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Chapter 1: Introduction

1.1: Objective Statement

The goal of this thesis is to create a method for determining the optimal
sourcing mitigation strategy that minimizes the cumulative total cost of ownership of
a part in the presence of supply chain disruptions. In particular, this thesis focuses on
extending a generalized part-centric model developed by Prabhakar [1] to include a
disruption-mitigation model that guides supplier management sourcing decisions.

The application domain for this work is electronic parts.

1.2: Motivation

Modern electronic products can be categorized as: long life cycle products and
short life cycle products. Short life cycle products such as cell phones, computers, and
GPS devices, are classified as products that become obsolete (no longer produced or
supported) within 5 years or less. The supply-chains associated with these products
have been studied extensively and tend to employ procurement-driven management
strategies [2]. Long life cycle products (such as products employed in aerospace,
communications infrastructure, and military roles) have relatively low volume and
differ in that they are often fielded and supported for more than 20 years, which
significantly diminishes the benefits associated with traditional procurement-centric

strategies (such as lean manufacturing).



Due to the nature of the manufacturing and support activities associated with
long life cycle products, the parts that products require need to be dependably and
consistently available. However, the parts that comprise long life cycle products are
susceptible to a variety of supply chain disruptions. In order to minimize the impact
of these unavoidable disruptions to production and support, manufacturers can
implement various proactive mitigation strategies. Two mitigation strategies in
particular are widely used to decrease the penalty costs associated with disruptions:
second sourcing and buffering. Second sourcing involves selecting two distinct
suppliers from which to purchase parts over the life of the part’s use within a product
or organization. Second sourcing reduces the probability of part unavailability (and its
associated penalties), but at the expense of qualification and support costs for
multiple suppliers. An alternative disruption mitigation strategy is buffering (also
referred to as hoarding). Buffering involves stocking enough parts in inventory to
satisfy the forecasted part demand (for both manufacturing and maintenance
requirements) for a fixed future time period so as to offset the impact of disruptions.
Careful selection of the mitigation strategy (second sourcing, buffering, or a
combination of the two) is key, as it can dramatically impact the part total cost of
ownership.

The selection of optimal sourcing strategies for electronic parts is a prevalent
issue within the business management and operations research literature; however,
the focus of existing analyses is typically on minimizing part procurement price. For
example, lean manufacturing emphasizes the reduction of inventory size in order to

cut costs. While this approach is largely effective for high-volume applications, it



implicitly assumes that suppliers can provide parts for the manufacturing process
without interruption [3], which is often not the case with electronic parts over long
time periods (e.g., 10+ years or more). Disruptions events, defined as periods of time
during which demand exceeds supply, not only stem from a variety of factors, they
also have widely varying lengths (discussed further in Section 4). Disruptions in
supply can be extremely problematic for systems that depend on electronic parts
when popular lean manufacturing approaches are used.' According to Kaki et al. [4],
“...in many companies, the goal of supply network management has shifted from
short term cost savings to the pursuit of long term strategic benefits”.

Several high-profile supply chain disruption events have caused shockwaves
within the electronics industry in recent years. For example, in March of 2000 a fire
at a major Phillips Electronics plant shut down production and damaged millions of
existing microchips. Ericsson, one of their largest customers, was faced with a
shortage of parts that lasted for months. As a result, Ericsson lost an estimated $400
million in sales [5]. Similarly, a Japanese earthquake disrupted the supply of parts to
Kelly Micro Systems in 1994 [5]. Another Japanese earthquake (in 2011) led to a
tsunami that forced the shutdown of several plants that “supply much of the world’s
silicon wafers, auto parts, flash memory, and other components™ [6].

The model developed in this thesis allows the employment of proactive
mitigation strategies in order to minimize the effect of disruptions events, especially

supplier-specific disruptions.

! Disruptions are also a problem when lean manufacturing approaches are used for high-volume
products, but in the case of high-volume products, disruptions are usually relatively short in duration
(e.g., hours or days), whereas in the case of low-volume, long field life products, disruptions due to
allocation issues and obsolescence may have durations of months or even years.
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1.3: Introduction to Electronic Part Supply Chains

1.3.1: Supply Chain Background & Terminology

A supply chain is a complex network of organizations (suppliers,
manufacturers, distributors, and customers) through which materials and goods flow.
While supply chains have many levels (or echelons), this thesis will focus on a single
echelon of an electronic part supply chain in order to effectively isolate the effect of
disruption mitigation strategies. In particular, this thesis will concentrate on the
relationship between electronic part suppliers and original equipment manufacturers
(OEMs). OEMs, in this context, are defined as manufacturers who integrate pre-
fabricated parts and systems into larger products.

OEMs must perform several steps when selecting and implementing a part
into a more complex product. First, manufacturers need to identify suitable parts from
existing suppliers. If no such parts exist, manufacturers need to look into either in-
house fabrication or specialized contracts with fabricators. After a specific part has
been selected, the manufacturer needs to expend resources having both the part and
the supplier(s) qualified to the standards of their organization or to the standards
required by their customer.

Once a part and its supplier have been fully qualified, a steady supply of parts
is needed in order to consistently manufacture new products and support existing
products throughout their life cycle. While the primary purpose of manufacturing is to

fill outstanding customer orders, product support comes into play through the



fulfillment of warranty claims and necessary part replacements. The additional parts
needed to support fielded products are referred to as “spares”.

If the supply of qualified parts is interrupted (unable to meet manufacturing
and support demand), then customers’ orders for new products or repaired products
are left unfulfilled. These unfulfilled orders are known as “backorders”, which can
incur penalty costs over time. In order to safeguard against these lapses in supply,
OEMs can order an excess of parts (called a “buffer”) that allow for continued

production during the disruption.

1.3.2: Low Volume, Long Life Cycle Electronic Products

Low volume, long life cycle electronic products appear in military, aerospace,
oil, and communications infrastructure among other applications. None of these
applications has any control over the supply chain for the electronic parts they use.
During the initial design and manufacturing stage, these products can typically obtain
their parts directly from high volume supply chains built to support consumer
electronics. However, these long life cycle products differ from consumer electronics
in that they need parts to be readily available for long periods of time (20 years or
more). These long product life cycles can exceed part procurement lifetimes?
(especially at the individual supplier level) and therefore the flow of parts needs to be
carefully managed.

The relatively low volume (when compared to consumer electronics) of

ordered parts for these long life cycle systems severely undermines the effectiveness

% The part procurement life indicates the total length of time (in years) that the part was or will be
procurable from its original source(s) [30].



of popular procurement-price based strategies. In particular, necessary support and
qualification costs (which are typically overlooked in traditional cost modeling)
become critical cost components as they are not balanced by a high level of
production. A total cost of ownership approach was chosen for this thesis due to the

incorporation of these underlying support and qualification costs.

1.4: Supply Chain Disruption Taxonomy

A supply chain disruption is a mismatch between supply and demand that
would result in backordered parts if there were no mitigating factors such as buffered
parts or second sources. While the primary effect of a disruption is the same, the
source/cause of disruption events varies. Four disruption categories are discussed

below: part-specific, supplier-specific, customer-specific, and external.

1) Part-specific: Situations related to individual parts (not suppliers) can impact
the ability of a customer to obtain the part from any supplier. The most
common part-specific disruptions are technology obsolescence and counterfeit
part risk.

2) Supplier-specific: The three broad causes of supplier-specific disruptions are
suppliers exiting the market, specific part obsolescence (particular part
numbers that are discontinued by a supplier), and delivery delays.

3) Customer-specific: Poor estimation of part demand by the customer is the
primary source of customer-specific disruption. Estimation issues are typically

a result of unforeseen surges in demand and allocation issues.



4) External: Events that are beyond the control of the suppliers or customers may
directly affect the efficient production of parts and subsequent delivery to
customers. Common causes of external disruption include political/legislative

events, transportation mishaps, and “Black Swan™ events.

Manufacturers periodically negotiate supplier contracts that set the price, lead
times,* and volumes of selected part shipments. These contracts are deciding factors
in the manufacturer’s overall production schedule and as such variations from the
contractual terms can be the basis for production or support disruption, whatever the

cause.

1.5: Supply Chain Disruption Literature Review

In recent years, global supply chain disruptions have caused an increased
interest in the development of proactive disruption mitigation models. Blackhurst et
al. [7] presents a case study on global supply chain disruptions involving interviews
and focus groups of industry executives. The article highlights the importance of
supply chain visibility, and the development of real-time measures within the supply
chain (i.e., the importance of data when producing an effective model).

Due to varying part demand throughout the life cycle of a product or group of

products, part buffering (as presented in this thesis) is inherently a dynamic inventory

3 Disruption events that occur outside of reasonable or regular expectations, produce an extreme
impact, and involve “retrospective predictability” [31]. Retrospective predictability indicates that the
probability of occurrence can only be quantified after the event (or similar event) has taken place.
Examples of black swan events impacting electronic parts include the 2011 Thailand flood and the
2011 Japanese earthquake.

* Lead time indicates the time in between the placement of an order for parts and its delivery.



policy. Various dynamic inventory policies and models have been presented in
previous works. Karlin [8] introduced a variable inventory model based on a
fluctuating demand distribution. Karlin’s model incorporates backlogged demand and
its associated penalty cost, but supply chain disruptions are not considered. Karlin’s
model is based on defined periods of equal duration, at the beginnings of which
ordering decisions are made. Any time lags between order and delivery within the
model are assumed to correspond to these pre-determined periods (i.e., a lag lasts a
certain number of periods and the parts are delivered at the beginning of a period).
Karlin only presents a model for a lag lasting one period. Supplier disruptions are
inherently uncertain (when they occur and how long they last are uncertain), and as
such a dynamic inventory policy that reflects this fact is necessary. Zipkin [9]
developed a simplified version of Karlin’s model. Zipkin’s model assumes that each
period is stationary and uncertainty only comes into play when the periods are
combined. Iyer and Schrage [10] focused on the importance of collecting historical
demand data to generate inventory control parameters; however they presented only a
deterministic model. Disruption overlap and uncertainties in disruption date and
duration are key factors in the Iyer and Schrage model.

A variety of models have been developed to study the effect of disruption
events within a supply chain. Disruption models in the operations research realm
focus on the study of dynamic inventory policies, in particular the selection of
optimal buffer stock quantities. In fact, early disruption-specific models, such as Song
and Zipkin [11], Parlar and Perry [12], and Ozekici and Parlar [13] focus exclusively

on inventory control methods for accommodating disruption events. These models



developed robust disruption definitions and mathematical equations that serve as the
basis for more complex disruption modeling approaches. However, with the
exception of Ozekici and Parlar [13], these early disruption models did not
incorporate the effect of discounting (i.e., time value of money).

Wang et al. [14] discuss the effect of both dual sourcing and process
improvement as disruption mitigation strategies. While the proposed scenarios
primarily explore random capacity and random yield supply uncertainty, they can
easily be modified to represent disruption events (i.e., zero yield/capacity). The
authors also utilize "quantity hedging"’ in certain dual sourcing scenarios in order to
counteract supply shortages in one of the suppliers.

Das [15] highlights the importance of supply chain flexibility as a way to deal
with disruptions and demand uncertainty. Das recommends renting extra capacity
when needed (as opposed to simply expanding overall capacity) and maintaining a
pool of second tier suppliers that are able to fill in for primary suppliers, with an
additional inspection cost, in the case of disruptions (a.k.a., emergency or backup
sourcing). Das also mentions base level safety stock (a.k.a., buffering) as a
management defined input. However, the focus of [15] is on the physical layout of the
supply chain (distribution centers, plants, transportation) the importance of product
flexibility, which is not within the part-centric scope of this thesis.

Tomlin [16], Schmitt and Snyder [17], and Chen, et al. [18] incorporate the

concept of second sourcing as an additional disruption-management technique.

> Wang et al. [14] defines quantity hedging as ordering more parts then demand calls for in order to
“hedge” against shortages in supply. This is similar to buffering, except that quantity hedging is not
tied to a finite duration of time (e.g., buffering is defined as ordering enough excess parts to cover the
forecasted demand for a fixed future time period).



However, while these models clearly define the effect of various disruption mitigation

strategies on cost, supplier qualification is not considered and the secondary supplier

is assumed to be completely reliable (essentially an emergency/backup supplier that

can always deliver). In addition, Tomlin, and Schmitt and Snyder present infinite

horizon models, which assume that each ordering period takes place within an infinite

part usage lifetime. The defining characteristic (in terms of this thesis) of infinite

horizon models is that while the sequence and expected frequency of events and/or

periods are taken into account, the effect of calendar time is ignored. The absence of

calendar time has several notable ramifications for long life cycle products:

)]

2)

3)

Individual periods and/or events are not differentiated based on when
they occur in time, i.e., sequence of events is accounted for and only the
state of the previous period in known for calculations, but the correlation
to the clock and calendar are not accounted for. This assumption can
detract from the accuracy of disruption models, as several historical
disruption profiles, such as seasonal weather events, are dependent on
calendar time.

