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Due to the nature of the manufacturing and support activities associated with 

long life cycle products, parts need to be dependably and consistently available. 

However, the parts that comprise long life cycle products are susceptible to a variety 

of supply chain disruptions. In order to minimize the impact of these unavoidable 

disruptions to product production and support, manufacturers can implement 

proactive mitigation strategies. Careful selection of the mitigation strategy (second 

sourcing and/or buffering) is key, as it can dramatically impact the part total cost of 

ownership. This thesis developed a simulation model that performs tradeoff analyses 

and identifies a near-optimal combination of second sourcing and buffering for 

specific part and product scenarios. In addition, this thesis explores the effectiveness 



  

of traditional analytical models when compared to a simulation-based approach for 

the selection of an effective optimal disruption mitigation strategy. Several case 

studies were performed that: 1) tested the impact of popular analytical limiting 

assumptions, and 2) implemented realistic disruption data in the context of real part 

management. The first set of case studies demonstrated that the simulation model is 

capable of overcoming significant scenario restrictions prevalent within traditional 

analytical models: finite horizon (including non-zero WACC), fixed support costs, 

and unreliable backup suppliers are essential components for determining the 

effective optimal disruption mitigation strategy for a given disruption scenario. The 

second set of case studies demonstrates the importance of proper mitigation strategy 

selection in real electronic part supply chain scenarios. The results from the case 

studies not only justified the need for a simulation-based approach to disruption 

modeling, but also helped to cement the simulation model as an effective decision 

making tool for electronic part distributors. 
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Chapter 1: Introduction 

 

1.1: Objective Statement 

The goal of this thesis is to create a method for determining the optimal 

sourcing mitigation strategy that minimizes the cumulative total cost of ownership of 

a part in the presence of supply chain disruptions. In particular, this thesis focuses on 

extending a generalized part-centric model developed by Prabhakar [1] to include a 

disruption-mitigation model that guides supplier management sourcing decisions.  

The application domain for this work is electronic parts.  

 

1.2: Motivation 

Modern electronic products can be categorized as: long life cycle products and 

short life cycle products. Short life cycle products such as cell phones, computers, and 

GPS devices, are classified as products that become obsolete (no longer produced or 

supported) within 5 years or less. The supply-chains associated with these products 

have been studied extensively and tend to employ procurement-driven management 

strategies [2]. Long life cycle products (such as products employed in aerospace, 

communications infrastructure, and military roles) have relatively low volume and 

differ in that they are often fielded and supported for more than 20 years, which 

significantly diminishes the benefits associated with traditional procurement-centric 

strategies (such as lean manufacturing).  
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Due to the nature of the manufacturing and support activities associated with 

long life cycle products, the parts that products require need to be dependably and 

consistently available. However, the parts that comprise long life cycle products are 

susceptible to a variety of supply chain disruptions. In order to minimize the impact 

of these unavoidable disruptions to production and support, manufacturers can 

implement various proactive mitigation strategies. Two mitigation strategies in 

particular are widely used to decrease the penalty costs associated with disruptions: 

second sourcing and buffering.  Second sourcing involves selecting two distinct 

suppliers from which to purchase parts over the life of the part’s use within a product 

or organization. Second sourcing reduces the probability of part unavailability (and its 

associated penalties), but at the expense of qualification and support costs for 

multiple suppliers. An alternative disruption mitigation strategy is buffering (also 

referred to as hoarding). Buffering involves stocking enough parts in inventory to 

satisfy the forecasted part demand (for both manufacturing and maintenance 

requirements) for a fixed future time period so as to offset the impact of disruptions. 

Careful selection of the mitigation strategy (second sourcing, buffering, or a 

combination of the two) is key, as it can dramatically impact the part total cost of 

ownership.  

The selection of optimal sourcing strategies for electronic parts is a prevalent 

issue within the business management and operations research literature; however, 

the focus of existing analyses is typically on minimizing part procurement price. For 

example, lean manufacturing emphasizes the reduction of inventory size in order to 

cut costs. While this approach is largely effective for high-volume applications, it 
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implicitly assumes that suppliers can provide parts for the manufacturing process 

without interruption [3], which is often not the case with electronic parts over long 

time periods (e.g., 10+ years or more).  Disruptions events, defined as periods of time 

during which demand exceeds supply, not only stem from a variety of factors, they 

also have widely varying lengths (discussed further in Section 4). Disruptions in 

supply can be extremely problematic for systems that depend on electronic parts 

when popular lean manufacturing approaches are used.1 According to Kaki et al. [4], 

“…in many companies, the goal of supply network management has shifted from 

short term cost savings to the pursuit of long term strategic benefits”.  

Several high-profile supply chain disruption events have caused shockwaves 

within the electronics industry in recent years. For example, in March of 2000 a fire 

at a major Phillips Electronics plant shut down production and damaged millions of 

existing microchips. Ericsson, one of their largest customers, was faced with a 

shortage of parts that lasted for months. As a result, Ericsson lost an estimated $400 

million in sales [5]. Similarly, a Japanese earthquake disrupted the supply of parts to 

Kelly Micro Systems in 1994 [5]. Another Japanese earthquake (in 2011) led to a 

tsunami that forced the shutdown of several plants that “supply much of the world’s 

silicon wafers, auto parts, flash memory, and other components” [6].  

The model developed in this thesis allows the employment of proactive 

mitigation strategies in order to minimize the effect of disruptions events, especially 

supplier-specific disruptions.   

                                                

1 Disruptions are also a problem when lean manufacturing approaches are used for high-volume 
products, but in the case of high-volume products, disruptions are usually relatively short in duration 
(e.g., hours or days), whereas in the case of low-volume, long field life products, disruptions due to 
allocation issues and obsolescence may have durations of months or even years. 
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1.3: Introduction to Electronic Part Supply Chains  

1.3.1: Supply Chain Background & Terminology  

A supply chain is a complex network of organizations (suppliers, 

manufacturers, distributors, and customers) through which materials and goods flow. 

While supply chains have many levels (or echelons), this thesis will focus on a single 

echelon of an electronic part supply chain in order to effectively isolate the effect of 

disruption mitigation strategies. In particular, this thesis will concentrate on the 

relationship between electronic part suppliers and original equipment manufacturers 

(OEMs). OEMs, in this context, are defined as manufacturers who integrate pre-

fabricated parts and systems into larger products. 

OEMs must perform several steps when selecting and implementing a part 

into a more complex product. First, manufacturers need to identify suitable parts from 

existing suppliers. If no such parts exist, manufacturers need to look into either in-

house fabrication or specialized contracts with fabricators. After a specific part has 

been selected, the manufacturer needs to expend resources having both the part and 

the supplier(s) qualified to the standards of their organization or to the standards 

required by their customer. 

Once a part and its supplier have been fully qualified, a steady supply of parts 

is needed in order to consistently manufacture new products and support existing 

products throughout their life cycle. While the primary purpose of manufacturing is to 

fill outstanding customer orders, product support comes into play through the 
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fulfillment of warranty claims and necessary part replacements. The additional parts 

needed to support fielded products are referred to as “spares”. 

If the supply of qualified parts is interrupted (unable to meet manufacturing 

and support demand), then customers’ orders for new products or repaired products 

are left unfulfilled. These unfulfilled orders are known as “backorders”, which can 

incur penalty costs over time. In order to safeguard against these lapses in supply, 

OEMs can order an excess of parts (called a “buffer”) that allow for continued 

production during the disruption.  

1.3.2: Low Volume, Long Life Cycle Electronic Products 

Low volume, long life cycle electronic products appear in military, aerospace, 

oil, and communications infrastructure among other applications.  None of these 

applications has any control over the supply chain for the electronic parts they use.  

During the initial design and manufacturing stage, these products can typically obtain 

their parts directly from high volume supply chains built to support consumer 

electronics. However, these long life cycle products differ from consumer electronics 

in that they need parts to be readily available for long periods of time (20 years or 

more). These long product life cycles can exceed part procurement lifetimes2 

(especially at the individual supplier level) and therefore the flow of parts needs to be 

carefully managed.  

The relatively low volume (when compared to consumer electronics) of 

ordered parts for these long life cycle systems severely undermines the effectiveness 

                                                

2 The part procurement life indicates the total length of time (in years) that the part was or will be 
procurable from its original source(s) [30]. 
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of popular procurement-price based strategies. In particular, necessary support and 

qualification costs (which are typically overlooked in traditional cost modeling) 

become critical cost components as they are not balanced by a high level of 

production. A total cost of ownership approach was chosen for this thesis due to the 

incorporation of these underlying support and qualification costs.  

 

1.4: Supply Chain Disruption Taxonomy 

A supply chain disruption is a mismatch between supply and demand that 

would result in backordered parts if there were no mitigating factors such as buffered 

parts or second sources. While the primary effect of a disruption is the same, the 

source/cause of disruption events varies. Four disruption categories are discussed 

below: part-specific, supplier-specific, customer-specific, and external.  

1) Part-specific: Situations related to individual parts (not suppliers) can impact 

the ability of a customer to obtain the part from any supplier. The most 

common part-specific disruptions are technology obsolescence and counterfeit 

part risk. 

2) Supplier-specific: The three broad causes of supplier-specific disruptions are 

suppliers exiting the market, specific part obsolescence (particular part 

numbers that are discontinued by a supplier), and delivery delays. 

3) Customer-specific: Poor estimation of part demand by the customer is the 

primary source of customer-specific disruption. Estimation issues are typically 

a result of unforeseen surges in demand and allocation issues. 
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4) External: Events that are beyond the control of the suppliers or customers may 

directly affect the efficient production of parts and subsequent delivery to 

customers. Common causes of external disruption include political/legislative 

events, transportation mishaps, and “Black Swan”3 events. 

Manufacturers periodically negotiate supplier contracts that set the price, lead 

times,4 and volumes of selected part shipments. These contracts are deciding factors 

in the manufacturer’s overall production schedule and as such variations from the 

contractual terms can be the basis for production or support disruption, whatever the 

cause. 

 

1.5: Supply Chain Disruption Literature Review 

In recent years, global supply chain disruptions have caused an increased 

interest in the development of proactive disruption mitigation models. Blackhurst et 

al. [7] presents a case study on global supply chain disruptions involving interviews 

and focus groups of industry executives. The article highlights the importance of 

supply chain visibility, and the development of real-time measures within the supply 

chain (i.e., the importance of data when producing an effective model).  

Due to varying part demand throughout the life cycle of a product or group of 

products, part buffering (as presented in this thesis) is inherently a dynamic inventory 
                                                

3 Disruption events that occur outside of reasonable or regular expectations, produce an extreme 
impact, and involve “retrospective predictability” [31].  Retrospective predictability indicates that the 
probability of occurrence can only be quantified after the event (or similar event) has taken place. 
Examples of black swan events impacting electronic parts include the 2011 Thailand flood and the 
2011 Japanese earthquake. 
4 Lead time indicates the time in between the placement of an order for parts and its delivery. 
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policy. Various dynamic inventory policies and models have been presented in 

previous works. Karlin [8] introduced a variable inventory model based on a 

fluctuating demand distribution. Karlin’s model incorporates backlogged demand and 

its associated penalty cost, but supply chain disruptions are not considered. Karlin’s 

model is based on defined periods of equal duration, at the beginnings of which 

ordering decisions are made. Any time lags between order and delivery within the 

model are assumed to correspond to these pre-determined periods (i.e., a lag lasts a 

certain number of periods and the parts are delivered at the beginning of a period). 

Karlin only presents a model for a lag lasting one period. Supplier disruptions are 

inherently uncertain (when they occur and how long they last are uncertain), and as 

such a dynamic inventory policy that reflects this fact is necessary. Zipkin [9] 

developed a simplified version of Karlin’s model. Zipkin’s model assumes that each 

period is stationary and uncertainty only comes into play when the periods are 

combined. Iyer and Schrage [10] focused on the importance of collecting historical 

demand data to generate inventory control parameters; however they presented only a 

deterministic model. Disruption overlap and uncertainties in disruption date and 

duration are key factors in the Iyer and Schrage model. 

A variety of models have been developed to study the effect of disruption 

events within a supply chain. Disruption models in the operations research realm 

focus on the study of dynamic inventory policies, in particular the selection of 

optimal buffer stock quantities. In fact, early disruption-specific models, such as Song 

and Zipkin [11], Parlar and Perry [12], and Ozekici and Parlar [13] focus exclusively 

on inventory control methods for accommodating disruption events. These models 
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developed robust disruption definitions and mathematical equations that serve as the 

basis for more complex disruption modeling approaches. However, with the 

exception of Ozekici and Parlar [13], these early disruption models did not 

incorporate the effect of discounting (i.e., time value of money).  

 Wang et al. [14] discuss the effect of both dual sourcing and process 

improvement as disruption mitigation strategies. While the proposed scenarios 

primarily explore random capacity and random yield supply uncertainty, they can 

easily be modified to represent disruption events (i.e., zero yield/capacity). The 

authors also utilize "quantity hedging"5 in certain dual sourcing scenarios in order to 

counteract supply shortages in one of the suppliers. 

