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During the last three decades there has been a growing interest in algorithms
which rely on analogies to natural processes. The guided random search techniques,
genetic algorithms (GAs) and simulated annealing (SA), are very promising strategies,
and both techniques are analogs from physical and biological systems. These two
algorithms are stochastic relaxation search methods especially suitable for applications
to a wide variety of complex optimization problems. Each produces a sequence of
candidate solutions to the underlying problems, and the purpose of both algorithms is
to generate sequences biased toward solutions which optimize the objective function.

Limitations, however, occur in performance because optimization may take a large
number of iterations, and final parameter values may be found that are not at the global
extremum points. In this thesis, a population-based search algorithm that combines
approaches from GAs and SA is proposed. The combined approach, called GASA,

maintains a population of individuals over a period of generations. In the GASA



technique, simulated annealing is used in choices regarding a subset of individuals
that undergo crossover and mutation. This thesis shows that the GASA technique has
superior performance when compared to a genetic algorithm for the nonlinear function
optimization problem.

Temperature plays an important role in the GASA algorithm, The temperature
change results in the moving of populations. When arriving at equilibrium, the
individuals in the same population also have an assumed unique critical temperature.
This phenomenon follows the rules of general thermodynamic laws. Schema theory
and simulated phase transition are used to explore the search mode of GASA. Energy
changes affect structural change by mutation or crossover.

GASA is utilized for parameter optimization on dynamic system design and inte-
gration. The GASA technique can be used for different tasks like control, detection,
and computation. For fed-batch bioprocesses, an optimized input function (substance
feed rate) with GASA can increase the quantity of product. GASA is applied to pH
control in combination with the classical PID control. A convergence analysis of

GASA explores the characteristics of this evolutionary controller.
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Chapter 1

Introduction

With today’s challenge in the high-tech industries, and the continuing need for energy
competitiveness, materials conversion, hazard free operation, and environmentally
safe discharges, it has become increasingly important to develop and apply new
methodologies and techniques that lead to improved performance and operation in
chemical engineering. Whether an engineer is concerned with design, production
planning, operation, or control, he or she needs to make predictions about the process
and plant behavior. However, the complexity of chemical processes makes building
accurate mathematical models difficult. In general, the dynamic characteristics of
the chemical plant structure are unknown or poorly modeled at best. If we have
some knowledge of the plant, the plant model can be determined by using system
identification techniques for the plant coefficients and parameters. Mostly, it is only

an approximation to the real plant, since the plant is not known exactly and is nonlinear.

The emergence of the concept “evolutionary computation” provides a totally dif-
ferent method to analyze the past data, and can be developed into a model-based search

algorithm. This new novel search algorithm combines genetic algorithms and simu-



lated annealing, both of which are very promising search strategies. This algorithm
is called GASA throughout this work. The search skill of GASA is extended to a
powerful optimization technique. Also, it can be used to help improve another attrac-
tive learning method "artificial neural networks" by establishing new learning rules.
The learning ability can help to reduce human effort required in analyzing complex
dynamical process operations and it even suggests a potential for discovering better
system schemes than presently known. Connectionists study the learning behavior
of artificial neural networks in order to establish this relationship via the configura-
tions of neural networks. The natural evolution in genetics and thermodynamics each
provide the different configurations. This research tries to explore a new interdigi-
tation: a hybrid technique for process dynamics by employing Genetic Algorithms
(from genetics and evolution), and Simulated Annealing (from physical metallurgy).
The combination of algorithms derived from natural principles can result in different
learning rules. Finally, it is important that our new technique can be applied to the

analysis and system design of dynamical chemical and biochemical processes.

1.1 Motivation of the Thesis

In the thesis proposal [96, Sun, 1993], it was indicated that this research intended to
study the use of combination of genetic algorithms and simulated annealing, and other
connectionist methods for a very broad spectrum of applications in dynamic system
design and integration. The applications considered include dynamic optimization
and control. However, the discussion below concentrates mainly on the algorithm

design and dynamic system design.

Originally, this thesis was initiated to create a novel search algorithm from the



integration of algorithms from natural systems. It was hoped to develop alternatives
which possibly offer some advantages over the conventional evolutionary and ge-
netic computation methods [32, Fogel, 1993]. The main difference between genetic
and evolutionary algorithms is at the genotype and phenotype. Genetic algorithms
emphasize genotypic transformation, while evolutionary algorithms emphasize phe-
notypic adaptation. After a survey of the open literature on genetic algorithms, the
population-based search was found to be an excellent candidate among all possible
alternatives. It has been pointed out repeatedly by several researchers that a genetic
algorithm has the capability of tracing a path to the global optimum using the infor-
mation provided. Initially, this research intended to utilize the search characteristics
of genetic algorithms for optimizing a dynamic process. However, as pointed out by
several researchers on the convergence of genetic algorithms [82, Rudolph, 1990],
the genetic operators are executed in these algorithms without any specific selection.
However, another stochastic search algorithm, simulated annealing, offers a totally
different search mode from genetic algorithms. The objective is to determine how to
make a more effective selection in populations with the annealing schedule supplied
by simulated annealing. Therefore, effort in this research was directed toward finding
out whether a new search algorithm can offer a more stable and precise solution to the

problem encounted when using the genetic algorithms.

The consideration of temperature schedule cannot be neglected in the explanation
of theory. A typical annealing algorithm starts at some high temperature. The system
is allowed to approach equilibrium, at which time the temperature is reduced, and
the system is allowed to equilibrate repeatedly. Its basic feature is the possibility of
exploring the configuration space by allowing “hill-climbing” moves, i.e., the gener-

ation of new configurations of the problem which increase the cost. These moves are



controlled by a parameter, which is analogous to temperature in the annealing. These
moves become less and less likely towards the end of process where the temperature
is low. This change of configuration is helpful to divide the individuals in populations
by the location of their energy levels. This division pushes our genetic approach to
do a second selection after they are replicated. This combination of algorithms is
investigated in the search phase of individuals. Their movement is similar to a phase
transition in their domain. Schema theory is combined with our simulated phase

transition to find the individual’s moving trajectory.

Later, the use of GASA in dynamic system design is shown to be equivalent to
one of the two major optimization approaches in classical static optimization where
functions are used. The other dynamic optimization for nonlinear systems are investi-
gated with this parallel, global search technique. The separate applications of genetic
algorithms and simulated annealing in nonlinear programming problems and several
engineering problems have been successfully investigated by many researchers. In
terms of practical applications, the challenging problem of the control of fed-batch fer-
mentation is investigated. Fed-batch processes are technically challenging to control:
the process variables are difficult to measure, the “quantity” of the product is difficult
to define yet it is very important, the process model usually only approximates and
contains strongly time-varying parameters, etc. But, above all, the challenge arises
because optimization of the feed rate is a dynamical problem. Many researchers use
the maximum principle to solve these problems. When this method is applied, the
consideration of singularity becomes very important especially for the certain system
models and applied constraints. The other application in this thesis is to develop a new
control strategy by combining GASA and PID control. When controllers are designed

without having an accurate mathematical model of the system to be controlled, two



questions arise: first, how is the structure of the controller is establish, and second,
how are the numerical values of the controller parameters chosen. In solving the
first problem, many techniques have proved successful, for example, expert systems
and machine learning with neural networks have been used. In contrast, the second
problem is solved on an ad hoc. The GASA technique can be used for both learning
the control structure and tuning the control parameters. Stability is an important
part in the analysis and design of a control system. A standard approach for robust-
ness analysis is to examine the characteristics of the control system in the presence
of parametric uncertainties. This type of problem solving scheme is addressed in the

thesis.

As the research proceeded, the GASA approach was found to have significant
advantages over the genetic algorithms. For example, the GASA approach can lead to
a much higher precision and less oscillation than the genetic algorithms. In addition,
further investigation has revealed that the developed GASA approach holds great
promise in many situations, such as when the genetic algorithm is used in static and
dynamic optimization, or when singularity is introduced in the model. Inevitably,
however, the proposed GASA algorithm was found to have a significant drawback. In
particular, the training speed is extremely slow in many cases because of the addition
of annealing compared with genetic algorithms. Training with GASA takes as much
as 50 CPU time units to converge on a Sun SPARC station for a simple function
optimization problem. In order to circumvent this drawback while attempting to

retain the advantages of this proposed method, there are at least three approaches that

can be taken:

e Use a real-value coding approach,



e Use an effective annealing schedule, or
e Employing a “quench” schedule.

The first approach is proposed because presently there is no appropriate approach for
binary coding other than using a set of real-valued coding. The second approach has
often been used by several researchers when solving combinatorial problems. The last
approach was also considered at an earlier stage of this research [51, Ingber, 1992].
However, it is only mentioned briefly in this thesis because the quench approach is a

form of annealing and takes many few steps than annealing. Thus it is not discussed

here.

Finally, the goal of developing a GASA architecture is to use the genotypic transfor-
mation to code the state variables or control parameters. While the process industries
have faced increasing competition from abroad, control or dynamic optimization has
become one of the most effective approachs to keep up with the changing demand and
unpredictable marketplace. In most of the fermentation industries, optimal conditions
can be found by minimizing (or maximizing) a cost criterion subject to the constraints
imposed by mathematical models. These models contain many singular points which

cause difficulty when trying to control them.

1.2 Organization of the Thesis

The organization of this thesis is described below. Chapter 3 starts with a brief
introduction to the basic algorithms — genetic algorithms, simulated annealing and
other search algorithms. The discussion is mainly focused on how to combine these
two structured algorithms. These combined architectures establish the basis of the

entire dissertation. A unified approach for these two algorithms is proposed, and an




associated learning algorithm is presented as well. Chapter 4 describes the architecture
of this combined technique (GASA) and how to use it for design. A simple application
in function optimization is also included in this chapter to show the efficiency of the
proposed algorithm. This chapter discusses the topic of algorithm design using a
division approach, which is an alternative to the simulated annealing. As to the
key role of temperature and the search mode of GASA algorithm, Chapter 5 discuss
the search phase theory which comes from the schema theory and the proposed
simulated phase transition. This search mode results from the exchange of different
phases. A phase is similar to a population here. When individuals change their
location, they shift to another plane (phase) in the convex surface. The individuals
change from one phase to another as the temperature moves toward equilibrium.
While moving towards equilibrium, the individuals become the parents of their next
generations. Schema theory were proposed by John Holland in his benchmark book
in 1975 [46, Holland, 1975] to explain how GAs perform so well. This theory can
partially explain the characteristics of phase transition by introducing the temperature
in the search mode. Chapter 6 and Chapter 7 describe the application of the GASA
technique in system design. In our example problems, we only consider dynamic
systems, whether they are linear or nonlinear. Time-varying factors and the given
constraints sometimes result in complex models. Here we choose validated models
from chemical and biochemical processes, involving fed-batch fermentation, where
the feed-rate optimization problem is considered in Chapter 6. In Chapter 7, feedback
tuning achieved with the GASA approach helps to stabilize a unstable pH plant. In
this case, a GASA PID controller is applied to this system. The convergence analysis
is considered to characterize the genetic-annealing control design. Finally, Chapter

8 summarizes the accomplishments made in the thesis. Some recommendations for



future work are also given. A promising design of parallelized GASA may possibly
be used in automata or cell placement to design a parallel machine. Additionally, a

notation list is provided in Appendix A.



Chapter 2

Claims Section

The original contributions of the thesis are:

1. Developed a new search algorithm — GASA
This thesis is based on my newly developed search algorithm, called GASA.
The algorithm uses a combined scheme from genetic algorithms (GAs) and
simulated annealing (SA). The characteristic§ of simulated annealing are used
to classify the populations created from a genetic approach. In this algorithm,
individual is the same as the chromosome in biology. It is part of an evo-
lutionary computation method. The individuals are unconditionally forced to
undergo the genetic operations of crossover and mutation in traditional genetic
algorithms. The GASA approach uses a division method for the individuals in
the whole population. During division, a simulated annealing approach is used.
The energy level of individuals determines whether they should be processed by
the genetic operators. In turn, temperature determines the energy level. The de-
sign and performance of this population-based search approach are discussed in

Chapter 4. The high precision and speed of this new algorithm are demonstrated



by practical problems used as examples.

. Examined and explained a new search scheme

The schema theory and simulated phase transition are used to discuss the search
trajectory of GASA. The schema theory originally comes from the discussion
of human social learning in psychology. In 1975, John Holland defined the
term to discuss the search ability of his first algorithm. The simulated phase
transition is a new description of the population behavior similar to the physical
phase transition (e.g. solid, liquid, gas). The phase is defined as the generated
population. They will move toward equilibrium until they meet the Gibbs
distribution. The principles applied for the exploration of the new search scheme

are inspired from the observation of Nature.

. Designed and tuned the algorithm developed from genetic and annealing mech-
anism

The design and tuning mechanism extracts genetic operators from biological
genetics and annealing from physical metallurgy. The tuning mechanism has
two stages: one from genetic operation including crossover and mutation, the
other is annealing. The genetic operators generate new diversity for the popula-
tion. Too much diversity would result in difficulty of convergence for all genetic
approaches. With the adjustment of temperature, GASA can converge easier
when compared with classical genetic algorithms. Thus, it is important to be
able to design of the temperature schedule, because it is related to the running

speed and precision in simulation.

. Developed a new scheme for dynamic optimization with the GASA Algorithm

The approach (GASA) for genetic algorithms through an annealing process
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is used to design a new scheme of dynamic optimization. The objective is to
optimize the input function for dynamic optimization problems. The application
is the feed rate optimization of a fed-batch bioreactor. After searching generation
by generation, the optimum input profile is found by the strong search ability of

GASA.

. Developed a new control strategy with GASA Algorithm

The new control strategy is developed with GASA which determines optimized
contol parameter by its search capability. The GASA technique is applied to
conventional PID control. The PID parameters are tuned with GASA through

the temperature schedule.
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Chapter 3

Search Algorithms and Nonlinear Programming

3.1 An Overview of Search Algorithms

The basic search algorithms as illustrated in Fig. 3.1 can be classified in general into
three broad classes [38, 28, Goldberg, 1989;Filho et al, 1994] which are “enumerative”,
“calculus-based” and “guided random” search. Their relationship can be found from

the family tree of general search methods.

Enumerative search algorithms search each point within an objective function’s
domain space (finite or discrete) one point at atime. They are very simple to implement
but may require significant computation. The domain space of many applications are
too large to search by using these techniques. A good example of an enumerate
technique is dynamic programming.

Calculus-based search algorithms apply a set of sufficient/necessary conditions
to be satisfied by the optimal solutions of an optimization problem. These approaches
sub-divide into direct and indirect methods. The direct methods (e.g., Newton and

Fibonacci) look for the extrema by “hopping” around the search space and assessing
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Figure 3.1: Classes of search algorithms

the gradient of the new point, which guides the direction of the search. This concept
hill-climbing which finds the best local points by “climbing” the steepest permissible
gradient. The indirect methods seek for the local extrema by solving the usually
nonlinear equations resulting from setting the gradient of the objective function equal
to zero. The search for possible possible solutions (function peaks) starts by restricting
the search to points with zero slope in all directions. The hill-climbing methods suffer
from the problem that the first peak found will be climbed, and this may not be the
highest peak. Having reached the top of the local extrema, no further progress can be

made. Thus, the algorithms can only succeed on a restricted set of “well behaved”

problems.

Guided random search algorithms are based on enumerative techniques, but use

additional information to guide the search. They are quite general in their scope,
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being able to solve very complex problems. Most of them are stochastic processes
resulting from the use of random probability. Two major\ sub-groups are: evolution-
ary computation (EC) and stochastic relaxation (SR). Stochastic relaxation uses a
stochastic process and a relaxation method to search. Simulated annealing is one of
the best known algorithms, which uses a thermodynamic evolution process to search
for minimum energy states. Evolutionary computation, on the other hand, is based
on the natural selection principles. Furthermore, evolutionary computation can be
sub-classified into genetic algorithms (GAs) and evolutionary algorithms (EAs)
(i.e. evolutionary strategies [79, 86, Rechenberg, 1973; Schwefel, 1977] and evolu-
tionary programming [33, Fogel et al., 1966]). The former emphasize the genotypic
transform, the latter emphasize the phenotypic adaptation. The computation search
approach evolves through generations, improving the features of potential solutions

by means of biologically inspired operations.

The details of simulated annealing and genetic algorithms will be introduced in

the next sections.

3.2 Genetic Algorithms

Evolution is a remarkable problem solving scheme. The field of evolutionary compu-
tation has approached a stage of maturity in the last few decades. Itis an attractive class
of computational models that attempts to mimic the mechanisms of natural evolution

or genetics to solve problems in a wide variety of domains.

Using a simulation of the evolution process with a digital computer, daunting
search problems has been attempted since the 1960s [14, 33, 80, Bremermann, 1962;

Fogel & Owens & Walsh ,1966; Reed & Toombs & Barricell, 1967].
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In the mid-1970s, Holland [46, Holland, 1975] introduced and analyzed the ex-
pected behavior of a particular genetic algorithm that employed a population of trial so-
lutions, fitness-proportional reproduction and the production of offspring by crossover
(asexual recombination), inversion and mutation. Theoretical analyses suggest that
genetic algorithms can quickly locate high performance regions in extremely large and
complex search spaces. Furthermore, some natural insensitivity to noisy feedback is
expected because of the distributed and repeated sampling in the population. These
expectations are based on the insight that genetic algorithms simultaneously balance
a preservation of building blocks (constituent parts of the objects being tested) that
have consistently been found in the better than average parents while they generate
and test new building blocks in the offspring [38, 47, Goldberg, 1989; Holland, 1992].
Following Holland’s original genetic algorithms, many variations of the basic algo-
rithms has been introduced [38, Goldberg, 1989]. Genetic algorithms are often viewed
as function optimizers, although the range of problems to which genetic algorithms

have been applied is quite broad [107, Whitley, 1993].

3.2.1 Description

Genetic Algorithms (GAs) can be defined as optimization techniques based on the
mechanisms of natural selection and genetics. Their search sampling is not limited to
a simple point but to a pool or population. Though they used randomized techniques,

they differ substantially from random searches.

Genetic algorithms differ from traditional optimization in four ways [38, Goldberg,

1989]:

e GAs work with a coding of the parameter set, not the parameters themselves.
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Figure 3.2: The GAs cycle
e GAs search from a population of points, not a single point.

o GAs use payoff (objective or cost function) information, not derivatives or other

auxiliary knowledge.

e GAs use probabilistic transition rules, not deterministic rules.

Fig. 3.2 illustrates the four stages of the process using the biologically inspired GAs
terminology. In each cycle, a new generation of the candidate solutions for a given
problem is produced. At the first stage, an initial population of the potential solutions
is created as a starting point for the search process. Each element of the population
is encoded into a string chromosome, to be manipulated by the genetic operators.
In the next stage, the performance (or fitness) of each individual of the population

is evaluated, with respect to the constraints imposed by the problem. Based on
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the each individual’s fitness a selection mechanism chooses “mates” for the genetic
manipulation process. The selection policy is ultimately responsible for assuring
survival of the best fitted individuals. The applied genetic operators are “crossover”

and “mutation”, both of which result in the structural change for offsprings in the new

generation.

In Genetic Algorithms the natural parameter set of the optimization is coded into
a finite-length string(s) over a finite alphabet. These strings can be viewed as the
chromosomes in the natural systems analogy. The set of strings or structure is the

genotype.