Periodic adjustments (such as the weighted average cost of capital
(WACC), inflation, and deflation) cannot be considered because the time
duration between events is not accounted for. The case studies presented
in Section 3.5 show that, over long periods of time, these adjustments
can significantly impact the total cost of ownership of a system.

Time dependent costs, such as introduction (e.g., initial approval and

qualification costs) or termination costs (e.g., obsolescence and end of
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life support costs), cannot be incorporated into calculations. These
support costs, as discussed Section 3, are key cost components for low-
volume, long life cycle systems.

While the implementation of an infinite horizon approach simplifies
disruption models and helps to insure the formulation of convex optimization
problems, the simplifying assumptions are not realistic for low-volume, long life
cycle products and lead to significant errors (as discussed in Section 3.5).

Although the restrictions surrounding the models developed by Tomlin [16],
Schmitt and Snyder [17], and Chen et al. [18] call into question their model’s
usefulness as decision-making tools for most real applications, a fact which Tomlin
acknowledges in [16], they provide valuable insight into the effect of disruptions and
they provide some guidance on the number of necessary disruption-based inputs for
the simulation-based model developed in this thesis.

Schmitt and Singh [19] presented a simulation-based approach
implementation of Tomlin’s model [16] that studies the propagation of disruptions
through infinite-horizon, multi-echelon supply chains and the resulting effect on
inventory flow. The simulation utilized in this thesis (as opposed to that of [19])
focuses on a single echelon of the electronics supply chain, more specifically the flow
of parts from supplier(s) to the original equipment manufacturer. Any disruptions that
occur before the parts reach the supplier(s) are assumed to be included in the

aggregate supplier disruption distribution. While Schmitt and Singh’s model serves to
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bridge the gap between analytical models® and simulation models, it is still
constrained to the limiting assumptions presented in [16] (infinite-horizon in
particular).

Tomlin supplemented his original paper [16] with an additional study in 2009
[20]. This paper presented a two-product newsvendor study that analyzes the impact
of a variety supplier/product/firm attributes on the optimal mitigation strategy. An
additional mitigation strategy (shifting demand to another product) is also considered.
While [20] implements a product-centric view, it is limited to a single period (as
opposed to finite long life-cycle systems).

Another realm of disruption management exists within the supply-chain, but is
not addressed in this thesis. Lin [21] studies disruption events stemming from
production uncertainty (i.e., imperfect production due to defective parts, machine
failure, and rework) at the manufacturer level. Lin utilizes a Markov chain based
probability matrix (similar to the one presented by Tomlin in [16]) to model process-
specific events. While imperfect production has a proven effect on the total cost of
ownership, it is not derived from the relationship between manufacturer and
supplier(s), and for that reason it is not considered in this thesis.

While the existing literature (outlined above) shows a growing interest in the
study of supply-chain disruption mitigation, no model has proven effective as a
general decision-making tool for supply chain managers. Instead, the existing

literature focuses on isolating key parameters and overarching trends for generalized

% An analytical model is a mathematical model (based on a series of formal equations) that has a closed
form solution (i.e., the solution can be expressed as an equation). Simulation models combine
analytical and numerical modeling (i.e., time-stepping in the case of the model in this thesis)
approaches to generate data and graphs that reflect the system’s behavior over time.
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supply scenarios. The model in this thesis utilizes a simulation approach in order to
incorporate a greater number of parameters/inputs and allow for scenario flexibility.
This thesis also emphasizes the importance of real-world disruption data as a catalyst
for model development.

In addition, research in recent years has primarily focused on disruption
mitigation for high-volume, short life cycle products. These products can typically be
generalized using infinite horizon or economic order quantity (EOQ) approaches that
place minimal emphasis on fixed support costs. An effective disruption model that
considers parameters unique to low volume, long life-cycle parts (such as non-

recurring support costs) has not been developed.

1.6: Thesis Overview

This thesis introduces a new method for isolating effective’ (not formal)
optimum disruption mitigation strategies for electronic part supply-chains. The
approach developed strives to minimize the cumulative part total cost of ownership,
depending on several parameters including: inventory level, backordered parts,
disruption events, sourcing strategy, support costs. The work presented in this thesis
will provide an effective decision making methodology for supply-chain managers.
The total life-cycle cost through j years will be minimized according to the following

equation:

7 The simulation model developed in this thesis utilizes an iterative approach to isolate near-minimum
total cost of ownership values for given part and product scenarios. These near-minimum values are by
no means formal optimums, but they act as effective decision-making tools for identifying the most
successful disruption mitigation strategy.
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Crco; = 2{:1( Csup; + Casy; + Cproc; + Cpr, + Cpys,) Eq. 1
The costs that compose the total life-cycle cost are as follows: support costs Csyp,
assembly costs Cysy, procurement costs Cproc, field costs Crr, and disruption costs
Cpis. These costs will be further defined in Chapter 2.

Chapter 2 outlines the development of a part total cost of ownership model

(and the accompanying simulation model) that incorporates disruption strategies and
penalty costs due to backordered parts. Chapter 3 validates the simulation model by
reproducing results from the analytical disruption model developed by Tomlin [16]
and highlights limitations to common analytical disruption approaches. Chapter 4
presents a set of case studies that examine sourcing strategy selection in the context of
realistic supply-chains. Chapter 5 summarizes the research, contributions, and

identifies areas for future work.

1.7: Work Plan

In order to accomplish the objectives outlined above, the following work plan
was developed and completed:

1) Expand the basic part total cost of ownership model (developed by Prabhakar
in [1]) to include the effect of buffering, backordered parts, and penalty costs.
Prabhakar addresses long-term (non-recurring) supply chain disruptions and
specifically focuses on disruptions due to part obsolescence. The focus of this
thesis is on frequent, smaller-scale disruption events and the appropriate
selection of disruption mitigation strategies (not limited to single verses
second sourcing).
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2)

3)

4)

5)

Develop a simulation model that allows for the determination of the effective
optimum disruption-mitigation strategies associated with a set of parameters.
Trends observed from the outputs of sensitivity analyses performed in the part
total cost of ownership model may allow for a reduction in necessary
parameters.

Validate the simulation model against results produced and documented by
existing analytical disruption models. In particular, reproduce the results of
Tomlin [16]. In addition, isolate limiting assumptions that can be overcome
with a simulation-based approach.

Determine key parameters for the proper selection of disruption mitigation
strategies for low-volume, long-life cycle products. Specifically, run case
studies with the modified part TCO simulation model to assess the importance
of four limitations to common analytical models: 1) fixed costs are ignored, 2)
disruptions last full ordering periods, 3) second/backup suppliers are perfectly
reliable, and 4) assumptions associated with an infinite-horizon approach.
Explore the use of actual supplier and/or distributor historical data for
establishing supplier disruption distributions (both duration and frequency).
Original Equipment Manufacturers (OEMs) may have some "soft" knowledge
from their own production lines that can be combined with limited public
information on the performance of various suppliers, but a quantitative model
is generally lacking in the electronics industry. In addition, utilize the

compiled disruption data to run realistic case studies in the simulation model.
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Chapter 2: Part Total Cost of Ownership Model (TCO) in the
Presence of Supply Chain Disruptions

This chapter presents the development of a part total cost of ownership model
that incorporates both mitigation strategies (second sourcing and buffering) and
penalty costs due to supply-chain disruptions. The following sections discuss the
importance and implementation of various model components as well as the
presentation of an accompanying simulation model. The resulting model serves as the

basis for calculations in the remainder of this thesis.

2.1: The Part TCO Model

The model developed by Prabhakar and Sandborn [22] determines the part total
cost of ownership. The basic model developed in [22] for calculating the effective
cumulative total cost of ownership through year j for a part is given in Eq. 2,

Crco; = 2{:1( Csup; + Casy; + Cproc; + Crr; + Ciny,) Eq.2

This model has five major components: support costs (Csyp), assembly costs
(Cyasy), procurement costs (Cproc), field failure costs (Crr), and inventory costs
(Cinv)- All of these costs are adjusted to present value in the underlying calculations
to account for the cost of money.

The target of the cost model in [22] was a study of the impact of support costs
on the total cost of ownership for low volume, long life cycle parts. For this reason,
several support costs (Csyp) are included in the principal calculations: initial part

approval and adoption costs, product-specific approval and adoption costs, annual
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cost of supporting the part within the overall organization, production support and
part management costs, obsolescence case resolution costs, and preferred-supplier list
(PSL) qualification costs.

The remaining cost components capture recurring and non-recurring costs
experienced throughout the lifetime of the part. The annual assembly costs (C4gy) are
defined as the recurring system assembly costs and the recurring functional
test/diagnosis/rework costs. The annual procurement (Cpgoc) and inventory (C;yy)
costs are the recurring part purchase costs and inventory holding costs, respectively
(in this model, the inventory cost is primarily utilized to store lifetime buys®). Finally,
the field failure costs (Crr) incorporate any costs incurred due to warranty fulfillment
or part replacement. The approach outlined by Prabhakar and Sandborn in [23]
addresses long-term (non-recurring) supply chain disruptions and specifically focuses
on supply-chain disruptions due to part obsolescence. However, the authors note in
[22] that this cost model could be extended to include the effect of shorter-term
disruption events, which will be the focus of the remainder of this chapter.

The model employs an annual (end-of-year) review policy in terms of inventory
replenishment decision-making. For a more detailed explanation of the terms in Eq. 2,

see [1].

¥ Lifetime buys refer to purchasing and storing a sufficient quantity of parts (when the part is
discontinued) to satisfy all future demand (production and support).
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2.2: Part Sourcing Strategies

2.2.1: Single Sourcing

Single sourcing, in the context of this thesis, is defined as an exclusive
relationship between an original equipment manufacturer (OEM) and a single
supplier with respect to a specific part. However, while single sourcing minimizes
qualification costs and allows for greater supplier-manufacturer coordination, the

manufacturer is more susceptible to supplier-specific disruptions.

2.2.2: Second Sourcing

In this thesis, second sourcing involves purchasing parts from a primary
supplier while maintaining a backup/secondary supplier. This sourcing strategy
decreases the impact of disruptions as production can be rerouted to the second
supplier when the primary supplier is disrupted (not able to supply parts). However,
while second sourcing is good for supplier negotiations (manufacturers can put
pressure on the price), additional qualification and support costs can negate its
benefits.

In Prabhakar and Sandborn [22] the additional cost to support a second source
i1s modeled using a learning index, a factor that characterizes the support cost overlap
between the primary and secondary supplier. The case study in [22] showed that the
benefit of using a second sourcing strategy is dependent on the value of the ratio K =
ACrco/Csyp where ACrco 1s the difference in total cost of ownership (i.e., the cost
avoided by extending the part’s procurement life) and Csyp is the cost to support a

source. K can be used to calculate the effective learning index associated with
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sourcing (see [22]). According to [22], the ratio K can be interpreted two different
ways: 1) as a threshold value, K serves as an gauge for the organization’s ability to
avoid certain qualification and support activities for additional suppliers, and 2) as a
target value, K can be used to estimate the maximum fraction of support cost that can
be duplicated for the second source and still make second sourcing viable. This thesis
utilizes the ratio, K, to assess the value of proactively qualifying a second source
and/or buffering an inventory of parts to address the issue of recurring supplier-
specific part disruption events.

Obsolescence mitigation (specifically DMSMS [diminishing manufacturing
sources and materials shortage] obsolescence) was incorporated into Prabhakar and
Sandborn’s model [22] through strategic lifetime buys and the inclusion of second
sourcing as a way to extend the part usage life without changing the procurement life
from the original manufacturer. Prabhakar and Sandborn found that when the
combined procurement and inventory costs are high, second sourcing offers increased
cost avoidance by extending the part’s effective procurement life (when compared to
single sourcing). However, short-term supply chain disruptions are much more
common than obsolescence-type events and have a direct impact on the TCO of each

part (which will be explored in the remainder of this thesis).

2.3: Part Buffering

As mentioned in Chapter 1, buffering in this thesis is defined as the storage of a
number of parts equal to the forecasted part demand (for both manufacturing and

maintenance requirements) of a fixed future time period. Buffering is a common
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proactive mitigation strategy employed in the electronics industry so as to offset the
impact of disruptions.