Das [15] highlights the importance of supply chain flexibility as a way to deal 

with disruptions and demand uncertainty. Das recommends renting extra capacity 

when needed (as opposed to simply expanding overall capacity) and maintaining a 

pool of second tier suppliers that are able to fill in for primary suppliers, with an 

additional inspection cost, in the case of disruptions (a.k.a., emergency or backup 

sourcing). Das also mentions base level safety stock (a.k.a., buffering) as a 

management defined input. However, the focus of [15] is on the physical layout of the 

supply chain (distribution centers, plants, transportation) the importance of product 

flexibility, which is not within the part-centric scope of this thesis.  

Tomlin [16], Schmitt and Snyder [17], and Chen, et al. [18] incorporate the 

concept of second sourcing as an additional disruption-management technique. 

                                                

5 Wang et al. [14] defines quantity hedging as ordering more parts then demand calls for in order to 
“hedge” against shortages in supply. This is similar to buffering, except that quantity hedging is not 
tied to a finite duration of time (e.g., buffering is defined as ordering enough excess parts to cover the 
forecasted demand for a fixed future time period). 
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However, while these models clearly define the effect of various disruption mitigation 

strategies on cost, supplier qualification is not considered and the secondary supplier 

is assumed to be completely reliable (essentially an emergency/backup supplier that 

can always deliver). In addition, Tomlin, and Schmitt and Snyder present infinite 

horizon models, which assume that each ordering period takes place within an infinite 

part usage lifetime. The defining characteristic (in terms of this thesis) of infinite 

horizon models is that while the sequence and expected frequency of events and/or 

periods are taken into account, the effect of calendar time is ignored. The absence of 

calendar time has several notable ramifications for long life cycle products: 

1) Individual periods and/or events are not differentiated based on when 

they occur in time, i.e., sequence of events is accounted for and only the 

state of the previous period in known for calculations, but the correlation 

to the clock and calendar are not accounted for. This assumption can 

detract from the accuracy of disruption models, as several historical 

disruption profiles, such as seasonal weather events, are dependent on 

calendar time. 

2) Periodic adjustments (such as the weighted average cost of capital 

(WACC), inflation, and deflation) cannot be considered because the time 

duration between events is not accounted for. The case studies presented 

in Section 3.5 show that, over long periods of time, these adjustments 

can significantly impact the total cost of ownership of a system. 

3) Time dependent costs, such as introduction (e.g., initial approval and 

qualification costs) or termination costs (e.g., obsolescence and end of 
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life support costs), cannot be incorporated into calculations. These 

support costs, as discussed Section 3, are key cost components for low-

volume, long life cycle systems.  

While the implementation of an infinite horizon approach simplifies 

disruption models and helps to insure the formulation of convex optimization 

problems, the simplifying assumptions are not realistic for low-volume, long life 

cycle products and lead to significant errors (as discussed in Section 3.5).  

Although the restrictions surrounding the models developed by Tomlin [16], 

Schmitt and Snyder [17], and Chen et al. [18] call into question their model’s 

usefulness as decision-making tools for most real applications, a fact which Tomlin 

acknowledges in [16], they provide valuable insight into the effect of disruptions and 

they provide some guidance on the number of necessary disruption-based inputs for 

the simulation-based model developed in this thesis. 

Schmitt and Singh [19] presented a simulation-based approach 

implementation of Tomlin’s model [16] that studies the propagation of disruptions 

through infinite-horizon, multi-echelon supply chains and the resulting effect on 

inventory flow. The simulation utilized in this thesis (as opposed to that of [19]) 

focuses on a single echelon of the electronics supply chain, more specifically the flow 

of parts from supplier(s) to the original equipment manufacturer. Any disruptions that 

occur before the parts reach the supplier(s) are assumed to be included in the 

aggregate supplier disruption distribution. While Schmitt and Singh’s model serves to 
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bridge the gap between analytical models6 and simulation models, it is still 

constrained to the limiting assumptions presented in [16] (infinite-horizon in 

particular). 

Tomlin supplemented his original paper [16] with an additional study in 2009 

[20]. This paper presented a two-product newsvendor study that analyzes the impact 

of a variety supplier/product/firm attributes on the optimal mitigation strategy. An 

additional mitigation strategy (shifting demand to another product) is also considered. 

While [20] implements a product-centric view, it is limited to a single period (as 

opposed to finite long life-cycle systems). 

Another realm of disruption management exists within the supply-chain, but is 

not addressed in this thesis. Lin [21] studies disruption events stemming from 

production uncertainty (i.e., imperfect production due to defective parts, machine 

failure, and rework) at the manufacturer level. Lin utilizes a Markov chain based 

probability matrix (similar to the one presented by Tomlin in [16]) to model process-

specific events. While imperfect production has a proven effect on the total cost of 

ownership, it is not derived from the relationship between manufacturer and 

supplier(s), and for that reason it is not considered in this thesis. 

While the existing literature (outlined above) shows a growing interest in the 

study of supply-chain disruption mitigation, no model has proven effective as a 

general decision-making tool for supply chain managers. Instead, the existing 

literature focuses on isolating key parameters and overarching trends for generalized 

                                                

6 An analytical model is a mathematical model (based on a series of formal equations) that has a closed 
form solution (i.e., the solution can be expressed as an equation). Simulation models combine 
analytical and numerical modeling (i.e., time-stepping in the case of the model in this thesis) 
approaches to generate data and graphs that reflect the system’s behavior over time.  
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supply scenarios. The model in this thesis utilizes a simulation approach in order to 

incorporate a greater number of parameters/inputs and allow for scenario flexibility. 

This thesis also emphasizes the importance of real-world disruption data as a catalyst 

for model development.  

In addition, research in recent years has primarily focused on disruption 

mitigation for high-volume, short life cycle products. These products can typically be 

generalized using infinite horizon or economic order quantity (EOQ) approaches that 

place minimal emphasis on fixed support costs. An effective disruption model that 

considers parameters unique to low volume, long life-cycle parts (such as non-

recurring support costs) has not been developed. 

 

1.6: Thesis Overview 

This thesis introduces a new method for isolating effective7 (not formal) 

optimum disruption mitigation strategies for electronic part supply-chains. The 

approach developed strives to minimize the cumulative part total cost of ownership, 

depending on several parameters including: inventory level, backordered parts, 

disruption events, sourcing strategy, support costs. The work presented in this thesis 

will provide an effective decision making methodology for supply-chain managers. 

The total life-cycle cost through j years will be minimized according to the following 

equation: 

                                                

7 The simulation model developed in this thesis utilizes an iterative approach to isolate near-minimum 
total cost of ownership values for given part and product scenarios. These near-minimum values are by 
no means formal optimums, but they act as effective decision-making tools for identifying the most 
successful disruption mitigation strategy.   
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                      𝐶!"#! = (  𝐶!"#! + 𝐶!"#! + 𝐶!"#$! + 𝐶!!! + 𝐶!"#!)
!
!!!  Eq. 1 

The costs that compose the total life-cycle cost are as follows: support costs CSUP, 

assembly costs CASY, procurement costs CPROC, field costs CFF, and disruption costs 

CDIS. These costs will be further defined in Chapter 2.  

Chapter 2 outlines the development of a part total cost of ownership model 

(and the accompanying simulation model) that incorporates disruption strategies and 

penalty costs due to backordered parts. Chapter 3 validates the simulation model by 

reproducing results from the analytical disruption model developed by Tomlin [16] 

and highlights limitations to common analytical disruption approaches. Chapter 4 

presents a set of case studies that examine sourcing strategy selection in the context of 

realistic supply-chains. Chapter 5 summarizes the research, contributions, and 

identifies areas for future work. 

 

1.7: Work Plan 

In order to accomplish the objectives outlined above, the following work plan 

was developed and completed: 

1) Expand the basic part total cost of ownership model (developed by Prabhakar 

in [1]) to include the effect of buffering, backordered parts, and penalty costs. 

Prabhakar addresses long-term (non-recurring) supply chain disruptions and 

specifically focuses on disruptions due to part obsolescence. The focus of this 

thesis is on frequent, smaller-scale disruption events and the appropriate 

selection of disruption mitigation strategies (not limited to single verses 

second sourcing). 
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2) Develop a simulation model that allows for the determination of the effective 

optimum disruption-mitigation strategies associated with a set of parameters. 

Trends observed from the outputs of sensitivity analyses performed in the part 

total cost of ownership model may allow for a reduction in necessary 

parameters.  

3) Validate the simulation model against results produced and documented by 

existing analytical disruption models. In particular, reproduce the results of 

Tomlin [16]. In addition, isolate limiting assumptions that can be overcome 

with a simulation-based approach. 

4) Determine key parameters for the proper selection of disruption mitigation 

strategies for low-volume, long-life cycle products. Specifically, run case 

studies with the modified part TCO simulation model to assess the importance 

of four limitations to common analytical models: 1) fixed costs are ignored, 2) 

disruptions last full ordering periods, 3) second/backup suppliers are perfectly 

reliable, and 4) assumptions associated with an infinite-horizon approach.  

5) Explore the use of actual supplier and/or distributor historical data for 

establishing supplier disruption distributions (both duration and frequency). 

Original Equipment Manufacturers (OEMs) may have some "soft" knowledge 

from their own production lines that can be combined with limited public 

information on the performance of various suppliers, but a quantitative model 

is generally lacking in the electronics industry. In addition, utilize the 

compiled disruption data to run realistic case studies in the simulation model. 
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Chapter 2: Part Total Cost of Ownership Model (TCO) in the 
Presence of Supply Chain Disruptions 

 

This chapter presents the development of a part total cost of ownership model 

that incorporates both mitigation strategies (second sourcing and buffering) and 

penalty costs due to supply-chain disruptions. The following sections discuss the 

importance and implementation of various model components as well as the 

presentation of an accompanying simulation model. The resulting model serves as the 

basis for calculations in the remainder of this thesis.  

2.1: The Part TCO Model 

The model developed by Prabhakar and Sandborn [22] determines the part total 

cost of ownership. The basic model developed in [22] for calculating the effective 

cumulative total cost of ownership through year j for a part is given in Eq. 2, 

𝐶!"#! = (  𝐶!"#! + 𝐶!"#! + 𝐶!"#$! + 𝐶!!! + 𝐶!"#!)
!
!!!   Eq. 2 

This model has five major components: support costs (𝐶!"#), assembly costs 

(𝐶!"#), procurement costs (𝐶!"#$), field failure costs (𝐶!!), and inventory costs 

(𝐶!"#). All of these costs are adjusted to present value in the underlying calculations 

to account for the cost of money.  

The target of the cost model in [22] was a study of the impact of support costs 

on the total cost of ownership for low volume, long life cycle parts. For this reason, 

several support costs (𝐶!"#)  are included in the principal calculations: initial part 

approval and adoption costs, product-specific approval and adoption costs, annual 
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cost of supporting the part within the overall organization, production support and 

part management costs, obsolescence case resolution costs, and preferred-supplier list 

(PSL) qualification costs.  

The remaining cost components capture recurring and non-recurring costs 

experienced throughout the lifetime of the part. The annual assembly costs (𝐶!"#) are 

defined as the recurring system assembly costs and the recurring functional 

test/diagnosis/rework costs. The annual procurement (𝐶!"#$)  and inventory (𝐶!"#) 

costs are the recurring part purchase costs and inventory holding costs, respectively 

(in this model, the inventory cost is primarily utilized to store lifetime buys8). Finally, 

the field failure costs (𝐶!!)  incorporate any costs incurred due to warranty fulfillment 

or part replacement. The approach outlined by Prabhakar and Sandborn in [23] 

addresses long-term (non-recurring) supply chain disruptions and specifically focuses 

on supply-chain disruptions due to part obsolescence. However, the authors note in 

[22] that this cost model could be extended to include the effect of shorter-term 

disruption events, which will be the focus of the remainder of this chapter.  

The model employs an annual (end-of-year) review policy in terms of inventory 

replenishment decision-making. For a more detailed explanation of the terms in Eq. 2, 

see [1]. 

 

                                                

8 Lifetime buys refer to purchasing and storing a sufficient quantity of parts (when the part is 
discontinued) to satisfy all future demand (production and support). 
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2.2: Part Sourcing Strategies 

2.2.1: Single Sourcing 

 Single sourcing, in the context of this thesis, is defined as an exclusive 

relationship between an original equipment manufacturer (OEM) and a single 

supplier with respect to a specific part. However, while single sourcing minimizes 

qualification costs and allows for greater supplier-manufacturer coordination, the 

manufacturer is more susceptible to supplier-specific disruptions.  

2.2.2: Second Sourcing 

In this thesis, second sourcing involves purchasing parts from a primary 

supplier while maintaining a backup/secondary supplier. This sourcing strategy 

decreases the impact of disruptions as production can be rerouted to the second 

supplier when the primary supplier is disrupted (not able to supply parts). However, 

while second sourcing is good for supplier negotiations (manufacturers can put 

pressure on the price), additional qualification and support costs can negate its 

benefits.  