In natural systems the organism formed by the interaction of the genotype with its
environment is the phenotype, where in artificial systems it is called parameter set,
solution alternative, or point (in the solution space). The chromosomes in natural
systems are composed of genes (bits) which may take on values called alleles (0 or
1) in artificial system. The position of the gene is called the locus (plural loci). In
artificial systems the strings are composed of features or detectors which take on

different values located in different positions.

3.2.2 Genetic operators

The basic structure processed by GAs is the string. Strings (generally called individ-
uals) are composed of a sequence of characters of finite length A\ composed over some

alphabet V. Strings can be represented as follows:
A=aiay - -ay

Strings of the current population are then manipulated to generate a new population in

the next time step. This is done by the use of the transition rules, namely, reproduction,

17



Initialization:
- Set the parameters search space
- Randomly generate a population

A

Apply a fitness function |
(Best fit 7)
Yes

No

A 4
Genetic Operators:
1. Reproduction

2. Recombination
3. Mutation

new population

:

| Output the best fit individual |

Figure 3.3: An Outline of the Genetic Algorithms

crossover, mutation [25, DeJong, 1975]. The three main genetic operators are:

e Reproduction:

A process determines the number of copies of an existing string to be made
during a new population. The selection procedure probabilistically selects
an individual ¢ to remain in the population and reproduce with probability
pi = fif > j=1 fj- The fitness fi is calculated from the objective function.
Those states not selected are culled from the population. Because the average
fitness of the population is defined as f = 3251 fj/n, if there are b;(t) copies
of an individual i at time ¢, the new population will have b;(t + 1) = b;(¢) f;/ f
copies of f;. The effect of this reproduction scheme is that above average

performing individuals reproduce, replacing poorly performing individuals.
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The test, select, and reproduce operators are applied at each iteration (gen-
eration), and replace the standard generate and test paradigm from Darwin’s
benchmark work. That means that the strings (coding points in the search
space) with a higher fitness value have a higher probability of contributing to
one or more offsprings in the next generation. This is the artificial version of

Darwin’s natural selection, which guarantees improvement over generations.

e Crossover (Recombination):

This is a process in which a substring is swapped with the corresponding sub-
string of another string (its mate). By this process, new structures (genotypes)
are generated with new fitness values (hopefully better in average). The length of
the string to be crossed-over is selected at random. Then, an integer & along the
string is selected at random, with uniform distribution, in the interval, [1, A — 1].
Then the two strings are created at random, by exchanging all the characters

between positions k£ and X inclusively. As an example consider:

A = ayayas|asasag

B = bl b, b3|b4 b5 be

For k = 3, the resulting crossover will be:

A = a1 a2a3b4b5b6

Bl = b] b2b3a4a5a6

Crossover results in a randomized yet structured information exchange. Each

solution created combines the characteristics of both parents.

e Mutation:
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Although this operation plays a secondary role in GAs, it has proven very useful
and necessary (both in nature and in GAs). It is needed to introduce noise in
the system and to "kick" it periodically so that it does not get stuck in local
optima (a difference with the annealing process). Mutation randomly flips a
bit in an individual’s bit’s string representation. The resulting effect allows the
population to sample states away from its means, preventing the population from
converging and stagnating at any minima. Its real purpose is the recreation of
good genes that were lost by change through poor selection of mates. In other
words, the probability of mutation should be tiny enough (not zero) to protect

the valuable gene pool from wanton destruction.

3.2.3 Other genetic alternatives

Other operators such as inversion have been used in PMX (Partial Matched Crossover)
[39, Goldberg & Lingle, 1985] and Frantz’s study of eptistasis [35, Frantz, 1972].
Inversion is also the primary natural mechanism responsible for recoding a problem.
Inversion is defined by taking a random section of code and reversing its position

index, i.e.

A = ay|ara3040s|a6

A, = a1|a5a4a3a2|a6

The mathematical foundations of GAs are based on the concepts of schema (plural
schemata) and building blocks. Loosely speaking, the schema is a collection of genes
in a chromosome having certain specified values. For our purposes, a schema is a
small set of the genes in a chromosome which, when they take on specified values,

act as a unit to produce an effect [48, 46, Holland, 1968; 1975]. The picture of GAs’
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performance is much clearer with the perspective afforded by schemata. Because
highly fit schemata of low defining length and low order play such an important role

in the actions of GAs, they have a special name: building block.

The reproduction, crossover and mutation cycles continue until an acceptable
solution is found, until the average population fitness (f) converges to a stable fixed
set of points, or until a fixed number of generations have evolved. In the mean time,
it completes the generations’ cycles (see Fig. 3.3). However, GAs are not guaranteed
to find the global functional optima because: (1) the precision limits in the encoding
process can substantially reduce the solution accuracy, and (2) the search process does
not ergodically (weakly) cover and search the state space [51, Ingber, 1992]. The next

introduced algorithm can elude local minima and reach global minima statistically.

3.3 Simulated Annealing

Simulated Annealing (SA) is a stochastic computational technique derived from statis-
tical mechanics for finding a near globally-minimum-cost solution to large optimiza-
tion problems. Kirkpatrick et al. (1983) were the first to propose and demonstrate the
application of simulation techniques from statistical physics to optimization problems,

specifically to the problems of wire routing and component placement in VLSI design.

In general, finding the global minimum value of an objective function with many
degrees of freedom subject to conflicting constraints is a NP (NonPolynomial)-problem
with many local minima. A procedure for solving difficult optimization problems
should sample values of the objective function in such a way as to have a high
probability of finding a near-optimal solution and should also lend itself to efficient

implementation. Over the past few years, Simulated Annealing has emerged as a
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viable technique which meets the computational model criteria above. Ackley [5,
Ackley et al., 1985] provided a comprehensive assessment of the relative performance

of simulated annealing applied to a variety of optimization problems.

3.3.1 Description

Simulated Annealing accepts and rejects randomly generated moves on the basis of a
probability related to an annealing temperature. It can accept moves which change
the value of an objective function in the direction opposite to that of the desired long-
term trend. Thus, for a global minimization problem, a move that increases the value
of the objective function (an uphill move) may be accepted as part of the full series
of the moves for which the general trend is to decrease the value of the objective
function. In this way, Simulated Annealing is able to explore the full set of solutions
which are independent of the starting point. This means that one does not become
trapped in a far from optimal local minimum as is possible with algorithms based on

a gradient-descent method.

Simulated Annealing differs from conventional optimization, because it can:

process objective functions possessing quite arbitrary degrees of nonlinearities,

discontinuities, and stochasticity.

e process quite arbitrary boundary conditions and constraints imposed on the

objective function.

be implemented quite easily with the degree of coding quite minimal relative to

other nonlinear optimization algorithms.

statistically guarantee finding an optimal solution.
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Sometimes Simulated Annealing (SA) has been misused and transformed into
Simulated Quench (SQ) [52, Ingber, 1992] for which there is no statistical guarantee

of finding an optimal solution.

3.3.2 Thermal equilibrium in simulated data transformation

Statistical mechanics is the base for studying the behavior of annealing, such as atoms
(data points) in a fluid (a data set), in thermal equilibrium at a finite temperature.
Suppose that the state of the system is identical with the set of spatial positions of
the components. Here, the phase transition is defined as data transform between
ordered (low energy) and disordered (high energy) phases. The ordered phases
obey certain types of data arrangemenfs. If the system is in thermal equilibrium at a
given temperature T, then the probability of a given state s depends upon the energy

E(s) of the state and follows the Boltzmann distribution:

—E(s)
€ KT

i EweS e%T—l

where K is Boltzmann constant and S is the set of all possible states.

One can simulate the behavior of a system of particles in thermal equilibrium at
temperature 7" using a stochastic relaxation technique developed by Metropolis et al
(1953) . Suppose that at time measure ¢, the system is in state g. A candidate r for
the state at time ¢ 4 1 is generated randomly. The criterion for selecting or rejecting
state r depends on the difference between the energies of states  and ¢. Specially, one

computes the ratio h(AE)/T (reset T = KT), and AE = (E(r) — E(q)), where:

_mr(r) _ =ae (3.2)
mr(q)

If h > 1{AFE < 0), that is the energy of r is strictly less than the energy of ¢, then

the state is automatically accepted as the new state for time ¢ + 1. If A < 1, that is,
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E(r) > E(q), then the state r is accepted as the new state with probability h. Thus,
states of higher energy can be attained. It can be shown that as ¢ — oo, the probability
that the system is in a given state s equals 7p(s), regardless of starting state, and
thus the distribution of states generated converges to the Boltzmann distribution [36,

Geman & Geman, 1984].

3.3.3 Annealing process

In studying the moves of particles, one often seeks to determine the nature of the low-
energy state, for example, whether freezing produces glassy or crystalline solids. Very
low energy states are not common, when considering the set of all states. To achieve
low-energy states, it is not sufficient to sirﬁply lower the temperature of the system. The
temperature must be gradually lowered, spending enough time at each temperature to
reach thermal equilibrium. If insufficient time is spent at each temperature, especially
near the freezing point, then the probability of attaining a very low energy state is

greatly reduced.

Before applying the simulated annealing procedure to optimization, the following

preparatory steps are required. One must

e identify the analogues of the physical concepts in the optimization problem
itself: the energy function becomes the cost (objective) function, the states
of particles become the states of the parameter values, finding a low-energy
state becomes seeking a near-optimal solution, and the temperature becomes the

control parameter for the process.

e select an annealing schedule consisting of a decreasing set of temperatures

together with the amount of time to spend at each temperature.
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e have a method of generating and selecting new states.

Kirkpatrick’s annealing algorithm [55, Kirkpatrick, 1983] consists of running a
Metropolis Monte Caro integration algorithm at each temperature in the annealing
schedule for the amount of time prescribed by the schedule, and selecting the final
state generated as a near-optimal solution. The Metropolis algorithm, which accepts
states that increase cost as well as those that decrease cost, is the mechanism for

avoiding entrapment at a local minimum.

The annealing process is inherently slow. Geman and Geman (1984) determine
an annealing schedule sufficient for convergence. Specially, for a given sequence of
temperatures {7;} such that T; — 0 as t — oo and T} > l—% for a large constant T
(start temperature), then the probability that the system is in state s as t — oo is equal
to mo(s). Others have worked on improving this bound [44, 37, 50, Hajeck, 1985;
Gidas, 1985; Ingber, 1989].

At the outset it must be stated that SA is not without its critics. The primary
criticism is that it is too slow, which comes from the annealing process itself. Another
criticism is that it is overkill for many of the problems on which it is used [52, Ingber
& Rosen, 1992]; this is partially addressed here by summarizing a lot of work which
demonstrates that it is not insignificant that many researchers are using SA because
of the ease in which constraints and complex cost functions can easily be approached

and coded [16, 75, 52, Charnes & Wolfe, 1989; Pincus, 1970; Ingber & Rosen, 1992].
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3.4 Applications of Evolutionary Computation and

Further Challenges

Some examples of GAs and SA applications were mentioned in the Chapter 1. To
illustrate the flexibility of GAs, here we list some more. Some of these applications

have been used in practice, while others remain as research topics.

3.4.1 Applications of evolutionary computation

This section will discuss the main area of applications of GAs and SA. Here we review

some of the related applications.

The major application areas of genetic algorithms (GAs) are:

e Numerical function optimization:
Most traditional research has concentrated in this area. GAs and SA have been
shown to be able to outperform conventional optimization techniques on diffi-
cult, discontinuous, multimodal, noisy functions [25, 21, DeJong, 1975;Davis,

1991].

e Dynamic system design:
The GAs attract many engineers and scientists working on the design of dy-
namic systems. The application of genetic algorithms for system identification
and control were recently proposed by many researchers [58, 85, Kristinsson,
1992;Schmitendorf et al, 1992]. Work combining GAs and Fuzzy control can
be found by Park et al[74, Park et al, 1994]. Controller design and tuning with
GAs was done by VarSek et al[101, VarSek et al, 1993]. Recursive adaptive

filter design uses genetic algorithms [27, Etter et al, 1982]. Optimal design of
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PID process controllers has also been based on genetic algorithms [103, Wang

& Kwok, 1993].

Combinatorial optimization:

These tasks require solutions to problems involving arrangements of discrete
objects. This is quite unlike function optimization, and different coding, re-
combination, and fitness function techniques are required. Probably the most
widely studied combinatorial task is the travelling salesperson problem (TSP)

[39, 40, 64, Golderg, 1985;Gorges-Schleuter, 1989;Liepins & Hillard, 1989].

Machine learning:

There are many applications of GAs to learning systems, the usual paradigm
being that of a classifier system. The GAs tries to evolve (i.e. learn) a set of if
-+ - then rules to deal with some particular situation. This has been applied to

game playing [9, Axelrod, 1987].

Other applications using GAs are image processing [38, Goldberg, 1989], molecular

prediction [98, 104, 20], and genetic algorithms for training neural networks [56].

Simulated annealing has been applied to problems in computer design [55, 102],

imagine restoration and segmentation [36], combinatorial optimization such as TSP

[54, Kirpatrick, 1984], and artificial intelligence [45, Hinton & Sejnowski, 1983].

3.4.2 Challenges for evolutionary computation

Many chemical processes are strongly nonlinear. For example, a process involves

physics or chemistry of a process such as in supercritical extraction, in which complex

phase behavior leads to sensitive dependence of operation on operating conditions and
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control. The case of nonlinear time-varying plants the problem can be more difficult,
with few available results. In most cases, the actual dynamical performance during
process operation typically will not match the desired performance, due to model
uncertainty, or drift and aging of components. For these reasons, there is a need for
design techniques that will (i) overcome the uncertainty in conventional design and,
(ii) account for modeling uncertainties that are exhibited during system operation.
Most of the above problems can be solved with the aid of nonlinear programming.

This in turn brings us to the study of this evolutionary computation.

Most of these problems are concentrated on how to reach the objective value of a
given problem. These problems may occur in process control, dynamic optimization or
steady state optimization. The most challenging problem is the dynamic optimization
of an unknown input function especially for nonlinear dynamic systems. The popular
methods for solving these problems, like Pontraygin maximum principle, are not
sufficient conditions for the solution. While solving the applied problem, gradient
optimization methods still use the traditional steepest descent method. This method

easily converge to a local minima if they exist.

The idea of incorporating problem specific knowledge into genetic algorithms is
not new and has been recognized for some time. Several researchers have discussed
initialization techniques, different representations, and the use of heuristics for genetic
operators. Many researchers try to use other methods, like neural networks, to over-
come problems without a priori knowledge. Unfortunately, their weighting methods
(the learning rules) still mostly use hill-climbing methods. That is, their weights may
not be the optimal ones for the neurons. Thus, finding a new optimization method is
the inevitable task for people who want to achieve high precision. This is the goal of

how we will utilize the combined guided random search method to improve it. As De
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Jong observed [24, De Jong, 1994] recently:

“... the field had pushed the application of simple GAs well beyond our
initial theories and understanding, creating a need to revisit and extend

them.

3.5 Miscellaneous Evolutionary Computation

Algorithms

Other formats of evolutionary computation algorithms shown in Fig. 3.1 will be briefly

introduced in this section.

3.5.1 Evolutionary algorithms (EAs)

Evolutionary algorithms use computational models of evolutionary processes as key
elements in the design and implementation of computer-based problem solving sys-
tems. A variety of evolutionary computational models have been proposed. They
share a common conceptual base of simulating the evolution of individual structures
via the processes of selection, mutation, and reproduction. The processes depend on

the perceived performance of the individual structures as defined by an environment.

More precisely, EAs maintain a POPULATION of structures, that evolve according
to rules of selection and other operators, that are referred to as “search operators”,
(or genetic operators), such as mutation. Each individual in the population receives
a measure of it’s fitness in the environment. Reproduction focuses attention on
high fitness individuals, thus exploiting (cf. EXPLOITATION) the available fitness

information. Only mutation perturbs those individuals, providing general heuristics for
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EXPLORATION. Although simplistic from a biologist’s viewpoint, these algorithms

are sufficiently complex to provide robust and powerful adaptive search mechanisms.

The main difference between EAs and GAs is with/without the genetic operator
— crossover. We can find this from the above EAs algorithm and GAs. The basic
EA method involves 3 steps (Repeated until a threshold for iteration is exceeded or an

adequate solution is obtained):

1. Choose an initial population of trial solutions at random. The number of so-
lutions in a population is highly relevant to the speed of optimization, but no
definite answers are available as to how many solutions are appropriate (other

than > 1) and how many solutions are just wasteful.

2. Each solution is replicated into a new population. Each of these offspring
solutions are mutated according to a distribution of mutation types, ranging

from minor to extreme with a continuum of mutation types in between.

3. Each offspring solution is assessed by computing its fitness. The N best so-
lutions, or “stochastically” N of the best solutions, are retained for the next

population of solutions.
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3.6 Structured Evolutionary Computation for

Nonlinear Programming

3.6.1 Nonlinear programming Environment

The general nonlinear programming problems NLP can be considered to find X soas

to

optimize f(X), X = {z1, 23, -+, 2.} € R
subject to p > 0 equations :
¢(X)=0,i=0,---,p. (3.3)

This is the best known method of determining the global maximum (or minimum)
for a global nonlinear programming problem. Only if the objective function f and
the constraints c; satisfy certain properties, can the global optimum be found. These
nonlinear programming problems are found in the area of control, modeling, optimiza-
tion, detection and pattern recognition [11, 12, 7, Betts, 1977;Biggs, 1975;Bryson &
Ho, 1975]. Many of the algorithms mentioned previously were developed for un-
constrained problems (i.e. direct search method, gradient method) and constrained
problems (the algorithms usually classified as direct and indirect methods). An indi-
rect method attacks the problem by extracting one or more linear problems from the
original one, whereas a direct method tries to determine successive points. Despite
the active research and progress in global optimization in recent years [30, Floudas
& Pardalos, 1992], it is probably fair to say that no efficient solution procedure is in

sight for the general nonlinear programming problems NLP.

There are many other problems connected with traditional optimization techniques.

In fact, many proposed methods are local in scope, they depend on the existence of
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derivatives, and they are insufficiently robust in discontinuous, vast multimodal, or
noisy search spaces [38, Goldberg, 1989]. It is important to investigate other (heuristic)
methods, which, for many real world problems, may prove useful. In the following
sections, structured algorithms are proposed from the genetic algorithms , evolutionary

algorithms and simulated annealing.

3.6.2 A structured genetic algorithm

Genetic algorithms are used for a number of different application areas. An example
of this would be multidimensional OPTIMIZATION problems in which the character
string of the CHROMOSOME can be used to encode the values for the different

parameters being optimized.

In practice, therefore, we can implement this genetic model of computation by
having arrays of bits or characters to represent the chromosomes. Simple bit ma-
nipulation operations allow the implementation of CROSSOVER, MUTATION and
other operations. Although a substantial amount of research has been performed on
variable- length strings and other structures, the majority of work with Genetic al-
gorithms is focussed on fixed-length character strings. We should focus on both this
aspect of fixed-lengthness and the need to encode the representation of the solution
being sought as a character string, since these are crucial aspects that distinguish
Genetic Algorithms from Genetic Programming, which does not have a fixed length

representation and there is typically no encoding of the problem.

