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Stephen had now lost count of time. It seemed to pass round him, or over him, in
a perpetual muddle and hurry, or at least with so many things going on at once that
he could not keep track of them, though he was aware that some guiding intelligence
directed the obscure movements in the darkness. The only thing that was clear in his
mind - the centre of his physical and mental activity except on those occasions when he
was called away to dress a wound - was the pump, and the plain, urgent task of heaving
it round so that the ship should not sink.

Hours passed. The pump was repaired and the midshipman in charge of it roused
them all out. Another spell, and the heaving soon became mechanical again, the wind
and the rain hardly noticed. Relief: deep and apparently momentary sleep: and they
were called out again.

But [Jack] jerked into consciousness when the relief was called, and returned through
the darkness to the starboard pump on Bonden’s arm. There were fewer men at their duty
now - more and more were hiding - and these worked silently, with much less strength:
hope was fading, if it was not entirely dead. He called out ’Huzzay, heave round,’
mechanically, and as he did he forced his mind to work out fresh ways of coming at the
leak, and of steering the ship once it was stopped; Pakenham had made a rudder from
spare topmasts...

’Thursday, 25 December. Course estimated E 10◦S. Latitude observed 46◦37′S.
Longitude estimated 50◦15′E. Winds light and variable with haze and rain. Sea calm
with several small blocks of ice. PM hauled up foresail, veered out stop-water to check
ship’s way, and passed fothering-sail forward from abaft the sternpost, bowsing it taut
from the fashion-pieces to the mizzen-chains. The sail answered and the pumps gained
five foot in the day.’

-excerpts from Desolation Island, by Patrick O’Brian
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Chapter 1

Introduction

1.1 The Importance of Satisfiability

The general problem of satisfiability, that is, the finding of models for logical theories,

is an important research area in the field of automated deduction. The problem has

a large number of academic and real-world applications, including AI Planning [37,

38, 64], circuit design [31], circuit verification [14, 59], software design [35], and even

mathematics [43, 65], among others.

The best-known variety of satisfiability problem is SAT, the finding of models for

propositional theories. SAT is a canonical NP-complete problem: not only can all NP-

complete problems be translated to it in polynomial time, but its very simple form often

makes these translations particularly concise. Among other problems of logical sat-

isfiability, SAT is also noteworthy because the majority of research into satisfiability

solvers has been directed at SAT and because most real-world satisfiability applications

use SAT solvers. However, in recent years increasing attention has been directed toward

the problem of quantified satisfiability, in which the problem theories include quantified

variables. Most problems of interest can be represented either as SAT problems or as

quantified problems, so the hope is to develop quantified solvers that outperform SAT

solvers on the same “problem”. This hope is justified by the fact that quantified solvers

avoid the intrinsically exponential instantiation approach of SAT solvers.

This dissertation introduces a new algorithm for computing the class of quantified

satisfiability problems in which the logical universe is held to be of a given finite size

n. This new method maintains the satisfiability problem state as a network of joins

akin to database joins. The method is competitive in speed with the state of the art
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algorithm, in which the quantified representation is translated to a ground (propositional)

representation and a SAT solver is used to solve the resulting problem.

1.2 An Overview of the Dissertation

This dissertation’s introductory chapter first examines the SAT problem and state of the

art methods for its solution, including the currently dominant method, the DPLL algo-

rithm. The chapter then discusses the problem of subsearch (section 1.5), or the mainte-

nance at every DPLL iteration of crucial state data supporting the ongoing search for a

logical model. DPLL-style solvers invariably use an inefficient subsearch representation

and algorithm; I seek to improve upon both of these in the dissertation.

The introductory chapter next presents a new (quantified) satisfiability problem for-

malism, FQSAT (section 1.6). I believe that most SAT problems are initially specified as

FQSAT problems by their authors; these problems are then translated to SAT and solved

using variants of DPLL. The remainder of the chapter presents (in section 1.7) a solver

exemplifying the translation-to-SAT approach, the MACE2 solver. MACE2 automati-

cally translates FQSAT problems into SAT and then uses a DPLL-style solver. Since I

believe that solving the original FQSAT problem directly is a more efficient approach,

MACE2 is used in subsequent chapters as an explanatory counterpoint to JOINSAT, my

own FQSAT solver.

In the second chapter, I discuss JOINSAT, the main research effort of the disserta-

tion. This requires a description of past research into A.I. Production Systems, whose

methods I adapt to satisfiability solvers (section 2.1). In sections 2.2-2.5, I discuss my

main algorithmic efforts at length. Section 2.2 introduces the idea of a join network,

and section 2.3 measures its formal complexity and contrasts it with that of MACE2. In

sections 2.4-2.5 I describe the JOINSAT algorithm in full detail and with examples. The

rest of the chapter summarizes the comparative algorithmic advantages for MACE2 and

JOINSAT.

The third chapter discusses extensive optimizations made to the basic JOINSAT al-
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gorithm in an effort to increase its speed, as well as experimental testing comparing

each variant’s performance. These include completely redesigning its core representa-

tion twice, once to use precomputed information (section 3.3) and once to incorporate

a more efficient Production Systems representation (section 3.4). A third optimization

explores changing the structure of the join network in the hope of reducing the overall

number of matches (section 3.5) Two other sections (3.6 and 3.7) discuss further rep-

resentational changes which substantially improve overall performance. A final section

(3.8) explores the use of static analysis techniques to compute the optimal join network

organization.

The fourth chapter presents experimental testing of JOINSAT against five other state

of the art FQSAT solvers, including MACE2. The chapter also presents the methodology

used in these tests and discusses the results.

The fifth chapter examines related work, including solvers that operate on a quanti-

fied satisfiability problem that is more expressive than FQSAT.

The concluding chapter offers some ideas for future work and a summation of the

research and its value.

1.3 A Brief Review of SAT Research

In this section, I present the SAT problem and briefly summarize salient issues in SAT

research.

1.3.1 The Ground Satisfiability (SAT) Problem

SAT is the problem of satisfiability for finite theories of propositional logic.

Problem. Propositional Satisfiability (SAT). We are given a Boolean formula F , ex-

pressed as a set C of CNF clauses. Let the set of clause literals contained in the

formula be l1, . . . , lm and the set of variables v1, . . . ,vn, where each clause literal li

is either some variable v j or its negation ¬v j. Return either:
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1. a model assignment mapping each variable to one of {TRUE,FALSE} that makes

formula F true; or

2. FAILURE, if no such assignment exists.

SAT is a canonical NP-complete problem, in that literally scores of well-known NP-

complete problems (e.g. traveling salesman, constraint satisfaction problem, 0-1 integer

programming, to name just a few) can be easily reduced to it. Algorithms for its solution

have been studied for over forty years, but the last fifteen have been particularly exciting:

solver performance has improved by orders of magnitude, and translation to SAT has

become a competitive option in several specialized domains, such as AI Planning. In

the Deterministic division of the most recent International Planning Comptetition [1],

two systematic SAT planners won top honors (SATPLAN [36] and MAXPLAN [12]).

1.3.2 SAT Research

An extensive survey [30] of algorithms for the SAT problem organizes them into two

useful dimensions: whether the algorithm uses a discrete or a continuous representation,

and whether the algorithm uses a set of hard constraints that must be satisfied, or instead

tries to minimize some objective function. The SAT literature is so voluminous that I

discuss only the most representative instances of each type of algorithm.

A SAT problem is specified as a set of discrete variables and constraints: a con-

tinuous algorithm converts these into continuous equations such that solutions to the

equation correspond to binary solutions to the original discrete problem. For exam-

ple, a variety of continuous algorithms convert SAT into an integer programming (IP)

problem and then try to to solve it using a variety of linear programming techniques,

e.g. branch and bound [10] and cutting planes [32], among others. Continuous methods

have suffered in performance comparisons with discrete methods in recent years.

Discrete algorithms (often referred to as ground solvers in contrast to algorithms

using quantified problem representations) retain the original discrete representation of

the problem variables and clauses and search through the space of possible variable
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assignments until a solution is found or the search space is exhausted, indicating failure.

Discrete unconstrained algorithms typically use some sort of local search through the

assignment space. One of the earliest of these algorithms is GSAT [56], which uses a

greedy local search and a heuristic of minimizing the number of unsatisfied clauses.

An ongoing problem for local search solvers is the presence of local minima in the

search space. Local solvers can get stuck in these local solutions for extended periods,

greatly damaging performance. Walksat [55], an elaboration of GSAT, adds periodic

random search moves in order to escape from local minima. Local search solvers also

generally are not complete, in the sense that they may search forever and not halt if

no model assignment exists. This weakness is unacceptable in some domains, such

as circuit verification, in which successful verification entails proving unsatisfiability.

Recent work has achieved completeness for local solvers by constraining local search

with learned clauses [21] and may result in increased research activity in this area.

In contrast, discrete constrained algorithms, better known as systematic SAT solvers,

are complete, precisely because their search is systematic (i.e. does not search the same

node in the search space twice). Systematic solvers operate with sets of hard constraints,

usually that the clauses not be falsified by the assignment. Systematic algorithms there-

fore backtrack in the search space when assignments made to support clauses make the

larger assignment set inconsistent. Most systematic solvers are variants of the DPLL

algorithm [15, 16], pictured in Figure 1.1, which I cover in greater detail in section 1.4.

DPLL is a depth-first search algorithm that builds up an assignment from the empty set,

backtracking when it can no longer be extended to a solution. Systematic SAT solvers

are the class of SAT algorithms directly relevant to this dissertation. Though my work

deals with quantified clauses instead of propositional clauses and even solves what is

technically a different problem than SAT, my solver uses the same basic structure as

does DPLL, and shares many of its properties, including systematicity and complete-

ness.

In recent years, systematic solvers have improved performance by several orders of

magnitude using a variety of optimizations. Perhaps the most important of these is non-
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chronological backtracking integrated with conflict learning [42, 9, 66]. Both these op-

timizations exploit the fact that most problems contain many copies of the same subtree

in their search space: in other words, solvers often encounter and solve the same satisfi-

ability subproblem thousands of times. These optimizations detect those isomorphisms

and prune them from the search space. Non-chronological backtracking analyzes the

history of assignments to determine the earliest chosen assignment that contributed to

a current backtracking point (backtracking points in systematic satisfiability are points

in which the proposed assignment has become inconsistent), and backtracks multiple

levels to that branch. This move brings the search immediately back to a node it would

have eventually reached anyway, avoiding all the intervening search. Conflict learning

analyzes a backtracking point and makes new clauses expressing the collective falsity

of the assignments that lead to that point; these clauses allow earlier detection of this

dead end. These strategies, which work well with a systematic exploration of the search

space, are another important reason systematic solvers are currently dominant against

local search solvers.

Other effective speedup techniques for systematic solvers include heuristics for

choosing the next variable to branch upon [41, 47]; typically, these heuristics work in

tandem with clause learning by trying to direct search towards learned conflicts using

data about literals’ frequency in recently used conflict clauses. In addition, innova-

tions in compact representation of the clauses [47] have reduced memory requirements

and increased data locality. Another material innovation has been the use of random

restart [28], which addresses the problem that early literal choices can change runtime

by orders of magnitude. This technique, used by a number of top solvers, restarts the

search after some random period, instead of following an unlucky search to its conclu-

sion.

Considerable research effort has also been directed at finding tractable subclasses

of the SAT problem and of analyzing the boundary between tractable and intractable

problems. The class of Horn formulas [20, 53] is known to be solvable in linear time,

as is the class of 2-SAT formulas [3]. Other classes are known to have polynomial time,
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although none seem to have wide application in real-world problems. Of more practical

interest are easy-hard-easy results showing that problem hardness increases dramatically

as the ratio of clauses to variables approaches 4.25 [45] and then declines as quickly.

In subsequent sections I describe the way that all SAT algorithms represent and

maintain state data. I will claim that this state representation is intrinsically exponential,

and later present a more efficient approach.

1.4 The Core of Today’s State of the Art SAT Solvers: The DPLL

Algorithm

The venerable Davis-Putnam-Logemann-Loveland (DPLL) Algorithm [15,16], is a sys-

tematic and complete SAT solver. DPLL remains the core of most competitive solvers

for the SAT problem and also the quantified problem formalism presented in section

1.6, FQSAT. These solvers optimize the original DPLL method using techniques such as

non-chronological backtracking and clause learning. For example, Paradox, the fastest

solver in a recent FQSAT testing competition (see [13] in the 2007 CADE ATP Compe-

tition [61]) is an augmentation of DPLL.

DPLL is a recursive, depth-first algorithm that builds up a set of assignments of

TRUE/FALSE to problem atoms until a model is found or the assignment search space is

exhausted. This set A of atom/truth-value pairs is called a partial assignment because

typically A does not contain an assignment for every atom. I say that atoms not in

A′s assignment are unvalued or have truth assignment UNVALUED. For convenience,

I typically speak of A as containing positive and negative literals, e.g. I use p, ¬q,

as a shorthand for the corresponding atom assignments (in this case ,〈p, TRUE〉 and

〈q, FALSE〉). In the latter case, I say that q is falsified by A, and also that any ground

clauses containing q are falsified by A. Each time an atom assignment is added to or

removed from A, the atom is said to have been flipped to TRUE/FALSE or back again to

UNVALUED. I also speak of flipping literals, e.g. flipping atom q to FALSE might be

referred to as flipping ¬q.
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At each invocation, DPLL first checks (in line 1) if any assignments are mandated

by a unit propagation inference rule. Specifically, the unit propagation rule concerns

those clauses not yet true under A that have exactly one unvalued literal. In such cases

we may infer that the remaining clause literal’s atom must be given an assignment that

will satisfy that literal (and thereby the clause). For example, if A contains ¬pand some

clause c = p∨ q, then we infer A must be supplemented with q if it is ever to satisfy c

(and C). Adding such assignments as soon as they may be inferred effectively prunes

the lowest level of the search tree.

After unit propagation, DPLL checks (in line 2) if the current assignment has become

inconsistent and backtracking is needed, and conversely, checks (in line 4) if a satisfying

assignment has been found. Checking for inconsistency is straightforward: A is scanned

for any two assignments that assign both TRUE and FALSE to the same atom. Checking

for satisfiability entails scanning each clause c to see if some literal l ∈ c is in A. If

neither of these checks succeed, DPLL chooses some unvalued clause literal (line 6)

and tries two recursive calls (lines 7-10) in which the literal or its negation is added

to A; this branching recursion is called a split or a branch. Every invocation of DPLL

reaching line 11 ends with FAILURE, indicating search space exhaustion.

1.5 The Subsearch Problem and the Ground Instantiation Method

In their work on an quantified satisfiability solver [26], Ginsberg and Parkes identify a

central function of any satisfiability solver, a function they label subsearch. Subsearch is

the maintenance at every solver search iteration (e.g. every call to DPLL) of crucial state

data supporting the ongoing search for a logical model. As with most search algorithms,

a large proportion of the code lines of satisfiability solvers concern state maintenance.

For example, in Figure 1.1, lines 1, 2, 4 and 6 of DPLL all perform subsearch functions.

One of Ginsberg and Parke’s contributions is the claim that all subsearch functions

perform different aspects of the same fundamental calculation: the degree to which

the current assignment A satisfies or falsifies the set of ground clauses implied by the
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procedure DPLL(C,A)

1: A := UNIT-PROPAGATE(A)

2: if A contains inconsistent atom bindings then

3: return FAILURE

4: if every c ∈C is TRUE under A then

5: return SUCCESS

6: l := some clause literal not assigned a value by ; a:= l’s atom

7: for val in {TRUE,FALSE} do

8: A′ := A∪〈a,val〉
9: if DPLL(C,A′) == SUCCESS then

10: return SUCCESS

11: return FAILURE

Figure 1.1: The Davis-Putnam-Logemann-Loveland (DPLL) algorithm. Given a SAT

problem C and a partial assignment A, to compute DPLL(C,A):

problem theory. Ginsberg and Parkes also claim that for typical problems of interest,

this subsearch calculation is where most of the work of the larger satisfiability algorithm

resides; indeed, they prove that the subsearch function itself is NP-complete in the size

of the quantified theory for FQSAT problems.

In this document, Ginsberg and Parkes’ notion of subsearch is rephrased by intro-

ducing the idea of partially falsified ground clauses (or PFGCs for short). If we label

the set of ground clauses G implied by the problem theory (in the case of SAT, G is

equivalent to the set of problem clauses C), then a partially falsified ground clause c is

a clause in G that has some number of its literals falsified by the current assignment,

and the rest unvalued. Lines 1, 2, 4 and 6 in Figure 1.1 can all be viewed as gathering

PFGCs of different classes, classes defined by the number of false and unvalued literals

in the PFGC. Computing unit propagation (line 1) involves finding PFGCs for which

every literal but one is falsified. Detecting that the current assignment is inconsistent
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(line 2) involves finding PFGCs for which every literal is falsified1. Detecting that the

current assignment is in fact a model (line 4) can be achieved by verifying that every

PFGC has a satisfied literal, or equivalently, that it has at least one literal that is not false

or unvalued . Finally, in line 6, the set of clauses we may split upon is precisely the

set of PFGCs failing the model test, because we want to avoid choosing those clauses

that are already made true by the current assignment A. A last, optional subsearch func-

tion (not implemented in DPLL, but implemented as an optional feature in MACE2, a

DPLL-style solver) is to find PFGCs having exactly k unvalued literals. This function

can be used to implement a heuristic function for literal choice (line 8). The idea is

to choose literals from unsatisfied clauses having as few unvalued literals as possible,

with the hope that splitting upon these literals will cause the current assignment to either

succeed or backtrack sooner rather than later.

1.5.1 The Ground Instantiation Method

Note that DPLL does not prescribe how subsearch functions are to be computed or rep-

resented. However, in practice, virtually all SAT solvers (including DPLL-style solvers)

keep an explicit record for each ground clause c in the set of problem clauses C. As

changes are made to the current assignment A, every clause c affected by the change

is incrementally updated, often by updating tallies such as the number of clause literals

in c that are falsified by A. I label this approach to subsearch the ground instantiation

approach in order to contrast it with my own, which uses a quantified representation

for the logical satisfiability problem. The next section discusses the problem with the

ground instantiation approach to subsearch first noted in [26], namely that it has inher-

ently exponential complexity and is inefficient in practice. In contrast, my work explores

a new way of representing and solving satisfiability problems using quantifiers: the chief

advantage of this approach is that it performs subsearch more efficiently.

Interestingly, all the SAT methods described in section 1.3 perform subsearch in

1In DPLL this is done indirectly, by computing unit propagations that conflict with each other
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roughly the same fashion as DPLL, by tracking the degree to which a current assignment

solves a set of ground clauses. Therefore, because my method primarily concerns only

the underlying subsearch representation, it ought to be applicable to all SAT solving

approaches, not just to DPLL.

1.5.2 The Problem with The Ground Instantiation Method

The problem with the ground instantiation method is that it uses an intrinsically expo-

nential representation unnecessarily. Almost all SAT problems of interest (aside from

randomly-generated ones, which are primarily of theoretical interest) can be more suc-

cinctly and naturally specified in first order logic (FOL). Indeed, I believe that the great

majority of SAT problems of interest were first formulated as FOL, and only later trans-

lated to propositional form. This claim cannot be easily proven because repositories of

SAT problems typically do not provide a key giving the original semantics of literals in

a given SAT problem. However, the sheer size of many problems (some machine veri-

fication problems are over 100Mb in size) at least indicates they are machine-generated

from some smaller semantic form. One source of benchmark problems that does pro-

vide descriptions is SATLIB [33]. These descriptions of problems from areas such as

AI planning, circuit analysis, and mathematics, make it clear that simpler problem de-

scriptions which could be represented in first order logic are being used to generate the

sets of ground clauses used by SAT.

An example of how a quantified logical sentence might be translated to SAT will

demonstrate the compactness of quantified representations. Suppose we have a planning

problem whose domain involves planes flying between locations delivering shipments.

A planning constraint requiring that every plane p have a location l at a given time t

might be expressed logically as

∀p, t ∃l.at(p, l, t) (1.1)

Now, since SAT theories are propositional, this must be translated into clauses of the
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form

at(plane1, loc1, time1)∨at(plane1, loc2, time1)∨·· ·∨at(plane1, loc3, time1) (1.2)

which expresses the constraint for one plane and time for a set of possible locations.

Typically, the original constraint is instantiated into sets of clauses using constants rep-

resenting the sets of planes, locations, and times that are of interest:

at(plane1, loc1, time1)∨at(plane1, loc2, time1)∨·· ·∨at(plane1, loc3, time1),

at(plane1, loc1, time2)∨at(plane1, loc2, time2)∨·· ·∨at(plane1, loc3, time2),
...

at(plane1, loc1, time10)∨at(plane1, loc2, time10)∨·· ·∨at(plane1, loc3, time10),

at(plane2, loc1, time1)∨at(plane2, loc2, time1)∨·· ·∨at(plane2, loc3, time1),
...

at(plane6, loc1, time10)∨at(plane6, loc2, time10)∨·· ·∨at(plane6, loc3, time10)

(1.3)

Clearly, the set of resulting propositional clauses can be exponentially larger than

the original FOL clause. SAT solvers often have difficulty dealing with very large prob-

lems and domains because of this phenomenon, called clause blowup: the number of

clauses grows so great that they exhaust available memory, or at least cause significant

slowdown due to cache misses 2.

Furthermore, ground instantiation algorithms also perform computations at every

search node that are exponential even in the best case. I demonstrate this using a similar

planning example. Suppose our planning domain has 100 planes ( jet1 . . . jet100), 100

airports for locations (bos . . .chi . . . lax . . .s f o), and 100 times

(1200am,1215am . . .1145pm3), and that we use the following quantified sentence to

model the planes’ movements over time::

S : ∀p, t1, t2, l1, l2.(loc(p, l1, t1)∨move(p, l1, l2, t1, t2))→ loc(p, l2, t2) (1.4)
2one possible exception is Lazy WalkSAT [57], which claims to instantiate ground clauses on demand
3I ask the reader not to notice that this list is really has only 96 times in it!
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In the sentence, the variable p stands for a plane, t1 and t2 for times, and l1 and l2

stand for locations. The sentence says that if a plane is located at a given place at time t1

and executes a movement action to another place starting at time t1 and ending at time

t2, then the plane will be at the second location at time t2. A ground instantiation solver

would turn this sentence into an equivalent (implicitly) quantified clause:

c : ¬loc(p, l1, t1)∨¬move(p, l1, l2, t1, t2)∨ loc(p, l2, t2) (1.5)

The ground instantiation solver would then instantiate the above clause into ground

clauses using the given domain of planes, locations, and times:4

¬loc( jet1,bos,1215am)∨¬move( jet1,bos,bos,1215am,1215am)∨ loc( jet1,bos,1215am),

¬loc( jet1,bos,1215am)∨¬move( jet1,bos,bos,1215am,1230am)∨ loc( jet1,bos,1230am),

¬loc( jet1,bos,1215am)∨¬move( jet1,bos,bos,1215am,1245am)∨ loc( jet1,bos,1245am),
...

¬loc( jet1,bos,1215am)∨¬move( jet1,bos,chi,1215am,1215am)∨ loc( jet1,chi,1215am),

¬loc( jet1,bos,1215am)∨¬move( jet1,bos,chi,1215am,1230am)∨ loc( jet1,chi,1230am),
...

¬loc( jet100,s f o,1145pm)∨¬move( jet100,s f o,s f o,1145pm,1145pm)∨ loc( jet100,s f o,1145pm)
(1.6)

Suppose also that we have a ground atom a1 = loc( jet7, lax,2pm), meaning that

jet7 is at airport lax at time 2pm. If we add a1 := TRUE to the current assignment,

then to maintain the problem state a solver using ground instantiation must update all

the ground clauses that contain atom a1 or its negation, ¬a1 = ¬loc(jet7, lax,2pm). For

the moment, consider only those clauses containing the negation. Now, one ground

clause is created in equation 1.6 for each possible binding between domain members

and the variables in the clause of equation 1.5; since there are five clause variables, the

total number of ground clauses is 1005. The number of these that contain negated atom

¬a1, which binds the three clause variables p, l1, and t1, must be 1005−3 = 1002. So,
4Here, for simplicity, I allow instantiations in which a plane moves from one location to the same

location and even moves between two locations at the same time. A clause actually used in planning
would be more constrained, by, e.g. requiring that t1 6= t2.
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the solver must update 10,000 clauses when only one atom is added to the assignment.

This key point may be expressed more intuitively. When a plane p begins movement at

some location l1 and time t1, the solver is updating clauses concerning every possible

location (l2) that the plane might enter at every possible future time (t2). All these

updates occur despite the fact that a given hypothetical plane is unlikely to ever reside

in the vast majority of these future time-space tuples. One would think that a subsearch

computation that used only those facts that are actually TRUE would be more efficient.

More generally, at each search iteration, ground instantiation algorithms update a

number of ground clauses exponential in the number of variables in the original quan-

tified clause. In contrast, this dissertation explores a subsearch computation that avoids

the exponential computation by using only literals from the current assignment, i.e.

only those facts that are actually TRUE or FALSE (as opposed to UNVALUED). These

literals are combined using networks of joins similar to database joins. This approach

to subsearch requires that the problem be represented using quantified clauses like the

one in equation 1.5. This representation in turn requires me to reformulate the satis-

fiability problem to use quantified clauses. In the sections to come, I first present this

new problem formalization, called FQSAT. Then I discuss a well-known algorithm for

solving FQSAT by translation to SAT. This algorithm, MACE2, automatically performs

the kind of ground instantiation described in this section and then solves the resulting

SAT problem using a DPLL-style solver. MACE2 therefore is an exemplar of solving

FQSAT via translation to SAT and the use of a ground instantiation solver. My sys-

tem, JOINSAT, is an exemplar of solving FQSAT using a quantified representation and

join networks. Subsequent chapters qualitatively and experimentally compare the two

systems and their associated methods.

1.6 FQSAT: A Formalism for Quantified Satisfiability

In this section, I formalize a quantified logical satisfiability problem, FQSAT, that is

already in wide use, although not under any name that I know of.
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Problem The Finite Domain Quantified Satisfiability (FQSAT) Problem.

Given:

1. a finite domain universe D consisting of d distinct elements, but whose further

properties are unknown; as a convenience, these elements are referred to using the

natural numbers 1 . . .d;

2. a finite theory T of sentences of first order logic (FOL);

3. implicitly, a language L containing the predicates, constants, and function sym-

bols in T ;

Return either:

1. a model M for T , consisting of D and an interpretation function I expressed as:

(a) a mapping of each predicate instance whose arguments are members of D

(e.g. p(1,1,3)) to one of {TRUE,FALSE};

(b) a mapping of each constant (e.g. c) and function instance in T whose argu-

ments are members of D (e.g. g(1,2) ) to some member of D;

or:

2. FAILURE, if no such model M exists.

For example, given some domain universe D of cardinality 2, and a theory T consisting

of the two sentences ∀x.¬p(x)∨ q(x) and ∃x. p(x), an FQSAT solver might return a

model M that assigns FALSE to p(1) and q(2) and TRUE to p(2) and q(1).

In contrast with the problem of satisfiability of unrestricted first order theories (pre-

sented in chapter 5, Related Work), FQSAT, which requires a finite domain, is fully

decidable. This is made clear by reflecting that T is of finite length, as is D, so the set

of possible mappings referred to in (1) must be finite as well, and therefore the set of
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potential models must be finite. So, an FQSAT solver that systematically explores the

potential models will eventually return an answer. However, FQSAT is still intractable

in the general case: the quantified boolean satisfiability (QBF) problem is PSPACE-

complete [11], and QBF problems can be modeled using FQSAT by using a domain

universe of {TRUE,FALSE}. So, it is likely that any algorithm for FQSAT will be require

exponential time in the worst case.

Typically, an FQSAT solver is used to solve a slightly more general problem, the

problem of whether a given theory T has a model for some domain less than a given

size dend . Usually the solver first tries to find a model for d = 1, and if that fails, d = 2,

and so on until a model is found or dend is reached.

1.7 Using SAT Methods to Solve FQSAT: the MACE2 Solver

In this section, I present MACE2 [43], an FQSAT solver that transforms problems into

SAT problems and solves them using an implementation of DPLL. Other FQSAT solvers

apply the same transformations and also use DPLL, and some make use of various rep-

resentational and algorithmic optimizations that MACE2 lacks (e.g. clause learning by

Paradox [13]). However, all of these more advanced solvers still use the same basic

representation and algorithm for subsearch computation, namely, the ground instantia-

tion of quantified clauses into ground clauses and then the incremental update of each

ground clause as solving progresses.

It is certainly important for any new method to support the latest solver optimiza-

tions, and I argue that JOINSAT could do so in section 2.4.5. However, I believe that

comparing JOINSAT with optimized FQSAT solvers would muddy the comparison of

the core algorithmic differences between a join-based and a ground instantiation solver.

Accordingly, this dissertation will focus upon the differences between JOINSAT and

MACE2, and will judge JOINSAT’s success by its performance relative to MACE2.

The MACE2 algorithm is shown in Figure 1.2. In the next several sections, MACE2’s

preprocessing (lines 1-7 of the figure) is presented in detail, so that we may see how
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procedure MACE2(T ,D)

1: T1 := EXISTENTIALSTOFUNCTIONS(T )

2: T2 := FLATTEN(T1)

3: C1 := FUNCTIONCONSTRAINTS(T1,D)

4: C2 := SYMMETRYCONSTRAINTS(T1,D)

5: QC1 := QUANTIFIEDCNF(T2)

6: QC2 := CLAUSESPLIT(QC1)

7: C := INSTANTIATE(QC2,D) ∪C1 ∪C2

8: S := MACE2-INITIALIZE(C)

9: return MACE-DPLL(S)

Figure 1.2: The MACE2 algorithm. Given an FQSAT problem (T ,D) , to compute

MACE2(T ,D):

MACE2 translates an FQSAT problem into the set of ground clauses required by a SAT

solver.

1.7.1 MACE2’s Use of Domain-Grounded Clauses

Before proceeding further with an account of MACE2, I explain my use of “ground”

clauses whose arguments are members of the domain universe (e.g. p(1,2)), a usage

which may seem not well-founded or simply confusing. I use natural numbers in place

of constant symbols as a shorthand, a syntax that MACE2 also accepts. Using this short-

hand makes examples much more concise, but first its meaning must be made clear.

Every problem theory T written with this syntax is a shorthand for a well-formed FOL

theory T ′ with the same satisfiability properties, i.e. T is satisfiabile iff T ′ is satisfi-

able. Theory T ′ is formed as follows. For each natural number k used in the problem

theory T , replace all appearances of k in T with a new constant symbol c, so e.g.

p(1,1) becomes p(c,c), and p(1,2) becomes p(c,d). An equality constraint is also

added for each new constant, e.g. = (c,c), and an inequality constraint expressed as a
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predicate for each pair of new constants, e.g. 6= (c,d).