In Prabhakar and Sandborn [22] the additional cost to support a second source 

is modeled using a learning index, a factor that characterizes the support cost overlap 

between the primary and secondary supplier. The case study in [22] showed that the 

benefit of using a second sourcing strategy is dependent on the value of the ratio K = 

∆CTCO/CSUP where ∆CTCO is the difference in total cost of ownership (i.e., the cost 

avoided by extending the part’s procurement life) and CSUP is the cost to support a 

source. K can be used to calculate the effective learning index associated with 
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sourcing (see [22]). According to [22], the ratio K can be interpreted two different 

ways: 1) as a threshold value, K serves as an gauge for the organization’s ability to 

avoid certain qualification and support activities for additional suppliers, and 2) as a 

target value, K can be used to estimate the maximum fraction of support cost that can 

be duplicated for the second source and still make second sourcing viable. This thesis 

utilizes the ratio, K, to assess the value of proactively qualifying a second source 

and/or buffering an inventory of parts to address the issue of recurring supplier-

specific part disruption events.  

Obsolescence mitigation (specifically DMSMS [diminishing manufacturing 

sources and materials shortage] obsolescence) was incorporated into Prabhakar and 

Sandborn’s model [22] through strategic lifetime buys and the inclusion of second 

sourcing as a way to extend the part usage life without changing the procurement life 

from the original manufacturer. Prabhakar and Sandborn found that when the 

combined procurement and inventory costs are high, second sourcing offers increased 

cost avoidance by extending the part’s effective procurement life (when compared to 

single sourcing). However, short-term supply chain disruptions are much more 

common than obsolescence-type events and have a direct impact on the TCO of each 

part (which will be explored in the remainder of this thesis). 

 

2.3: Part Buffering 

 As mentioned in Chapter 1, buffering in this thesis is defined as the storage of a 

number of parts equal to the forecasted part demand (for both manufacturing and 

maintenance requirements) of a fixed future time period. Buffering is a common 
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proactive mitigation strategy employed in the electronics industry so as to offset the 

impact of disruptions. 

 Due to the fact that the forecasted part demand changes throughout the life cycle 

of the part, the buffering quantity is not a pre-determined value. Instead, the buffering 

quantity changes from year to year. If the buffering duration (TH, in months) is less 

than a year, the buffering quantity for each year (i) within the part’s life cycle (with 

the exception of the final year of support, when no buffering is necessary) is given by: 

𝐻! = 𝑚!
!!
!"

  Eq. 3  

where mi is the forecasted demand per year. 

 If the buffering duration (TH) is greater than a year, then the buffering quantity 

for each year (i) is given by: 

𝐻! = 𝑚!
!!!! !!

!" !!
𝑘=𝑖 +𝑚!! !!

!"

!!
!"
− !!

!"
 Eq. 4 

where : 𝑥  represents the floor function (round down to the nearest integer); 

therefore !!
!"

 is the number of full years accounted for in the buffering strategy.  

Equations 2 and 3 implicitly assume that the forecasted part demand (m, in 

parts/year), while varying from year to year, is consumed at a constant rate within any 

given year. The uncertainty associated with of the forecasted part demand impacts the 

total penalty cost, as discussed in the next section.  

When a supplier disruption occurs, new parts are no longer being delivered and 

the production and support begins to rely on the buffered inventory. However, if the 

disruption extends past the buffering duration, parts are backordered with an 
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additional penalty cost. The number of parts on backorder at the end of the disruption 

period is considered the backorder quantity. 

 While buffering can be shown to significantly decrease the penalty costs 

associated with disruption events (see Section 4.2), there are some negative impacts 

that need to be considered. For example, buffering (if left unchecked) can delay the 

discovery of counterfeit parts in the inventory. Similarly, long-term storage of parts 

can lead to part deterioration (such as the reduction of important solderability 

characteristics for electronic parts).  For this reason, OEMs that utilize long-term 

buffering as a disruption mitigation strategy may need to regularly assess the 

status/condition of buffered parts.  

 

2.4: Backorder Penalty Cost 

 One of the major consequences of supplier/production disruption is the 

accumulation of penalty cost. Whenever demand is not met, a penalty is charged. If 

disruptions are frequent and/or lengthy or there is a high base penalty cost, the 

cumulative TCO can be dramatically affected. The buffering strategy can be 

optimized so as to balance the holding cost associated with excess parts against the 

possible penalty cost.  

 In the model presented in this thesis, annual backorder penalty (𝑃!"!) in year i 

was calculated using: 

 𝑃!"! =
!!!!∗

(!!!)(!!!!)
 Eq. 5 
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where r is the weighted average cost of capital (WACC), discrete compounding is 

assumed, and YB is the associated base year for money.  Equation 4 incorporates the 

uncertainty of part demand within the function Ii*, which is defined as the maximum 

of the following three values: 0, the shortage/excess on backorder quantity (S/Ei), and 

the parts in inventory (Ii). This function essentially selects the population (due to lead 

time/disruption or demand uncertainty) affected by the base penalty cost per part per 

year (PB). The parts in inventory (Ii) are defined within the model as the total number 

of parts available for production/support at the end of the year, typically as a result of 

demand uncertainty. A negative quantity indicates a shortage of parts while a positive 

quantity indicates excess inventory. If there is excess inventory (IE) at the end of the 

year, a holding cost (h) is charged per part instead of a backorder penalty cost (as 

excess inventory inherently indicates that no parts are on backorder). 

 The shortage/excess on backorder quantity is defined as the number of parts that 

are unavailable for production/support during a disruption event- a negative quantity 

indicates a shortage of parts. This excess/shortage is essentially the error due to part 

demand and disruption uncertainty. For the first year of a supplier disruption, this 

value is calculated by: 

                                      𝑆/𝐸! = 𝐻! −𝑚!𝐷! Eq. 6 

where Di is the annual downtime. If the disruption extends past one year, the 

shortage/excess on backorder quantity is quantified for all subsequent years by: 

                                        𝑆/𝐸! = 𝐼! −𝑚!𝐷!  Eq. 7 

 The sum of the annual backorder penalty cost and the holding cost on excess 

parts are added to the part cost of ownership (as calculated Section 2.1 using Eq. 2) to 
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produce the annual part TCO. The method presented in this thesis utilizes end-of-year 

backorder counting. This method assumes that the part total cost of ownership for 

year i is the cost accumulated between year i and year i+1.  

 

2.5: Disruption-Specific Cost Terms 

The disruption-specific cost terms outlined in the prior sections were used to 

modify Prabhakar and Sandborn’s [23] general total cost of ownership model. The 

annual inventory cost term (𝐶!"#!) in Eq. 2 was replaced with a more generalized 

disruption term (𝐶!"#!) as shown in Eq. 8.  

𝐶!"#! = (  𝐶!"#! + 𝐶!"#! + 𝐶!"#$! + 𝐶!!! + 𝐶!"#!)
!
!!!  Eq. 8 

 The annual disruption-specific cost (Eq. 9) is the sum of the annual buffering 

cost incurred due to excess inventory (buffered parts, Hi) and the annual backorder 

penalty cost (PBOi) incurred due to insufficient inventory.  

      𝐶!"#! = 𝑃!"! +
!!!!

(!!!)(!!!!)
       Eq. 9 

 The goal of the remainder of this thesis is to minimize the cumulative part TCO 

in the presence of supply chain disruptions by identifying the most effective 

mitigation strategy. To achieve this goal, a simulation-based disruption model was 

created and driven with random disruption events over the lifetime of the part. The 

effects of these disruption events and the applied mitigation strategies were then 

calculated using the expanded part TCO equation (Eq. 8).  
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2.6: Model Assumptions 

The model developed in this chapter adheres to the following assumptions: 

1) Demand and order fulfillment are recorded at the end of each period/year. 

This method assumes that the part total cost of ownership for year i is the cost 

accumulated between year i and year i+1. 

2) Supplier-specific disruptions that occur in period i impact the number of parts 

to be delivered in year i+1. 

3) The model is limited to either single or second sourcing through the use of 

two distinct supplier disruption distributions. More suppliers can be 

considered if an aggregate disruption distribution is employed, however the 

effect of the individual suppliers cannot be considered if an aggregate 

distribution is used.  

4) Unmet customer orders, due to discrepancies between supply and demand, are 

infinitely backordered (i.e., orders are not lost or rescinded over time). 

5) Forecasted part demand (m, in parts/year), while varying from year to year, is 

consumed at a constant rate within the year it represents. 

6) All unmet demand is delivered in full at the end of a disruption event (no 

ramp-up period). This assumption holds for discrepancies due demand 

uncertainty (i.e., excess demand in year i-1 is added to the order for year i and 

delivered in full at the beginning of the period). 

7) The WACC and price change are constant throughout the life of the product 

(manufacturing and support). 

8) All original assumptions outlined by Prabhakar in [1]. 
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2.7: Simulation Process 

In order to efficiently and repeatably model real-world disruption events, a 

simulation model was developed from the underlying formulation discussed in this 

chapter. The simulation model employs several loops to determine the near optimum 

disruption mitigation strategy, which is the strategy (sourcing and/or buffering) 

associated with the lowest expected cumulative total cost of ownership (CTCO) per 

part site. Figure 1 details the simulation process that is implemented within a Monte 

Carlo analysis in order to calculate the expected CTCO per part site for each sourcing 

and buffering strategy considered. The effective disruption mitigation strategy can 

either be determined manually (the user can perform a select number of Monte Carlo 

analyses for predetermined sourcing and buffering strategy combinations), or 

automatically within a brute force "optimizer" (which runs through a range of 

buffering and sourcing strategy combinations). 
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Figure 1: Simulation model process and inputs used to determine the cumulative TCO per part site for 

a unique set of disruption events 
 

The simulation model employs four distinct steps to calculate the expected 

CTCO per part site: 

1) Part-specific and product-specific inputs are compiled by the user (as 

shown in Figure 1) and used to calculate the annual support costs (𝐶!"#), 

assembly costs (𝐶!"#), procurement costs (𝐶!"#$), and field failure costs 

(𝐶!!) according to the methodology development in [1]. These cost terms 

are not affected by demand or disruption uncertainty.  

2) The simulation model utilizes a discrete event simulator to generate 

disruption events throughout the life cycle of a part. The disruptions are 

modeled using a three-parameter Weibull distribution (which was selected 

for generality, but any other distribution could be used). Figure 2 shows a 

comparison between a theoretical Weibull distribution (calculated using 

the three-parameter Weibull equation) and population of sampled points (a 
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collection of 100 random samples drawn from the theoretical distribution). 

The simulation model samples from two distinct distributions in order to 

generate unique disruptions over the life cycle of the part: one governing 

the length of disruption events, and the other governing the interval 

between disruption events.  

 
Figure 2: A comparison of the exact PDF produced from the three parameter Weibull equation and 

the corresponding PDF produced from a population of generated samples. (gamma=2 years, 
beta=0.5, eta=1.5 years) 

 
In addition to the generation of disruption events, uncertainty comes into 

play through the incorporation of demand uncertainty. For each year in the 

part’s life cycle, the simulation model samples a random value from a 

Gaussian distribution (with the forecasted part demand acting as the mean 

and a user-supplied value acting as the standard deviation) and sets that 

value as the actual annual part demand. The annual penalty costs and 

inventory costs associated with the generated disruption events and 

demand discrepancies are then calculated using the method developed in 

Section 4. 
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3) The annual penalty costs and inventory costs (which, when summed, make 

up the disruption-specific cost term (CDIS) as discussed in Section 4) are 

added to the annual disruption-independent cost terms calculated in step 1. 

The resulting annual cost represents the annual part total cost of ownership 

as described in Eq. 8. The annual TCO values are summed over the life of 

the part in order to calculate the cumulative TCO associated with the user-

defined disruption mitigation strategy and the unique set of generated 

disruption events and actual annual demand values.  

4) In order to capture the effect of uncertainty, a Monte Carlo analysis is 

performed. The Monte Carlo analysis performs the three previous steps 

(which are broken down further in Figure 1) repeatedly for a set number of 

sample sets, recording the final cumulative TCO per part site associated 

with each individual sample set. The simulation model then compiles 

these final values in order to produce a distribution of the cumulative TCO 

per part site9 over the support life of the product (or family of products) 

for the mitigation strategy in question. The mean value of this distribution 

is the expected CTCO per part site, which is used for comparison purposes 

in order to determine the near optimum disruption mitigation strategy.  

                                                

9 A “part site” is defined as the location of a single instance of a part in a single instance of a product. 
For example, if the product uses two instances of a particular part (two part sites), and 1 million 
instances of the product are manufactured, then a total of 2 million part sites for the particular part 
exist. The reason part sites are counted (instead of just parts) is that each part site could be occupied by 
one or more parts during its lifetime (e.g., if the original part fails and is replaced, then two or more 
parts occupy the part site during the part site's life). For consistency, all TCO calculations are presented 
in terms of either annual or cumulative cost per part site. 
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As mentioned previously, one of the main outputs of the model is the expected 

part total cost of ownership for a given disruption profile (set of unique disruption 

events occurring throughout the life cycle of the part) and disruption mitigation 

strategy. Figure 3 shows the relevant annual part quantities (buffering strategy – Hi, 

parts on backorder – Ii
*, parts in inventory – Ii, part demand, and forecasted part 

demand (mean) – mi) that are predicted and analyzed for a given disruption profile 

and a 20-year part lifetime.10 The simulation model is able to concurrently analyzes 

the effect of both second sourcing and buffering on the part TCO so that companies 

are able to select the most effective management strategy for their specific needs. 