When the genetic algorithm is implemented it is usually done in a manner that
involves the following cycle in Fig. 3.2: evaluate the fitness of all of the individuals in

the population, create a new population by performing operations such as crossover,
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fitness-proportionate reproduction and mutation on the individuals whose fitness has

just been measured. Discard the old population and iterate using the new population.

One iteration of this loop is referred to as a generation. There is no theoretical
reason to use this as an implementation model. Indeed, we are not able to observe the
“nonstop” behavior in populations in nature as a whole, even though it is occurring,

but it is a convenient implementation model.

The first generation (generation 0) of this process operates on a population of
randomly generated individuals. From there on, the genetic operations, in concert

with the fitness measure, operate to improve the population.

The pseudo code of GA is described as below.
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procedure Algorithm GA
t=0;
/* initialize a usually random population of individuals */

initialize population P(t);

/* evaluate fitness of all initial individuals of population */

evaluate P(t);

/* test for termination criterion (time, fitness, etc.) */
while (not termination-condition)
/* increase the time counter */

t=t+1;

/* select a sub-population for offspring production */

P(t) = selectparents P(t — 1);

/* recombine the "genes" of selected parents */

recombine P(t);

/* perturb the mated population stochastically */

mutate P(t);

/* evaluate its new fitness */
evaluate P(t);

end;
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During iteration ¢ each solution, X;, from the population (the population size
remains fixed through the evolution space) is evaluated by computing f (X,), ameasure
of its fitness. A new population, P(t + 1), is then formed: we select the candidate
solutions to reproduce on the basis of their relative fitness, and the selected solution

are recombined using genetic operators to form the new population.

3.6.3 A structured simulated annealing

Simulated annealing generalizes the hill-climbing methods and eliminates their main
disadvantage: dependence of the solution on the starting point, and statistically
promises to deliver an optimal solution. This is achieved by a probability, pr, of
acceptance: pr = 1, if the new point provides a better value of the objective func-
tion; however, pr > 0, otherwise. In the latter case, the probability of acceptance pr
is a function of the values of the objective function for the current point and the new
point, and an additional control parameter, “temperature”, T'. In general, the lower
temperature 7' is, the smaller the chances for the acceptance of a new point are. During
execution of the algorithm, the temperature of the system, 7, is lowered in steps. The
algorithm terminates for some small values of T, for which virtually no changes are
accepted any more. The structure of the procedure simulated annealing is given as

follows.
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procedure Algorithm SA
t=0;
initialize temperature T';
select a current string X ¢ at random;
evaluate X o
while (not stop-criterion)
while (not termination-condition)
select a new string X,
in the neighborhood of X,
by flipping a single bit of X,
if £(%,) < £(Xa)
X, « Xy
else if random[0, 1) < ezp{(f(X,) — F(X.))/T}
X+ X,
end;
end;
end;
T « g(T,?);
t+—t+1;

end;

The random number generator random[0, 1) returns a random number from the
range [0,1). The termination-condition checks whether “thermal equilibrium” is

reached, i.e., whether the probability distribution of the selected new strings approaches

36



the Boltzmann distribution [1, Aart & Korst, 1989]. However, in some methods of
implementation [4, Ackley, 1987], this repeat loop is executed just k times (k is a

user-defined parameter).

The temperature T is lowered in many steps (¢(7, t) < T for all t). This algorithm
terminates for some small values of T": the (stop-criterion) checks whether the system

is “frozen”, i.e., virtually no changes are accepted when T is small enough.

This algorithm is able to incorporate penalties for violated constraints or reject
nonfeasible strings X,. For example, the code for VFSR (Very Fast Annealing)
[S0, Ingber, 1989] rejects nonfeasible points. Moreover, quite often the simulated
annealing is modified to permit adaptive changes in the ranges of the parameters to
take into account new information that might make it efficient to cut down the size of

the search space.

3.6.4 A structured evolutionary algorithm

For EA, like GA, there is an underlying assumption that a "fitness" landscape can be
characterized in terms of variables, and that there is an optimum solution in terms of
those variables. For example, if one were trying to find the shortest path in a Traveling
Salesman Problem, each solution would be a path. The length of the path could be
expressed as a number, which would serve as the solution’s "fitness". The "fitness
landscape" for this problem could be characterized as a hypersurface proportional to
the path lengths in a space of possible paths. The goal would be to find the globally

shortest path in that space.

The EA algorithm can be summarized as below. P(t) is the generated population

at generation t. P(t + 1) is the selected subpopulation. The pseudo code of EA can
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be illustrated as below.

procedure Algorithm EA
t=0;
/* initialize a usually random population of individuals */

initialize population P(t);

/* evaluate fitness of all initial individuals of population */

evaluate P(t);

/* test for termination criterion (time, fitness, etc.) */
while (not termination-condition)
/* increase the time counter */

t=t+1,;

/* select a sub-population for offspring production */

P(t) = selectparents P(t — 1);

/* perturb the mated population stochastically */

mutate P(t);

/* evaluate its new fitness */
evaluate P(t);

end;

38




Chapter 4

A Population-Based Search Algorithm through Thermodynamic
Operation

— GASA Algorithm Design

4.1 An Overview

A general search algorithm of unified evolutionary computation and simulated anneal-
ing is proposed in this chapter. The combined algorithm from evolutionary computa-
tion methods is a classical genetic algorithm. This created algorithm is called GASA.
Depending on the setting of its control parameters, GASA executes as a genetic al-
gorithm, a simulated annealing algorithm, or a mixture of these. In our preliminary
investigations, we have developed a method that merges the approaches of genetic
algorithms and simulated annealing (GASA). This combined algorithm represents an
application’s independent approach to optimization, and the resulting search process
is highly adaptive. In GASA, objective function parameters are coded into a "chro-
mosome" and a population of individuals is maintained and updated over a period of
generations. When genetic algorithms are used alone, usually the most fit individuals

are preserved for the next generation and the least fit individuals undergo crossover
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and mutation.

One of the main problems of the genetic algorithms (GAs) is its convergence
behavior [83, Rudolph, 1994]. Initially, the cost values of the population improves
quickly. But then it becomes very difficult to obtain further improvement. Most of the
run time is spent in the later phase of the process in which only small improvements are
obtained very slowly. Simulated annealing is a high-precision optimization technique,
but with lower running speed. In the meantime, the evolutionary computation provides

a population-based method to speed up the annealing algorithm.

The annealing technique was invented by Kirkpatrick in 1983 [55, Kirkpatrick,
1983]. 1t is essentially a modified version of hill-climbing. Starting from a random
point in the search space, a random move is made. If the move takes us to a higher
point, it is accepted. If it takes us to a lower point, it is accepted only with the
probability calculated at that time. The probability begins close to 1, but gradually
reduces towards zero — the analog being with the cooling of a solid. A description of
the cooling of molten metals motivates this algorithm. After slow cooling (annealing),
the metal arrives at a low energy state. In such circumstances, thermal equilibrium
at a given temperature is characterized by a Boltzmann distribution function of the
energy states. Under these conditions, even at low temperature, a transition may occur
from a low to high energy level, albeit with a small probability. Such transitions are
assumed to be responsible for the system reaching a minimum energy state instead of

being trapped in a local meta-stable state.

Like other random search techniques, simulated annealing only deals with one
candidate at a time, and so does not build up an overall picture of the search space. No
information is saved from previous moves to guide the selection of new moves. To

overcome this limitation, we use the population-based guided search in combination
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with the annealing technique to create a new search algorithm. Sirag and Weisser [92,
1987] use a similar approach with a “thermally” motivated adaptation of inversion,
mutation and crossover on the TSP problem; however, our approach specifically
creates subpopulations that are subject to mutation or crossover and are created by an

annealing algorithm.

In the GASA technique, objective function parameters are coded into a "chro-
mosome" and a population of individuals is maintained and updated over a period
of generations. When genetic algorithms are used alone, usually the most fit indi-
viduals are preserved for the next generation but any individuals can be selected to
undergo crossover and mutation. In the GASA technique, simulated annealing is used
in choices regarding the subset of individuals to undergo crossover and mutation. At
each generation, some individuals are accepted for a special gene pool that contains
mostly the fittest individuals. A simulated annealing approach, with a probability cal-
culation based on a Boltzmann distribution using an energy value parameter, is used
to decide which individuals are accepted or rejected. Those set aside from the special
gene pool are subjected to crossover. A similar procedure is then used to decide which

individuals will undergo mutations.

The GASA approach is intuitively appealing because it allows the population to
sustain the most fit individuals in most cases, but in a few cases, due to the probabilistic
nature of the simulated annealing, highly fit individuals are crossed over or mutated.
The less fit individuals are more often subjected to the perturbations of crossover
and mutation, and these are the individuals who could benefit the most from such
changes. Fewer iterations are required with GASA to arrive at the final solution at
the global minimum of the objective function. Thus the combined technique appears

promising for difficult problems with many local minima. Potential applications
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include controller design and training [101, VarSek et al., 1993], molecular prediction
[98, 104, 20, Unger & Moult, 1987; Wehrens et al., 1993; Dandekar & Argos, 1994],
fuzzy reasoning and control [74, Park et al., 1994}, and genetic algorithms to train

neural networks [56, Kitano, 1990].

4.2 The Preliminary Unified Concepts

4.2.1 A mapping inspired from nature

— biological and physical systems

We have developed a unified method (GASA) which uses genetic algorithms (GAs)
and simulated annealing (SA), described in the section, as the basis for optimization.
The moving of points at the search plane is similar to that of particles in the crystals of
materials. For example, a group of individuals of a varying environment when cooled
to a freezing temperature will tend to assume relative change vs. the position in their
domain in such a way as to minimize the potential energies of the systems. Because of
alarge number of individuals and possible arrangements, the final state will most likely
correspond to only a local minimum energy instead of a global minimum energy. That
is, energy change makes the structural changes of the participating individuals. Their
state should be totally different from their beginning positions even in the various

generations.

This method extracts the characteristics of SA to make the participating individuals
reach the global convergence. It is same as moving particles in the annealing process
whose movement is shown in Fig. 4.1. Many individuals are initialized in GAs and

then are treated with our annealing process. The annealing schedule is defined by the
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energy; function values

temperature; variables

Figure 4.1: The behavior of the participating individuals

user. The participating individuals will change their structures if their energy goes
beyond their genetic threshold energy. Once their structures change, the individuals
in next generation will appear at another position and not at their parent’s locations as

shown in Fig. 4.1.

4.2.2 The premise of the combination of GAs and SA

The concept of constructing the pathway between genetic algorithms and simulated
annealing is based on Energy. This “energy” concept is only an imagination instead
of existence in reality. Many search problems can be regarded as linear or nonlinear
programming problems. They all have one or many objective (cost) functions. The

energy can be defined as the objective value from the applied problems.

objective function f(X), X = {z1,22, -, 24} € R? 4.1)
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Table 4.1: The basic units in different algorithms

Phenotype | Genotype

GAs chromosome gene

SA | macro particle atom

EA individual none
GASA individual gene
(chromosome)

The participating basic unit is an individual & X which is not limited to the so-called

particle in simulated annealing or chromosome in genetic algorithms.

Basic unit The most important concept behind to be presented is to look upon
individuals (chromosomes) and particles into one basic unit: individuals. They are
the real “data points” in practical operation. Chromosomes are comprised of genes,
and particles are comprised of atoms in general, too. The genes are the values (0 or 1)
in the binary bits. We suggest pseudogenes to be the basic unit of the phenomenon,
here we use the term “pseudogenes” to cover the Holland’s canonical GAs work on bit
string of fixed length. These pseudogenes will be processed by Darwin’s evolutionary
selection scheme, i.e. only individuals with high fitness can survive. Their structures

are changed for the sake of existence in the varying environments.

Environment The environments here are provided by the different functions or

models. They become constraints to the practical supplied problems.

The comparison of the basic units in these algorithms is described in Table 4.1.

The unit in genetic operation for GASA is genes which are located at chromosomes.

Genotype and Phenotype In nature, the physical expression of the genotype
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is phenotype. For example, a person has a specific genetic structure that perhaps
someday can be mapped in a graphic display. That apparent structure is the person’s
genotype which is the explicit genetic structure of the person’s chromosomes. The
actual person is characteristics (tall, black hair, etc.) is the phenotype. Likewise, the
atom is the genotype of the particle. The combined action of the atoms of the particle
can be described as the phenotype of the particles. This is able to explain the mapping
between biological and physical systems. In this task, the Boolean binary number
is applied, a chromosome may have the genotype “000001011” which decodes to a

parameter value (phenotype) of 11.

4.3 A Unified Approach

4.3.1 GASA algorithm design

Before we describe how to design Genetic Algorithms + Simulated Annealing (GASA),
let’s formulate a general statement of searching optimum problem. Consider a general
function minimization problem, with function f : X — RP, X is the set of all

variables,

J = min f(X) (4.2)
X = {xi)xZ)"'axD}

r; € [Ui, Ui]

where u; and v; are the lower and upper bounds, respectively, and D is the number of

the variables z; in the defined domain of the function f.
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When we apply the generation mechanism of GAs, the z; is replaced by z;(t),
where ¢ is the number of generations. Our goal for this problem is to search for the

global minimum f*, where z is the minimum location.

1. Temperature schedule
Simulated annealing offers a strategy very similar to iterative improvement with
one major difference: annealing allows perturbations to rﬂove in a controlled
fashion. We now refer to individual perturbations as moves. Each move can
transform one configuration into an either better or worse configuration, so it is
possible to jump out of a local minima and potentially fall into a more promising
path. The moves are controlled by temperature. Thus, the basic requirement
for simulating this process is the ability to simulate how the system reaches
thennodyﬁamic schedule at each temperature. However, for the temperature
schedule, the initial temperature should be set large enough to be successful in
the annealing process. We fix the annealing schedule as T;,,; = o - T;,,, where
« is a temperature reduction parameter usually assigned to a value between
0.99 and 0.85, and m is the number of moves of individuals attempted to reach

equilibrium.

2. Population generating
First, we have to create an initial population of individuals, where each individual
is a binary vector of [ bits. The initial population with D individuals is noted
as P(0) = {#(0)]i = 1,2,---,D}. All of the [ bits for each individual are
initialized. The creating mode is broadly applied in the following operation.
The vector, 7(0) is the initial encoded Boolean binary population vector which

can be decoded into genes . The initial population is prescribed at ¢ = 0. It
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can be seen as an encoded population matrix ﬁ(t) at generation ¢ and can be

formulated as
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where {n, D, [} are the total number of individuals, dimension (the number of

chromosomes per individual), and bits (the number of genes per chromosome),

respectively. The vector set, {7;(¢)}, is the set of all binary values of the

parameters of individual ¢ in a population. For convenience, we can define a

binary matrix v as

v(t) Y {v®)i=1,.

comj=1,....Dk=1,--,1}

Its decoded real-value population matrix X (¢) is obtained by applying the de-

coding operator I

( i T2
Z21 T2
ZTnt Tp2

t

(4.4)

where n is the total number of individuals and T is a decoding function. Each

line notates the parameters of an individual.

. Function evaluation

As noted in GAs, the functional evaluation plays an important role, rating

potential candidate solutions in terms of their objective function value, which
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ultimately determines fitness. The individuals need to be decoded because of

the binary bits. The function evaluation mode can be defined as

eval(X(1) & f({Xi(1)}) £ | 4.5)

where n is the number of the individuals in the population at generation ¢. The
vector set, { X;(t)}, is the real-value of individual i at generation ¢. Then it still

requires the scaling of fitness from the evaluated function values.

4. Fitness scaling
The scaling function § calculates the fitness from the objective function and it
scales the fitness. The function § is able to assure the best individual receives
the largest fitness. Normally, fitness evaluation transforms the cost function
value f into a measure of relative fitness. Most commonly, a linear dynamic
scaling is used which takes into account the worst individual of the population
P(t — w) over w time steps before (if t — w < O then replace P(t — w) with

P(0)). If w is a scaling window, the scaling function & is defined by

5(f(T(kt)),w) = a- f(I(k)) + bw) (4.6)

where t is the current generation, a is a scaling factor (¢ = —1 usually). The
b(w) is a baseline reflecting the worst fitness value which occurred within the
last w generations. Each individual’s fitness is subtracted from b(w). With
linear dynamic scaling, negative fitnesses do not occur and thus do not cause

any problem for the calculation of selection probabilities according to Equation

(1).
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5. Selection
The selection procedure probabilistically selects an individual ¢ to remain in the
population and reproduce with probability

D;
?:1 q)J

pi= 4.7)

The fitness @; is calculated from the objective function and defined as below.

() ¥ 5(f(T(v),w) (4.8)

where @ is a fitness conversion operator. When the individuals are selected, the

high-fitness individuals will be reproduced according to their fitness function ®.

6. Genetic Alterations through Thermodynamic Operation
Before the selected individuals process crossover, the modified Metropolis crite-
rion is applied to decide which individuals are to be put into a subpopulation that
does crossover. This decision is made according to an acceptance probability.
First, choose the minimum point of the individuals as the comparison center.
The minimum objective function value and the optimum location (selection

center) are given by {f*, X*} for the current population.

It is possible to define each individual’s energy function from the objective
function value. Thermodynamics indicates that thermal equilibrium at tem-
perature 7' is a probability distribution in which a state with energy function
{EBi(t) = f(X;(t))|i =1,---,n}, whose n is the total number of individuals

in generation ¢. The corresponding threshold probability p; is

4.9)

N
3

where Z(T) is a partition factor.
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From the above definition, the probability p between X; and X j is

E‘L
pi _ eE
pj e_kgij:
AE

— o5 (4.10)

where AE = E; — E;. The k is 1 in this simulation.

Modified Metropolis Criterion (MMC)

A modified Metropolis criterion is used here. The method applied here is to
replace E; with the population’s minimum energy E*, and to have X ; replaced
by X*. This modification results in AE being greater than or equal to 0.
Thus, in classic simulated annealing, sometimes the uphill climbing is retained
and the move may still occur. Therefore, a new, higher energy state will be
accepted by the individual, according to a threshold probability. In GASA,
an entire population of individuals is divided into two classes, say E, & Z.
Usually, the motivation of division is from the individual’s energy (expressed
with its threshold probability). For example, the crossover operation increases
the diversities in the low-energy class E.. Occasionally because of the SA
aspect, the higher-energy individual may move uphill or downhill according to
their crossover mating. When crossover is done, the resulting individuals may
end up with a higher energy level, that allows them to climb over a hill and into
another basin. Since the new basin may have a lower minimum, there can be

beneficial to let the individuals reach the valley.

For each individual 7, p; is calculated. If p; > random|0, 1), then the individual
is accepted and put in a subpopulation pool =.. Otherwise the individual is

not accepted into =, and is put into subpopulation =,,.. We process the set of

unaccepted individuals by the crossover operator CY,,}, where p, is the applied
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crossover rate, on population =,.. The mates of individuals are crossed-over by
selecting a cross-point randomly. The crossover cannot always guarantee the
offspring’s fitness would be higher than that of their parents, but it can increase
diversity and sometimes makes recombinations that have superior fitness. The
typical feature of this algorithm is that, besides accepting individuals with high
fitness in population E (after selection), it to a large extent puts individuals
with high fitness into population =, and puts individuals with low fitness into
population E,,., according to the temperature. Initially, at large values of T,
exceptions are more likely; as 7' decreases only smaller exceptions will be made

to the general rule that high fitness individuals are preserved in population E..

