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Chapter 1: Introduction

Environmental uncertainty has been a central construct of organizational the-

orists and strategic management researchers for many decades (Beckman et al.,

2004; Duncan, 1972; Knight, 1921; March and Simon, 1958; Pfeffer and Salancik,

1978; Thompson, 1967). My dissertation aims to add to our understanding of this

construct by examining the effect of environmental uncertainty on competitive in-

teractions between organizations, and the resulting behavioral and strategic choices,

such as risk taking and repositioning, that organizations make. I explore two exoge-

nous sources of uncertainty for a focal organization: first, random events which alter

the state of the environment; and second, imperfect information about competitor

organizations. Changes in the relative positions of organizations in the competitive

landscape mediate the effect of these types of environmental uncertainty, caused by

the above sources, on the strategic behavior and choices of the organizations. Across

my two chapters, I explore changes in risk-taking and repositioning by organizations

and how they are influenced by environmental uncertainty and the changing com-

petitive landscape.

The seminal paper by Milliken (1987) defined environmental uncertainty as

“an individual’s perceived inability to predict something accurately.” She suggested
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that the uncertainty construct should be disaggregated, and identified three types

of perceived uncertainty about the environment. State uncertainty – the inability

to predict the future state of the environment; effect uncertainty – the inability

of decision makers to predict how environmental changes will impact their organi-

zations; and response uncertainty – the inability of managers to identify potential

organizational actions and their outcomes.

The characterization of environmental uncertainty in my first chapter directly

overlays the phenomenon of state uncertainty, which negatively impacts the fit be-

tween organizational structure and environment. The well-established negative con-

sequence of state uncertainty is a reduction in organizational performance (Andersen

et al., 2007; Martin et al., 2015). I build upon this by arguing that reductions in

performance across organizations are disparate in nature but systemic which com-

presses the performance distribution of organizations in the competitive landscape.

At the organizational level, these changes in the distribution result in greater crowd-

ing by competitor organizations around the focal organizations. The implications

of the increase in level of crowding are two-fold: first, it leads to an overall increase

in risk-taking by organizations due greater competitive pressures and opportunities

which result from increased crowding; second, it motivates the lower placed competi-

tors to engage in greater risk-taking because crowding creates greater opportunities

for them compared to higher placed competitors (Bothner et al., 2007).

The broad framework developed in the first chapter can be helpful in un-

derstanding the behavior of organizations as their environment, impacted by uncer-
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tainty, undergoes a change. The ongoing transition of the automobile industry, from

gasoline based engines to alternative propulsion systems such as electric or hydrogen

based, can serve as a case for examining the real world application of the framework.

The development and increasing economic viability of alternative propulsion systems

for automobiles, in a relatively short period, can be argued as an exogenous source

of uncertainty in the operating environment for incumbent automakers, whose prod-

ucts are designed primarily to exploit the oil-based energy economy. This is state

uncertainty because the future state of the environment is unclear. The underlying

uncertainty, in this context, stems from incomplete information about the pace of

change, future regulatory support, availability of supporting infrastructure, devel-

opment of competing technologies and the suitable business models. As a result,

consistent with my framework, automakers are investing in R&D and evaluation of

alternative technologies which can be constituted as engaging in risk-taking. Addi-

tionally, the organizations placing the relatively large bets, accounting for size, are

the smaller car companies like Tesla & Faraday Future and those from China, and

not the typical industry leaders.

I test these ideas by examining risk taking in Formula 1 car racing both at

the race level and at the driver level. I exploit uncertainty brought about by the

incidence of rain during races and find that it reduces performance differentials

between drivers, leading to increased risk-taking at the race level. Further, during

conditions of uncertainty, lower performing drivers engage in greater risk taking

compared to higher performing drivers. Therefore, engaging in increased risk-taking
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is a direct consequence of changes in the competitive landscape, in this case, the

competitive crowding around organizations.

Even though the empirical context offers rich data, translating inferences from

car racing to the broader business world has generalizability constraints because of

the very specific nature of how these races are organized. For example information

about how uncertainty impacts a potential competitor might not be known for a

while in the real world compared to relatively instantaneously in my context because

drivers can observe how other drivers respond. This could influence risk-taking.

The primary reason behind risk-taking, according to my framework, is competition

between the organizations. The predictions might not apply well in stable and

slow moving industries where the competition is not intense. Finally, my empirical

context does not focus upon survival concerns of organizations. It could be possible

that such concerns might make lower performing organizations more risk averse

considering that an unfavorable outcome from risk-taking can have a greater impact

on their survival compared to higher performing organizations.

The second chapter in this dissertation explores the effects of uncertainty

brought about by an organization’s imperfect knowledge of a competitor’s inno-

vations and as well as the potential value of its innovations. The uncertainty stems

from the unknown value of a competitor’s innovation relative to its own. This type

of uncertainty is similar to that of effect uncertainty where the lacuna of information

plays a role when the focal organization seeks to reposition itself in the competitive

landscape. Consistent with localized competition, organizations typically compete
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with organizations of similar size. Upon developing an innovation of potentially high

value in relative terms, organizations might seek to reposition themselves, utilizing

the changing relative value of its innovation versus others to occupy better positions

in the landscape.

I explore this repositioning through a set of four factors, namely, agglomera-

tion effects, demand highpoints, and gains and loss from innovation in conjunction

with the unknown relative value of the innovation of the focal organization. While

the effect of each factor is relatively straightforward in isolation, taken together, the

outcomes are nonobvious considering the uncertainty. To overcome this and develop

a set of predictions for the strategic choices made by organizations, I develop a sim-

ulation model for organizations of different sizes, and with differing probability and

values of innovation. Organizations choose where to locate in a two-dimensional

space with heterogeneous demands to maximize their expected demand. Beyond

varied demand, collocated groups of organizations generate demand-agglomeration

economies. While this encourages locating adjacent to other organizations, neigh-

boring organizations also compete by taking demand from each other. Larger or-

ganizations take more from smaller ones, which discourages smaller organizations

from locating adjacent to larger organizations. However, innovations enable orga-

nizations to capture even more of competitors’ demand, encouraging organizations

with innovations to locate near larger organizations more than they otherwise would.

This model of competition led repositioning lends itself well to the exami-

nation of choices by organizations in industries, such as the movie industry. The
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competition landscape in the movie industry is temporal in nature; because of cul-

tural reasons certain times of the year and week experience higher demands than

other times, thus representing the demand highpoints of the landscape. As such, we

expect movies with valued innovations, such as those with a novel concept or sequel

of a proven idea, to release during the temporal highpoints, such as the summer or

the holiday season. This represents a repositioning, by the movie studios, to de-

mand highpoints to exploit the novelty of their ideas. The above model can also be

applied to the academic world where upon having a high-quality idea, the authors

might seek to position their paper towards a higher quality journal, which typically

gets higher attention, than the journals the authors would normally publish in. The

underlying uncertainty in the above examples results from the lack of information

about the relative value of novelty between movies releasing at similar times and

between the quality of paper and expectations of the journal.