Due to the fact that the forecasted part demand changes throughout the life cycle
of the part, the buffering quantity is not a pre-determined value. Instead, the buffering
quantity changes from year to year. If the buffering duration (7%, in months) is less
than a year, the buffering quantity for each year (i) within the part’s life cycle (with

the exception of the final year of support, when no buffering is necessary) is given by:

Ty

H, = m; (*2) Eq.3

12

where m; is the forecasted demand per year.
If the buffering duration (7%) is greater than a year, then the buffering quantity

for each year (7) is given by:

k=i+|TH|-1

H, = <2k_i 12 mk> M|t C_Z_ E_Z ) £a. 4

where : | x| represents the floor function (round down to the nearest integer);

therefore E—;’J is the number of full years accounted for in the buffering strategy.

Equations 2 and 3 implicitly assume that the forecasted part demand (m, in
parts/year), while varying from year to year, is consumed at a constant rate within any
given year. The uncertainty associated with of the forecasted part demand impacts the
total penalty cost, as discussed in the next section.

When a supplier disruption occurs, new parts are no longer being delivered and
the production and support begins to rely on the buffered inventory. However, if the

disruption extends past the buffering duration, parts are backordered with an
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additional penalty cost. The number of parts on backorder at the end of the disruption

period is considered the backorder quantity.

While buffering can be shown to significantly decrease the penalty costs
associated with disruption events (see Section 4.2), there are some negative impacts
that need to be considered. For example, buffering (if left unchecked) can delay the
discovery of counterfeit parts in the inventory. Similarly, long-term storage of parts
can lead to part deterioration (such as the reduction of important solderability
characteristics for electronic parts). For this reason, OEMs that utilize long-term
buffering as a disruption mitigation strategy may need to regularly assess the

status/condition of buffered parts.

2.4: Backorder Penalty Cost

One of the major consequences of supplier/production disruption is the
accumulation of penalty cost. Whenever demand is not met, a penalty is charged. If
disruptions are frequent and/or lengthy or there is a high base penalty cost, the
cumulative TCO can be dramatically affected. The buffering strategy can be
optimized so as to balance the holding cost associated with excess parts against the
possible penalty cost.

In the model presented in this thesis, annual backorder penalty (Pgo,) in year
was calculated using:

P PBIi*
BO; — (1+T)(i_YB)
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where r is the weighted average cost of capital (WACC), discrete compounding is
assumed, and Y3 is the associated base year for money. Equation 4 incorporates the
uncertainty of part demand within the function /;*, which is defined as the maximum
of the following three values: 0, the shortage/excess on backorder quantity (S/E;), and
the parts in inventory (/;). This function essentially selects the population (due to lead
time/disruption or demand uncertainty) affected by the base penalty cost per part per
year (Pp). The parts in inventory (/;) are defined within the model as the total number
of parts available for production/support at the end of the year, typically as a result of
demand uncertainty. A negative quantity indicates a shortage of parts while a positive
quantity indicates excess inventory. If there is excess inventory (/g) at the end of the
year, a holding cost (%) is charged per part instead of a backorder penalty cost (as
excess inventory inherently indicates that no parts are on backorder).

The shortage/excess on backorder quantity is defined as the number of parts that
are unavailable for production/support during a disruption event- a negative quantity
indicates a shortage of parts. This excess/shortage is essentially the error due to part
demand and disruption uncertainty. For the first year of a supplier disruption, this

value is calculated by:

S/El =Hl—mlDl Eq6

where D; is the annual downtime. If the disruption extends past one year, the

shortage/excess on backorder quantity is quantified for all subsequent years by:

S/El =Il—mlDl Eq7

The sum of the annual backorder penalty cost and the holding cost on excess

parts are added to the part cost of ownership (as calculated Section 2.1 using Eq. 2) to
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produce the annual part TCO. The method presented in this thesis utilizes end-of-year
backorder counting. This method assumes that the part total cost of ownership for

year i is the cost accumulated between year i and year i+1.

2.5: Disruption-Specific Cost Terms

The disruption-specific cost terms outlined in the prior sections were used to
modify Prabhakar and Sandborn’s [23] general total cost of ownership model. The

annual inventory cost term (Cpyy,) in Eq. 2 was replaced with a more generalized

disruption term (Cps,) as shown in Eq. 8.

Creo; = Yli( Csup; + Casy; + Cproc; + Crr, + Cpis;) Eq. 8
The annual disruption-specific cost (Eq. 9) is the sum of the annual buffering
cost incurred due to excess inventory (buffered parts, H;) and the annual backorder

penalty cost (Ppo;) incurred due to insufficient inventory.

hig,

Cmsi = PBOi + A+ YB)

Eq. 9

The goal of the remainder of this thesis is to minimize the cumulative part TCO
in the presence of supply chain disruptions by identifying the most effective
mitigation strategy. To achieve this goal, a simulation-based disruption model was
created and driven with random disruption events over the lifetime of the part. The
effects of these disruption events and the applied mitigation strategies were then

calculated using the expanded part TCO equation (Eq. 8).
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2.6: Model Assumptions

The model developed in this chapter adheres to the following assumptions:

)]

2)

3)

4)

5)

6)

7)

8)

Demand and order fulfillment are recorded at the end of each period/year.
This method assumes that the part total cost of ownership for year i is the cost
accumulated between year i and year i+1.

Supplier-specific disruptions that occur in period i impact the number of parts
to be delivered in year i+1.

The model is limited to either single or second sourcing through the use of
two distinct supplier disruption distributions. More suppliers can be
considered if an aggregate disruption distribution is employed, however the
effect of the individual suppliers cannot be considered if an aggregate
distribution is used.

Unmet customer orders, due to discrepancies between supply and demand, are
infinitely backordered (i.e., orders are not lost or rescinded over time).
Forecasted part demand (m, in parts/year), while varying from year to year, is
consumed at a constant rate within the year it represents.

All unmet demand is delivered in full at the end of a disruption event (no
ramp-up period). This assumption holds for discrepancies due demand
uncertainty (i.e., excess demand in year i-1 is added to the order for year i and
delivered in full at the beginning of the period).

The WACC and price change are constant throughout the life of the product
(manufacturing and support).

All original assumptions outlined by Prabhakar in [1].
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2.7: Simulation Process

In order to efficiently and repeatably model real-world disruption events, a
simulation model was developed from the underlying formulation discussed in this
chapter. The simulation model employs several loops to determine the near optimum
disruption mitigation strategy, which is the strategy (sourcing and/or buffering)
associated with the lowest expected cumulative total cost of ownership (CTCO) per
part site. Figure 1 details the simulation process that is implemented within a Monte
Carlo analysis in order to calculate the expected CTCO per part site for each sourcing
and buffering strategy considered. The effective disruption mitigation strategy can
either be determined manually (the user can perform a select number of Monte Carlo
analyses for predetermined sourcing and buffering strategy combinations), or
automatically within a brute force "optimizer" (which runs through a range of

buffering and sourcing strategy combinations).
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Figure 1: Simulation model process and inputs used to determine the cumulative TCO per part site for
a unique set of disruption events

The simulation model employs four distinct steps to calculate the expected
CTCO per part site:

1) Part-specific and product-specific inputs are compiled by the user (as
shown in Figure 1) and used to calculate the annual support costs (Csyp),
assembly costs (C4sy), procurement costs (Cproc), and field failure costs
(Crp) according to the methodology development in [1]. These cost terms
are not affected by demand or disruption uncertainty.

2) The simulation model utilizes a discrete event simulator to generate
disruption events throughout the life cycle of a part. The disruptions are
modeled using a three-parameter Weibull distribution (which was selected
for generality, but any other distribution could be used). Figure 2 shows a
comparison between a theoretical Weibull distribution (calculated using

the three-parameter Weibull equation) and population of sampled points (a
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collection of 100 random samples drawn from the theoretical distribution).

The simulation model samples from two distinct distributions in order to

generate unique disruptions over the life cycle of the part: one governing

the length of disruption events, and the other governing the interval

between disruption events.
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Figure 2: A comparison of the exact PDF produced from the three parameter Weibull equation and
the corresponding PDF produced from a population of generated samples. (gamma=2 years,

beta=0.5, eta=1.5 years)

In addition to the generation of disruption events, uncertainty comes into

play through the incorporation of demand uncertainty. For each year in the

part’s life cycle, the simulation model samples a random value from a

Gaussian distribution (with the forecasted part demand acting as the mean

and a user-supplied value acting as the standard deviation) and sets that

value as the actual annual part demand. The annual penalty costs and

inventory costs associated with the generated disruption events and

demand discrepancies are then calculated using the method developed in

Section 4.
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3)

4)

The annual penalty costs and inventory costs (which, when summed, make
up the disruption-specific cost term (Cp;s) as discussed in Section 4) are
added to the annual disruption-independent cost terms calculated in step 1.
The resulting annual cost represents the annual part total cost of ownership
as described in Eq. 8. The annual TCO values are summed over the life of
the part in order to calculate the cumulative TCO associated with the user-
defined disruption mitigation strategy and the unique set of generated
disruption events and actual annual demand values.

In order to capture the effect of uncertainty, a Monte Carlo analysis is
performed. The Monte Carlo analysis performs the three previous steps
(which are broken down further in Figure 1) repeatedly for a set number of
sample sets, recording the final cumulative TCO per part site associated
with each individual sample set. The simulation model then compiles
these final values in order to produce a distribution of the cumulative TCO
per part site’ over the support life of the product (or family of products)
for the mitigation strategy in question. The mean value of this distribution
is the expected CTCO per part site, which is used for comparison purposes

in order to determine the near optimum disruption mitigation strategy.

’A “part site” is defined as the location of a single instance of a part in a single instance of a product.
For example, if the product uses two instances of a particular part (two part sites), and 1 million
instances of the product are manufactured, then a total of 2 million part sites for the particular part
exist. The reason part sites are counted (instead of just parts) is that each part site could be occupied by
one or more parts during its lifetime (e.g., if the original part fails and is replaced, then two or more
parts occupy the part site during the part site's life). For consistency, all TCO calculations are presented
in terms of either annual or cumulative cost per part site.
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As mentioned previously, one of the main outputs of the model is the expected

part total cost of ownership for a given disruption profile (set of unique disruption

events occurring throughout the life cycle of the part) and disruption mitigation

strategy. Figure 3 shows the relevant annual part quantities (buffering strategy — H,,

parts on backorder — J;", parts in inventory — J;, part demand, and forecasted part

demand (mean) — m;) that are predicted and analyzed for a given disruption profile

and a 20-year part lifetime.'® The simulation model is able to concurrently analyzes

the effect of both second sourcing and buffering on the part TCO so that companies

are able to select the most effective management strategy for their specific needs.
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Figure 3: Relevant part quantities recorded by the simulation model for a single mitigation strategy

(second sourcing and 20-weeks buffering) and disruption scenario

The parts in inventory (J;), parts on backorder (J;'), and part demand are tied to

both disruption and demand uncertainty. As such, their values should fluctuate for

each run of the simulation model. The forecasted part demand (m;) and buffered parts

(H;) are known values and should stay constant regardless of the disruption scenario.

This compiled annual part quantity data is combined with cost information (i.e.,

' The inputs used to produce Figures 2, 5, and 6 are detailed in the Appendix. The results do not
reflect a fully analyzed case study as the inputs were chosen so as to produce clear figures. See
Chapters 3 and 4 for complete case studies.
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penalty costs, support costs, and procurement costs) to calculate the part TCO. The

most important thing to notice in Figure 3 is the difference between the number of
parts on backorder (which, when non-zero indicates a disruption period) and the
number of needed parts in the inventory (negative inventory). In the case shown in
Figure 3, the first instance of negative inventory within each disruption period is less
than the corresponding number of parts on backorder due to the buffering. Buffering
creates a gap between the start of the disruption and the point when production (or the
ability to support the product) stops (due to negative inventory) that allows for shorter
overall downtime or possibly no downtime at all.

Figure 4 shows the effect of generated disruption events on the cumulative
part TCO. It should be noted that the cumulative TCO per part site decreases over
time in this example case because additional part sites are added to the total
population each year. The resulting effect of penalty costs and initial support costs on

cumulative TCO is spread out amongst the additional part sites each year.
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Figure 4: A comparison of the cumulative part TCO after 20 for a single sourcing case without
disruptions and a single sourcing case with the given disruption profile (three disruption events)

The simulation model also allows the graphically analyses of the effect of

time on a selection of sourcing strategies (as compared to a baseline, non-disrupted
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scenario). This graphical analysis allows one to further grasp the importance of the
TCO approach, especially as opposed to short term cost analysis. Figure 5 depicts the
cumulative TCO per part site for a given disruption scenario and buffering strategy
(20-weeks). While the lower support costs associated with single sourcing causes it to
be the most cost effective solution for the first seven years of the example part’s life
cycle, the disruptions accumulated over time gradually negate the benefits associated
with single sourcing. As such, for the scenario shown in Figure 5, the most effective

mitigation strategy in the long run is second sourcing.
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Figure 5: Cumulative part TCO (including penalty) over a 20 year period for a variety of sourcing
strategies and a buffering strategy of 20 weeks (single disruption profile).

