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ABSTRACT

A algorithm for updating the null space of a matrix is described. The
algorithm is based on a new decomposition, called the URV decompo-
sition, which can be updated in O(N?) and serves as an intermediary
between the QR decomposition and the singular value decomposition.
The URV decomposition is applied to a high-resolution direction of
arrival problem based on the MUSIC algorithm. A virtue of the up-
dating algorithm is the running estimate of rank.

1. Introduction

Let X,, be a complex data matrix consisting of m data snapshot vectors z; from
an N-element antenna array. An estimate of the autocovariance matrix at the
mth snapshot can be written C,, = X,, XT or alternatively

xm

XH
Cm - m—1 —I_ J/’ml'g = (Xm—laxm) ( m]—I_l ) 9

The eigenstructure approach to high resolution direction-of-arrival (DOA) estima-
tion usually requires a spectral decomposition of (', or a singular value decompo-
sition (SVD) of X,,,, from which the orthogonal (noise) subspace can be estimated
and used in a line frequency estimation algorithm such as MUSIC.

Since the ab initio calculation of any decomposition is expensive, it is desirable
to calculate the orthogonal subspace of X, from X,,_1, a process called updat-
ing. Unfortunately, the SVD is difficult to update and all known SVD updating
schemes require O(N?) operations for a m x N matrix [1]. Because of this difficulty,
rank revealing QR decompositions [2] have received renewed interest. However,
the QR decomposition does not provide an explicit basis for the orthogonal sub-
space. Recently, a new rank revealing decomposition, the URV decomposition

(URVD) [3], has been developed. It can be updated in O(N?) time, and provides
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a basis for orthogonal subspace. In this paper the URVD will be described along
with some simulation results for the DOA estimation problem.

Since the URVD has applications beyond DOA estimation, we will adopt a
neutral notation and work with an n x p matrix A. Owing to space limitations,
we can give only a sketch of the decomposition and the updating algorithm. The
reader is referred to [3] for details.! Throughout this paper || - || will denote the

1Al = Z |agj|*.
27]

The smallest singular value of a matrix will be written as inf(A).

Frobenius norm defined by

2. The URV Decomposition

Suppose that A has rank K. Then there are orthogonal matrices U/ and V' such

that
B R 0 I
A_U(O O)V,

where R is an upper triangular matrix of order K. This decomposition is called
the URV decomposition. Unlike the SVD, the URVD is not unique; in fact, the
SVD is itself a URVD. However, we will be concerned with the case where R is
fully triangular.

Now suppose A is nearly of rank K in the sense that its singular values satisfy
o1 > 20K > Of41 > v 2> 0y, Where o 1s large compared to oxyq. It can
be shown that there is a rank revealing URVD of A of the form

— R F H
A_U(O G)V,

where
1. R and G are upper triangular,
2. inf(R)= ok,

B ANEN+ GI* = ok gy + - 0y

!This report may be obtained by anonymous ftp from thales.cs.umd.edu. Get the file
pub/reports/README for further details.
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3. Deflation and Refinement

For a dynamic DOA problem it is expected that the number of sources, i.e., rank
of the data matrix, or A, will change over time. An increase in rank usually
makes itself felt in the usual way. On the other hand, a decrease in rank can hide
itself in the matrix R of the URVD. Thus any updating algorithm must be able
to detect rank degeneracy in R and act accordingly. An algorithm to compute a
rank revealing URVD of a K x K upper triangular matrix R is given next.

The first step is to determine if R is defective in rank. This problem can be
solved by means of a condition estimator [4], which produce in O(K?) time a
vector w of norm one such that

| Rw|| = inf(R).

The next step uses plane rotations [5] to reduce all but the last component of
w to zero. Specifically, we determine a sequence V2, VH ... VH of rotations
that eliminate the first K — 1 component of w, so that w is zero except for one

in its last component. Let Q¥ = Vi V...V denote the product of the
rotations.