I test the predictions of the simulation model using empirical data from the

trade show booths at the Consumer Electronics Show. The results indicate that

upon having an innovation, organizations reposition themselves closer to positions

of larger neighbors, who might have innovations of their own. Further, medium sized

organizations reposition themselves more significantly than small or large organiza-

tions. Fewer repositioning choices constrain smaller organizations and thus exhibit

lower levels of repositioning compared to the medium sized organization; while the

largest organizations have little to gain from repositioning.

The model detailed in the second chapter, while clear in its predictions, has
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certain limitations in its applicability. The model applies well in the case of punc-

tuated competition, where organizations compete in distinct cycles rather than con-

tinuously. Opportunities for repositioning involving a significant shift which might

not be as common, as or relatively low cost in typical business environments. A few

of the assumptions in the simulation model could be restrictive for the real world.

In the model, I assume that organizations are randomly assigned an innovation,

which is probably not the case, especially for the larger organizations which have

significant resources. Additionally, I assume a normal distribution as far as size of

organizations is concerned. This goes against the left skewed distribution normal

observed in any industry. These restrictions negatively impact the generalizability

of the model as far as broader uses of it in the real world.

The two chapters focus on two different types of uncertainty: state uncertainty

and effect uncertainty. Both of them draw on a similar framework where uncertainty

impacts the relative position of organizations in the competitive landscape, which

then results in different strategic behaviors by the organizations. Together, the two

chapters seek to demonstrate the changing competitive landscape as a mediating

mechanism to connect uncertainty and resulting behavioral outcomes.
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Chapter 2: Environmental Uncertainty & Competition: Organiza-

tional Risk Taking in Formula 1 Racing

2.1 Introduction

Managing uncertainty is one of the fundamental objectives of an organization

(Thompson, 1967). To that effect, organizations attempt to reduce their experi-

ence of uncertainty by engaging in actions such as bringing changes to their social

network (Beckman et al., 2004), altering board interlocks (Martin et al., 2015), or

focusing their energies on a single technology (Toh and Kim, 2013). In essence,

organizations choose alternatives with a lower variance in outcome during periods

of environmental uncertainty. I argue, however, that the existing literature does not

fully address the effect of the competitive interactions between organizations during

periods of environmental uncertainty. In this paper, I add to our understanding of

organizational behavior by arguing that, under conditions of competition and un-

certainty, organizations can engage in risk-taking actions that add to, rather than

reduce, their experience of uncertainty.

The amount of risk in a decision is directly dependent on the likelihood of

adverse versus favorable outcomes and the magnitude of potential loss in the event
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of an adverse outcome (March and Shapira, 1992; Sitkin and Pablo, 1992). An

organization is said to be taking a risk when the decision maker perceives variation

in the distribution of possible outcomes, their likelihoods, and their subjective values

(March and Shapira, 1987). The underlying idea is that risk involves an inherent

variability, though well defined, in the outcome of a decision. Thus, an organization

taking a risk in an uncertain environment, potentially adds to the variance of the

outcome by compounding risk with environmental uncertainty, thereby increasing

the risk associated with such a decision.

Uncertainty about the state of the environment can impact organizational

decision-making generally, and specifically regarding the decisions on operational

aspects of the organization (Milliken, 1987). Scholars have demonstrated that, on

average, uncertainty reduces the performance of organizations, as uncertainty im-

pacts the ability of organizations to make optimal decisions (Bowman, 1980; Bromi-

ley, 1991; Martin et al., 2015). I argue, however, that these reductions in per-

formance are discriminatory in nature since better-performing organizations face a

higher decline in performance in absolute terms when compared to lower performing

organizations.

The key to understanding the discriminatory reduction in performance is the

degree of fit between the structure of the organization and the environment, and

how that fit impacts the organizations performance. From the literature on organi-

zational ecology, we know that organizations adapt their structure, aligning it with

their environment, they typically operate within, to achieve greater exploitation

9



and higher performance (Hannan and Freeman, 1977). Greater exploitation and

resulting higher performance, however, is contingent on the environment remaining

stable and aligned with the structure of the organization. Therefore, a shift in the

environment as a result of environmental uncertainty negatively impacts the de-

gree of fit between the structures of the organization (Andersen et al., 2007). This

shift has a bigger impact on the performance of more organizations with a high

initial level of fit, and consequently, they suffer a greater decline in fit compared

to organizations with a lower initial level of fit. This, in turn, affects performance

differentials between organizations: with a greater decline in fit for organizations

having a higher initial level of fit, an overall contraction in performance differentials

across organizations occurs.

The lowering of both the mean and the variance of performance across organi-

zations has significant implications for competitive interactions and organizational

behavior. The reduction in variance of performance implies that a focal organiza-

tion now has more organizations performing at a comparable level to it, relative

to normal environmental conditions. This contributes to an increase in competi-

tive crowding around the focal organization (Sørensen, 1999; Podolny, 1993). An

increase in crowding leads to greater risk-taking as organizations respond to either

greater threats to their position in the hierarchy or increased opportunities for ad-

vancement (Bothner et al., 2007). Therefore, as environmental uncertainty alters

the competitive landscape, I expect to observe an overall increase in risk-taking

across organizations.
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While an increase in crowding leads to greater risk-taking, uncertainty in

the environment also affects the risk-taking behavior of the organizations hetero-

geneously, conditional on their position in the performance hierarchy. Higher per-

forming organizations, due to a greater reduction in performance, experience higher

crowding around them compared to organizations lower in the hierarchy. This would

suggest that such organizations should take greater risks to protect their extant po-

sition. However, the higher levels of competition, in conjunction with the uncertain

environment, lower the chance of successful outcomes from risk taking. This, cou-

pled with the fact that organizations higher in the hierarchy have more to lose from

an unsuccessful outcome, suppresses their propensity to take greater risk. In con-

trast, lower performing organizations not only experience relatively less crowding

but also have less to lose and have a higher chance of achieving a successful outcome

from risk taking. Therefore, I expect lower performing organizations to take more

risk as uncertainty in the environment increases.

Empirically, I test my propositions in the context of Formula-1 car racing

using data from the 1995 to 2015 seasons, drawing on a combination of race-level

and lap-level information about each drivers performance. The study leverages a

natural experiment: whether it rained during a race, which serves as a measure of

uncertainty in the racing environment. Rain, by its very nature, is an exogenous

and random independent variable that can help to identify the effects of uncertainty

clearly. The empirical findings are consistent with my propositions, demonstrating

that competitive effects during uncertainty account for why organizations engage in
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increased risk taking in such situations.

