̂− 1

find nearest clusters, say Di and Dj

merge Di and Dj

until m = m̂

return m clusters

The classic method for hierarchically clustering data [4] is a bottom up ag-

glomerative algorithm. It starts with each data point assigned to its own cluster

and iteratively merges the two closest clusters together until all the data belongs

to a single cluster. The nearest pair of clusters is chosen based on a given distance

measure (e.g. Euclidean distance between cluster means, or distance between near-

est points). Table 3.6 shows the agglomerative hierarchical clustering algorithm in

[4], where m is the desired number of clusters, n is the initial number of points.

In traditional agglomerative clustering as in table 3.6, when two clusters are merged,

usually their cluster members are simply pooled into one new cluster. In our case,

each point or cluster to be merged is composed of samples from appearances. If

samples from the clusters to be merged are simply pooled together, as the merge
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Table 3.7: Algorithm of Merging Clusters

Algorithm: Merge Cluster c1 and c2: Merge(c1,c2)

c.SampleSize= min(c1.SampleSize, c2.SampleSize)

N1 = c1.MemberNumber

N2 = c2.MemberNumber

N = N1 + N2

SampleSet1 = SubSample c1 by SampleSize×N1

N

SampleSet2 = SubSample c2 by SampleSize×N2

N

c.SampleSet = Union(SampleSet1, SampleSet2)

c.MemberNumber= N

goes on, the number of samples in the cluster will become larger and larger. In

reality, we do not need all the samples to build appearance models by kernel density

estimation as we have discussed in chapter 2. So here a sampling method similiar

to the cluster center update scheme as shown in table 3.5 is used to merge clusters.

Table 3.7 shows the algorithm of merging two clusters, where c1 and c2 are the clus-

ters to be merged and c is the merged cluster.

In agglomerative clustering, we have to calculate n(n − 1) interpoint distances,

which is a significant computation. However, here the appearance models to be

hierarchically clustered are built from video sequence, which has strong temporal

correlation. Although the frames in a cluster are not necessarily temporally ad-
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jacent, from the discussion of online clustering, we can see that they still exhibit

temporal relation. So adjacent models tend to be silimliar. By making use of this

fact, not all point-to-point or cluster-to-cluster distances are to be calculated. Only

the distances to the neighboring points or clusters are computed. In this way, only

O(n) calculations are needed.

The agglomerative clustering algorithm provides no guidance in regard with which

distance metric to choose. As the algorithm does not define a probability model

of the data, usually Euclidean distance between means or distance between nearest

points are empirically chosen. In [12], Bayesian hierarchical clustering algorithm is

proposed, where marginal likelihoods are used to decide which clusters to merge.

However, [12] assumes a parametric distribution for the data, which cannot describe

complex data such as images. Here the proposed hierarchical clustering algorithm

also uses the likelihood criterion to merge clusters, where the distribution models of

the data are estimated using kernel density estimation.

Suppose Di and Dj are two clusters, which are the clusters to be considered

to be merged during hierarchical clustering. Before merging, the likelihoods li(Di)

and lj(Dj) of Di and Dj are as follows

li(Di) =
1

Ni

Ni∑
n=1

log p(i)(x(i)
n ) (3.3)

lj(Dj) =
1

Nj

Nj∑
n=1

log p(j)(x(j)
n ) (3.4)

where x(i)
n is the n-th sample of the model i which is also cluster Di, or more precisely,
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Di = {x(i)
n , n = 1, . . . , Ni}. p(i)(x(i)

n ) is the probability density of xn(i) in the feature

space of Di and is obtained by kernel density estimation using the samples in the

cluster of Di

p(i)(x(i)
n ) =

1

Ni

Ni∑
m=1

K(x(i)
n − x(i)

m ) (3.5)

In fact, (3.3) and (3.4) are the entropy of cluster Di and Dj respectively. If Di and