The mutation operation will process with similar action as that in crossover. It
is processed by the mutation operator My, .}, where p,, is the applied mutation
rate. For each individual, we calculate g;. If the individual passes the acceptance
criterion, it will be kept in a gene pool Z,,,. The remaining individuals are put into
subpopulation Z,,,,, then are mutated at a randomly selected bit, and kept. Thus,

mutation is usually applied to the inferior genes of the running chromosomes.

By successively lowering the temperature and running this algorithm, we can
simulate the individuals coming into equilibrium at each newly reduced temper-
ature, and thus effectively find the solution candidates according to the energy

transitions.

In this technique, equilibrium is only a conceptual criterion instead of a real
physical phenomenon. It can be described as while the generation process is
repeated, a sequence of temperatory candidate solutions is produced until

the solution space occupancy is described by the Egs. 4.9 & 4.10.
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7. Insert the individuals in next generation
The individuals kept in the gene pools are combined into a single pool and beco
me the parents of the next generation ¢ 4 1. The initial temperature T} is chosen
together with the procedures of thermal equilibrium. Then 7" is updated and held
constant, and the parameters that simulate the thermal dynamics are set. The
choice of these parameters is referred to as a cooling schedule as recommended

in step 1.

The moving of the participating individuals vs. temperature is shown in Fig. 4.4.
The balls are the individuals climbing upwards and downwards according to the
temperature change. Fig. 4.1 also reveals that the individuals’ function values change

with the variables.

This GASA algorithm can be described as follows:

Parameters declaration:
t = 0; (the initial generation);
tmaz 18 the allowed maximal number of generations;
T, = initial temperature;
T'm = number of temperature moves to attempt;
C is the crossover operator;
M is the mutation operator;
= is the total gene pool per generation;
Initial P(0) = {¢(0)} € U where U = {0, 1}};
Evaluate P(0) = {®(v1(0)), - - -, ®(11(0))};

where ©(14,(0)) = 8(f(C(1(0)), P(0));
For m=1,Tm

while (t < tmax)

For each individual z,
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Evaluate the change of energy (F; — E*) and find a probability p;;
if threshold probability p; > random [0, 1),
keep the accepted individual in a gene pool Z,;
else
put ¢ into Z,,;
Crossover: vi(t) = Cpoy (Pa(t)), Vk € {1,--+,1}
, Vﬁc(t) € Epe(=E —E,), p, is the crossover rate;
replace Z with &, + E,,.;
For each individual ¢,
Evaluate the change of energy (E; — E*) of the individuals from Z and v} (t),
and find a probability p;;
if accepted probability p; > random [0, 1),
keep the accepted individual in a gene pool Z,,;
else
put ¢ into Z,,,,;
Mutate: v/(t) = Mp,.3( m( ), Vke {1,.--)1}
VB (1) € Bpm(=E — Em) » Pm is mutation rate;
replace Z with &,, + E,,,,,;
Until equilibrium,;
T = update(T);
Evaluate P(t) = {®(1(t), - - -, ®(1(t))},
where ®(u(t) = o(f(T(v (t))) P(t—w));
Select P(t + 1) = sel(P(t));
Reproduce P(t + 1);
};endt
t=1t+1;

}; end move
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Bohachevsky function

Figure 4.2: A multiple-optima function

4.4 Results on Function with Multiple Optima

To compare the GASA approach with GAs, we performed an experiment on a function
with multiple optima. The function chosen is shown in Fig. 4.2, and is generated by

the following equation.
f(21,22) = 23 + 223 — 0.3cos(3nx;) — 0.4cos(4mzy) + 0.7 4.11)

This function was examined by Bohachevsky et al. (1986)[13, Bohachevsky, 1986].
It has numerous local minima and a global minimum at the origin. This function is
illustrated in Fig. 4.2 with z;,z, € [—1, 1]. There are many local minima indicated
in the contour plot as in Fig. 4.3. “*” shows the location of global minimum. When
(x1,x,) is far from the origin, the quadratic terms of f(z;,z,) dominate the cosine
terms and the overall shape of f is quadratic. If (z;,z,) is close to the origin, the
cosine functions dominate the quadratic terms and f(z, z,) displays many hills and

valleys. It is very difficult to discover the global minimum for the function using a

54




2nd variable

' 1st variable .

Figure 4.3: The contour plot of Bohachevsky function

gradient technique.

We have applied the GASA technique to find the global optimum of the Bo-
hachevsky function. First, we initialize the parent population randomly, and then
encode the values x; and x,. Secondly, using the decoded variables, we select the
most fit individuals from their function vaiues. Then, we apply the MMC (Modified
Metropolis Criterion) to choose the individuals either crossed-over/mutated or kept
in a gene pool. Thus, very probable moves can be rejected, and very improbable
moves can be accepted — at least occasionally. However, while lowering the temper-
ature successively, we can simulate the individuals until thermodynamic equilibrium

is achieved in each generation.

Fig. 4.4 is the annealing schedule in this experiment. The starting temperature is
4.5 and, over 28 iterations, the temperature relaxed to zero. This number of generations

was sufficient to find the global minimum for this function.
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Fig. 4.5(a) shows the locations of the individuals in the 28th generation. There are
two variables on each chromosomes, plotted on the horizontal and vertical axes. The

objective values of all individuals in generation 28 can be found in Fig. 4.5(b).

The best and mean score of objective values are shown in Fig. 4.5(c) as functions of
the generations. The best and mean objective values are reaching the global minimum
at generation 8 and 12, respectively. The best objective values begins just below 0.3
and the mean objective value begins at about 1.4. Then there is initially a wide spread
in the objective values for different individuals. After 15 generations have gone by,

the mean objective value is under 0.0058, close to the global minimum of zero.

Fig. 4.5(d) shows the value of the first and second variables over the 28 generations.
These values are taken from the individual that ultimately has the best objective
function. After generation 25, both variables have reached approximately O, the

location for the global minimum.

Fig. 4.6 shows the three results from GASA, for comparison. In Fig. 4.6(a), the
fitness of the best individual is plotted over a period of generations. The highest fitness
value 2 corresponds to the objective function minimum at 0. Fig. 4.6(b) shows the
standard deviation of the objective values over the entire population as a function of
the generation. The min & mean of the objective values as shown as a number of

function calls for this algorithm in Fig. 4.6(c).

Fig. 4.7 and Fig. 4.8 are generated with GAs by applying the same crossover and
mutation rate and same initial population size as those used in GASA. The same plots
appear in Fig. 4.7 & Fig. 4.8 for GAs as in Fig. 4.5 & Fig. 4.6 for GASA. GAs become
convergent after the 69th generation (see Fig. 4.7(c) & (d)). The fittest individuals
can also be found at different generations from Fig. 4.8(a). Moreover, Fig. 4.8(b)

indicates GAs’s standard deviation is an irregular oscillation. GAs use more function
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Figure 4.4: Annealing schedule

calls than GASA (Fig. 4.8(c)). Thus GAs need more generations to reach convergence
compared with GASA.

The comparisons of the performance of GASA and GAs with the same parameters
can be found in Figs. 4.9~4.12. The objective value of the mean individual in GASA
decreases faster than in GAs, as shown in Fig. 4.9. Fig. 4.10 shows that GASA
has a worse min objective value in the beginning, but sooner GASA reaches a faster
convergence compared with GAs. These results illustrate that GASA can achieve
better global convergence than GAs. Fig. 4.11 shows the standard deviation of the
population versus the generation, and Fig. 4.12 shows the variance versus generation.

These figures reflect decrease in population variance for GASA as the GASA method

converges.

This experiment was run on SUN Sparc 10 workstation. The computation time
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Table 4.2: Bochachevsky Function: Statistic Analysis of the Number of Cutoff

Generations to Achieve a Degree of Global Optimization with GAs

GAs GASA

generation obj. value generation obj. value

cutoff | mean | st. dev. st. dev. mean | st. dev. | st. dev.

<10°!'| 3.45 4.55 0.5144 3.80| 5.20 0.3130

<1072} 11.05| 13.95 0.4933 8.40 | 7.60 0.2802

<1073 ]19.05| 12.95 04251 | 14.60 | 5.40 0.1579

<1074]29.70 | 19.30 0.4030 | 18.80 | 8.20 0.1176

IA

1075 | 40.80 | 16.20 0.3867 | 24.10 | 2.90 0.0884

IA

107 | 49.30 | 16.70 0.3806 |29.30| 3.70 0.0722

of GASA and GAs are 32.90602 and 19.03456 CPU time, respectively. The time for

GASA was longer because of annealing in each generation’s population.

We have also compared twenty different runs of GASA and GAs , to show varia-
tions between runs. Twenty independent runs of GASA are able to be found in four
rounds in Figs.4.13~4.16. The other twenty runs in four rounds of GAs are shown
in Figs.4.17~4.20. From these graphs, it can be seen that it is much better for the

GASA method to approach the global minimum.

In order to explore the performance of GASA and GAs, we list the compared resul
ts of the cutoff generation for differing criteria in Table 4.2. The criterion applied
depends on the precision requirement of the applications problems. In general, higher
precision needs more generations, as can be seen in Table 4.2. Column 1 shows the
cutoff value of the object function, Column 2 shows the average generation at which

cutoff occurred, Column 3 shows the standard deviation of the generation at which
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cutoff occurred, Column 4 shows the standard deviation of the objective value for the
population, Column 2~4 apply to GAs, Column 5~7 show the same calculation for
GASA. Twenty runs were asked for each tehnique. For example, at 10~* cutoff, on
average GASA and GAs spend 18.80 and 29.7 generations, respectively. At cutoff
of 1072 and below, GASA spends less generations than GAs to achieve the global
minimum.

The standard deviations in the number of generations, shown in column 3 & 6
in Table 4.2, for GAs are higher than those for GASA. For example, when cutoff is
1073, for the objective value, GASA standard deviation is 0.1579 and GAs standard
deviation is 0.4251. As to the average generation at cutoff 1073, GAs’ and GASA’s
are 19.05 and 14.60, respectively. Thus, obviously, the search with GAs is in high

oscillation.

Moreover, GASA keeps less deviation in all cutoff generations, which means the
operation of GASA is more stable. GAs’ operation shows high oscillation, as in
Fig. 4.8(b), thus both the mean and standard deviation of GAs is larger than that of
GASA. The fast decreasing of standard deviation shows how annealing is helpful
to the genetic operations in GASA. The annealing is helpful to stabilize the GASA

algorithm.
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Figure 4.18: The minimum of indviduals vs. generations in 6~ 10 sets of GAs in

round 2

68



GAs —- round 3
10 T T T T T T

min of individuals

1 1
0 10 20 30 40 50 60 70
generation

Figure 4.19: The minimum of indviduals vs. generations in 11~1 5 sets of GAs of

round 3

R GAs —- round 4
10 T T T T T T
16
17 | ]
--18
% -=- 19
3 —20 |3
2z
k=]
1
"6 |
£
€
1\_-
~\
.
10_7 1 1 1 1 1 1
0 10 20 30 40 50 60 70

generation

Figure 4.20: The minimum of indviduals vs. generations in 16~2 0 sets of GAs in

round 4

69



Chapter 5

Temperature Effect and Search Mode

The annealing mechanism is a big concern for the simulated annealing algorithm. In
general, the annealing mechanism includes the annealing (cooling) schedule or temper-
ature scale which is used to decide the annealing process, and the initial temperature.
Many researchers proposed their annealing schedule to define the temperature scale,
but still no one can design a general scale for all problems [106, 66, 1, 67, White,
1984;Lundy & Mees, 1986;Aarts & Korst, 1989;Margarida et al., 1994].

The temperature scale is also related to the GASA algorithm, because temperature
affects the division of the participating individuals. In thermodynamics, we use phase
transition to explain the behavior of particles in different physical phases (e.g. gas,
liquid, solid). Here simulated phase transition is proposed to explore the behavior
of the search trajectory of the individuals. Along with theory from Holland’s schema
theory [46, Holland, 1975], the characteristics of GASA are explained with correlated
theorems. Schema theory is used to explain the computational power of genetic
operation on hyperplane (schemata) sampling [107, Whitley, 1993]. In population-
based models, short schemata have higher probabilities of surviving crossover each
generation. A new concept of population equilibrium is discussed from simulated

behavior by combining the correlated genetic and thermodynamic phenomena for an
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artificial environment.

Another extension of the annealing mechanism applied to GASA can make the
partial population-based annealing algorithms on the genetic operators crossover or
mutation alone. Thus, we can issue two other GASA algorithms: GASA_C (with
annealing on crossover only) and GASA_M (with annealing on mutation only). The
oscillations and diversity from the two alternative algorithms are discussed in this

chapter.

In this chapter, Sec.5.1 illustrates the design of the annealing schedule including
the evaluation of initial temperature and temperature scale. Sec.5.2 describes the
effects of the partial annealing mechanisms and the two partial annealing GASA
algorithms — GASA _C and GASA_M. Sec.5.3 overviews the behavior of the search
phase and schema theory. Sec.5.4 is created and used to explain the transformation
of individuals because of the temperature change. A new equilibrium rule is broadly
applied to denote the equilibrium condition for the population-based search algorithms

in Sec.5.5. Finally, the summary concludes the last section.

5.1 Annealing Schedule

A typical annealing algorithm starts at a high temperature. The temperature is reduced
repeatedly, and the system is allowed to approach equilibrium. The procedure will
stop whenever no further useful improvement can be reached, or when a cutoff value
is reached. This protocol for cooling the system is called the annealing schedule.
Two frequently asked questions about the annealing schedule are discussed here.
First, how high should the beginning temperature be for the system at the start ?

Second, how low should the final temperature be, at which the system stops ? How

71



®W(E) number of individuals
[™>~
|-~
-

min E max E
energy

Figure 5.1: The distribution of the state density function w

should the intermediate temperature be chosen ? These questions are still open to
research. Because these solutions could be dependent on the applied problem and its

dimension, and other factors, these questions arise in our new algorithm, GASA.

In order to discuss the temperature effect, let’s define the behavior, location and

state for each individual first.

Definition 1 The behavior of an individual is how it moves in the multi-dimensional

space according to how its variable X changes over time.

Definition 2 The location of an individual is described by its variable vector X in

R".

Definition 3 A state of an individual (candidate solution) is the energy level which

appears at the current arrangement of its genes.
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5.1.1 Initial temperature

The problem here is to minimize an objective function f ()? ), which is described as

follows.
E(X(Tv) = f(X(Ty) 5.1)

where T} is the temperature at generation ¢ and X is the location of an individual,
and X is a variable vector of the function f. E is the energy function at time
(generation) ¢. From statistical analysis, the state density function w(E(T})) is the
number of possible states of the system per unit energy in the population at
time ¢ (see Fig. 5.1). This description reveals the information retained in equilibrium
properties of the system at all temperatures, because one of the possible states can
be at equilibrium. The density of states can be found by collecting the states with
energy E(T) at temperature 7. In annealing, for energies F near E may be taken
to be continuous, to a good approximation [106, 81, Whtte, 1984;Reif, 1965]. The
average energy < E > for population P(t) after separating by GASA annealing at a

fixed temperature 1" is calculated by:

Jo, Bw(E)e E/TdE

FE >=
ST T, w(E)e PTdE

(5.2)

and
Definition 4 < E >;,= average E at time t

where E = E(T) at T = T;, and Qp is the energy domain which include all the
generated energy by all the individuals. exp(—E/T) is probability of acceptance into
“no crossover” subpopulation. Given an analytical expression for the state density,
it is possible to evaluate the integral Eq. (5.2). But to estimate w(F) for a particular

search problem is very hard in most cases. If w(F) is given by a Gaussian (normal)
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distribution, then we can approximate E “near” E with this distribution.

1 (E — E)?
E)= —_— .
W(E) = —o—eap(———") 53
and the standard deviation of the populations energy, o, can be represented as:
— n Z?:l Ezz B ( ?:1 E’l)2 (54)
n(n — 1)

where n is the population size. The numerical value for the average energy E is

evaluated from the following expression:

E = E;(T) (5.5)

1

n

S|

?

where E;(T') is the energy of individual 7 at temperature T'. Thus, the solution [1, Aart

& Korst, 1989] of Eq. (5.3) becomes

—x?

<E> = Epin+V2x+ (5.6)
Xt T eriGa)
_ i E - Emin _ g]
X = V2 o T
If T' is very high, that is x is a very large number. So we can find
<EsnE_T (5.7)
~o T .

In order to reach the pseudo-equilibrium, i.e. < E >~ E, meanwhile from Eq. (5.7)

the temperature of the system is denoted as T' >> o.

Fig. 5.2 and Fig. 5.3 display the minimum (F,,;;) and mean energy (F) for the
six different initial temperatures in the previous Sec. 4.4 (Function optimization of
Bohachevsky function) in Chapter 4 respectively. When 7, = 4000, the spent

generations is much more than those of the other initial temperatures.

On the contrary, a very small initial temperature (7o = le — 8) would take more

time to get to the same performance, because T, < 0.0006 (= &), which contrasts
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Table 5.1: The turning points for the larger initial temperatures Tys

Ty | Gen. tr | Temp. T1

4000 35 0.00966

500 23 0.47829

50 24 0.02998

with Eq. (5.7). The very small initial temperatures make the acceptance probability
exp(—(E; — Emin)/T) = 0. That means all the individuals will “never” be accepted,
and they need to be processed by the genetic operation. At this time, our GASA

algorithm is turned into a genetic algorithm.
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When T is applied with large values (see Fig. 5.3), a plateau is stretched over the
three curves for 7 = 4000, 500, 50 individually. The turning points for them occur at
turning temperature T and generation {7 which can be found from Table 5.1. When
T goes to infinity, the acceptance probability ~ 1, and all the individuals are retained
in the gene pool and skip the genetic operations. This makes an absolute “time waste”
for the GASA algorithm. So the individuals in the plateaux have to keep reducing the
annealing temperature until a genetic operation happens. Therefore, it is still difficult
to point out the upper bound for the initial temperature. As to precision, at the same
generation, the individuals starting at the higher initial temperature found it not easy to
reach higher precision. The population size A = 50 is applied here and all simulations
are according to the same initial population. However, in fact, the system with the

higher initial temperature spends more generation (time) to reach the global optimum.

5.1.2 Temperature scale

The other concern about a simulated annealing algorithm is how to make a temper-
ature scale to reach the highest efficiency. The considered temperature scale is also
known as the cooling schedule. Several approaches have been proposed by using the
standard deviation to determine the next temperature decrement [2, 3, 73, 88, Aarts &
Laarhoven, 1985a; 1985b; Otten & Ginneken, 1984; Sechen, 1988]. The advantage
of these approaches is that the temperature is controlled dynamically by the anneal-
ing process itself, which is applicable to many different optimization problems. No
reliably general proof for methods of the annealing scale across all kinds of search

problems have been reported in the literatures [52, Ingber, 1992].

Huang et al. [49, Huang et al., 1986] applied the so-called annealing curve, a plot
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of average cost < E(T;) > versus the log of the temperature, to guide the temperature

decrement. The slope of the annealing curve is

d< E > d< E >
din(T) =T T, (5.8)

From the well known relationship [81, Reif, 1965],

d<E> o’

IT T (5.9)
Replace Eq. (5.8) with Eq. (5.9), and we have
d<E> o°
—dln(Tt) =T (5.10)
Using a linear approximation of the slope,
2
b =2 (5.11)

n(T) —In(Ty) T

and AF is the difference in cost at temperature T;,; and T;. The analysis of search
phase can help us find out the initial temperature of the system, we have to define
the search phase and the cooling schedule. Rearrangement of the previous equation

results in
TAFE
o2

Ty = Ty exp( ) (5.12)

A pseudo-equilibrium could be maintained by requiring the expected decrease in
average energy to be less than o, let AE = —ao. Thus, the above equation can also

written as

—-aT

Tyir =T, exp(——) (5.13)

The above equation can be simplified as follows.