Now, MACE2 treats numbers in theories as special constants whose interpretation is

bound to the appropriate domain element, e.g. we may think of p(1,1) as a stand-in for

p(c,c), but with the added requirement that any satisfying model for T must interpret

the constant c as 1. So, we may think of a numerical theory T as a well-formed FOL

theory T ′ given to MACE2 but accompanied with a set of restrictions upon the models

to be explored. MACE2 will always flip new literals according to these restrictions, e.g.

when trying to satisfy the literal p(1,1) it will add 〈p(1,1), TRUE〉, not 〈p(2,2), TRUE〉
or 〈p(c,c), TRUE〉.

The foregoing shows that if MACE2 finds a model for T , then that model also

satisfies T ′, because T is really T ′ plus restrictions on models to explore. Now I

show the converse, that T ′ is satisfiable implies T is satisfiable. This is a simple

argument of isomorphism. Suppose T contains the numbers 1 . . .n , and T ′ replaces

instances of these numbers with constants c1 . . .cn. Now, our model M must contain

an interpretation of these constants: suppose they are interpreted as domain members

d1 . . .dn. These domain members must all be distinct from one another to satisfy the

inequality constraints. Then there must exist some model M ′, isomorphic to M , in

which c1 . . .cn are interpreted as 1 . . .n instead of d1 . . .dn.

1.7.2 MACE2 Preprocessing: Converting FQSAT Problems to Clauses

For efficiency, most DPLL-style FQSAT solvers represent logical theories in conjunctive

normal form (CNF) as sets of disjunctive clauses. These clauses may be either ground

clauses (e.g. (¬a∨ b∨¬c) ) or quantified clauses in which the logical variables are

implicitly universally quantified, e.g. p(x)∨¬q(x,y)∨¬r(y,z). Regardless of the clause

type the solver works with, it must be able to input the full syntactic range of FOL

theories and convert them to sets of clauses. In this section, I detail the processes by

which MACE2 converts FOL theories to ground clauses. Some of these processes are

reused by JOINSAT, which operates on quantified clauses.
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1.7.2.1 Converting Existential Variables to Skolem Functions

The first step in converting to clause form is to eliminate any existential variables from

sentences of the theory; in MACE2, this is performed by the procedure

EXISTENTIALSTOFUNCTIONS. For a given sentence, EXISTENTIALSTOFUNCTIONS

replaces each occurrence of an existentially quantified variable x with a Skolem function

fx. The arguments to fx consist of those universally quantified sentence variables having

x in their scope. For example, in the sentence

s : ∀v∃w∀x∃y∀z.¬((¬p(x)∧q(v,y))∨ (r(w,g(h(x)))∧¬s(z,x))) (1.7)

the existentially quantified variable w is within the scope of the universally quantified

variable v, so the Skolem function defined for w is fw(v). In this case, the one occurrence

of w is replaced by fw:

s′ : ∀v,x∃y∀z.¬((¬p(x)∧q(v,y))∨ (r( fw(v),g(h(x)))∧¬s(z,x))) (1.8)

The remaining existentially quantified variable y is then replaced with a Skolem function

fy(v,x):

s′′ : ∀v,x,z.¬((¬p(x)∧q(v, fy(v,x)))∨ (r( fw(v),g(h(x)))∧¬s(z,x))) (1.9)

1.7.2.2 Flattening: Converting Functions into Predicates

Now the working theory contains instances of functions, some skolem, some not. The

next step is to eliminate all these functions (using procedure FLATTEN, shown in algo-

rithm ), replacing them with functional predicates. This step is referred to as "flattening"

because at its conclusion each sentence contains only flat literals whose arguments are

logical variables. For each n-ary function symbol (e.g. f (x,y)) found in the theory, an

n+1-ary predicate p f (x,y,z) is defined that has the semantics p f (x,y,z) ⇐⇒ f (x,y) =

z. Each instance of f in the theory is replaced as follows. If some literal l contains an
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procedure FLATTEN(T )

1: while l := some literal in some sentence s of T that has an instance f (−→t ), where

f is a function and −→t is a vector of terms do

2: l′ := l with f (−→t ) replaced by a new variable y not already in s

3: l′′ := ¬p f (
−→t ,y)

4: replace l in s with l′′∨ l′

5: return T

Figure 1.3: FLATTEN. Given a universally quantified theory T , to compute FLAT-

TEN(T ):

instance f (t1, t2) of f , l is replaced with the disjunction ¬p f (t1, t2,z)∨ l′, where l′ is l

with z substituted for f (t1, t2). In this scheme, the new variable z is implicitly universally

quantifed. The replacement preserves most of the original semantics, in the sense that

the sentence is only required to be satisfied for those values of z such that f (t1, t2) = z.

The remaining semantics of a functional occurrence, namely the onto and one to one

properties, are restored in the next section.

Let us work through how FLATTEN would eliminate some of the functions in the

output sentence of the prior section, s′′:

s′′ : ∀v,x,z.¬((¬p(x)∧q(v, fy(v,x)))∨ (r( fw(v),g(h(x)))∧¬s(z,x))) (1.10)

Suppose that FLATTEN first eliminates the functional occurrence h(x). FLATTEN

first creates a new variable i not found in s′′ and replaces h(x) with i in the literal

r( fw(v),g(h(x))):

l′ : r( fw(v),g(i)) (1.11)

FLATTEN then makes the appropriate instance of the functional predicate ph, with

the new variable i as the final argument:
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l′′ : ¬ph(x, i) (1.12)

Finally, the original literal r( fw(v),g(h(x))) is replaced in s with l′′∨ l′:

s′′ : ∀v∀x∀z.¬((¬p(x)∧q(v, fy(v,x)))∨((¬ph(x, i)∨r( fw(v),g(i)))∧¬s(z,x))) (1.13)

The same procedure is used to eliminate g(i), obtaining:

s′′ : ∀v∀x∀z.¬((¬p(x)∧q(v, fy(v,x)))∨ ( (¬ph(x, i)∨¬pg( j)∨ r( fw(v), j) )∧¬s(z,x)))

(1.14)

The rest of the functional occurrences may be removed similarly.

1.7.2.3 Flattening: Adding Functional Constraints

After functional instances are replaced with corresponding functional predicates, we

must still ensure that these predicates have all the normal semantics of functions, in-

cluding the one-to-one and onto properties. MACE2 models these by adding additional

ground clauses to the theory. First, clauses are added to enforce the one-to-one prop-

erty, which says that for a given set of arguments, a function can have only one output.

These semantics are expressed for a function f by adding ground clauses of the form

¬p f (~d,d1)∨¬p f (~d,d2), where p f is the appropriate functional predicate,
−→
d is a set

of domain value arguments of f , and d1,d2 are two distinct domain values. For clar-

ity in this context, I label the domain size dMAX . These clauses are added in line 6 of

FUNCTIONCONSTRAINTS. For example, given a function f (x,y) and argument bind-

ings x = 1,y = 1, the first clause added will be ¬p f (1,1,1)∨¬p f (1,1,2), expressing

that either f (1,1) = 1 is false or f (1,1) = 2 is false.

Next, clauses are added (in line 9 of FUNCTIONCONSTRAINTS) to enforce the onto

property, which mandates that for a given set of arguments, a function must have at least

one output. These clauses have the form
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procedure FUNCTIONCONSTRAINTS(T ,D)

1: C:= φ

2: for all functions f (~x) of arity k found in T do

3: for all vectors
−→
d of arity k of d ∈ D do

4: for all i ∈ 1 . . .dMAX do

5: for all j ∈ i+1 . . .dMAX do

6: add the ground clause ¬p f (~d, i)∨¬p f (~d, j) to C

7: add the ground clause p f (~d,1)∨ p f (~d,2)∨·· ·∨ p f (~d,dMAX) to C

8: return C

Figure 1.4: FUNCTIONCONSTRAINTS. Given an FQSAT problem (T ,D) , to compute

FUNCTIONCONSTRAINTS(T ,D):

p f (~a,1)∨ p f (~a,2)∨·· ·∨ p f (~a,dMAX) (1.15)

where −→a is some set of domain values and dMAX is the domain size, and they express

that f (−→a ) is equal to some domain element in D. For example, given function f (x,y),

the first onto clause to be added will be

p f (1,1,1)∨ p f (1,1,2)∨·· ·∨ p f (1,1,dMAX) (1.16)

expressing that f (1,1) is equal to some domain element in D.

1.7.2.4 Adding Constraints to Break Symmetries

MACE2 also adds constraints to eliminate some kinds of isomorphic models; this pro-

cess is also known as symmetry breaking. Two models are symmetric in this context if

their interpretation functions can be made identical by swapping all instances of two do-

main members. For instance, if interpretation I1 maps function f (x) to 2, p(1) to TRUE,

and p(2) to FALSE, while interpretation I2 maps function f (x) to 1, p(2) to TRUE, and

p(1) to FALSE, then the corresponding models are symmetric. FQSAT solvers constrain
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the search space so that only one of a set of isomorphic models are found; because the

remaining model can still be found, this does not compromise completeness.

The search space is constrained by adding propositional clauses specifying allowable

return values for problem functions, or in MACE2’s case, problem constants only. A

constant c1 is picked arbitrarily and constrained to return domain element 1 (this is

expressed a using functional predicate pc1). The next arbitrary constant is constrained

to return either element 1 or element 2, and so on:

pc1 = 1

pc2 = 1∨ pc2 = 2

pc3 = 1∨ pc3 = 2∨ pc3 = 3
...

pcd = 1∨ pcd = 2∨·· ·∨ pcd = d

pcd+1 = 1∨ pcd+1 = 2∨·· ·∨ pcd+1 = d

(1.17)

These propositional clauses are created in SYMMETRYCONSTRAINTS (line 4 of Fig-

ure 1.2).

1.7.2.5 Conversion to Clause Form

At this stage, apart from the ground clauses specified in the last two sections, the work-

ing theory consists of universally quantified logical sentences whose nesting of conjunc-

tions, disjunctions and negations may be arbitrarily deep, e.g.

∀x,y,z.((−p(x)∨¬q(x,y))→ P(y))∨ (¬r(z)→ q(x,z)) (1.18)

We may now drop the quantifiers and assume every variable is implicitly univer-

sally quantified. However, most DPLL-style solvers (but not all: see [62]) use a CNF

representation because its simplicity makes processing more efficient. Therefore, these

complex sentences still need to be converted to CNF form, i.e. to a set of disjunctive

clauses. While this may be accomplished using a series of classical rule translations, the

resulting set of clauses may have size exponentially larger than the original theory [48].
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Therefore, a special translation process first formulated by Tseitin [63] and later opti-

mized by others [48, 17] is used.

The essential idea of this process is to first convert a sentence into a tree structure

based on its connectives, and then disconnect the branches of the tree from the bot-

tom up using pairings of new literals and new equivalence clauses. For example, to

eliminate the implication (¬r(z)→ q(x,z)), a new literal B(x,z) and an equivalence

B(x,z)≡ (¬r(z)→ q(x,z)) would be introduced. The equivalence translates (using clas-

sical logic rules) into the set of clauses ¬B(x,z)∨ r(z)∨ q(x,z), ¬r(z)∨ B(x,z), and

¬q(x,z)∨¬B(x,z). Therefore, the sentence in equation 1.18 is equivalent to the set of

sentences/clauses

((−p(x)∨¬q(x,y))→ P(y))∨B(x,z)

¬B(x,z)∨ r(z)∨q(x,z)

¬r(z)∨B(x,z)

¬q(x,z)∨¬B(x,z)

(1.19)

This translation process continues until the top sentence has been completely clausi-

fied. This produces a set of output clauses linear in the size of the original theory. Of

course, since the theoretical complexity of FQSAT is at least PSPACE-complete, even

a linear increase in theory size may require exponentially greater solution time. But in

practice the slowdown is much smaller, perhaps a constant factor.

1.7.2.6 Clause Instantiation

The working theory still contains quantified disjunctive clauses (as well as ground

clauses), but DPLL requires all its input clauses to be ground. Therefore, each quan-

tified clause is instantiated into a set of ground clauses, which taken together express the

same semantics. This occurs in the procedure INSTANTIATE (line 7 of MACE2); I defer

discussion of the prior line, CLAUSESPLIT, until the next section. To explain instantia-

tion, I introduce the notion of a bindset, or set of bindings between variables and domain

values. The ground clauses are constructed by iterating through all the possible bindsets
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for the set of clause variables and applying each bindset to the quantified clause. For

example, given variables x and y and a domain size d = 2, the set of possible bindsets

is:

B : {{x = 1,y = 1} ,{x = 1,y = 2} ,{x = 2,y = 1} ,{x = 2,y = 2}} (1.20)

Given the clause

¬p(x)∨q(x,y)∨¬r(y), (1.21)

the corresponding set of four ground clauses, containing one ground clause for each

bindset β ∈ B, is constructed by applying each bindset to the quantified clause. The

resulting clauses are as follows:

{ ¬p(1)∨q(1,1)∨¬r(1),

¬p(1)∨q(1,2)∨¬r(2),

¬p(2)∨q(2,1)∨¬r(1),

¬p(2)∨q(2,2)∨¬r(2) }

(1.22)

We see above that the INSTANTIATE procedure creates a number of clauses expo-

nential in the number of clause variables. As discussed in section 1.5.2, this can lead

to significant memory blowup, so that MACE2 is not feasible for very large problems.

This is mitigated somewhat by a postprocessing step in which ground clauses subsumed

by another clause (e.g. as b∨¬c∨ d is subsumed by b∨¬c) are pruned away. This

can amount to a considerable savings when combined with unit resolution, in which

any unit clauses in the theory are resolved against other clauses (e.g. the unit clause ¬e

can resolve with b∨¬c∨ d ∨ e, producing the clause b∨¬c∨ d, which then subsumes

b∨¬c∨d∨ f ).



26

1.7.2.7 Clause Splitting: A Powerful Optimization

Now that the mechanism and potential complexity of instantiating clauses is clear, I

sketch an optimization in wide use: clause splitting (shown as CLAUSESPLIT in MACE2

line 6). This recent optimization for MACE2-style ground solvers [49,13] improves their

performance by an order of magnitude or more. The idea of clause splitting is to rewrite

the quantified clauses so that they have fewer variables. As shown in the prior section,

the number of ground clauses created by INSTANTIATE is exponential in the number

of clause variables, so there is considerable opportunity for optimization by rewriting.

The rewriting process introduces a new predicate C and splits a clause into two clauses

supplemented by instances of the new predicate. For example, given a complex clause

c : ¬p(u,v)∨q(v,w)∨¬r(w,x,y)∨ s(y,z) (1.23)

one possible split of he original clause c into two new clauses c1 and c2 is the following:

c1 : ¬p(u,v)∨q(v,w)

c2 : ¬r(w,x,y)∨ s(y,z)
(1.24)

A new literal C(w) is then introduced that contains all variables the two clauses have in

common. Positive and negative instances of C(w) are appended to c1 and c2, respec-

tively:

c′1 : ¬p(u,v)∨q(v,w)∨C(w)

c′2 : ¬r(w,x,y)∨ s(y,z)∨¬C(w)
(1.25)

The resulting pair of clauses is now equivalent to c and will require many fewer instan-

tiations because they possess fewer clause variables. If we suppose a domain size of

5, then clause c will require 56 = 15,625 instantiations, while c′1 will require 53 = 125

instantiations, and c′2 will require 54 = 625 instantiations.

Recent work in clause instantiation [13] involves efficiently selecting the most ad-

vantageous split (a clause with n literals has 2n possible splits).
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C : { ¬p(v,w)∨¬q(w,x)∨ r(x,y)∨ s(y,z),

p(1,1),

q(1,1),

¬r(1,1)∨ s(1,1),

¬r(1,1)∨¬s(1,1) }

(a) An example set of quantified clauses

2©

1©

0©

6©3©

4©

5©

9©

8©

7©

s(1,1)

r(1,1)

s(1,1)

q(1,1)

p(1,1)

¬r(1,1)

r(1,2)

s(1,2)¬s(1,1)

(b) A search space history for MACE2-

DPLL’s run on the example set C

Figure 1.5: A sample set of clauses and MACE-DPLL’s search history.

1.7.3 MACE2’s Implementation of DPLL

I now examine in depth MACE2-DPLL, MACE2’s implementation of DPLL, depicted

in Figure 1.7. For this purpose, I introduce an example set C of quantified clauses, shown

in Figure 1.5; the figure also shows the search space MACE2 will traverse in trying to

satisfy the clauses. First, MACE2-INITIALIZE is called, setting up the data structures

needed for the initial state; these structures are all included under an umbrella structure

S , pictured in Figure 1.6.

S contains two tables: a table atoms containing a record for each ground atom, and
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a table clauses containing a record for each ground clause. Each entry atom in S.atoms

has a field value, represented as an (initially empty) list of the truth values assigned to

the atom by the current assignment A. A is therefore represented implicitly, as simply

the set of atoms in S.atoms that have a non-empty value. Each atom also contains lists

of the ground clauses in which it appears in negated and non-negated form: these lists

are atom.clauses[FALSE] and atom.clauses[TRUE], respectively. In this context, each

ground clause is represented as an integer that can be used as an index into S.clauses,

described next. For example, in the figure, atom p(1,1) is the first entry in S.atoms, and

its list of clauses[FALSE] contains clauses c1 . . .c8, which are the first eight entries in

S.clauses.

Each entry in S.clauses contains a list lits of literals contained in that ground clause;

the literals are here represented as integers (positive for non-negated literals, negative

for negated literals). The absolute value of a literal is also the index into S.atoms used

for access to the corresponding atom, e.g. literal ¬p(1,1) is represented as integer

-1, because atom p(1,1) is the first entry in S.atoms. Each S.clauses entry also con-

tains various tallies for that clause, for example, num_lits_sat, which stores the number

of clause literals that are satisfied by the current assignment A. The other tallies are

num_neglits_unvalued, the number of negated clause literals not yet valued by the as-

signment, and num_poslits_unvalued, the number of non-negated clause literals not yet

valued by the assignment. The tally num_lits, the total number of literals in the clause,

is not actually needed by the algorithm, but is shown here for clarity.

Recall from section 1.5 that the most costly component of a DPLL-style solver, both

in space and time, is the component that maintains the subsearch computation. Like all

ground instantiation solvers, MACE2’s approach to both representation (i.e. space) and

computation (time) is exponential; we see the former already in Figure 1.6, in which

exponential numbers of records representing atoms and clauses are explicitly stored.

MACE2 also performs the subsearch computation in a brute-force, exponential fashion,

by updating the aforementioned tallies for each clause affected by a given atom flip. At

the cost of an exponential number of clause updates per atom flip, this machinery en-
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S

atoms

ATOM value clauses

FALSE TRUE

a1 : p(1,1) UNVALUED 1 . . .8 33
...

...
...

...

a4 : p(2,2) UNVALUED 25 . . .32 φ

a5 : q(1,1) UNVALUED 1 . . .4,17 . . .20 34
...

...
...

...

a8 : q(2,2) UNVALUED 13 . . .16,29 . . .32 φ

...
...

...
...

a16 : s(2,2) UNVALUED φ 4,8,12,16,20,24,28,32

clauses

num_lits

num_lits_sat

num_neglits_unvalued

num_poslits_unvalued

CLAUSE lits

c1 : ¬p(1,1)∨¬q(1,1)∨ r(1,1)∨ s(1,1) 4 0 2 2 -1,-5,9,13

c2 : ¬p(1,1)∨¬q(1,1)∨ r(1,1)∨ s(1,2) 4 0 2 2 -1,-5,9,14

c3 : ¬p(1,1)∨¬q(1,1)∨ r(1,2)∨ s(2,1) 4 0 2 2 -1,-5,10,15
...

...
...

...
...

...

c8 : ¬p(1,1)∨¬q(1,2)∨ r(2,2)∨ s(2,2) 4 0 2 2 -1,-6,12,16

c9 : ¬p(1,2)∨¬q(2,1)∨ r(1,1)∨ s(1,1) 4 0 2 2 -2,-7,9,13
...

...
...

...
...

...

c32 : ¬p(2,2)∨¬q(2,2)∨ r(2,2)∨ s(2,2) 4 0 2 2 -4,-8,12,16

c33 : p(1,1) 1 0 0 1 1

c34 : q(1,1) 1 0 0 1 5

c35 : ¬r(1,1)∨ s(1,1) 2 0 1 1 -9,13

c36 : ¬r(1,1)∨¬s(1,1) 2 0 2 0 -9,-13

Figure 1.6: State Data Structure S created by MACE2-Initialize.
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ables MACE2 to determine, for any ground clause, whether it is currently TRUE, FALSE,

or UNVALUED under the current assignment, and allows MACE2 to select literals for

propagation and atoms for splitting. Despite the theoretical complexity, this scheme has

the virtue of simplicity: its computations consist primarily of reading lists and updating

arrays, requiring few dynamic memory operations.

I represent MACE2-DPLL as using a different state structure S at each node in its

search space, i.e. for each recursive call MACE2-DPLL copies the current state struc-

ture and uses the copy for the call. This is a presentational simplification: in the actual

algorithm the original structure S is never copied, but is instead incrementally updated.

Presenting the algorithm in this way allows us to avoid depicting backtracking (which

simply undoes the work of those procedures that are of real interest) in any detail. In-

stead, I depict backtracking as simply throwing away the S′ created for the recursive call

and returning to its predecessor state S. Despite this simplification, the operations that I

do depict faithfully present the incremental manner in which MACE2 updates the search

state.

I will use Figure 1.5 to trace the search space of MACE-DPLL’s run; the run begins

at the root, the node labeled 0© in the figure. MACE-DPLL’s procedures mirror those of

the general DPLL algorithm, so it begins in line 1 of Figure 1.7 with unit propagation;

MACE2-UNIT-PROPAGATE is depicted in detail in Figure 1.8.

MACE2-UNIT-PROPAGATE loops, beginning in its second line, until either the cur-

rent assignment has become inconsistent or no more literals are found to propagate. The

former condition is tested in line 2 by checking all entries in S.atoms to verify that no

entry has a value of both TRUE and FALSE. The body of the loop gathers more propaga-

tion literals (lines 4-10) and then flips each one (lines 11-16). Literals are gathered by

examining clause tallies: clauses with no satisfied literals and exactly one unvalued lit-

eral are candidates for propagation, because the one remaining literal must be made true

for the current assignment to ever satisfy the clause. Clauses that qualify are searched

for their one unvalued literal, which is pushed onto unit_stack; the continue variable is

also set, to perpetuate the outer loop. In the flipping sequence, literals are flipped to
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procedure MACE2-DPLL(S)

1: MACE2-UNIT-PROPAGATE(S)

2: if S.atoms contains an atom entry whose value contains both TRUE and FALSE

then

3: return FAILURE

4: if for every c ∈ S.clauses,c.num_neglits_unvalued > 0 or c.num_lits_sat > 0

then

5: return SUCCESS

6: lit := MACE2-SELECT-NONNEGATED-LITERAL(S)

7: for all val ∈ {TRUE,FALSE} do

8: S’ := copy S

9: MACE2-FLIP(S′,absolute_value(lit),val)

10: if MACE2-DPLL(S′) == SUCCESS then

11: return SUCCESS

12: return FAILURE

Figure 1.7: MACE2-DPLL.
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the value that causes their clause to be satisfied. In the initial state 0© of the example

problem, two clauses, clause c33 : p(1,1), and clause c34 : q(1,1), each contain a single

unvalued literal and so are eligible for propagation. These literals are each flipped to

TRUE, moving the search state to node 2©.

At this stage, let us look more closely at the MACE2-FLIP procedure. This proce-

dure is where most of the work resides in MACE2, for the various clause tallies which

support subsearch functions are updated here when atoms are flipped. The procedure is

passed the state variable S, an integer atom, and a val of either TRUE or FALSE. In line 1,

the procedure accesses the proper entry for the flipped atom in S.atoms (using atom as

the key) and updates its truth value to val. The rest of the procedure loops through pre-

computed lists of clauses affected by the current flip, updating various tallies for them.

The first list (line 2) is of those clauses containing a negated instance of the atom. Each

of these clauses now has one less unvalued negative literal, so num_neglits_unvalued

is decremented. If val = FALSE, each clause now has one more satisfied literal, so

num_lit_sat is incremented. The second list is the converse of the first list for clauses

containing a non-negated instance of the atom.

In the example, when p(1,1) is flipped to TRUE, num_neglits_unvalued is decre-

mented for clauses c1 . . .c8, which have negated instances of p(1,1) as literals. In con-

trast, clause c33, which contains a non-negated instance of p(1,1), has both

num_poslits_unvalued decremented and num_lits_sat incremented.

We now return to MACE-DPLL, which has just concluded unit propagation (line 1).

MACE-DPLL next checks for an inconsistent assignment (line 2) using the same check

found in MACE2-UNIT-PROPAGATE, and seeing no inconsistency at this stage, then

checks if the assignment is a model (line 4). The model check reflects what I will call a

negative bias on the part of MACE2. Like most DPLL-style solvers, MACE2 assumes

that for most problems, the models that satisfy them will be mostly negative, i.e. the ratio

of atoms assigned FALSE to atoms assigned TRUE will be large. Under these conditions,

the following model check is advantageous. If an assignment A is ever reached such

that, for each problem clause c, either (1) A explicitly satisfies c by satisfying one of
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procedure MACE2-UNIT-PROPAGATE(S)

1: continue := TRUE

2: while S.atoms contains no atom entry whose value contains both TRUE and FALSE,

and continue = TRUE do

3: continue := FALSE

4: for all clause ∈ S.clauses do

5: if (clause.num_lits_sat == 0 and clause.num_neglits_unvalued +

clause.num_poslits_unvalued = 1) then

6: for all lit ∈ clause.lits do

7: atom := absolute-value(lit)

8: if S.atoms[atom].value is empty then

9: push(lit,unit_stack)

10: continue := TRUE

11: while lit := pop(unit_stack) do

12: atom := absolute-value(lit)

13: if (lit > 0) then

14: MACE2-FLIP(S,atom,TRUE)

15: else

16: MACE2-FLIP(S,atom,FALSE)

Figure 1.8: MACE2-UNIT-PROPAGATE(S).
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procedure MACE2-FLIP(S,atom,val)

1: push(S.atoms[atom].value,val)

2: for all clause ∈ S.atoms[atom][FALSE] do

3: clause.num_neglits_unvalued–

4: if val = FALSE then

5: clause.num_lits_sat++

6: for all clause ∈ S.atoms[atom][TRUE] do

7: clause.num_poslits_unvalued–

8: if val = TRUE then

9: clause.num_lits_sat++

Figure 1.9: MACE2-FLIP(S,atom,val).

c’s literals; or (2) c has some negative literal unvalued by A, then the algorithm has

succeeded at finding a model. This is because the current assignment A may be extended

by assigning FALSE to every remaining unvalued atom, thereby satisfying all clauses of

the second type. This check is performed in line 4 for each clause in S.clauses, using

tallies maintained for this purpose. In search space node 5© of the example, this model

check fails because, for example, clause c1 : ¬p(1,1)∨¬q(1,1)∨ r(1,1)∨ s(1,1) has

all its negative literals falsified and no positive literals valued.

MACE2-DPLL next selects a literal for splitting (line 6), calling MACE2-SELECT-

NONNEGATED-LITERAL, shown in Figure 1.10. This procedure selects a literal using

the minimum unvalued literals heuristic mentioned in section 1.5. In line 1, the variable

num_poslits_unvalued is initialized to MAXINT, the maximum representable integer

value. This variable helps track the best clause seen so far by storing its number of

unvalued positive literals. In lines 2-4, the procedure scans exactly those clauses that

failed the model check from MACE2-DPLL line 4. From these clauses, the code isolates

the clause with the minimum number of unvalued positive literals, and selects one of its

unvalued positive literals (lines 4-9); the literal is returned in line 10.
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procedure MACE2-SELECT-NONNEGATED-LITERAL(S)

1: num_poslits_unvalued := MAXINT

2: for all clause ∈ S.clauses do

3: if (clause.num_lits_sat == 0 and clause.num_neglits_unvalued = 0) then

4: if clause.num_poslits_unvalued < num_poslits_unvalued then

5: for all (lit ∈ clause.lits) do

6: atom = absolute-value(lit)

7: if (lit > 0 and S.atoms[atom].value = φ then

8: return_lit := lit

9: return return_lit

Figure 1.10: MACE2-SELECT-NONNEGATED-LITERAL(S).

This literal will be split upon in lines 7-10 of MACE2-DPLL. In the example, the

clause c1 mentioned above as failing the model test is found and its first unvalued posi-

tive literal, r(1,1) is returned. MACE2-DPLL creates a branch in the search space, first

flipping r(1,1) to TRUE (search space node 3©), then backtracking and flipping r(1,1)

to FALSE (search space node 6©) if the first branch fails. In each case, as stated before,

the recursive call is made using a copy S′ of the current state S.

The recursive invocation of MACE2-DPLL performs unit propagation, this time us-

ing the clauses c35 : ¬r(1,1)∨ s(1,1) and c36 : ¬r(1,1)∨¬s(1,1), because r(1,1) is

TRUE under the current assignment. As a result, s(1,1) is assigned TRUE and then

FALSE in succession (search space nodes 4© and 5©), causing the assignment inconsis-

tency check to fail in line 2 and the second invocation of MACE2-DPLL to backtrack,

returning FALSE. The original invocation of MACE2-DPLL throws away S′, resuming

with S at search space node 2©, and begins the loop in line 9 a second time. When r(1,1)

is flipped to FALSE in search space node 6©, the recursive call to MACE2-DPLL makes

more progress. Clause c1 is now eligible for propagation because its first three literals

are falsified: s(1,1) is accordingly flipped to TRUE (search node 7©). A similar clause
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prompts the propagation of s(1,2) (search space node 8©). Now the only clauses left

unsatisfied are of the form ¬p(1,1)∨¬q(1,1)∨ r(1,2)∨ s(2,z). In MACE2-SELECT-

LITERAL, the literal r(1,2) is selected from one of these clauses and flipped to TRUE in

yet another recursive call of MACE2-DPLL (search node 9©). At this point, all clauses

are either satisfied or have an unvalued negative literal, so MACE2-DPLL’s model check

returns SUCCESS.

This completes the presentation of MACE2, a state of the art solver for FQSAT

problems. This detailed examination should help the reader of the following sections to

understand what is fundamentally novel about my own approach.
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Chapter 2

The Main Idea - Subsearch Using Join Networks

2.1 Production Systems: An Inspiration for a New Method

AI Production Systems [22,39,52] are a reasoning formalism used in research in general

cognitive models and learning; the study of production systems was a thriving artificial

intelligence research area in the 1980’s and 1990’s. Production Systems are also one of

the core technologies used in the research and commercial field of Expert Systems [25].