2.2 Theory & Hypothesis

Uncertainty has been a central concept in the organization theory literature,

particularly among theories which seek to explain the nature of the relationship be-

tween organizations and their environments (Argote, 1982; Thompson, 1967). The

characterization of uncertainty in management literature has its origin in Knight

(1921) definition of uncertainty, where probabilities of possible future outcomes are

unknown. Uncertainty manifests in difficulty predicting future outcomes (Beckman

et al., 2004), or more precisely for organizational studies, perceived inability to make

accurate predictions. An organization therefore experiences uncertainty because it

perceives itself to be lacking sufficient information to predict accurately. This expe-

rience of uncertainty can occur in a variety of environmental dimensions including

technology (Anderson and Tushman, 2001), politics (Henisz and Delios, 2001), and

resource (Delacroix and Swaminathan, 1991).

The underlying mechanisms that explain the effect of uncertainty on organiza-

tional performance can be broadly segregated into two streams of decision making

and organizational fit with an environment. Uncertainty about the actual state of

the environment can negatively impact decision making by organizations, in cases

where the state of the environment is a critical factor in the decision, such as in-

vestment in new technology (Anderson and Tushman, 2001; Toh and Kim, 2013),

or entry into a new market (Dowell and Killaly, 2009). For example, Dowell and
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Killaly (2009) argue that resource variation in markets deters entry by new firms. In

making the decision whether to commit resources to a market or a new technology,

organizations must be able to make a reasonably accurate estimation of the attrac-

tiveness of the market or the potential of the technology (Cyert and March, 1963;

Mitchell, 1989; Toh and Kim, 2013), and uncertainty impedes arriving at such a

decision. Further, from the perspective of bounded rationality, managers have con-

straints in scanning and interpreting information (March and Simon, 1958). These

limits are put under greater stress as the environment turns uncertain, compromis-

ing the ability of managers to take effective decisions. The diminished ability to

make decisions that have a reasonable level of robustness in their outcomes during

conditions of environmental uncertainty may adversely affect the performance of

organizations.

From the perspective of fit, organizations strategically align their structure

with the environment in which they operate to improve their fit. Environmental

fit is a key factor determining organizational performance (Hannan and Freeman,

1977). Any change in the environment can negatively impact the fit, and thus,

organizational performance. The greater the deviation from the expected environ-

ment, the greater the fall in performance. To avoid the reduction organizations need

to adapt to the change in the environment (Andersen et al., 2007). Environmen-

tal uncertainty, therefore, negatively impacts organizational performance because it

brings about a shift in the environment itself. Additionally, uncertainty about the

environment makes it more difficult for organizations to adapt their structure. The
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first hypothesis, which concerns performance changes in organizations facing uncer-

tainty, follows from the existing research on the mechanisms of decision making and

structural fit.

Hypothesis 1: As uncertainty in the environment increases, the
performance of the organizations decrease.

The literature on organizational ecology conceptualizes organizations as strate-

gically adapting to the environment to improve survival chances (Hannan and Free-

man, 1977) and realize performance gains (Fiegenbaum et al., 1996). Organiza-

tions can choose to align their structure either with a broad or a narrow set of

environments. Focusing on organizations within the same niche(s), one observes a

distribution of organizations with varying degrees of fit. As a consequence, some

organizations experience better performance as a result of their higher environmen-

tal fit. Such performance, however, is conditional on the environment being within

the set of environmental states on which the organizations have modeled their fit. I

label the set of such environmental states as the set of optimal states.

As the state of the environment changes due to uncertainty, the resulting state

might deviate from the set of states for which the organization initially modeled its

structures. A deviation in the environment state, therefore, negatively impacts the

level of fit organizations have in the new environmental state. While the existing

literature has focused on an average decline in fit for all organizations affected by

the deviation, I argue that such a deviation causes a discriminatory reduction in fit

for different organizations contingent on their initial level of fit.
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Organizations with a higher initial level of fit suffer a greater decline in fit

compared to those organizations with a lower initial level of fit. Let us consider a

shift in the environment from an optimal state to a hypothetical non-optimal state,

distant from the optimal state, in which all organizations have the same near-zero

level of fit and thus, a near-zero level of performance. As a result, there is a greater

decline in absolute fit for organizations having a higher degree of initial fit compared

to organizations with a lower initial level of fit. Thus, for any given state of the

environment lying between an optimal state and the distant hypothetical state, the

effect would be similar in nature, but with lower reductions in fit. Figure 2.1, which

is adapted from (Hannan and Freeman, 1977), provides a visual representation of

the above argument. For any state, other than the optimal state, the organizations

with higher fit suffer a greater decline due to an overall higher slope of their fit

curve.

With the direct relationship between fit and performance, a deviation in the

environment state has a negative effect on the performance of organizations (Hannan

and Freeman, 1977; Andersen et al., 2007). Paralleling the unequal reductions in fit,

organizations with a higher level of initial fit, when compared to those with a lower

initial level of fit, suffer a greater decline in performance as a result of a change

in the state of the environment. This unequal decline in performance leads to a

reduction in the performance differentials between organizations in a non-optimal

state.1

1It could be argued that organizations could adapt to the new state of the environment to avoid
a decline in performance. I work with the assumption that organizational structures have high
inertia and their pace of change is considerably slower than the pace of change of the environment.
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Hypothesis 2: As uncertainty in the environment increases, the
performance differentials between organizations decrease.

The concept of niche has been developed to model the structure of compe-

tition between organizations (Baum and Mezias, 1992; Greve, 2002; Hannan and

Freeman, 1977). According to the concept, organizations within the niche compete

primarily with others in the niche, giving rise to the idea of a localized competi-

tion (Baum and Mezias, 1992). Analogously, an organization typically competes

with other organizations who reside in its performance neighborhood. Thus, higher

performing organizations focus their competitive efforts on other higher performing

organizations, and likewise, lower performing organizations focus their competitive

efforts on other lower performing organizations. Reduction in performance differen-

tials between organizations due to uncertainty modifies this localized structure of

competition. Organizations from the neighborhood of lower performance are now

competitive with those from the higher performance neighborhood due a greater

decline in the performance of higher performing organizations. Further, lowering

of performance differentials between organizations from different niches forces these

performance neighborhoods to collapse and progressively move towards a single large

performance neighborhood. Thus, an organization which initially only competed

against and faced competition from organizations in its performance neighborhood,

now potentially has to compete against organizations outside its performance neigh-

In the event organizations begin to adapt to the new environment, the effect would hold true till
the organizations adapt their structures to the new state. Additionally, the environmental change
could also be temporary in nature, and the environment reverts to the original state. In this
case, the organizations do not attempt to even adapt to the new environmental state, resulting in
declines in organizational performance.
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borhood as well.