T =c(Th) *+ T (5.14)
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Figure 5.5: Minimum energy vs. generation for different annealing coefficients

where ¢(T}) is the temperature decrement control parameter or so-called annealing
coefficient. Fig. 5.5 ~ Fig. 5.8 are considered with six different annealing coefficients

of c. The annealing speed runs as fast as the decrease of the annealing parameter c

(see Fig. 5.5 & Fig. 5.6).

But for ¢ < 0.5, the annealing process is so fast that a quench condition occurs
[50, 52, Ingber, 1989;1992]. Thus, “quench” means that a fast temperature decrement
(i.e. fast cooling) makes the objective function reach the optimum globally. In
metallurgy, coarser crystals may be found from “quench” instead of “annealing”. That
is, the quench process usually makes unstable situations happen which is discussed in
Sec.5.5. Several researchers used simulated quench (SQ) on complex circuits design

problems, including several layers of logic hierarchy [52, Ingber, 1992].

Fig. 5.5 describes the minimum energy through generations for different annealing
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standard deviation of individuals

temperature

Figure 5.8: Standard deviation vs. temperature (semilog)

schedules. GASA spends the most and least generations to reach the global minimum
for ¢ = 0.95 and ¢ = 0.20, respectively. Fig. 5.6 shows the same tendency for the
average energy as the min energy in Fig. 5.5. Fig. 5.7 illustrates the average energy
through different temperatures. The falling speed of the average energy follows the
increase of the annealing coefficient c. The standard deviation of individuals versus
temperature can be found in Fig. 5.8. When ¢ = 0.95, a slowest but very smooth
annealing is operated in GASA. The standard deviation becomes the lowest while the
final temperature is close to 0. That is, the diversity of the participating individuals
becomes less and all the individuals come to be uniform. This matches the physical
phenomenon of annealing for the fine crystals which are found by slow annealing.
If ¢ = 0.05, a fast “quench” occurs in the operation. The diversity of the joining

individuals is still large even through the final temperature is pretty small. This type
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of analysis can help improve the performance of the annealing algorithms.

In general, when quench occurs in the annealing process, the arrival of equilibrium,
on the contrary, sometimes takes more time than the regular annealing coefficient
(0.7 < ¢ < 0.99) such as ¢ = 0.50. In physical metallurgy, this condition would
usually produce coarse crystals. Similarly, quench results in more time to find a better
solution. When c is 0.20, compared to other curves, it has a higher performance. So
how to make an ideal annealing scale is very important in the annealing algorithm
even with the “quench” schedule. From the analysis of Fig. 5.5 and Fig. 5.6, the
slower cooling scale spends more time (generations) to reach the pseudo-equilibrium.
Fig. 5.8 reveals that a smaller standard deviation value can be found from the curve
¢ = 0.95 for the same temperature. So the curve ¢ = 0.20 shows the most unstable

condition in this plot.

5.2 The Effect of Partial Annealing Mechanism

The annealing environment on the GASA algorithm can be altered by assuming no
annealing (equilibrium) either for crossover or mutation. From these alterations, two
other GASA algorithms are found with the names of GASA _C (annealing on crossover
only) and GASA M (annealing on mutation only). According Sec. 4.3, the GASA_C

algorithm can be illustrated as the follows.

Algorithm GASA_C

Parameters declaration:

t = 0; (the initial generation);

tmaz 18 the allowed maximal number of generations;
Tp = initial temperature;

T'm = number of temperature moves to attempt;
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C is the crossover operator;
M is the mutation operator;
= is the total gene pool per generation;
Initial P(0) = {¢(0)} € U where U = {0, 1}4
Evaluate P(0) = {®(v1(0)), -+, ®(11(0))};
where @(v(0)) = &(f(T'(x(0))), P(0));
For m=1,Tm
while (f < tnax)
For each individual ¢,
Evaluate the change of energy (E; — E*) and find a probability p;;
if threshold probability p; > random [0, 1),
keep the accepted individual in a gene pool E,;
else
put ¢ into Z,,;
Crossover: v (t) = C{pc}(ﬁc(t)),‘v’k e{1,---,1}
, Vﬁc(t) € E,e(= E — E;), p. is the crossover rate;
replace = with E; + Z,,.;
Mutate: v}/ (t) = Mgp,.}(Pna(t)), Yk € {1,-+,1}
, Vﬁm(t) € E, pn, is mutation rate;
Until equilibrium;
T = update(T);
Evaluate P(t) = {®(1 (1), -, D(u(t)},
where ®(uy(6) = 5(/(T4(0), Plt — )
Select P(t + 1) = sel(P(t));
Reproduce P(t + 1);
};endt
t=t+1;

}; end move

83




From the above description, the main change in GASA_C algorithm is that we
don’t have to calculate the energy change before the mutation operation, because the

individuals P, (t) in the whole gene pool E are forced to process mutation.

Likewise, when we only anneal the individuals in mutation, the other alternative
of GASA is found as GASA M. The algorithm design is similar to GASA_M and can

be illustrated as the following:

Algorithm GASA M
Parameters declaration:
t = O; (the initial generation);
tmaz 18 the allowed maximal number of generations;
T, = initial temperature;
T'm = number of temperature moves to attempt;
C is the crossover operator;
M is the mutation operator;
= is the total gene pool per generation,;
Initial P(0) = {¢(0)} € U where U = {0, 1}};
Evaluate P(0) = {®(14(0)), - - -, ®(141(0))};

where ®(4(0)) = 8(f(T(4(0))), P(0));
Form=1,Tm

while (t < tmax)
Crossover: v (t) = Cgpoy (Ps(t)),Vk € {1,---,1}
, ‘v’.ﬁc(t) € 2, p. is the crossover rate;

For each individual 7,

Evaluate the change of energy (E; — E*) of the individuals from Z and v, (),

and find a probability p;;

if accepted probability p; > random [0, 1),
keep the accepted individual in a gene pool E,,;

else
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Table 5.2: The spent generations and time for GAs and GASAs

Generation
GAs 46
GASA 40
GASAC 39
GASAM 43

put ¢ into E,,,,.;
Mutate: v}/ (t) = Myy,.y(Pn(t)), Yk € {1,---,1}
NVPo(t) € Bum(=E —

replace Z with £, + Z,,,,;

[1}

m) » Dm 1S Mutation rate;

Until equilibrium;
T = update(T);
Evaluate P(t) = {®(w(t), -, Dwm(t))},
where Bu4(t) = S(F(T0A (), Pt - )

Select B(t + 1) = sel(P(t));
Reproduce P(¢ + 1);
};endt
t=1t+1;
}; end move

The comparison of GASA algorithms (GASA, GASA_M and GASA_C) and GAs
(genetic algorithms) are illustrated in Fig. 5.9~Fig. 5.12. The test example is the
Bohachevsky function. The applied population size is 50 and the annealing coefficient
c is 0.82. The initial populations for these algorithms are all the same.

The spent generations are listed in Table 5.2. From this table, we can find GAs

needs the most generations to reach the stop criterion (1e — 6). For GASA_M, it takes
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Figure 5.9: Mean objective value vs. generation for GAs and GASAs
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Figure 5.11: Standard deviation vs. generation for GAs and GASAs

43 generations which are more than those of the other GASAs. GASA and GASA_C

almost take the same generations to reach this cutoff value.

From Fig. 5.9, GASA algorithms almost converge at generation 27, which are
superior to GAs. Fig. 5.10 microscopes the calculation of GAs and GASAs. When
at cutoff > le — 4, GASA_M does the best job compared with others. But for cutoff
< le—4, GASA and GASA _C converge faster than GASA M especially for GASA _C.
As for the analysis of these algorithms, Fig. 5.11 & Fig. 5.12 shows GAs still stay at
a higher oscillation. GASA_M converges fastest, GASA second, then GASA _C is the
third. The lower and lower standard deviation curves of GASAs reveal that GASAs
have the strong self-adaptive ability compared to GAs. Fig. 5.13 is the annealing

schedule for this simulation.
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5.3 Search Phase and Schema Theory

The other important analytical characteristics of GASA algorithms is how it can search.
The search of this algorithm can be analyzed according to hyperplane exchange. One
hyperplane is composed of a schema. The hyperplane exchange means the change of

the population through generations in the search space.

The search phase of a genetic-annealing algorithm as outlined, in which each
succeeding solution in the solution sequence is determined stochastically based on
the current solution, suggesting that the behavior of algorithms can be described as a
Markov chain. A search problem can be represented by the pair (2, E'), whereby Q
is the search space and E is the objective (energy) function. Assume that € is a finite

space, so GASA algorithms can be formulated by a 9-tuple:

GASA = (P(0),\1,s, Pr,p,®,7,() (5.15)
where

P(0) e UM U = {0, 1} initial population
A €N population size
[l €N length of representation of each individual
s : UM U> selection operator
Pr: a stochastic matrix which describes state transition
p={C, M} genetic operators (C': crossover,M: mutation)
®:U">R fitness function

T ={T;,t=0,1,2,---, f} a finite length which decreases temperature

¢ = the stop criterion monotonously.

Definition 5 (Aarts & Korst, 1989) A transition state is a combined action resulting
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in the transformation of a current solution into a subsequent one. The action consists
of the following steps: (1) application of generation mechanism, (2) application of the

acceptance criterion.

The GASA algorithm design has been discussed in Chapter 4. The abstracted
description can be illustrated as follows. In the beginning, an initial population P(t)
is created randomly. Then let ﬁ(t) be selected by s, this selection is according to
the fitness function ®@. After that, the probability Pr will determine the qualified
individuals to be retained in the gene pool, and the unqualified ones will be crossed-
over. Again the procedure is repeated by the mutation operation. Following the
decreasing temperature, the new population will be put into the same procedures until

the stop criterion () is met.
Here we only consider the analysis of its characteristics. The GASA algorithm

still uses the main property of the genetic algorithm by applying binary encoded

individuals. The temperature factor is also an important factor in the algorithm.

The mathematical analysis of the population-based search can be followed by
two ways, the first one could be from schema theory [46, 38, 107, Holland, 1975;
Goldberg, 1989; Whitley, 1993], the other one from simulated phase transition. Here
we introduce schema theory first. In fact, the search mode of the genetic-annealing

algorithms is a hyperplane exchange.

5.3.1 Schema theory

The term schema (plural schemata) refers to a similarity template which describes
a subset of strings with similarity at certain string positions (in a more straight way

schemata are hyperplanes of varying dimensions in the /— dimensional space). The
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hyperplanes that are relevant in the case are defined by schemata over binary strings.
A schema is a string defined to be elements of the set {0, 1, *}! and for given schemata
H € {0,1,%}!. The x symbol is a wild card that allows the specified bit position
to take on the value O or 1. Therefore, the schema 1 * x % * % x would represent a
hyperplane partition that contains all strings of length [ = 7 with a “1” bit in the initial

position. So a schema is an element of a hyperplane.

Each individual of length [ contains 2’ schemata. A population size A contains
between 2’ and ) - 2'. The order of schema, denoted by o( H) is defined as the number
of fixed positions (0’s or 1’s). The defining length of the schema, 6(H), is defined
as the distance between the first and last final position in a string. For example, the

schema 01 % O x 10x has order 5 and length 6.

Intuitively, we can observe that schemata with low order and length have a better
chance to survive crossover than the others. This is because the probability of being
cut by the crossover operator is less for them. Let’s consider the following two

schemata H, and H,

H = x1%x%xx0

Hy = % %10 % %

From Fig. 5.14, a certain arrangement of the schemata H is similar to the double-
ellipsoidal structure of the chromosomes in biology. But in fact, a schema can be a
number only in our mathematical analysis. Schema H) is less likely to survive than
H,. Specifically, Hy has five possible crossover sites. The probability of it being
destroyed is 6(H,)/(l — 1) = 4/5 and its survival probability is 1/5. Similarly H, is

destroyed with a probability of 1/5 and has a survival probability of 4/5. In Fig. 5.14,
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Figure 5.14: Schemata H,, H,, - - -, H,, and their genetic models

the schemata are the analogs from the double-helix chromosomes with in biology.

Let P(t) represent the population at time ¢. Denote by m(H,t) the expected
number of chromosomes containing a hyperplane (schemata) H within population
ﬁ(t). The expected number of chromosomes containing the schemata H within

population P (t + 1) is represented by the following theorem.

Holland (1975) proposed the famous schema theorem as the fundamental of

genetic algorithms. Here we restate it as below.

Theorem 1 (John Holland, 1975) In a canonical genetic algorithm using a propor-
tional selection and single-point selection, and for a single-position mutation, the

following holds for each schemata (hyperplane) H represented in P (t):

m(H, 4 1) 2 m(H) S0 -t - (si16)

where ®(H, t) is the average fitness of the chromosomes containing the schemata H

at time t, ®(t) is the average fitness for all chromosomes in P(t) at time (generation)
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t, pe and py, are the crossover and mutation rate respectively, §(H) is the defining

length of hyperplane H, and | is the length of each chromosome.

For small values of p,, (p,, << 1), (1 - pm)"(H) can be approximated to
1 — o(H)pm, so we can rewrite Eq. (5.16) as

m(H,t+ 1) > m(H, 1) ‘I’éﬁ)t) 1-p 2By o) )

What this equation implies is that above-average schemata that survive crossover
and mutation (usually short length and low-order) receive exponentially increasing
instantiations in subsequent generations. Due to the importance of this theorem it is

also called the Fundamental Theorem of Genetic Algorithms [38, Goldberg, 1989] or

so-called schema theory.

Perhaps the best way for us to understand how a population-based algorithm can
sample hyperplane partitions is to consider a 3-D space (see Fig. 5.15) [38, Goldberg,

1989]. Suppose we have a problem encoded with just 3 bits, this can be exactly
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represented as a simple cube with the string 000 at the origin. For example, the string
011 not only samples its own corner in the hypercube (011) but also the hyperplanes
represented by the schemata 0**, *1* **1 01*, 0*1, *11, and even *** So a
population of sample points provides numerous hyperplanes; furthermore, low order
hyperplanes should be sampled by numerous points in the population. Thus the

hyperplane sampling is only responsible for “information exchange”.

5.4 Simulated Phase Transition

The other corresponding explanation for the moves of the individuals through the
energy change is illustrated by simulated phase transition. In metallurgy, it is well
known that there are two classes of alloys: homogeneous (one phase) alloys and
eutectics (two phase systems). In the former, the concentration of each component is
constant through the alloy, whereas, in the latter, there are small crystals. Obviously,
the homogeneous one can be seen as an order phase. Generally speaking, the phase
transition is one of the cooperative phenomena; it is a process which depends upon
the interplay of a large number of atoms rather than on the individual atoms. To
simplify the physical phenomena to our artificial environment, we can take two phases
(order & disorder) to simulate them. In GASA algorithms, the genes (binary bits)
of the chromosomes (individuals) are similar to atoms. The corresponding behavior
of genes and atoms is our simulations create the structure that alters in the applied

genetic operation.

However, when the individuals (chromosomes) follow a certain arrangement which
results from the applied mathematical models and the constraints. At this time,

the individuals are in order phase. Otherwise, they are in disorder phase. But
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several factors can change this arrangement, and make the new created individuals
go into a new phase because of the genetic operation and temperature change. The
artificial environment which the individuals should make self-adaptation comes from

the complexity of our problems.

5.4.1 Qualitative analysis

The concept of the simulated phase transition is extracted from the phase transition
in thermodynamics. First, we have to clarify several important terms in the search
problem. The elements of the simulated phase are, in fact, the candidate solutions
to the applied problems. They are the individuals which join this computation. One

phase is composed of many elements. About the phase, we can describe as below.

Definition 6 A phase is a hyperplane composed of many schemata. The behavior
of phase is limited by the supplied problems and their constraints and computational

paradigm which make the artificial environment.

The above definition of the phase indicates that one phase is one population at time
t, and a phase can be a collection of lines, planes or hypercubes, and even a more
complex surface in multi-dimensional space. In GASA, individuals with high energy
(low fitness) tend to undergo mutation and crossover. For those that undergo crossover,

longer schemata disrupt more often.

The other important term is the concept of equilibrium [59, Kyle, 1984]. A

specific discussion is in Sec.5.5. Here we only make a brief introduction.

Definition 7 Equilibrium in our genetic-thermodynamic algorithms is a word denot-

ing a static condition, the absence of changes for the individuals in the population.
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Population P(t)

Population P(t+1)

Figure 5.16: An intuitive sketch of the relationship of populations

In computation, it is taken to mean not only the absence of change but the absence of

tendency toward change in an allowed criterion.

Thus a system at equilibrium is their individuals which exist under such condition
that is no tendency for a change in the state to occur. Because any tendency toward
change is caused by a driving force, the absence of tendency to change also indicates
the absence of driving force. As to computation, it is difficult for us to classify what is
a pure matter during search. Therefore, a population being in equilibrium is described
as one in which all forces are in exact balance. However, all kinds of driving forces
tend to bring about the sudden change of the individual’s energy. For example, when
two individuals are crossovered, their energy may have a little change. That is their
genetic structures have been altered. The obvious observation will occur on their

offspring. So the crossover operator can be a driving force.

The individuals make major changes on their structure. After this change, the

locations of the parents will be different from the offsprings’. However, when the
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parents face some driving forces and have made their structure’s alteration, the location
of the new population P(t + 1), of course, will be different from the parents P (t). So
the simulated phase transition has occurred at this moment. This change is illustrated
in Fig. 5.16. T is the population temperature at time ¢ and p is the genetic operator
(see Sec.4.3). E is the energy, in fact, which is the objective value. One phase can be a
hyperplane. Either genetic operation or temperature change always can determine the
new locations of the populations. The observed measurement is the location change or
energy change for that. Generally speaking, the transition is that an individual seeks

the new surviving conditions to adapt to the artificial environment.

5.4.2 Quantitative analysis

The observed behavior of the individuals is by calculating their objective values (en-
ergy). To determine the criterion of transition, we can take energy into account. In the
annealing process, the individuals follow the Boltzmann distribution Pr. According

to Eq.4.9, the state probability is found by
e

Pr(E) = 7 (5.18)

where Z = 3 jcqe ™ /T, T = T, at time ¢, Q is the search space defined as above.
The state transition matrix Pr also can be decomposed into two parts for conve-

nience in the following. It consists of the next state generation mechanism, G;, which

describes the probability of generating state 7 from j. and A;; denotes the acceptance

probability which describes the probability of accepting the generated state. Thus

Pr(4,1) can be found by

Goi(T) A(T £
Pr(j,i) = (1) 43(T2) 7 (5.19)
1— Zﬁzl Gki(Tt)Aki(Tt) 1=
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In this result, ) is the population size.

As for the generating probability, V 7,7 € €2, the probability G; is written with

the class of Gaussian-Markovian systems,
Gji = G(Az) = (2nT) P72 . exp[-As?/(2T)] (5.20)
where Av = z; — 1,1 =1,2,---D.