A production system consists of a set of production rules, or productions for short,

each consisting of a set of preconditions and one conclusion. The preconditions and

conclusion contain predicates and variables and look something like quantified logical

literals. A production system works over a series of cycles, maintaining at every cycle

a working memory consisting of a set of active tuples. The sense of the term tuple

follows that of databases, meaning a class label combined with an associative array of

key-value pairs, the whole tuple representing some entity in the domain (e.g. a person,

or a development team). Figure 2.1 shows a simple production system consisting of one

production rule and a working memory of nine tuples. In the figure, keys are prefixed

with “^” (e.g. ^NAME), while variables appear within brackets (e.g. <N1> ).

At each cycle, for every production, the system attempts to match active tuples to

rule preconditions so that (1) every precondition has a match and (2) the resulting bind-

ings of variables in the production are consistent. Each such successful match between

a rule and a set of active tuples causes the rule to "fire", adding an instance of the con-

clusion made using the match bindings to the set of active tuples for the next cycle. For

example, using the system in Figure 2.1, tuples W1,W2 and W6 match the first, second

and third preconditions, respectively. The bindings resulting from these matches are
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(PRODUCTION MAKE-TEAM

(GOAL ^NAME CREATE-TEAM)

(EMPLOYEE ^NAME <N1> ^PREVIOUS-PROJECT <P> ^EXPERTISE HARDWARE)

(EMPLOYEE ^NAME <N2> ^PREVIOUS-PROJECT <P> ^EXPERTISE COMPILERS)

−→

(MAKE TEAM ^FIRST-MEMBER <N1> ^SECOND-MEMBER <N2>))

(a)
W1:(GOAL ^TYPE CREATE-TEAM)

W2: (EMPLOYEE ^NAME A ^PREVIOUS-PROJECT WARP ^EXPERTISE HARDWARE)

W3: (EMPLOYEE ^NAME B ^PREVIOUS-PROJECT WARP ^EXPERTISE HARDWARE)

W4: (EMPLOYEE ^NAME C ^PREVIOUS-PROJECT PSM ^EXPERTISE HARDWARE)

W5: (EMPLOYEE ^NAME D ^PREVIOUS-PROJECT PSM ^EXPERTISE HARDWARE)

W6: (EMPLOYEE ^NAME E ^PREVIOUS-PROJECT WARP ^EXPERTISE COMPILERS)

W7: (EMPLOYEE ^NAME F ^PREVIOUS-PROJECT WARP ^EXPERTISE COMPILERS)

W8: (EMPLOYEE ^NAME G ^PREVIOUS-PROJECT PSM ^EXPERTISE COMPILERS)

W9: (EMPLOYEE ^NAME H ^PREVIOUS-PROJECT PSM ^EXPERTISE COMPILERS)

(b)

Figure 2.1: A simple production system: (a) a production rule, and (b) working memory.

consistent: for example, both the second and third preconditions contain the variable

<P>, and the matches to W2 and W6 each result in binding <P> to WARP. This success-

ful match causes the rule to fire, creating a new tuple using the bindings established by

the precondition matches:

(TEAM ^FIRST-MEMBER A ^SECOND-MEMBER E)

Production systems are relevant to my work for two reasons. First, one can envision

representing quantified clauses as productions and implementing quantified subsearch

as something like production match. Production match and firing is very like the compu-

tation needed to detect a contradiction between a quantified clause and a set of ground
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assignment literals: each clause literal would have to be matched to a ground literal,

and the resulting bindings checked for consistency. For example, let us think of the

production in Figure 2.1 as a quantified clause, i.e.

c : (¬GOAL(CREATETEAM)∨¬EMPLOYEE(<N1>,<P>,HARDWARE)∨

¬EMPLOYEE(<N2>,<P>,COMPILERS)∨MAKETEAM(<N1>,<N2>))

and suppose the tuples to be atoms made TRUE or FALSE in some assignment, e.g.

A = {〈GOAL(CREATE-TEAM), TRUE〉,

〈EMPLOYEE(A,WARP,HARDWARE), TRUE〉 ,

〈EMPLOYEE(B,WARP,COMPILERS), TRUE〉}

Leaving aside for the moment the question of what clause c actually means, consider

the potential role to be played by the production system in this scenario. Viewed in the

context of this mini FQSAT problem, the production shown in Figure 2.1 performs a

computation similar to unit propagation. In this case, the three atoms match the three

preconditions of the original rule, causing the rule to be fired. But this firing is precisely

the kind of inference used in unit propagation: all but one of the literals in a clause are

falsified, so we are required to add the remaining literal to the current assignment. As

we shall see, the core matching process behind productions can be used to model other

subsearch functions, too.

The second reason Production Systems are relevant to the current work is because

one can draw upon considerable past research into efficient incremental algorithms for

maintaining production states over time. In both DPLL and production system runs, the

current state changes slowly: small numbers of assignments or tuples, respectively, are

added at each iteration. Therefore, incremental algorithms that can change the minimum

state possible, avoiding wholesale recomputations, are desirable.

2.1.1 The Rete Algorithm

In particular, I adapt two incremental Production System algorithms in this dissertation.

The first is the Rete algorithm [22], used in the main JOINSAT algorithm, which incre-
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mentally maintains the bindsets that make up the state of a join network. The second is

the Collection Match algorithm [2], used in an optimized version of JOINSAT, which

also tracks bindsets, but which uses an efficient compressed representation for them. I

will present my own version of the Collection Match algorithm in section 3.4.1.

In this section, I examine the Rete algorithm, whose information flow is pictured in

Figure 2.2 , reprinted from [2]. The figure shows a Rete network designed to implement

the production from Figure 2.1 (a) that I examined above. In the figure, the symbols

looking rather like bins full of tuples (the tuples from Figure 2.1 (b) ) are called memory

stores. The top three bins, called alpha memories, are where the active tuples enter the

system: each bin services a precondition, holding those active tuples that match with it.

Typically this matching is performed by a discrimination net for the entire production

system, so that multiple productions sharing the same precondition need not do the same

matching work twice.

Each tuple is made into a (singleton) set of tuples called a token, and the tokens

are passed downwards towards beta nodes (boxes with x’s in them in the figure), which

match pairs of tokens from their left and right inputs iff the tokens’ variable bindings

are consistent, as discussed earlier in this section. Tokens that are matched together are

unioned together and stored in beta memories, which also appear as bins in the figure. In

this production, the beta node connected to the first two alpha memories simply makes

matches of all its inputs, because the first two preconditions share no variables. How-

ever, the second beta node matches upon the variable <P>, so some tokens cannot be

matched together, e.g. {W1,W2} cannot be matched with {W8}, because W2 binds <P>

to WARP, while W8 binds <P> to PSM. The tokens created by the second beta node are

used to fire the production.

The primary benefit of Rete is its incrementality: the production’s memory stores

are updated by adding new tuples at the appropriate alpha memories and matching them

with those tokens already in the system. For example, if a new tuple (call it W10) were

added to the second alpha memory, it would immediately match with W1 and form a

new token {W1,W10} in the first beta memory. This token would in turn be passed to
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Figure 2.2: Example of the Rete network.
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the second beta node and be matched against any compatible tokens in the third alpha

memory, and so on. Deletion takes place similarly, a tuple being deleted at the top,

prompting a cascade of deletions as all tokens containing the tuple are removed. These

updates take place without any recomputation of matches not relevant to the tuple being

added or deleted.

Now, Rete is designed to deal with tuples, which are structured entities similar to

entries in a database table. This is not an entirely natural representation to use when

one really wants to model the matching of ground literals with quantified predicates.

In addition, much of the terminology associated with Production Systems reflects the

field’s origin as an offshoot of relational database research. I will therefore introduce

entirely new notation in the next chapter: productions become join networks, whose

properties are more focused toward logical ends, hopefully making them a more elegant

tool for my purposes.

2.2 Join Networks and FQSAT Subsearch - A First Look

In this section, I define join networks and their components, and then show how a join

network might handle the example in section 1.5.2 more efficiently than a ground in-

stantiation solver like MACE2 does.

A join network has the form of a connected, directed acyclic graph whose nodes

are literal nodes and join nodes. A single join network is used to compute subsearch

functions for a given quantified clause c. Figure 2.3 shows a join network for the clause

c shown in equation 1.5.

Each network is organized into a matrix; network nodes are referenced by their

level and position in it, e.g. J23 (sometimes written J2,3 if there is any possibility of

confusion) is the node in the third position from the left in the second level. Note that

the network may not have a node in every position of the matrix. The first network level

contains one literal node for each literal l ∈ c; each literal node contains the information

defining its counterpart literal, e.g. its predicate and arguments. Typically, literal nodes
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with negated literals are placed before literal nodes with non-negated literals for reasons

explained later. I sometimes speak of literal nodes and their literals interchangeably, as

in a “negated literal node”.

Subsequent levels contain only join nodes, sometimes called simply joins for short.

If nodes m and n are connected by an edge m→ n, I say that m is n’s parent and n is

m’s child. A node (of either type) may have any number of children , but literal nodes

never have parents, while join nodes always have exactly two parents. A node that has

no child is called a terminating node for the network. The network in Figure 2.3 (a) is

an example of a simple join network, in which every node has exactly one child except

for the terminating join node.

To describe how join networks operate, I first introduce the concept of a bindset,

the primary datum used by join networks. A bindset is a set of variable bindings: the

variables are from the quantified clause c, while the bindings are elements of the domain

D. An example of a bindset containing two bindings is {x = 1,y = 2}. Bindsets are

assumed to be coherent, i.e. a bindset cannot map a given variable to two different

domain values. I say that two bindsets are consistent or compatible if they do not map

a given variable to two different domain values; therefore, two consistent bindsets may

be unioned together to form a new coherent bindset.

Network nodes perform computation by creating, storing, and passing entries, which

are really just bindsets bundled with a data pointer or two to be explained later; I some-

times speak of bindsets and entries interchangeably. Entries are created and stored at

literal nodes by the following process. Each ground literal l from the current assign-

ment A is matched against any literal node L1i whose literal liti has the same predicate

as literal l and the opposite sign (e.g. an assignment literal ¬p(a) may match upon a

clause literal p(x), but not clause literals ¬p(x) or q(x). If the arguments for l and liti

unify, an entry is created in L1i containing the bindings created by the unification pro-

cess (e.g. literal ¬p(a) unifies with clause literal p(x), producing the bindset {x = a},
but not with clause literal p(b)). For convenience in these contexts, I sometimes refer to

literals as (negated or non-negated) atoms.
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Entries are constantly added and removed from literal nodes as A changes. If an

assignment literal and a literal node’s clause literal successfully match/unify, I say that

the assignment literal falsifies the clause literal (and the node), because at least one

ground instance of the clause literal is falsified by the assignment literal. I also say that

the assignment literal defines the resulting bindset/entry. For example, in Figure 2.3 (a),

assignment literal l2 is shown in the bin above literal node L12, signifying that l2 falsifies

L12’s clause literal; the resulting defined entry is e2, shown below L12 to indicate it was

created there.

Literal nodes pass pointers to their entries to each of their child joins. Using the

pointers, the join registers the entries in indexes that are used for more matching; I refer

to an entry passed to a join this way as an input. Join nodes attempt to match together

each input from their left parent with each input from their right parent; two inputs match

if their associated bindsets are compatible. When the inputs match, the join creates and

stores a new entry whose bindset is the union of the two input bindsets. The join passes

pointers to this new entry to each of its children, so matching a new literal with a literal

node may cause a cascading chain of entries to be added throughout the network, ending

only at the terminating node.

Figure 2.3 shows a join network that computes subsearch for the quantified clause c

from section 1.5.2. In the initial state, shown in Figure 2.3 (a), let assignment A be

A : {〈a2, TRUE〉 ,〈a3, FALSE〉} (2.1)

where a2 : move(jet7, lax,bos,2pm,8pm) and a3 : loc(plane1,bos,8pm). Since a2 falsi-

fies L12’s literal, an entry

e2 : {p = jet7, l1 = lax, l2 = bos, t1 = 2pm, t2 = 8pm} (2.2)

with the resulting bindings is created in L12; ¬a3 similarly defines an entry

e3 : {p = jet7, l2 = bos, t2 = 8pm} (2.3)

contained in L13. Initially, clause literal L11 is not falsified by any literal. Initially, join

J22 has (a pointer to) entry e2 in its index, but the join contains no entries of its own,
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because its left parent L11 has no entries, so no matches can be made. Similarly, because

J22 is empty, its child J23 is empty.

L13L12L11 ¬loc(p, l1, t1)

J22

a2 : move(jet7, lax,bos,2pm,8pm)

¬move(p, l1, l2, t1, t2) loc(p, l2, t2)

J23

a3 : ¬loc( jet7,bos,8pm)

e2 :{p = jet7, l1 = lax, l2 = bos,

t1 = 2pm, t2 = 8pm}
e3 :{p = jet7, l2 = bos,

t2 = 8pm}

(a)

L11 L13L12¬loc(p, l1, t1)

e4 : {p = jet7, l1 = lax, l2 = bos, t1 = 2pm, t2 = 4pm}

a1 : loc(jet7, lax,2pm)

J22

a2 : move(jet7, lax,bos,2pm,8pm)

¬move(p, l1, l2, t1, t2)

e5 = e4

loc(p, l2, t2)

J23

a3 : ¬loc( jet7,bos,8pm)

e1 :{p = jet7, l1 = lax,

t1 = 2pm}
e2 :{p = jet7, l1 = lax, l2 = bos,

t1 = 2pm, t2 = 8pm}
e3 :{p = jet7, l2 = bos,

t2 = 8pm}

(b)

Figure 2.3: An example of join network operations.

Now suppose in the second state, pictured in Figure 2.3 (b), 〈a1, TRUE〉 is added to

A, where

a1 : loc(jet7, lax,2pm) (2.4)

Updating the join network when a1 is assigned TRUE requires the computation of any

new entries caused by matching a1 with the appropriate literal node(s). When atom a1

is assigned TRUE, it successfully matches lit1 : ¬loc(p, l1, t1), so entry
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e1 : {p = jet7, l1 = lax, t1 = 2pm} (2.5)

is added to literal node L11. Tis sets off a chain reaction of matches. Entry e1 is in turn

passed to join node J22, and J22 successfully matches entries e1 and e2, whose bindsets

are consistent. Join J22 therefore creates a new entry

e4 = e1 ∪ e2 = {p = jet7, l1 = lax, l2 = bos, t1 = 2pm, t2 = 8pm} (2.6)

Join J22 passes e4 to join J23, which matches entries e4 and e3, creating entry e5, which

is equivalent to e4.

2.2.1 Implications of the Example

This short example prompts three observations. First, match entries represent resolution

inferences of (ground) assignment literals against the clause. Because the literal nodes

store bindsets defined by falsifying literals, and because the join nodes match together

consistent bindsets, a match entry at a join node J has a special significance. Consider all

the literal nodes that are ancestors of J. If we think of these literal nodes as a subclause

of the larger clause, then the assignment literals associated with our match entry falsify

this subclause, in the sense that they falsify some ground instantiation of it. For example,

entry e4 represents a set of assignment literals that collectively falsify ¬loc(p, l1, t1)∨
¬move(p, l1, l2, t1, t2), a prefix of c. Sets of assignment literals can also be resolved

against the original clause c to make inferences. In this case, resolving a1 and a2 with c

in succession allows us to infer a3 : loc( jet7,bos,8pm).

The second observation is that these inferences can be used to perform subsearch

functions. The above inference can be used for unit propagation, inferring a3 from the

resolution of a1 and a2 with c. The same mechanism can be used to identify PFGCs

from which to select an literal to branch upon. This process is complex and is explained

at length in section 2.4.1, but briefly, if some prefix of the quantifed clause is falsified

by some match, then we can apply the bindings contained in the match to the rest of the
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clause and pick one of the resulting literals to branch upon. A final subsearch function

that can be computed using these inferences is testing for inconsistency. Consider the the

join J23, which has all clause literals as ancestors. If this join ever makes a successful

match, the assignment literals associated with that match collectively falsify clause c,

indicating that the current assignment can never be extended to satisfy this clause.

A final observation is that the work necessary to maintain join networks depends

only on those atoms that are actually TRUE or FALSE in the assignment, not on those

atoms that are UNVALUED. Because so few atoms are actually valued in the current

assignment, only two matches are required. In contrast, implementing the same incre-

mental change in section 1.5.2 requires a ground instantiation solver to update all 10,000

clauses containing negated atom ¬a1. The great majority of these clauses may never be

satisfied or falsified during the course of problem-solving, so much of this effort on the

solver’s part may be unnecessary.

Now, if each literal of c was falsified by many assignment literals, one might expect

its join network to create a great many matches, possibly making matching more expen-

sive than MACE2-DPLL’s ground clause updates. But for this particular domain, a given

assignment literal l1 falsifying literal node L11 is unlikely to create more than one match

in join J22, because of the underlying semantics of the domain. Of all the assignment

literals l2 that falsify the second literal, ¬move(p1, l1, l2, t1, t2), only one should match

l1’s bindings. This is because a plane starting at a given place and time will never make

two or more simultaneous moves to new places and times; only one move is possible in

the real world.

The foregoing is an example of the negative bias (mentioned in section 1.7.3) shown

by DPLL-style solvers: the expectation that models for problems of interest will have a

high ratio of FALSE to TRUE atoms. In general, I claim that join networks benefit from

the negative bias in two ways:

1. Negated problem literals will be matched against relatively few positive atoms,

because most atoms, if assigned at all, are assigned FALSE by a model (and any

assignment explored while finding a model).
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2. Even non-negated literals will not encounter many matches, because typically a

model is found before most atoms are valued at all by the assignment. This is

true for two reasons. The first is that typically a DPLL-style algorithm need only

value some subset of the Herbrand base H (C,d), the set of all ground atoms

constructable from the (function-free, in this case) clauses and the domain values

in D, in order to find a model. The second is that the negative bias allows a solver

to solve clauses without explicitly assigning their negated literals to FALSE (as

seen in MACE2-DPLL, figure 1.7, line 4). Another way of putting this is that the

negative bias contributes to an overall unvalued bias: an expectation that model-

finding does not require very many atoms from the Herbrand base to be explicitly

valued.

The negative and unvalued biases also drive my organization of join networks so that

negated literals come before non-negated literals in the network. To see why, one must

reference database query optimization, specifically, the technique of join ordering [24].

It is well known that a given database query consisting of joins between several tables

can take significantly more or less time depending upon the order that the joins are exe-

cuted. We should expect to see similar phenomena in a join network, because each join

network is essentially a query that selects sets of falsifying literals from the literal nodes

they falsify, with joining occuring to ensure that the falsifying bindings are compatible.

In this analogy, the network literal node assumes the role of the database table.

If join networks are like queries, then as with query optimization, we generally want

to avoid joining a “large table” (a literal node having many entries) early in the sequence

of joins. It is often far better to join that literal node last, when presumably the number of

entries joined with it will be very small, as these entries are a result of matching multiple

successive joins. The join of this small number of matches with our presumptive large

literal node should then produce as few matches as can be hoped for. Therefore, it makes

sense to join together negated literal nodes first, because according to the negative and

unvalued biases, typically they will be falsified by fewer literals than will non-negated

literal nodes. Figure 2.4 shows an example of this phenomenon. The figure shows data
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L11 L12 L14L13 V (z,v,y)¬V (u,v,w) ¬V (x,w,y) ¬V (x,u,z)

J22 J23

44K 44K 44K 188K

599K 45K

(a)

L11 L12 L14L13 V (z,v,y)¬V (u,v,w) ¬V (x,w,y) ¬V (x,u,z)

J33J32

44K 44K 44K 188K

195K 4535K

(b)

Figure 2.4: Increased matching from early joining of a large table.
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from actual runs of the o1e1 problem presented in section 3.1.1. The two join networks

in the figure are annotated with the number of entries created at each node. The join

network in part (a) flows left to right, joining negated literals first, while the network in

part (b) flows right to left, joining a non-negated literal first. As expected, network (b)

creates many more entries than network (a) because of the matching occurring at join

node J33, where the large table (non-negated literal node L14) is first joined upon.

2.3 A Complexity Comparison of MACE2 and Join Network Sub-

search

Integrating a quantified, join-based subsearch system into the larger DPLL algorithm

involves a number of technical challenges and resulting elaborations. The complexity

comparison between such an elaborated system and MACE2 becomes murky. However,

a useful starting point for this comparison is to compare the basic incremental operations

of MACE2 with those of the basic join-based system sketched out in section 2.2.

2.3.1 Initial Cost Estimate for MACE2

Let us examine an arbitrary quantified clause c that MACE2 instantiates in the INSTAN-

TIATE procedure, such that c = (Pr1(−→x )∨Pr2(−→x )∨·· ·∨Prn(−→x ) , in which each Pri is

some negated or non-negated predicate instance containing some subset of the variables

in c. Assume clause c has m clause variables, i.e.|−→x |= m, and suppose that the current

domain size is d. Then the set Gc of distinct ground instantiations of c will have size

dm. Now, during execution of the search algorithm, suppose a literal l is added to the

assignment such that l matches P1(−→x ), i.e. ¬l is a grounded version of P1(−→x ). Now, P1

only contains some subset x′ of the set −→x of all variables in the clause c; suppose that

x′ = n. This means there must be dm−n ground clauses in Gc that match literal l.

Now, recall from section 1.7.3 that MACE2 keeps tallies for each ground clause,

and that these tallies must be updated every time a flipped literal matches some clause

literal. Therefore, when literal l is flipped, MACE2 must update a number of clauses
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exponential in m− n. Also significant is that the number of clauses updated will be

proportional to the domain size d.

2.3.2 Initial Cost Estimate for Join Networks

A join network’s complexity is fundamentally different from MACE2’s. The work done

by MACE2 is primarily a function of the syntactic complexity of the input clauses,

that is, how many variables each contains. In contrast, the join networks found in the

JOINSAT algorithm operate by matching literals from the current assignment with each

other. JOINSAT therefore has complexity dependent on the size of that assignment and

the matching factor, or degree to which the literals match together.

I should first note that a typical assignment is usually far smaller than the Herbrand

base. This is because of the factors mentioned in section 2.2.1, i.e. that the solver usually

finds a solution before all atoms are assigned, and that most atoms given an assignment

are assigned FALSE.

Given a quantified clause c, JOINSAT uses a network similar to the simple join

network in Figure 2.3 to compute various subsearch functions via matching. There are

various dominant costs required to update the join network: creating entries, inserting

them into join indices, checking for matches, etc. However, since these costs are all

linearly proportional to the total number of successful matches made by the network,

we may assess the network’s complexity using this latter measure. For simplicity in the

following calculation, I drop the level designator for each node, so e.g. join J22 becomes

J2, literal node L11 becomes L1, and so on.

At any join Ji, the number of matches can be expressed by

M(Ji) = Le f t_Inputs(Ji)∗Factor(Ji)∗Right_Inputs(Ji) (2.7)

where Le f t_Inputs(Ji) is the number of inputs from Ji’s left parent, Right_Inputs(Ji)

is the number of inputs from the right parent, and Factor(Ji) is the matching factor,

or probability that any two arbitrary bindsets match at Ji. Now, consider that Ji’s right
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parent is always a literal node Li, and that the number of inputs from Li is exactly the

number of literals matching Li: I denote this number of matches M(Li) . Furthermore,

the number of inputs from Ji’s left parent is M(Ji−1). Therefore, we obtain the recur-

rence:

M(Ji) = Le f t_Inputs(Ji) ∗ Factor(Ji) ∗ Right_Inputs(Ji)

= M(Ji−1) ∗ Factor(Ji) ∗ M(Li)

M(J2) = M(L11) ∗ Factor(Ji) ∗ M(L2)

(2.8)

The above recurrence can be consolidated to:

M(Ji) =

(
i

∏
k=2

(Factor(Jk−1)∗M(Lk))

)
∗M(L11) (2.9)

To simplify further, let us introduce some representative members. Given an array

of similar entities (e.g. M(J1) . . .M(Jn) ), I define a representative member as a member

of the array that can be substituted into a Big-O equation for any of the other mem-

bers without falsifying the resulting equation . Obviously, to meet this restriction, the

most costly member from the array must be used. First letting the array be the set of

Factor(Ji) for all joins, let Factor be the most costly matching factor of these. Then

letting the array be the set of M(Li) for all literal nodes, let ML be the most costly of

these. Using these measures, the above equation can be converted into a simplified

Big-O equation:

M(Ji) = O(FactorML)i (2.10)

.

Using equation 2.10, an upper bound on the cost of the entire matching process can

be set. The overall cost is dominated by the join match cost:

Cost(Jn) = O(∑
n
2 M(Ji)) (2.11)
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Substituting in the equivalence in equation 2.10:

Cost(Jn) = O(∑
n
2 M(Ji))

= O(n∗M(Ji))

= O(n∗ (Factor ∗ML)n)

(2.12)

At this stage, I note that ML, the number of matches of our representative literal L,

should be expressable in terms of d. The total number of ground instances of L is dp,

where p is the number of distinct clause variables in L. Therefore ML is certainly less

than dp. If the number of ground instances of L that are not in the current assignment A

is expressed as dl , ML may be expressed as dp−l:

Cost(Jn) = O(n∗ (Factor ∗dp−l)n) (2.13)

Now, we should also be able to express the representative matching factor Factor

in terms of d. The matching factor Factor(Ji) is determined by the number of joined

variables at a given join Ji. If only one variable is joined, and there are d possible

bindings, one would expect that a given left input and right input would only match with

probability 1
d . Letting j be the number of variables joined at our representative join,

Factor may be expressed as 1
d j . Substituting this value into equation 2.13, we obtain:

Cost(Jn) = O(n∗ (dp−l− j)n) (2.14)

which may be finalized as

Cost(Jn) = O(n∗dn∗(p−l− j)) (2.15)

From this equation it is evident that like MACE2, JOINSAT’s complexity is in fact

exponential, but in the number of clause literals n and the number of variables p in a

representative predicate. Like MACE2, JOINSAT’s complexity measure is proportional

to the domain size d.

At first glance, an analyst might expect JOINSAT’s complexity to be greater than

MACE2’s. Both measures have a base of d, but JOINSAT’s exponent is a product of two
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measures, whereas MACE2’s is simply the number of clause variables v. In addition,

JOINSAT’s exponent contains a multiplier of n. However, there are several reasons

to expect that JOINSAT’s cost in practice will be less than that of MACE2. First, at

worst, JOINSAT’s exponent can be no greater than n ∗ p, which should not be much

larger than v. To see this, consider that n∗ p can be seen as the total number of variable

instances (including duplicate instances) in some representative quantified clause, while

v is the total number of variables (this time excluding duplicate instances) in the same

quantified clause. Even if each clause variable appears three times in the clause, the

resulting advantages for MACE2 should be more than counterbalanced by the effect of

the negative exponents l and j.

Let us examine these exponents individually. In most joins, one would expect the

number of joined variables j to be almost as large as the number of predicate variables

p. This is because the number of join variables is constantly increasing as the join

network moves rightward. This is especially true in the later joins, in which the left

input bindsets already contain most of the clause variables. Even in a worst-case join

matching relatively early, one would still expect at least one variable to be matched

upon.

Now let us appraise the influence of l, remembering that dp−l is the number of liter-

als in the current assignment matching our representative clause literal. Now, if l were

0, then dp−l would become dp, meaning that every possible instantiation of our rep-

resentative clause literal would be present in the current assignment.. But as stated in

section 1.5.2, in practice this is unlikely: most problems can be solved by small assign-

ments/models, so one would expect l to be close in value to p. If the above arguments

are correct , p− l− j should be very small, perhaps less than 1, and JOINSAT’s cost

should be far less than MACE2’s.
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2.4 Design Challenges of Integrating Join Networks into an FQSAT

Solver

Section 2.2 sketched out how a join system could perform subsearch functions like de-

tecting clause falsification and unit propagation literals. However, the full integration of

a join system into a DPLL-style algorithm involves several other technical challenges

that must be solved. I examine these solutions in this section before examining the full

algorithm in detail in section 2.5.

2.4.1 Ensuring Completeness Via Literal Choice

As seen in section 1.7.3, MACE2 chooses which literal to flip next in two ways: unit

propagation and selecting positive literals from unvalued clauses. One advantage of

MACE2’s exponential representation is that finding eligible clauses for these processes

is straightforward: each ground clause is examined and various tallies determine if the

clause is a candidate for propagation or branching. While the join network in section

2.2 seems to be capable of computing these same functions, in the general case this

computation is more complicated, because a simple sequence of joins does not produce

all the information contained in MACE2’s system of ground clauses and tallies.

Figure 2.5, which reuses the example problem from section 1.7.3, illustrates several

situations that are problematic for join networks. Figure 2.5 (a) portrays a join network

for the clause ¬p(v,w)∨¬q(w,x)∨ r(x,y)∨ s(y,z) that has been updated to represent

search space node 6©, in which r(1,1) is flipped to FALSE. In this case, a match is created

at join J23, indicating that the first three literals of the clause are falsified by the literals

associated with the match. This sets up an opportunity to perform unit propagation by

resolving the literals against the clause. The problem in this case is that the output of

resolution is a literal that is not ground, but quantified: s(1,z). This case seems relatively

easy to solve: we just instantiate s(1,z) into all possible ground literals, e.g. s(1,1)and

s(1,2), and immediately flip both of these to TRUE.

However, literal selection can produce less straightforward cases. Consider Figure
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L14L12L11 L13 s(y,z)r(x,y)¬p(v,w) ¬q(w,x)

J22 J23

p(1,1) q(1,1)

{v = 1,w = 1,x = 1}

{w = 1,x = 1}{v = 1,w = 1}

{v = 1,w = 1,x = 1,y = 1}

{x = 1,y = 1}

¬r(1,1)

(a)

L12 L13 L14L11 s(y,z)r(x,y)¬p(v,w) ¬q(w,x)

J22 J23

p(1,1) q(1,1)

{v = 1,w = 1,x = 1}

{w = 1,x = 1}{v = 1,w = 1}

(b)

Figure 2.5: JOINSAT design challenges.
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2.5 (b), which shows search space node 2©, in which the first two literals of clause c

are falsified. The set of partially falsified ground clauses defined by these bindings is

represented by

¬p(1,1)∨¬q(1,1)∨ r(1,y)∨ s(y,z) (2.16)

To ensure completeness in this case, the algorithm needs to implement some form of

DPLL’s line 6 (from Figure 1.1), selecting ground literals that satisfy these ground

clauses and branching upon them. One problem is that there are multiple literals that

could be chosen: any instantiation of r(1,y) or s(y,z) flipped to TRUE would satisfy

some ground clause subsumed by the formula in equation 2.16. Another problem is that

unlike in the unit propagation case, the process of selecting and flipping all the ground

literals necessary to satisfy these PFGCs takes place over many iterations of the DPLL

procedure. So, some systematic mechanism is needed to track the literals we have al-

ready flipped and to determine which literals remain to be flipped. For example, having

chosen and flipped literal r(1,1), some mechanism is needed to remind us not to choose

r(1,1) again, but instead to choose a new literal, say r(1,2), that satisfies other PFGCs

implied by equation 2.16. Finally, suppose the search path proceeding from flipping

r(1,1) to TRUE ends in a backtrack. It is clear that (1) r(1,1) must next be flipped to

FALSE, and (2) doing so prompts the propagation of the ground literals subsumed by

s(1,z), just as occurred in Figure 2.5 (a). However, the question remains of how to

coordinate all these actions in a fashion that preserves the systematicity (and therefore

completeness) of the overall search.