 
Figure 3: Relevant part quantities recorded by the simulation model for a single mitigation strategy 

(second sourcing and 20-weeks buffering) and disruption scenario 
 

The parts in inventory (Ii), parts on backorder (Ii
*), and part demand are tied to 

both disruption and demand uncertainty. As such, their values should fluctuate for 

each run of the simulation model. The forecasted part demand (mi) and buffered parts 

(Hi) are known values and should stay constant regardless of the disruption scenario. 

This compiled annual part quantity data is combined with cost information (i.e., 
                                                

10 The inputs used to produce Figures 2, 5, and 6 are detailed in the Appendix. The results do not 
reflect a fully analyzed case study as the inputs were chosen so as to produce clear figures.  See 
Chapters 3 and 4 for complete case studies. 
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penalty costs, support costs, and procurement costs) to calculate the part TCO. The 

most important thing to notice in Figure 3 is the difference between the number of 

parts on backorder (which, when non-zero indicates a disruption period) and the 

number of needed parts in the inventory (negative inventory). In the case shown in 

Figure 3, the first instance of negative inventory within each disruption period is less 

than the corresponding number of parts on backorder due to the buffering. Buffering 

creates a gap between the start of the disruption and the point when production (or the 

ability to support the product) stops (due to negative inventory) that allows for shorter 

overall downtime or possibly no downtime at all. 

Figure 4 shows the effect of generated disruption events on the cumulative 

part TCO. It should be noted that the cumulative TCO per part site decreases over 

time in this example case because additional part sites are added to the total 

population each year. The resulting effect of penalty costs and initial support costs on 

cumulative TCO is spread out amongst the additional part sites each year.  

 
Figure 4: A comparison of the cumulative part TCO after 20 for a single sourcing case without 

disruptions and a single sourcing case with the given disruption profile (three disruption events). 
 

 The simulation model also allows the graphically analyses of the effect of 

time on a selection of sourcing strategies (as compared to a baseline, non-disrupted 
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scenario). This graphical analysis allows one to further grasp the importance of the 

TCO approach, especially as opposed to short term cost analysis.  Figure 5 depicts the 

cumulative TCO per part site for a given disruption scenario and buffering strategy 

(20-weeks). While the lower support costs associated with single sourcing causes it to 

be the most cost effective solution for the first seven years of the example part’s life 

cycle, the disruptions accumulated over time gradually negate the benefits associated 

with single sourcing. As such, for the scenario shown in Figure 5, the most effective 

mitigation strategy in the long run is second sourcing.   

 
Figure 5: Cumulative part TCO (including penalty) over a 20 year period for a variety of sourcing 

strategies and a buffering strategy of 20 weeks (single disruption profile). 
 

The distributions shown in Figure 6 are examples of the results produced by 

the Monte Carlo analysis. For the given example, second sourcing not only decreases 

the uncertainty (standard deviation) of the expected cumulative TCO per part site, it 

also decreases the mean value. For further reference, the simulation model interface 

and inputs are discussed in the Appendix. 
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Figure 6: Expected cumulative TCO per part site (including penalty) for a selection of sourcing 

strategies and a buffering strategy of 20 weeks (Monte Carlo generated distributions). 
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Chapter 3: Validation of the Simulation Model 

 

This chapter presents the contextualization and validation of the simulation 

model (developed in Chapter 2) against a well-known analytical disruption model 

from Operations Research literature. This chapter also highlights discrepancies 

between analytical and simulation-based disruption models, providing several case 

studies that show the impact of underlying analytical model assumptions.  

3.1: Contextualization and Justification 

As mentioned in Chapter 1, a set of generalized analytical disruption models 

exist outside of the simulation realm. These models were developed for use in supply 

chain management and they isolate trends and variable relationships within 

generalized scenarios. Tomlin, in his 2006 paper [16], presents a widely referenced 

cost model for finding the optimal sourcing policies to minimize cost during 

disruptions. His model utilizes a constrained infinite-horizon, periodic-review 

inventory system. Similar to the model developed in this thesis, all unmet demand in 

Tomlin’s model is backlogged with instantaneous production and lead time. Tomlin’s 

model allows for positive lead time, assuming that lead time is constant throughout 

the model.  

Tomlin presents the idea of flexible capacity as a defining characteristic for 

underlying model selection. The simulation model developed in this thesis, on the 

other hand, does not include the effect of flexible capacity and production ramp-up 

time on the total cost of ownership. The sub-model most similar to the one developed 
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in this thesis has what Tomlin calls “Type II” flexibility. Type II flexibility implies 

that the emergency backup supplier can offer infinite and instantaneous capacity, 

essentially allowing for uninterrupted supply in the eyes of the consumer.  

 

3.2: Limitations of Popular Analytical Disruption Models 

While Tomlin’s model helped to solidify a disruption approach and limit the 

number of required inputs, several limiting assumptions prevented Tomlin’s model 

form being utilized directly in this thesis. Tomlin’s model, in addition to the other 

analytical disruption models explored in Chapter 1, utilized a more formal 

optimization approach to isolate the effect of disruptions on the supply chain. Due to 

the inherent complexity of the supply chain, there are a large number of variables that 

can have a direct impact on cost. However, in order to numerically optimize the cost 

associated with a disrupted supply chain, several unrealistic simplifying assumptions 

needed to be made. 

While the restrictions surrounding these models prevents them from being 

useful decision making tools, a fact which their authors acknowledge [16], they 

provide valuable insight into the effect of disruptions and they allowed the number of 

necessary disruption-based inputs for the simulation model to be limited in this thesis. 

The calculation of the expected cost associated with disruption events can be 

iteration heavy, which lends itself to a simulation approach; the simulation-based 

model developed in this thesis is similar to a traditional optimization loop with added 

uncertainty from sampling probability distributions. According to Tomlin, it may be 

possible (but outside the scope of this thesis) to create an entirely analytical 
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disruption model, but the calculations would be extremely complicated and time-

consuming [16]. 

Figure 10 (Chapter demonstrates that the simulation can be appropriately 

parameterized to generate the same solution as the analytical model of Tomlin [16]. 

While the model presented by Tomlin [16] effectively selects an optimal disruption 

mitigation strategy for a given set of inputs, it can only be applied to very restricted 

cases. The limitations that are inherent to the model are relatively common amongst 

analytical supply-chain models and are imposed by the models to insure that the 

formulation is convex (guaranteeing that an optimum solution can be found). For the 

simulation- based model, no such limitations are necessary. In particular, there are 

four key restrictions that are problematic when applying the existing analytical 

models to low volume, long life cycle systems (where support costs and procurement 

lives are critical): 

1) Fixed costs of ordering are ignored. This assumption limits the use of the 

model to cases where the time scale for ordering is shorter than disruption 

time scale (i.e., order daily, disruptions last weeks). In addition, any fixed 

costs associated with supplier or part qualification (which were shown in [1] 

to have a direct effect on the total cost of ownership) cannot be considered. 

This assumption, while acceptable for traditional procurement-driven systems, 

severely limits the effectiveness of the model in low-volume, long life cycle 

environments. Tomlin notes in [16] that adding fixed/support costs and 

varying lead times might require simulation-based optimization. 
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2) Infinite-horizon model. This restriction, which works for an idealized high-

volume, short life-cycle scenario, doesn’t incorporate cost of money or price 

change over time, which are necessary components of long life-cycle 

products. 

3) Disruptions last full ordering periods (i.e., disruptions are delivered in full or 

not at all). Tomlin, in particular, employs an idealized Markovian disruption 

model (discussed in Section 3.3). 

4) Secondary (a.k.a., emergency/backup) supplier is completely reliable. This 

assumption indicates that second sourcing consistently allows for an 

uninterrupted supply of parts (as long as all the suppliers have enough notice 

and capacity). This restriction ignores overlapped supplier downtime 

(independent probability distributions), which is a more realistic scenario 

(especially when it comes to industry wide shortages). 

 
Table 1: Summary of differences between Tomlin’s model and the simulation model in this thesis 

 Tomlin (analytical) This Thesis (simulation) 

Calendar Time 

While the sequence and frequency 
of periods are important, the 
infinite horizon assumption does 
not consider calendar time. 

Calendar time is incorporated 
through several time-dependent 
factors such as WACC and price 
change over time.  

Disruption 
Model Markovian Sampled probability distributions11 

Sourcing Backup/secondary supplier is 
completely reliable (undisrupted) 

The expected durations and 
frequency of disruption are 
supplier-specific. 

Capacity 
Studies the impact of flexible 
supplier capacity and ramp-up 
time on the long-run average cost. 

Assumes instantaneous and infinite 
capacity from available 
(undisrupted) suppliers.  

Fixed Costs No fixed order costs are 
considered.  

Periodic and aperiodic (such as 
initial and termination costs) fixed 

                                                

11 A three-parameter Weibull distribution was chosen as the disruption model for the simulation 
because it can mimic a variety of popular distributions (such as exponential and normal). However, 
this underlying distribution can be changed without any effect on the accompanying equations.  
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In addition, the infinite horizon 
assumption eliminates the effect of 
both initial support costs (such as 
qualification and approval costs) 
and termination costs (such as 
obsolescence resolution and end of 
life support). 

costs are considered.  

 

3.3: Development of Reimplementation Method 

While Tomlin [16] thoroughly outlines the methodology he developed and 

utilized to calculate the long-run average costs associated with various disruption 

scenarios, the actual resultant cost values were not given (the results were presented 

in a graphical format to highlight overarching trends). Before the simulation model 

could be validated against Tomlin’s results, specific test points needed to be 

reproduced using Tomlin’s methodology. The remainder of this section will describe 

the modified reimplementation method used to verify and reproduce these test points. 

Tomlin employs a basic Markovian disruption model that designates each 

period as either disrupted/“down” or non- disrupted/“up”. This model specifies the 

probability of the disruption ending each period (λdu), and the total expected number 

of disrupted periods. While Tomlin utilizes an infinite cumulative distribution 

function to calculate the resulting steady-state uptime, he did not provide detailed 

calculations. Consequently, the reimplementation method presented in this thesis 

employs a truncated transition state matrix (Figure 7). This matrix converges over 

time and specifies a steady-state probability of the system being “up”. The steady 

state values were estimated by raising the transition state matrix to the 256th power (a 
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common numerical approach to steady state estimation). This “percent uptime” 

designates how many periods within the life of the part are not disrupted.  

State 0 1 2 3 4 5 6 7 

0 λU 1- λU 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 

3 0 0 0 0 1 0 0 0 

4 λdu 0 0 0 0 1-­‐λdu 0 0 

5 λdu 0 0 0 0 0 1-­‐λdu 0 

6 λdu 0 0 0 0 0 0 1-­‐λdu 

7* 1 0 0 0 0 0 0 0 

 
Figure 7: Example Transition State Matrix: M=4, N=3 

 
The transition state matrix shown in Figure 7 is defined by the following four 

characteristics: 

1) Size of matrix: 1+M+N 

2) 1: State space 0 (no disruption occurring) 

3) M: State spaces representing the minimum number of disruption periods 

4) N: State spaces representing the possible remaining disrupted periods (in 

excess of minimum) with which there is a constant probability of the 

disruption ending. Ideally N is infinity, but steady-state probabilities converge 

when N is a finite large number 

The number of state spaces is truncated (from infinity to 1+M+N) in order to 

produce a practical model. As such, the final possible state has a transition rate of 1 

(returning the system to state 0, no disruptions). 

In order to isolate the minimum number of modeled states required to produce 

the expected steady-state value, several transition state matrices (of varying sizes) 
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were tested within Matlab. Figure 8 shows a transition state matrix with an expected 

steady state probability of 90.07% and a minimum number of disrupted periods (M) 

equal to 20. The number of additional state spaces modeled (N) was varied from 0 to 

300. 

 
Figure 8: Steady-state probability of supply uptime (state 0) according to the number of modeled state 

spaces (N). The expected value for the shown scenario is 90.07% uptime.  
 

As shown in Figure 8, the system converged to the expected steady-state value 

within 100 steps. Similarly, a transition state matrix with a steady-state probability of 

80.01% and a minimum number of disrupted periods (M) equal to 40 was modeled 

and shown in Figure 9. The number of additional state-spaces modeled (N) was varied 

from 0 to 300. 
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Figure 9: Steady-state probability of supply uptime (state 0) according to the number of modeled state 

spaces (N). The expected value for the shown scenario is 80.01% uptime. 
 

Figure 9 shows that, once again, the system converged to the expected steady-

state value within 100 steps. In addition to the Markovian disruption model discussed 

above, Tomlin developed equations utilizing this steady-state uptime and the resulting 

disruption probability distribution (along with a variety of other factors) to determine 

the optimal buffer quantity. 