The acceptance probability is

E; — E

Aji = min{l, exp[— T
t

} (5.21)

From our proposed modified Metropolis criterion (MMC) (see Sec.4.3.1), j is
replaced with the minimum location (z,,;,,) for individual ¢ € 13(t) in Eq. (5.20) and

Eq. (5.21), then G; and A; will become as follows.
G; = G(Az) = (27T)™P/2 . exp[—Az?/(2T)) (5.22)
where Ax = z; —xmi,;,i =1,2,---D.

The acceptance probability A; is

Ei - Emin

Ei - Emin
A; = min{l, ewp[—T]} ~ exp— ————

7 ] (5.23)

Thus the schema m(H, t+ 1) in P(t + 1) after genetic-annealing operation of P(t)

can be represented with the modification from Eq. (5.17) as

crossover state transition

1= 53 (T PRI~ - o(H) (1 = PP))

@(H, 1)

m(H, 1) 2 m(H, 1) =5

mutation state transition

P; and Pp' are the state transition probability determined by temperature T; for
crossover and mutation operations respectively. In fact, the arriving probability means

that the individuals which can arrive beyond the MMC at equilibrium. Furthermore,

it can be rearranged into
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Theorem 2 (GASA; Original Contribution) The schema m(H,t + 1) in P(t + 1)

after genetic and full annealing operation (GASA) of P (t) can be described as

O(H, 0(H 0(H
(@, 14+1) > m(H, ) 2D g S S poy 4 ob1) o) )
® 1P
(5.25)
The P£ can be described as
E; — Epn
Pf —-exp[—T] (5.26)

,where p = c (crossover) or m (mutation).

The mutants of the individuals come from their genetic alterations. So after the
initial generation, if G; ~ 1 and exp[— E“—gm] < 1, so Eq. (5.26). Substitute this
result into Eq. (5.25), we have the direct observation of the schema m(H,t + 1) is
related to the individual’s energy. The increase of the schema is exponentially growing
because of Eq. (5.26). The above derivation is from schema theory and simulated phase
transition and used for full annealing. The result can be derived with other partial
annealing mechanisms for GASA_C and GASA M as follows. For GASA _C, without

annealing on mutation, we have

Theorem 3 (GASA _C; Original Contribution) The schemam(H,t+1) in P(t+1)

after genetic and partial annealing operation (GASA_C) of P (t) can be described as

q’gz’)t)[l_ ?(HI)(I—P;)](I—pm'O(H))) (5.27)

m(H,t+ 1) > m(H,1)
For GASA_M, without annealing on crossover, we have

Theorem 4 (GASA M; Original Contribution) The schemam(H,t+1) in P(t+1)

after genetic and partial annealing operation (GASA_M) of P (t) can be described as

O(H, 1) 5(H)

S (L P (=P o)1 = PP)) (529

m(H,t+ 1) > m(H,t) .
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The above are the analytical characteristics of GASA algorithms.

5.5 Population Turbulence

A new concept of population turbulence is used in our mathematical analysis. It can

be defined as below.

Definition 8 The turbulence of the population in the genetic-thermodynamic opera-
tion is determined by the difference between the average energy of a population and

the minimum energy of all individuals in this population.

Definition 9 The calculation of the turbulence for each population through gen-
erations can be represented as the mean value minus the minimum value of each

population.

When the turbulence is zero, this result is consistent with the static equilibrium for
populations and can be plotted by an “equilibrium line” which is broadly used in the

next discussions.
Lemma 5.5.1 If E = E,;, then E; = E i, Vi

If n(t) individuals in the population ¢, the proof is illustrated as below.

proof:

Because FE = E,;,
n
so we have ~<4=LF; = F, ;..
Ej+Ey+-+En _ 4
Thus = 2 = Foin

But Epyin < Eyjyi=1,2,--+,n
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Since 3> { E; =n - Epp

=>El+E2+"'+En:Emin+Emin+"'+Emiq
n

Therefore E,,;, = E;

Thus, the standard deviation o (E(T;)) for the population P(t) is 0. That means all

the individuals become the minimum one. So the equilibrium can be formulated as
< E(Ty) > Epin(T}) (5.29)

We can substitute Eq. (5.29) into Eq. (5.6), then the difference term in Eq. (5.6) is

set to 0. So the equilibrium temperature of each population at generation ¢ is described

as
e 5.30
X= =AU rerf ) -39
and
g
x=-7 (5.31)

where T' = T, as above. So we can replace Eq. (5.30) with Eq. (5.31), a new population

equilibrium is found by

o ea:p(—,i,'—,gj)
T~ Val—erf(g)]
_corldp) (5.32)
Vrler fe(F)] '

We can find the equilibrium, when T; = T; from Eq. (5.32). From the above analysis,
we can find if the E,,;, = the local minimum, the equilibrium is called local
equilibrium. This condition usually makes many traditional hill-climbing methods
get stuck locally. But if E;, = the global minimum, the system is at global

equilibrium. When global equilibrium is reached, the global search will be completed
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successfully. In general, we only can attain the conditional global equilibrium, that is,

in an allowed error to the global minimum.

The average energy < F > is evaluated from the average of the objective values at
each generation as described in the following paragraphs. For example, from Sec.5.1,
with the same initial population and same annealing schedule, we can calculate the
initial equilibrium temperature 75 = 0.564. In comparison with the conditions in
Sec.5.1.1, we have Fig. 5.17~Fig. 5.24. From Fig. 5.17 and Fig. 5.18, the best result
is found if we apply the equilibrium temperature 7T, = 0.564. It almost spends the
least generations to get the best solution in this test. Fig. 5.18 indicates that a very
high initial temperature (4000) will result in the stagnant effect from generation 8
to 36. Fig. 5.19 also can prove this. As to the temperature change, Fig. 5.20 and
Fig. 5.21 show the average energy decrease fastest when 7p = 0.564. Fig. 5.21
and Fig. 5.22 tell us that at T, = 4000, the annealing shows higher oscillation than
the others. The convergence period of the too low temperature (Ip = le — 8) is
almost equal to the others in addition to the highest temperature curve. That means
this temperature is still applicable to some problems, its drawback is the more spent
generations compared to others. Fig. 5.23 shows that all the curves stay in the upper
phase to the equilibrium line. This condition can illustrate the applied annealing
schedule is a never equilibrium schedule for the populations. If the populations are
all in equilibrium, the curves of Fig. 5.24 and Fig. 5.25 should become the horizontal
line from the origin (0, 0).

The other test is to compare the different annealing schedules with the same
schedules applied in -Sec.5.1.2. Fig. 5.26 shows that even with different annealing
schedules, the curves with different annealing coefficients still stay in the upper phase

to the equilibrium. In Fig. 5.27, the lower annealing coefficients make the curves
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move leftwards except ¢ = 0.50. Smaller annealing coefficients are not easy to reach
equilibrium. When ¢ = 0.95, we can see it almost follow the equilibrium line close
and in parallel (see Fig. 5.26). The annealing with the largest annealing coefficient
(0.95) shows the approximately convergence from the flat area between temperature
0 and 4. The convergence of ¢ = 0.95 is better than others (see Fig. 5.28). Even
with the slowest annealing speed, but we can have the most uniform annealing result

compared to others.

Applying this equilibrium rule in Sec.5.2, we can compare characteristics on
GASAs and GAs in Fig. 5.29. In Fig. 5.29, GAs curve deviates off the equilibrium
line further than GASAs. In the beginning, the behavior is similar to GASA_M, then
there is an obvious distance with GASA_M from E,,;, = 0.39 to E,;;;, = 0.1 (during
generation 1 ~ 3, see Fig. 5.10). With the same annealing process, GASA is the
closest curve to the equilibrium. This fact indicates that GASA addresses strongly the

attainment of equilibrium compared with the other techniques.

5.6 Summary

This chapter applies mathematical analysis to explore the search mode of the GASA
algorithms. With the genetic-thermodynamic combination, we can get a better perfor-
mance than the traditional search algorithms. For the sake of advanced alteration of
the algorithms, these analyses can help know us how to improve and use them. The
major search theorems are focused on schema theory and the new simulated phase
transition. The simulated phase transition and schema theory are combined with the
concept of hyperplane exchange to explain the search mode of either genetic algo-

rithms or GASA algorithms. The search behavior can be simulated to our artificial
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Figure 5.17: The min of individuals vs. generation

environment. In this system, the changes of Nature and of temperature are the basic
factors that influence the search ability of these algorithms. The search ability can

enhance the optimization technology or other related approaches.

With the above analysis, we also can find GASA algorithms have a two-step
tuning capability. From genetic algorithms, the final candidate solutions are kept in
a uniform oscillation. But for the GASA approaches, the oscillation will decrease
because the annealing mechanism is involved. So the genetic operator can be deemed
as the “macro-tuning mechanism”, and the annealing would be the “micro-tuning

mechanism” in this technique.

With the analysis of the equilibrium line, we can easily find the characteristic
of these genetic approaches. Thus the new equilibrium theory provides a convenient

basis to judge the population turbulence and the optimization path of these approaches.
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Chapter 6

Fed-Batch Bioreactor Optimization with

the Genetic-Annealing Approach

Large-scale commercial processes such as cell mass and primary metabolite production
processes as well as laboratory-scale operations for modeling microbial growth use
fed-batch optimization. There is a strong incentive to develop efficient control schemes
that would enable rapid start-up and stabilization of the stationary states in continuous
bioreactors and the desired state trajectory in fed-batch bioreactors, given the slow
dynamics usually associated with microbial growth and the risk of contamination
that accompanies it. This study will concentrate on the dynamic control of the
biochemical reactor. The fed-batch reactor often has the advantage of lower reactor
volume over the two CSTR’s in series and CSTR with cell recycle configurations [91,
Sines et al.]. For example, this result can lower the cost of wastewater treatment.
Also, fed-batch operation can avoid undesired effects which may appear with other
types of practical operating modes (e.g., substrate inhibition in batch reactors). Their
dynamics are extremely difficult to identify, their observed input/output relationships

frequently exhibiting substantial stability punctuated by abrupt instabilities. From the
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control engineer’s viewpoint, the technical challenges to control fed-batch processes
are time-varying parameters in process models, difficulty of measurement of the
process variables and more. In fed-batch operation, the feed rate may be changed
during the process but no product is removed until the end, and the optimal trajectory

of the process variables will be time-varying [8, Astrom, 1984].

In general, determining of the feed rate in fed-batch fermentation is a singular
control problem [100, 70, Impe et al, 1993;Modak & Lim, 1989], because the control
variable (the feed rate) appears linearly in the system of equations and/or in the
performance index to be optimized. A number of techniques have been proposed to
convert the singular control problem into a nonsingular one by taking variables other
than the feed flow rate as the control variable. Therefore, these methods all suffer
from problems with respect to practical implementation [99, Van Impe et al, 1992].
The approach most usually applied is the Pontryagin’s maximum principle. This
method only produces a necessary condition, instead of an “if and only if”” condition,
for solving the problem [76, 77, Pontryagin et al, 1962;Ramirez et al, 1987]. Thus,
the solution derived from the maximum principle may not be the only solution to the
optimal control problem. However, based on the direct consideration of state models,
population-based algorithms can be used to solve these problems. Genetic algorithms
(GAs), provide us a direct approach to apply the state variables themselves instead of
their derivatives (from the maximum principle). So these methods can escape the trap
of local minima. Moreover, a genetic-annealing approach is proposed to overcome the
drawback of genetic algorithms — oscillations [97, Sun et al, 1994]. The test example
in that paper illustrates that it is a useful global optimization technique. Here a proposed
population-based computation algorithm [97, Sun et al, 1994] which combines genetic

algorithms and simulated annealing is applied. It is a search algorithm and can be
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used for parameter optimization and machine learning. Its optimization ability is used

for optimal control to solve the fed-batch optimization problem.

6.1 Optimal Control and Generalized

Genetic-Thermodynamic Algorithm (GASA)

Since the 1980s, genetic algorithms have been applied to solve optimal control prob-
lems [42, 57, Greffenstette, 1986;Krishnakumar & Goldberg, 1992]. The main dif-
ferences between genetic algorithms (GAs) and other search algorithms involve the

following aspects,

e GAs search with a population of points and proceed generation by generation

instead of with a single point that proceeds point by point.

e GAs work with a binary coding of the parameters instead of the parameters

themselves.

e GAs use probability transition rules instead of deterministic transition rules.

The annealing algorithm is also a random search algorithm [55, Kirkpatrick et al,
1983]. This algorithm has the following characteristics compared with other search

approaches,

e it can process objective functions with arbitrary degrees of nonlinearities, dis-

continuities, and stochasticity.

e it can process quite arbitrary boundary conditions and constraints imposed on

the objective function.
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e it is implemented quite easily with the degree of coding quite minimal relative

to other nonlinear optimization algorithms.

The combined genetic-thermodynamic GASA algorithm has both of the characteristics
of genetic algorithms and simulated annealing algorithms and has been discussed in
Chapter 4. The GASA algorithm is appealing because it allows the population to
sustain the most fit individuals in most cases, but in a few cases, due to the probabilistic
nature of simulated annealing, highly fit individuals are crossed over or mutated. The
less fit individuals are more often subjected to the perturbations of crossover and

mutation, and these are the individuals who could benefit the most from such changes.

Hereafter we formulate the optimal control problem and apply this combined

algorithm to its solution.

6.1.1 Dynamic optimization

The objective of an optimal control problem is to determine the control policy that
will optimize a specific performance criterion, subject to the constraints imposed on
the system. For most optimal control problems, the major concern here is input
optimization. The input function value can be represented by a decimal scalar of
an individual of the population. Thus GAs usually code this variable with a binary
set of the declaimed parameter set and obey the natural selection according to the
fitness. The fitness of the input function is based on the value of a performance index
(function) [78, 60, Ray,1981;Lewis, 1986]. The state of the dynamic system, z(t),
is a function of time ¢. In order to determine an optimal control policy, u(t), we can

formulate the problem as follows.
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The system to be controlled is

&= f(z,u,t), z(to) =zo (6.1)
and is to follow a path z(t), such that the performance function is

J(u) = /tf F(z,u,t)dt (6.2)

to
which will be extremized. The function z(¢) is continuously differentiable on the
interval [to, 5], where ty and ¢; are the initial and final time, respectively. Function

F(t) is also continuous in z(t). The system equations become the constraints of the

performance function.

6.2 Fed-Batch Bioreactor Optimization

The development of the general characteristics of the optimal rate profiles for a class
of fed-batch fermentation processes was presented in fermentation by Lim et al [65,
Lim et al, 1987]. The objective of fed-batch optimization is to determine the optimal
feed rate profile which will maximize a given profit function. The usual form of a
unstructured mathematical model for cell production is given by the following set of

mass balance equations.

ds
E = —O'X+SFU (63)
dX
av

where X =z -V and S = s- V. X, S are the mass of the cell and substrate, u is the
feed rate and V is the reactor volume, u, o are the specific rate of cell growth and the

substrate consumption rate, respectively. u = %% and 0 = /Y and Y is the yield
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coefficient. The initial conditions are assumed to be specified. Physical constraints
must be imposed on the final fermentor volume and the feed rate. The constraint on

volume is:

V(ty) <V; (6.6)
, where t; denotes the final reaction (fermentation) time. In practice, the pump feeding
capacity u(t) is bounded by

0= Umin S ’U,(t) S Umaz s Umaz given (67)

The profit (performance) function to be maximized is the final outcome of the fermen-

tation, so Eq. (6.2) can be represented by the functional
J = maz(X(tf)) = —min(zy - ty) (6.8)

where the final time is fixed. Thus, the problem is to determine the profile of the feed

rate that maximizes the profit function Eq. (6.8).

6.3 Dynamic Optimization of Fed-Batch Bioreactor with GASA al-

gorithm

The combined computational algorithm (GASA) of genetic algorithms and simulated
annealing provides an efficient approach for optimization with high speed and precision
[97, Sun et al, 1994]. The formulation of GASA computational algorithm can be
represented by a nine-tuple (nine key operators) as in Eq. (5.15). The detail design

procedure is in Chapter 5. The control variable in this problem is the feed rate u(t).
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6.3.1 GASA algorithm and fed-batch optimization

At the start, we can initialize the population with size A with length { for each individual
for feed rate v which is divided into several time intervals. For example, for individual
i with length [ in the population P(t) can be v;(t1), vi(t2), - -+, vi(ts) (7 is a binary
set), n is the the number of time intervals and ¢, = ¢;. This parameter set of v
elements can be decoded into u = decode(r) and then substituted for u into Eq. (6.5).
The performance index J; is given by Eq. (6.8). The performance index is in terms
of the raw fitness and converted into the selection probability p; = J;/ ¥7_, J; for
selection. Then we have to set up the temperature to anneal the individuals in the
initial population P(0). The best initial temperature Tj is found by solving Eq. (5.32).
The annealing coefficient c¢ is usually set between [0.7,0.99]. After selection and
reproduction with the probability p;, the existing individuals will undergo the genetic
operations. We can determine which individuals are to be crossed-over or mutated
according the probability 70 = ezp(—AJ/T) where AJ = J — Jpi, and T is the
current temperature. 7p is also called the “threshold probability”. Individuals with
7r > random|0, 1) are kept in the gene pool; otherwise, the unqualified individuals
are crossed-over to a randomly selected site where their binary bits are exchanged.
Then, the crossed-over individuals will be put into the gene pool. We can process the
individuals in the gene pool with the other genetic operator — mutation. Mutation
uses the same procedure as crossover, the only difference is that mutation occurs at

the randomly selected site. The stop criterion is |Jpew — Jo1d| < .

The procedures of the GASA feedback controller is illustrated in Fig. 6.1. The
performance (J) evaluation for each individual (J;) in the populations is calculated

based on the equations in Eq. (6.5). Then the performance J is converted into
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Figure 6.1: An Illustration of GASA Feedback Controller

the fitness. The genetic operation procedures, such as selection, reproduction are
processed according to the fitness. The other parameter, the temperature 7', is set up
from the annealing schedule. Temperature identifies the individuals which need to be
crossed-over or mutated. The final selected individuals of u are the feed rate to the
bioreactor. Repeating these procedures, we can find the best cell mass generation by

generation. The procedure does not stop until the criterion ¢ is met.

6.4 Results and Discussion

A fed-batch culture for cell mass production is described by Eq. (6.3) to Eq. (6.5).
The objective is to maximize the amount of cell mass represented in Eq. (6.8), where
¢y is fixed. We consider a variable yield 0 = u(s)/Y (s) [70, Modak & Lim, 1989] as

follows.

0.5045(1 — 0.0204s)

0.00849 + s -+ 0.040632
0.383(1 — 0.0204s)

1 4+ 0.296s — 0.00501s?

(6.9)

Y(s) =

(6.10)

where s is the substrate concentration. The specific growth rate is substrate inhibited,

with the maximum rate of 0.482 h~! (see Fig. 6.2) at s = 0.37. The yield Y is
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monotonically decreasing as is shown in Fig. 6.2. The initial conditions applied here
are Xy = 1g,So = 1g,V, = 11. The feed concentration sg is 10 g/I. The maximum

volume (V},,4,) and maximum feed rate (u,,q;) are 5! and 41/ h, respectively.