I use Figure 2.6 to illustrate my solution to these problems, as well as illustrate all

of JOINSAT-DPLL’s operations, in the next section. The solution resembles a waterfall,

an often-used idiom in computer science. I first define two special classes of join nodes:

selection join nodes and propagation join nodes; these are shown in the figures as a dou-

ble circle and a bolded circle, respectively. In a simple join network having m negated

literals and n non-negated literals, joins J2,m . . .J2,m+n−2 will be selection join nodes,

while join J2,m+n−1 will be a propagation join node. Therefore, the first selection node

joins the last negated literal node with the rest of the network, while the single propa-
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L14L11 L13L12 s(y,z)r(x,y)¬p(v,w) ¬q(w,x)

J22 J23

(a)

L14L12 L13L11 s(y,z)r(x,y)¬p(v,w) ¬q(w,x)

J22 J23

p(1,1)

{v = 1,w = 1}

(b)

propagation

join node
selection

join node

L14L13L11 L12 s(y,z)r(x,y)¬p(v,w) ¬q(w,x)

J22 J23

p(1,1) q(1,1)

{v = 1,w = 1,x = 1}

{w = 1,x = 1}{v = 1,w = 1}

r(1,1)

(c)

Figure 2.6: Operations of the JOINSAT network (part 1).
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gation node is a termination node joining the penultimate literal node with the network.

For example, in Figure 2.6 (a), join node J22 is a selection node joining the last negated

literal node, L12, while join node J23 is a propagation node joining the penultimate literal

node, L13.

Entries in selection and propagation nodes have the special function of storing point-

ers to literals that are candidates for flipping. These literals are computed by referencing

the literal node target of the selection/propagation node. In Figure 2.6, literal node

targets are shown using dashed arcs: for example, the selection node J22’s literal node

target is L13, and the propagation node J23’s target is L14. When an entry is added to the

selection/propagation node, that entry’s bindset is applied to the literal of the node’s lit-

eral target node. The resulting (possibly non-ground) literal represents the set of ground

literals that will be flipped to TRUE or FALSE in order to satisfy the clause.

For example, in Figure 2.6 (c), the flipping of q(1,1) causes an entry

e1 : {v = 1,w = 1,x = 1} to be added to selection node J22. Node J22’s literal node

target is L13, so e1’s bindset is applied to r(x,y), producing the literal r(1,y). This literal

defines a vector of ground atoms that are subsumed by it: in this case, with domain size

d = 2, this vector is 〈r(1,1),r(1,2)〉. I label this vector the target vector of entry e1

and order the vector using each literal’s (ground) arguments, i.e. r(1,1) precedes r(1,2)

because 11 < 12. While e remains active, i.e. until we backtrack and remove q(1,1), e1

maintains a pointer to the least atom in the target vector that is unvalued by the current

assignment. I call this atom the least unvalued target of the entry. In Figure 2.6 (c),

atom r(1,1) is unvalued, so initially it is the least unvalued target of entry e. The atom

itself keeps a list of update entries, entries for which it is a least unvalued target.

During the unit propagation and literal selection phases, propagation nodes and se-

lection nodes, respectively, are scanned for candidate atoms. Each entry in these join

nodes contains a least unvalued target; the set of all such targets system-wide is the set

of candidates for flipping. When a target is flipped, it no longer is unvalued, so it up-

dates all the entries on its update entries list. Continuing the example, in Figure 2.6 (d),

the selection phase chooses entry e’s target for flipping, and r(1,1) is assigned TRUE.
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L12 L13 L14L11 s(y,z)r(x,y)¬p(v,w) ¬q(w,x)

J22 J24

Figure 2.7: A second simple join network for propagation.

The atom’s update entries of course include entry e. Entry e’s least unvalued target is

therefore updated to the next lowest atom in its target vector, r(1,2).

Over time, this system prompts JOINSAT to give all target atoms of an entry e the

truth value required to satisfy all the PFGCs defined by entry e. However, in the nature

of things, the search process may be forced to assign some of these targets the opposite

truth value instead. For example, consider Figure 2.6 (e), in which backtracking forces

JOINSAT to revise r(1,1)’s assignment to FALSE. In this case, those PFGCs that were

satisfied by r(1,1) now must be satisfied by flipping some instantiation of s(y,z) to

TRUE. This is automatically accomplished by the interaction of the join network with

the target system described above. In this case, the negated atom ¬r(1,1) falsifies clause

literal r(x,y), so the negated atom is added at literal node L13. This in turn creates a

match entry e2 : {v = 1,w = 1,x = 1,y = 1} at propagation node J23. Since J23 is a

propagation node, entry e2 is immediately given a least unvalued target of s(1,1), and

this target is flipped to TRUE during unit propagation (in search space node 7, shown in

Figure 2.6 (f)). Flipping s(1,1) to TRUE updates e2’s least unvalued target to s(1,2), and

this atom is correspondingly made TRUE via propagation. At this point, s(1,2) is the

last atom in e2’s target vector, so e2’s least unvalued target is now set to φ .

This sequence illustrates the waterfall-like behavior of the atom selection system.

In this analogy, the PFGCs, represented by entry bindings, are the water. Some of the

PFGCs are satisfied at a particular join by flipping entry targets, but those that are not
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create new matches, thus flowing on to a join further on in the network, where they are

addressed anew.

2.4.2 Unit propagation

Section 2.4.1 showed the mechanism by which JOINSAT added literals to satisfy PFGCs,

ensuring completeness. However, even using the waterfall system, the simple join net-

work illustrated in Figure 2.6 is inadequate for computing all possible opportunities for

unit propagation. This network can indeed compute unit propagation for the last clause

literal, because any bindset output from join J23 represents a ground instantiation of lit-

erals L11 . . .L13 that is falsified by the current assignment. However, unit propagation

cannot be similarly calculated for, say, literal L13. The bindsets coming into join J23 only

represent ground literals that falsify the first three clause literals, as opposed to clause

literals 1, 2, and 4, which is what would be needed to compute a propagated unit for lit-

eral node L13. Of course, this could be achieved by using a second simple join network

in which the order of the joins is rearranged, as in Figure 2.7. However, this approach

would require n networks for an n-literal clause, which seems extravagant. It would be

desirable to formulate one join network of smaller size that computes unit propagation

for all clause literals.

Let us reflect upon the requirements of a join network that computes unit propagation

for a given literal lit whose literal node is L1i. This join network must terminate in a

join node J that will output the bindings allowing us to construct the propagated unit.

Therefore, to perform valid unit propagation inference, J’s ancestors must include every

literal node except L1i. Indeed, the key difficulty is the requirement that J must not have

L1i as an ancestor, because this makes it difficult for us to use the same join structure to

compute unit propagation for multiple clause literals.
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L13L11 L14 L15L12

J34J33J32

s(y,z)r(x,y)¬q(w,x)¬o(u,v) ¬p(v,w)

J24J22 J23

J44J42 J43

Figure 2.8: JOINSAT unit propagation network

2.4.2.1 The unit propagation network

Figure 2.8 depicts my solution, the join network actually used by JOINSAT to compute

unit propagation and also literal selection. The network consists of the literal node layer

plus three layers of join nodes. The first join layer forms a simple join network flowing

left to right. The last of these join nodes, node J2n−1, is a (terminating) propagation node

whose target is literal node L1n. The second layer proceeds right to left; join node J32

is here a (terminating) propagation node having literal node target L11. The final layer

joins together inputs from the first two layers and contains the bulk of the propagation

nodes for the system. These nodes have as targets literal nodes L12 . . .Ln−1.

It is easy to see that nodes J2n−1 and J32 perform valid unit propagation inference for

L11 and L1n, respectively. Each of these joins is the terminating join of a simple network

that includes each literal node except for the join’s literal node target. Verifying valid

inference for the joins in the third join level is only slightly more involved. Consider
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a given third-level join J3i, which computes unit propagation for literal node L1i. Now,

J3i’s left and right parents are J1i−1 and J2i+1, respectively. We know that J1i−1 has as

ancestors all node literals to its left, i.e. L11 . . .Li−1, while J2i+1 has as ancestors all node

literals to its right, i.e. Li+1 . . .L1n. Therefore, join J3i has as ancestors all literal nodes

except for Li.

Therefore, this network computes unit propagation for each clause literal, yet con-

tains less than 3n joins, where n is the number of clause literals. This is a great improve-

ment on the n2 joins that would be required by using n different simple join networks to

compute propagation. The other important feature of this network is that it incorporates

the left-to-right simple join network (including selection join nodes) used in the prior

section for the selection phase; this simple join network forms the first join level (joins

J21 . . .J2n) of the larger network.

2.4.2.2 Adding derived clauses

In an obscure but significant case, the above network fails to compute available prop-

agation opportunities. This case is sometimes found in quantified clauses having two

separate instances of the same predicate, and is best illustrated with an example. Con-

sider the clause

c : ¬p(u,v)∨¬q(v,w)∨¬q(w,x)∨ r(x,y)∨ s(y,z). (2.17)

Suppose that the current assignment A contains the following literals: p(1,2), ¬r(2,3)

and ¬s(3,4). Now, one of the ground instantiations of c is

g : ¬p(1,2)∨¬q(2,2)∨¬q(2,2)∨ r(2,3)∨ s(3,4) (2.18)

and if the assignment literals are resolved against g we obtain

¬q(2,2)∨¬q(2,2) (2.19)
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Therefore, this is a unit propagation opportunity, because ¬q(2,2) is implied by the

current assignment. MACE2 will detect this opportunity, because it keeps an explicit

representation of clause g and its various tallies, but JOINSAT will not, even using the

full network described in the previous section. This is because that network detects

propagation by joining together all literal nodes except one. But in this case, we would

need to join together all literal nodes except two: literal nodes L12 and L13. So, this case

will not be detected.

There are several potentially good solutions to this problem. Ours is to create new

clauses, called derived clauses, in which pairs of problematic clause literals like those

found in c are unified together. These derived clauses do not replace the originals, but

rather are added to the original clause set. In the foregoing example, the procedure

DERIVED-CLAUSES unifies the second and third literals of c, producing the new literal

¬q(w,w) and associated replacement bindings y = z and z = w. A new clause c′ is

then created from c, with the new literal replacing the second and third literals and the

replacement bindings applied to the entire original clause:

c′ : ¬p(u,v)∨¬q(w,w)∨ r(x,y)∨ s(y,z). (2.20)

The new clause c′ will detect the unit propagation opportunity shown earlier.

Adding derivative clauses can be a costly solution, as it creates wholly new clauses

which require new join networks to compute subsearch for them. Furthermore, if the

original clause contains n identical literals, as many as 2n derived clauses might need to

be created. In practice, derived clauses add less cost than might be expected because the

new clauses often have literals that are rarely matched, such as q(w,w) in the example.

However, since I find empirically that derived clauses are often not worth their cost, I

do not construct them for clauses in which a great number must be created.
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2.4.3 Finding clauses with k unvalued literals

There remains the more general problem of detecting partially falsified ground clauses

having k unvalued literals mentioned in section 1.5. This function is used by MACE2

to implement an optional heuristic literal selection function (see the code for MACE2-

SELECT-LITERAL in Figure 1.10). For a join-based subsearch system like JOINSAT,

solving this problem is probably so difficult as to be infeasible. To see this, suppose we

have a quantified clause c of size n and we choose a set K of size k of its literals. Suppose

further that we want to detect the partially falsified ground instantiations of c having k

unvalued literals, each of which is an instantiation of some quantified literal in K. Now,

any clause in this set has the following two properties. First, all its literals are not

instantiated from K must be negated by the current assignment. Second, all its literals

that are instantiated from K must be unvalued. Computing the set of clauses having the

first property seems feasible: a join network having as ancestors all the literals not in K

would be required. Detecting clauses having the second property is much harder, to the

point that I only sketch how it might be achieved.

First, for each literal in K, we would need to compute the set of unvalued atoms with

the same predicate. For example, for literal p(x,y) and domain size d = 3, if the current

assignment A contains two assignments, e.g. A :{〈p(1,1), TRUE〉 ,〈p(1,2〉 , FALSE}, then

the set of all ground instantiations of p(x,y) that are not in A is

{p(1,3), p(2,1), p(2,2), p(2,3), p(3,1), p(3,2), p(3,3)} (2.21)

As stated before, it is expected that the number of unvalued literals will be very

large compared with the number of literals assigned a value, so one would expect this

computation to be very expensive. If these matches were computed for each unvalued

literal, they would still need to be joined together to ensure that the bindings for each

literal were consistent. Then this network would need to be connected to the network

computing the first property .

This is already quite complicated, but the real reason this computation is infeasible

is the great number of possible sets K of unvalued literals. If a clause c has n literals,
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there are

 n

k

=
n!

k!(n− k)!
different subsets of c with k literals, and presumably each

of these would require the kind of complicated network sketched above. So, it appears

that the general problem of finding PFGCs with k unvalued literals is beyond JOINSAT’s

powers.

Happily, the efficiency gain from this heuristic is comparatively small. Most modern

solvers implement literal choice heuristics associated with clause learning, and these

typically tally the number of literal occurrences in conflict clauses, as opposed to finding

clauses with k unvalued literals.

2.4.4 Clause subsumption

I noted in section 1.7.2.6 that MACE2 eliminates subsumed ground clauses from its

clause set in preprocessing. It is unclear whether this task is feasible for JOINSAT,

precisely because it does not instantiate all the ground clauses. For example, in MACE2,

a ground unit clause c1 : ¬p(1) could resolve with c2 : p(1)∨¬q(1,1)∨r(2), producing

the clause c3 : ¬q(1,1)∨r(2), which then subsumed c4 : ¬q(1,1)∨r(2)∨s(3). Suppose

c2 and c4 have quantified counterparts used by JOINSAT : c′2: p(w)∨¬q(w,x)∨ r(y) and

c′4¬q(w,x)∨r(y)∨s(z). This ground reasoning cannot be duplicated using joining alone:

we could insert ¬p(1) into the join network for c′2, but this would just produce an entry,

not a ground clause.

Of course, we could use the resolution of c1 and c′2 to create a new clause c′′2:¬q(1,y)∨
r(z), and then use subsumption reasoning in reference to c′4 to show that a specialization

c′′4 : ¬q(1,x)∨ r(y)∨ s(z) is subsumed by c′′2 . But this does not eliminate c′4 itself, so

it achieves little. Because I cannot see a way to make clause subsumption profitable,

JOINSAT does not implement it.
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2.4.5 State of the art SAT optimizations

As noted in section 1.3.2, recently a number of important optimizations have improved

the performance of SAT solvers by several orders of magnitude. For the join network

method to be of real research interest, it must be able to support the implementation

of these optimizations in a quantifed setting. Happily, and in contrast to some of the

above sections, join networks appear to compute enough information to make these

optimizations feasible. For example, conflict learning typically analyzes information

from a backtracking point to make a new ground rule. This information consists of a list

of assignments that together directly take part in the conflict. Join networks can compute

these assignments by looking at the structure of entries that caused the propagation of

two conflicting atoms. For example, if an atom p(1) is propagated, a tree of entries can

be traced back, one per node, from the entry that had p(1) as a least unvalued target. This

tree of entries ultimately leads to entries at literal nodes that can be traced to assigned

atoms. Non-chronological backtracking requires the same information.

One potential problem is that adding many ground conflict clauses will make the

overall problem being solved propositional rather than quantified. Although join net-

works can solve pure SAT problems (in this case the literals in the literal nodes sim-

ply have no variables), there is reason to believe they will be less efficient than ground

solvers at doing so. Therefore, the degree to which adding ground conflict clauses might

bog down a join network is a an open question. However, one could always create a hy-

brid system that used ground methods for the conflict clauses and join networks for the

original, quantified clauses.

State of the art heuristics for atom choice revolve around how recently a particular

conflict-created clause was used to prune search; this information is no more difficult to

track using networks than using a ground solver.
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procedure JOINSAT(T ,D)

1: T1 := EXISTENTIALSTOFUNCTIONS(T )

2: T2 := FLATTEN(T1)

3: C1 := FUNCTIONCONSTRAINTS(T1,D)

4: C2 := SYMMETRYCONSTRAINTS(T1,D)

5: QC1 := QUANTIFIEDCNF(T2)

6: QC2 := DERIVED-CLAUSES(QC1)

7: S := JOINSAT-INITIALIZE(QC1 ∪ QC2, C1 ∪C2 )

8: JOINSAT-FLIP(S,dummy(), TRUE)

9: return JOINSAT-DPLL(S)

Figure 2.9: JOINSAT. Given an FQSAT problem (T ,D) , to compute JOINSAT(T ,D):

2.5 Presentation of the Full Algorithm

In the prior section I explored the primary design challenges to creating a DPLL-style

algorithm that uses join networks to compute subsearch. Having described the solutions

to these challenges in detail, I can now begin a straightforward presentation of the full

algorithm, whose top-level procedure shown is in Figure 2.9. For this purpose, some

material introduced earlier is reused, including the example problem used to detail the

MACE2-INITIALIZE and MACE2-DPLL algorithms in section 1.7.3; this problem is

displayed in Figure 1.5. Figure 2.6 from section 2.4 is also reused by extending the

figure to parts d,e,f and g below . Note that in this figure only levels one and two of the

larger JOINSAT network presented in Figure 2.8 are displayed; I have constructed the

example so that the relevant activity occurs only in these levels.

2.5.1 Preprocessing

Like MACE2, JOINSAT works with logical clauses, but unlike MACE2, these clauses

are quantified. Therefore, JOINSAT uses only some of the preprocessing procedures

used in MACE2 and detailed in section 1.7.2. In particular,
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EXISTENTIALSTOFUNCTIONS, FLATTEN, FUNCTIONCONSTRAINTS, SYMMETRYCON-

STRAINTS and QUANTIFEDCNF are used without alteration (lines 1-5 in Figure 2.9).

Originally, JOINSAT utilized versions of FUNCTIONCONSTRAINTS (line 3) and

SYMMETRYCONSTRAINTS (line 4) that produced quantified clause versions of these

constraints. However, it was found that join networks offered no efficiency advantage for

such constraints over MACE2, and indeed that the additional overhead of join networks

in this case caused a slowdown. Therefore, JOINSAT runs a process of MACE2-DPLL

in tandem with its own JOINSAT-DPLL solver; this process performs subsearch solely

for the functional and symmetry constraints. Accordingly, JOINSAT uses the MACE2

versions of these functions to produce propositional clauses and also calls MACE2-

INITIALIZE to create data structures for them. However, for simplicity these operations

are not discussed further in this chapter; instead, the fiction is maintained that the propo-

sitional constraints are initialized with the quantified clauses (line 7).

Because JOINSAT uses quantified clauses, MACE2’s INSTANTIATE and MACE2-

INITIALIZE processes are unneeded, with the exception noted above. The same is true

of the CLAUSESPLIT process: generally speaking, JOINSAT’s memory usage is not ex-

ponential in relation to problem size, so using CLAUSESPLIT offers no benefit. Indeed,

by declining clause splitting, JOINSAT’s search space is substantially reduced in some

cases, offering an advantage over MACE2.

DERIVED-CLAUSES (line 6) was described in section 2.4.2.2. These derived quan-

tified clauses are added to the original quantified clause set. To avoid generation of huge

derived sets, JOINSAT generates derived clauses only for those original problem clauses

containing 12 clause variables or less.

2.5.2 The JOINSAT-INITIALIZE Procedure

In line 7, JOINSAT calls JOINSAT-INITIALIZE, which creates the initial state struc-

ture S, pictured in Figure 2.10. The structure S contains two main elements: atoms and

networks. The element atoms is a table, initially empty, containing entries representing

ground atoms, similar to the table used in MACE2-DPLL. As with that table, an atom is
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represented in S.atoms if the atom is valued in the current assignment, and in this case

atom.value contains one or more truth values. However, an atom can also be present in

the table if the atom is the least unvalued target of some join entry, in the sense intro-

duced in section 2.4.1; such atoms are obviously not valued by the current assignment.

Indeed, atoms typically are created and inserted into S.atoms in such a capacity, and

only later are assigned some truth value. Each atom represents its corresponding ground

atom using the fields predicate, which contains the atom’s predicate (e.g. p for atom

p(1,1)), and args, a vector of the domain element arguments in the atom (e.g. 〈1,1〉 for

atom p(1,1) ).

The second element in S, S.networks, contains a join network for each quantified

clause in QC′; each network computes unit propagation and literal choice for that clause.

Except in the case of very short clauses (≤ 2 literals), each network has the form of the

network introduced in Figure 2.8. However, in the example problem, clauses 2-5 are

relatively short, so their networks are simpler: I do not detail their operations in any

detail in the example, instead focusing on clause c1.

In the case of clauses having only one literal, we want that literal to immediately be

unit propagated. However, the target method described in section 2.4.1 implementing

propagation and selection does not work for clauses of length one: the method requires

some join to point to the desired target and catalyze propagation, but no obvious join

exists here. I therefore use a special-purpose network for such clauses1, for example,

for clause 2 of the example problem, which happens to be ground: p(1,1). First, a

dummy literal ¬dummy() is added at the front of the clause, and then an extremely

simple network having only two joins (J11and J12) is made. Each join has the literal

node on its “side” as its left and right parent, and each join is a propagation join having

the literal node on the other “side” as its target_literal_node. The effect of this network

is to make adding either one of the literals immediately cause unit propagation of the

other literal. In this case, the dummy() literal has a special status: in line 8 of JOINSAT,

a special initial flip of the atom dummy() is made, to TRUE. This flip will cause p(1,1)

1This rather inefficienct network could certainly be improved upon
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Figure 2.10: JOINSAT initial state structure S.
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to be unit propagated at the start of the JOINSAT-DPLL algorithm. The network for

the third clause, q(1,1), has an identical network to the second. I defer discussion of

JOINSAT-FLIP until the next section.

Clauses having only two literals also use a simplified network, being too short to

require complex selection and propagation networks. The simplified network is the

same as that used for one-literal clauses, but the clause is not supplemented with the

dummy() literal. The networks for the fourth and fifth clauses, which each have two

literals, are of this kind.

Literal nodes have fields (similar to those found in an atom) that represent their

corresponding literal. The predicate field represents the literal’s predicate (p in the case

of p(1,x)) and args is a vector containing the domain elements and clause variables

found in the literal (〈1,x〉 in the case of p(1,x) ). Each join node contains an index, an

indexed table containing data structures called entries. As explained in 2.2, entries are

passed to the join by its left and right parents and matched together using index. The

table is indexed upon two values: first, LEFT or RIGHT, denoting whether the entry was

passed by the left or right parent, and second, by a subset of the bindings found in the

entry’s bindset. In the actual implementation of JOINSAT, index is implemented as a

dynamic hash table that converts these bindings into a hash key.

The remaining data in S are lists or arrays of pointers to various classes of nodes in

S.networks. S.literal_nodes is the most complex, a two-dimensional array of pointers

to all literal nodes in S.networks. This array is indexed by two quantities: the predicate

of the literal node and the literal node’s value, expressed as TRUE or FALSE. For ex-

ample, literal node L11 from the fourth network has a predicate of r and a value of

FALSE (because its literal, ¬r(1,1), is negated). As we shall see, these dimensions al-

low JOINSAT-DPLL to select precisely the set of literals that must be accessed when a

given atom is flipped. S.selection_ joins and S.propagation_ joins are lists of pointers

to all selection and propagation joins, respectively, found in S.networks; these lists are

used to find candidates for selection and unit propagation. Selection and propagation

joins contain fields target_literal_node, a pointer to the target node discussed in section



73

2.4.1. Some other data fields found in the various structures introduced in this section

are best explained below.

2.5.3 JOINSAT-DPLL

Now that the data structures used to represent the search state have been set out, the

JOINSAT-DPLL algorithm (shown in Figure 2.11) and its handing of the example prob-

lem can now be presented in detail.. The top-level structure of JOINSAT-DPLL is quite

similar to DPLL and MACE-DPLL; most differences concern how tests are conducted

and literals selected. As with MACE2-DPLL, each recursive call to JOINSAT-DPLL has

its own top-level state variable argument; this variable (i.e., the entire state) is copied

for each recursive branch. This is a presentational simplification, as every operation

performed by the actual algorithm, including backtracking, is made by incrementally

changing the state. In the example, JOINSAT-DPLL begins at search node 0©.

Line 1 of JOINSAT-DPLL performs unit propagation. In the topmost invocation of

JOINSAT-DPLL, propagation will include any clause containing the dummy() literal

which was flipped in JOINSAT-INITIALIZE. In the example, this includes clauses c2 :

¬dummy()∨ p(1,1) and c3 : ¬dummy()∨q(1,1).

JOINSAT-UNIT-PROPAGATE , shown in Figure 2.12, loops until either no more

literals are found to propagate (tracked by the local variable continue) or the current

assignment has become inconsistent; these checks are performed in line 2. As with

MACE2-Unit-Propagate, the inconsistency check is made by scanning all entries in

S.atoms to verify that no entry has a value of both TRUE and FALSE. As explained

in section 2.4.1, the unit propagation system tracks propagation opportunities using the

entries in propagation joins. So, literals to propagate are found by scanning the entries

of each propagation join in S.networks; each entry has a pointer, least_unvalued_target,

to an unvalued atom in S.atoms (lines 5-7). The truth value to assign is obtained from

the propagation join itself (target_literal_node_value, in line 8) , and JOINSAT-FLIP

the atom in line 9. The loop variable continue is set to true if any atoms were flipped.

In the example, propagation joins in the networks for clauses c2 and c3 each contain
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Figure 2.6: Operations of the JOINSAT network (part 2).
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Figure 2.6: Operations of the JOINSAT network (part 3).

one entry; these entries’ least_unvalued_target’s are p(1,1) and q(1,1), respectively.

Each join’s target_literal_node_value is TRUE, so these two atoms are each flipped to

TRUE.

At this stage, I examine JOINSAT-FLIP (shown in Figure 2.13) in more detail. Like

MACE2-Flip, JOINSAT-Flip begins by updating the current assignment (line 1), push-

ing the passed truth val onto the value of the flipped atom. However, in JOINSAT-Flip

the passed atom argument is not an index to S.atoms, but instead a pointer pointing

directly to the atom record in S.atoms. This method is used because unlike MACE2-

DPLL, I do not explicitly represent (or index) every possible ground atom in S.atoms,

but rather, only those that have been assigned a truth value or that are the

least_unvalued_target of some join entry.

JOINSAT-FLIP’s next task, in lines 2-3, is to update the least_unvalued_target of

any entries that currently have atom as their

least_unvalued_target. Now that the atom has been assigned a truth value, it is no

longer unvalued, so the entry is updated. Each atom stores a list update_entries of

pointers to these entries, so for each one INCREMENT-LEAST-UNVALUED-TARGET is
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procedure JOINSAT-DPLL(S)

1: JOINSAT-UNIT-PROPAGATE(S)

2: if for some atom ∈ S.atoms,atom.value contains two inconsistent bindings then

3: return FAILURE

4: if forall join∈ S.selection_ joins, forall e∈ join.entries, e.least_unvalued_target =

φ then

5: return SUCCESS

6: atom := JOINSAT-SELECT-LITERAL(S.select_ joins)

7: for val in {TRUE,FALSE} do

8: S’:= copy S

9: JOINSAT-FLIP(S′,atom,val)

10: if DPLL(S′) == SUCCESS then

11: return SUCCESS

12: return FAILURE

Figure 2.11: JOINSAT-DPLL.

called. After all entries are updated, update_entries is reset (line 4). In the example,

when p(1,1) and q(1,1) are flipped, entries having them as least_unvalued_target’s are

updated, but I will wait for a more interesting instance to examine this process in depth.

In lines 5-21, JOINSAT-FLIP updates the join network by matching literals with

literal nodes (lines 5-8) and computing the resulting match entries in joins (lines 9-21).

In line 5, the procedure attempts to match atom against literal nodes having the same

predicate and the opposite sign. The atom matches an lnode if their respective args

(vectors of variables and domain elements) unify together. In the example, the only

literal nodes having the same predicate as and opposite sign from p(1,1) is node L11

in clause c1. In this case, L11.args = 〈v,w〉 and p(1,1)’s args are 〈1,1〉, so unification

succeeds, creating a bindset of 〈v = 1,w = 1〉. In lines 7-8, a new literal entry e1 is made

for this bindset and inserted into a local variable stack called entries. The entries stack
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procedure JOINSAT-UNIT-PROPAGATE(S)

1: continue:= TRUE

2: while continue = true and for each atom ∈ S.atoms, atom.value does not contain

two inconsistent bindings do

3: continue:= FALSE

4: for all prop_ join ∈ S.propagation_ joins do

5: for all entry ∈ prop_ join.entries do

6: if (entry.least_unvalued_target 6= φ) then

7: atom := entry.least_unvalued_target

8: val := entry.node.target_literal_node.value

9: JOINSAT-FLIP(S,atom,val)

10: continue:= TRUE

Figure 2.12: JOINSAT-UNIT-PROPAGATE(S).

is used to direct the joining process (lines 9-21). Elements are popped off the stack and

added to join indices; any resulting matches cause new entries to be created and pushed

onto the stack.

In line 10-11, the topmost entry on the stack is popped into a local variable entry

and a pointer node is set to the node that created the entry (node L11 in the case of entry

e1). In lines 12-14, entry is inserted into the index of every join that is a child of node;

in the case of e1 there are two such joins, J22 and J32. In line 13, the bindings necessary

to join the entry with entries from the other parent of the join are computed. The process

filter_bindset() copies those bindings from entry.bindset that contain join variables into

a new bindset. These bindings of course contain exactly those variables found in both

left and right inputs, and are stored in the joinvars field of the join. In the case of join

J22, the set of joinvars is only {w}, and e1’s bindset is {v = 1,w = 1}, so the resulting

new bindset is 〈w = 1〉. In line 14, the entry is inserted into join.index, which has two

keys: first, the join bindset (really just its domain values), and second, which join parent



78

procedure JOINSAT-FLIP(S,atom,val)

1: push(val,atom.value)

2: for all entry ∈ atom.update_entries do

3: INCREMENT-LEAST-UNVALUED-TARGET(entry)

4: atom.update_entries := φ

5: for all lnode ∈ S.literal_nodes[negate(val)][atom.predicate] do

6: if bindset := unify(atom.args, lnode.args) then

7: entry := make_entry(bindset, lnode)

8: push(entry,entries)

9: while entries is not empty do

10: entry := pop(entries)

11: node := entry.node

12: push(entry,node.entries)

13: for all join ∈ node. join_nodes do

14: bindset2 := filter_bindset(entry.bindset, join. joinvars)

15: insert(entry, join.index[bindset2][node]

16: for all entry2 ∈ join.index[bindset2][ join.otherparent[node]] do

17: bindset2 := entry.bindset ∪ entry2.bindset

18: entry3 := make_entry(bindset2, join)

19: push(entry3,entries)

20: if node ∈ S.propagation_ joins or node ∈ S.selection_ joins then

21: INCREMENT-LEAST-UNVALUED-TARGET(entry)

Figure 2.13: JOINSAT-FLIP(S,atom,val).
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the entry is coming from, the left parent or the right parent; entry e1 of course comes

from the left parent.