As the number of organizations in the performance neighborhood of any or-

ganization increases, it raises the number of competitors for the focal organization.

This increase in the number of potential competitors contributes to competitive

crowding around the focal organization (Eriksson, 1999; Bognanno, 2001). An orga-

nization experiences crowding from below when lower placed organizations challenge

its position in the performance hierarchy. On the other hand, when an organization

can potentially challenge higher placed competitors, it experiences crowding from

above. Thus, an increase in crowding from below implies a higher risk of positional

loss, and an increase in crowding from above connotes an improved opportunity to

advance in the performance hierarchy. The level of crowding from below is therefore

associated with the risk of loss, and the degree of crowding from above with the

opportunity for gain (Bothner et al., 2007).

An increase in crowding is associated with greater risk-taking due to changes in

opportunities and threats for the competing organizations. Research across different

literature streams provide evidence that increased crowding leads to greater risk-

taking. In the context of auctions, Kagel (1995) found that auctions with many

bidders are likely to experience increased risky bids that result in an overpayment.

At the individual level, Hvide and Kristiansen (2003) find that risk-taking is more

likely when more individuals are competing in the system for a limited opportunity.

Similarly, at the organizational level, risk taking has been linked to competition

among organizations. Bolt and Tieman (2004) find that the intensity of rivalry
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in the banking industry pushed the participants into risky behavior. The next

hypothesis focuses on the positive relationship between uncertainty and risk taking

at the environmental level due to increased competitive crowding:

Hypothesis 3: As uncertainty in the environment increases, the
degree of risk taking increases.

In addition to expecting an increase in the average level of risk taking, it is

important to evaluate possible heterogeneity in risk taking at the organizational

level. As discussed earlier, the nature of competitive pressure due to crowding is

different for organizations depending on their position in the performance hierarchy.

As a result of a greater decline in performance of higher performing organizations, a

greater incidence of crowding occurs as we ascend the performance hierarchy. Thus,

higher performing organizations face greater crowding both from below and from

above compared to lower performing organizations. Following Bothner et al. (2007),

this unequal increase in crowding suggests a greater incidence of risk-taking by

higher performing organizations compared to those placed lower in the performance

hierarchy.

While a greater increase in crowding around organizations with higher per-

formance prompts greater risk taking by them as the environment turns uncertain,

factors such as the probability of an unsuccessful outcome and size of the loss in the

case of an unsuccessful outcome are also important determinants of the propensity

for risk-taking by organizations. The discriminatory decrease in performance of or-

ganizations across the hierarchy impacts the probability of success when engaging
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in risk taking. With the reduction in performance differentials due to uncertainty,

higher performing organizations now compete against relatively better-performing

competitors. This negatively impacts the probability of success when engaging in

risky behavior while competing against them. For lower performing organizations,

however, the opposite is true. Lower performance differentials improve a lower per-

forming organizations chances of success when taking a risk compared to when the

performance differentials are larger.

The second factor that affects the propensity for risk-taking by organizations is

the possible size of the loss if the outcome is unsuccessful. An unsuccessful outcome

can potentially lead to a greater penalty for the higher performing organizations by

virtue of their higher standing in the performance hierarchy. For organizations lower

in the performance order, an unsuccessful outcome has a limited negative effect be-

cause of their lower standing. Combining the effects of two factorsgreater probability

of an undesirable outcome and greater loss in case of such an outcomewould logi-

cally lead higher performing organizations to be more conservative in taking risks

compared to lower performing organizations, where both the probability of loss and

the possible extent of that loss are lower.

To predict the propensity for risk-taking by various organizations across the

performance hierarchy, one must take into consideration the two effects described

above. While an increase in crowding would increase the propensity for risk-taking

by higher performing organizations compared to lower performing organizations, as

the extent of crowding becomes unequal, I posit that it is the lower performing
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organization who would have a higher propensity for risk-taking due to their lower

loss and reduced cost of unsuccessful outcomes. While this prediction might seem

inconsistent with what Boyle and Shapira (2012) have to say, it is not. I only

hypothesize about the increase in propensity for risk-taking under uncertainty rather

than actual risk-taking, which is what Boyle and Shapira (2012) focus on in their

paper. My final hypothesis relates uncertainty and the risk-taking propensity of

organizations across the performance hierarchy:

Hypothesis 4: As uncertainty in the environment increases,
lower performing organizations have a greater propensity for risk
taking than higher performing organizations.

2.3 Data & Methods

2.3.1 Formula-1 Car Racing Series

To test my predictions, I examine how environmental uncertainty affects the

degree of risk taking at the race level and the driver level in the Formula-1 (F-1)

racing car series organized by the Federation Internationale de l’Automobile (FIA)

from 1995 to 2015 F-1 seasons. I choose this empirical context for a number of

reasons. First, unlike similar car racing series such as NASCAR, F-1 allows races to

be run even during times of rain, which creates uncertainty for drivers as the weather

changes from dry to wet. Second, rain, which by its very nature involves random

assignment and random intensity, serves as an exogenous independent variable that

allows for clear identification of environmental uncertainty. Third, the evolution
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of the relative position structure as each season progresses enables me to study

changes in risky behavior across different conditions and for organizations at different

performance levels. Fourth, although many factors might force a drivers race to end

prematurely, the risk of crashing does depend in part on drivers behavior on the

track. Finally, the availability of detailed lap-level data allows me to capture the

performance of the drivers across multiple points in the race, and to empirically test

the various mechanisms. Thus, using F-1 allows me to develop empirical measures

of changes in environmental uncertainty, performance differentials across drivers,

and risky conduct. The data comes at two levels of detail. While driver-level

information for each race is available for all 371 races from 1995 to 2015, lap-level

data such as timing and pit stop is available only for the 95 races from 2011 to

2015. The total number of driver-year observations is 7471. The data was obtained

from multiple sources, including Formula1.com, wikepedia.com, fan forums, and

magazines covering F-1.