Tomlin specified a set of disruption scenarios (scenario: expected downtime, 

minimum downtime, % uptime) that were utilized in conjunction with specific case 

study inputs and equations to calculate the average expected cost associated with each 

of the three main sourcing strategies: contingent rerouting (or acceptance, a subset 

where the rerouted production = 0), inventory management, and sourcing 

management.12  Before the outputs of the simulation model (Section 2.7) could be 

                                                

12 While Tomlin utilizes different terms to describe disruption mitigation strategies, each strategy can 
be directly linked to second sourcing and/or buffering. The three mitigation strategies he describes are: 
contingent rerouting [pure second sourcing (no buffering), rerouting production to the second/backup 



 

 41 

 

verified against Tomlin’s results, several test points had to be calculated. These points 

were calculated using only Tomlin’s equations, inputs, and steady-state probability 

model.  The output of these test points, shown in Figure 10, represents the mitigation 

strategy that produces the lowest average expected cost. As seen in Figure 10, with 

the exception of a few boundary points13, Tomlin’s results were reproduced using his 

methodology.  

 
Figure 10: Optimal sourcing strategies organized according to total supplier uptime and expected 

disruption length. Scenario-specific inputs and equations that result in the solid lines shown are given 
in Tomlin [16]. The overlaid points show the mitigation strategy associated with calculated test points: 

Circles represent Sourcing Management, diamonds represent Inventory Management, squares 
represent Contingent Rerouting (CR), and the triangles represent equal cost for both Sourcing 

Management (SM) and Inventory Management (IM). 
 

                                                                                                                                      

supplier in the event of disruption], inventory management [pure buffering, single sourcing], and 
sourcing management [single sourcing from a reliable supplier, no buffering]. 
13 In some cases near the region boundaries the calculated long-run average costs for boundary points 
were so similar that (in order to account for any possible rounding errors) two strategies were marked 
as equivalent. For example, for 95% unreliable supplier uptime and 30 expected disruption periods the 
long run average cost of buffering (IM) was found to be $1.050078, while the cost associated with 
single sourcing from the reliable supplier was found to be $1.050000. The discrepancy between the 
two values was too minute to allow for the prescription of one strategy as effectively dominant.  
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3.4: Simulation Model Modification 

In order to make the simulation model match Tomlin’s environment, several 

important model inputs were set to zero (support and termination costs - Csup, cost of 

money - WACC, demand uncertainty,14 price-change15). Removal of these effects, 

while necessary to reproduce Tomlin’s result, severely impacts the realism of the 

modeled system (which will be shown in Section 3.5). The steady-state probability 

distribution for each scenario (scenario: expected downtime, minimum downtime, % 

uptime) was utilized in the simulation model in conjunction with Tomlin’s case study 

inputs and equations to calculate the average expected cost (from a Monte Carlo 

analysis16) associated with each of his three main sourcing strategies. The calculated 

costs were then compared, and the optimal sourcing strategy (the strategy associated 

with the smallest cost) was selected. This method was employed repeatedly to 

generate points on a graph that correlated to the output presented by Tomlin shown in 

Figure 11. It is important to note that Tomlin’s infinite-horizon assumption (infinite 

number of ordering periods) and Markovian disruption model (ordering periods are 

either fully disrupted or non-disrupted) are best applied to short ordering periods. In 

                                                

14 Demand uncertainty, expressed as an annual standard deviation from the mean, is used within the 
simulation model to generate actual part demand from the forecasted part demand. Any unmet demand 
is backordered according to the equations given in Section 2.4.  
15 Due to ongoing relationships with part suppliers and the emergence of new technology, part prices 
generally decrease each year. Within the simulation model, this price change is modeled as a constant 
percentage of annual price reduction. 
16 The following Monte Carlo stopping criterion was employed to calculate an effective sample size 
(number of model runs): (!"#$%#&%  !"#$%&$'(

!.!"#(!"#$)
)! ≤ 𝑠𝑎𝑚𝑝𝑙𝑒  𝑠𝑖𝑧𝑒. Due to time constraints, a standard error 

on the mean of less than 1.5% was employed (as opposed to 1%). A sample size of 100 model runs 
was found to meet the criterion for Tomlin’s scenario.  
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order to recreate Tomlin’s scenarios (Figure 11) the simulation model had to be run 

for 100-1300 simulated ordering periods. In the electronic part industry, ordering 

periods are typically a year in length and as such modeling 1300 ordering periods is 

unrealistic. Lifelike cases (which don’t pertain to the limitations outlined in Section 

3.2) will primarily have part lifetimes of less than 35 years or ordering periods.  

The cases in Figure 11 are organized according to overall supplier uptime and 

expected disruption length (the combination of which characterizes the frequency of 

disruption). Scenario-specific inputs and equations that result in the solid lines shown 

in Figure 11 are given in Tomlin [16]. With the exception of a few boundary points, 

the simulation results aligned closely with Tomlin’s results. This correlation serves 

not only to verify the results produced by the simulation model, but also to highlight 

the effectiveness of the simulation model as a decision-making tool. 

 
Figure 11: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the 
mitigation strategy associated with simulation test points: Circles represent Sourcing Management, 
diamonds represent Inventory Management, squares represent Contingent Rerouting (CR), and the 

triangles represent equal cost for both Sourcing Management (SM) and Inventory Management (IM). 
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It should also be noted that allocation cannot be specified within the 

simulation model (i.e., it is not possible to specify ahead of time how much demand 

each supplier is responsible for) when implementing a second sourcing strategy. 

Instead, as mentioned in Section 3.1, this thesis focuses on the concept of 

instantaneous and infinite supplier capacity. It is therefore assumed that the primary 

unreliable supplier is contracted to supply all necessary parts, calling on the backup 

supplier for fulfillment of orders only in the case of a disruption event.  

 

3.5: Validation Case Studies 

The previous sections demonstrated that the simulation model described in 

this thesis is capable of reproducing the results obtained by Tomlin [16]. However, 

the simulation model does not have the same core restrictions. A simulation-based 

approach, while not capable of guaranteeing a formal optimum, is able to produce a 

practical, near-optimum value that incorporates both a greater amount of uncertainty 

and more complex parameters. This effective optimum can be calculated for realistic 

supply systems, and therefore can be more readily utilized as a decision-making 

parameter. In order to determine the impact of common analytical model 

assumptions, several case studies were performed. It should be noted however, that 

while the following case studies highlight important areas of weakness within 

common analytical models, they do not represent a comprehensive design of 

experiments analysis. 
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3.5.1: Fractional Disruption Periods 

One of the underlying assumptions within the validation case (Section 3.4) is 

the Markovian format of the disruption model. In Tomlin’s [16] work, ordering 

periods (defined as a full rotation of orders and fulfillment) are either up (non-

disrupted) or down (disrupted) as seen by the OEM. However, this generalized 

model, while appropriate for scenarios where disruptions always last at least several 

ordering periods, does not accommodate small-scale disruption events (such as 

delivery delays) or disruptions that start/stop within an ordering period (resulting in 

the delivery of a fractional order).  

The simulation model presented in this thesis employs disruption distributions 

(non-Markovian), which allow fractional orders to be delivered due to downtime in 

the previous order cycle. In order to test the validity of Tomlin’s model in these types 

of disruption events, a modified version of the validation case study was performed. 

The following model assumptions are important to note: 

1) Disruptions in period i affect the order size delivered in period i+1. For 

example, if the disruption lasts 25% of year i (three months), then 25% of year 

i+1’s order will not be delivered on time. 

2) Infinite-horizon assumptions are still in place (no cost of money or fixed costs 

are considered). 

3) All of the inputs used in Section 3.4 (Appendix A.2) were preserved for this 

case study, with the exception of the expected disruption lengths.  

4) When implementing fractional disruption periods into Tomlin’s formulas for 

identifying icrit [16] and the optimal inventory level, the number of modeled 
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periods was rounded up to the nearest integer. The calculated values of icrit are 

therefore a conservative estimate.  

 
Figure 12: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the 

mitigation strategy associated with fractional disruption test points: Circles represent Sourcing 
Management, diamonds represent Inventory Management, and squares represent Contingent 

Rerouting.  
 

As seen in Figure 12, the inclusion of fractional disruption periods has 

minimal impact on the optimal mitigation strategy. The simulated points still follow 

the underlying pattern defined by Tomlin. 

3.5.2: Finite Horizon (WACC) 

In order to study the impact of the infinite-horizon assumption within the 

validation case, a non-zero WACC (r = 2%/period) was incorporated into the case 

study outlined in Section 3.5.1. Tomlin utilizes very long life cycles (100-1300 

periods) and minimal recurring costs, so a WACC of 2%/period was chosen (as 

opposed to a more common value of 10-12%/year) in order to maintain reasonable 

differences between the cumulative total cost of ownership (CTCO) per part site 
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values. For example, in one of the most extreme cases (1250 modeled years and 98% 

supplier uptime) the CTCO per part site for second sourcing was found to be 

$0.040799998 and the CTCO per part site for single sourcing from the unreliable 

supplier was found to be $0.04080001 (a discrepancy of 10-8). If the WACC was 

increased to a more standard rate, the CTCO per part site values would decrease even 

further (diverging even more from Tomlin’s results). For the realistic case studies 

outlined in Chapter 4, a WACC of 10%/year was used. 

Tomlin’s model formulation [16] assumes that the WACC is zero (this is 

implicit in the definition of infinite horizon).  Alternatively, the simulation model 

identifies the optimal mitigation strategy and inventory level by running a Monte 

Carlo analysis for each case and selecting the strategy with lowest expected 

cumulative part TCO, and any value of WACC can be used.  

The optimal buffering strategy no longer aligns with the results from Tomlin’s 

equations. Instead, the inclusion of cost of money (even at the very small WACC 

used) shifts the optimal buffering strategies so that fewer buffered parts are needed in 

the optimal strategy. For future times the WACC decreases the present value 

associated with each part, and the added value of buffering an additional part also 

decreases. In addition, the optimal mitigation strategies no longer match up with 

Tomlin’s overlaid infinite-horizon results (shown in Figure 13). Instead, second 

sourcing (or a combination of second sourcing and buffering) becomes a much more 

viable option.  
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Figure 13: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the 

mitigation strategy associated with cost of money test points: Circles represent Sourcing Management, 
squares represent pure Contingent Rerouting, and X’s represent a combination of both Contingent 

Rerouting and Inventory Management. 

3.5.3: Unreliable Backup Supplier 

The case study performed in this section assesses the effect of maintaining a 

completely reliable backup supplier. As mentioned in Section 3.2, this assumption 

gives manufacturers the option to pay a premium part price in order to ensure a 

consistently uninterrupted supply of parts. In realistic supply chains, however, 

supplier disruptions can never be completely prevented at any price and depending on 

the nature of the disruption, a backup supplier may be affected the same as the 

primary supplier. 

An additional disruption profile was implemented into the simulation model in 

order to generate disruption events for the backup supplier. The parameters used to 

describe the disruption profile (Weibull distributions) are shown in Table 2. The 

parameters were selected to reflect significant disruption events (expected length: 1.6 
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ordering periods) that occur on average every 5.5 years. All of the other inputs used 

for this case study are discussed in Section 3.5.1 and detailed in Appendix A.2. Once 

again, the simulation model’s internal optimization capabilities were utilized to 

identify the optimal inventory level instead of Tomlin’s [16] formulas.  

Table 2: Weibull parameters used to generate disruption events for the backup supplier (Y). 
  Backup Supplier (Y) 

  
gamma 
(years) beta eta 

(years) 
Interval  5 1 0.5 
Length  1 1 0.6 

 
The unreliability of the backup supplier, while less significant than the 

unreliability of the primary supplier (i.e., less accumulated disruption) is further 

exacerbated in this case study by the higher backup part price. As detailed in the 

Appendix, the primary supplier has a set price of $1.00 per part and the backup 

supplier has a set price of $1.05 per part (unless acting in emergency/secondary 

backup capacity, in which case they charge $2.63 per part). In Tomlin’s original case 

study, the accumulated penalty costs associated with the unreliable primary supplier 

outweighed the elevated price of the backup supplier because a continuous stream of 

parts was guaranteed when single sourcing from the backup supplier. However, the 

addition of disruption events at the backup supplier increases the total cost of 

ownership and makes single sourcing from the less expensive unreliable supplier 

generally more cost effective. In addition, in regions where single sourcing from the 

backup supplier is more cost effective (relatively low values for unreliable supplier 

percent uptime and high values for the expected number of disrupted ordering 

periods) a small buffer is necessary in order to offset disruption events and achieve 

the lowest expected cumulative part TCO.  
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Figure 14: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the 

mitigation strategy associated with unreliable backup supplier test points: Circles represent Sourcing 
Management and +’s represent a combination of both Sourcing Management and Inventory 

Management. 

3.5.4: Fixed Costs (Qualification and Support) 

 In his 2010 dissertation, Prabhakar [1] noted the impact of fixed costs (support 

costs in particular) on the part total cost of ownership of low volume electronic parts 

and systems. Low volume, long life cycle products cannot spread the effect of fixed 

costs over a large part population, so elevated support costs directly impact the TCO 

per part site. The majority of analytical disruption models, however, focus on long 

run average costs due to the minimal impact of initial support costs on high volume 

consumer electronics. In order to study the effect of the fixed costs omission within 

the validation case, a $1000 product specific approval cost was added to the case 

study outlined in Section 3.5.1. Similar to the reasoning behind the use of a small 

WACC in Section 3.5.2, a relatively small product specific approval cost was 

employed in this case study so as not to unduly offset the small CTCO per part site 

values accumulated in Tomlin’s original case study. Product specific approval costs 
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are a common form of support costs that are incurred each year a product is 

introduced and charged for each contracted supplier. 

