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Direction-of-Arrival Estimation Using theRank-Revealing URV DecompositionG. AdamsM. F. GriffinG. W. StewartABSTRACTA algorithm for updating the null space of a matrix is described. Thealgorithm is based on a new decomposition, called the URV decompo-sition, which can be updated in O(N2) and serves as an intermediarybetween the QR decomposition and the singular value decomposition.The URV decomposition is applied to a high-resolution direction ofarrival problem based on the MUSIC algorithm. A virtue of the up-dating algorithm is the running estimate of rank.1. IntroductionLet Xm be a complex data matrix consisting of m data snapshot vectors xl froman N -element antenna array. An estimate of the autocovariance matrix at themth snapshot can be written Cm = XmXHm or alternativelyCm = Cm�1 + xmxHm = (Xm�1; xm) XHm�1xHm ! ;The eigenstructure approach to high resolution direction-of-arrival (DOA) estima-tion usually requires a spectral decomposition of Cm or a singular value decompo-sition (SVD) of Xm, from which the orthogonal (noise) subspace can be estimatedand used in a line frequency estimation algorithm such as MUSIC.Since the ab initio calculation of any decomposition is expensive, it is desirableto calculate the orthogonal subspace of Xm from Xm�1, a process called updat-ing. Unfortunately, the SVD is di�cult to update and all known SVD updatingschemes requireO(N3) operations for am�N matrix [1]. Because of this di�culty,rank revealing QR decompositions [2] have received renewed interest. However,the QR decomposition does not provide an explicit basis for the orthogonal sub-space. Recently, a new rank revealing decomposition, the URV decomposition(URVD) [3], has been developed. It can be updated in O(N2) time, and provides1



2 DOA Estimationa basis for orthogonal subspace. In this paper the URVD will be described alongwith some simulation results for the DOA estimation problem.Since the URVD has applications beyond DOA estimation, we will adopt aneutral notation and work with an n � p matrix A. Owing to space limitations,we can give only a sketch of the decomposition and the updating algorithm. Thereader is referred to [3] for details.1 Throughout this paper k � k will denote theFrobenius norm de�ned by kAk2 =Xi;j jaijj2:The smallest singular value of a matrix will be written as inf(A).2. The URV DecompositionSuppose that A has rank K. Then there are orthogonal matrices U and V suchthat A = U  R 00 0 !V H ;where R is an upper triangular matrix of order K. This decomposition is calledthe URV decomposition. Unlike the SVD, the URVD is not unique; in fact, theSVD is itself a URVD. However, we will be concerned with the case where R isfully triangular.Now suppose A is nearly of rank K in the sense that its singular values satisfy�1 � � � � � �K > �K+1 � � � � � �p, where �K is large compared to �K+1. It canbe shown that there is a rank revealing URVD of A of the formA = U  R F0 G !V H ;where1. R and G are upper triangular,2. inf(R)�= �K,3. kFk2 + kGk2 �= �2K+1 + � � ��2p.1This report may be obtained by anonymous ftp from thales.cs.umd.edu. Get the �lepub/reports/README for further details.



DOA Estimation 33. De
ation and Re�nementFor a dynamic DOA problem it is expected that the number of sources, i.e., rankof the data matrix, or A, will change over time. An increase in rank usuallymakes itself felt in the usual way. On the other hand, a decrease in rank can hideitself in the matrix R of the URVD. Thus any updating algorithm must be ableto detect rank degeneracy in R and act accordingly. An algorithm to compute arank revealing URVD of a K �K upper triangular matrix R is given next.The �rst step is to determine if R is defective in rank. This problem can besolved by means of a condition estimator [4], which produce in O(K2) time avector w of norm one such that kRwk �= inf(R):The next step uses plane rotations [5] to reduce all but the last component ofw to zero. Speci�cally, we determine a sequence V H1 ; V H2 ; : : : ; V HK�1, of rotationsthat eliminate the �rst K � 1 component of w, so that w is zero except for onein its last component. Let QH = V HK�1V HK�2 � � � V H1 denote the product of therotations.Next determine an orthogonal matrix P such that PHRQ is upper triangular.This may be done by applying V1; V2;: : : ; VK�1 from the right to R. The result of applying a rotation Vi to two columnsof R is to place a nonzero element below the diagonal of R. A left rotation theneliminates this element and restores triangularity. The matrix PH is the productof the left rotations. Of course, to get a complete update of the decomposition theleft and right rotations must be multiplied into U and V , respectively. However,for the DOA problem updating U is not needed, and therefore can be omitted.This entire process is O(K2).It can be shown that at this point the norm of the last column of R is boundedby the norm of w, so that R is in URV form. However, an additional re�nementstep will improve the estimate of the orthogonal subspace. The step consists ofusing rotations to reduce the �rst p � 1 elements of the last column to zero andthen to reduce R back to triangular form. Again the rotations must be multipliedinto U and V . The re�nement takes O(K2) time.