2.3.2 Tournament Structure

An F-1 season consists of a series of races in a calendar year. The number of

races per season has increased from about 16 in the 1990s to 17 in the 2000s to 19

in the 2010s, with the 2012 season having 20 races. Two world championships run

in parallel throughout the season: the FIA Formula 1 World Drivers Championship

(WDC) and FIA Formula 1 World Constructors Championship (WCC). The drivers

contest the WDC, and the teams compete for the WCC. Around 22-24 drivers,
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who belong to any of the 11-12 teams participating in the season, participate in a

given race. A team typically has more than two drivers, but only a maximum of

two from each team can take part in a race. During a season, however, more than

two drivers might represent a team; sometimes, due or injury or suspension, teams

may field replacement drivers for a portion of the season. I drop all instances of

drivers who participated in two or fewer races per season, for the simple reason that

replacement drivers have no chance of winning a championship, and hence their

incentive structure is different from that of regular drivers. The number of dropped

observations is less than 1% of the total sample. The results, however, are robust

to the inclusion of this 1%.

Drivers are awarded points depending upon their standing at the end of each

race of the season. FIA, the organizers of the F-1 racing series, use the structure

of the point system to promote competition and to make the races more exciting

for the viewers. The points system, which has undergone a few changes, has largely

remained the same regarding payoff structure for the competing drivers. The num-

ber of points accrued at each position and the number of drivers winning points,

however, has changed several times over the seasons, which affects the degree of

convexity of the payoff structure and the incentives drivers face at each position

during the race. Since overtaking a competitor entails a significant cost in terms

of planning, and/or potentially unfavorable outcomes such as spinning off the track

or an accident, the non-linear point structure, by offering disproportionately more

points for each improvement in standing in the race, incentivizes drivers to keep
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competing. Another element of the point system that promotes increased competi-

tive behavior is the fact that not all drivers who finish the race are eligible for points.

From the 1990s until 2002, only the top 6 drivers in a race were eligible to receive

points, a number increased to the top 8 from 2003 to 2009, and after that, to the

top 10 drivers in a race. The sum of the points obtained from standings in each race

determine the standings of the drivers for the season. The standings of the teams

are arrived at by summing the points obtained by the drivers of each team.

2.3.3 Drivers representing an organization

While F-1 allows for championships at both the team and driver levels, no prize

money is allocated to drivers for winning a race or a season. The prize money is

distributed to the teams depending on their standings at the end of the season. The

teams and the drivers have a symbiotic relationship, providing the infrastructure

and other related resources. The drivers are contracted by the teams to drive for

them. For many reasons, however, they cannot be classified as a regular employee of

the team, such as, say, a pit crew member. First, drivers cannot race independently

in F-1, but need to be a part of a team. Second, drivers are paid in tens of millions

of dollars2 much like top level executives of organizations, and are the face of the

teams they represent. Third, since each team can only field two drivers in the races,

each driver is responsible for on average for half the earnings of the team through

their prize money. Additionally, the two drivers compete against each other, and it

2Sebastian Vettel is the highest paid Formula 1 driver going into the 2016 F1 season with a record
3 year deal with Ferrari worth $150 million he is also one of the highest paid athlete/sportsmen in
the world Source: www.totalsportek.com
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is against the rules for teams to order a driver to drive in a way that benefits the

other driver of the team. In addition to the prize money, drivers also bring money

from sponsors to the team. Finally, even though the team personnel and the driver

together decide on their race strategy, it the driver who is the final decision-maker

on the track.

Following Boyle and Shapira (2012) who suggest that individuals who need to

make nonroutine and high-stake decisions experience conditions faced by managers,

I consider drivers equivalent to managers in the setup of F-1. The setting of the

tournament context is similar to examples of executives trying to outperform each

other for bigger bonuses, or business schools aiming to secure high positions for

MBA rankings (Bothner et al., 2007). There is enough evidence from the context to

suggest that drivers can be considered like managers of organizations. Therefore, for

this study, I consider each driver as a manager and representative of his organization,

not as an individual.

2.3.4 Rain Races in F-1

F-1 is different from other racing series, notably NASCAR, in that it allows

races to proceed as scheduled even in the event of rain. Compared to a race in dry

conditions, rain can alter the competitive landscape in an F-1 race in several ways.

First, rain, by causing the track to be wet beyond a certain degree necessitates the

use of more suitable rain tires for wet conditions, and can, therefore, require an

unplanned pit stop to change the tires. Rain tires provide additional grip in wet
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conditions, but in dry conditions suffer from performance disadvantages in terms

of speed and longevity. Pit stop management is an important part of the overall

strategy of a driver coming into the race. An additional pit stop for changing the

tires, typically lasting around 7 to 9 seconds, can force the driver to alter his strategy

midway through a race, where the average separation between drivers is about 2-3

seconds. Thus, a pit stop impacts the standing of a driver in the race. Second,

teams in F-1 design and tune up their cars to achieve the maximum amount of

performance in dry conditions. When the race track is wet due to rain, these factors

have less effect, leading to a reduction in the degree of fit the various cars have

with the wet racing conditions. Thus, rain establishes a more level playing field

wherein differences in performance across cars is minimized, and drivers become

more competitive against each other. Mark Weber, an F-1 driver talking about rain

races commented,“Generally, if you have a McLaren, a Ferrari or a Red Bull, then

you like normal Grands Prix. If you have a Force India or a Williams, you want it

to rain every race.”3. Thus, rain brings multiple degrees of uncertainty, impacting

reasons one and two described above. More importantly, teams or drivers cannot

influence when it rains, making rain both a random and exogenous event.

Rain taking place over the entire duration of the race can have a different

impact compared to rain that occurs only at the start of, or during a part of, the

race. Rainfall throughout a race minimizes the chances of an additional pit stop

needing to be made for the purpose of changing into wet tires since the cars use wet

3Source: www.nytimes.com “Wet or Dry? Rain on the Grand Prix Parade Is a Thrill Factor”
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tires from the start. Further complexities arise when it rains either before the start

of the race, such that the track is already wet when the race starts, or when it rains

during a portion of the race. Drivers and their teams need to take into account

when the track is wet or dry enough to change from dry tires to wet tires or vice

versa. A wrongly-timed or additional pit stop can greatly impact the standing of

the driver in the race. Additionally, being on the wrong set of tires can impact both

a drivers ability to compete and capacity to stay on the track.

Another factor that adds a layer of uncertainty is the intensity of rain and the

behavior of the track. Drivers must constantly evaluate the condition of segments

of the race track to determine how fast they can go without losing control of their

car. If a driver drives faster than the conditions allow, he risks spinning off the

track or even crashing. If he drives slower than the conditions permit, he may be

overtaken by other drivers. Thus, being able to figure out the maximum possible

speed in a given condition and driving as close to that speed as possible is important

for succeeding in a rain race. Rain brings a great of deal of uncertainty to a drivers

strategy and on-track performance, and as a result, rain races are considered more

exciting and are a favorite with F-1 viewers4.