 
Figure 15: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the 
mitigation strategy associated with support cost test points: Circles represent Sourcing Management 

and diamonds represent Inventory Management.  
 

 As shown in Figure 15, the addition of fixed costs does not have a marked 

effect on Tomlin’s original case study results for disruption scenarios with relatively 

small-moderate values of overall percent uptime. However, for scenarios with a 

higher percent uptime (less accumulated disruptions), the effective optimal disruption 

strategy switches from contingent rerouting to inventory management. This change in 

results is due to the fact that support costs are duplicated (K factor of 1) when the 

manufacturer contracts two suppliers. The combination of elevated support costs and 

a premium emergency part price ($2.63 per part from the backup supplier when 

acting in an secondary/emergency capacity) causes contingent rerouting to be less 

cost effective than inventory management.  
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Chapter 4:  Implementation of Real-World Disruption Data 

 

This chapter presents historical supply-chain data gathered from a variety of 

sources. The part delivery data is then transformed into inputs for the simulation-

based model and used in case studies that focus on realistic issues in modern 

electronic part supply chains.  

4.1: Historical Supply-Chain Disruption Data  

 As of now, no standard record-keeping practices exist for disruption events 

within the low volume, long life cycle electronic part industry. Instead, individual 

companies are responsible for selecting and preserving data that they deem relevant to 

their own interests. For this reason, historical supply-chain disruption data varies 

greatly and stems from a variety of sources. In this section, the following sources of 

historical electronic part supply-chain disruption data are explored: public electronic 

part demand information, supplier and manufacturer lead time quotes, manufacturer 

supply-chain databases, and electronic part distributor delivery data. 

4.1.1: Public Electronic Part Demand Information 

 Figure 16 shows the worldwide market billings for semiconductors recorded 

by the Semiconductor Industry Association between July 2011 and June 2012 [24]. 

This publicly available part demand information was compared against the lead-time 

fluctuation data from SiliconExpert [25] (Figure 17) for the same time period. 

Intuitively, one would expect that the periods associated with the greatest lead times 

(March, May, and August of 2012) would coincide with the periods of highest 
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demand, as manufacturers rush to fill outstanding orders and keep up with growing 

demand. However, as shown in Figures 16 and 17, there doesn’t appear to be a 

correlation between customer demand trends (inferred from market billings) and 

supplier lead time. It should be noted, however, that suppliers typically bill 

manufacturers for delivered parts (as opposed to ordered parts), so the market billings 

shown in Figure 16 may need to be shifted by the parts’ lead time in order to truly 

represent demand.  

 
Figure 16: Worldwide market billings (three-month moving averages) recorded by the Semiconductor 

Industry Association (SIA) [24] 
 

 
Figure 17: Semiconductor lead time fluctuations recorded by SiliconExpert [25] 
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Figure 18 shows the decrease in price experienced by a selection of 

transformers as recorded by Arrow (an electronic part distributor). While this data 

does not reveal any disruption-specific information, it does provide average values for 

annual part price-changes. Similar to the effect of the WACC, annual part price 

decreases can dramatically affect the cumulative part TCO (especially for long life-

cycle products) and as such should be monitored and considered in cost calculations. 

Transformer T4 experiences a 7% annual price decrease on average, as determined 

from Figure 18. This value was used as the annual single-sourcing price-change in the 

case studies presented in the following sections.   

 
Figure 18: Average prices recorded by Arrow for a selection of electronic parts (specifically 

transformers) from 2001-2013. [26] 

4.1.2: Supplier and Manufacturer Lead Time Quotes  

Figure 19 shows a compilation of 2010-2011 supplier lead-time quotes for 

select electronic parts from the SiliconExpert database. This data does not take bulk 

negotiations or customer priority into account. While the given data is by no means 

exhaustive, there seems to be some correlation between part type and lead time. 

0	



0.1	



0.2	



0.3	



0.4	



0.5	



0.6	



0.7	



0.8	



0.9	



2000	

 2002	

 2004	

 2006	

 2008	

 2010	

 2012	



Av
er

ag
e 

Pr
ic

e 
U

SD
	



Year	



T1	



T2	



T3	



T4	



T5	



T6	





 

 55 

 

(noticeably different distributions). However, the data was censored to protect 

proprietary supplier information, so the lead time trends may simply be supplier-

specific.  

 
Figure 19: SiliconExpert supplier lead time quotes for a selection of inductors, ELYT, and memories in 

2010-2011. [27] 
 

Figure 20 shows the lead time data collected from Ericsson during the same 

time period (2010-2011) for similar electronic parts and suppliers. The quoted lead 

time values provided by SiliconExpert far outlast the quoted lead times shown in 

Figure 19. The inconsistency of recorded lead time quotes prevents them from being 

effective indicators of disruption events and backordered parts.  
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Figure 20: 2010-2011 Supplier lead time quotes supplied by Ericsson for a selection of electronic parts. 

[28] 
 

4.1.3: Manufacturer Supply-Chain Databases 

 Some manufacturers are beginning to centralize their disruption data within 

overarching supply-chain databases. Figure 21 shows an example of Ericsson’s 

efforts to compile and study disruption information for a sampling of electronic parts. 

The communication infrastructure company notes how long (in weeks) it takes for a 

supplier to deliver ordered parts after the onset of a disruption event.  

 
Figure 21: Time to first delivery from the onset of a disruption for a compilation of electronic parts (as 

recorded by Ericsson from 2010-2011). [28] 
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 However, while this data definitely helps to quantify manufacturer-specific 

disruption risk, the centralization of disruption data is a relatively new concept. 

Manufacturers that are just beginning to track and store disruption data won’t 

necessarily have part disruption histories of an adequate length or scale to perform 

statistical analysis.  

4.1.4: Electronic Part Distributor Delivery Data 

Figure 22 shows electronic part distributor delivery data from 2007 to 2013. 

This data not only serves to highlight the size and frequency of part orders as seen by 

the distributor, it also allows the isolation of discrepancies between scheduled and 

actually delivery dates. The graph in Figure 22 shows how long it took delayed parts 

to reach the distributor. 

 
Figure 22: 2007-2013 Distributor delivery data for a sampling of integrated circuits and transformers. 

[29] 
 

While the data in Figure 22 does not fit into a traditional Markovian format (a 

common input for existing analytical models), it can be transformed into a useful 

input for the disruption model where its effect on the total cost of ownership can then 



 

 58 

 

be quantified and studied. While the data received is directly connected to disruptions 

at the distributor level, an additional offset factor could be applied to the parameters 

in order to effectively modify the data for use by original equipment manufacturers 

(essentially left- censoring the data to accommodate distributor mitigation activities) 

Ideally, one could build and generalize the disruption models so that they can be 

applied on a part, product, or supplier specific basis. 

The raw delivery data (such as the data shown in Figure 22) was organized 

into frequency bins according to disruption length, i.e., 20 parts experienced a one-

week delay, ten parts experienced a two-week delay, etc. The binned data can then be 

used to generate a disruption probability distribution. In this thesis, Weibull++ 

software was used to fit the data to a three parameter Weibull distribution. The 

parameters used to describe this distribution (shape, scale, and location) are direct 

inputs for the model. Figure 23, shows the curve that was generated using the delivery 

data and Weibull++. 
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Figure 23: Weibull curve fit of the distributor data in Figure 22. The curve parameters are 

automatically calculated by the software and listed beside the output (beta: 0.834, eta: 18.726 days, 
gamma: -2.358 days) 

 
In the model, each time a disruption begins (intervals between disruptions are 

governed by a second Weibull distribution) a random value is selected from this 

probability distribution and set as the length of the disruption event. The penalty costs 

associated with these events are then calculated for each year of the part’s life and 

added to the base part TCO. These two steps are then repeated for a series of Monte 

Carlo runs in order to produce a distribution for the expected part total cost of 

ownership. 

 

4.2: Case Studies  

 While the theoretical case studies performed in Section 3.5 helped to isolate 

the importance of individual parameters, the modeled scenarios were simply not 
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realistic. As shown in Section 4.1, part and disruption data can be very complex in the 

real world. The following case studies focus on the implementation of realistic data 

from low-volume electronic parts. In particular, the case studies were selected to 

reflect the following popular issues within the low volume, long life cycle electronics 

industry: proactive disruption mitigation strategy selection, identification of the effect 

of part volume on the optimal mitigation strategy, and the implementation of time-

dependent disruption profiles.  

4.2.1: Mitigation Strategy Case Study 

The primary case study performed using the simulation model was developed 

in order to analyze the effect of both second sourcing and buffering on realistic 

electronic part supply chains. As discussed in Section 2.3, the purpose of buffering is 

to delay the negative effects associated with supplier disruption. In other words, part 

buffering allows production to continue during a supplier disruption. This extension 

of the available production period reduces the penalty cost associated with unfulfilled 

demand. All the data used for the example case in this section is provided in the 

Appendix. The inputs were chosen to mimic the real-world costs associated with an 

ISDN transformer.  

Figure 24 shows a comparison of cumulative TCO for a given part and a 

unique set of disruption events assuming no buffering. The modeled disruption events 

and the correlating backordered parts associated with Figure 24 are shown in Figure 

25. A K value of 1 (see Chapter 2) was assumed in order to demonstrate the worst 

case of second sourcing, i.e., complete duplication of support costs. Figure 24 shows 
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that for a unique set of generated delivery delays and the given inputs, second 

sourcing is much more cost effective than single sourcing.  

 
Figure 24: Cumulative part TCO (including penalty) over a 13 year period for a selection of sourcing 

strategies and no buffering. 
 

 
Figure 25: The percentage of each year in the parts 13-year life cycle that the primary supplier is 

disrupted (left), and the total number of backordered parts due to the disruptions (right). The parts on 
backorder correspond to a single sourcing strategy with no buffer.  

 
A Monte Carlo analysis was performed in order to accommodate disruption 

uncertainty and isolate the expected cumulative TCO. As shown in Figure 26, second 

sourcing decreases the mean cost per part site from $20.93 to $11.99, which (for the 

100,000 part population modeled) correlates to a total cost avoidance of $894,000. 
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However, a large variance in possible values exists. This variance, i.e., uncertainty, is 

major source of risk for a company.  

 
Figure 26: A comparison of the expected cumulative TCO for two sourcing strategies (without any 

buffering) for the given inputs. 
 

The effect of buffering, on both single and second sourcing strategies, is 

shown in Figures 27 and 28. Figure 27 shows that while second sourcing was once 

again preferred over single sourcing for a generated set of disruption events, the 

addition of a 10-week buffering strategy caused the final cumulative TCO’s 

associated with each strategy to be much less than their counterparts in Figure 24.  

 
Figure 27: Cumulative part TCO (including penalty) over a 13 year period for a selection of sourcing 

strategies and 10-weeks buffering. 
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After the performance of a Monte Carlo analysis, the incorporation of a 10-

week buffering strategy was found to further diminish the mean cumulative TCO 

when compared to the non-buffering cases in Figure 28. Also, by reducing the effect 

of supplier downtime, the spread of the possible TCO was significantly decreased for 

both sourcing strategies. For the second sourcing case with no buffering (shown in 

Figure 26), the standard deviation was $5.99. When a 10-week buffering policy was 

incorporated in Figure 28, the standard deviation was reduced to $3.94. 

 
Figure 28: A comparison of the expected cumulative TCO for the two sourcing strategies considered in 

Figure 26 after the incorporation of a 10-week buffering strategy. 
 

While the implementation of buffering as a mitigation strategy was effective 

under the given set of conditions, buffering may not always reduce the part TCO. For 

example, as shown in Figure 29, if the holding cost (per part per year) associated with 

excess inventory is very large then buffering would only serve to increase part TCO. 
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Figure 29: A comparison of the expected cumulative TCO for second sourcing with and without 

buffering given a holding/inventory cost of $125 per part per year. 
 

The graph in Figure 29 was generated with the same inputs used in the case 

study with one notable exception: the holding cost per part per year was increased 

from $0.05 to $125. While this increase in holding cost is unrealistically large, for the 

given set of conditions in this case study, a 10-week buffering strategy effectively 

reduced the mean part TCO up to this level of holding cost.  

In order to isolate the most effective buffering strategy for the given inputs 

(with the holding cost adjusted back to $0.05), the simulation model’s internal 

“optimizer” was employed. The “optimizer” performs a Monte Carlo analysis for a 

specified range of buffering strategies. The expected CTCO per part site values are 

then calculated from the results of these Monte Carlo runs for both single and second 

sourcing. Figure 30 shows a plot of the expected CTCO per part site values for both 

single and second sourcing and range of buffer sizes. For the given inputs and 

disruption profile, single sourcing from the primary supplier with an 80-week 

buffering strategy is the near-optimum disruption mitigation strategy.  
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Figure 30: Mean cumulative total cost of ownership per part site for a range of buffer sizes and 

sourcing strategies.  
 

The data presented in Figure 30 also reveals that when the buffer size is small 

(less than 70 weeks) second sourcing is more cost effective than single sourcing. 