Lines 15-18 create new matches by iterating though those entries in join.index that

have the same bindings for join variables as does entry but that come from the opposite

parent. In the case of entry e1, there are not yet any entries from the opposite parent,

node L12, so nothing happens; the state of the network after this flip, at search state 1©,

is shown in Figure 2.6 (b). However, when the next flip occurs, of q(1,1), its entry

e2 has the same join variable bindings as e1, so this loop is activated with join = J22,

entry = e2, and entry2 = e1. Line 16 creates a new bindset, the union of the bindsets

of the two matched entries. A new entry is made for the bindset and pushed onto the

entries stack. In the case of the q(1,1) flip, the new bindset computed for new entry e3

is

e1.bindset ∪ e2.bindset = {v = 1,w = 1}∪ {w = 1,x = 1}

= {v = 1,w = 1,x = 1}

When e3 is itself popped off the entries stack, it is inserted into (the index of) join

J23, among others, but since no literals falsify r(x,y) there are no entries to match e3

with, and the matching process comes to an end.

Lines 19-21 calls INCREMENT-LEAST-UNVALUED-TARGET for those entries pro-

duced by propagation or selection joins, and also stores pointers to the entries at these

joins. These pointers are used throughout the JOINSAT-DPLL algorithm for both literal

choice and success tests, e.g. JOINSAT-DPLL line 4. Since join J22 is a selection join,

these lines are performed for entry e3.

The procedure INCREMENT-LEAST-UNVALUED-TARGET has the function of actu-

ally has two functions: to create an initial least_unvalued_target for a new entry (lines

2-14), and when the target is no longer unvalued, to update least_unvalued_target (lines

15-24) by setting it to the next unvalued atom in the entry’s target vector (introduced in

section 2.4.1). The algorithnm avoids the explicit storage of target vectors; instead, the
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next atom in the target vector is computed upon demand.

After fetching the target literal node of the entry’s parent node in line 1, INCREMENT-

LEAST-UNVALUED-TARGET checks in line 2 whether the entry is new and has an unset

least_unvalued_target. In this case, it is necessary to construct the first atom in the en-

try’s target vector. First this atom’s args are constructed, in lines 3-10. For each arg in

lnode.args, the atom’s argsare populated with a value. If arg is a domain value (line 5),

it is copied into args. If arg is a variable bound by entry’s bindset (line 7), the binding

(domain value) val is copied into args. If arg is some variable not yet bound, a 1 (the

least domain value) is inserted into args. In line 11, the procedure checks if the atom

has already been created in S.atoms using its predicate and args. If it has not, it is cre-

ated and inserted (lines 12-13). Finally, entry.least_unvalued_target is set to this atom

(line 14). Note that the procedure has not yet checked if atom is unvalued: this task is

performed next, whether the entry is new or just being updated.

In the example, because entry e3 is new, the first atom in its target vector is con-

structed. In this case, lnode is L13, whose predicate is r and whose args are 〈x,y〉. Since

variable x is present in e3’s bindset, the binding for x in that bindset, 1, is pushed onto the

new args vector. Since variable y is unbound, another 1 is pushed onto args. Therefore,

the atom r(1,1) is created, inserted into S.atoms, and set as e3’s least_unvalued_target.

In lines 15-24, the procedure loops until some unvalued atom in entry’s target vector

is found or the vector is exhausted. In this loop, the args of the existing

least_unvalued_target are first copied (line 16). Then these args are incremented so

that they become those of the next atom in the target vector (line 17). This is done by in-

crementing only those elements in args whose counterpart arguments in the target lnode

are variables not bound by entry.bindset; these are the same elements for which line 10

was reached when that part of INCREMENT-LEAST-UNVALUED-TARGET was opera-

tive. The positions of these elements are computed at runtime and stored for each join in

join.target_literal_node_unbound_args. When all such args have the value dMAX , the

increment_args() procedure fails, indicating that entry’s target vector is exhausted (line

18). Otherwise, a new atom is either found or constructed and least_unvalued_target is
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procedure INCREMENT-LEAST-UNVALUED-TARGET(entry)

1: lnode := entry.node.target_literal_node

2: if entry.least_unvalued_target = φ then

3: for i := 1 to lnode.args.size do

4: arg := lnode.args[i]

5: if arg ∈ D then

6: push(arg,args)

7: else if 〈arg,val〉 ∈ entry.bindset then

8: push(val,args)

9: else

10: push(1,args)

11: if !atom := S.atoms[lnode.predicate][args] then

12: atom := make-atom(lnode.predicate,args)

13: S.atoms[predicate][args] := atom

14: entry.least_unvalued_target := atom

15: while entry.least_unvalued_target 6= φ and entry.least_unvalued_target.value = φ do

16: args := copy(entry.least_unvalued_target.args)

17: if !increment_args(args,entry.node.target_literal_node_unbound_args) then

18: entry.least_unvalued_target :=φ

19: else

20: if !atom := S.atoms[predicate][args] then

21: atom := make-atom(lnode.pred,args)

22: S.atoms[predicate][args] := atom

23: entry.least_unvalued_target := atom

24: if entry.least_unvalued_target 6= φ then

25: push(entry,entry.least_unvalued_target.update_entries)

Figure 2.14: INCREMENT-LEAST-UNVALUED-TARGET(entry,S).
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updated (lines 21-23, in a repeat of lines 12-14).

The procedure concludes with entry either having an empty

least_unvalued_target, or with that target atom placing entry on its update_entries list

to support JOINSAT-FLIP lines 2-3. In the example, the new atom r(1,1) is unvalued,

so lines 15-24 are short-circuited; entry e3 is added to the r(1,1)’s update_entries. The

join network state at the conclusion of this process, in search state node 2©, is shown in

Figure 2.6 (c).

We next return to JOINSAT-DPLL, albeit only at line 2, which is somewhat sur-

prising given all the algorithmic ground already covered. Line 2 tests for assignment

inconsistency; this test is identical to the one in JOINSAT-UNIT-PROPAGATE, but in-

consistency here prompts failure and backtracking. At this point in the example, the

assignment is still consistent.

Line 3 tests whether a model has been found. This success test reflects the alterna-

tive representation used by JOINSAT. Unlike MACE2-DPLL, which scans all clauses

to find those that are unvalued, JOINSAT-DPLL scans all selection joins in S.networks.

As explained in section 2.4.1, each entry represents one more more PFGCs, requiring

us to assign literals to TRUE to satisfy them. So, if no such entries exist, or every en-

try has an empty least_unvalued_target, indicating that all atoms that could satisfy its

PFGCs have already been flipped, then the current assignment is a model and SUCCESS

is returned. Note that for the current assignment to be a model, these same proper-

ties must also be true for all entries of propagation joins. However, JOINSAT-UNIT-

PROPAGATE only concludes under these conditions, so they must still hold at this stage

and need not be retested. In the example, at this point the entry e3 has a non-empty

least_unvalued_target, so the assignment is not a model.

It is worth mentioning that this model test incorporates the same negative bias men-

tioned in the discussion of MACE2-DPLL in section 1.7.3, although it is implemented

differently. Recall that the point of this biased test is to find ground clauses with all

negative literals falsified by assignment A and no positive literals yet satisfied by A; if

no such clauses exist, then A can be extended to a model. The leftmost selection node
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procedure JOINSAT-SELECT-NONNEGATED-LITERAL(Selection_ joins)

1: for all sel_ join ∈ Selection_ joins do

2: for all e ∈ sel_ join.entries do

3: if (e.least_unvalued_target 6= φ) then

4: atom := e.least_unvalued_target

5: return atom

Figure 2.15: JOINSAT-SELECT-NONNEGATED-LITERAL(C,P).

in network level 2 computes the first condition because of its role as a terminating node

for the subnetwork joining together all of the quantified clauses’s negative literals. If no

entries for this node exist, then there are no ground clauses that have all their negative

literals falsified by the model. The rest of the join network handles the second condition

by targeting atoms that will satisfy ground clauses until all entries are exhausted.

In line 6, an atom to branch upon is selected by calling

JOINSAT-SELECT-NONNEGATED-LITERAL, pictured in Figure 2.15. This procedure

is the converse of the success test described in the prior paragraph, in that an entry from

some selection join whose is non-empty is found. This target is of course an unvalued

atom, and is returned as the branch atom. In the example, e3 is the only qualifying entry,

so the atom r(1,1) is returned.

Again returning to JOINSAT-DPLL, lines 7-11 implement the branching recursion

upon the selected atom, first assigning it true, then false. In line 8, the current state is

copied, in line 9, the atom is flipped, and in line 10 the recursive call is made. In line 11,

SUCCESS is returned if the recursive call was itself successful. Each invocation reaching

line 12 returns FAILURE, indicating that exploration of its portion of the search space

failed to find a model.

In the example, the current state S is copied to S′, and then r(1,1) is flipped to TRUE,

bringing us to search state node 3©. During the flip, INCREMENT-LEAST-UNVALUED-

TARGET is called for entry e3, and its least_unvalued_target is incremented to atom
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r(1,2), as shown in Figure 2.6 (d). However, also during this flip, r(1,1) is matched

with the literal node L11 of both clauses c4 and c5, causing a new entry to be made in

the propagation join J22 in each clause (not shown).

After the flip, a recursive call of JOINSAT-DPLL is made using S′. In line 1 of this

invocation, the new entries in clauses c4 and c5 cause s(1,1) and then ¬s(1,1) to be unit

propagated, bringing us to search space node 5©. This in turn causes the inconsistency

test of line 2 to FAIL (because the atom s(1,1) has two inconsistent value’s) and prompt

backtracking. The for loop (line 7) in the first invocation of JOINSAT-DPLL (detailed

earlier) is then resumed: S is again copied to S′, and this time r(1,1) is assigned FALSE,

bringing us to search space node 6©, pictured in Figure 2.6 (e). Two significant results

are shown in the figure. First, entry e3’s least_unvalued_target (which was incremented

earlier only in S′, not S) is again incremented to r(1,2). Second,¬r(1,1) matches with

literal node L13 of clause c1, which in turn leads to a new entry e4 in propagation node

J23. Since join J23 has literal L4 as its target_literal_node, the least_unvalued_target

for entry e4 is set to s(1,1).

Two more invocations of JOINSAT-DPLL are required to solve the problem. The

first invocation performs unit propagation on s(1,1), bringing us to search state node

7©, pictured in Figure 2.6 (f).. The propagation causes the least_unvalued_target of

entry e4 to be updated to atom s(1,2). This atom is also propagated, causing e4’s target

vector to be exhausted and moving the search state to node 8©. When the invocation

performs atom choice in line 6, entry e3’s least_unvalued_target, the atom R(1,2), is

chosen, and when this atom is flipped in line 8, e3’s target vector is exhausted (Figure

2.6 (g)). At this point, at search space node 9©, all join entries have exhausted their

target vectors, so when a final invocation of JOINSAT-DPLL is called, its model test

succeeds.
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2.6 Discussion: Advantages and Disadvantages

In the following sections, I review the competing advantages of JOINSAT and MACE2

that affect their performance.

2.6.0.1 JOINSAT’s Matching Algorithm

JOINSAT’s matching algorithm, whose complexity is determined in practice by the

number of assigned atoms is more efficient than MACE2’s ground approach in cases

where the number of assigned atoms is small.

2.6.0.2 MACE2’s Slim Representation

The bright side for MACE2 of having clearly exponential complexity is that the constant

factors in the complexity figure should be very low indeed. Most of MACE2’s work

consists of the following actions:

1. For each flip, accessing a record for that ground atom indicating which ground

clauses are affected by the flip. Records for all all atoms are created at runtime,

so these are simple array accesses and list traversals.

2. For each ground clause, updating its tally. There may be many ground clause tal-

lies (also created at runtime) to update, but each requires only an integer increment

or decrement.

This simplicity is in contrast to JOINSAT, which requires various expensive dynamic

memory operations, including the creation/deletion of atoms, entries and bindsets, as

well as the the insertion of atoms into S.atoms and entries into join indices, which grow

in size over time.

2.6.0.3 The Unit Propagation Network and Large Tables

JOINSAT’s particular join network, while achieving the crucial goal of implementing

unit propagation, is also a significant burden. A cursory inspection predicts the network
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should increase run times by a factor of three, since the network is roughly three times

the size of a simple join network connecting all the clause literals together. However,

the network’s actual impact is more severe. I explain this by referring to the ideas about

query optimization and large tables laid out in section 2.2.1.

With these ideas in mind, it turns out that there is a particular class of network

literal nodes that may be thought of as particularly “large tables”: this is the class of

nodes having non-negated functional literals. Recall that functional literals are those

literals created when instances of functions are replaced with functional predicates as

explained in 1.7.2.2. In that section, I also showed how the functional properties of such

predicates are enforced by adding new ground clauses to the theory. To see why this can

lead to a “large table”, consider a functional literal l : v(v5,v1,v4). Because predicate

v is functional, by the one to one and onto properties of functions we know that for a

given value of v5 and v1 there is exactly one value of v4 such that v(v5,v1,v4) is true.

But given a domain D of size d, that means a total of d2 instances of literal l are true,

while d3− d2 instances are false. Just as importantly, functional literals are a definite

counterexample to the implicit bias of section 2.2.1, in the sense that any assignment

satisfying the functional constraints must explicitly flip all instances of the functional

predicate to either TRUE or FALSE, instead of leaving them unvalued. The upshot of

all this is that any positive functional literal will have d3−d2 ground literals that falsify

it as the current assignment gets closer to a solution. This is close to as “large” as a

literal can get.

Given that positive functional literals are “large tables” and that I want to avoid

joining them early in join sequences, it is discouraging to discover that JOINSAT’s

network is prone to doing exactly that. As explained in section 2.4.3, positive literals

are ordered to be at the end of the clause. But as shown in Figure 2.8, level 3 of my

join network is a join sequence beginning with the last clause literal. So, if the positive

literal is functional, this network does indeed join a large table early in the sequence,

and potential inefficiencies of an order of magnitude must be expected . As we shall

see, this hypothetical problem becomes a reality for numerous FQSAT problems used
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by the community.

2.6.0.4 The Unit Propagation Network: Derived Clauses

In addition to using a large network that matches large tables, in order to compute prop-

agation JOINSAT must also construct supplementary derived clauses, as discussed in

section 2.4.2.2. Maintaining networks for these clauses can be a significant burden for

some problems.

2.6.0.5 Avoiding Clause Splitting

As seen in section 1.7.2.7, MACE2 relies upon clause splitting to reduce the degree of

blowup caused by its exponential representation. While JOINSAT’s representation is

similarly exponential in the number of clause variables, it is more accurate to say that

JOINSAT’s complexity is proportional to the size of the current assignment. In practice,

the current assignment tends to be small, so JOINSAT can run using the unsplit clauses.

This makes JOINSAT’s search tree smaller, probably by some constant factor.

2.6.0.6 Clause subsumption

As noted in section 2.4.4, JOINSAT cannot implement clause subsumption, unlike

MACE2. It probably does some extraneous matching as a result.
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Chapter 3

Optimizations

This chapter presents a series of optimizations made to the base JOINSAT algorithm in

an effort to optimize its performance; the chapter also reports experimental comparisons

of these optimizations with the base algorithm and with MACE2. I defer a more compre-

hensive empirical comparison between MACE2 and the fastest JOINSAT version (the

static analysis version) until the next chapter.

While the base JOINSAT algorithm offers tantalizing theoretical gains, performing

fewer matches/inserts than MACE2 performs clause updates to solve some problems,

overall speed is poor. There are multiple causes for this lag, but the most significant are

the dynamic memory operations discussed in section 2.6.0.2 and the large table problem

discussed in section 2.6.0.3. Therefore, my optimization efforts focus on these issues.

Figure 3.1 shows a map of six optimizations made upon the base JOINSAT system.

Although many of these optimizations could potentially be combined, in fact each child

optimization was built upon its parent, so only six systems are actually tested. Ideally,

one would explore a matrix of systems with various combinations of optimizations,

but insufficient development time was available. However, one can use these existing

results to make an educated prediction of the performance of these optimizations in other

configurations.

I begin the chapter by presenting the problems and methodology used in these ex-

periments. Then experimental results for MACE2 and for the base JOINSAT algorithm

are presented and discussed. In each of the remaining chapter sections, I explain one of

the six optimizations and discuss experimental results for that optimization. All results

are contained in parts 1 and 2 of Table 3.3, at the end of the chapter.
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base JOINSAT

Inverse Representation

Active Variables

Precomputation

Collection Match

Static Analysis

Alternate Network

Figure 3.1: A map of optimizations for JOINSAT. Each optimization is built upon its

parent.



90

3.1 Experimental Problems and Methodology

To compare the various versions of JOINSAT with each other, I select five problems

of varying hardness. The last two are the among the hardest (measured by runtime)

MACE2 has solved in its many appearances at the CASC ATP Competition [61], which

runs a division for satisfiability solving of first order problems. The ground versions

of these problems are by no means among the hardest solvable by current SAT solvers,

but they are among the hardest solvable with a basic SAT solver unfortified with the

crucial optimization of conflict learning, among others. Most problems selected for the

competition are mathematical in nature, perhaps reflecting the ATP field’s success in

proving heretofore open mathematical conjectures. The problem theories are listed in

Appendix A.1, but brief descriptions are provided here. All problems have a satisfying

model. The full input listing of each problem is included in Appendix A.1; part of the

problem output is appended to each input listing. This portion shows which symbols

are functions or relations, and also gives the form of the flattened, quantified clauses

actually used by JOINSAT to solve the problem.

All experimental runs were on a 1.10 Ghz Athlon PC with 1.5Gb of RAM under

the Windows XP OS. If a solver does not return an answer within 10800 seconds (three

hours) of CPU time, I consider it to have timed out. The results table includes data on

the time taken as well as key performance measures for each solver. The column # f lips

measures the total number of flips (assignments of atoms to TRUE or FALSE or back to

UNVALUED) made to solve the problem; this column is included for every solver. For

MACE2, the number of clause updates made during the run is also reported, while for

the JOINSAT solvers the number of entries created and the number of insertions into

join indexes are included. For the JOINSAT Collection Match solvers I also report the

number of interim entries created.

For the first three problems, derivative clauses are used, but the last two cause so

many to be created that they are not used.
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3.1.1 Problem Instances

• cd. Size of smallest satisfying model: 4. The cd problem is an attempt to show that

certain theorems T of the equivalential calculus are not axioms, by showing that

they do not imply another theorem t. This entails finding a model of T ∪{¬t}.

• o1e1. Size of smallest satisfying model: 10. Prove that an equation about ortho-

modular lattices does not hold for ortholattices using one ortholattice.

• o1e4. Size of smallest satisfying model: 10. The same idea as o1e1, but with a

harder equation.

• LCL168-1. Size of smallest satisfying model: 4. Show that XEH is not a single

axiom for the R-calculus.

• BOO061-1. Size of smallest satisfying model: 6. Show M6D is not an axiom for

Boolean algrebra.

3.2 JOINSAT

3.2.1 JOINSAT Results

When evaluated for raw speed, the results for the base JOINSAT algorithm demonstrate

a need for optimization. MACE2 is 20-30 times faster than JOINSAT on most prob-

lems and the gap in performance appears exponential as problem complexity increases.

However, a closer look reveals some hopeful statistics. From a theoretical perspective,

MACE2’s runtime is dominated by the total number of clause updates it performs, while

JOINSAT’s runtime is dominated by the total number of entries it creates and the total

number of insertions of entries into join indexes. Since most, but not all entries created

are inserted into one or two indexes, there is a great deal of overlap in these two figures,

so I refer to the number of insertions as a better indicator of JOINSAT’s complexity.

Now, in at least some of the problems, JOINSAT makes fewer inserts than MACE2

makes updates, indicating that the JOINSAT algorithm is potentially more efficient in
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some cases. The overall exponential lag certainly exists and probably represents a real

complexity difference between the two methods. We saw in section 2.3 that join net-

work method complexity can be greater than ground instantiation method complexity for

problems having large models and few join variables. This disparity can be even more

pronounced when the ground instantiation method’s complexity is reduced by means of

clause splitting. In later versions of JOINSAT (especially the Static Analysis version) I

reduce its complexity enough to make the algorithm competitive even with an optimized

ground instantiation approach; in section 4.2.1 this comparative complexity is discussed

at more length.

JOINSAT is also hampered by enormous overhead costs associated with creating and

detroying complex structures representing entries and atoms and bindsets. Furthermore,

the original version of JOINSAT incorporates various sources of unnecessary matching,

such as extending the join network to detect assignment inconsistency (by matching

upon all n literal nodes, instead of just n−1). This extraneous matching vastly inflates

its #entries and #insertions numbers, so in actuality JOINSAT’s theoretic measures are

better than are shown. Later versions cut out these sources of inefficency.

3.3 Optimization 1: Precomputation

I noted an important weakness of the base JOINSAT algorithm in section 2.6: its re-

liance upon dynamic memory operations, including the creation of structured objects

like atoms and entries, and insertion into indices implemented as dynamic hash tables.

Test runs show that over 85% of runtime is devoted to these operations. This is in stark

contrast to MACE2, in which almost all data structures are allocated at runtime, and

dynamic memory computations are rare.

Accordingly, my first effort to optimize JOINSAT involves the elimination of these

dynamic memory operations. This is achieved this using precomputation methods, in

three steps. First, a mapping is constructed of every entry and atom to a distinct integer.

Then, for each dynamic memory computation upon entries and atoms, an n-dimensional
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lookup table is constructed that represents every possible instance of the computation.

In each table, a computation instance’s n inputs are represented by n integer indices

into the table, and the computation instance’s output by the integer stored in that cell of

the table. Finally, the original computation code is replaced with a table lookup. If all

computations throughout the algorithm upon atoms and entries are replaced with table

lookups, then the outputs for one computation are in exactly the integer format needed

for use as inputs to the next computation.

First the atoms are mapped. For every predicate, a mapping F is constructed that

associates each possible ground atom instantiating that predicate with a distinct integer

value, e.g. for predicate p and domain size 3, F(p(1,1)) = 1, F(p(1,2)) = 2, and so on

until F(p(3,3)) = 9.

Next, the same function F is constructed for all possible bindsets, although I repre-

sent these as ordered vectors of their bindings, ignoring the variables. For example, the

bindset 〈x = 1,y = 2〉 is represented as the vector 〈1,2〉. the first step is to determine the

maximum number of bindings n that will be found in any bindset computed by the join

networks constructed for the problem. For example, in the join network in Figure 2.5,

the largest bindset is found in entries computed for join J23, and the number of bindings

in this bindset is 5: one binding for each of p1, l1, t1, t2 and l2. Then, for each k ≤ n,

each k-ary vector of domain values is mapped to a distinct integer. So, for example,

if d = 3, F(〈1〉) = 1, F(〈2〉) = 2, and F(〈3〉) = 3; the sequence restarts when the size

increases, so F(〈1,1〉) = 1, F(〈1,2〉) = 2, . . . , F(〈3,3〉) = 9, and so on.

Now that the mapping function is constructed, various computations can be precom-

puted and cached in lookup tables. For example, the process of indexing and matching

inputs (JOINSAT-FLIP, in Figure 2.13, lines 14-15) can be precomputed. Instead of

using a dynamic hash table to store entries, an array is made with one cell for every

possible bindset upon the joined variables. Instead of using a hash function to compute

an index key, the index keys for every possible input are stored in a lookup table. The

index key, is of course, an index into the array of index cells. So, after looking up the

proper cell, the integer representing the input entry is inserted into that cell.
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This process is illustrated in Figure 3.2: the figure shows a precomputed index mech-

anism for join J23 from Figure 2.5. This join matches entries having the same binding

for variable x. Since d = 3, there can only be three possible bindings, so J23’s index

array has three cells. Since J23’s left entries are bindsets upon v,w and x, we construct a

lookup table of size d3 = 27; the lookup table for right entries has size d2 = 9.

Suppose we have entry e4 : 〈v = 1,w = 2,x = 3〉 and entry e3 : 〈x = 3,y = 2〉. In

vector form, the two inputs are 〈1,2,3〉 and 〈3,2〉. Since d = 3, we have F(〈1,2,3〉) = 6,

F(〈3,2〉) = 8. So, when entry e4 is passed as a left input to J23, cell 6 is accessed in the

left lookup table. This cell contains the key value 3, so the entry (i.e. its integer, 6) is

inserted into the third index cell. A similar process is used to index the right entry e3,

inserting its integer value (8) into the third cell.

Another costly operation that can be partially precomputed is the creation of new

match entries (JOINSAT-FLIP, in Figure 2.13, lines 16-17). When two join inputs

match, they cause a new entry to be created; this process can be seen as a mapping of

two bindsets (the inputs) to a third (the match). This can be modeled by constructing

a lookup table for a particular join containing the results of all successful matches at

that join. This lookup table is a two-dimensional array of size dm ∗ dn, where m and n

are the bindset sizes of the join’s left and right inputs, respectively. The range of values

contained in the lookup table should be do, where o is the size of the bindset in succesful

match entries created by the join. Note that for a given join, these sizes are the same for

every match, e.g. a join will never receive inputs from its left parent of different sizes.

This operation is portrayed in Figure 3.3, again using join J23. This join receives a

left input from join J22 whose bindset is (always) of size 3 containing variables v,w, and

x ; its right input from literal node L13 has a bindset of size 2 containing variables x and

y. So, the match lookup table constructed for J23 has dimensions of d3 and d2; its total

size is therefore d3+2 = d5. When these inputs match, the join creates a new entry with

a bindset of size 4, containing variables v,w,x and y. Therefore, the values contained

in the lookup table range between 1 and d4. This lookup table is populated by iterating

through every possible match of a 3-ary bindset with a 2-ary bindset and computing the
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output bindset; then the three values are converted to integers. For example, entry e4 :

〈v = 1,w = 2,x = 3〉 matches with bindset e3 : 〈x = 3,y = 2〉, causing the creation of

bindset e5 : 〈v = 1,w = 2,x = 3,y = 2〉. In vector form, the two inputs are 〈1,2,3〉 and

〈3,2〉; the output is 〈1,2,3,2〉. Assuming d = 3, we have F(〈1,2,3〉) = 6, F(〈3,2〉) = 8,

and F(〈1,2,3,2〉) = 17; accordingly, the value 17 is assigned to Lookup(6,8).

Other particularly expensive operations that are converted to table lookups include:

matching a ground literal against a clause literal (JOINSAT-FLIP, in Figure 2.13, lines

6-7) and the process of incrementing bindings and creating least_unvalued_target atoms

(INCREMENT_LEAST_UNVALUED_TARGET, in Figure 2.14, lines 3-14 and 17-23). The

latter is particularly interesting because all the code for incrementing bindsets is elimi-

nated. Instead, for a given join, each possible entry’s target vector is explicitly computed

and stored as a vector of integers. So, to increment least_unvalued_target the algorithm

simply looks at the next value in the vector.

A problem that arises in some of these lookup computations is that the lookup ta-

ble becomes large enough to degrade performance. For example, as stated above, the

matching process requires a lookup table of size dm ∗dn, where m and n are the bindset

sizes of the join’s left and right inputs, respectively. This can easily create tables with

hundreds of thousands or even millions of entries. One solution is to avoid redundant

information whenever possible. Consider the example above, in which the left input

and the right input both contain the variable x. To reduce the size of the lookup table

an intermediate table is introduced that compresses the right input, which contains the

variables x and y, to a new bindset containing only y. This allows the use of a smaller

lookup table whose left input has variables v,w, and x, and whose right input has variable

y. The total size of this improved lookup table is therefore d4, instead of d5.

One important point to note is that by shifting to this ground representation, I make

JOINSAT vulnerable to some, but not all, of the weaknesses of MACE2’s entirely

ground representation. An exponential amount of lookup table space is allocated at

runtime, so if the problem is so large that simply allocating space for it at runtime is

prohibitively costly, then JOINSAT’s performance will suffer, just as MACE2’s does.
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Figure 3.2: An example of join indexing using precomputation.



97

d3 possible 3-ary entries from join J22︷ ︸︸ ︷
01 02 03 04 05 06 07 . . . 24 25 26 27

01

02

03

04

05

06

07

08 17

09

{d2 possible 2-ary

atom entries

from literal

node L13

Figure 3.3: An example of match entry creation using precomputation. Each cell stores

the (integer) match entry created from the two inputs.
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However, the complexity of JOINSAT’s operations remains unchanged: the compu-

tation described in section 2.2 and Figure 2.3, for example, will still only require 2

matches. The rationale for this shift to an exponential representation is that by remov-

ing the very large overhead of dynamic memory operations, it allows a more accurate

contrast between the performance of MACE2 and JOINSAT. In future work it may be

possible to optimize the dynamic memory operations of the base JOINSAT algorithm in

some fashion that avoids exponential runtime memory allocation.

Another limitation of the current implementation is that not all dynamic memory

access is eliminated. Join indexes are still implemented as linked lists inside each join

cell, as shown in Figure 3.2.

3.3.1 Precomputation Results

The precomputation version greatly improves runtime over the base version of JOIN-

SAT. Perhaps a 2x speedup is due to the elimination of unnecessary matching in the

precomputation version. The rest arises from the greatly streamlined representation and

the avoidance of dynamic memory access.

Because they do not reflect useless matching, the numbers of entries created and

insertions made for this version are a better measure of the theoretical complexity of

the base JOINSAT algorithm. Note that in all but the hardest problem, JOINSAT is

making half or less as many insertions as MACE2 is making clause updates. Part of this

is because of MACE2’s clause splitting preprocessing technique, explained in section

1.7.2.7. The clause splits increase the number of clauses in the problem, which increases

the size of the search space. Though the resulting search space increase seems to be

linear instead of exponential, it does usually require MACE2 to search through four to

ten times as many nodes as JOINSAT.

However, it must be admitted that in the BOO061 problem MACE2 has better theo-

retical numbers in addition to much greater speed. This shows that there are indeed some

situations in which join network matching is intrinsically more complex than MACE2’s

method of ground clause updates. One reason for this is that BOO061’s clauses are very
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long and contain a very large number of variables. Because JOINSAT, unlike MACE2,

does not split these clauses and thereby reduce the number of clause variables, JOIN-

SAT can suffer from its own version of blowup. This is because the precomputed lookup

tables are exponential in the number of variables used to create them. We do show later

that JOINSAT’s theoretical numbers can be improved.