Rain thus offers an elegant exogenous variable with a random assignment that

impacts the degree of uncertainty in the racing environment. For the purpose of this

study, any race is considered to be a rain-affected race that has a wet track at any

4In an analysis of user rating by a fansite of the 100 races from 2008-2013, 17 of the 21 wet
races from that period appeared in the top 50.
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time during the race. Thus, races in which rain occurs before the start of the race,

causing a wet track at the commencement of the race, are considered wet races in

the sample. Out of the 371 total races from 1995 to 2015, the number of rain races

was 61; while from 2011 to 2015, there were 12 rain races out of a total of 95.

2.3.5 Analysis

Re-stating the predictions in the context of F-1 racing, the main hypothesis

suggests that there will be more crashes in the rain affected races. The onset of

environmental uncertainty will reduce the performance differentials between the

drivers, thereby increasing competition between the higher and lower performing

drivers. Further, at the driver level, as drivers lower in the standings become more

competitive with higher performing drivers, I expect increased risk taking and a

higher incidence of crashes as they begin to compete with the better-performing

drivers. To test my predictions and the underlying mechanisms, I run my analysis

at both the race level and the driver level. Of the dependent and independent

variables listed below, some are used in model specifications either at the race or

the driver level, while others are used in specifications at both levels.

Predictions for the impact of uncertainty on reduction in performance differ-

entials between competitors, and the resulting increase in risk at the aggregate level

are tested at the race level. The model specifications take the following form:

(Std. Dev. of Driver Speeds)r,t = β0 + β1Rainr,t + β2(Race Level Controls)r,t

+ εr,t — (1)
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The subscript ‘r’ is the race indicator of the season ‘t’ for the panel dataset

from year 2011 to 2015. εi,t is the error term of the model. Lap level data for time

taken and pit stop information is only available from 2011 onwards.

(Number of Crashes in the Race)r,t = β0 + β1Rainr,t + β2(Race Level Controls)r,t

+ εi,t — (2)

The subscript ‘r’ is the race indicator of the season ‘t’ for the panel dataset

from year 1995 to 2015. εi,t is the error term of the model.

To examine the effect of performance of the competitors and uncertainty at

the driver level, I estimte the following logistic regression specification:

ln(pd,r,t / (1 - pd,r,t)) = β0 + β1(Season Standing)d,r,t + β2Raind,r,t + Rain

* β3(Driver Level Controls)d,r,t + β4(Race Level Controls)d,r,t + β5(Circuit Level

Controls)d,r,t + εd,r,t — (3)

As in the previous equations, the subscript ‘r’ is the race indicator of the season

‘t’ while ‘d’ is the driver indicator.

2.3.5.1 Dependent Variables

Risk Taking: I measure driver risk taking by the number of spin-offs or

crashes in which they take part. A driver can expose himself to spinning off the track

or crashing when he attempts to overtake other drivers. Overtaking is considered to
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be difficult in F-15, but drivers resort to overtaking to advance their standing in the

race. Overtaking is made difficult due to narrow racing lines (the part of the race

track where drivers normally drive), which makes it possible only on the straight

portions of the track or when entering a corner. While trying to overtake another

driver on the straightway, a driver can get close to the other car and experience a

loss of grip due to turbulence from the car in front of him, potentially causing a

crash. Having a noticeably faster car helps in overtaking on the straightaway. While

trying to overtake another driver on the corner, drivers typically aim to outbreak

the other drivers by braking as late as possible to force the opponent off the racing

line and to try and take the inside lane. If the driver outbreaks less than required,

he might have less space for making the corner and the inside front wheel might

go off the track. If the driver outbreaks more than required, he risks a chance of

slipping off the track due to having a higher speed at the corner. Overtaking from

the outside has potential hazards of driving over debris, which can cause the driver

to lose control and crash into a barrier. I mark all instances when a drivers race

ends due to crashing into a barrier or spinning off the track as 1 and 0, respectively.

Overtaking becomes even riskier when the track is wet due to rain. Rain takes

away the advantages of higher grip from cars having a better aerodynamic design,

which can result in greater performance parity among the cars. The relative absence

of performance difference makes it even more challenging to overtake on the straight

section of the race track; besides, drivers must contend with the spray coming from

5Overtaking is relatively rare in F-1. Overtaking is always closely monitored by the officials
and any driver, driving dangerously attracts instant penalty.

29



the tires of the car in front of them. Uncertainty about the condition of the track

makes outbreaking more difficult to execute because the driver is unsure what speed

is required to successfully negotiate the corner. Changes in track conditions some-

times push drivers to make an unscheduled pit stop to change tires, causing them

to drop in race standings and sometimes attempt a risky overtake to advance their

position.

Mean Performance of Drivers in a Race: I use data from 2011 to 2015,

which includes lap level information such as lap time and laps when a pit stop was

taken, to calculate the average performance of the drivers in the race. Using lap

timing data and the length of the track, I get the speed of each driver for each of

the laps he completes in the race. To get average performance at the race level, I

take the average of all lap speeds for all the drivers in a given race. There are two

factors which might have a downward bias on speed in a rain race: additional pit

stops and safety car deployments. To account for the possible higher number of pit

stops taken in rain races, I drop all the laps in which a pit stop was made by a

driver. The deployment of the safety car also impacts the lap timing of the drivers,

as the speed of the drivers is constrained by the speed of the safety car. To make

sure that the measure for average performance is not biased because the safety car

is deployed more in rain races, I also drop all the laps during which a safety car was

on track. The speed of the driver is calculated in miles/hr.

Performance Differential between Drivers: To measure performance dif-

ferentials between drivers, I make use of lap level information as described above.
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I calculate the speed of the driver for each lap he completes in a race. I drop ob-

servations for laps in which a pit stop was made, or the deployment of a safety car

affected it. I then get the standard deviation of all lap speeds of all drivers in a

given race to arrive at the performance differential between drivers in a race.

2.3.5.2 Independent Variables

Season Standing of the Driver: Season standing captures the current po-

sition of the driver. Taking into account points earned for all the races held in

the season before the start of the focal race. Drivers before their first start in the

season have no standing. Therefore, all observations of the first race of the season

and that of the first appearance in the season are dropped. Season standing of

a driver can influence his propensity for risky behavior. Drivers who are high in

the season standings aim to keep their position to aid their chances of winning the

drivers championship and their teams chances of winning the constructors champi-

onship. Additionally, in dry races, drivers higher in the season standings typically

face competition only from drivers close to them in the standings, since differences

in car performance do not allow drivers lower in the standings to compete effectively

with drivers with better cars. Thus, in dry races I expect risk-taking to be concen-

trated among drivers higher in the season standings. This risk-taking, however, is

projected to change in a rain-affected race, where rain reduces performance differ-

entials between drivers. In a rain race, lower performing drivers can compete more

efficiently with higher performing drivers; I expect an increase in risk taking by the
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lower performing drivers, leading to similar levels of risk taking for drivers across

the standing.