However, the limited effect of accumulated holding costs combined with reduced 

support costs (when compared to the duplicated support costs associated with second 

sourcing) makes single sourcing the more economical option overall.   

Tomlin’s analytical disruption model (Section 3.3) was also utilized to 

analyze this case study, and all of the calculated CTCO per part site values were 

found to be equal to the initial part price ($0.48), as shown in Figure 31. Note, the 

majority of the inputs for this case study are not supported by Tomlin’s model 

(WACC, support costs, part price change, and disruption uncertainty in particular). 

One of the most restricting factors (in this case study) stems from the fact that the 

Tomlin’s model is only able to model disruptions that last full ordering periods. 

While Section 3.5.1 showed that the incorporation of fractional disruption periods 

has a minimal effect on the optimal disruption mitigation strategy, Tomlin’s 

analytical model (as is) cannot accommodate non-Markovian disruption models and 
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therefore cannot be applied to scenarios where disruption events are shorter than 

ordering periods. As the probability of a disruption lasting a year for the given 

disruption profile (from distributor delivery data) is 6.27x10-5, no disruption events 

were generated/modeled within Tomlin's approach.  

 
Figure 31: The expected cumulative TCO for second sourcing (without buffering) calculated used 

Tomlin’s methodology. 
 

This case study demonstrates the importance of utilizing proactive mitigation 

strategies in the presence of supply chain disruptions. The results, presented in 

Figures 24-30, quantitatively reveal how the implementation of second sourcing and 

buffering can directly affect the part TCO. In addition, Figure 30 exhibits just how 

much incremental changes to the mitigation strategy can affect the overall part TCO, 

highlighting the importance of careful strategy selection.  

It should be noted that while the data for this case was carefully selected to 

produce realistic populations and results, some of the inputs do not represent true 

historical data. The disruption profile was taken from the delivery delay data 

presented in Section 4.1 (correlating to an expected annual disruption length of 0.05 
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years). Each Figure .shows the results of a Monte Carlo analysis that was employed to 

include the impact of uncertainty on the part TCO. 

 

4.2.2: Part Volume Case Study 

One of the most prevalent and essential questions posed by low volume, long 

life cycle OEMs is how does the optimal disruption mitigation strategy relate to 

product volume? Manufacturers have noted that the additional verification costs 

incurred by maintaining additional suppliers can decrease favorability of second 

sourcing for low volume products. This case study assesses the relationship between 

the optimal mitigation strategy (lowest expected part TCO) and part volume in order 

to provide OEMs with an effective decision making tool. The following two variables 

will form the basis for the case study: 

1) Part Volume (1,000 – 1,000,000): cumulative demand of all products 

2) Product-Specific Approval (PSA) Costs (0 - $100,000): incurred each year a 

product is introduced and charged for each contracted supplier. So while 

second sourcing can offset the impact of disruption events, it also carries 

increased support costs when compared to single sourcing.  

The case study implements realistic data from low-volume electronic parts, 

primarily ISDN transformers. The full set of inputs utilized in this case study is 

detailed in Appendix A.6.  

The disruption profile selected for the initial version of the case study 

generates rare but significant disruption events (e.g., the primary supply experiences 

about 40 weeks of disruption about every five years). A K factor of 1.0 was employed 
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in order to model a complete duplication of support costs for each additional supplier. 

A single product design (PSA cost only charged in year 1) was modeled in order to 

isolate the effect of part volume. As the holding cost utilized in this case study is 

minimal ($0.05 per part), buffering is a generally effective method for decreasing the 

part TCO. The addition of second sourcing, as shown in Section 4.2, can offset the 

effect of disruption even further by ensuring a redundant supply of parts. However, 

the duplicated support costs associated with a secondary supplier can negate the cost 

benefits of a redundant part supply.  

The results from the initial version of the case study, shown in Figure 32, 

indicate that a combination of second sourcing and buffering is always preferable for 

the given disruption profile and inputs (regardless of part volume or PSA costs). The 

accumulation of penalty costs associated with the major disruption events was so 

significant that the benefits of second sourcing outweighed the accompanying effect 

of increased PSA costs regardless of the part volume.  

 

 
Figure 32: Optimal sourcing strategies for select combinations of product specific approval cost and 

total part volume. As indicated by the triangles, the optimal sourcing strategy was always a 
combination of second sourcing and buffering for the given inputs.  
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In addition, the optimal buffer levels for each modeled case were tracked, in 

increments of 30 weeks, and compiled in Figure 33. The buffering strategy remained 

relatively constant (at 210 weeks) regardless of part volume or support costs. 

However, for a total part volume of 1,000 parts, the optimal buffering strategy was 

one increment lower (180 weeks). This discrepancy is due to the fact that the 

simulation model only models full parts (as opposed to fractional parts). As 

mentioned previously, the buffering strategy accounts for a fraction of the forecasted 

annual part demand. When the total part volume decreases, the effect of rounding 

down to the nearest part increases, which in turn results in a lower buffering strategy.  

 
Figure 33: Optimal buffering strategies for various part volume and support cost scenarios.  

 
A second version of the case study was developed to test this hypothesis and 

further study the effect of part volume on the optimal sourcing strategy. This 

modified case study retained all of the same inputs, with the exception of the 

disruption profile. The modified disruption profile was developed to reflect rare, 

small-scale disruption events (detailed in Appendix A.6). Figure 34 shows the 

optimal sourcing strategies resulting from this case study. 
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Figure 34: Optimal sourcing strategies for select combinations of product specific approval cost and 
total part volume. Triangles indicate cases where the optimal sourcing strategy was a combination of 

second sourcing and buffering. Diamonds indicate cases where the optimal sourcing strategy was 
single sourcing and buffering.  

 
As shown in Figure 34, for low volume parts with significant PSA costs, the 

optimal mitigation strategy switched (when compared to the previous case study 

iteration) from second sourcing to buffering. The results of this case study show that 

the cost of maintaining a second supplier decreased the favorability of second 

sourcing for low volume products.  

This case study isolates a definitive connection between total part volume and 

support costs, product specific approval costs in particular. As the total amount of 

accumulated penalty costs increases (due to an increase in either base penalty cost or 

total disruption time), the favorability of second sourcing also increases regardless of 

the part volume. However, if penalty costs are outweighed by necessary support 

costs, then single sourcing becomes increasingly more cost effective (when compared 

to second sourcing) especially as the total part volume decreases.  
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4.2.3: Time-Dependent Disruption Case Study 

Up to this point, the case studies in this thesis have focused on assessing the 

affect of disruption profiles based on constant distributions. However, real-world 

disruption profiles are rarely constant for the entire life cycle of a part (especially for 

long life-cycle products and systems). Most likely, manufacturers will have to assume 

and model several disruption profiles over time to account for fluctuating disruption 

probabilities. This case study assesses how the optimal mitigation strategy (lowest 

expected part TCO) is affected by non-stationary disruption profiles. All of the inputs 

utilized within the case study were taken from the mitigation strategy case study 

(Section 4.2.1) and are detailed in Appendix A.5. The secondary disruption profile 

parameters are given in Table A.16. 

Figure 35 shows the expected CTCO per part site after 13 years for a set of 

generated disruption events if only a small-scale disruption profile is employed. The 

applied disruption profile is identical to that utilized in Section 4.2.1 (based on 

delivery delay data). For the unique set of delivery delays generated in Figure 35, 

second sourcing is the most cost effective mitigation strategy. Figure 36 incorporates 

the uncertainty associated with the disruption profile and shows that second sourcing 

is generally more effective for the given inputs.  
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Figure 35: Cumulative part TCO (including penalty) over a 13 year period for a variety of sourcing 
strategies (unique disruption events generated from single disruption profile based on delivery delay 

data). 
 

Figure 36: A comparison of the expected cumulative TCO after 13 years for two sourcing strategies 
and no buffering (single disruption profile based on delivery delay data). 

 
 A part that is subjected to significant disruption events throughout its life 

cycle accumulates, intuitively, more penalty costs than a part subjected only to small-

scale delays. Figure 37, below, shows the CTCO per part site for a set of generated 

disruption events after 13 years if only the significant disruption profile is employed. 
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reflect significantly larger part-specific costs. The Monte Carlo analysis of this 

scenario, shown in Figure 38, solidifies this comparative result. 

 
Figure 37: Cumulative part TCO (including penalty) over a 13 year period for a variety of sourcing 

strategies (unique disruption events generated from single disruption profile based on significant 
disruption events). 

 
 

Figure 38: A comparison of the expected cumulative TCO after 13 years for two sourcing strategies 
and no buffering (single disruption profile based on significant disruption events). 
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profile dependent on small-scale disruptions. For the remaining seven years in the 

part’s life cycle, the disruption profile changes to reflect significant disruption events 

(months of disrupted production due to a black swan event).  Figure 40 shows the 

cumulative distribution functions associated with each of the disruption profiles. 

 
Figure 39: Cumulative part TCO (including penalty) over a 13 year period for a variety of sourcing 

strategies and no buffering. The disruption profile changes 6 years into the part’s life cycle (marked by 
the vertical grey line) from a delivery delay based profile to a significant disruption based profile.  

 

 
Figure 40: Cumulative distribution functions for both disruption profiles utilized in this case study. The 

delivery delay distribution is applied to the first 6 years of the part’s life cycle, and the significant 
disruptions distribution is applied to the second 7 years of the part’s life cycle.  

 



 

 75 

 

For the first six years in the part’s life cycle, the incurred penalty costs are 

small (reflecting small-scale delays to production). As soon as the secondary 

disruption profile takes over in year seven, however, single sourcing becomes 

noticeably and increasingly unfavorable as penalty costs associated with large-scale 

disruption events are accumulated.  

When both disruption profiles are used (as in Figure 41), a dominant sourcing 

strategy is still evident from the resulting data (second sourcing). However, the 

expected CTCO per part site becomes more uncertain. Figure 41 shows the expected 

CTCO per part site for both single and second sourcing (no buffering) under the time-

dependent disruption profile. The standard deviation for the part TCO per part site 

associated with single sourcing has increased from $12.20 (Figure 36) and $32.07 

(Figure 38) to $71.62. 

 
Figure 41: A comparison of the expected cumulative TCO after 13 years for two sourcing strategies 

and no buffering. The disruption profile changes 6 years into the part’s life cycle from a delivery delay 
based profile to a significant disruption based profile. 
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The implementation of a time-dependent disruption distribution has been 

proven in this case study to directly affect both the expected CTCO per part site and 

the uncertainty associated with the final result. While this case study does not show a 

change in the effective optimal mitigation strategy for the modeled inputs, it also does 

not contradict or disprove the concept. Further work in this area may unveil a greater 

significance of non-stationary disruption distributions when modeling disruption 

events in the supply chain.   
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Chapter 5:  Summary & Conclusions 

 

This chapter presents a summary of the topics covered within this thesis and 

details the contributions it makes. In addition, areas of possible future work are 

outlined.   

5.1: Summary 

Long life cycle products, and the parts they are composed of, are susceptible 

to a variety of supply chain disruptions. Proactive mitigation strategies exist that can 

reduce the impact of supply chain disruptions. Two mitigation strategies in particular 

have been proven to greatly decrease the penalty costs associated with disruptions: 

second sourcing and buffering. Second sourcing involves selecting two distinct 

suppliers from which to purchase parts over the life of the part’s use within a product 

or organization. Second sourcing reduces the probability of part unavailability (and its 

associated penalties), but at the expense of qualification and support costs for 

multiple suppliers. An alternative disruption mitigation strategy is buffering (also 

referred to as hoarding). Buffering involves stocking enough parts in inventory to 

satisfy the forecasted part demand (for both manufacturing and maintenance 

requirements) for a fixed future time period so as to offset the impact of disruptions. 

Careful selection of the mitigation strategy (second sourcing, buffering, or a 

combination of the two) is key, as it can dramatically impact the part total cost of 

ownership. 
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This thesis presented a total cost of ownership-based simulation model 

developed to help perform tradeoff analyses and identify an effective optimal 

combination of second sourcing and hoarding for a specific part and product scenario. 

The results produced by this simulation model were validated against a popular 

analytical disruption model developed by Tomlin [16]. In addition, this thesis studied 

the effectiveness of traditional analytical models compared to a simulation-based 

approach for the selection of an optimal disruption mitigation strategy. Four 

assumptions, in particular, were found to limit the realism of most analytical models 

but can be ignored in the simulation-based model. These limiting assumptions are: 1) 

no fixed costs associated with part orders, 2) infinite-horizon, 3) perfectly reliable 

backup supplier, and 4) disruptions lasting full ordering periods (as opposed to 

fractional periods). The final limiting assumption (disruptions lasting full ordering 

periods) was modeled in Section 3.5.1 and found to have minimal effect on the 

optimal disruption mitigation strategy. The remaining assumptions, however, were 

found to have a direct and significant impact on the optimal disruption mitigation 

strategy and therefore cannot be ignored in realistic case studies.   