Dj are to be merged, and suppose Dk is the merged cluster and Dk = {xk
n, n =

1, . . . , Nk}, the likelihoods lk(Di) and lk(Dj) of Di and Dj are

lk(Di) =
1

Ni

Ni∑
n=1

log p(k)(x(i)
n ) (3.6)

lk(Dj) =
1

Nj

Nj∑
n=1

log p(k)(x(j)
n ) (3.7)

where p(k)(x(i)
n ) is the probability density of xn(i) in the feature space of Dk and is

obtained by kernel density estimation using the samples in the merged cluster Dk

p(k)(x(i)
n ) =

1

Nk

Nk∑
m=1

K(x(i)
n − x(k)

m ) (3.8)

p(k)(x(j)
n ) is derived similiarly by replacing index i in the equation (3.8) with index

j. If Di and Dj are merged, the decrease of likelihood is the least among all the

candidate merges. The decrease of likelihood after merging is

Δl = lk(Di) + lk(Dj)− li(Di)− lj(Dj) (3.9)

= − 1

Ni

Ni∑
n=1

log
p(i)(x(i)

n )

p(k)(x
(i)
n )
− 1

Nj

Nj∑
n=1

log
p(j)(x(j)

n )

p(k)(x
(j)
n )

(3.10)

= −D(Di||Dk)−D(Dj ||Dk) (3.11)

The above equations tell us that the decrease of likelihood is the sum of the Kullback-

Leibler distances of the unmerged clusters and the merged cluster.
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Table 3.8 shows the detail steps of the proposed hierarchical clustering algo-

rithm. In the algorithm, only neighboring merges are checked. A flag checked is

introduced to avoid repeated calculation of Kullback-Leibler distances. So we do

not need to calculate all the cluster-to-cluster distances at every level of merging.

Only those distances of clusters that have been merged and resulted the likelihood

change are computed.

In this section, we have proposed our hierarchical clustering algorithm. The cluster

merging scheme and the computation of the distances between clusters are differ-

ent from the traditional hierarchical clustering algorithm. Our appearance model

is composed of feature samples from the appearances, so new clusters are formed

by sampling. Unlike the traditional norm based distance computation, our merging

criteria is according to the likelihood decrease of the data, which turns out to be the

Kullback-Leibler distances between the merged cluster and the unmerged clusters.

Those merges that lead to least likelihood decrease are combined to form the new

cluster.

3.4.2 Experiment Results

In this section, we will demonstrate the experiment results of hierarchical clus-

tering. Also matching results of appearance models based on hierarchical clustering

are showed.
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Figure 3.6 through figure 3.8 show the hierarchical clustering results of fig-

ure 3.4. Here those clusters with fewer than three images of human appearances are

deleted because they are quite likely to be the noisy images. So cluster 6 in figure 3.4

is eliminated. Figure 3.9 through figure 3.12 show the hierarchical clustering results

of figure 3.5. From these results, we can observe that by hierarchcial clustering,

those appearances of the same view are clustered into one cluster.

Once we have the appearance models obtained from hierarchical clustering, we can

make use of the models to match appearances across cameras. The matching method

is similiar to the key frame matching. The distances L
(I,J)
H of two sequences I, J of

appearances are defined as

L
(I,J)
H =median

i∈H(I) min
j∈H(J)

D(p
(I)
i ||p(J)

j ) (3.12)

where H(I) and H(J) are the hierarchical clustering results of appearance I and J .

So here we calculate the Kullback-Leibler distances between hierarchical clusters.

We set the number of clusters to be 1, 2, 3, 4, and matches the appearances of

camera 1 with those of camera 2 and then matches the appearances of camera 2

with those of camera 1. Table 3.9 shows the matching results, where RGB rank and

path-length feature are used for appearance model construction. From table 3.9 it

is observed that the matching rate is satisfactory. However, some of the rates are

lower than that of key frame selection. This is because in key frame selection, many

frames are selected as key frames, and the number of key frames are much more
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cluster 6:
merge of
cluster 1,
cluster 2