Champion Decided: The primary motivation behind a driver taking risk

stems from the desire to win. The drivers championship represents the ultimate

goal for any driver participating in the season. Winning a championship can bestow

non-pecuniary benefits such as fame and recognition that are important to individu-

als (Sauer, 2007), apart from monetary incentives resulting from bonuses and better

contract terms in the future. A driver winning the drivers championship can neg-

atively impact the motivation of the other drivers aiming to win the championship

. I expect risk taking by drivers to come down in races after the champion has

already been decided. A season being decided represents a substantial lowering in

competitive pressure on the drivers. Post-champion being decided, with lower com-

petitive pressures, I expect drivers to turn risk averse in uncertain environments, in

agreement with existing theory.

Driver Controls: A drivers innate tendency to take a risk during a race can

affect the number of crashes in which he is involved. Research from the psychology

literature indicates that such tendencies can be influenced by the underlying person-

ality of the driver, such as a penchant for sensation-seeking (Rolison and Scherman,

2003). For testing hypothesis 4, which examines risk-taking at the driver level, I

control for individual drivers to allow for intercepts to vary by the individuals style

of driving, temperament, and attitude toward risk. Using a fixed effects specifica-

tion constrains the estimates to reflect the consequences of within-driver changes in
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covariate values on the odds of crashing.

The number of crashes a driver is involved in speaks to the innate tendency

of the driver to take a risk. I control for the aggregate number of crashes a driver

has experienced in the current season before the start of any race. This number

is updated after every race in a season. Having controlled for individual driver

tendencies, every subsequent crash a driver is a part of should force the driver to be

more careful and learn from the incidents. Experiencing a crash causes the driver

to slide down in the season standings, and also exposes him to possible injury or

even death. Thus, I expect the number of prior crashes to negatively affect the

probability of crashes after controlling for driver fixed effects.

Other driver characteristics I control for are driver age, and driver experience,

in terms of the number of races a driver has participated in. I expect both experience

and age to lower the probability of crashing. Additional experience helps to fine tune

a drivers skill and prepares him to better negotiate uncertainty. Older drivers tend

to be more mature compared to younger drivers, and studies have tied risk taking

to youth (Kweon and Kockelman, 2001; Vroom and Pahl, 1971).

I also adjust for a drivers position on the starting grid. Drivers participate in

multiple stages of qualifying to determine the order in which they line up for the

start of the race. The driver with the fastest timing in the qualifying gets to line

up at the top of the grid, with the inside track giving him a starting advantage.

Drivers starting from further behind may need to take additional risk to advance
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their standing in the race. I expect increased risk taking by drivers as their starting

position slides down the grid.

Team Controls:In F-1, each driver, belongs to a team since independent

drivers are not allowed to participate. While there are championships for the drivers

as well as the constructors, only the constructors win prize money at the end of the

season. The drivers are contracted by the teams much like soccer teams contract

their players. The teams invest money and resources into improving the cars and

setting up the support staff for the drivers. Teams also decide on race strategies with

their drivers. Needless to say, teams play a major role in their drivers’ performance.

A driver can also take a risk either to maintain the standing of the team or try to

improve it. To control for unobserved traits of the teams, I use fixed effects for each

of the teams. I also control for the current season standing of the drivers teams to

capture the effect of the performance of the team on driver crashes.

Race Controls: F-1 holds races across a variety of tracks around in the world

in different conditions. The circuit in Monza, Italy has been in use since the 1950s.

Singapore, on the other hand, has a street circuit, and the race is held under lights.

The designs of the various races vary considerably, offering different opportunities

for overtaking and taking advantages of a faster car. The specifics of the track can

impact the risk-taking behavior of the drivers. I control for individual track level

effects in my specifications.

I control for three related variables at the race level: The number of turns in
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the track, the length of the track, and the total distance of the race. The drivers can

experience up to 3.5G of force while negotiating a turn as they reduce their speed

from 185 miles/hr to about 60 miles/hr within 3 seconds6. Negotiating a turn takes

an enormous amount of physical toll on the body, especially on the neck. Track

with more and sharper turns exhaust a driver more quickly, leading to a potential

crash. On the other hand, longer races allow drivers more time to compete without

being forced to rush into a risky decision. Longer races also help spread out the

field, which reduces competitive interactions between the drivers, thereby lowering

the chances of a crash.

The length of the race track, on the other hand, has the opposite effect. Longer

tracks allow for more space and thereby drive down congestion. Shorter tracks, on

the other hand, pit drivers more closely, increasing the chances of a crash. Increased

congestion can take maneuvering space away from a driver trying to avoid a crash.

Short tracks also place increased demands on the drivers body since the driver has

to negotiate turns with reduced time intervals. Another factor that can increase

congestion is the number of drivers participating in the race. The number of drivers

in a race can vary due to the number of teams competing in the season, driver

disqualification, or the failure of some drivers to qualify for the race. The greater

the number of drivers participating in a race. The more competition an individual

driver faces. Besides, more drivers mean less space on the track for each driver,

6“The vast loadings that Formula One cars are capable of creating, anything up to a sustained
3.5 g of cornering force, for example, means drivers have to be enormously strong to be able to
last for full race distances”. Source: www.formula1.com
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which increases the chances of a crash.

Temporal Controls: In addition to the driver, constructor, round, and race

level controls, I account for changes in the points structure, the number of competing

teams, rule changes from season to season, and changes in technology across season

by means of time fixed effects. Since the F-1 season begins and ends in the same

calendar year, I use calendar years to control for temporal changes across seasons.

Within a season, I also control for the order in which a particular race is held, i.e.

the round.

2.4 Results

The empirical analysis as described earlier is carried out both at the aggregate

level, which is the race, and at the organization level, which pertains to the driver.

The lap level data is available only between 2011 and 2015; therefore, the analysis

using performance-related measures such as mean and standard deviation of perfor-

mance is based on this sub-sample. For the rest of the other analysis, I use the full

dataset from 1995 to 2015.

Table 2.1 contains the summary statistics from 1995 to 2015, covering a total

of 371 races of which 16.4% were rain affected. This is greater than the 12.6% of

races affected by rain in the smaller sample of 95 races from 2011 to 2015, descriptive

statistics of which are provided in Table 2.2. Table 2.2 shows the distribution of

wet and dry races across the various seasons in the sample data. From Table 2.3,
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the number of driver starts ending in a crash in the final sample is 11.2%. This is

greater than 9.7% in the actual sample, without the removal of first round races,

which typically have a lower crash rate.