4 DOA Estimation4. Updating the URVDIn this section an algorithm is sketched to update a rank revealing URVD of A,when a row zH is appended to A; i.e., when A is replaced by AzH ! : (1)The updating procedure determines if the rank has either increased, decreased,or remained the same. To decide what is small, assume a user supplied tolerance,tol, and that � def= qkFk2 + kGk2 � tol. (2)The �rst step is to compute (xHyH) = zHV , where x is of dimension K. Theproblem then becomes one of updatingÂ = 0B@ R F0 GxH yH 1CA :There are two cases to consider. The �rst, and simplest occurs when�new = q�2 + kyk2 � tol. (3)In this case Â is reduced to triangular form by a sequence of rotations appliedfrom the left. Since �new is less than or equal to the prescribed tolerance, the newURVD satis�es (2), and the approximate rank does not increase. However, it ispossible for the rank to decrease. Hence the rank is checked. If it has decreased,R is de
ated as described in the last section. This step is O(p2).If (3) is not satis�ed, there is a possibility that the rank has increased. Sincethe increase in rank can be at most one, the problem is to transform the matrixto upper triangular form without destroying all the small values in F and G.The �rst step is to reduce yH so that it has only one nonzero componentand G remains upper triangular. This is done by a sequence of rotation appliedalternately from the right and the left| the right rotations to zero an elementof yH and the left rotations to maintain the matrix in upper triangular form.Finally, the entire matrix is reduced to triangular form in the usual way. ThenK is increased by one, and the new R is checked for degeneracy and if necessaryreduced as described before. The result is the updated URVD.



DOA Estimation 55. Updating the DOALet us return to the problem of obtaining a high resolution DOA estimate byupdating the covariance matrix Cm on a per snapshot basis.The signals consist of the standard M narrowband sources impinging on auniform linear array composed of N (M < N) identical, equally spaced, sensors.The narrowband signals with known angular frequency ! impinge on the arrayfrom directions, �1; �2; : : : ; �M . In the interest of space the reader is referred to [7]for additional details on the signal model and signal covariance matrix.As mentioned, we may obtain the estimate of the orthogonal subspace requiredfor DOA estimation from the covariance matrix [6] or from the data matrix. Inthe later case, the problem becomes one of computing a DOA estimate from theupdated data matrix X̂Hm =  �XHm�1xHm ! ; (4)where � < 1 is \forgetting factor." Comparing (4) with (1), we see that theproblem of updating the orthogonal subspace is one of updating a URVD. Notethat because � < 1, the triangular factor of the URVD remains bounded as longas the signals remain bounded. Thus a tolerance can be chosen based on the sizeof the noise (for one such choice see [3]).The MUSIC algorithm was chosen here to illustrate a high resolution DOAestimator based on the URVD. Speci�cally, for each data snapshot xm, the angularspectra is given by Sm(�) = 1PNl=K+1 jeH(�)vmlj2 ;where eH(�) = (1; e�j2�dsin�=�; e�j4�dsin�=�; : : : ; e�j(p�1)2�dsin�=�)and vml is the lth column of the V matrix for the mth snapshot. The spacingbetween array sensors is d, and � is the wavelength of the propagating wave. Theangles �i at which the function Sm(�) peaks correspond to the DOA estimates.The �rst step is to update X̂Hm using the procedure described in the last section.Since the matrix U is not needed for the MUSIC algorithm, it isn't necessary toupdate U in the �rst step. After V and K are updated, Sm(�) is computed.These steps are repeated for each snapshot. Of course, � and the tolerance mustbe chosen beforehand.