1 2 3 4 5 10 11 12 13 14

15 16 34 35 42 43 44 45 46 47

6 7 8 9 36 37 38 39 40 41

cluster 3

17 18 48 49 50

cluster 4

19 20 21 22 23 24 25 26 32 33

cluster 5

27 28 29 30 31

Figure 3.6: Level 1 of hierarchical clustering result of figure 3.4
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cluster 6:
merge of
cluster 1,
cluster 2

1 2 3 4 5 10 11 12 13 14

15 16 34 35 42 43 44 45 46 47

6 7 8 9 36 37 38 39 40 41

cluster 3

17 18 48 49 50

cluster 7:
cluster 4,
cluster 5

19 20 21 22 23 24 25 26 32 33

27 28 29 30 31

Figure 3.7: Level 2 of hierarchical clustering result of figure 3.4
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cluster 8:
merge of
cluster 6,
cluster 3

1 2 3 4 5 10 11 12 13 14

15 16 34 35 42 43 44 45 46 47

6 7 8 9 36 37 38 39 40 41

17 18 48 49 50

cluster 7:
cluster 4,
cluster 5

19 20 21 22 23 24 25 26 32 33

27 28 29 30 31

Figure 3.8: Level 3 of hierarchical clustering result of figure 3.4
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cluster 7:
merge of
cluster 1,
cluster 2

1 35 36 37 38 39 40 41 42

2 3 4 5 6 7

cluster 3

8 9 10 11 12 13 14 15 16

43 44 45 46 47

cluster 4

17 18 19 48 49 50 51

cluster 5

20 21 22 23 24 25 26 27 28

cluster 6

29 30 31 32 33 34

Figure 3.9: Level 1 of hierarchical clustering results of figure 3.5
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cluster 7:
merge of
cluster 1,
cluster 2

1 35 36 37 38 39 40 41 42

2 3 4 5 6 7

cluster 8:
merge of
cluster 3,
cluster 4

8 9 10 11 12 13 14 15 16

43 44 45 46 47

17 18 19 48 49 50 51

cluster 5

20 21 22 23 24 25 26 27 28

cluster 6

29 30 31 32 33 34

Figure 3.10: Level 2 of hierarchical clustering results of figure 3.5
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cluster 7:
merge of
cluster 1,
cluster 2

1 35 36 37 38 39 40 41 42

2 3 4 5 6 7

cluster 8:
merge of
cluster 3,
cluster 4

8 9 10 11 12 13 14 15 16

43 44 45 46 47

17 18 19 48 49 50 51

cluster 9:
merge of
cluster 5,
cluster 6

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34

Figure 3.11: Level 3 of hierarchical clustering results of figure 3.5
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cluster 10:
merge of
cluster 7,
cluster 8

1 35 36 37 38 39 40 41 42

2 3 4 5 6 7

8 9 10 11 12 13 14 15 16

43 44 45 46 47

17 18 19 48 49 50 51

cluster 9:
merge of
cluster 5,
cluster 6

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34

Figure 3.12: Level 4 of hierarchical clustering results of figure 3.5
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than 4. Although key frame selection may give higher matching rate, it involves

much more computation due to the large number of key frames.

3.5 Conclusion

In this chapter, construction of appearance model from video sequence is dis-

cussed. Two algorithms are proposed to build appearance models from video se-

quence, key frame selection and hierarchical clustering. In key frame selection, the

key frames with large information gains are selected to represent the sequence. Then

matching of appearances is achieved by matching those key frames. Experiment re-

sults show that key frame selection achieves very high matching rate. However,

in key frame selection, the number of key frames is decided by the threshold. To

achieve a high matching rate, a relatively small threshold is selected, which may

lead to many key frames and involve significant computation in matching. Online

hierarchical clustering algorithm reduces the number of sub-models by first online

clustering the silhouettes and then hierarchically clustering the clusters obtained

from online clustering. In this way, we only need to select a relatively small thresh-

old for online clustering. Online hierarchical clustering can achieve high matching

rate without significant computation in matching.