The distributions shown in Figure 6 are examples of the results produced by
the Monte Carlo analysis. For the given example, second sourcing not only decreases
the uncertainty (standard deviation) of the expected cumulative TCO per part site, it
also decreases the mean value. For further reference, the simulation model interface

and inputs are discussed in the Appendix.
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Figure 6: Expected cumulative TCO per part site (including penalty) for a selection of sourcing
strategies and a buffering strategy of 20 weeks (Monte Carlo generated distributions).
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Chapter 3: Validation of the Simulation Model

This chapter presents the contextualization and validation of the simulation
model (developed in Chapter 2) against a well-known analytical disruption model
from Operations Research literature. This chapter also highlights discrepancies
between analytical and simulation-based disruption models, providing several case

studies that show the impact of underlying analytical model assumptions.

3.1: Contextualization and Justification

As mentioned in Chapter 1, a set of generalized analytical disruption models
exist outside of the simulation realm. These models were developed for use in supply
chain management and they isolate trends and variable relationships within
generalized scenarios. Tomlin, in his 2006 paper [16], presents a widely referenced
cost model for finding the optimal sourcing policies to minimize cost during
disruptions. His model utilizes a constrained infinite-horizon, periodic-review
inventory system. Similar to the model developed in this thesis, all unmet demand in
Tomlin’s model is backlogged with instantaneous production and lead time. Tomlin’s
model allows for positive lead time, assuming that lead time is constant throughout
the model.

Tomlin presents the idea of flexible capacity as a defining characteristic for
underlying model selection. The simulation model developed in this thesis, on the
other hand, does not include the effect of flexible capacity and production ramp-up

time on the total cost of ownership. The sub-model most similar to the one developed
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in this thesis has what Tomlin calls “Type II”” flexibility. Type II flexibility implies
that the emergency backup supplier can offer infinite and instantaneous capacity,

essentially allowing for uninterrupted supply in the eyes of the consumer.

3.2: Limitations of Popular Analytical Disruption Models

While Tomlin’s model helped to solidify a disruption approach and limit the
number of required inputs, several limiting assumptions prevented Tomlin’s model
form being utilized directly in this thesis. Tomlin’s model, in addition to the other
analytical disruption models explored in Chapter 1, utilized a more formal
optimization approach to isolate the effect of disruptions on the supply chain. Due to
the inherent complexity of the supply chain, there are a large number of variables that
can have a direct impact on cost. However, in order to numerically optimize the cost
associated with a disrupted supply chain, several unrealistic simplifying assumptions
needed to be made.

While the restrictions surrounding these models prevents them from being
useful decision making tools, a fact which their authors acknowledge [16], they
provide valuable insight into the effect of disruptions and they allowed the number of
necessary disruption-based inputs for the simulation model to be limited in this thesis.

The calculation of the expected cost associated with disruption events can be
iteration heavy, which lends itself to a simulation approach; the simulation-based
model developed in this thesis is similar to a traditional optimization loop with added
uncertainty from sampling probability distributions. According to Tomlin, it may be

possible (but outside the scope of this thesis) to create an entirely analytical
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disruption model, but the calculations would be extremely complicated and time-
consuming [16].

Figure 10 (Chapter demonstrates that the simulation can be appropriately
parameterized to generate the same solution as the analytical model of Tomlin [16].
While the model presented by Tomlin [16] effectively selects an optimal disruption
mitigation strategy for a given set of inputs, it can only be applied to very restricted
cases. The limitations that are inherent to the model are relatively common amongst
analytical supply-chain models and are imposed by the models to insure that the
formulation is convex (guaranteeing that an optimum solution can be found). For the
simulation- based model, no such limitations are necessary. In particular, there are
four key restrictions that are problematic when applying the existing analytical
models to low volume, long life cycle systems (where support costs and procurement
lives are critical):

1) Fixed costs of ordering are ignored. This assumption limits the use of the
model to cases where the time scale for ordering is shorter than disruption
time scale (i.e., order daily, disruptions last weeks). In addition, any fixed
costs associated with supplier or part qualification (which were shown in [1]
to have a direct effect on the total cost of ownership) cannot be considered.
This assumption, while acceptable for traditional procurement-driven systems,
severely limits the effectiveness of the model in low-volume, long life cycle
environments. Tomlin notes in [16] that adding fixed/support costs and

varying lead times might require simulation-based optimization.
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2)

3)

4)

Infinite-horizon model. This restriction, which works for an idealized high-
volume, short life-cycle scenario, doesn’t incorporate cost of money or price

change over time, which are necessary components of long life-cycle

products.

Disruptions last full ordering periods (i.e., disruptions are delivered in full or
not at all). Tomlin, in particular, employs an idealized Markovian disruption
model (discussed in Section 3.3).

Secondary (a.k.a., emergency/backup) supplier is completely reliable. This
assumption indicates that second sourcing consistently allows for an
uninterrupted supply of parts (as long as all the suppliers have enough notice
and capacity). This restriction ignores overlapped supplier downtime
(independent probability distributions), which is a more realistic scenario

(especially when it comes to industry wide shortages).

Table 1: Summary of differences between Tomlin’s model and the simulation model in this thesis

Tomlin (analytical) This Thesis (simulation)
While the sequence and frequency | Calendar time is incorporated
Calendar Time of periods are important, the through several time-dependent
infinite horizon assumption does factors such as WACC and price
not consider calendar time. change over time.
Disruption . . e e .1
Model Markovian Sampled probability distributions
. The expected durations and
. Backup/secondary supplier is . .
Sourcing . . frequency of disruption are
completely reliable (undisrupted) . .
supplier-specific.
Studies the impact of flexible Assumes instantaneous and infinite
Capacity supplier capacity and ramp-up capacity from available
time on the long-run average cost. | (undisrupted) suppliers.
Fixed Costs No fixed order costs are Periodic and aperiodic (such as
considered. initial and termination costs) fixed

' A three-parameter Weibull distribution was chosen as the disruption model for the simulation
because it can mimic a variety of popular distributions (such as exponential and normal). However,
this underlying distribution can be changed without any effect on the accompanying equations.
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costs are considered.
In addition, the infinite horizon
assumption eliminates the effect of
both initial support costs (such as
qualification and approval costs)
and termination costs (such as
obsolescence resolution and end of
life support).

3.3: Development of Reimplementation Method

While Tomlin [16] thoroughly outlines the methodology he developed and
utilized to calculate the long-run average costs associated with various disruption
scenarios, the actual resultant cost values were not given (the results were presented
in a graphical format to highlight overarching trends). Before the simulation model
could be validated against Tomlin’s results, specific test points needed to be
reproduced using Tomlin’s methodology. The remainder of this section will describe
the modified reimplementation method used to verify and reproduce these test points.

Tomlin employs a basic Markovian disruption model that designates each
period as either disrupted/“down” or non- disrupted/“up”. This model specifies the
probability of the disruption ending each period (44,), and the total expected number
of disrupted periods. While Tomlin utilizes an infinite cumulative distribution
function to calculate the resulting steady-state uptime, he did not provide detailed
calculations. Consequently, the reimplementation method presented in this thesis
employs a truncated transition state matrix (Figure 7). This matrix converges over
time and specifies a steady-state probability of the system being “up”. The steady

state values were estimated by raising the transition state matrix to the 256" power (a
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common numerical approach to steady state estimation). This “percent uptime”

designates how many periods within the life of the part are not disrupted.

State 0 1 2 3 4 5 6 7
0 Ay 1- Ay 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 0 1 0 0 0
4 Agu 0 0 0 0 1-Agy 0 0
5 Adu 0 0 0 0 0 1-Agy 0
6 Adu 0 0 0 0 0 0 1-Agy
7* 1 0 0 0 0 0 0 0

Figure 7: Example Transition State Matrix: M=4, N=3

The transition state matrix shown in Figure 7 is defined by the following four
characteristics:
1) Size of matrix: 1+M+N
2) 1: State space 0 (no disruption occurring)
3) M: State spaces representing the minimum number of disruption periods
4) N: State spaces representing the possible remaining disrupted periods (in
excess of minimum) with which there is a constant probability of the
disruption ending. Ideally N is infinity, but steady-state probabilities converge
when N is a finite large number
The number of state spaces is truncated (from infinity to 1+A/+N) in order to
produce a practical model. As such, the final possible state has a transition rate of 1
(returning the system to state 0, no disruptions).
In order to isolate the minimum number of modeled states required to produce

the expected steady-state value, several transition state matrices (of varying sizes)
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were tested within Matlab. Figure 8 shows a transition state matrix with an expected
steady state probability of 90.07% and a minimum number of disrupted periods (M)
equal to 20. The number of additional state spaces modeled (N) was varied from 0 to

300.
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Figure 8: Steady-state probability of supply uptime (state 0) according to the number of modeled state
spaces (). The expected value for the shown scenario is 90.07% uptime.

As shown in Figure 8, the system converged to the expected steady-state value
within 100 steps. Similarly, a transition state matrix with a steady-state probability of
80.01% and a minimum number of disrupted periods (M) equal to 40 was modeled
and shown in Figure 9. The number of additional state-spaces modeled (N) was varied

from 0 to 300.
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Figure 9: Steady-state probability of supply uptime (state 0) according to the number of modeled state
spaces (). The expected value for the shown scenario is 80.01% uptime.

Figure 9 shows that, once again, the system converged to the expected steady-
state value within 100 steps. In addition to the Markovian disruption model discussed
above, Tomlin developed equations utilizing this steady-state uptime and the resulting
disruption probability distribution (along with a variety of other factors) to determine
the optimal buffer quantity.

Tomlin specified a set of disruption scenarios (scenario: expected downtime,
minimum downtime, % uptime) that were utilized in conjunction with specific case
study inputs and equations to calculate the average expected cost associated with each
of the three main sourcing strategies: contingent rerouting (or acceptance, a subset
where the rerouted production = 0), inventory management, and sourcing

management.'> Before the outputs of the simulation model (Section 2.7) could be

'2 While Tomlin utilizes different terms to describe disruption mitigation strategies, each strategy can
be directly linked to second sourcing and/or buffering. The three mitigation strategies he describes are:
contingent rerouting [pure second sourcing (no buffering), rerouting production to the second/backup
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verified against Tomlin’s results, several test points had to be calculated. These points
were calculated using only Tomlin’s equations, inputs, and steady-state probability
model. The output of these test points, shown in Figure 10, represents the mitigation
strategy that produces the lowest average expected cost. As seen in Figure 10, with
the exception of a few boundary points'?, Tomlin’s results were reproduced using his

methodology.
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Figure 10: Optimal sourcing strategies organized according to total supplier uptime and expected
disruption length. Scenario-specific inputs and equations that result in the solid lines shown are given
in Tomlin [16]. The overlaid points show the mitigation strategy associated with calculated test points:
Circles represent Sourcing Management, diamonds represent Inventory Management, squares
represent Contingent Rerouting (CR), and the triangles represent equal cost for both Sourcing
Management (SM) and Inventory Management (IM).

supplier in the event of disruption], inventory management [pure buffering, single sourcing], and
sourcing management [single sourcing from a reliable supplier, no buffering].

" In some cases near the region boundaries the calculated long-run average costs for boundary points
were so similar that (in order to account for any possible rounding errors) two strategies were marked
as equivalent. For example, for 95% unreliable supplier uptime and 30 expected disruption periods the
long run average cost of buffering (IM) was found to be $1.050078, while the cost associated with
single sourcing from the reliable supplier was found to be $1.050000. The discrepancy between the
two values was too minute to allow for the prescription of one strategy as effectively dominant.
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3.4: Simulation Model Modification

In order to make the simulation model match Tomlin’s environment, several

important model inputs were set to zero (support and termination costs - C,,,, cost of

sup»
money - WACC, demand uncertainty,'* price-change'”). Removal of these effects,
while necessary to reproduce Tomlin’s result, severely impacts the realism of the
modeled system (which will be shown in Section 3.5). The steady-state probability
distribution for each scenario (scenario: expected downtime, minimum downtime, %
uptime) was utilized in the simulation model in conjunction with Tomlin’s case study
inputs and equations to calculate the average expected cost (from a Monte Carlo
analysis'®) associated with each of his three main sourcing strategies. The calculated
costs were then compared, and the optimal sourcing strategy (the strategy associated
with the smallest cost) was selected. This method was employed repeatedly to
generate points on a graph that correlated to the output presented by Tomlin shown in
Figure 11. It is important to note that Tomlin’s infinite-horizon assumption (infinite

number of ordering periods) and Markovian disruption model (ordering periods are

either fully disrupted or non-disrupted) are best applied to short ordering periods. In

'Y Demand uncertainty, expressed as an annual standard deviation from the mean, is used within the
simulation model to generate actual part demand from the forecasted part demand. Any unmet demand
is backordered according to the equations given in Section 2.4.