6 DOA Estimation6. Simulation ResultsThe data for the simulation consist of four uncorrelated sources impinging ona 10-element array from �15o, 0o, 10o, and 20o. The forgetting factor � waschosen to be 0.79, representing a 10 snapshot e�ective window. The narrowbandsource frequency was set to 0.2 and �=d = 2. Each of the four sources assumedan uniformly distributed random phase term from �� to �. Moreover, whiteGaussian noise, of variance �2 = 1:0 and uncorrelated with the sources, wasadded to the data snapshots. Several experiments were conducted for varioussignal strengths, i.e., signal-to-noise ratio (SNR).The �rst experiment is to see how well the rank is estimated for variation intolerance, tol, and SNR. After several initial guesses for a choice of tol, we foundthat if tol is much less than 0:5 the rank is severely overestimated and sometimesexceeds the dimensions of the matrix. At tol=0.5, the instantaneous rank esti-mates were generally overestimated by 3-4. Starting with a 20 dB SNR and thendropping to -4 dB SNR, the rank estimate tends to decrease. As the toleranceincreases to tol=1.0, the rank is still overestimated but now only by 1-2. The rankestimate improves considerably when tol=2.5. At tol=2.5, the rank estimate at20 dB is perfect. As the SNR drops to -4 dB, the rank then toggles between 3 and4. This drop in rank estimate is expected since the separation between subspacesbecomes less clear as the SNR drops. For all cases, the convergence time of theestimates is about rank+1 snapshots.In Figure 1, an ensemble average of the rank estimate is shown where theestimate is an ensemble over 100 data sets. The results are for three di�erentsignal data sets for tol=2.5: 6 dB SNR, 0 dB SNR, and changing number ofsources case. For the third data set, the initial four sources consisted of one at12 dB SNR, and three at 0 dB SNR. At the 15 snapshot the number of sourcesdecreased to two, one at 15o and the other at 5o. Both sources were at 6 dB SNR.At 6 dB SNR the average rank estimate is very stable and doesn't deviate muchfrom the true rank. As the SNR drops to 0 dB, the rank estimate toggles between3 and 4 and thus the average rank is shown to be 3.5. When the number of sourceschanges from four to two, the initial estimate increased by one as if detecting anadditional source{note that one of the two sources is the same as one of the foursources. Then the rank estimate drops to 2.5.The instantaneous MUSIC eigenspectrum over a single data set is shown inFigure 2. The data was of four equal sources at 6 dB SNR. Here, 20-35 snapshotsare superimposed over the true line angles. This can be compared to Figure 3, a



DOA Estimation 7
Figure 1. Ensemble Average of Rank for Three Cases.

Figure 2. URVD MUSIC DOA Estimate.



8 DOA Estimation
Figure 3. MUSIC DOA Estimate for 35 Snapshots.result of using MUSIC with a 35 snapshot covariance matrix.The next �gure, Figure 4, illustrates the e�ect when three of the sources areweak, 0 dB, and one source is strong, 12 dB. The estimation error is much greaternow for the weak sources, since the algorithm is having trouble discerning whatis noise and what is signal.The last �gure, Figure 5, is the instantaneous rank estimate as a result of fourcoherent sources. The signal set is the same as before with a 6 dB SNR. Fourcoherent sources were simulated by removing the random phase component fromthe signal set. Since the e�ective window is only 10 snapshots, the rank estimateis expected to degrade for fully coherent sources.7. SummaryIn this paper, a di�erent two-sided orthogonal decomposition, the URVD, wasdescribed. A procedure was given to compute a rank revealing URVD in O(N2)time. Moreover, it was also shown how the rank revealing URVD factorizationcan be updated. The URVD was then applied to a DOA problem which is basedupon updating the estimates of the autocovariance matrix. Simulation results of
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Figure 4. URVD MUSIC For Di�erent Signal Strengths.

Figure 5. Rank Estimate for 4 Coherent Sources.



10 DOA Estimationthe DOA problem were presented for several signal scenarios, including a coherentsignal case.References[1] J. R. Bunch and C. P. Nielson, \Updating The Singular Value Decomposi-tion," Numerishce Mathematik, 31, pp. 111{129, 1978.[2] T. F. Chan, \Rank Revealing QR Factorizations," Linear Algebra and ItsApplications, 88/89, pp. 67{82, 1987.[3] G. W. Stewart, \An Updating Algorithm For Subspace Tracking," Universityof Maryland Computer Science Technical Report CS-TR 2494, 1990.[4] N. J. Higham, \A Survey of Condition Number Estimation for TriangularMatrices," Siam Review, 29, pp. 575{596, 1987.[5] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns HopkinsUniversity Press, Baltimore Maryland, 1989.[6] R.D. DeGroat and R.A. Roberts, \E�cient, Numerically Stabilized Rank-One Eigenstructure Updating," IEEE Trans. Acoust., Speech, Signal Pro-cessing, vol. ASSP-38,pp. 301-316, Feb. 1990.[7] S. Haykin, ed., Array Signal Processing, Prentice-Hall, Englewood Cli�s, NewJersey, 1984.