It is noted that although the online clustering and hierarchical clustering algorithms

that are the components of our online hierarchical clustering are in the frame work of

the classic algorithms, the cluster updating algorithm is different from traditional al-

65



gorithms. Here instead of some simple samples, the clusters are represented by a set

of samples the model of which is estimated using kernel density estimation. So sub-

sampling method is used to update clusters. Also since the cluster is represented by

some samples, cluster distances cannot be direct calculated by traditional method.

Likelihood of samples is calculated to decide if there should be a merge of cluster in

hierarchical clustering, which turns out to be closely related with Kullback-Leibler

distance. In fact, here we propose a hierarchical clustering algorithm when the

model of the data to be clustered are estimated using non-parametric kernel density

estimation. In such situation, when the clusters are to be merged, subsampling is

performed. The distance of clusters is the average Kullback-Leibler distances of the

individual clusters to the merged cluster.
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Table 3.8: Hierarchical Clustering Algorithm for Appearance Modeling

Algorithm: Hierarchical Clustering Algorithm for Appearance Modeling

initialize m, m̂← n, Di ← xi, i = 1, 2, . . . , n

Di.checked= 0;

do m̂← m̂− 1

for i = 1 : m̂

if NOT Di.checked

Di,i+1 = Merge(Di, Di+1)

KLDi = KLDistance(Di, Di,i+1) + KLDistance(Di+1, Di,i+1)

Di.checked = 1

endif

endfor

k = arg min1≤i≤m̂Di,i+1

Dk = Merge(Dk, Dk+1)

Remove(Dk+1)

Dk−1.checked = 0

Dk.checked = 0

until m = m̂

return m clusters
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Cluster number 1 2 3 4

camera 1
matches with

camera 2 93.33% 93.33% 93.33% 93.33%

camera 2
matches with

camera 1 83.33% 83.33% 86.67% 86.67%

Table 3.9: Matching results when appearance models are built using hierarchical

clustering
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Chapter 4

Conclusion

In this thesis, the problem of building correspondences of appearances taken

at different places, at different times or across different cameras are explored. An

appearance model is proposed to match images of appearances. Then the appear-

ance model is further expanded to include information provided by video sequences.

The contribution of the thesis can be summarized as follows.

First an appearance model based on color and path-length feature is proposed.

To achieve invariance to illumination, the color feature of color rank and brightness-

color is employed. Experiment results show that color rank feature and brightness-

color feature is invariant to illumination changes compared with other commonly

used color features. To represent the location of the color feature, path-length fea-

ture is used. Path-length of a pixel is the shortest path from a distinguished point,

which we choose as the top of the head, to the pixel. Path-length provides struc-

tural information. It is also invariant to human motion and pose. Experiment

results demonstrate that by adding path-length feature to the color feature, signifi-

cant performance improvement is achieved. The probability model of appearance is

constructed by kernel density estimation. Then Kullback-Leibler distance is utilized

as the matching criteria. Experiment results give satisfactory performance of the
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proposed appearance model and the matching scheme

To further improve the representability of the appearance model, the information

in video sequence should be exploited. The first method extracts the information

in video sequence by finding key frames. Key frames are those frames that have

large information gains, or have large Kullback-Leibler distance to the previous key

frame. Key frame selection method provides satisfactory matching results. However,

threshold of key frame selection is hard to pick. The small threshold may result too

many key frames and significant computation in matching, while a large threshold

may lead to low matching rate.

To overcome the problem with key frame selection algorithm, online hierarchical

clustering algorithm is proposed to formulate the appearance model from video

sequence. The idea of online hierarchical clustering is that first online clustering

algorithm is used to acquire the preliminary clusters by using a relatively small

threshold. Then hierarchical clustering is applied to merge those very similiar mod-

els. Unlike the traditional online clustering and hierarchical clustering algorithms,

the data here are formed by a set of samples from the silhouettes and the model of

the data cannot simply be represented by parametric model, instead nonparametric

model is employed. So proper changes have to be made to traditional algorithms

to incorporate these differences. Subsampling method is used to get the updated

clusters. Likelihood change is computed for criteria of merging. Experiment results

show satisfactory matching result even with few clusters.
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