'S Due to ongoing relationships with part suppliers and the emergence of new technology, part prices
generally decrease each year. Within the simulation model, this price change is modeled as a constant
percentage of annual price reduction.

'S The following Monte Carlo stopping criterion was employed to calculate an effective sample size
standard deviation.

0.015(mean)
on the mean of less than 1.5% was employed (as opposed to 1%). A sample size of 100 model runs
was found to meet the criterion for Tomlin’s scenario.
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order to recreate Tomlin’s scenarios (Figure 11) the simulation model had to be run
for 100-1300 simulated ordering periods. In the electronic part industry, ordering
periods are typically a year in length and as such modeling 1300 ordering periods is
unrealistic. Lifelike cases (which don’t pertain to the limitations outlined in Section
3.2) will primarily have part lifetimes of less than 35 years or ordering periods.

The cases in Figure 11 are organized according to overall supplier uptime and
expected disruption length (the combination of which characterizes the frequency of
disruption). Scenario-specific inputs and equations that result in the solid lines shown
in Figure 11 are given in Tomlin [16]. With the exception of a few boundary points,
the simulation results aligned closely with Tomlin’s results. This correlation serves
not only to verify the results produced by the simulation model, but also to highlight

the effectiveness of the simulation model as a decision-making tool.
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Figure 11: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the

mitigation strategy associated with simulation test points: Circles represent Sourcing Management,

diamonds represent Inventory Management, squares represent Contingent Rerouting (CR), and the
triangles represent equal cost for both Sourcing Management (SM) and Inventory Management (IM).
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It should also be noted that allocation cannot be specified within the
simulation model (i.e., it is not possible to specify ahead of time how much demand
each supplier is responsible for) when implementing a second sourcing strategy.
Instead, as mentioned in Section 3.1, this thesis focuses on the concept of
instantaneous and infinite supplier capacity. It is therefore assumed that the primary
unreliable supplier is contracted to supply all necessary parts, calling on the backup

supplier for fulfillment of orders only in the case of a disruption event.

3.5: Validation Case Studies

The previous sections demonstrated that the simulation model described in
this thesis is capable of reproducing the results obtained by Tomlin [16]. However,
the simulation model does not have the same core restrictions. A simulation-based
approach, while not capable of guaranteeing a formal optimum, is able to produce a
practical, near-optimum value that incorporates both a greater amount of uncertainty
and more complex parameters. This effective optimum can be calculated for realistic
supply systems, and therefore can be more readily utilized as a decision-making
parameter. In order to determine the impact of common analytical model
assumptions, several case studies were performed. It should be noted however, that
while the following case studies highlight important areas of weakness within
common analytical models, they do not represent a comprehensive design of

experiments analysis.
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3.5.1: Fractional Disruption Periods

One of the underlying assumptions within the validation case (Section 3.4) is
the Markovian format of the disruption model. In Tomlin’s [16] work, ordering
periods (defined as a full rotation of orders and fulfillment) are either up (non-
disrupted) or down (disrupted) as seen by the OEM. However, this generalized
model, while appropriate for scenarios where disruptions always last at least several
ordering periods, does not accommodate small-scale disruption events (such as
delivery delays) or disruptions that start/stop within an ordering period (resulting in
the delivery of a fractional order).

The simulation model presented in this thesis employs disruption distributions
(non-Markovian), which allow fractional orders to be delivered due to downtime in
the previous order cycle. In order to test the validity of Tomlin’s model in these types
of disruption events, a modified version of the validation case study was performed.

The following model assumptions are important to note:

1) Disruptions in period i affect the order size delivered in period i+1. For
example, if the disruption lasts 25% of year i (three months), then 25% of year
i+1’s order will not be delivered on time.

2) Infinite-horizon assumptions are still in place (no cost of money or fixed costs
are considered).

3) All of the inputs used in Section 3.4 (Appendix A.2) were preserved for this
case study, with the exception of the expected disruption lengths.

4) When implementing fractional disruption periods into Tomlin’s formulas for

identifying i.;; [16] and the optimal inventory level, the number of modeled
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periods was rounded up to the nearest integer. The calculated values of i.,;, are

therefore a conservative estimate.
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Figure 12: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the
mitigation strategy associated with fractional disruption test points: Circles represent Sourcing
Management, diamonds represent Inventory Management, and squares represent Contingent
Rerouting.

As seen in Figure 12, the inclusion of fractional disruption periods has
minimal impact on the optimal mitigation strategy. The simulated points still follow

the underlying pattern defined by Tomlin.

3.5.2: Finite Horizon (WACC)

In order to study the impact of the infinite-horizon assumption within the
validation case, a non-zero WACC (r = 2%/period) was incorporated into the case
study outlined in Section 3.5.1. Tomlin utilizes very long life cycles (100-1300
periods) and minimal recurring costs, so a WACC of 2%/period was chosen (as
opposed to a more common value of 10-12%/year) in order to maintain reasonable

differences between the cumulative total cost of ownership (CTCO) per part site
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values. For example, in one of the most extreme cases (1250 modeled years and 98%
supplier uptime) the CTCO per part site for second sourcing was found to be
$0.040799998 and the CTCO per part site for single sourcing from the unreliable
supplier was found to be $0.04080001 (a discrepancy of 10®). If the WACC was
increased to a more standard rate, the CTCO per part site values would decrease even
further (diverging even more from Tomlin’s results). For the realistic case studies
outlined in Chapter 4, a WACC of 10%/year was used.

Tomlin’s model formulation [16] assumes that the WACC is zero (this is
implicit in the definition of infinite horizon). Alternatively, the simulation model
identifies the optimal mitigation strategy and inventory level by running a Monte
Carlo analysis for each case and selecting the strategy with lowest expected
cumulative part TCO, and any value of WACC can be used.

The optimal buffering strategy no longer aligns with the results from Tomlin’s
equations. Instead, the inclusion of cost of money (even at the very small WACC
used) shifts the optimal buffering strategies so that fewer buffered parts are needed in
the optimal strategy. For future times the WACC decreases the present value
associated with each part, and the added value of buffering an additional part also
decreases. In addition, the optimal mitigation strategies no longer match up with
Tomlin’s overlaid infinite-horizon results (shown in Figure 13). Instead, second
sourcing (or a combination of second sourcing and buffering) becomes a much more

viable option.
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Figure 13: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the
mitigation strategy associated with cost of money test points: Circles represent Sourcing Management,
squares represent pure Contingent Rerouting, and X’s represent a combination of both Contingent
Rerouting and Inventory Management.

3.5.3: Unreliable Backup Supplier

The case study performed in this section assesses the effect of maintaining a
completely reliable backup supplier. As mentioned in Section 3.2, this assumption
gives manufacturers the option to pay a premium part price in order to ensure a
consistently uninterrupted supply of parts. In realistic supply chains, however,
supplier disruptions can never be completely prevented at any price and depending on
the nature of the disruption, a backup supplier may be affected the same as the
primary supplier.

An additional disruption profile was implemented into the simulation model in
order to generate disruption events for the backup supplier. The parameters used to
describe the disruption profile (Weibull distributions) are shown in Table 2. The

parameters were selected to reflect significant disruption events (expected length: 1.6

48



ordering periods) that occur on average every 5.5 years. All of the other inputs used
for this case study are discussed in Section 3.5.1 and detailed in Appendix A.2. Once
again, the simulation model’s internal optimization capabilities were utilized to

identify the optimal inventory level instead of Tomlin’s [16] formulas.

Table 2: Weibull parameters used to generate disruption events for the backup supplier (Y).

Backup Supplier (Y)
gamma eta
(years) beta (vears)
Interval 5 1 0.5
Length 1 1 0.6

The unreliability of the backup supplier, while less significant than the
unreliability of the primary supplier (i.e., less accumulated disruption) is further
exacerbated in this case study by the higher backup part price. As detailed in the
Appendix, the primary supplier has a set price of $1.00 per part and the backup
supplier has a set price of $1.05 per part (unless acting in emergency/secondary
backup capacity, in which case they charge $2.63 per part). In Tomlin’s original case
study, the accumulated penalty costs associated with the unreliable primary supplier
outweighed the elevated price of the backup supplier because a continuous stream of
parts was guaranteed when single sourcing from the backup supplier. However, the
addition of disruption events at the backup supplier increases the total cost of
ownership and makes single sourcing from the less expensive unreliable supplier
generally more cost effective. In addition, in regions where single sourcing from the
backup supplier is more cost effective (relatively low values for unreliable supplier
percent uptime and high values for the expected number of disrupted ordering
periods) a small buffer is necessary in order to offset disruption events and achieve

the lowest expected cumulative part TCO.
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Figure 14: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the
mitigation strategy associated with unreliable backup supplier test points: Circles represent Sourcing
Management and +’s represent a combination of both Sourcing Management and Inventory
Management.

3.5.4: Fixed Costs (Qualification and Support)

In his 2010 dissertation, Prabhakar [1] noted the impact of fixed costs (support
costs in particular) on the part total cost of ownership of low volume electronic parts
and systems. Low volume, long life cycle products cannot spread the effect of fixed
costs over a large part population, so elevated support costs directly impact the TCO
per part site. The majority of analytical disruption models, however, focus on long
run average costs due to the minimal impact of initial support costs on high volume
consumer electronics. In order to study the effect of the fixed costs omission within
the validation case, a $1000 product specific approval cost was added to the case
study outlined in Section 3.5.1. Similar to the reasoning behind the use of a small
WACC in Section 3.5.2, a relatively small product specific approval cost was
employed in this case study so as not to unduly offset the small CTCO per part site

values accumulated in Tomlin’s original case study. Product specific approval costs
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are a common form of support costs that are incurred each year a product is

introduced and charged for each contracted supplier.
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Figure 15: Optimal sourcing strategies for select disruption scenarios. The overlaid points show the
mitigation strategy associated with support cost test points: Circles represent Sourcing Management
and diamonds represent Inventory Management.

As shown in Figure 15, the addition of fixed costs does not have a marked
effect on Tomlin’s original case study results for disruption scenarios with relatively
small-moderate values of overall percent uptime. However, for scenarios with a
higher percent uptime (less accumulated disruptions), the effective optimal disruption
strategy switches from contingent rerouting to inventory management. This change in
results is due to the fact that support costs are duplicated (K factor of 1) when the
manufacturer contracts two suppliers. The combination of elevated support costs and
a premium emergency part price ($2.63 per part from the backup supplier when
acting in an secondary/emergency capacity) causes contingent rerouting to be less

cost effective than inventory management.
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Chapter 4: Implementation of Real-World Disruption Data

This chapter presents historical supply-chain data gathered from a variety of
sources. The part delivery data is then transformed into inputs for the simulation-
based model and used in case studies that focus on realistic issues in modern

electronic part supply chains.

4.1: Historical Supply-Chain Disruption Data

As of now, no standard record-keeping practices exist for disruption events
within the low volume, long life cycle electronic part industry. Instead, individual
companies are responsible for selecting and preserving data that they deem relevant to
their own interests. For this reason, historical supply-chain disruption data varies
greatly and stems from a variety of sources. In this section, the following sources of
historical electronic part supply-chain disruption data are explored: public electronic
part demand information, supplier and manufacturer lead time quotes, manufacturer

supply-chain databases, and electronic part distributor delivery data.