3.4 Optimization 2: Collection Match

While the precomputation optimization greatly mitigated the problem of dynamic mem-

ory usage, it does not address the large table problem found in a number of the problem

instances. Joins upon large tables produce a great number of entries that require further

matching, whether that matching is represented in precomputed form or not. Fortu-

nately, many of these entries are superfluous, and can be winnowed away. My second

optimization is an effort to use this fact to reduce the number of matches arising from

large tables. This optimization is as extensive as was the first, requiring new data struc-

tures and the rewritng of large parts of the JOINSAT-FLIP() algorithm. The object is to

alter the network to use Collection Match, an efficient matching algorithm used by pro-

duction systems. The next section, 3.4.1, gives a brief account of the original Collection

Match algorithm, and section 3.4.2 describes my adaptation of it to join networks.

3.4.1 Collection Match in Production Systems

Collection Match [2] involves a new representation for match tuples computed by a pro-

duction network. It is based upon the insight that the normal join process computes sets

of matches or tuples using a cross-product computation. The algorithm refrains from

instantiating this cross product, i.e. it does not compute all possible pairings/matches

between elements of the two sets. Instead, the cross-product is represented it as a pair

of sets, and individual pairings are only computed lazily, upon demand. I illustrate the

basic idea using join networks.

Consider the simple join network in Figure 3.4. Let us assume that the entries in the
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L11 L12
¬p(v,w)

e1,e2,e3

J22

¬q(w,x)

e5,e6

INSTANTIATION

e1e5,e1e6,

e2e5,e2e6,

e3e5,e3e6

COLLECTION MATCH

{e1,e2,e3}⊗{e5,e6}

Figure 3.4: The idea behind Collection Match.

figure are defined at their associated literal nodes, ignoring for the moment the ground

literals that define them. Assume further that each left input entry matches with each

right input entry. On the lower left, the matches that would be made using the standard

joining algorithm are shown; each of these matches would produce a new entry at the

join. On the lower right a collection match representation is shown, in which the individ-

ual matches are not computed. Instead, the matches are represented as the cross-product

of the two input sets. Clearly, as the number of inputs increase, the collection match

representation will be smaller by a factor of n2/2n, where n is the number of inputs on

each side.

The original Collection Match algorithm’s basic datum was a token: a vector of tuple

sets 〈s1,s2, . . . ,sn〉 that represented the cross product of those sets, i.e. s1⊗ s2⊗·· ·⊗ sn.

Tokens were passed down the production memories instead of the tuples portrayed in

section 2.1. In a production with multiple complex preconditions, the savings achieved

by this representation can be multiplicative, as multiple successive cross-product instan-

tiations are avoided. So, for example, if all the n2 matches from one join were success-

fully matched with n more inputs at a second join, the total number of matches would



101

Literal Node Entries

L11 : p(v,w) e1 : {1,1} ,e2 : {2,1} ,e3 : {3,1} ,e4 : {2,2}

L12 : q(w,x) e5 : {1,1} ,e6 : {1,2} ,e7 : {2,1} ,e8 : {3,1}

L13 : r(x,y) e9 : {1,1} ,e10 : {1,2} ,e11 : {3,1} ,e12 : {4,2}

Table 3.1: Entries defined at each node of Figure 2.3.

be n3. The Collection Match representation would meanwhile become a cross-product

of three sets, now requiring space and time 3n. So, over an entire network, the savings

can potentially be exponential.

3.4.2 Adapting Collection Match to Join Networks

In this section my adaptation of Collection Match to a join network context is discussed;

I believe this adaptation, called CM-JOINSAT, is more efficient than the original Col-

lection Match algorithm.

The adaptation is illustrated using the example problem and join network from Fig-

ure 2.3, but this time with a different assignment. Ground literals are ignored for the

moment: instead, a given set of entries defined at each literal node is assumed. Let

us assume the sets of entries shown in Table 3.1 are defined at their corresponding lit-

eral nodes, e.g. entry e1 is defined at literal node L11 by some unnamed literal. For

brevity, the entries are shown as vectors of values, so, e.g., e1 is actually the bindset

{v = 1,w = 1}.

Figure 3.5 (a) shows how these entries would match in a standard join network; 3.5

(b) shows the corresponding matching in a CM join network. In the first diagram, match

entries are portrayed as simple conjunctions of their inputs, e.g. e1e5 stands for the new

entry that is created when e1 and e5 match.
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A core difference between the two networks is how they define the match entries

created by join networks. In the standard network, a match entry contains a variable

binding for every variable contained in any ancestor of the join. For example, e1e5

contains bindings for the variables v and w, which are found in literal node L11, and

also contains a binding for the variable x, found in literal node L12 (along with another

instance of w). In contrast, a match entry in the lower network contains bindings only

for variables that have been joined, either at the current join or at some ancestor join. So,

match entries in join J22 contain only the variable w joined upon at J22. Match entries in

join J23 contain w, as a formerly joined variable, and also x, which is joined at J23.

CM match entries have different variables because they have a different semantics.

In a standard network, match entries are simply bindsets that falsify portions of the

network.. But in a CM join network, match entries are stand-ins for cross-products of

literal node entries that falsify portions of the network. For example, consider the entry

e13 : 〈w = 1〉 at join J22. This entry is a stand-in for the cross-product {e1,e2,e3}⊗
{e5,e6} composed of those left and right inputs to J22 having the matching binding

〈w = 1〉.
In keeping with this semantics, CM match entries are not matched together at joins:

instead, the cross-products they represent are matched. For example, at the next join,

J23, entry e13 ( representing the cross-product {e1,e2,e3}⊗{e5,e6} ) is matched together

with the singleton cross-product {e9,e10,e11,e12} consisting of the literal entries in lit-

eral node L13. The result is a new cross-product {e1,e2,e3}⊗{e5}⊗{e9,e10}, which

is composed of precisely those literal entries having the bindings {w = 1,x = 1}, and

which is represented by e15 : {w = 1,x = 1} at join J23.

Stand-in entries are a parsimonious way of representing cross-products, but they do

not contain all the information needed to match cross-products together. For match-

ing, the cross-product is reconstructed from its stand-in by fetching all the input entries

again. To do this efficiently, successive multiple indexes for each literal must be main-

tained. For example, to build the cross-product associated with e13, the literal entries

from literal ¬p(v,w) (i.e. literal node L11 ) having w = 1 must be obtained. However,
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L11 L13 L14L12 s(y,z)

J23

r(x,y)

J22

¬p(v,w) ¬q(w,x)

e5,e6,e7,e8e1,e2,e3,e4 e9,e10,e11,e12

e1e5,e1e6,

e2e5,e2e6,

e3e5,e3e6

e4e7

e1e5e9,e2e5e9,e3e5e9

e1e5e10,e2e5e10,e3e5e10

e4e7e9,e4e7e10

L11 L13 L14L12 s(y,z)

J23

r(x,y)

J22

¬p(v,w) ¬q(w,x)

e5,e6,e7,e8e1,e2,e3,e4 e9,e10,e11,e12

e13 : {w = 1}
e14 : {w = 2}

e15 : {w = 1,x = 1}
e16 : {w = 2,x = 1}

LEFT: IND(p,w) : e1,e2,e3,e4

RIGHT: IND(q,w) : e5,e6,e7,e8

LEFT: IND(q,wx) : e5,e6,e7

RIGHT: IND(r,x) : e9,e10,e11,e12

Figure 3.5: An example of Collection Match.
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to build the cross product associated with e15, entries having both w = 1 and x = 1 must

be obtained from L11. For greater efficiency, new indices are built at the joins for which

they are needed: for example, in Figure 3.5 (b), IND(p,w), at join J22, denotes an index

of the entries from literal ¬p(v,w), all indexed by their binding for variable w. A new

IND is built at a join for a particular literal each time some variable from that literal is

joined for the first time. Successive indexes also contain fewer of the original set of lit-

eral entries, because literal entries are only passed to index n+1 if some stand-in entry

has the right bindings to pull them from from index n.

To explain the incremental matching process in greater detail, I walk an example

through the CMJOINSAT code. Aside from the code setting up the data structures men-

tioned above, the changes to the JOINSAT algorithm needed to implement Collection

Match all concern the JOINSAT-FLIP procedure. Therefore, an alternative procedure,

CM-JOINSAT-FLIP, shown in Figure 3.7, is introduced. The example begins in the

state shown by Figure 3.5 (b). Then atom p(4,1) is flipped to true, resulting in the

network state shown in Figure 3.6. I now detail how these state changes are computed.

Lines 1-12 of CM-JOINSAT-FLIP are identical to those in JOINSAT-FLIP; I there-

fore skip them, except to note that the literal entry produced by the matching process

between q(4,1) and literal node L11 in lines 6-9 is e17 : {4,1}. After join is given the

value J22, line 14 calls MAKE-CROSS-PRODUCT(e17,e17,J22), pictured in Figure 3.8.

This procedure reconstructs a cross-product defined by entry and instantiates it into in-

dividual entries/bindsets that can be matched at the join.

The first task of MAKE-CROSS-PRODUCT, implemented in lines 2-9, is to collect

(in entry_sets) sets of literal entries that match entry from indices in ancestors of join;

together, these sets comprise the cross-product to be instantiated and returned. The

following rule determines whether a set is collected for a given literal: if any variable in

the literal is joined upon at join, then a set must be collected for it. The join contains a

set inds of pointers to all the ancestor indices from which a literal set is to be collected;

inds is divided according to the parents of join. In this case, J22 has one index in

inds[L11]: L11.entries.
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L11 L13 L14L12 s(y,z)

J23

r(x,v,y)

J22

¬p(v,w) ¬q(w,x)

e5,e6,e7,e8e1,e2,e3,e4,e17 e9,e10,e11,e12

e13 : {w = 1}
e14 : {w = 2}

e15 : {w = 1,x = 1}
e16 : {w = 2,x = 1}

RIGHT: IND(q,w) : e5,e6,e7,e8

LEFT: IND(p,w) : e1,e2,e3,e4,e17

RIGHT: IND(r,x) : e9,e10,e11,e12

LEFT: IND(q,wx) : e5,e6,e7

Figure 3.6: The Collection Match example extended to state two.

Cases govern the set to be collected. In the case (line 2-3) that ind indexes

literal_entry’s literal node, as occurs with e17 and L11.entries, the singleton set

{literal_entry} is pushed onto entry_sets. In the case (line 4-5) that ind is the entries

table for some literal node, that entire entries set is pushed onto entry_sets. Otherwise

(lines 6-8), entry is used as a key into ind, and the set of all literal entries retrieved is

pushed onto entry_sets.

So, in this case, after all sets are collected, entry_sets is {{e17}}. Now, the eventual

point of collecting all these sets is to be construct entries/bindsets having precisely the

variables required by the current join. Therefore, every collected set must be re-indexed

using these join variables (lines 9-12). For each collected set, join contains a new

index new_inds[ind], and every literal entry in the set is inserted here using any of its

(previously or currently) joined variables. In the example, e17 is inserted into IND(p,w)

using the join variable w.

In lines 13-17 of MAKE-CROSS-PRODUCT, the sets in entry_sets are crossed to-

gether. Line 13 calls get_cross_products(), which returns the instantiation of the cross-
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procedure CM-JOINSAT-FLIP(S,atom,val)

1: push(val,atom.value)

2: for all entry ∈ atom.update_entries do

3: INCREMENT-LEAST-UNVALUED-TARGET(entry,S)

4: atom.update_entries := φ

5: for all lnode ∈ S.literal_nodes[negate(val)][atom.predicate] do

6: if bs := unify(atom.args, lnode.args) then

7: literal_entry := make_entry(bindset, lnode)

8: push(literal_entry,entries)

9: while entries is not empty do

10: entry := pop(entries)

11: node:= entry.node

12: push(entry, lnode.entries)

13: for all join ∈ node. join_nodes do

14: products := MAKE-CROSS-PRODUCT(entry, literal_entry, join)

15: for all product ∈ products do

16: index_bs := filter_bindset(product.bs, join. joinvars)

17: insert(product, join.index[index_bs][node])

18: for all product2 ∈ join.index[index_bs][ join.otherparent[node]] do

19: bs2 := product.bs ∪ product2.bs

20: entry2 := make_entry(bs2, join)

21: push(entry2,entries)

22: if node ∈ S.propagation_ joinsor node ∈ S.selection_ joins then

23: INCREMENT-LEAST-UNVALUED-TARGET(entry,S)

Figure 3.7: CM-JOINSAT-FLIP(S,atom,val).
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product of entry_sets: the set Σ = {e1,e2, . . .en : ei ∈ entry_sets[i]}. In this case, the

computation is quite simple and get_cross_products() returns Σ = {{e17}}.
The rest of the procedure operates individually on each entry set ε ∈ Σ. For each ε ,

all bindings in its entries are consolidated (line 14) and any variables not joined at join

are filtered away (line 15). Then, a new product entry is created using these bindings

and the original entry′s bindings (line 16), and added to the set products (line 17),

which is later returned (line 18). So, in the example the one resulting product entry is

p1 : {w = 1}.
Returning to CM-JOINSAT-Flip, in lines 16-21 each product is matched upon in a

manner identical to that in which entry is matched upon in JOINSAT-FLIP lines 14-19.

In lines 16-17 of CM-JOINSAT-FLIP, a join key is obtained from product and used to

insert it into join.index. Inputs from the opposite parent having the same join key are

matched with product in line 18, and new match entries are created in lines 19-21.

There are two differences that are not reflected in the code. The first is that new

match entries will not contain all the variables in ancestor literals, but rather only vari-

ables previously or currently joined upon. The second concerns line 17, when product

is inserted into join.index. In contrast to JOINSAT-FLIP, in which inserted entries are

unique and so are never duplicates of earlier insertions, in CM-JOINSAT-Flip duplicates

are a commonplace, because product and entry are used to stand for sets of literal en-

tries. So, in this case, product p2 is a duplicate of an earlier product inserted when the

literal entry e1 (which has the same binding for w as does e17) was added. Though it is

not reflected in the code, insertions throughout the code are checked for duplication and

not performed in the case of duplicates: the duplicates are eventually discarded after the

code is done with them.

Now, in the example, product matches with an identical product input from L12; this

product must have the exact same bindset as does product, because at this stage bindsets

consist solely of current join variables. The new match entry (call it e) must therefore

be e : {w = 1}. This entry is identical to the entry e13, so we may continue the example

acting as if e13 had been created again. However, it is worth noting that e13 was, in
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procedure MAKE-CROSS-PRODUCT(entry, literal_entry, join)

1: for all ind ∈ join.inds[entry.node] do

2: if literal_entry.node = ind.literal_node then

3: push(〈literal_entry〉 ,entry_sets

4: else if ind.node ∈ S.literal_nodes then

5: push(ind.node.entries,entry_sets)

6: else

7: ind_bs := bindset_filter(entry.bs, ind.vars)

8: push(ind[ind_bs],entry_sets)

9: new_ind := join.new_inds[ind]

10: for all entry2 ∈ entry_sets.last do

11: ind_bs2 := bindset_filter(entry2.bs,new_ind.vars)

12: insert(entry2,new_ind[ind_bs2])

13: for all entry_set ∈get_cross_products(entry_sets) do

14: union_bs :=
⋃

entry3∈entry_set
entry3.bs

15: joinvar_bs := filter_bindset(union_bs, join. joinvars)

16: product := make_entry(entry.bs ∪ joinvar_bs, join)

17: push(product, products)

18: return products

Figure 3.8: MAKE-CROSS-PRODUCT(entry, literal_entry, join).
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the previous state, a stand-in for the cross-product {e1,e2,e3}⊗{e5,e6}, i.e. all literal

nodes from L11 and L12 having w = 1. Now that e17 has been inserted, e13 becomes the

stand-in for the cross-product {e1,e2,e3,e17}⊗{e5,e6}, yet this update did not at any

time require any matching between individual elements of the cross-product.

After e13 is popped from entries in lines 10-12, MAKE-CROSS-PRODUCT is called

again with entry = e13, literal_entry = e17, and join = J23. In this case, J23.inds[J22]

consists of IND(q,w). I should note here that inds does not include any index for literal

p, despite the fact that any cross products matched and created at join J23 will indeed

contains sets of literal entries from L11. This is because these entries contain no informa-

tion (i.e. join variables) needed for the current join. We may therefore perform matching

without consulting them, confident that any new match entry contains some binding for

w that will allow us to eventually retrieve the appropriate values from IND(p,w).

For ind of IND(q,w), neither of the case in lines 2 or 4 apply. Therefore, in lines

7-9, e13 is used as a key to extract the relevant literal entries from IND(q,w). In line 7,

the key bindset {w = 1} is obtained from e13 (IND(q,w) knows it is indexed upon w). In

line 8 the set of those entries in IND(q,w) having w = 1 is pushed onto entry_sets: this

set is {e5,e6}. These entries are inserted using their bindings for w and x into the new

index IND(q,wx) in lines 9-12.

Again the process in line 13 of instantiating the cross product of entry_sets is com-

paratively simple, producing the set {{e5} ,{e6}}. Product entries containing past and

present join variables are made and returned for each of {e5} and {e6} : let us call

these p1 : {w = 1,x = 1} and p2 : {w = 1,x = 2} respectively. We return again to CM-

JOINSAT-Flip, line 15 . These returned products are duplicates of products formed

when e13 was previously inserted, so the insertions in line 17 do not take place. However,

each product is matched against product inputs coming from L13. Product p1 matches

with products defined by the literal entries e9 : {x = 1,y = 1} and e10 {x = 1,y = 2}:
these matches form duplicates of entry e15. Product p2’s binding for x prevents it from

matching successfully.

Again taking stock of these computations, we note that entry e15, which hitherto
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represented the cross product {e1,e2,e3}⊗{e5}⊗{e9,e10}, has been updated to now

represent the cross product {e1,e2,e3,e17}⊗{e5}⊗{e9,e10}, without individually com-

puting either of the new implicit bindings e17e5e9 or e17e5e10. More generally, as the

number of literal entries grow large, CM-JOINSAT offers the promise of maintaining a

compact representation even in the presence of many matches. This promise is not fully

realized in my work: I discuss why in the next section..

3.4.3 Collection Match Results

The results for JOINSAT-CM are disappointing. The overhead required to maintain

the new indexes stationed along the join network seems to outweigh the theoretical re-

duction in total matching. Part of this reduction is illusory, because Collection Match

sometimes just defers matching instead of eliminating it. For example, if we make a

cross product at a join, and then totally instantiate it at the next, we are effectively doing

the matching at the second join that we avoided in the first. To be truly effective, Collec-

tion Match must instantiate only portions of the cross product at each join, pruning away

selected sets while avoiding full instantiations. This is not always possible in the prob-

lems used for testing. One bright side is that Collection Match’s theoretical numbers

are better than those of every prior versions: it requires substantially fewer matches and

inserts, and even the more dominant interim entry creation is less complex than prior

versions. However, its massive overhead makes it infeasible at present.

3.5 Optimization 3: Alternate Networks

The results thus far show that the problem of large tables discussed in section 2.6.0.3

is serious and not easily addressed. Because problems often contain non-negated func-

tional literals, often the number of matches computed by the rightmost joins in JOIN-

SAT’s network (where these literals are joined) are orders of magnitude greater than in

the leftmost joins. This section discusses another attempt to mitigate this problem by

designing a new join network in which the order in which literals are joined is carefully
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reworked to delay the joining of non-negated functional literals.

Any attempt at an alternate join network needs to obey the following requirements.

First, it must perform the expected subsearch functions. The most challenging of these,

as discussed in section 2.4.2, remains unit propagation. This is because propagation

must be computed for every literal node and because propagation requires a network

that excludes the propagated literal node.

Another requirement for an alternate network is that it avoid joining upon large tables

as long as possible. Since non-negated nodes are large tables, and since I arrange literal

nodes so that non-negated nodes are on the right, any network minimizing matching will

presumably have most join paths flowing left to right so the matching of large tables may

be delayed. My personal experiments show that by joining a large table after even one

less expensive join, the costs can be cut dramatically. However, an important component

of the network introduced in section 2.4.2.1 was the network of joins in level 3 running

right to left. The repeated matching of rightward-flowing level 2 joins with leftward-

flowing level 3 joins allowed us to compress the unit propagation network from n2 joins

down to n joins. If the leftward-flowing level 3 is eliminated, it is not immediately clear

whether the network can remain small and still compute propagation.

Figure 3.9 shows an alternate network that overcomes these problems as well as

might be hoped. Its first three levels flow rightward, but are distinct because each one

joins a different pair from the leftmost three nodes. In doing so, each level skips a dif-

ferent node, and ultimately computes propagation for that node. The fourth level flows

leftward, allowing it to join repeatedly with level 3 (at level 5) and therefore computes

propagation for the middle literal nodes efficiently in the manner of the old network.

However, the fourth level does not begin with a dangerously expensive join upon the

rightmost two nodes: instead, the rightmost node is joined with a join node from the

first level, hopefully mitigating this most costly of joins. Indeed, minimizing the cost

of the join at J4,n shapes the structure of the rest of the network, in the following way.

If we join J11 with J4,n, then level 4 cannot help compute propagation for literal nodes

L11 and L12: a propagation network for a node cannot have it as an ancestor. Therefore,
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L13L11 L12 L15L14

J23J22

s(y,z)

J24

r(x,y)¬q(w,x)¬o(u,v) ¬p(v,w)

J23

J54

J44 J45

J33 J34

J24

J35
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Figure 3.9: An alternate join network for subsearch functions.
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levels 2 and 3 are needed to compute propagation for L11 and L12, resepctively.

This alternative network meets the requirements laid out above, but at a cost. First,

it has five levels instead of three. And second, where no literal node in the old network

has more than two child joins, several literal nodes in the new network have three or

four child joins. This additional overhead can sometimes outweigh the theoretical gains

achieved by avoiding the early join of large tables.

3.5.1 Alternate Networks Results

The results for the alternate network are also disappointing. The network does not im-

prove upon any of the numbers of its predecessor, JOINSAT-Collection Match. A major

reason for this is the importance of insertions made by literal nodes. Because the focus

is to reduce the amount of matches made at join nodes, it is easy to overlook that almost

30% of all insertions made in a typical problem are join insertions of entries passed by

literal nodes, before any matching has taken place. Therefore, a network that greatly

increases each literal node’s number of child joins cannot increase overall efficiency. A

better way must be found to counteract the deleterious effects of large table literal nodes.

3.6 Optimization 4: Active Variables

In this section, I describe a different approach to mitigating the large table problem: an

optimization that eliminates match entries that are redundant, in the sense that the bind-

ings that distinguish them from other entries are unused by future joins. In the process

of eliminating these duplicates, the entries that remain are compressed by discarding

these unused bindings. Whereas the compression described in connection with precom-

putation (in section 3.3) just makes lookup tables smaller, the compression descirbed

here actually reduces the number of total matches/entries made by the algorithm, and so

deserves its own section.

Consider join J22 of Figure 2.6 and an arbitrary entry/bindset e this join outputs.

The variables in the bindset are v, w, and x. Now, the variable binding for x is actually
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used in further computations. For example, join J23 takes e as its left input and uses e′s

binding for x for matching. Also, since J23 is a selection node, entry e’s binding for x

partially determines its vector of least_unvalued_target’s, thereby determining which

literals might be flipped next. Since x is potentially used in future computations, I call

it an active variable. However, e’s other variables v and w are not active variables: they

are not used in any further matching or target determination. To confirm this, we may

appraise some entry e′ whose binding for x is identical to e’s, but whose bindings for v

and w are different. This entry e′ will have precisely the same target vector as does e,

and it will match precisely the same right inputs in join J23. Which, indeed, is the point:

e and e′ cause work to be duplicated unnecessarily.

To eliminate this isomorphism, first the set of active variables for each join is iden-

tified. Then the match lookup table from section 3.3 is altered so that its outputs

are pruned of inactive variables. This is not difficult: given a left input with vari-

ables V and a right input with variables V ′, the output entry’s variables are changed

to active_vars(V ∪ V ′) instead of V ∪ V ′; the match lookup table is then populated ac-

cordingly. For example, suppose we are populating the lookup table at join J22 for left

input e1 : 〈v = 1,w = 2〉 and right input e2 : 〈w = 2,x = 3〉: the table’s dimensions are

therefore d2 ∗ d2 = 9 ∗ 9 = 81. If we do not use the active variables optimization, then

the output entry is e4 : 〈v = 1,w = 2,x = 3〉, and the values used to populate the table

are F(1,2) = 2, F(2,3) = 6, and F(1,2,3) = 6, respectively. But if we do use the op-

timization, then the output entry is e4 : 〈x = 3〉, because only variable x is used in later

computations. Therefore, the match lookup table would be populated with the values

F(1,2) = 2, F(2,3) = 6, and F(3) = 3, i.e. we would set Match-Lookup(2,3) to 3,

instead of 6.

Of course, other network operations must be adjusted to reflect this change. For

example, join J23 must be adjusted so that it expects a 2-ary left input instead of a 4-ary

left input, and its indexing and matching tables allocated and populated accordingly.

Also, in joins that prune away inactive variables from their outputs, two different pairs

of inputs may produce the same output (e.g. entry e6 : 〈v = 2,w = 2〉 will also combine
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with entry e2 to produce output entry e4). The code must therefore be adjusted so that

only the first copy of an output entry is passed onwards to the rest of the join network;

subsequent copies are simply discarded.

When these adjustments are made, the active variables optimization offers dual ben-

efits. First, by decreasing the size of entries throughout the network, it does the same

for the various tables that operate upon them. So, active variables further mitigate any

performance drain caused by overlarge tables. In addition, active variables eliminate an

important source of isomorphic waste in the algorithm, as shown above.

3.6.1 Active Variables Results

In the test problems, the vast majority of duplicate entries are created after a series of

joins, as fewer and fewer variables remain active and therefore more entries are effective

duplicates. This causes fewer join targets to be made, but does not decrease the number

of insertions greatly. Therefore, active variables are more effective in problems with

longer clauses, such as LCL168-1 and BOO061-1, in which they have an effect early

enough to prune significant matching in later joins. These problems also have many

variables, so the ability of active variables to filter the number of variables needed in

indexing and matching becomes important to reducing table sizes. These factors explain

why active variables have an almost negligible effect in the easier problems, yet can

increase speedup by over 4x in the harder problems.

However, though active variables mitigate the large table problem, one should not

conclude that they make its effects negligible. My next optimization, Collection Match,

is designed to make table size less relevant by compressing large numbers of entries into

a smaller representation

3.7 Optimization 5: Inverse Representation

My most effective attempt at addressing the large table problem uses the insight that

functions are one to one: that is, given f (−→a ), there is exactly one b such that f (−→a ) =
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b. Heretofore, this requirement has been JOINSAT’s bane, because it is required to

explicitly assert ¬p f (−→x ,c) for the d− 1 domain elements c such that b 6= c. Each of

these negated instances ¬p f (−→x ,c) in turn match with non-negated literals p f , creating

the match blowup. However, the stringency of the one to one requirement allows an

inverse representation to be used for these negated instances.

Given a non-negated literal p f , the new method is to match the non-negated ground

literal p f (−→a ,b) with the clause literal, with the intent that in this context the ground

literal actually represents the entire set of ground literals
{

p f (−→a ,c) : b 6= c
}

. The bind-

ing produced by this match is designed to have similar properties. For example, if our

ground literal is p f (a1,a2,b) and our clause literal is p f (x,y,z), then the resulting bind-

set β : {x1 = a1,y = a2,z = b} actually stands for the set of bindsets

B : {{x1 = a1,y = a2,z = c} : b 6= c}. I say in this case that the binding z = b is an

inverse binding.

These semantics allow JOINSAT to make only one match at a non-negated literal

where using normal matching it would have made d−1 matches. However, this seman-

tics must be maintained through the process of joining with other literal nodes and also

through the computation of least unvalued targets. I explain this process using an ex-

ample, shown in Figure 3.10. Assume that d = 4 in the example and that the rightmost

literal, p f (y,z), is an example of a functional predicate.

Both subfigures show level 3 of a join network. This level flows right to left and

its rightward portion is the primary area in which large tables are joined. Figure 3.10

(a) shows matching in this level using inverse representation, while Figure 3.10 (b)

shows matching using conventional representation. Figure 3.10 (a) portrays problem

state immediately after the atom p f (1,1) has been assigned TRUE, meaning that the truth

of f (1) = 1 has just been asserted. Before this optimization JOINSAT would eventu-

ally insert ¬p f (1,2), ¬p f (1,3) and ¬p f (1,4) into literal node L14 (as shown in Figure

3.10 (b)) as these negated atoms were assigned FALSE by the MACE2-hybrid com-

ponent of JOINSAT. In the optimized system, these negated atoms are never matched

against L14; instead, the positive atom p f (1,1) is asserted. The resulting bindset is
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L14L13L11 L12 p f (y,z)¬r(x,y)¬p(x,w) ¬q(x,z)

J33J32

r(1,1) p f (1,1)

{x = 1,y = 1, ẑ = 1}

q(2,2)

{x = 1,y = 1,z = 2}

{x = 1,z = 1} {x = 1,y = 1} {y = 1, ẑ = 1}
{x = 1,z = 2}
{x = 2,z = 2}

q(1,2)
q(1,1)

(a)

L14L13L11 L12 p f (y,z)¬r(x,y)¬p(x,w) ¬q(x,z)

J33J32

r(1,1) ¬p f (1,4)

{x = 1,y = 1,z = 2}

q(2,2)

{x = 1,y = 1,z = 2}

{x = 1,z = 1} {x = 1,y = 1} {y = 1,z = 1}
{x = 1,z = 2}
{x = 2,z = 2}

q(1,2)
q(1,1)

¬p f (1,3)

¬p f (1,2)

{x = 1,y = 1,z = 3}
{x = 1,y = 1,z = 4}

(b)

Figure 3.10: Match computation with (a) and without (b) inverse representation.
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{y = 1, ẑ = 1}; I use ẑ to show that the binding upon z is inverse. This bindset is passed

on to join J23, which matches upon variable y. Since ẑ is not matched upon, it is sim-

ply copied to the match bindset like a conventional binding. However, next the bindset

{x = 1,y = 1, ẑ = 1} is passed to join J22, which joins upon both z and x.

Joins match inverse variables as follows: if bindset β1 contains a normal binding

z = a, while bindset β2 has an inverse binding ẑ = b, then the bindings iff a 6= b.

The resulting match bindset will contain z = a, not ẑ = b. Therefore, when the bind-

set {x = 1,y = 1, ẑ = 1}is matched against the three bindsets from L12: {x = 1,z = 1},
{x = 1,z = 2}, and {x = 2,z = 2}, the outcome is as follows. The first match fails be-

cause the bindings for z/ẑ are both 1. The third match fails because the bindings for x

are 1 and 2, respectively. The second match does succeed, because the bindings for xare

each 1, while the bindings for z/ẑ are 2 and 1, respectively.