Next determine an orthogonal matrix P such that P¥ RQ is upper triangular.
This may be done by applying Vi, V3,
..., Vg_q from the right to R. The result of applying a rotation V; to two columns
of R is to place a nonzero element below the diagonal of R. A left rotation then
eliminates this element and restores triangularity. The matrix P is the product
of the left rotations. Of course, to get a complete update of the decomposition the
left and right rotations must be multiplied into U and V', respectively. However,
for the DOA problem updating U is not needed, and therefore can be omitted.
This entire process is O(K?).

It can be shown that at this point the norm of the last column of R is bounded
by the norm of w, so that R is in URV form. However, an additional refinement
step will improve the estimate of the orthogonal subspace. The step consists of
using rotations to reduce the first p — 1 elements of the last column to zero and
then to reduce R back to triangular form. Again the rotations must be multiplied
into U and V. The refinement takes O(K?) time.
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4. Updating the URVD

In this section an algorithm is sketched to update a rank revealing URVD of A,
H is appended to A; i.e., when A is replaced by

(). n

The updating procedure determines if the rank has either increased, decreased,
or remained the same. To decide what is small, assume a user supplied tolerance,
tol, and that

when a row z

v < IFIE+ 1G] < tol. (2)

The first step is to compute (zy") = 27V where z is of dimension K. The
problem then becomes one of updating

There are two cases to consider. The first, and simplest occurs when

Vnew = \/V2 £ [ly||* < tol. (3)

In this case A is reduced to triangular form by a sequence of rotations applied
from the left. Since vyey 1s less than or equal to the prescribed tolerance, the new
URVD satisfies (2), and the approximate rank does not increase. However, it is
possible for the rank to decrease. Hence the rank is checked. If it has decreased,
R is deflated as described in the last section. This step is O(p?).

If (3) is not satisfied, there is a possibility that the rank has increased. Since
the increase in rank can be at most one, the problem is to transform the matrix
to upper triangular form without destroying all the small values in F' and G.

The first step is to reduce y? so that it has only one nonzero component
and G remains upper triangular. This is done by a sequence of rotation applied
alternately from the right and the left —the right rotations to zero an element
of yf and the left rotations to maintain the matrix in upper triangular form.
Finally, the entire matrix is reduced to triangular form in the usual way. Then
K is increased by one, and the new R is checked for degeneracy and if necessary

reduced as described before. The result is the updated URVD.
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5. Updating the DOA

Let us return to the problem of obtaining a high resolution DOA estimate by
updating the covariance matrix C,,, on a per snapshot basis.

The signals consist of the standard M narrowband sources impinging on a
uniform linear array composed of N (M < N) identical, equally spaced, sensors.
The narrowband signals with known angular frequency w impinge on the array
from directions, 61,0z, ...,0y. In the interest of space the reader is referred to [7]
for additional details on the signal model and signal covariance matrix.

As mentioned, we may obtain the estimate of the orthogonal subspace required
for DOA estimation from the covariance matrix [6] or from the data matrix. In
the later case, the problem becomes one of computing a DOA estimate from the

s (). )

xm

updated data matrix

where 3 < 1 is “forgetting factor.” Comparing (4) with (1), we see that the
problem of updating the orthogonal subspace is one of updating a URVD. Note
that because § < 1, the triangular factor of the URVD remains bounded as long
as the signals remain bounded. Thus a tolerance can be chosen based on the size
of the noise (for one such choice see [3]).

The MUSIC algorithm was chosen here to illustrate a high resolution DOA
estimator based on the URVD. Specifically, for each data snapshot z,,, the angular
spectra is given by

1

Tk e (O)vl*

Sm(0)

where

GH(Q) — (176—]27Tdszn€//\7e—]47rdszn€//\7 ) e—](p—l)?rdszn@//\)

.
and v,,; is the [th column of the V matrix for the mth snapshot. The spacing
between array sensors is d, and A is the wavelength of the propagating wave. The
angles 0; at which the function 5,,(0) peaks correspond to the DOA estimates.