4.1.1: Public Electronic Part Demand Information

Figure 16 shows the worldwide market billings for semiconductors recorded
by the Semiconductor Industry Association between July 2011 and June 2012 [24].
This publicly available part demand information was compared against the lead-time
fluctuation data from SiliconExpert [25] (Figure 17) for the same time period.
Intuitively, one would expect that the periods associated with the greatest lead times

(March, May, and August of 2012) would coincide with the periods of highest
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demand, as manufacturers rush to fill outstanding orders and keep up with growing
demand. However, as shown in Figures 16 and 17, there doesn’t appear to be a
correlation between customer demand trends (inferred from market billings) and
supplier lead time. It should be noted, however, that suppliers typically bill
manufacturers for delivered parts (as opposed to ordered parts), so the market billings
shown in Figure 16 may need to be shifted by the parts’ lead time in order to truly

represent demand.
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Figure 16: Worldwide market billings (three-month moving averages) recorded by the Semiconductor
Industry Association (SIA) [24]
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Figure 17: Semiconductor lead time fluctuations recorded by SiliconExpert [25]
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Figure 18 shows the decrease in price experienced by a selection of
transformers as recorded by Arrow (an electronic part distributor). While this data
does not reveal any disruption-specific information, it does provide average values for
annual part price-changes. Similar to the effect of the WACC, annual part price
decreases can dramatically affect the cumulative part TCO (especially for long life-
cycle products) and as such should be monitored and considered in cost calculations.
Transformer T4 experiences a 7% annual price decrease on average, as determined
from Figure 18. This value was used as the annual single-sourcing price-change in the

case studies presented in the following sections.
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Figure 18: Average prices recorded by Arrow for a selection of electronic parts (specifically
transformers) from 2001-2013. [26]

4.1.2: Supplier and Manufacturer Lead Time Quotes

Figure 19 shows a compilation of 2010-2011 supplier lead-time quotes for
select electronic parts from the SiliconExpert database. This data does not take bulk
negotiations or customer priority into account. While the given data is by no means

exhaustive, there seems to be some correlation between part type and lead time.
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(noticeably different distributions). However, the data was censored to protect

proprietary supplier information, so the lead time trends may simply be supplier-

specific.
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Figure 19: SiliconExpert supplier lead time quotes for a selection of inductors, ELYT, and memories in
2010-2011. [27]

Figure 20 shows the lead time data collected from Ericsson during the same
time period (2010-2011) for similar electronic parts and suppliers. The quoted lead
time values provided by SiliconExpert far outlast the quoted lead times shown in
Figure 19. The inconsistency of recorded lead time quotes prevents them from being

effective indicators of disruption events and backordered parts.
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Figure 20: 2010-2011 Supplier lead time quotes supplied by Ericsson for a selection of electronic parts.
[28]

4.1.3: Manufacturer Supply-Chain Databases

Some manufacturers are beginning to centralize their disruption data within
overarching supply-chain databases. Figure 21 shows an example of Ericsson’s
efforts to compile and study disruption information for a sampling of electronic parts.
The communication infrastructure company notes how long (in weeks) it takes for a

supplier to deliver ordered parts after the onset of a disruption event.
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Figure 21: Time to first delivery from the onset of a disruption for a compilation of electronic parts (as
recorded by Ericsson from 2010-2011). [28]
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However, while this data definitely helps to quantify manufacturer-specific
disruption risk, the centralization of disruption data is a relatively new concept.
Manufacturers that are just beginning to track and store disruption data won’t
necessarily have part disruption histories of an adequate length or scale to perform

statistical analysis.

4.1.4: Electronic Part Distributor Delivery Data

Figure 22 shows electronic part distributor delivery data from 2007 to 2013.
This data not only serves to highlight the size and frequency of part orders as seen by
the distributor, it also allows the isolation of discrepancies between scheduled and
actually delivery dates. The graph in Figure 22 shows how long it took delayed parts

to reach the distributor.
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Figure 22: 2007-2013 Distributor delivery data for a sampling of integrated circuits and transformers.
[29]

While the data in Figure 22 does not fit into a traditional Markovian format (a
common input for existing analytical models), it can be transformed into a useful

input for the disruption model where its effect on the total cost of ownership can then
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be quantified and studied. While the data received is directly connected to disruptions
at the distributor level, an additional offset factor could be applied to the parameters
in order to effectively modify the data for use by original equipment manufacturers
(essentially left- censoring the data to accommodate distributor mitigation activities)
Ideally, one could build and generalize the disruption models so that they can be
applied on a part, product, or supplier specific basis.

The raw delivery data (such as the data shown in Figure 22) was organized
into frequency bins according to disruption length, 1.e., 20 parts experienced a one-
week delay, ten parts experienced a two-week delay, etc. The binned data can then be
used to generate a disruption probability distribution. In this thesis, Weibull++
software was used to fit the data to a three parameter Weibull distribution. The
parameters used to describe this distribution (shape, scale, and location) are direct
inputs for the model. Figure 23, shows the curve that was generated using the delivery

data and Weibull++.
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Figure 23: Weibull curve fit of the distributor data in Figure 22. The curve parameters are
automatically calculated by the software and listed beside the output (beta: 0.834, eta: 18.726 days,
gamma: -2.358 days)

In the model, each time a disruption begins (intervals between disruptions are
governed by a second Weibull distribution) a random value is selected from this
probability distribution and set as the length of the disruption event. The penalty costs
associated with these events are then calculated for each year of the part’s life and
added to the base part TCO. These two steps are then repeated for a series of Monte

Carlo runs in order to produce a distribution for the expected part total cost of

ownership.

4.2: Case Studies

While the theoretical case studies performed in Section 3.5 helped to isolate

the importance of individual parameters, the modeled scenarios were simply not
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realistic. As shown in Section 4.1, part and disruption data can be very complex in the
real world. The following case studies focus on the implementation of realistic data
from low-volume electronic parts. In particular, the case studies were selected to
reflect the following popular issues within the low volume, long life cycle electronics
industry: proactive disruption mitigation strategy selection, identification of the effect
of part volume on the optimal mitigation strategy, and the implementation of time-

dependent disruption profiles.

4.2.1: Mitigation Strategy Case Study

The primary case study performed using the simulation model was developed
in order to analyze the effect of both second sourcing and buffering on realistic
electronic part supply chains. As discussed in Section 2.3, the purpose of buffering is
to delay the negative effects associated with supplier disruption. In other words, part
buffering allows production to continue during a supplier disruption. This extension
of the available production period reduces the penalty cost associated with unfulfilled
demand. All the data used for the example case in this section is provided in the
Appendix. The inputs were chosen to mimic the real-world costs associated with an
ISDN transformer.

Figure 24 shows a comparison of cumulative TCO for a given part and a
unique set of disruption events assuming no buffering. The modeled disruption events
and the correlating backordered parts associated with Figure 24 are shown in Figure
25. A K value of 1 (see Chapter 2) was assumed in order to demonstrate the worst

case of second sourcing, i.e., complete duplication of support costs. Figure 24 shows
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that for a unique set of generated delivery delays and the given inputs, second

sourcing is much more cost effective than single sourcing.

S30.00
= £25.00 — Supplier X
~ \
- \ /\

\
2 £20.00 T —©— Single Sourcing X
z 2 \ // \F—“*-‘I’ (No Disruptions)
TZ g5 ) M
=t . \ ====Seccond Source X
= = o
o & \ \
o ;_ $10.00 -
< N o mCTSemee=== ==O=Supplier X
> N ¥ .
o ~ (Tomlin)
- $5.00
=
E
S $0.00
Year

Figure 24: Cumulative part TCO (including penalty) over a 13 year period for a selection of sourcing

strategies and no buffering.
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Figure 25: The percentage of each year in the parts 13-year life cycle that the primary supplier is
disrupted (left), and the total number of backordered parts due to the disruptions (right). The parts on
backorder correspond to a single sourcing strategy with no buffer.

A Monte Carlo analysis was performed in order to accommodate disruption
uncertainty and isolate the expected cumulative TCO. As shown in Figure 26, second
sourcing decreases the mean cost per part site from $20.93 to $11.99, which (for the

100,000 part population modeled) correlates to a total cost avoidance of $894,000.

61



However, a large variance in possible values exists. This variance, i.e., uncertainty, is

major source of risk for a company.
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Figure 26: A comparison of the expected cumulative TCO for two sourcing strategies (without any
buffering) for the given inputs.

The effect of buffering, on both single and second sourcing strategies, is
shown in Figures 27 and 28. Figure 27 shows that while second sourcing was once
again preferred over single sourcing for a generated set of disruption events, the
addition of a 10-week buffering strategy caused the final cumulative TCO’s

associated with each strategy to be much less than their counterparts in Figure 24.
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Figure 27: Cumulative part TCO (including penalty) over a 13 year period for a selection of sourcing
strategies and 10-weeks buffering.
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After the performance of a Monte Carlo analysis, the incorporation of a 10-
week buffering strategy was found to further diminish the mean cumulative TCO
when compared to the non-buffering cases in Figure 28. Also, by reducing the effect
of supplier downtime, the spread of the possible TCO was significantly decreased for
both sourcing strategies. For the second sourcing case with no buffering (shown in
Figure 26), the standard deviation was $5.99. When a 10-week buffering policy was

incorporated in Figure 28, the standard deviation was reduced to $3.94.
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Figure 28: A comparison of the expected cumulative TCO for the two sourcing strategies considered in
Figure 26 after the incorporation of a 10-week buffering strategy.

While the implementation of buffering as a mitigation strategy was effective
under the given set of conditions, buffering may not always reduce the part TCO. For
example, as shown in Figure 29, if the holding cost (per part per year) associated with

excess inventory is very large then buffering would only serve to increase part TCO.
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Figure 29: A comparison of the expected cumulative TCO for second sourcing with and without
buffering given a holding/inventory cost of $125 per part per year.

The graph in Figure 29 was generated with the same inputs used in the case
study with one notable exception: the holding cost per part per year was increased
from $0.05 to $125. While this increase in holding cost is unrealistically large, for the
given set of conditions in this case study, a 10-week buffering strategy effectively
reduced the mean part TCO up to this level of holding cost.

In order to isolate the most effective buffering strategy for the given inputs
(with the holding cost adjusted back to $0.05), the simulation model’s internal
“optimizer” was employed. The “optimizer” performs a Monte Carlo analysis for a
specified range of buffering strategies. The expected CTCO per part site values are
then calculated from the results of these Monte Carlo runs for both single and second
sourcing. Figure 30 shows a plot of the expected CTCO per part site values for both
single and second sourcing and range of buffer sizes. For the given inputs and
disruption profile, single sourcing from the primary supplier with an 80-week

buffering strategy is the near-optimum disruption mitigation strategy.
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Figure 30: Mean cumulative total cost of ownership per part site for a range of buffer sizes and
sourcing strategies.

The data presented in Figure 30 also reveals that when the buffer size is small
(less than 70 weeks) second sourcing is more cost effective than single sourcing.
However, the limited effect of accumulated holding costs combined with reduced
support costs (when compared to the duplicated support costs associated with second
sourcing) makes single sourcing the more economical option overall.

Tomlin’s analytical disruption model (Section 3.3) was also utilized to
analyze this case study, and all of the calculated CTCO per part site values were
found to be equal to the initial part price ($0.48), as shown in Figure 31. Note, the
majority of the inputs for this case study are not supported by Tomlin’s model
(WACC, support costs, part price change, and disruption uncertainty in particular).
One of the most restricting factors (in this case study) stems from the fact that the
Tomlin’s model is only able to model disruptions that last full ordering periods.
While Section 3.5.1 showed that the incorporation of fractional disruption periods
has a minimal effect on the optimal disruption mitigation strategy, Tomlin’s

analytical model (as is) cannot accommodate non-Markovian disruption models and
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therefore cannot be applied to scenarios where disruption events are shorter than
ordering periods. As the probability of a disruption lasting a year for the given
disruption profile (from distributor delivery data) is 6.27x107, no disruption events

were generated/modeled within Tomlin's approach.

O No Buffer

100

80 1

Frequency (%)
ES
|

S}
S
|
|

j2) Q 5 Q “ Q o) \ O
N N > v & » > » >
N N . A A CA

Cumulative TCO per part site ($)

Figure 31: The expected cumulative TCO for second sourcing (without buffering) calculated used
Tomlin’s methodology.

This case study demonstrates the importance of utilizing proactive mitigation
strategies in the presence of supply chain disruptions. The results, presented in
Figures 24-30, quantitatively reveal how the implementation of second sourcing and
buffering can directly affect the part TCO. In addition, Figure 30 exhibits just how
much incremental changes to the mitigation strategy can affect the overall part TCO,
highlighting the importance of careful strategy selection.

It should be noted that while the data for this case was carefully selected to
produce realistic populations and results, some of the inputs do not represent true
historical data. The disruption profile was taken from the delivery delay data

presented in Section 4.1 (correlating to an expected annual disruption length of 0.05
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years). Each Figure .shows the results of a Monte Carlo analysis that was employed to

include the impact of uncertainty on the part TCO.

4.2.2: Part Volume Case Study

One of the most prevalent and essential questions posed by low volume, long
life cycle OEMs is how does the optimal disruption mitigation strategy relate to
product volume? Manufacturers have noted that the additional verification costs
incurred by maintaining additional suppliers can decrease favorability of second
sourcing for low volume products. This case study assesses the relationship between
the optimal mitigation strategy (lowest expected part TCO) and part volume in order
to provide OEMs with an effective decision making tool. The following two variables
will form the basis for the case study:

1) Part Volume (1,000 — 1,000,000): cumulative demand of all products

2) Product-Specific Approval (PSA) Costs (0 - $100,000): incurred each year a

product is introduced and charged for each contracted supplier. So while

second sourcing can offset the impact of disruption events, it also carries
increased support costs when compared to single sourcing.