The feed rate profile derived from the maximum principle is not unique, because
this analysis is only from a necessary condition. We call it multiple-to-one math-
ematically. The complexity of this problem can be found from the mathematical
analysis. Since the first derivative of the Hamiltonian operator equals to zero, it only
means a minimum or maximum exists. Even though the second derivative is zero, the
global properties of the function are still unknown. We can use a simple simulation
result to explain its non-uniqueness. Modak & Lim used a simple nonsingular control
approach to optimize a fed-batch fermentation [70, Modak & Lim, 1989]. A ramp
input function is applied as their initial guess. Here we apply 61 ramp input patterns
to analyze the above problem. Fig. 6.3 illustrates the relationship between biomass,

feed rate and time. The highest value occurs at the edge where ¢t = ¢¢. The contour of
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Fig. 6.3 is plotted in Fig. 6.4. Fig. 6.4 enhances the last point for no global extrema
exist in the plateau of the picture. The feed rate profiles are shown in Fig. 6.5. The
pump is turned off whenever the maximum volume is reached. All of the maximum
volumes of these input patterns are less than or equal to V,,,, (see Fig. 6.6). The
substrate concentration of the different patterns can be found from Fig. 6.7. When
the feed rate is pretty low, the substrate concentration decreases fast. Fig. 6.8 shows
some of the maximum biomass occur at the final time with different inputs. The
theoretical maximum is 16.70 here. In practice, all biomass should be smaller than
this theoretical value. The flow profile and volume of the cell in the bioreactor are

described in Fig. 6.5 and Fig. 6.6, respectively.

Now we apply the classic genetic algorithms and the GASA algorithm to analyze
the dynamic optimization of fed-batch bioprocess. The population size in this appli-
cation is 50, and the length of the chromosome is 20. The time domain is divided into
50 intervals. For GASA, the initial temperature is 6 and the annealing coefficient is

0.95. The simulation is run with a SUN Sparc-10 workstation.

With GAs, Fig. 6.9(a) shows the individuals in the final generation (106). Six big
gaps can be found in Fig. 6.9(b). This shows the significant oscillations which can
occur in this singular control problem. This condition is also reflected in Fig. 6.10(b).
Fig. 6.10(a) is the best fitness in generations. Fig. 6.10(c) shows the mean and min

objective values versus the function calls.

Fig. 6.11 to Fig. 6.13 are the profiles for generation 106 with GAs from the best
individuals in the population. The feed rate shows piecewise changes in Fig. 6.11.
When time is close to 4.9, the pump is turned down because the bioreactor is full. The
substrate concentration decreases when the feed is shut off and approaches zero at ¢ ;.

The cell mass is increasing and reaches its maximum at final time. Fig. 6.13 is the
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Table 6.1: The basic units in different algorithms

Method | Cell Production

GAs 16.2900

GASA 16.2933

TM.P 16.0800

product profile with the scale changes. The only product is the biomass. So we can

find the best product of biomass is 16.2900 with GAs.

Fig.6.14~Fig. 6.18 shows the analysis with the GASA algorithm which optimizes
the input profile. Fig. 6.14(a) shows the individuals in the final generation. Fig. 6.14(b)
illustrates the best and mean objective values from the performance function J =
—X(ts). The best value is 16.2933 for GASA in generation 133. A gap appears
between mean and best. This situation also occurs around generation 45, 97 and 105,
but it is not so serious as in GAs. Fig. 6.15(a) is the best fitness in generations. The
standard deviation of individuals through generations are illustrated in Fig. 6.15(b).

Fig. 6.15(c) shows the mean and min objective values versus the function calls.

The pictures, Fig. 6.16~Fig. 6.18, are the profiles for generation 133 with GASA.
The feed rate shows piecewise changes in Fig. 6.16. When time is close to 5.6,
the pump is turned off because the bioreactor is full. The substrate concentration
decreases with the feed and approaches to zero at {;. The cell mass is increasing when
the feed is off and reaches its maximum at the final time. Fig. 6.18 is the product
profile with the scale changed. The only one product is the biomass here. We find
the best product of biomass is 16.2933 with GASA. The different cell mass values are
compared in Table 6.1 with the maximum principle (T.M.P), GAs and GASA. Both

of the population-based methods have a higher value for cell mass.
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Figure 6.3: The mesh plot for fed-batch optimization with different ramp input

patterns

In this result, GASA uses more generations (133) than that in GAs (106). It
indicates that we still can improve GASA with several aspects, i.e. the annealing
schedule. Thus, the population-based search approach provides us a good method to
analyze dynamic nonlinear optimization as in fed-batch fermentation. Moreover, this
method can be more complex by applying extra constraints or more bounds, and the

results will be found faster than the traditional hill-climbing method.
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Figure 6.4: The contour plot for fed-batch optimization with different ramp feed
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Figure 6.5: Different feed patterns

123



5.5

T T T T
5F e -
154
4
a5} S ,
s %
///
at y
Ve .
4 7/
Sast 4 ‘
o Ve e
5 //// i
S 3 P e
yid s
Ve
251 v 7
/7 s
il s
’ ',, 4
< I - e
15k yd e e
s o -
1 Lo -—-—-—"'r“"'—”—-’r-“—— 1 1
0 1 2 3 4
Time (hr)
Figure 6.6: The volume profile
T T T T
45k . '/':“’, P
af 2
7
3.5F ////
///
V4
S 3/
-~ 4
: I‘
g a5 /
3 ¢
] 11
g 2ry
@ /
3 / -
@ 1.5 . -
/ s - T
1k S
05f T
ol -
-0.5 L 1 — 1 t
1 2 3 4
Time (hr)

Figure 6.7: The substrate conc.

124

profile




T T T T —
16 E
b L
14 ,
.
12} , |
’
s/
510F % 1
<= s
3. ke
© ’
£ 8f a 1
= 7
8 -
L7
6f y |
.
P
ar e e - s
> o - -:_:‘;_,,.z."‘f i
P r:‘__,/"’ /”
i B e
2 s T i
’4_#_____.\—"-‘
of ]
1 1 1 1 1
0 1 2 3 4 5 6
Time (hr)
.
Figure 6.8: The cell mass profile
{b) All objective values {c) Best and mean
-7 . . . — . . v . 2 . . . . v
— best
_a} + + o+ )
Yo oa, e, ey Gt e e ++++“+++*+“"'+“ ~4r mean
o+ ++ + . +]
o} J
_10F
_af
o211 2
2 3
2 42| g 10;
£ -
813 5_'2_
—14F
-1ap
_15}
_1e} 16
+
1z s R R . L 18 . . . .
o 5 10 15 20 25 30 35 40 45 50 o 20 40 60 80 100 120
number of individual generation

(a) ®)

Figure 6.9: An Interpretation of GAs operation in generations: (a) The objective
values of all individuals in generation 106. (b) Best and mean objective values of

individuals in generations.

125



(a) Best fitness of generations (b} Standard daviation of generations
T T T T T v v

T T T T T T 3000, ——
2 q
19881 H 1
2500
1998
1994 2000
1992 §
g 199 3 1500t
1988 é
1000}
1986
1984
5001
1982} b q
108k, P A ] . _J"/ !
[ 10 20 3 40 80 60 70 80 80 100 [] 50 100 150 200 250 300
generation generation

(@ )

(c) Bast, mean objective values vs funcbon calls
T T T T T

-2 —

— T T
— best
4 mean |.4

N "
4000 5000 6000 7000 8000 9000 10000
number of functione! calls

(©)

- " L s
0 1000 2000 3000

Figure 6.10: Three comparison results of GAs: (a) Best fitness in generations. (b)
Standard deviation of generation. (c) Best and mean objective values vs. function

calls.

126



6 T T T T T
— Feed rate
Volume
S5t 4
T4 1
€
2
s
I
[
Eo ]
1 4
o 1 1 i 1 1
¢} 1 2 3 4 5 6
time (hr}

Figure 6.11: The profiles of volume and feed rate with GAs

— 005X

(=]
©
4

o © © © © o
@w A R OO N @

cell mass (g), substrate conc {g/)

o
[

0.1

o s L s

3
time (hr)

Figure 6.12: The profiles of substrate conc. and cell mass with GAs

127



cell mass (g)

3
time (hr)

Figure 6.13: The product profile with GAs

(b) All objectve values (c) Best and mean

—145F

objectve vakie

B e A A L 4 ++ e

+

+ -+
R ARt e

+

objectve value

N P n " " L 18 L " " s N L
o 5 10 15 20 26 30 35 40 45 50 o 20 40 60 80 100 120 140
number of indvdual generation
(a) (b)

Figure 6.14: An Interpretation of GASA operation in generations: (a) The objective

values of all individuals in generation 133. (b) Best and mean objective values of

individuals in generations.

128



(n) Best fitness of generations (b} Standard devialion of generations
T T T

2 T T T T T T B o T —r— —
1.85 E
0.5
19 1
188 0.4
i 18} §
% Zos
5
175 E
02
17F
165 q o1}
16
. . " " " N . L 2 L
) 20 40 80 80 100 120 140 o 20 40 80 80 100 120 140
generation generation

(@) (b)

(c} Best, mean objective values vs function calls

min & mean of f(x)

18 — L _—

[] 08

"
1 15 2 25 3
number of functional calls

(©

Figure 6.15: Three comparison results of GASA: (a) Best fitness in generations. (b)
Standard deviation of generation. (c) Best and mean objective values vs. function

calls.

129



6 T T T T T
— Feed rate
Volume
5r 4
=71 p
3
2
2
[=]
>
K
s
Eo .
1 -
o 1 1 1 1 1
0 1 2 3 4 5 6
time (hr)

Figure 6.16: The profiles of volume and feed rate with GASA

—0.05 X
--8

-
o
T

L

cell mass (g), substrate conc. (g/1)

e o o =~
'S o ® - [ £ o
T T T T T T T
f/

!

I
1
4
s
rd
. . f . . .

o
N
T

’
'

(=)
4

o
-
N
(2]
o
(<2

time (hr)

Figure 6.17: The profiles of substrate conc. and cell mass with GASA

130



cell mass (g)

3
time (hr)

Figure 6.18: The product profile with GASA

131



Chapter 7

Control of a pH Plant Using Genetic-Annealing Approach

Population-based representations are becoming very popular due to the their parallel
processing paradigm, their capabilities to represent nonlinear functions and to be
adaptive [53, 93, 108, Irwin, 1992;Sistu & Bequette, 1991;Whitley & Starkweather,
1990]. Based on Darwin’s survival-of-the-fittest strategy, genetic algorithms (GAs)
have become a fast-growing field of research. GAs are self-adaptive search algorithms,
based on the principles of genetics and natural selection, which, in control system
engineering, can be used because of their optimization ability [28, Filho et al, 1994].
Because of the nonconvergence of GAs in some problems [83, Rudolph, 1994], the
combined genetic-annealing approach (GASA) is proposed for nonlinear optimization
problems [97, Sun et al, 1994] to improve the convergence of GAs using another
stochastic optimization technique — simulated annealing [S5, Kirkpatric et al, 1983].
The application used here is a pH plant control. As we know, control of pH is a
difficult one because of the severe nonlinearity [90, 43, 15, Shinskey, 1988;Gustaffson,
1985;Buchholt & Kummel, 1979]. It is known that in case the plant involves a steady
state pH change towards the neutrality point effected by feeding a chemical reagent, the

output pH is highly sensitive to various of the mass flow of this controlling reagent. In
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such cases, high demands are set on the static accuracy of the control components, and
it is often hard or impossible to meet these demands with conventional schemes using
feedback control [72, Orava & Niemi, 1974]. In process control, the Ziegler-Nichols
(ZN) ultimate-cycle tuning [110, Ziegler & Nichols, 1942] is the most popular method
to fine-tune the parameters of classical PID controllers. The ZN method is sometimes
laborious, especially for processes with strong nonlinearity, because in fact the PID
values obtained through the ZN method usually requires manual tuning. Thus, a new
control tuning scheme for the PID controller is proposed here. This tuning ability of
the population-based approaches (GAs, GASA) are derived from their optimization

ability.

7.1 Genetic-Annealing Approach

The genetic-annealing approach is based on the combination of genetic algorithms
and simulated annealing [97, Sun et al, 1994]. The behavior and characteristics of
the combined genetic-annealing approach were explored in Chapter 5 with schema
theory and thermodynamics. First, this approach can be described by discussing

genetic algorithms and simulated annealing individually.

Genetic algorithms are stochastic global and population-based search algorithms
that determine the locations and values of a set of points in the domain space. The
criterion for which new points are generated or old points are discarded is a function of
the existing population. A simple genetic algorithm (SGA) is described by Goldberg
[38, Goldberg, 1989]. Individuals encode a set of decision variables by concatenating
them in a bit string according to their fitness just like Nature works with chromosomes.

The initial population is generated randomly and the population size is kept constant
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throughout the process.

e Genetic Reproduction
The fitness f; is calculated from the objective function. Those states not selected
are culled from the population. Because the average fitness of the population is
defined as f = 251 fi/n, if there are b;(t) copies of an individual 5 at time ¢,
the new population will have b;(t+1) = b;(t) f;/ f copies of f;. The effect of this
reproduction scheme is that above average performing individuals reproduce,

replacing poorly performing individuals.

e Genetic Recombination
The recombination operator used here is single-point crossover. Individuals are
paired with a highly probability that crossover will take place. Thus, a crossover
point is selected at random. For example, the two individuals {0 0I0 1 0} and
{10110 1} are crossed-over at the location “I”. After recombination, their
offspring strings will be {00 1 0 1} and {1 00 1 0}. The mutation operator,
occasionally flipping random bits in the population, causes individuals to sample

points that span the space with precision defined by the encoding method.

The other technique to be used is simulated annealing. It is based on the Boltz-
mann distribution in statistical mechanics. The method was developed to be used
with a nonconvex objective function. The approach of simulated annealing consists

of three functional relationships.

1. Probability density of state-space of D parameters withz = {z;,7 = 1,2,.-- D}.

2. Probability density for acceptance of new cost-function given the just previous

value.
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3. Annealing schedule.

The combined approach (GASA) from the above two algorithms is based on
the concept of “division” by energy. The new individuals are generated by genetic
operators instead of item 1 of simulated annealing. In fact, item 2 enhances the
division of the group of individuals according to their own energy (objective value).
High energy individuals expense a greater number of genetic operations. On the
contrary, the low-energy individuals are at the more stable states compared to the
higher-energy ones. The algorithm design is illustrated in Chapter 4. In simple terms,
the formulation of GASA computational algorithm can be represented by a nine-tuple
set of operation as in Eq. (5.15). The optimized variables in this PID control problem

are the control parameters (kp, ki, kq).

7.2 Problem Formulation

Let us consider a system which is given by the differential equation:
— = G(z,u) (7.1

where z(0) is given, z is an (n x 1) state vector and u is an (m X 1) control vector

bounded by
LB <u(t) <UB (7.2)

where LB and U B are the bounds for u(¢). It is derived to choose the control variable
u such that the desired state is achieved in the operation time. The control variable u

can be obtained by the control algorithm which is described later.

7.2.1 A pH plant model
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Figure 7.1: A neutralization process

The control problem is a neutralization process which uses a strong acid and strong
base in a well stirred tank, and a pH measuring sensor which is illustrated Fig. 7.1.
The pH control problem was solved by several different methods [15, 72, Buchholt &
Kummel, 1979;0rava & Niemi, 1974]. The control objective is to maintain the pH
value of the reactor at the point of neutralization. The manipulating variable is the
flow of base. Mixing in the tank is perfect so the fluid phase is homogeneous. If the
equilibrium of H* and OH ™~ is assumed to hold at any time, and a variable @) is used

to denote the difference of concentration [H+] and [OH ~]. We find:

Q = [HY]-[OH] (7.3)
K,
= [H'] -
-
where K, = 107!%(mol/l) is the equilibrium constant at 25°. By solving the

quadratic equation in Eq. (7.4) for [H*] and choosing the positive root, we have:
[H*] = 05[Q + (@ +4 x Ko)'] (7.4)

Under ideal conditions, the plant model can be described by the following quasi-linear
equation [15, Buchholt & Kummel, 1979]:

Q _

dt (Qa + Qb)_ (CaQa - Cbe)/V (75)
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i

Figure 7.2: Titration curve for neutralization of strong acid (10~3mol/l) and strong

base (10~3>mol /1)

where C,, Q, and C}, (), are concentration and flow of acid and base, respectively.
V is the tank volume. The effect of dissociation of water is neglected because of
C, >> 1077 and C, >> 1077, (@ is zero at the neutrality point. @ cannot be
measured directly, but can be converted from the measured pH signal. The pH value

and [H*] are calculated by

pH = —logio[H) (7.6)
We use a strong acid and a strong base for the control input in Fig. 7.2. The model
from Eq. (7.5) and Eq. (7.6) is highly nonlinear.

From an examination of Fig. 7.2, we see that a small fluctuation of Q/Q, may
cause a large deviation of pH around pH=5~9. This difficulty makes the traditional
control strategies very sensitive, especially for PI/PID control. A very fine tuning for

proportional gain is required for a satisfactory performance.
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Figure 7.3: A classical PID control system

7.3 Control Algorithms

In this section, the development of control strategies for the neutralization process is
described. These are a standard PID control, a dynamic GA PID controller, and our
effective GASA PID controller. In each of the algorithms described the influent base

stream flow is the manipulated variable.

7.3.1 PID controller

The continuous form of the PID control algorithm is used in this study. It can be

described as follows.

1 gt de(t '
Qb,t = KPID (6(t) -+ —/ e(s)ds + D ( )) (77)
TI dt
where Kpyp is the gain of the PID controller, 77 and 7 are the integral and derivative
constants, respectively. Fig. 7.3 shows the typical PID control system, where sp is the

set point (= pH,,), y is the system output (pH), and the error e(t) = pH; — pHy,p.

u(t) is the control output and the input to the plant.
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Figure 7.4: A PID + GAs control system

7.4 Control Tuning of the Plant

The Ziegler-Nichols (ZN) tuning settings, which are based on the ultimate-cycle , are

given as below [103, Wang & Kwok, 1993].

Kp = 0.6K,, 7 = %“,TD = %’i (1.8)

where K, and 7, are the ultimate gain and period, respectively.

The performance function (PF), J, is used to find the optimal combination of PID
parameters. A quadratic form of the error is suggested as our performance function

and is written as follows.

J(t) = min|le"(t) - e(t)l| (7.9)

The above performance function is the objective function which is evaluated from the
system output and setpoint. The convergence speed of this PF is faster than that of

“an error” (e(t)) only.
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7.4.1 PID tuning by genetic-annealing approach

The parameters of PID controller are K, K;, K4. They can be represented in Eq. (7.7)
as K, = Kpip, K; = K,/71, K4 = Kp7p. Touse the genetic approach, a combination
of these three parameters is formed as one individual. Each parameter can be generated
with length [ in binary. So an individual’s length is 3/. Suppose that K, K;, K are
bounded in [0, K5],[0, K33],[0, Kg], where K, Ky, and Ky, are the upper bounds
for K, K; and K, respectively.
Tuning by GAs

The individuals are initialized randomly with a population size A. The decimal value
is decoded from the binary strings of individuals. Fig. 7.4 indicates that GAs evaluate
the fitness according to the performance function in Eq. (7.9). The high-fitness
individuals can survive and be reproduced after selection. With the GA method,
the reproduced individuals will be processed by the genetic operators (crossover and
mutation) unconditionally. The new set for { K, K;, K} will be evaluated generation

by generation. The PID control will be tested with the new parameter set until the
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system is stable.
Tuning by GASA

The difference in tuning for GASA and GAs can be seen by comparing Fig. 7.5 and
Fig. 7.4. Obviously, the additional procedure for GASA is the use of temperature
and the calculated energy to select the “qualified” individual. Therefore, not all
individuals will be processed by genetic operators. In this algorithm, only the “high
energy” individuals will be processed. In practice, “high-energy” individuals mean
those individuals with low survival probability. These individuals have to have their
structural change by crossover and mutation to improve their chance of survival. The
environment is the applied plant model. The thermodynamic selection criterion is

dependent on exp(—(E — Ey;,)/T) which is so-called Boltzmann distribution.