The first step is to update )A(WI;I using the procedure described in the last section.
Since the matrix U is not needed for the MUSIC algorithm, it isn’t necessary to
update U in the first step. After V and K are updated, 5,,(6) is computed.
These steps are repeated for each snapshot. Of course, # and the tolerance must
be chosen beforehand.
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6. Simulation Results

The data for the simulation consist of four uncorrelated sources impinging on
a 10-element array from —15%, 0°, 10°, and 20°. The forgetting factor 5 was
chosen to be 0.79, representing a 10 snapshot effective window. The narrowband
source frequency was set to 0.2 and A/d = 2. Each of the four sources assumed
an uniformly distributed random phase term from —=x to w. Moreover, white
Gaussian noise, of variance ¢? = 1.0 and uncorrelated with the sources, was
added to the data snapshots. Several experiments were conducted for various
signal strengths, i.e., signal-to-noise ratio (SNR).

The first experiment is to see how well the rank is estimated for variation in
tolerance, tol, and SNR. After several initial guesses for a choice of tol, we found
that if tol is much less than 0.5 the rank is severely overestimated and sometimes
exceeds the dimensions of the matrix. At tol=0.5, the instantaneous rank esti-
mates were generally overestimated by 3-4. Starting with a 20 dB SNR and then
dropping to -4 dB SNR, the rank estimate tends to decrease. As the tolerance
increases to tol=1.0, the rank is still overestimated but now only by 1-2. The rank
estimate improves considerably when tol=2.5. At tol=2.5, the rank estimate at
20 dB is perfect. As the SNR drops to -4 dB, the rank then toggles between 3 and
4. This drop in rank estimate is expected since the separation between subspaces
becomes less clear as the SNR drops. For all cases, the convergence time of the
estimates is about rank+1 snapshots.

In Figure 1, an ensemble average of the rank estimate is shown where the
estimate is an ensemble over 100 data sets. The results are for three different
signal data sets for tol=2.5: 6 dB SNR, 0 dB SNR, and changing number of
sources case. For the third data set, the initial four sources consisted of one at
12 dB SNR, and three at 0 dB SNR. At the 15 snapshot the number of sources
decreased to two, one at 15° and the other at 5°. Both sources were at 6 dB SNR.
At 6 dB SNR the average rank estimate is very stable and doesn’t deviate much
from the true rank. As the SNR drops to 0 dB, the rank estimate toggles between
3 and 4 and thus the average rank is shown to be 3.5. When the number of sources
changes from four to two, the initial estimate increased by one as if detecting an
additional source—note that one of the two sources is the same as one of the four
sources. Then the rank estimate drops to 2.5.

The instantaneous MUSIC eigenspectrum over a single data set is shown in
Figure 2. The data was of four equal sources at 6 dB SNR. Here, 20-35 snapshots
are superimposed over the true line angles. This can be compared to Figure 3, a
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Figure 1. Ensemble Average of Rank for Three Cases.

Figure 2. URVD MUSIC DOA Estimate.
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Figure 3. MUSIC DOA Estimate for 35 Snapshots.

result of using MUSIC with a 35 snapshot covariance matrix.

The next figure, Figure 4, illustrates the effect when three of the sources are
weak, 0 dB, and one source is strong, 12 dB. The estimation error is much greater
now for the weak sources, since the algorithm is having trouble discerning what
is noise and what is signal.

The last figure, Figure 5, is the instantaneous rank estimate as a result of four
coherent sources. The signal set is the same as before with a 6 dB SNR. Four
coherent sources were simulated by removing the random phase component from
the signal set. Since the effective window is only 10 snapshots, the rank estimate
is expected to degrade for fully coherent sources.

7. Summary

In this paper, a different two-sided orthogonal decomposition, the URVD, was
described. A procedure was given to compute a rank revealing URVD in O(N?)
time. Moreover, it was also shown how the rank revealing URVD factorization
can be updated. The URVD was then applied to a DOA problem which is based

upon updating the estimates of the autocovariance matrix. Simulation results of
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Figure 4. URVD MUSIC For Different Signal Strengths.

Figure 5. Rank Estimate for 4 Coherent Sources.
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the DOA problem were presented for several signal scenarios, including a coherent
signal case.
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