Note that the match entries output by J22 are precisely the same as would be pro-

duced with the unoptimized system that inserts ¬p f (1,2), ¬p f (1,3) and ¬p f (1,4) into

literal node L14. In other words, using an inverse binding until it is naturally eliminated

produces the correct semantics. However, it requires much less work: the number of

intermediate entries, both in L14 and J23, would have been more numerous using the

conventional method, and this savings of course increases as domain and literal sizes

increase. Generally speaking, using inverse bindings ensures that the number of ground

literals matching with our non-negated functional literal will be proportional to 1, in-

stead of d−1: a great savings.

In the case in which inverse bindings reach the output of a selection or propagation

join, special measures must be taken. Normally, we would populate a target vector for

an entry containing binding z = a by imposing that binding upon all target atoms. For

example, if the target literal was s(x,y,z), all atoms in the vector would have be of the

form s(x,y,a). For the case of an inverse variable, we do the opposite, producing an

instantiation of s(x,y,z) for every value of z except a.

It is also possible to have two non-negated functional literals, each containing a dif-

ferent inverse variable. It is certainly possible to implement a more complex semantics
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dealing with this possibility, but I only implement the simpler case described above.

JOINSAT also refrains from using inverse literals in the case where the inverse variable

is present in other arguments to the literal, e.g. p f (x, ẑ, ẑ): in this case a non-negated

atom inserted by the system, e.g. p f (a,b,b), would stand for the set of all ¬p f (a,b,c)

such that b = c and b 6= c. In this case also, the system does not use inverse bindings

and reverts instead to the standard matching method and bindings.

3.7.1 Inverse Representation Results

Inverse representations do appear to solve the large table problem, at least for functional

literals, which are the primary source of the problem. Detailed analyses of the entries

created at each node show that non-negated functional literal nodes using inverse rep-

resentation create no more entries than their negated counterparts. For some problems

this technique can achieve close to a 100% speedup. With this optimization, JOINSAT’s

speed finally approaches that of MACE2 on most problems.

However, the general problem of efficient join ordering remains important and un-

solved. All versions of JOINSAT thus far set up join networks arbitrarily, without ex-

amining alternative orderings that might reduce matching. Therefore, inefficient joins

are not avoided; for example, JOINSAT sometimes joins two literal nodes without any

matching variables, resulting in a pure cross product of inputs. To reach the algorithm’s

full potential, some method of join ordering must be implemented.

3.8 Optimization 6: Static Analysis

My final optimization performs preprocessing on the flattened clauses, i.e. it is per-

formed in the JOINSAT procedure (shown in Figure 2.9) immediately after the FLAT-

TEN() procedure. This preprocessing step rearranges the clause literals to minimize the

number of entries created by the join network.

I stated earlier (section 2.2.1) that avoiding the matching of “large tables” early in

a sequence of joins tends to reduce the total number of entries created via matching.
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So far, I have associated large tables with positive functional clause literals, and have

explored several optimizations intended to reduce the impact of these literals. However,

in the general case, any clause literal that is falsified by many ground literals is also

“large”. In practice, the more variables a clause literal contains, the more ground literals

that falsify it. So, it is beneficial to avoid joining clause literals with many variables early

on in a join sequence. Now, because the active variables optimization is used, inactive

variables are also not used in further computations. Therefore, it is also beneficial to

maximize the number of variables that become inactive early on in the join sequence.

Another important factor determining the total number of entries created is the num-

ber of variables joined at each join. Generally, each variable join reduces the total num-

ber of entries created at the join by a factor of the domain size d. For this reason, an

additional goal is to construct join sequences in which as many variables as possible are

joined early on.

A final determinant of the number of entries created is the use of inverse variables.

Until an inverse variable is eliminated (converted into a standard variable), it reduces the

number of entries by a factor of d (because d−1 entries are represented as one entry).

When the inverse variable is eliminated, it effectively splits the one entry into dentries.

Therefore, it is beneficial to defer the elimination of the inverse variable for as long as

possible.

The heuristics above can sometimes conflict: orderings can boost performance for

the one of the reasons above while slowing it for another. To properly compute the

compound effect of the multiple factors identified above, the static analyzer uses a cost

function modeling the number of entries created at every join network node for a given

clause literal node ordering. This cost function is used as a heuristic by a randomized

local search to explore a space of possible clause literal orderings: the best ordering is

saved and used to order the clause literals.
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3.8.1 Static Analysis Results

For some problems, the “original” clause orderings produced without static analysis are

quite good, and in some cases seem optimal. For these problems, adding static analysis

can actually decrease efficiency slightly. While the cost function and local search used

produce very good results, they are not sophisticated enough to reliably find an optimal

ordering (and I surmise that doing so is probably itself an NP-complete problem). The

static analysis process also adds a small amount of overhead to the preprocessing phase.

This version of JOINSAT also imposes stricter limits on the number of derived

clauses because large problems can cause very great numbers of derived clauses to be

created. For some problems, this leads to missed propagation opportunities (this in par-

ticular accounts for the slow performance on problem cd). However, for most problems,

the clause literal ordering output by static analysis leads to substantial improvement that

more than makes up for the overhead and lost propagation opportunities.

3.9 Listing of Results for MACE2 and various JOINSAT versions
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MACE2
problems time #flips(K) #updates(K)

cd 0.03 84 742
o1e1 19 15068 139368
o1e4 27 21917 211635

LCL168-1 21 54281 667597
BOO061-1 232 308677 1055984

JOINSAT - Base
problems time #flips(K) #entries(K) #inserts(K)

cd 0.15 1 94 93
o1e1 270 1168 129291 107773
o1e4 485 2658 237288 209869

LCL168-1 6084 5735 1751942 >MAXINT
BOO061-1 TIMEOUT

JOINSAT - Collection Match
problems time #flips(K) #entries(K) #inserts(K) #interims(K)

cd 0.15 3 28 26 35
o1e1 53 2236 18777 14065 54137
o1e4 94 5309 31633 21803 97762

LCL168-1 220 12261 89716 94648 172070
BOO061-1 821.64 129614 579190 541862 912328

JOINSAT - Alternate Network
problems time #flips(K) #entries(K) #inserts(K) #interims(K)

cd 0.27 3 40 37 55
o1e1 56.74 2236 18373 12144 45500
o1e4 102 5309 30133 16888 80339

LCL168-1 285.82 12286 118696 123912 214702
BOO061-1 1449.65 130352 837692 836202 1493338

JOINSAT Static Analysis
problems time #flips(K) #entries(K) #inserts(K)

cd 0.14 54 260 312
o1e1 19.35 3436 15514 18692
o1e4 25.42 5838 18426 23332

LCL168-1 33.45 12258 145954 257468
BOO061-1 207.71 120578 715800 1045928

Table 3.2: Experimental comparison of versions of JOINSAT (part 1). Some results are

included in both parts of the table for easy reference. All times are in seconds.
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MACE2
problems time #flips(K) #updates(K)

cd 0.03 84 742
o1e1 19 15068 139368
o1e4 27 21917 211635

LCL168-1 21 54281 667597
BOO061-1 232 308677 1055984

JOINSAT - Base
problems time #flips(K) #entries(K) #inserts(K)

cd 0.15 1 94 93
o1e1 270 1168 129291 107773
o1e4 485 2658 237288 209869

LCL168-1 6084 5735 1751942 >MAXINT
BOO061-1 TIMEOUT

JOINSAT - Precomputation
problems time #flips(K) #entries(K) #inserts(K)

cd 0.04 3 40 58
o1e1 34 2235 69128 62073
o1e4 60 5308 135580 127136

LCL168-1 61 8323 290827 382160
BOO061-1 1742 35245 1793205 3004056

JOINSAT-Active Variables
problems time #flips(K) #entries(K) #inserts(K)

cd 0.04 3 32 49
o1e1 32 2235 36317 62045
o1e4 56 5308 71444 127135

LCL168-1 39 8374 149406 265345
BOO061-1 892 34984 1190934 2028012

JOINSAT Inverse Representation
problems time #flips(K) #entries(K) #inserts(K)

cd 0.03 3 31 49
o1e1 22.84 2701 21526 33537
o1e4 29.83 5839 27694 41866

LCL168-1 60.13 12283 148160 262861
BOO061-1 304.35 115646 782779 1180181

JOINSAT Static Analysis
problems time #flips(K) #entries(K) #inserts(K)

cd 0.14 54 260 312
o1e1 19.35 3436 15514 18692
o1e4 25.42 5838 18426 23332

LCL168-1 33.45 12258 145954 257468
BOO061-1 207.71 120578 715800 1045928

Table 3.3: Experimental comparison of versions of JOINSAT (part 2). Some results are

included in both parts of the table for easy reference. All times are in seconds.
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Chapter 4

Experimental Comparisons with Other Systems

This chapter compares JOINSAT performance to that of other state of the art satisfiabil-

ity solvers. A version of JOINSAT incorporating the most powerful of the optimizations

from the prior chapter is run on a test set, and then results are reported from other solvers

for the same test set.

4.1 Experimental Problems and Methodology

I compare JOINSAT with five contemporary quantified satisfiability solvers: MACE2

[43], Paradox 1.3 [13], DarwinFM [5], iProver [23], and Geo [18]. The last four systems

all did well in the recent CASC-21 theorem proving competition [61]; MACE2 was not

entered in the competition, but has performed well in prior competitions. Two kinds

of results are presented: first, a table of the total number of test problems successfully

solved by each test system, and second, a series of graphs showing solution times for

the various test systems compared with times for JOINSAT.

The test set is comprised of all eligible problems from the SEQ (Satisfiability with

Equality) Division of the CASC-20 theorem proving competition [60]: 169 problems in

all. The problems are available at the CASC-20 website; the problem names are given in

appendix A.2. All of these problems are satisfiable. Using a large number of problems

is a standard method of addressing one complication of evaluating competing systems.

This is the fact, documented in [27], that the time required for a given satisfiability

system to solve a given problem can strongly vary depending upon the initial search

path selected. However, with a large test set, the superiority of one solver over another

should be visible despite the random variation caused by the search path. To make these
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trends more visually clear, in each graph, the problems on the X axis are sorted, first by

JOINSAT’s solution time and then by the second solver’s time, allowing easier visual

comparison of the relative performance of the solvers. Note that JOINSAT and MACE2

tend to take the same search paths because each uses the same code for the larger DPLL

search algorithm. As a result, signficant variance in their performance caused by the

initial search path is less common.

The version of JOINSAT used for this experimental comparison is the one incor-

porating static analysis techniques from section 3.8. This version can sometimes be

slightly slower than the inverse representation version from section 3.7. This is because

the sorting benefit produced by the static analysis sometimes does not compensate for its

additional overhead. However, the sorting benefit is important enough for more complex

problems that the static analysis version of JOINSAT has the best overall performance.

These test runs were run on a different system from that used in the prior chapter

because of the need to use the TPTPWorld testing software, which automates test runs

for multiple problems and solvers. The system used for this section’s results is a dual-

core 1.60 GHz Pentium PC with 2Gb of RAM running Ubuntu Linux. Because of

the large number of problems, I also use a much smaller timeout of 150 seconds of

CPU time. Solvers can fail to solve a problem either by timing out or by giving up

execution for some other reason (usually either exhaustion of system RAM or violation

of hardcoded program limits on the number of clause variables). In results charts, these

possibilities are presented graphically: timing out for a given problem is presented as a

solution time of 150 seconds, while giving up execution is presented as a solution time

of 200 seconds.

4.2 Results

I first present Table 4.1 showing the total number of test problems successfully solved by

each test system. The table shows that JOINSAT does relatively well, solving slightly

more problems than MACE2, and many more than iProver and Geo. When one con-
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Solver #Problems Solved (out of 169)

JOINSAT 103

MACE2 102

MACE2 w/o clause splitting 87

Paradox 1.3 160

DarwinFM 116

iProver 40

Geo 90

Table 4.1: Number of test problems solved by each tested system.

siders that both of the systems that solved more problems than JOINSAT (Paradox and

DarwinFM) use the optimization of clause learning, while JOINSAT does not, JOIN-

SAT’s performance seems promising.

In the following sections, the solution times are presented in graph form: each graph

compares JOINSAT’s performance with one other system. In each graph, the results are

sorted, first by JOINSAT’s solution time and then by the second solver’s time, allowing

easier visual comparison of the relative performance of the solvers. A logscale Y axis is

used to make significant performance differences more noticeable.

4.2.1 JOINSAT vs. MACE2

As mentioned in earlier sections, MACE2’s [43] ground instantiation approach is the

preeminent state of the art method for solving FQSAT problems. Because one of my

goals in the dissertation is to show that my join network method is superior to the

ground instantiation method, the experimental comparison of JOINSAT with MACE2 is

the most important in this chapter. These results, shown in Figure 4.1, are hopeful but

inconclusive. Those problems that are relatively easy for JOINSAT to solve (roughly,

problems 1-80) are solved even more quickly by MACE2, often by more than an or-

der of magnitude. This initial lag is chiefly explained by the low numbers of clause
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variables involved in these problems: only when there are many clause variables does

MACE’s instantiation method, which updates a number of ground clauses exponential

in the number of clause variables, experience significant slowdown. Conversely, JOIN-

SAT requires significant overheads from the static analysis and precomputation pro-

cesses. Also, JOINSAT’s matching process has much higher overhead per match than

does MACE2’s clause update process per update. So, I expect MACE2’s performance

to be superior on easier runs.
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Figure 4.1: Comparison of solution times for JOINSAT and MACE2. Results are sorted

by JOINSAT’s solution time, and within that by MACE2’s solution time. Timeouts and

Gaveups are shown on the graph as 150sec and 200sec, respectively.

However, as the number of clause variables increase, JOINSAT’s performance steadily

overtakes MACE2’s performance, until in problems 90-102 neither system seems to

dominate. Unfortunately, neither system can solve more complex problems, making

further comparison of the competing methods impossible. Recall that both MACE2

and JOINSAT use the DPLL search algorithm and that MACE2’s ground instantiation



128

method and JOINSAT’s join network method only update the state at each iteration of

the search. Therefore, total solution time complexity is still dominated by the number

of search iterations, not by the time required to update at each iteration. For a number

of those problems barely solvable by JOINSAT (i.e. problems 90-102), the number of

search iterations is in the hundreds of millions, while the number of joins required at

each iteration is one hundred or less, sometimes ten or less. If the overall search algo-

rithm could be improved and more complex problems solved, there is reason to hope

that JOINSAT would begin to dominate MACE2 with regard to run time. One project

for future work along these lines would be to add optimizations to JOINSAT that reduce

the number of search iterations (e.g. clause learning) and then test it against a similarly

enhanced ground instantiation system.

At this point I can answer questions first raised in section 1.5.2 about the ground

instantiation method’s intrinsic complexity, as well as the question of whether the join

network method represents an improvement. I should first mention that two design

choices considerably alter the original methods, changing the answers to these ques-

tions. The first is the clause splitting optimization employed by MACE2 and described

in section 1.7.2.7. Clause splitting drastically reduces the degree of clause blowup ex-

perienced by MACE2 as problems become more complex, making the solver require

much less memory and run much faster. The second design choice is JOINSAT’s use

of precomputation. The memory required by precomputation lookup tables is generally

even greater than that required by MACE2’s tables of ground clause tallies, so JOIN-

SAT is in this way as vulnerable to clause blowup as is MACE2. This memory usage

may also reduce overall speed because of cache failures, but I cannot know this for sure

without implementing a new version of JOINSAT that does not use precomputation (a

system like the JOINSAT Base, but without the representational crudity of that early

system). Nor can I determine at present whether a non-precomputed join network sys-

tem would use less memory than a ground instantiation system enhanced with clause

splitting (although I suspect this would be true).

Despite these qualifiers, my hypothesis that a join network would require fewer
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matches than an instantiation method would require clause updates seems to be true,

even for problems in which join networks are slower than ground instantiation, as shown

in Table 3.3.

A related question of interest is: how powerful is the clause splitting optimization

employed by MACE2 and described in section 1.7.2.7? In Figure 4.2, the performance

of JOINSAT is compared with that of a version of MACE2 in which clause splitting

is disabled. The results show that the overhead of clause splitting slows MACE2 per-

formance for easier problems (problems up to about problem 80), but thereafter is a

source of very significant speedup, sometimes more than two orders of magnitude. From

these results, it is clear that MACE2 would be substantially inferior to JOINSAT for

harder problems were it not for clause splitting, a relatively recent innovation. So, one

may hope that over time similar optimizations may be found for the basic join network

method.

4.2.2 JOINSAT vs. Paradox 1.3

The next comparison is between JOINSAT and Paradox 1.3 [13] (described in section

5.1), which won the SAT Division at the 2007 CASC-J3 [61] and is probably the fastest

quantified satisfiability solver available at the time of this writing. Paradox significantly

outperforms JOINSAT on almost all problems, often by several orders of magnitude.

This is not unexpected, and it is important to place these results in context. First, Paradox

uses key optimizations like clause learning and conflict-directed backtracking that are

not included in JOINSAT (but which could be added). Second, Paradox is built upon

a SAT solver using a MACE2-style ground instantiation representation, so Paradox’s

overall performance could still be boosted by replacing the SAT solver with JOINSAT.

So, to the degree that JOINSAT improves upon MACE2’s performance, JOINSAT could

enhance Paradox.
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Figure 4.2: Comparison of solution times for JOINSAT and MACE2 with MACE2’s

clause splitting disabled. Results are sorted by JOINSAT’s solution time, and within

that by MACE2’s solution time. Timeouts and Gaveups are shown on the graph as

150sec and 200sec, respectively.

4.2.3 JOINSAT vs. DarwinFM

Unlike Paradox, the final three solvers (DarwinFM, iProver, and Geo) do not use a

MACE2-style SAT solver as a back end. DarwinFM [5] does use some of the same

preprocessing steps as MACE2 and JOINSAT (e.g. eliminating function instances via

flattening and adding constraints to enforce functional properties, as described in sec-

tion 1.7.2). However, DarwinFM uses the Darwin solver (described in section 5.2.1) to

determine the satisfiability of the quantified clauses output by preprocessing.

The comparative results (showin in Figure 4.4) show that DarwinFM solves signif-

icantly more problems than does JOINSAT. This is actually not entirely accurate, as

JOINSAT gives up on many problems because it adheres to a limit on the total number
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Figure 4.3: Comparison of solution times for JOINSAT and Paradox 1.3. Results are

sorted by JOINSAT’s solution time, and within that by Paradox’s solution time. Time-

outs and Gaveups are shown on the graph as 150sec and 200sec, respectively.

of clause variables imposed by MACE2. I kept this limit to avoid distortion of the re-

sults chart comparing MACE2 and JOINSAT, but it is not intrinsic to the join network

approach.

Considering only those problems solved by both systems, neither shows consistently

better runtime performance. This is somewhat surprising, given that Darwin (the back

end system) uses clause learning, which usually provides speedup of several orders of

magnitude. Also, as noted in section 5.2.1, Darwin’s ability to add quantified literals

should be an advantage. It is my belief (although I have not tested this) that the an-

swer to this riddle lies in the comparative overhead between JOINSAT’s and Darwin’s

approaches to subsearch. JOINSAT uses join networks to identify prospective atoms

to flip. Because these networks simply match against ground atoms and then pass the

resulting bindings through the network, they can be implemented reasonably simply.
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Figure 4.4: Comparison of solution times for JOINSAT and DarwinFM. Results are

sorted by JOINSAT’s solution time, and within that by DarwinFM’s solution time.

Timeouts and Gaveups are shown on the graph as 150sec and 200sec, respectively.
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In particular, the implementation is simple enough that it can be precomputed, achiev-

ing significant speedup. In contrast, although Darwin performs in principle a similar

matching between literals and clauses, the literals may be non-ground. As a result, the

matching process is much more robust and complex, unifying arbitrary quantified liter-

als and storing the result in a tree caching instantiation and generalization relationships.

I believe that the additional overhead of this matching process prevents DarwinFM from

consistently outperforming JOINSAT.

4.2.4 JOINSAT vs. iProver

iProver [23] is an instantiation-based theorem prover than can also be used to compute

satisfiability for quantified clauses. iProver is distinguished from the systems mentioned

earlier in the chapter because it operates by resolving theory clauses together to produce

new clauses; the solvers mentioned earlier instead resolve literals from the current as-

signment or context with theory clauses. However, iProver is also different from many

resolution-based theorem provers because the resolved clauses it produces are always

subsumed by the resolvents; in other words, the resolution process produces ever more

specific clauses. Once a resolved clause is ground, iProver uses a ground SAT solver to

check its satisfiability.

It is difficult to explain why JOINSAT (as well as the other tested solvers) outperform

iProver. However, probably the answer lies less with JOINSAT’s innovative subsearch

approach and more with the overall efficiency of the DPLL algorithm. Satisfiability

provers using resolution between clauses, as iProver does, have not fared particularly

well in recent years when matched against DPLL-style provers.

4.2.5 JOINSAT vs. Geo

Geo [18] is a solver that reasons with geometric formulas, an equisatisfiable fragment of

first order logic first introduced by Skolem. This fragment is similar in function to the

quantified clauses used by JOINSAT and DarwinFM: functions are translated away, and
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Figure 4.5: Comparison of solution times for JOINSAT and iProver. Results are sorted

by JOINSAT’s solution time, and within that by iProver’s solution time. Timeouts and

Gaveups are shown on the graph as 150sec and 200sec, respectively.

existential quantifiers are isolated from the rest of the logical content (JOINSAT and

Darwin instead translate existential quantifiers into function instances). Like iProver,

Geo resolves theory formulas together to produce new formulas. Geo also incorporates

a form of learning conflict-driven geometric formulas. JOINSAT performs quite well

against Geo, which again is surprising considering that JOINSAT does not use clause

learning. The authors of Geo expect to produce a much more optimized system in future

versions.

4.3 Summary

In this section, JOINSAT was tested against five contemporary solvers. JOINSAT clearly

outperformed two of these solvers, iProver and Geo. JOINSAT was outpaced by two
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Figure 4.6: Comparison of solution times for JOINSAT and Geo. Results are sorted

by JOINSAT’s solution time, and within that by Geo’s solution time. Timeouts and

Gaveups are shown on the graph as 150sec and 200sec, respectively.

solvers, Paradox and DarwinFM, but both of these solvers use optimizations that could

be added to JOINSAT in the future, particularly clause learning, which provides a

significant search-space pruning advantage. JOINSAT showed performance roughly

comparable to the final solver, MACE2: JOINSAT solved one more problem than did

MACE2, but MACE2 solved less challenging problems more quickly than did JOIN-

SAT. The comparison with MACE2 is the most important for evaluating my method,

because MACE2 exemplifies the ground instantiation method I hope to improve upon.

At present, JOINSAT cannot be said to be markedly superior to MACE2, although I

hope to achieve this through future optimizations.
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Chapter 5

Related Work

In this section, alternative approaches to solving quantified satisfiability problems are

mentioned. This presentation is separated into two sections. The first presents other

FQSAT solvers. The second introduces a different problem formalism, QSAT, and then

examines QSAT solvers.

5.1 FQSAT Research

The early years of FQSAT research revolved around efforts to convert the FQSAT prob-

lem to SAT by translating away all quantifiers and functions, and then solve using a

SAT solver. The MACE2 solver [43] was one of the earliest solvers using this method;

it is examined in detail in section 1.7. Other solvers explored optimizations for the

ground instantiation method. For example, the SEM solver [65] used a ground solver

integrated with special data structures to handle function instances in the theory: it had

some success attacking mathematical problems dominated by equality and functions,

such as quasigroup existence problems.

In recent years, FQSAT solvers using entirely new technologies, and in some cases

new representations, have proliferated. The Lifted WSAT solver [26] is an early attempt

to compute FQSAT using quantified clauses, without a ground conversion. Like all

SAT and QSAT solvers, Parkes’ and Ginsberg’s method still constructs assignments in a

ground fashion, adding or deleting one ground atom at a time. However, the problem of

computing the degree to which the assignment satisfies the theory (labeled subsearch in

[26]and discussed in more detail in section 1.5) is performed quite differently. For

this purpose, the quantified clauses are converted into a Constraint Satisfaction Problem
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(CSP), with a twist: a solution to the CSP represents some ground clause instantiated

from the theory that is made false by the assignment. This and similar CSP solvers are

used to compute problem state at each iteration. A disadvantage of this method is that

the CSP solver’s variables range over all values of the domain, so computing solutions

to it can take exponential time in domain size. This contrasts with my approach, which

has complexity directly proportional to the number of atoms in the assignment set, and

is potentially independent of the size of the domain.

The ZAP solver [19] uses special properties of mathematical groups to eliminate

isomorphic structure in common FQSAT problems. Its key insight is that collections of

sets of permutations upon numbers are groups, and therefore representable by a set of

group generators that is logarithmic in the size of the group. Now, as we saw in section

1.3.2, a FQSAT clause can be instantiated to a set of grounded propositional clauses

(e.g. equation 1.3). If we consider an arbitrary clause from this set, we may think of

all the other members as permutations of the first, in that different domain values are

substituted for the ground terms in the first clause. Therefore, an FQSAT clause can be

represented as a pairing (c,G) of this first ground clause c with a group G representing

the permutations. Since groups can be represented compactly using generators, so can

FQSAT clauses, as well as literals used to resolve with them. ZAP’s inference proce-

dure is therefore a version of DPLL using a special resolution computation upon these

augmented clauses, a computation that in theory could perform many conventional reso-

lution steps at once. An added advantage is that the space required to maintain problem

state should be very low. The algorithm appears to achieve these theoretical gains for

some historically combinatorial SAT problems (e.g. pigeonhole problems), but has not

been entered in satisfiability competitions or been made publicly available, making a

serious evaluation difficult. If ZAP’s theory can be made a reality, it might be a major

advance over my algorithm, which is inspired by the potential efficiency of database-

style joining, and does not use advanced compression formalisms.

A final relevant FQSAT system is Paradox [13], which is technically a QSAT solver,

although it is limited to effectively propositional theories. This system solves QSAT
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problems by first determining an upper bound dMAX (possibly infinite) for the size of the

domain universe, beyond which any search efforts are redundant. It then tries to solve

the problem MACE2-style, by conversion to SAT, beginning with domain size d = 1 and

iterating all the way to dMAX until a solution is found (or not). Paradox demonstrates that

at least for certain classes of QSAT, there is an overlap of QSAT, FQSAT and FQSAT

methods. Paradox’ performance seems superior to MACE2’s, partially because Paradox

improves upon clause splitting and symmetry reduction techniques used by MACE2.

Paradox also reuses search information from prior domain sizes and is able to infer

variable sorts. An important contributor to Paradox’s efficiency is its ground SAT solver,

MiniSAT, which uses various optimizations including clause learning.

5.2 The Quantified Satisfiability (QSAT) Problem

QSAT is the problem of satisfiability for finite theories of first order logic (FOL) sen-

tences. It is relevant to my work because most satisfiability problems of interest can be

formalized in any of SAT, FQSAT, or QSAT: the question of which formalism can be

solved most efficiently naturally arises.

To present QSAT, I first review definitions needed to express a model in a succinct

fashion. A Herbrand universe H for a language L is the set of all ground terms of

L (terms constructable from the predicates, function and constant symbols of L ). The

Herbrand base is the set of all ground atoms constructable from L using only terms from

the Herbrand universe. A Herbrand assignment for L is a logical assignment (a pairing

of a universe and an interpretation function) in which the universe is H (L ) and the

interpretation maps every constant or function instance to itself, i.e. I ( f (t1, . . . , tn)) =

f (t1, . . . , tn). Herbrand assignments are significant because Herbrand’s theorem proves

any FOL sentence is satisfiable if it has a Herbrand model. Typically, a Herbrand model

is expressed as an assignment mapping every member of the Herbrand base to one of

{TRUE,FALSE}, and sometimes is even more concisely represented as just that subset of

the Herbrand base that is assigned TRUE.
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Problem. Quantified Satisfiability (QSAT).

Given:

1. a finite theory T of FOL sentences;

2. implicitly, a language L containing the predicates, constants, and function sym-

bols in T ;

return either:

1. a Herbrand model for T ; or

2. FAILURE, if no such model exists.

As a decision problem, QSAT is equivalent to the problem of validity for first-order

theories, i.e. deciding whether theory T logically implies sentence θ (written T � θ ) .

To see this, consider that T � θ iff T ∪{¬θ} is not satisfiable. Now, validity for FOL

theories is semi-decidable in the general case (Church-Turing Theorem, 1936), that is to

say, there exist algorithms such that T � θ iff the algorithm returns yes in finite time,

but there exists no algorithm such that T 2 θ iff the algorithm returns no in finite time.

So, typically an ATP/QSAT solver will guaranteeably return an answer if T � θ , but

may not not halt if T 2 θ . The problems remain distinct in the sense that typically

solvers are constructed to return a useful answer to only one of the problems: an ATP

solver returns a proof when T � θ , and returns FAILURE (sometimes) otherwise, while

a QSAT solver returns a Herbrand model (sometimes) when T 2 θ , and returns failure

otherwise..

5.2.1 QSAT Research

The problem of FOL validity is better known as automated theorem proving (ATP),

although this term does cover other problems and other logics. The main (though by no

means only) algorithmic methods in ATP concern resolution (the ur-algorithm for which
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is Robinson’s resolution solver [51]; recent competitive systems include Otter [44] and

Vampire [50]) and tableaux methods (recent competitive systems include SETHEO [46]

and DCTP [40]). Of more relevance to us are recent methods in instantiation-based

theorem proving. The most interesting example of these is the Model Evolution Calculus

(MEC) [8, 6] .

Darwin, the implementation of the Model Evolution Calculus, is a solver whose al-

gorithmic structure parallells that of DPLL, but yet has the capability to reason with

quantified clauses and literals. Darwin evolves a compact representation of a Herbrand

assignment called a context. The context is a set of (possibly non-ground) literals; each

literal is held to be true except insofar as some other more specific form of the literal

conflicts with it. For example, a context might contain {p(x),¬p(c)}, which is inter-

preted as that every specialization of p(x)in the Herbrand base (e.g. p(a), p(b), p( f (a)),

p( f ( f (a))), . . . ) is TRUE, except for p(c), which is FALSE. The context is progressively

added to until it satisfies every quantified clause.

The Model Evolution Calculus is significant to this dissertation chiefly as an alter-

nate approach to computing satisfiability using a quantified representation. While my

method uses a quantified representation of the clauses, it represents an assignment as a

set of ground literals, and grows the assignment only one ground literal at a time. This

may be less efficient than Darwin, which can add quantified literals to its context: for ex-

ample, Darwin could add p(x,y,z) to its context, while my solver is forced to add every

ground instantiation of p(x,y,z). However, presumably Darwin requires a substantial

overhead to represent sets of arbitrarily complex literals and compute their unification.