A variety of case studies were performed within the simulation model. The 

first set of case studies (described in Chapter 3) show that the model is capable of 

replicating results from operations research models, and overcomes significant 

scenario restrictions that limit the usefulness of analytical models as decision-making 

tools. The second set of case studies (shown in Chapter 4) was developed to show the 

impact of proper mitigation strategy selection within realistic electronic part supply 

chain scenarios.  
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5.2: Contributions 

 To the best of this author’s knowledge, this thesis represents the first 

simulation-based total cost of ownership approach to modeling and quantifying 

supply-chain disruption events in the context of low-volume, long life cycle 

electronic supply chains. This thesis makes the following contributions:  

• Quantitatively assessed the underlying assumptions of popular analytical 

disruption models and determined that finite horizon (including non-zero 

WACC), fixed support costs, and unreliable backup suppliers are essential 

components for determining the effective optimal disruption mitigation 

strategy for a given disruption scenario.  

• Expanded an existing analytical part total cost of ownership model (developed 

by Prabhakar in [1]) to include the effect of buffering, backordered parts, and 

penalty costs. The inclusion of non-idealized scenarios through the 

implementation of disruption uncertainty allows a more realistic expected part 

TCO to be calculated. 

• Created and validated a supply chain disruption simulation model that not 

only removes the identified limitations of infinite-horizon analytical models, 

but can also serve as an effective decision making tool. The part TCO based 

simulation model allows for the determination of the effective optimum 

disruption-mitigation strategies associated with a set of parameters. The model 

also provides a platform for sensitivity analyses within the supply chain realm, 



 

 80 

 

especially for low volume, long life cycle parts that have not been studied as 

exhaustively as high volume parts.   

• Developed method for translating supply chain (distributor) compiled 

disruption information into the supply chain disruption modeling process. In 

addition, successfully implemented actual distributor historical data (both 

duration and frequency) into realistic case studies for low volume, long life 

cycle parts.  

• Demonstrated the importance of effectively selecting proactive disruption 

mitigation strategies, particularly in terms of low volume, long life cycle 

products through the performance of realistic case studies. Specifically, 

established the effect of buffering and second sourcing on the part TCO.  

 

5.3: Future Work 

The work performed within this thesis can be enhanced in the following ways: 

• One of the primary contributions to any type of disruption event is human 

error. Whether it is under-preparedness, miscommunication, poor training, or 

strained relationships, human behavior has a direct effect on the disruption 

events that impact part total cost of ownership. As the number of workers goes 

down (due to an increase in technological capability), the effect of their 

individual responsibilities increases. For this reason, future work in the realm 

of disruption management should focus on the incorporation of human-related 

risk.  
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• The most relevant source disruption data uncovered within this thesis was a 

database of delivery delay information retrieved from an electronic part 

distributor. Due to the fact that Original Equipment Manufacturers (OEMs) 

are buffered from many of the disruptions experienced by distributors, the 

case studies in this thesis are really most useful to the distributor. The 

buffering techniques that distributors use soften the effect of disruptions as 

seen by their clients (the OEMs). Further work (beyond the scope of this 

thesis) is needed to map a connection between distributor disruption data and 

OEM-specific disruption events.  

• Another proactive mitigation strategy that is commonly employed within the 

electronic part industry is product redesign. This strategy involves approving 

an alternative product design that does not include an obsolete or disrupted 

part. As of now, this strategy cannot be modeled (for comparison purposes) in 

the part-specific simulation model. Future work efforts may expand the 

simulation model to include a comparison of the part TCO associated with the 

effective optimal mitigation strategy against specified product redesign cost 

estimates.  
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Appendices 

Appendix A: Case Study Inputs 

Appendix A.1: Inputs for simulation example figures used in Section 2.7 

Table A.1: General inputs used to produce the sample figures in Section 2.7 
General Inputs 

Population Type Poisson Generated 
Ratio, K 1.00 
Part Lifetime (years) 20.00 
Eff. Procurement Life (years) 20.00 
Cost of Money 10.00%/year 
Base Year for Money 1 
LTB overbuy 10.00% 
Inventory Cost (per part) $0.07 
Price per part (all suppliers) $1.00 
Price decrease (per year) 8.50% 
Demand Uncertainty17 0.2 
Backorder Penalty (per part per year) $300  
Scrap Cost (per part) $0  

 
Table A.2: Support costs modeled within the example figures in Section 2.7 

Support Costs ($) 
Product-Specific Approval 200 
Initial Approval 0 
Annual Part Data Management 200 
Annual Production Support 600 
Annual Purchasing 400 
Obsolescence Case Resolution 7500 
PSL Qualification 10000 

 

  

                                                

17 Demand uncertainty is expressed in terms of standard deviation from the annual quantity. 



 

 83 

 

Table A.3: Supplier specific Weibull parameters used to generate disruption events in the example 
figures in Section 2.7 

  Supplier X Supplier Y 

  
gamma 
(years) beta eta 

(years) 
gamma 
(years) beta eta 

(years) 
Interval  3 1 0.5 4 1 0.5 
Length 0.5 1 0.6 1 1 0.6 

Procurement Life  20 0 0 20 0 0 
Analysis Run-In 

Time  25 0 0       
 

Table A.4: Annual forecasted part demand and product design data used to produce the example 
figures in Section 2.7 

Year Product Designs Forecasted Part Demand 
1 1 11 
2 1 50 
3 2 150 
4 2 337 
5 2 607 
6 2 911 
7 2 1171 
8 2 1318 
9 2 1318 

10 2 1186 
11 2 970 
12 2 728 
13 2 504 
14 2 324 
15 2 194 
16 1 109 
17 1 58 
18 1 29 
19 0 14 
20 0 6 

** Forecasted part demand generated using a total volume of 10,000 parts and a peak usage year of 9 
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Appendix A.2: Inputs for Tomlin reimplementation model 

Table A.5: General inputs used to re-implement Tomlin’s methodology within the developed 
simulation model 

General Inputs 
Population Type Known 
Ratio, K 1.00 
Cost of Money 0.00%/year 
Base Year for Money 1 
LTB overbuy 0.00% 
Inventory Cost (per part) $0.0015 
Price change (per year) 0.00% 
Supplier X Price (per part) $1.00 
Supplier Y Backup Price (per part) $2.625 
Supplier Y Base Price (per part) $1.05 
Product Designs 1 
Annual Forecasted Part Demand 10 
Demand Uncertainty 0 
Backorder Penalty (per part per year) $0.15  
Scrap Cost (per part) $0  

 
Table A.6: Support costs modeled within the reimplementation Tomlin’s methodology 

Support Costs ($) 
Product-Specific Approval 0 
Initial Approval 0 
Annual Part Data Management 0 
Annual Production Support 0 
Annual Purchasing 0 
Obsolescence Case Resolution 0 
PSL Qualification 0 

 
Table A.7: Supplier specific Weibull parameters used to generate disruption events that emulate 
Tomlin’s methodology within the developed simulation model 
  Supplier X Supplier Y 

  
gamma 
(years) beta eta 

(years) 
gamma 
(years) beta eta 

(years) 
Interval  100 5 1 3000 0 0 
Length  0 1 10 0 0 0 

Analysis Run-
In Time  0 0 0       
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Appendix A.3: Modified Inputs for Finite Horizon case study 

Table A.8: General inputs used in the Finite Horizon case study (Section 3.5) 
General Inputs 

Population Type Known 
Ratio, K 1.00 
Cost of Money 10.00%/year 
Base Year for Money 1 
LTB overbuy 0.00% 
Inventory Cost (per part) $0.0015 
Price change (per year) 0.00% 
Supplier X Price (per part) $1.00 
Supplier Y Backup Price (per part) $2.625 
Supplier Y Base Price (per part) $1.05 
Product Designs 1 
Annual Forecasted Part Demand 10 
Demand Uncertainty 0 
Backorder Penalty (per part per year) $0.15  
Scrap Cost (per part) $0  

 
All other inputs used in this case study are found in Appendix A.2 

Appendix A.4: Modified Inputs for Fixed Costs case study 

Table A.9: Support cost inputs used in the Fixed Costs case study (Section 3.5) 
Support Costs ($) 

Product-Specific Approval 1000 
Initial Approval 0 
Annual Part Data Management 0 
Annual Production Support 0 
Annual Purchasing 0 
Obsolescence Case Resolution 0 
PSL Qualification 0 

 
All other inputs used in this case study are found in Appendix A.2 
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Appendix A.5: Inputs for Mitigation Strategy case study 

Table A.10: General inputs used for Mitigation Strategy case study (Section 4.2.1) 
General Inputs 

Population Type Poisson Generated 
Ratio, K 1.00 
Part Lifetime (years) 13.00 
Eff. Procurement Life (years) 13.00 
Cost of Money 10.00%/year 
Base Year for Money 1 
LTB overbuy 10.00% 
Inventory Cost (per part) $0.05 
Supplier X Price (per part) $0.48 
Supplier Y Backup Price (per part) $0.48 
Supplier Y Base Price (per part) $0.48 
Price decrease (per year, single sourcing) 7.00% 
Price decrease (per year, second sourcing) 11.00% 
Demand Uncertainty 0.25 
Backorder Penalty (per part per year) $200  
Scrap Cost (per part) $0  

 

Table A.11: Support cost inputs used for Mitigation Strategy case study (Section 4.2.1) 
Support Costs ($) 

Product-Specific Approval 200 
Initial Approval 0 
Annual Part Data Management 200 
Annual Production Support 600 
Annual Purchasing 400 
Obsolescence Case Resolution 7500 
PSL Qualification 10000 

 
Table A.12: Supplier specific Weibull parameters used to generate disruption events within Mitigation 
Strategy case study (Section 4.2.1) 
  Supplier X Supplier Y 

  
gamma 
(years) beta eta 

(years) 
gamma 
(years) beta eta 

(years) 
Interval  0 1 0.5 1 1 0.5 
Length  -0.00646 0.834 0.0513 -0.00646 0.834 0.0513 

Procurement 
Life  13 0 0 13 0 0 

Analysis Run-
In Time  25 0 0       
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Table A.13: Annual forecasted part demand and product design data used Mitigation Strategy case 
study (Section 4.2.1) 

Year Product Designs Forecasted Part Demand 
1 1 1487 
2 1 4462 
3 2 8924 
4 2 13385 
5 2 16062 
6 2 16062 
7 2 13768 
8 2 10326 
9 2 6884 

10 2 4130 
11 1 2253 
12 1 1126 
13 1 520 

** Forecasted part demand generated using a total volume of 100,000 parts and a peak usage year of 6 
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Appendix A.6: Inputs for Part Volume case study 

Table A.14: General inputs used for Part Volume case study (Section 4.2.2) 
General Inputs 

Population Type Poisson Generated 
Ratio, K 1.00 
Part Lifetime 13 
Eff. Procurement Life 13 
Cost of Money 10.00% 
Base Year for Money 1 
LTB overbuy 10.00% 
Inventory Cost (per part) $0.05 
Price change (per year, single sourcing) 7.00% 
Price change (per year, second sourcing) 11.00% 
Supplier X Price (per part) $0.48 
Supplier Y Backup Price (per part) $0.48 
Supplier Y Base Price (per part) $0.48 
Product Designs 1 
Peak Year of Part Usage 6 
Demand Uncertainty 0.25 
Backorder Penalty (per part per year) $200  
Scrap Cost (per part) $0  

 
 
Table A.15: Support cost inputs used for Part Volume case study (Section 4.2.2) 

Support Costs ($) 
Initial Approval 0 
Annual Part Data Management 200 
Annual Production Support 600 
Annual Purchasing 400 
Obsolescence Case Resolution 7500 
PSL Qualification 10000 

  



 

 89 

 

Table A.16: Supplier specific Weibull parameters used to generate disruption events for the significant 
disruption scenario within the Part Volume case study (Section 4.2.2) and the Time-Dependent 
Disruption case study (Section 4.2.3) 
  Supplier X Supplier Y 

  
gamma 
(years) beta eta 

(years) 
gamma 
(years) beta eta 

(years) 
Interval  5 1 0.5 5 1 0.5 
Length  1 1 0.6 1 1 0.6 

Analysis 
Run-In Time 0 0 0       

 
 
Table A.17: Supplier specific Weibull parameters used to generate disruption events for the small-scale 
disruption scenario within the Part Volume case study (Section 4.2.2) 
  Supplier X Supplier Y 

  
gamma 
(years) beta eta 

(years) 
gamma 
(years) beta eta 

(years) 
Interval  5 10 0.5 3 1 0.5 
Length  0 10 0.3 0 10 0.5 

Analysis 
Run-In Time 0 0 0       
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Appendix B: Simulation Model Interface 

 This Appendix presents the Microsoft Excel spreadsheets that make up the 

simulation model. The sheets, in order, are: 1) Common Inputs, 2) Product Interface, 

3) Compiled Products, 4) Part TCO, 5) Disruptions, 6) Penalty, 7) Monte Carlo, and 

8) Optimize.  

Appendix B.1: Common Inputs Sheet 
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Appendix B.2: Product Interface Sheet 
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Appendix B.3: Compiled Products Sheet 
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Appendix B.4: Part TCO Sheet 
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Appendix B.5: Disruptions Sheet 
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Appendix B.6: Penalty Sheet 
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Appendix B.7: Monte Carlo Sheet 
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Appendix B.8: Optimize Sheet 
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