The case study implements realistic data from low-volume electronic parts,
primarily ISDN transformers. The full set of inputs utilized in this case study is
detailed in Appendix A.6.

The disruption profile selected for the initial version of the case study
generates rare but significant disruption events (e.g., the primary supply experiences

about 40 weeks of disruption about every five years). A K factor of 1.0 was employed
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in order to model a complete duplication of support costs for each additional supplier.
A single product design (PSA cost only charged in year 1) was modeled in order to
isolate the effect of part volume. As the holding cost utilized in this case study is
minimal ($0.05 per part), buffering is a generally effective method for decreasing the
part TCO. The addition of second sourcing, as shown in Section 4.2, can offset the
effect of disruption even further by ensuring a redundant supply of parts. However,
the duplicated support costs associated with a secondary supplier can negate the cost
benefits of a redundant part supply.

The results from the initial version of the case study, shown in Figure 32,
indicate that a combination of second sourcing and buffering is always preferable for
the given disruption profile and inputs (regardless of part volume or PSA costs). The
accumulation of penalty costs associated with the major disruption events was so
significant that the benefits of second sourcing outweighed the accompanying effect

of increased PSA costs regardless of the part volume.
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Figure 32: Optimal sourcing strategies for select combinations of product specific approval cost and
total part volume. As indicated by the triangles, the optimal sourcing strategy was always a
combination of second sourcing and buffering for the given inputs.
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In addition, the optimal buffer levels for each modeled case were tracked, in
increments of 30 weeks, and compiled in Figure 33. The buffering strategy remained
relatively constant (at 210 weeks) regardless of part volume or support costs.
However, for a total part volume of 1,000 parts, the optimal buffering strategy was
one increment lower (180 weeks). This discrepancy is due to the fact that the
simulation model only models full parts (as opposed to fractional parts). As
mentioned previously, the buffering strategy accounts for a fraction of the forecasted
annual part demand. When the total part volume decreases, the effect of rounding

down to the nearest part increases, which in turn results in a lower buffering strategy.
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Figure 33: Optimal buffering strategies for various part volume and support cost scenarios.

A second version of the case study was developed to test this hypothesis and
further study the effect of part volume on the optimal sourcing strategy. This
modified case study retained all of the same inputs, with the exception of the
disruption profile. The modified disruption profile was developed to reflect rare,
small-scale disruption events (detailed in Appendix A.6). Figure 34 shows the

optimal sourcing strategies resulting from this case study.
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Figure 34: Optimal sourcing strategies for select combinations of product specific approval cost and
total part volume. Triangles indicate cases where the optimal sourcing strategy was a combination of
second sourcing and buffering. Diamonds indicate cases where the optimal sourcing strategy was
single sourcing and buffering.

As shown in Figure 34, for low volume parts with significant PSA costs, the
optimal mitigation strategy switched (when compared to the previous case study
iteration) from second sourcing to buffering. The results of this case study show that
the cost of maintaining a second supplier decreased the favorability of second
sourcing for low volume products.

This case study isolates a definitive connection between total part volume and
support costs, product specific approval costs in particular. As the total amount of
accumulated penalty costs increases (due to an increase in either base penalty cost or
total disruption time), the favorability of second sourcing also increases regardless of
the part volume. However, if penalty costs are outweighed by necessary support
costs, then single sourcing becomes increasingly more cost effective (when compared

to second sourcing) especially as the total part volume decreases.
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4.2.3: Time-Dependent Disruption Case Study

Up to this point, the case studies in this thesis have focused on assessing the
affect of disruption profiles based on constant distributions. However, real-world
disruption profiles are rarely constant for the entire life cycle of a part (especially for
long life-cycle products and systems). Most likely, manufacturers will have to assume
and model several disruption profiles over time to account for fluctuating disruption
probabilities. This case study assesses how the optimal mitigation strategy (lowest
expected part TCO) is affected by non-stationary disruption profiles. All of the inputs
utilized within the case study were taken from the mitigation strategy case study
(Section 4.2.1) and are detailed in Appendix A.5. The secondary disruption profile
parameters are given in Table A.16.

Figure 35 shows the expected CTCO per part site after 13 years for a set of
generated disruption events if only a small-scale disruption profile is employed. The
applied disruption profile is identical to that utilized in Section 4.2.1 (based on
delivery delay data). For the unique set of delivery delays generated in Figure 35,
second sourcing is the most cost effective mitigation strategy. Figure 36 incorporates
the uncertainty associated with the disruption profile and shows that second sourcing

is generally more effective for the given inputs.
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Figure 35: Cumulative part TCO (including penalty) over a 13 year period for a variety of sourcing
strategies (unique disruption events generated from single disruption profile based on delivery delay
data).
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Figure 36: A comparison of the expected cumulative TCO after 13 years for two sourcing strategies
and no buffering (single disruption profile based on delivery delay data).

A part that is subjected to significant disruption events throughout its life
cycle accumulates, intuitively, more penalty costs than a part subjected only to small-
scale delays. Figure 37, below, shows the CTCO per part site for a set of generated
disruption events after 13 years if only the significant disruption profile is employed.

Once again second sourcing is the most cost effective solution, but both strategies
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reflect significantly larger part-specific costs. The Monte Carlo analysis of this

scenario, shown in Figure 38, solidifies this comparative result.
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Figure 37: Cumulative part TCO (including penalty) over a 13 year period for a variety of sourcing
strategies (unique disruption events generated from single disruption profile based on significant
disruption events).
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Figure 38: A comparison of the expected cumulative TCO after 13 years for two sourcing strategies
and no buffering (single disruption profile based on significant disruption events).

Figure 39 shows the cumulative TCO per part site for a single set of disruption
events generated (from two distinct disruption profiles) throughout the 13-year life

cycle of a part. For the first six modeled years, the part is subjected to a disruption
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profile dependent on small-scale disruptions. For the remaining seven years in the

part’s life cycle, the disruption profile changes to reflect significant disruption events

(months of disrupted production due to a black swan event). Figure 40 shows the

cumulative distribution functions associated with each of the disruption profiles.
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Figure 39: Cumulative part TCO (including penalty) over a 13 year period for a variety of sourcing
strategies and no buffering. The disruption profile changes 6 years into the part’s life cycle (marked by
the vertical grey line) from a delivery delay based profile to a significant disruption based profile.
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Figure 40: Cumulative distribution functions for both disruption profiles utilized in this case study. The
delivery delay distribution is applied to the first 6 years of the part’s life cycle, and the significant
disruptions distribution is applied to the second 7 years of the part’s life cycle.
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For the first six years in the part’s life cycle, the incurred penalty costs are
small (reflecting small-scale delays to production). As soon as the secondary
disruption profile takes over in year seven, however, single sourcing becomes
noticeably and increasingly unfavorable as penalty costs associated with large-scale
disruption events are accumulated.

When both disruption profiles are used (as in Figure 41), a dominant sourcing
strategy is still evident from the resulting data (second sourcing). However, the
expected CTCO per part site becomes more uncertain. Figure 41 shows the expected
CTCO per part site for both single and second sourcing (no buffering) under the time-
dependent disruption profile. The standard deviation for the part TCO per part site
associated with single sourcing has increased from $12.20 (Figure 36) and $32.07

(Figure 38) to $71.62.
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Figure 41: A comparison of the expected cumulative TCO after 13 years for two sourcing strategies
and no buffering. The disruption profile changes 6 years into the part’s life cycle from a delivery delay
based profile to a significant disruption based profile.
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The implementation of a time-dependent disruption distribution has been
proven in this case study to directly affect both the expected CTCO per part site and
the uncertainty associated with the final result. While this case study does not show a
change in the effective optimal mitigation strategy for the modeled inputs, it also does
not contradict or disprove the concept. Further work in this area may unveil a greater
significance of non-stationary disruption distributions when modeling disruption

events in the supply chain.
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Chapter 5: Summary & Conclusions

This chapter presents a summary of the topics covered within this thesis and
details the contributions it makes. In addition, areas of possible future work are

outlined.

5.1: Summary

Long life cycle products, and the parts they are composed of, are susceptible
to a variety of supply chain disruptions. Proactive mitigation strategies exist that can
reduce the impact of supply chain disruptions. Two mitigation strategies in particular
have been proven to greatly decrease the penalty costs associated with disruptions:
second sourcing and buffering. Second sourcing involves selecting two distinct
suppliers from which to purchase parts over the life of the part’s use within a product
or organization. Second sourcing reduces the probability of part unavailability (and its
associated penalties), but at the expense of qualification and support costs for
multiple suppliers. An alternative disruption mitigation strategy is buffering (also
referred to as hoarding). Buffering involves stocking enough parts in inventory to
satisfy the forecasted part demand (for both manufacturing and maintenance
requirements) for a fixed future time period so as to offset the impact of disruptions.
Careful selection of the mitigation strategy (second sourcing, buffering, or a
combination of the two) is key, as it can dramatically impact the part total cost of

ownership.
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This thesis presented a total cost of ownership-based simulation model
developed to help perform tradeoff analyses and identify an effective optimal
combination of second sourcing and hoarding for a specific part and product scenario.
The results produced by this simulation model were validated against a popular
analytical disruption model developed by Tomlin [16]. In addition, this thesis studied
the effectiveness of traditional analytical models compared to a simulation-based
approach for the selection of an optimal disruption mitigation strategy. Four
assumptions, in particular, were found to limit the realism of most analytical models
but can be ignored in the simulation-based model. These limiting assumptions are: 1)
no fixed costs associated with part orders, 2) infinite-horizon, 3) perfectly reliable
backup supplier, and 4) disruptions lasting full ordering periods (as opposed to
fractional periods). The final limiting assumption (disruptions lasting full ordering
periods) was modeled in Section 3.5.1 and found to have minimal effect on the
optimal disruption mitigation strategy. The remaining assumptions, however, were
found to have a direct and significant impact on the optimal disruption mitigation
strategy and therefore cannot be ignored in realistic case studies.

A variety of case studies were performed within the simulation model. The
first set of case studies (described in Chapter 3) show that the model is capable of
replicating results from operations research models, and overcomes significant
scenario restrictions that limit the usefulness of analytical models as decision-making
tools. The second set of case studies (shown in Chapter 4) was developed to show the
impact of proper mitigation strategy selection within realistic electronic part supply

chain scenarios.
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5.2: Contributions

To the best of this author’s knowledge, this thesis represents the first

simulation-based total cost of ownership approach to modeling and quantifying

supply-chain disruption events in the context of low-volume, long life cycle

electronic supply chains. This thesis makes the following contributions:

Quantitatively assessed the underlying assumptions of popular analytical
disruption models and determined that finite horizon (including non-zero
WACC), fixed support costs, and unreliable backup suppliers are essential
components for determining the effective optimal disruption mitigation
strategy for a given disruption scenario.

Expanded an existing analytical part total cost of ownership model (developed
by Prabhakar in [1]) to include the effect of buffering, backordered parts, and
penalty costs. The inclusion of non-idealized scenarios through the
implementation of disruption uncertainty allows a more realistic expected part
TCO to be calculated.

Created and validated a supply chain disruption simulation model that not
only removes the identified limitations of infinite-horizon analytical models,
but can also serve as an effective decision making tool. The part TCO based
simulation model allows for the determination of the effective optimum
disruption-mitigation strategies associated with a set of parameters. The model

also provides a platform for sensitivity analyses within the supply chain realm,
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especially for low volume, long life cycle parts that have not been studied as
exhaustively as high volume parts.

* Developed method for translating supply chain (distributor) compiled
disruption information into the supply chain disruption modeling process. In
addition, successfully implemented actual distributor historical data (both
duration and frequency) into realistic case studies for low volume, long life
cycle parts.

* Demonstrated the importance of effectively selecting proactive disruption
mitigation strategies, particularly in terms of low volume, long life cycle
products through the performance of realistic case studies. Specifically,

established the effect of buffering and second sourcing on the part TCO.