E and FE,,;, are the performance function value and its best performance in the
population. This procedure is called the Modified Metropolis Criterion (MMC) [97,
Sun et al, 1994] which is a modification of the Metropolis algorithm [69, Metropolis,
1953]. The qualified individuals are processed by genetic operation. However, the
individuals which are processed by genetic operation are “conditional” instead of
“unconditional” as in GAs. The PID control parameters {K,, K;, K4} still can be
found generation by generation. The control action is operated with the applied
control parameter set. When the J < (, the overall operation is terminated, where ¢

is a tiny positive number.

7.5 Experiment Result

The experiment apparatus is illustrated in Fig. 7.1. For the simulated pH plant, the

process parameters are given as @, = 0.111/min, C, = 107mol/l, Qy = 0 ~
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0.251/min, Cy = 10~*mol/l and the reactor volume V is 2.0l. The pseudo steady
state is at dQ)/dt = 0, s0 Qp = Q,C,/Cj = 0.111/min. The operation time is 8 min.

The program is run on SUN Sparc 10. The integration method is Runge-Kutta
method, the time step is 0.02 min to meet the requirement of the high sensitivity of
pH neutralization operation. The upper bounds for the PID control parameters are
chosen as K, = 0.045, K;;, = 0.05 and K4, = 0.04 which can be estimated from the
step response to the process. The disturbance is considered as a white noise to perturb
the process parameter, i.e. @, changes from 0.11!/min to 0.13]/min. The process
tends to deviate away from the neutrality point (pH = 7), but it can be corrected by

the PID controller to maintain the overall stability.

The first technique applied for the close-loop operation is ZN. The ZN method is
used to find the PID control parameters with continuous cycling. The ultimate gain
and period are obtained as K, = 0.23 and 7, = 0.20. So the {K,, K;, K;} can be
calculated from Eq. (7.8) and shown in Table 7.1. Fig. 7.6 is the result of pH versus

time with ZN method. Fig. 7.7 shows the error with the ZN method.

GAs and GASA were used to optimize the parameters of PID controller. The
results are compared in Fig. 7.8~Fig. 7.11. The worst performance occurs around
t = 0.5 min as seen in Fig. 7.10. After that, the base flow rate is almost 0.111/min
which is equal to the the acid flow rate. This indicates that the control point is around
the neutrality point. The acidity (pH) of the tank is less than 7 after that time (see
Fig. 7.11), that is, [H*]~[OH~]. Fig. 7.10 shows both GAs and GASA converge in
this experiment. But GASA has less oscillation than GAs. From Fig. 7.8, we see that
the genetic-annealing approach can maintain the pH reactor at the neutral value. The
population size for GAs and GASA is 30 and the bits for each PID parameter were

10. Both techniques start from the same initial population. The starting temperature
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Table 7.1: The PID parameters and performance function (PF) for ZN, GAs and
GASA

K, K; K, PF

ZN | 0.13800 | 2.00000 | 0.00345 | 15.9986

GAs | 0.02357 | 0.02796 | 0.00066 | 8.9 x 1073

GASA | 0.02588 | 0.03094 | 0.00027 | 5.9 x 10~

for GASA is 6 and the annealing coefficient is 0.82.

The PID parameters and the central performance are listed in Table 7.1. The
largest error happens when using the ZN method. On the other hand, it results in a
pH process with too much base, and it is difficult to reach our control objective. The
very sensitive nonlinearity causes the ZN method to fail , GAs took 201 generations

to converge in this experiment, and GASA only took 21 generations.

7.6 Convergence Analysis

Models of industrial processes are only approximate representations of the actual sys-
tems; therefore, process control designs should accommodate parameter uncertainties
and variations. The concept of robustness refers to the preservation of close-loop sta-
bility under allowable variations in system parameters. The stability of the operating
point or region of the close-loop system needs to be asymptotically stable. However,
feedback systems are inherently robust, that is, the relevant properties of the close-
loop system tend to be preserved under parameter variations. For nonlinear systems,
it is very difficult to use traditional methods to analyze the robustness of the control

system. A simple method by observation of the trends is explained as below.
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The stability of the control system design with our genetic-annealing technique can
be found from Fig. 7.12(c) and Fig. 7.14(c) where the performance index decreases
as the generations increase. Fig. 7.14(a) shows the magnitude of the variables — PID
parameters are independent of one another. K; has the largest magnitude for both the
GAs and GASA. The locations of all individuals in the last generation can be found
from Fig. 7.12(b) and Fig. 7.14(b). The latter picture of GASA indicates that the

individuals move towards together very soon and the area is smaller than GAs’.

The fitness of GAs and GASA are illustrated in Fig. 7.13(a) and Fig. 7.15(a)
respectively. GAs have very unfit individuals appear around generation 143. The
unfit individual for GASA appears at generation 13. The scale window of fitness is 2
applied here (see Eq. (4.6)). The standard deviation for GAs (see Fig. 7.13(b)) is larger
than GASA (see Fig. 7.15(b)) and shows strong oscillation compared to GASA. The
output (pH) for GAs converges after generation 80, which is indicated in Fig. 7.13(d).

GASA converges more quickly than GAs, it can be found in Fig. 7.15(d).

The optimization ability of the genetic-annealing method can be used to determine
the optimal control parameter set. This method is more precise and faster than the
traditional PID tuning technique and can have higher stability than the classical method
(i.e. ZN method). Nonlinear design with population-based design can overcome the

uncertainty of the system.

7.7 Summary

A nonlinear, constrained feedback controller design procedure for stationary lumped
nonlinear systems is presented and analyzed. The global self-adaptive ability of

the genetic-annealing method has been successfully applied for pH control. The
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advantages of this method appears in the global search ability and its convergence
characteristics. The GASA algorithm shows promise of being applicable to any control
problem which lends itself to a minimization scheme. From the convergence analysis,
we can understand more about the procedures of the execution of this algorithm. The
assistance of temperature can weed out inferior points that occur, over generations.
GA and GASA is compared with the classic Ziegler-Nichols tuning method. The PID
control algorithm is reactivated with the novel population-based search algorithms and

can have higher efficiency to the practical operation.

148



(8) Best individuals

value of vanable
o
8

o
2
&

—kp
--k
kd

genaration

(a)

Figure 7.12: An Interpretation of GAs operation in generations: (a) PID parameters of

best individuals in generations. (b) The objective values of all individuals in generation

260

(b) Al objective values

°

objective vakie
o

—

+

(c) Best and mean

5 10 15 20
number of individual

(®

_—

generation

(©)

160

201. (c) Best and mean objective values of individuals in generations.

149

n
25 30



(a) Bast fitnesa of generations (b) Standard deviation of generations
T T — T

—T 8, T ~ —
7|
L]
£
o
B
£
@
1881 3
1881
2
1.841F
L " " L L s s L L " 1 . . . P
o 20 40 80 80 100 120 140 180 180 200 [] 50 100 150 200 250
generation generation
(@ (b)
1 T T T T T 10
—— best
14 mean |4
9
12F
8
=100
b
E 8 I7
]
<
Ee6
L]
5
: N 4 L s ) "
4000 6000 8000 10000 12000 0 80 100 150 200 250
numbar of functional calls generation
(c) d

Figure 7.13: Three comparison results of GAs: (a) Best fitness in generations. (b)
Standard deviation of generation. (c) Best and mean objective values vs. function

calls. (d) Best pH vs. generation.

150




(a) Best Individuals x 107 (b) All objective valuas
0.035 . 9 T y — — -
+ o+ +
8l
0.03F
7t
00251
8
e
k-1 o
g ooz 'E 114 4
] H
: i
o t
Zoots %-‘ .
>
3r +
001
2t +
+ + +
0005 + *
1 + + + + +
+ . + +
0 0 P
[} 1 25 0 5 10 15 25 30
generation number of individuat
(2) (b)

{c) Best and mean

1 1
12F
10
2
H
g
£
8
s
2r q
] 5 2‘0 25
generation
(©)

Figure 7.14: An Interpretation of GASA operation in generations: (a) PID parameters
of best individuals in generations. (b) The objective values of all individuals in

generation 21. (c) Best and mean objective values of individuals in generations.

151




(a) Best fitness of genarations

20 25 0

] 5 10

16
generation

(@

{c) Best, mean objectve values vs function calls
T T T T T

S—

1 T ——
— best
14 meal g

min & mean of f(x)
@

[] 100 200 300 400 500 600 700 800 800
number of functional calls

()

(b} Standard deviation of generations

ol

10 15 20 25
genaration

(b)

0 15
generaton

(@

Figure 7.15: Three comparison results of GASA: (a) Best fitness in generations. (b)

Standard deviation of generation. (c) Best and mean objective values vs. function

calls. (d) Best pH vs. generation.

152




Chapter 8

Conclusions and Future Perspectives

As stated earlier in this thesis, the research undertaken was aimed at uncovering a
combination of genetic algorithms and simulated annealing while addressing practi-
cal problems with this combination. The development of a combination of genetic
algorithms and thermodynamic search algorithms is presented in this thesis. The con-
tributions of this thesis have been marked in Chapter 2. The successful derivation and
application of the combined approach (GASA algorithms) is explored. These goals
have been fulfilled and detailed descriptions for each component of the thesis have
been presented in each Chapter. This chapter issues several conclusions and important
accomplishments of the whole thesis, and summarizes them in the first section of this
chapter. Then some useful related issues that are worthy of examining in the future

are raised in the second section.

8.1 Conclusions from the Dissertation

A very striking thing about genetic algorithms (GAs) and other parallel search algo-
rithms is the richness of the form of computation. The recent theoretical developments

and applications of genetic algorithms is illustrated in Chapter 3, which also reports an
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effort to establish an analytical framework for a simple genetic algorithm. Population
and selection effectively implement a fixed queue of states, and any time those states
with the best heuristic value will tend to be “opened” in order to generate successors.
One main difference from other conventional search algorithms is that the state is
updated as a batch process through stochastic sampling. The general search can be
initialized with many points together in the search domain. The natural selection is

applied to the procedure of selection.

The main distinction for GAs is that it introduces a concept of “coding”. This
concept is quite different from the traditional search methods and other evolutionary
algorithms. This action is also very helpful to the exploration and exploitation of the
advance in the genetic and biochemical computation. This coding type can match the
pairs of coding for genes in genetics. In practice, these procedures are programmed
with binary Boolean algebra which declares strings by “0” and “1”. The functions
to implement GAs are assisted with the major genetic operators — crossover and

mutation. They are the main mechanisms to create new structures for individuals.

The other combined computation algorithm is simulated annealing (SA), which
is reviewed in Sec.3.3. The foundation is based upon the asymptotic behavior of a
nonstationary simulated annealing algorithm model. SA originates from statistical
mechanics and obeys some behaviors of thermodynamics. The main introduced con-
cept from thermodynamics is “equilibrium”. When particles follow the Boltzmann
distribution, they could achieve pseudo thermodynamic equilibrium. The mathemat-
ical derivation of the decision rules is according to the Metropolis algorithm which
determines the “qualified” ones in the search space. Other related search algorithms
are structured in Chapter 3. Nonlinear programming and other typical search algo-

rithms are also described in this chapter. These search algorithms are very useful for
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nonlinear programming problems.

The inherently successful combination of genetic algorithms and simulated an-
nealing is described in Chapter 4, which is abbreviated as GASA. The importance of
this combination is considered from the format of the search behavior of the two com-
bined algorithms (GAs and SA). GAs start with populations having many individuals
and follow the survival-of-the-fittest rule in Nature. The parallelized search action
begins with the individuals in populations. The effective division of the participating
individuals are dependent on their energy states. The energy can be converted from the
applied objective function. The algorithm design and some extracted characteristics
are illustrated in this chapter. The modified Metropolis criterion is used to determine
the qualification of an individual to proceed with advanced operations. This combined
algorithm is investigated with a function optimization problem (see Sec.4.4) which has
nonlinearities of objective functions and multiplicity of local extrema that have been
stumbling blocks in the search for methods capable of locating global extrema. The
GASA algorithm can overcome these difficulties generated in the multiple minima

problem.

Furthermore, the search behavior of the GASA algorithm and other factors to
influence the global search are advanced in research reported in Chapter 5. Several
design procedures can improve the efficiency of the GASA algorithm. First of all,
the annealing schedule (or temperature scale in annealing) produces a major effect
on the consuming time of running and the efficiency of obtaining the result. The
temperature plays a critical role in the search. The partial annealing mechanisms can
produce the other GASA algorithms (GASA_C and GASA_M). The schema theorem
is very important to explore the trajectory of GAs. We have extended the original

schema theorem by Holland (1975) to obtain three new schema theorems on GASA,
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GASA_C, and GASA_M. Along with the new concept simulated phase transitions,
these theorems lend insight into explaining the search mode for GASA algorithms.
The individuals occupy different states which are decided by their energy (objective
value). The search by GASA is phase-by-phase instead of point-by-point. One phase
can construct a search plane in the search space. The location of an individual is
changed from one hyperplane to another. This behavior is illustrated with the aid
of phase transition from thermodynamics. The three new theorems establish the
robust theoretical fundamentals for the combined algorithms. The other invention
is the submission of the new equilibrium rule for the population-based computation
algorithms, whereas < E >= min(F) is applied to explain the convergence criterion

for the population-based algorithms on optimization.

The industrial practical applications with the genetic-annealing based algorithm

are explored in Chapter 6 and Chapter 7.

The dynamic optimization of the input profile for a fed-batch bioreactor is in-
vestigated in Chapter 6. The conventional optimization method derived from the
maximum principle cannot define a sufficient condition when an optimized profile is
found. These methods are also limited and time-consuming for the search procedure
because of the classical hill-climbing methods which help us find the derivatives from
the Hamiltonian operator. The results show the high cell productivity when the input
is optimized by the GASA technique. In industry, a slight difference of even one
gram can be scaled up to a great reduction of cost and operating time. The unstable
nature of the system causes difficulties for dynamic optimization. However, the GASA

algorithm provides an efficient approach for dynamic optimization.

The assistance with the genetic-annealing approach to the classical control strategy

is presented in Chapter 7. In the chemical industry, PID control is a very popular control
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scheme because of its convenience of operation. Controller operation is often based on
an engineer’s experience and ability to tune the control parameters. However, it can be
inefficient and laborious. Under closed loop operation, the optimization ability of the
genetic-annealing technique holds great benefits for plant control. The convergence
analysis provides us a transparent overlook of the processes of this approach. This
approach also provides an asymptotically optimal parameter setting technique for PID
controllers incorporated in a continuous model-following control system. The self-
regulation of the combined GAs and SA algorithms can quickly determine the optimal

controller parameters when applied to the SISO pH plant.

8.2 Future Perspectives

The dramatic expansion in domain of application for our search afforded by the com-
bined GASA algorithm has been mirrored by the diversity of applications beginning
to appear in the literature. The GASA combination covers many diverse inspired
concepts from biology, physics, genetics, mathematics and thermodynamics, and is
complemented by the availability of parallel computing power which GASA can ex-
ploit. This rapid and broadly successful automation technique has given rise to the

hope of full automation is a panacea for solving more complex problems.

Our technique allows the promise to approach objective optimization directly
in an efficient way. To meet the increasing market competition and environmental

constraints, this technique still can be explored from different aspects. They can be

e Nonlinear programming, dynamic optimization (e.g. fed-batch optimization),

combinatorial optimization.

e System identification, fault detection (e.g. pipeline leak), decision of the un-
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known and difficult parameters on modeling from experimental data.

e Prediction of molecular structures (e.g. protein structure), optimization of

engineering designs (e.g. ship building).

o Improved traditional control strategies (e.g. PID, Kalman filter), modern control

theory and intelligent control system.

e Pattern recognition, machine learning (e.g. classifier system), image processing

(e.g. analysis of oil source from data acquisition through satellites).

e Combined with neural networks, fuzzy theory, expert system and other artificial

intelligence approaches.

e Optimized chip design in semiconductor manufacturing and parallelization de-

sign of processors.

e Through machine learning, this technique still can be applied to model-based

prediction and model predictive control.

e Provides an efficient optimization approach to econometrics with its strong

search capability, and marketing prediction.

e The investigation of the related theoretical exploration. For example, the ad-
vanced computation methods originate from evolutionary computation methods,

thermodynamics and other artificial intelligence techniques.

The above are the future perspectives for advanced development and application.
Therefore, further research could well be directed to relate more close collabora-

tion between scientists and engineers, and provides an advanced integration to the

diversities between science and engineering with the crossed interdisciplines.
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Appendix A

Nomenclature

All vectors are column vectors.

Roman Letters:

Aji : State transition probability

b(t) : The number of individuals in generation ¢.

C : Crossover operator.

c : Annealing coefficient or temperature decrement parameter.
D : Dimension of function.

E : Energy or objective value.

e(t) : Error function for system output and set point, a vector.
f : Applied function.

Gji . State generating probability.

G(z,u) : Applied model.

h : Generating probability.
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K, K;, Kq

: Objective function or performance function (PF) or performance index

(PY).

: PID control parameters for proportional, integral and derivative re-

spectively.

: Ultimate gain for Ziegler-Nichols cycling tuning method.
: Lower bound for system input u(t).

: Population size.

: Mutation operator.

: Population vector at generation ¢.

: Crossover rate.

: Mutation rate.

: Threshold probability.

. Substrate mass (g).

: Selection operator; substrate concentration (g/1).

: Temperature at generation ¢.

: generation for algorithms; time for applied systems.
: Final operation time.

: Binary set (= {0, 1})).

: Upper bound for system input u(t).

: System input function.

160



14 : Reactor or tank volume.

X : Cell mass (g), a scalar.

X : A variable vector.

x : cell concentration (g/[), a scalar; state variable, a vector.
x; : The ith variable.

z* : Location of minimum.

Y : Yield coefficient (g/g).

Y : System output.

Z(T) : Partition function.

Greek Letters:

) : Scale function for fitness.

r : Decode function (binary — decimal).
L : Specific growth rate (1/h).

v : Binary bit (0 or 1).

v(t) : Binary matrix of v(t).

O, : Fitness of individual 2.

w : Scale window.

T : Ultimate period for Ziegler-Nichols cycling tuning method.
= : A whole gene pool.
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[l

c : Gene pool for low-energy individuals and to be retained before crossover.

Ene : Gene pool for high-energy individuals and to be crossed-over.

En : Gene pool for low-energy individuals and to be retained before muta-
tion.

Eam : Gene pool for high-energy individuals and to be mutated.

¢ : Stop criterion for programming.

Other Symbols:

* : Optimal location; wild card (“don’t care”).

: vector, on top.

= : matrix, at bottom.
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