Darwin won top honors in the most recent Conference for Automated Deduction ATP

System Competition ( [61]) in the EPR division: finding models for effectively proposi-

tional quantified formulas (formulas whose Horn universes are finite). Darwin’s perfor-

mance is undoubtedly enhanced by its use of the clause learning optimization (described

in [7]).
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Chapter 6

Conclusion and Future Work

6.1 Future Work

JOINSAT’s performance has already improved by a factor of 300x since its first official

version (the base JOINSAT algorithm), and this algorithm in turn achieved a 20x speed

gain over the very early experimental version of the algorithm. A number of prospective

optimizations might continue that trend.

6.1.1 Shared Indices

One important optimization would involve sharing structure between the many join in-

dices in the network whose inputs are from literal nodes. Since most of these are upon

very small numbers of variables, and since two indices often share the same variables,

they could be represented as permutations of one another and represented only once in

the system. This is especially true for those problems having ten or twenty literal nodes

with the same predicate: surely insertions of these nodes entries involves significant du-

plication. To some degree, MACE2 can avoid this duplication because in preprocessing

it analyzes the set of ground clauses and prunes those which subsume each other after

any unit clauses are resolved.

Insertions from literal nodes into indices are a very significant component of the

overall work, so reducing isomorphism in this area could bring great efficiency gains.

6.1.2 Avoiding duplicate entries

Section 3.6 discussed the pruning of redundant match entries using active variables.

Though this technique creates considerable speedup, the computation of the match en-
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tries before they are thrown away requires very significant time. For example, in most of

the experimental problem instances, the number of duplicate entries created is as large

as the number of non-duplicate entries. Furthermore, the creation of the vast bulk of

these duplicates typically occurs in a very few join nodes at the end of a series of joins.

At these joins, it is not uncommon for the ratio of duplicate to non-duplicate entries to

approach d/1. Great savings could be achieved by avoiding the computation of these

duplicates, instead of computing them and then throwing them away.

Accordingly, I have formulated (but not yet implemented) a join strategy that never

computes these duplicates in the first place. This involves a completely different match

algorithm that departs from the usual practice of scanning right inputs to find those

that match with a new left input. Instead, the set of all possible output match entries

is tracked to see which of these have never before been output. When this set grows

sufficiently small (as it does at the joins in question), the system can quickly check for

each set member if the current input can produce it. This method may lead to consid-

erable savings in match time; the risk, of course, is that the additional overhead may

overwhelm the savings.

6.1.3 Reducing table sizes

An important performance issue for JOINSAT is the large size of the tables computing

indexes and match entries. These tables can grow very large, especially because JOIN-

SAT eschews the clause splitting technique used by MACE2. It is something of an irony

that JOINSAT, which began as an effort to avoid ground instantiation, presently uses

much greater amounts of RAM than does MACE2. I have already detailed several ef-

forts to use parsimonious representations that (among other benefits) reduce table size.

Further research in this area could improve memory usage and thereby reduce cache

misses, imprving performance.
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6.1.4 Static and adaptive join ordering

At the conclusion of the discussion of results, I showed that a static analysis of join order

could boost performance slightly past the current state of the art. The kind of syntactic

static analysis performed by JOINSAT is crude; far more sophisticated techniques are

well understood [54]. More sophisticated adaptive analyzers [4, 29] could increase ef-

ficiency even further by reordering the network based upon statistics from an ongoing

run.

6.1.5 Backing away from precomputation

A different dimension of improvement for JOINSAT lies in finding ways to make a

non-precomputed version perform (nearly) as well as a precomputed version.

The original intended use of the join network method was to represent and solve

AI planning problems using quantified satisfiability. While various classical planning

problems have been solved using SAT methods [37,38,64], it seems less likely that SAT

can be used to tackle temporal and resource planning. The problem is that first, that

relatively complex sentences, with many variables, are required to model planning, and

second, that often the domains of these problems (e.g. the number of planes or trucks

or steps) are large. As demonstrated in section 1.7.3, a ground SAT representation is

exponential in the number of clause variables, and can also bog down even for small

clauses if the domain size is large. These problems are sidestepped by the Blackbox

SAT planner [38] by its use of a simplifying (planning graph) formalism for the plan-

ning problem, but it is unclear whether planning graphs can be used for more complex

temporal and resource problems [58].

If any satisfiability solver is to solve these complex planning problems, that solver’s

complexity must be proportional to the assignment size, and thereby at least partially

independent of the domain size. In this sense, precomputation may be seen as a step

backward for a solver like JOINSAT, because precomputation requires space dv, where

d is the domain size and v is the number of active clause variables. Techniques that might
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help achieve an efficient non-precomputed solver include multidimensional indexing

and more compact entry representations, especially those that effectively use one copy

of an entry to represent its often myriad instances within the network.

6.1.6 Applying State of the Art SAT Optimizations

Finally, if JOINSAT can be made substantially more efficient than ground methods, a

wide field of application comes into view. Even a precomputed version of JOINSAT

could be used in place of SAT in many of its research and industrial uses. A non-

precomputed version would be particularly attractive for domains like AI Planning be-

cause it would combine the recent explosive gains in satisfiability performance with a

tolerance for very large domains.

Exploring these applications would require the lifting of state of the art SAT opti-

mization techniques like conflict learning, non-chronological backtracking, and atom

choice heuristics to a quantified representation. Since these techniques seem to re-

quire no more information than that computed by join networks, their adaptation looks

promising.

6.2 Contribution and Conclusions

This dissertation introduced a new method of computing quantified satisfiability prob-

lems. After extensive optimization, this method was shown to be competitive with the

state of the art method of ground clause instantiation and update. It was also demon-

strated that in many cases the method is less complex in a theoretical sense. For some

problems, JOINSAT requires an order of magnitude fewer inserts (its dominant cost

task) than MACE2 requires clause updates (the dominant cost task for ground solvers).

The dissertation makes several technical contributions. The most important of these

is the adaptation of the Rete method to compute subsearch. This required the develop-

ment of an underlying bindset semantics as well as mechanisms and networks for literal

choice and unit propagation. These formalisms serve as a foundation upon which further
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research in join-based satisfiability can be conducted.

The technical contributions also include several powerful optimizations of the basic

join network method that increased empirical efficiency. The precomputation method is

significant not only for its resulting speedup, but also as a way of translating production

system methods, traditionally very intensive consumers of dynamic memory, into algo-

rithms using more static representations. The adaptation of Collection Match, while not

empirically successful, uses a more compact representation than does the original CM

algorithm, and may yet be improved to empirically live up to its theoretical superiority

over traditional matching. The use of inverse representations solved a difficult prob-

lem for join networks, that of dealing with non-negated functional predicates efficiently.

It may be possible to extend this technique to other instances in which many sets of

bindings correspond to one inverse binding.

At present the join network method does not enjoy clear superiority over ground

instantiation methods. However, we are to remember that the crucial optimization tech-

nique for MACE2 of clause splitting only appeared in 2003 [13]; before that time,

ground FQSAT solver performance was orders of magnitude slower. Similarly, opti-

mizations for JOINSAT may yet be discovered that make it the preferred method for

solving satisfiability problems.
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Appendix A

Test Problems

A.1 Problems Used to Compare JOINSAT Versions

A.1.1 cd

% benchmark parameters -n2 -N6 -p

% The formulas below are theorems of the equivalential calculus.

% We can show that neither is a single axiom, because e(x,x) does not

% follow.

list(usable).

-P(e(x,y)) | -P(x) | P(y).

% P(e(e(x,y),e(e(y,z),e(x,z)))). % easier

P(e(e(x,y),e(e(y,z),e(z,x)))). % harder

-P(e(a,a)).

% The following can speed up finding models for CD problems.

% It says that the all values for which P is false come before

% any of the values for which P is true.

% But it can be incomplete if you use -c or if you DON'T use

% -z 0. In this case it works, because a gets assigned 0,

% and there is a model in which P(a) is false.

% -P(x) | -(x < y) | P(y).

end_of_list.

%list(mace_constraints).

%assign(a,0).

%end_of_list.
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***********************

-e(v0,v1,v2) OR -P(v2) OR -P(v0) OR P(v1)

-e(v0,v1,v2) OR -e(v3,v0,v4) OR -e(v4,v2,v5) OR -e(v1,v3,v6) OR -e(v6,v5,v7) OR P(v7)

-e(v0,v0,v1) OR -P(v1) OR -a(v0)

-e(v0,v1,v0) OR -P(v0) OR P(v1)
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A.1.2 o1e1

% benchmark parameters -N10 -p

%

% There is a model of size 10; it takes 275 seconds on a PIII933.

%

% We have an equation that holds for orthomodular lattices,

% and we show that it does not hold for ortholattices by

% finding an ortholattice in which the equation does not hold.

%

% The problem is from Norm Megill, September 1997.

%

% The equation is (E1) from

%

% @article{ ortholattice,

% author = "W. McCune",

% title = "Automatic Proofs and Counterexamples for some

% Ortholattice Identities",

% journal = "Information Processing Letters",

% year = 1998,

% volume = 65,

% pages = "285--291"}

%

% See http://www-unix.mcs.anl.gov/~mccune/papers/ortholattice/

include("ortholattice").

list(usable).

% The original denial:

%

% c((A ^ c(B)) v c(A)) v ((A ^ c(B)) v ((c(A) ^ ((A v c(B)) ^

% (A v B))) v (c(A) ^ c((A v c(B)) ^ (A v B))))) != A v c(A).

% An equivalent denial that names subterms: (This is necessary, because

% MACE cannot handle big equations.)

A ^ c(B) = D1.

A v c(B) = D2.

A v B = D3.

c(A) = D4.

D2 ^ D3 = D5.

D4 ^ c(D5) = D6.

D4 ^ D5 = D7.
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D7 v D6 = D8.

c(D1 v D4) v (D1 v D8) != 1.

end_of_list.

****************************

Symbol 0, relation, Dummy_symbol/0, atoms 1 -- 1, 0.

Symbol 1, relation, =/2, atoms 2 -- 5, 1.

Symbol 2, function, ^/3, atoms 6 -- 13, 0.

Symbol 3, function, v/3, atoms 14 -- 21, 0.

Symbol 4, function, c/2, atoms 22 -- 25, 0.

Symbol 5, function, D1/1, atoms 26 -- 27, 0.

Symbol 6, function, B/1, atoms 28 -- 29, 0.

Symbol 7, function, A/1, atoms 30 -- 31, 0.

Symbol 8, function, D2/1, atoms 32 -- 33, 0.

Symbol 9, function, D3/1, atoms 34 -- 35, 0.

Symbol 10, function, D4/1, atoms 36 -- 37, 0.

Symbol 11, function, D5/1, atoms 38 -- 39, 0.

Symbol 12, function, D6/1, atoms 40 -- 41, 0.

Symbol 13, function, D7/1, atoms 42 -- 43, 0.

Symbol 14, function, D8/1, atoms 44 -- 45, 0.

1. -^(v0,v1,v2) ^(v1,v0,v2)

2. -v(v0,v1,v2) v(v1,v0,v2)

3. -v(v0,v1,v2) -v(v3,v2,v4) -v(v3,v0,v5) v(v5,v1,v4)

4. -c(v0,v1) c(v1,v0)

5. -^(v0,v1,v2) v(v0,v2,v0)

6. -c(v0,v1) -c(v2,v3) -v(v3,v1,v4) -c(v4,v5) ^(v2,v0,v5)

7. ^(v0,v0,v0)

8. v(v0,v0,v0)

9. -c(v0,v1) v(v1,v0,1)

10. -c(v0,v1) ^(v1,v0,0)

11. v(1,v0,1)

12. v(v0,1,1)

13. ^(1,v0,v0)

14. ^(v0,1,v0)

15. ^(0,v0,0)

16. ^(v0,0,0)

17. v(0,v0,v0)

18. v(v0,0,v0)

19. -D1(v0) -B(v1) -c(v1,v2) -A(v3) ^(v3,v2,v0)
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20. -D2(v0) -B(v1) -c(v1,v2) -A(v3) v(v3,v2,v0)

21. -D3(v0) -B(v1) -A(v2) v(v2,v1,v0)

22. -D4(v0) -A(v1) c(v1,v0)

23. -D5(v0) -D3(v1) -D2(v2) ^(v2,v1,v0)

24. -D6(v0) -D5(v1) -c(v1,v2) -D4(v3) ^(v3,v2,v0)

25. -D7(v0) -D5(v1) -D4(v2) ^(v2,v1,v0)

26. -D8(v0) -D6(v1) -D7(v2) v(v2,v1,v0)

27. -D8(v0) -v(v1,v0,v2) -D4(v3) -D1(v1) -v(v1,v3,v4) -c(v4,v5) -v(v5,v2,1)
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A.1.3 o1e4

% benchmark parameters -N10 -p

include("ortholattice").

list(usable).

% This is the denial in which ground terms are "named".

c(A) = d2.

B v d2 = d3.

B ^ d2 = d4.

c(d3) = d5.

d2 ^ c(B) = d8.

d3 ^ A = d9.

d8 v d4 = d10.

d10 v d9 = d11.

d11 ^ d2 = d12.

d11 v d2 = d13.

c(d11) ^ d2 = d14.

d13 ^ A = d16.

d14 v d12 = d17.

d17 v d16 = d18.

d5 ^ d18 = d19.

c(d18) ^ d5 = d20.

d18 v d5 = d21.

d21 ^ d3 = d22.

d19 v d22 = d23.

d23 v d20 != 1.

end_of_list.

% list(usable). % Original denial.

% ( ( c( c(A) v B ) ^ ( ( ( c(A) ^ ( ( ( c(A) ^ B

% ) v ( c(A) ^ c(B) ) ) v ( A ^ ( c(A) v B ) ) ) ) v ( c(A)

% ^ c( ( ( c(A) ^ B ) v ( c(A) ^ c(B) ) ) v ( A ^ ( c(A) v

% B ) ) ) ) ) v ( A ^ ( c(A) v ( ( ( c(A) ^ B ) v ( c(A) ^

% c(B) ) ) v ( A ^ ( c(A) v B ) ) ) ) ) ) ) v ( c( c(A) v B

% ) ^ c( ( ( c(A) ^ ( ( ( c(A) ^ B ) v ( c(A) ^ c(B) ) ) v

% ( A ^ ( c(A) v B ) ) ) ) v ( c(A) ^ c( ( ( c(A) ^ B ) v

% ( c(A) ^ c(B) ) ) v ( A ^ ( c(A) v B ) ) ) ) ) v ( A ^ (

% c(A) v ( ( ( c(A) ^ B ) v ( c(A) ^ c(B) ) ) v ( A ^ ( c(A)

% v B ) ) ) ) ) ) ) ) v ( ( c(A) v B ) ^ ( c( c(A) v B )



152

% v ( ( ( c(A) ^ ( ( ( c(A) ^ B ) v ( c(A) ^ c(B) ) ) v ( A

% ^ ( c(A) v B ) ) ) ) v ( c(A) ^ c( ( ( c(A) ^ B ) v ( c(A)

% ^ c(B) ) ) v ( A ^ ( c(A) v B ) ) ) ) ) v ( A ^ ( c(A)

% v ( ( ( c(A) ^ B ) v ( c(A) ^ c(B) ) ) v ( A ^ ( c(A) v B

% ) ) ) ) ) ) ) ) != 1.

% end_of_list.

**************************

Symbol 0, relation, Dummy_symbol/0, atoms 1 -- 1, 0.

Symbol 1, relation, =/2, atoms 2 -- 5, 1.

Symbol 2, function, ^/3, atoms 6 -- 13, 0.

Symbol 3, function, v/3, atoms 14 -- 21, 0.

Symbol 4, function, c/2, atoms 22 -- 25, 0.

Symbol 5, function, d2/1, atoms 26 -- 27, 0.

Symbol 6, function, A/1, atoms 28 -- 29, 0.

Symbol 7, function, d3/1, atoms 30 -- 31, 0.

Symbol 8, function, B/1, atoms 32 -- 33, 0.

Symbol 9, function, d4/1, atoms 34 -- 35, 0.

Symbol 10, function, d5/1, atoms 36 -- 37, 0.

Symbol 11, function, d8/1, atoms 38 -- 39, 0.

Symbol 12, function, d9/1, atoms 40 -- 41, 0.

Symbol 13, function, d10/1, atoms 42 -- 43, 0.

Symbol 14, function, d11/1, atoms 44 -- 45, 0.

Symbol 15, function, d12/1, atoms 46 -- 47, 0.

Symbol 16, function, d13/1, atoms 48 -- 49, 0.

Symbol 17, function, d14/1, atoms 50 -- 51, 0.

Symbol 18, function, d16/1, atoms 52 -- 53, 0.

Symbol 19, function, d17/1, atoms 54 -- 55, 0.

Symbol 20, function, d18/1, atoms 56 -- 57, 0.

Symbol 21, function, d19/1, atoms 58 -- 59, 0.

Symbol 22, function, d20/1, atoms 60 -- 61, 0.

Symbol 23, function, d21/1, atoms 62 -- 63, 0.

Symbol 24, function, d22/1, atoms 64 -- 65, 0.

Symbol 25, function, d23/1, atoms 66 -- 67, 0.

1. -^(v0,v1,v2) ^(v1,v0,v2)

2. -v(v0,v1,v2) v(v1,v0,v2)

3. -v(v0,v1,v2) -v(v3,v2,v4) -v(v3,v0,v5) v(v5,v1,v4)

4. -c(v0,v1) c(v1,v0)

5. -^(v0,v1,v2) v(v0,v2,v0)

6. -c(v0,v1) -c(v2,v3) -v(v3,v1,v4) -c(v4,v5) ^(v2,v0,v5)

7. ^(v0,v0,v0)

8. v(v0,v0,v0)
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9. -c(v0,v1) v(v1,v0,1)

10. -c(v0,v1) ^(v1,v0,0)

11. v(1,v0,1)

12. v(v0,1,1)

13. ^(1,v0,v0)

14. ^(v0,1,v0)

15. ^(0,v0,0)

16. ^(v0,0,0)

17. v(0,v0,v0)

18. v(v0,0,v0)

19. -d2(v0) -A(v1) c(v1,v0)

20. -d3(v0) -d2(v1) -B(v2) v(v2,v1,v0)

21. -d4(v0) -d2(v1) -B(v2) ^(v2,v1,v0)

22. -d5(v0) -d3(v1) c(v1,v0)

23. -d8(v0) -B(v1) -c(v1,v2) -d2(v3) ^(v3,v2,v0)

24. -d9(v0) -A(v1) -d3(v2) ^(v2,v1,v0)

25. -d10(v0) -d4(v1) -d8(v2) v(v2,v1,v0)

26. -d11(v0) -d9(v1) -d10(v2) v(v2,v1,v0)

27. -d12(v0) -d2(v1) -d11(v2) ^(v2,v1,v0)

28. -d13(v0) -d2(v1) -d11(v2) v(v2,v1,v0)

29. -d14(v0) -d2(v1) -d11(v2) -c(v2,v3) ^(v3,v1,v0)

30. -d16(v0) -A(v1) -d13(v2) ^(v2,v1,v0)

31. -d17(v0) -d12(v1) -d14(v2) v(v2,v1,v0)

32. -d18(v0) -d16(v1) -d17(v2) v(v2,v1,v0)

33. -d19(v0) -d18(v1) -d5(v2) ^(v2,v1,v0)

34. -d20(v0) -d5(v1) -d18(v2) -c(v2,v3) ^(v3,v1,v0)

35. -d21(v0) -d5(v1) -d18(v2) v(v2,v1,v0)

36. -d22(v0) -d3(v1) -d21(v2) ^(v2,v1,v0)

37. -d23(v0) -d22(v1) -d19(v2) v(v2,v1,v0)

38. -d20(v0) -d23(v1) -v(v1,v0,1)
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A.1.4 LCL168-1

%------------------------------------------------------------------------------

% File : LCL168-1 : TPTP v3.1.1. Released v1.0.0.

% Domain : Logic Calculi (Equivalential)

% Problem : XEH is not a single axiom for the R-calculus

% Version : [WW+90] axioms.

% English : To show that XEH is not a single axiom, attempt to derive

% from it any one of YQM, WO, XGJ or QYF, which are known

% single axioms.

% Refs : [WW+90] Wos et al. (1990), Automated Reasoning Contributes to

% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio

% Source : [WW+90]

% Names : RC-2 [WW+90]

% Status : Satisfiable

% Rating : 0.80 v3.1.0, 0.86 v2.7.0, 0.80 v2.6.0, 0.75 v2.5.0, 0.83 v2.4.0, 1.00 v2.0.0

% Syntax : Number of clauses : 6 ( 0 non-Horn; 5 unit; 5 RR)

% Number of atoms : 8 ( 0 equality)

% Maximal clause size : 3 ( 1 average)

% Number of predicates : 1 ( 0 propositional; 1-1 arity)

% Number of functors : 4 ( 3 constant; 0-2 arity)

% Number of variables : 5 ( 0 singleton)

% Maximal term depth : 6 ( 3 average)

% Comments : This is not how the problem is attacked in [WW+90].

% : tptp2X -f otter:none:[set(auto),clear(print_given)] -t stdfof+add_equality:r LCL168-1.p

%------------------------------------------------------------------------------

set(prolog_style_variables).

set(tptp_eq).

.

.

list(usable).

% condensed_detachment, axiom.

-is_a_theorem(equivalent(X,Y)) |

-is_a_theorem(X) |

is_a_theorem(Y).

% xeh, axiom.

is_a_theorem(equivalent(X,equivalent(equivalent(Y,equivalent(equivalent(Y,Z),X)),Z))).
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% try_prove_qyf, negated_conjecture.

-is_a_theorem(equivalent(equivalent(equivalent(a,b),equivalent(a,c)),equivalent(c,b))).

% try_prove_yqm, negated_conjecture.

-is_a_theorem(equivalent(equivalent(a,b),equivalent(equivalent(c,b),equivalent(c,a)))).

% try_prove_wo, negated_conjecture.

-is_a_theorem(equivalent(equivalent(a,equivalent(b,c)),equivalent(c,equivalent(b,a)))).

% try_prove_xgj, negated_conjecture.

-is_a_theorem(equivalent(a,equivalent(equivalent(b,equivalent(c,a)),equivalent(b,c)))).

end_of_list.

%------------------------------------------------------------------------------

********************

Symbol 0, relation, Dummy_symbol/0, atoms 1 -- 1, 0.

Symbol 1, relation, equal/2, atoms 2 -- 5, 1.

Symbol 2, function, equivalent/3, atoms 6 -- 13, 0.

Symbol 3, relation, is_a_theorem/1, atoms 14 -- 15, 0.

Symbol 4, function, c/1, atoms 16 -- 17, 0.

Symbol 5, function, b/1, atoms 18 -- 19, 0.

Symbol 6, function, a/1, atoms 20 -- 21, 0.

1. -equivalent(v0,v1,v2) -is_a_theorem(v2) -is_a_theorem(v0) is_a_theorem(v1)

2. -equivalent(v0,v1,v2) -equivalent(v2,v3,v4) -equivalent(v0,v4,v5) -equivalent(v5,v1,v6)

-equivalent(v3,v6,v7) is_a_theorem(v7)

3. -equivalent(v0,v1,v2) -c(v0) -equivalent(v3,v0,v4) -b(v1) -a(v3) -equivalent(v3,v1,v5)

-equivalent(v5,v4,v6) -equivalent(v6,v2,v7) -is_a_theorem(v7)

4. -equivalent(v0,v1,v2) -c(v0) -equivalent(v0,v3,v4) -equivalent(v4,v2,v5) -b(v3) -a(v1)

-equivalent(v1,v3,v6) -equivalent(v6,v5,v7) -is_a_theorem(v7)

5. -equivalent(v0,v1,v2) -equivalent(v3,v2,v4) -c(v3) -b(v0) -equivalent(v0,v3,v5) -a(v1)

-equivalent(v1,v5,v6) -equivalent(v6,v4,v7) -is_a_theorem(v7)

6. -equivalent(v0,v1,v2) -c(v1) -equivalent(v1,v3,v4) -b(v0) -equivalent(v0,v4,v5)

-equivalent(v5,v2,v6) -a(v3) -equivalent(v3,v6,v7) -is_a_theorem(v7)
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A.1.5 BOO061-1

%------------------------------------------------------------------------------

% File : BOO061-1 : TPTP v3.1.1. Released v2.5.0.

% Domain : Boolean Algebra

% Problem : Single non-axiom M6D for Boolean algebra in the Sheffer stroke

% Version : [EF+02] axioms.

% English :

% Refs : [EF+02] Ernst et al. (2002), More First-order Test Problems in

% : [MV+02] McCune et al. (2002), Short Single Axioms for Boolean

% Source : [EF+02]

% Names : sheffer-mstar [EF+02]

% Status : Satisfiable

% Rating : 0.80 v3.1.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.83 v2.5.0

% Syntax : Number of clauses : 3 ( 0 non-Horn; 2 unit; 1 RR)

% Number of literals : 4 ( 4 equality)

% Maximal clause size : 2 ( 1 average)

% Number of predicates : 1 ( 0 propositional; 2-2 arity)

% Number of functors : 4 ( 3 constant; 0-2 arity)

% Number of variables : 4 ( 1 singleton)

% Maximal term depth : 5 ( 2 average)

% Comments :

% : tptp2X -f otter:none:[set(auto),clear(print_given)] -t stdfof+add_equality:r BOO061-1.p

%------------------------------------------------------------------------------

set(prolog_style_variables).

set(tptp_eq).

list(usable).

% reflexivity, axiom.

equal(A,A).

% m6D, axiom.

equal(nand(nand(A,nand(A,nand(B,B))),nand(B,nand(A,C))),B).

% prove_meredith_2_basis, negated_conjecture.

-equal(nand(nand(a,a),nand(b,a)),a) |

-equal(nand(a,nand(b,nand(a,c))),nand(nand(nand(c,b),b),a)).

end_of_list.
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%------------------------------------------------------------------------------

*************************

Symbol 0, relation, Dummy_symbol/0, atoms 1 -- 1, 0.

Symbol 1, relation, equal/2, atoms 2 -- 5, 1.

Symbol 2, function, nand/3, atoms 6 -- 13, 0.

Symbol 3, function, c/1, atoms 14 -- 15, 0.

Symbol 4, function, b/1, atoms 16 -- 17, 0.

Symbol 5, function, a/1, atoms 18 -- 19, 0.

1.equal(v0,v0)

2.-nand(v0,v1,v2) -nand(v3,v2,v4) -nand(v3,v3,v5) -nand(v0,v5,v6) -nand(v0,v6,v7) nand(v7,v4,v3)

3.-nand(v0,v1,v2) -nand(v2,v1,v3) -nand(v3,v4,v5) -c(v0) -nand(v4,v0,v6) -nand(v1,v6,v7) -b(v1)

-nand(v1,v4,v8) -a(v4) -nand(v4,v4,v9) -nand(v9,v8,v4) -nand(v4,v7,v5)
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A.1.6 ortholattice (needed by o1e1 and o1e4)

op(400, infix, [^,v]). % infix operators

list(usable).

% Axioms for an ortholattice.

x ^ y = y ^ x. % dependent on other axioms

% (x ^ y) ^ z = x ^ (y ^ z). % dependent on other axioms

x v y = y v x.

(x v y) v z = x v (y v z).

c(c(x)) = x.

% x v (y v c(y)) = y v c(y). % follows from lemmas below

x v (x ^ y) = x.

x ^ y = c(c(x) v c(y)).

% Ortholattice lemmas.

x ^ x = x.

x v x = x.

c(x) v x = 1.

c(x) ^ x = 0.

1 v x = 1.

x v 1 = 1.

1 ^ x = x.

x ^ 1 = x.

0 ^ x = 0.

x ^ 0 = 0.

0 v x = x.

x v 0 = x.

end_of_list.
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A.2 Problems in the SEQ Category

ALG008-1 ANA006-1 ANA006-2 BOO008-3 BOO019-1 BOO027-1 BOO030-1 BOO032-1 BOO033-1 BOO036-1 BOO037-

1 BOO037-2 BOO037-3 BOO056-1 BOO057-1 BOO058-1 BOO059-1 BOO060-1 BOO061-1 CAT001-2 CAT002-2 CAT019-

4 CAT019-5 CAT020-1 CAT020-2 CAT020-4 COL005-1 COL047-1 COL071-1 COL073-1 GEO078-4 GEO078-5 GEO078-6

GEO078-7 GEO157-1 GEO162-1 GEO163-1 GRP024-4 GRP025-2 GRP025-4 GRP026-2 GRP026-4 GRP027-1 GRP081-1 GRP112-

1 GRP204-1 GRP207-1 GRP392-1 GRP393-1 GRP393-2 GRP394-1 GRP394-3 GRP395-1 GRP397-1 GRP398-1 GRP398-2 GRP398-

3 GRP399-1 HEN013-1 HEN013-2 HEN013-3 HWC004-2 HWV038-1 LAT016-1 LAT024-1 LAT025-1 LAT046-1 LAT047-1

LAT048-1 LAT049-1 LAT050-1 LAT051-1 LAT052-1 LAT053-1 LAT054-1 LAT055-1 LAT055-2 LAT056-1 LAT057-1 LAT058-1

LAT059-1 LAT060-1 LAT061-1 LAT062-1 LAT063-1 LAT098-1 LAT100-1 LAT101-1 LAT102-1 LAT103-1 LAT104-1 LAT105-1

LAT109-1 LAT111-1 LAT113-1 LAT114-1 LAT115-1 LAT116-1 LAT119-1 LAT120-1 LAT121-1 LAT122-1 LAT126-1 LAT127-1

LAT128-1 LAT129-1 LAT130-1 LAT131-1 LAT132-1 LAT133-1 LAT134-1 LAT135-1 LAT136-1 LAT137-1 LCL136-1 LCL137-1

LCL142-1 LCL165-1 LCL267-3 LCL280-3 LCL288-3 LCL290-3 LCL291-3 LCL292-3 LCL338-3 LCL406-1 LCL407-1 LCL407-

2 LCL408-1 LCL409-1 LCL410-1 LCL411-2 LCL412-1 LCL413-1 MGT038-2 NLP049-1 NLP050-1 NLP051-1 NLP052-1 NLP053-

1 NLP180-1 NLP181-1 NLP182-1 NLP183-1 NLP184-1 NLP185-1 NLP186-1 NLP187-1 NLP188-1 NLP189-1 PUZ015-1 PUZ057-

1 PUZ058-1 RNG007-5 RNG025-8 RNG031-6 RNG031-7 RNG042-1 RNG042-2 RNG042-3 RNG043-1 RNG043-2 ROB012-1

ROB012-2 ROB015-1 ROB028-1 ROB029-1 SWV021-1 SYN305-1
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