5.3: Future Work

The work performed within this thesis can be enhanced in the following ways:
* One of the primary contributions to any type of disruption event is human
error. Whether it is under-preparedness, miscommunication, poor training, or
strained relationships, human behavior has a direct effect on the disruption
events that impact part total cost of ownership. As the number of workers goes
down (due to an increase in technological capability), the effect of their
individual responsibilities increases. For this reason, future work in the realm
of disruption management should focus on the incorporation of human-related

risk.
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The most relevant source disruption data uncovered within this thesis was a
database of delivery delay information retrieved from an electronic part
distributor. Due to the fact that Original Equipment Manufacturers (OEMs)
are buffered from many of the disruptions experienced by distributors, the
case studies in this thesis are really most useful to the distributor. The
buffering techniques that distributors use soften the effect of disruptions as
seen by their clients (the OEMs). Further work (beyond the scope of this
thesis) is needed to map a connection between distributor disruption data and
OEM-specific disruption events.

Another proactive mitigation strategy that is commonly employed within the
electronic part industry is product redesign. This strategy involves approving
an alternative product design that does not include an obsolete or disrupted
part. As of now, this strategy cannot be modeled (for comparison purposes) in
the part-specific simulation model. Future work efforts may expand the
simulation model to include a comparison of the part TCO associated with the
effective optimal mitigation strategy against specified product redesign cost

estimates.
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Appendices

Appendix A: Case Study Inputs

Appendix A.1: Inputs for simulation example figures used in Section 2.7

Table A.1: General inputs used to produce the sample figures in Section 2.7

General Inputs

Population Type Poisson Generated
Ratio, K 1.00
Part Lifetime (years) 20.00
Eff. Procurement Life (years) 20.00
Cost of Money 10.00%/year
Base Year for Money 1
LTB overbuy 10.00%
Inventory Cost (per part) $0.07
Price per part (all suppliers) $1.00
Price decrease (per year) 8.50%
Demand Uncertainty'’ 0.2
Backorder Penalty (per part per year) $300
Scrap Cost (per part) $0

Table A.2: Support costs modeled within the example figures in Section 2.7

Support Costs (%)
Product-Specific Approval 200
Initial Approval 0
Annual Part Data Management 200
Annual Production Support 600
Annual Purchasing 400
Obsolescence Case Resolution 7500
PSL Qualification 10000

7 Demand uncertainty is expressed in terms of standard deviation from the annual quantity.
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Table A.3: Supplier specific Weibull parameters used to generate disruption events in the example
figures in Section 2.7

Supplier X Supplier Y
gamma eta gamma eta
(vears) beta (vears) || (vears) beta (vears)
Interval 3 1 0.5 4 1 0.5
Length 0.5 1 0.6 1 1 0.6
Procurement Life 20 0 0 20 0 0
Analy51.s Run-In 25 0 0
Time

Table A.4: Annual forecasted part demand and product design data used to produce the example
figures in Section 2.7

Year Product Designs Forecasted Part Demand
1 1 11
2 1 50
3 2 150
4 2 337
5 2 607
6 2 911
7 2 1171
8 2 1318
9 2 1318
10 2 1186
11 2 970
12 2 728
13 2 504
14 2 324
15 2 194
16 1 109
17 1 58
18 1 29
19 0 14
20 0 6

** Forecasted part demand generated using a total volume of 10,000 parts and a peak usage year of 9
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Appendix A.2: Inputs for Tomlin reimplementation model

Table A.5: General inputs used to re-implement Tomlin’s methodology within the developed

simulation model

Annual Part Data Management

Annual Production Support

Annual Purchasing

Obsolescence Case Resolution

PSL Qualification

(] le) fe) fen) Fen) Fan) Ran]

Table A.7: Supplier specific Weibull parameters used to generate disruption events that emulate

Tomlin’s methodology within the developed simulation model

General Inputs
Population Type Known
Ratio, K 1.00
Cost of Money 0.00%/year
Base Year for Money 1
LTB overbuy 0.00%
Inventory Cost (per part) $0.0015
Price change (per year) 0.00%
Supplier X Price (per part) $1.00
Supplier Y Backup Price (per part) $2.625
Supplier Y Base Price (per part) $1.05
Product Designs 1
Annual Forecasted Part Demand 10
Demand Uncertainty 0
Backorder Penalty (per part per year) $0.15
Scrap Cost (per part) $0
Table A.6: Support costs modeled within the reimplementation Tomlin’s methodology
Support Costs ($)
Product-Specific Approval
Initial Approval

Supplier X Supplier Y
gamma eta gamma eta
(vears) beta (vears) | (years) beta (years)
Interval 100 5 1 3000 0 0
Length 0 1 10 0 0 0
Analysis Run-
In Time 0 0 0
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Appendix A.3: Modified Inputs for Finite Horizon case study

Table A.8: General inputs used in the Finite Horizon case study (Section 3.5)

General Inputs
Population Type Known
Ratio, K 1.00
Cost of Money 10.00%/year
Base Year for Money 1
LTB overbuy 0.00%
Inventory Cost (per part) $0.0015
Price change (per year) 0.00%
Supplier X Price (per part) $1.00
Supplier Y Backup Price (per part) $2.625
Supplier Y Base Price (per part) $1.05
Product Designs 1
Annual Forecasted Part Demand 10
Demand Uncertainty 0
Backorder Penalty (per part per year) $0.15
Scrap Cost (per part) $0

All other inputs used in this case study are found in Appendix A.2

Appendix A.4: Modified Inputs for Fixed Costs case study

Table A.9: Support cost inputs used in the Fixed Costs case study (Section 3.5)
Support Costs ($)
Product-Specific Approval 1000

Initial Approval

Annual Part Data Management
Annual Production Support
Annual Purchasing
Obsolescence Case Resolution
PSL Qualification

(=] kel el fenl)l Fan ) Fan)

All other inputs used in this case study are found in Appendix A.2
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Appendix A.5: Inputs for Mitigation Strategy case study

Table A.10: General inputs used for Mitigation Strategy case study (Section 4.2.1)

Table A.12: Supplier specific Weibull parameters used to generate disruption events within Mitigation

Strategy case study (Section 4.2.1)

General Inputs
Population Type Poisson Generated
Ratio, K 1.00
Part Lifetime (years) 13.00
Eff. Procurement Life (years) 13.00
Cost of Money 10.00%/year
Base Year for Money 1
LTB overbuy 10.00%
Inventory Cost (per part) $0.05
Supplier X Price (per part) $0.48
Supplier Y Backup Price (per part) $0.48
Supplier Y Base Price (per part) $0.48
Price decrease (per year, single sourcing) 7.00%
Price decrease (per year, second sourcing) 11.00%
Demand Uncertainty 0.25
Backorder Penalty (per part per year) $200
Scrap Cost (per part) $0
Table A.11: Support cost inputs used for Mitigation Strategy case study (Section 4.2.1)
Support Costs ($)
Product-Specific Approval 200
Initial Approval 0
Annual Part Data Management 200
Annual Production Support 600
Annual Purchasing 400
Obsolescence Case Resolution 7500
PSL Qualification 10000

Supplier X Supplier Y
gamma eta gamma eta
(vears) beta (vears) || (vears) beta (vears)
Interval 0 1 0.5 1 1 0.5
Length -0.00646 | 0.834 | 0.0513 || -0.00646 | 0.834 | 0.0513
Procu{'ement 13 0 0 13 0 0
Life
Analys1§ Run- 75 0 0
In Time
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Table A.13: Annual forecasted part demand and product design data used Mitigation Strategy case
study (Section 4.2.1)

Year Product Designs | Forecasted Part Demand
1487
4462
8924

13385

16062

16062

13768

10326
6884
4130
2253
1126

13 1 520

03N LNt B WIN =
[amniianelil NS T NS TN \O I (O 0 (ST \S TN 'O I \O R

** Forecasted part demand generated using a total volume of 100,000 parts and a peak usage year of 6
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Appendix A.6: Inputs for Part Volume case study

Table A.14: General inputs used for Part Volume case study (Section 4.2.2)

General Inputs
Population Type Poisson Generated
Ratio, K 1.00
Part Lifetime 13
Eff. Procurement Life 13
Cost of Money 10.00%
Base Year for Money 1
LTB overbuy 10.00%
Inventory Cost (per part) $0.05
Price change (per year, single sourcing) 7.00%
Price change (per year, second sourcing) 11.00%
Supplier X Price (per part) $0.48
Supplier Y Backup Price (per part) $0.48
Supplier Y Base Price (per part) $0.48
Product Designs 1
Peak Year of Part Usage 6
Demand Uncertainty 0.25
Backorder Penalty (per part per year) $200
Scrap Cost (per part) $0

Table A.15: Support cost inputs used for Part Volume case study (Section 4.2.2)

Support Costs ($)
Initial Approval 0
Annual Part Data Management 200
Annual Production Support 600
Annual Purchasing 400
Obsolescence Case Resolution 7500
PSL Qualification 10000
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Table A.16: Supplier specific Weibull parameters used to generate disruption events for the significant
disruption scenario within the Part Volume case study (Section 4.2.2) and the Time-Dependent
Disruption case study (Section 4.2.3)

Supplier X Supplier Y
gamma eta gamma eta
(vears) beta (vears) || (yvears) beta (vears)
Interval 5 1 0.5 5 1 0.5
Length 1 1 0.6 1 1 0.6
Analysis
Run-In Time 0 0 0

Table A.17: Supplier specific Weibull parameters used to generate disruption events for the small-scale
disruption scenario within the Part Volume case study (Section 4.2.2)

Supplier X Supplier Y
gamma eta gamma eta
(vears) beta (vears) || (yvears) beta (vears)
Interval 5 10 0.5 3 1 0.5
Length 0 10 03 0 10 0.5
Analysis
Run-In Time 0 0 0
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Appendix B: Simulation Model Interface

This Appendix presents the Microsoft Excel spreadsheets that make up the
simulation model. The sheets, in order, are: 1) Common Inputs, 2) Product Interface,
3) Compiled Products, 4) Part TCO, 5) Disruptions, 6) Penalty, 7) Monte Carlo, and

8) Optimize.

Appendix B.1: Common Inputs Sheet

Key Parameters

The following values are intergral components of the underlying part TCO calculations, but they remain
fairly constant for electronic components.

Ratio, K 1

Part Lifetime (years) 20 Populate Values ‘

Eff. Procurement Life (years) 20

Cost of Money 10% .

Base Year for Money 1 Check Values Against Expected Range ‘
LTB Overbuy 10%

Inventory Cost (per part) 5%

Supplier X Price (per part) $1.00

Demand Uncertainty 0.2

Support Cost Factors

Product Specfic Approval

Initial Approval

Annual Part Data Management
Annual Production Support
Annual Purchasing
Obsolescence Case Resolution 75
PSL Qualification 100

BIOINIOIN
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Appendix B.2: Product Interface Sheet

91

Total Lifetime of Part 20
Number of Products 5 Generate Poisson | | Rank
1 2 3 4 5
4 1 5 3
Yes Yes Yes Yes Yes
1200 1100 6250 2200 1800
14 24 38 7 32
112 250 100 330 200
120 280 400 200 220
ﬁ 1 1 1 0.6 0.1
1 0 0 0 14 0
2 0 0 0 49 0
3 0 0 0 115 0
4 2 0 0 201 0
5 4 0 0 281 0
6 10 0 0 328 0
7 21 0 0 328 0
8 37 0 0 287 0
9 57 0 0 223 0
10 80 1 0 156 0
1 101 2 0 99 0
12 118 3 0 58 0
13 127 6 0 31 0
14 127 10 0 16 0
15 118 16 0 7 1
16 104 24 0 3 1
17 86 34 0 1 3
18 67 45 1 1 5
18 49 57 2 0 8
20 34 69 3 0 13



Appendix B.3: Compiled Products Sheet
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Appendix B.4: Part TCO Sheet
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Appendix B.5: Disruptions Sheet
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Appendix B.6: Penalty Sheet

Sourcing Strategy Second Sourcing
Supplier Supplier Y )
Population Type Single Population
H Single Population, What Type? Poisson Generated
Backorder Penalty (per part per year) $300.00
Hoarding Strateqgy (weeks) 20
.
MONTE CARLO SIMULATION: <
Poputation $ize (N) 100 UPDATE {CURRENT RUN} :
Scrap Cost (per part, all suppliers) Al $0.00 SOURCING STRATEGIES
Scrap Cost for Second Sourcing (per part, all $0.00
suppliers)
" TCO
no
Year Part Demand Hoarding Strategy disru ‘I )
Total 10,373 $36,9¢8.62
1 1" 20 $22,811.00
2 51 58 $2,025.36
3 138 130 $2,017.74
4 385 234 $1,562.96
5 r27 351
6 1043 451
4 1248 7
8 1601 =
9 1084 457
10 1047 374
1 1037 281
12 784 194
13 448 125
14 363 75
15 183 42
16 104 23
17 56 12
18 32 6
19 17 3
20 5 0
4
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Appendix B.7: Monte Carlo Sheet
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Appendix B.8: Optimize Sheet
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