Table 2.4 provides the correlation measures between variables in the smaller

sample, whereas Table 2.5 provide the correlation statistics for the larger sample.

As expected, the correlations between age and driver experience are quite high. To

avoid issues of multicollinearity, I use driver experience in terms of races to capture

the effect of these variables. The correlation between season standing of the driver

and rank of the team is positive by construction since team rank is a direct result of

the performance of the drivers on the team. I use mean adjusted variables to reduce

the effect of high correlation. The variable inflation factor is less than 10. A similar

process is followed for grid position and driver standing. The results of the main

variables are robust to the inclusion of these variables.

To test whether the baseline hypothesis, i.e. Hypothesis 1, holds in my empir-

ical data, I examine the effect of rain on mean performance by drivers at the race

level. Table 2.6 contains results from the estimation. Models 1 - 3 are specifications

containing only the control variables while model 4 is the full specification model.

Model 4 allows us to examine the effect of round and various circuit parameters

on the performance of drivers. Model 6 controls for both round and circuit char-

acteristics and is a more restrictive version of Model 4. The coefficient for rain is

highly significant and negative in nature, which strongly suggests that uncertainty

does, in fact, lead to a reduction in mean performance of competitors at the system
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level, which here is the race, lending support to hypothesis 1. The reduction of

approximately 11.9 Miles per hour represents a decline of around 9.6% in average

speed of the drivers. While the coefficient for the number of drivers in the race is

insignificantly different from zero, the sign follows expectations. The coefficients for

round, circuit and race length as well as the numbers of turns are all significant at

various levels with expected signs. Longer circuits typically have longer straights,

which contribute to higher speeds and also give more space to drivers to drive with

less congestion. An increasing number of turns do force drivers to slow down, often

reducing their speed.

I test the effect of uncertainty on performance differentials across organiza-

tions, and across various specifications, in Table 2.7. Similar to Table 2.6, models

1 - 3 are control only, while model 4 is the full specification model. Model 6 has

fixed effects for both round and circuit characteristics. The significant and negative

coefficient of rain in models 4, 5, and 6 allow me to reject the null hypothesis and

claim support for hypothesis 2. Rain forces drivers to lower their speed to safe levels.

Since the faster drivers typically drive at a much higher speed compared to the safe

speed in the rain, they have to lower their speed by a larger amount than the slower

drivers. Longer circuits provide more space to the drivers to allow more separation.

The effect of the number of turns in the circuit is highly significant and negative;

this is expected since turns act as speed barriers, and having a greater number of

them impede the cars from reaching higher speeds and lower the separation between

drivers.
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The support for the baseline hypothesis 1 and hypothesis 2 together provide

us the evidence that during uncertainty organizations have reduced performance on

average with the difference in their performance shrinking. Finally, to test the effect

of uncertainty on risk taking, I run specifications, results of which are presented in

Table 2.8. Models 1 - 3 are the specifications with all controls. The significant and

positive coefficient of rain across models 4 - 7 suggests increased risk taking in an

uncertain environment by organizations, thereby lending support to hypothesis 3.

The signs of coefficients of number of drivers, circuit length and race length all are

according to expectations. The coefficient for race length is significant and suggests

that longer races do help in spreading out the field and not pushing drivers to take

risky decisions.

The coefficients of Champion decided and Rain * Champion Decided merit a

detailed discussion. The signs of both these set of coefficients are negative in nature

and are in line with expectations that drivers have less motivation and competition

after a championship is decided. While determining a champion effects all drivers

in general, it significantly affects the behavior of drivers who were in the running

for the championship. Estimating the results of the same models on a sub-sample

containing the top 50% drivers shows a more significant result. The coefficient of

Rain x Champion Decided represents risk-taking in the rain affected races where the

championship has been decided compared to rain affected races before the cham-

pionship has been decided. The negative coefficient suggests that even in the rain

affected races drivers turn risk averse once the championship has been decided, in
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line with the existing theory that predicts conservative behavior in uncertain envi-

ronments. The coefficient turns significant using a sub-sample of only the top-half

of the drivers.

Hypothesis 4 compares risk taking by higher and lower performing organiza-

tions. To test hypothesis 4, I run model specifications, the results of which are

presented in Table 2.9. The models contain the interaction effect of rain with the

season standing as well as with the control variables. Model 5 and 6 help us ex-

amine the effects of position in the hierarchy and uncertainty on risk taking. The

coefficient of season standing is significant and negative in nature, suggesting that

in non-rain races, higher performing drivers take more risk. This is expected since

there is a high correlation between season standing and standing in individual races.

Drivers earn points only when they finish in the top half, and therefore drivers have a

greater incentive to take a risk when they are in contention for points. Additionally,

lower performing drivers are not able to compete with higher performing drivers in

dry conditions and therefore are rarely in contention for points, which accounts for

their low-risk taking. While it might be argued that lower performing drivers have

nothing to lose and everything to gain from taking a risk, being involved in a crash

does have its negative effects. Not only are there chances of injury and possible

loss of participation in future races, but the reputation of a driver might also suffer,

hampering his chances of a getting a better contract in the future. The coefficient

for rain ran along expected lines and was similar to its effect on the results discussed

above.
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The coefficient for the interaction variable season standing * rain is significant

and positive. This suggests that as conditions change to rain, lower performing

drivers take more risk than higher performing drivers, providing support to hypoth-

esis 4 which states that lower performing organizations take more risk as uncertainty

increases. The coefficients of some of the control variable demand attention. The

coefficient for grid, which represents the starting position at the time of the race,

is positive for dry races but reduces for rain affect races, suggesting that during

rain races the starting grid position does not matter as much. A better comparison

between the coefficients of the variables in dry- and rain-affected races can be made

in Table 2.10, which is discussed in the robustness section.

2.4.1 Robustness Checks

I evaluate a variety of alternative specifications to test whether the empirical

results are robust to different setups. I test for robustness of the results for hypoth-

esis 3 by using negative binomial models in addition to OLS specification. I get

consistent results for the same. To test the robustness of results for hypothesis 4 in

Table 2.9, I test a different set of models in addition to the variation in models as

described above. To examine how risk taking varies with performance level, I split

the sample by rain, and use indicators of the season standing of drivers according to

their position in the top, second, third, or last quarter instead of individual stand-

ings. The results are presented in Table 2.10. Models 1 - 4 use observations only

from the dry races while models 5 - 8 use observations from the rain affected races.
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We can observe that the coefficient of indicators for the third and last quarter are

significant for dry races, suggesting that drivers in the lower half of the standing

take less risk than those in the top half of the standing. This difference in risk taking

goes away in the case of rain affected races where risk-taking is similar across the

driver standing in various quarters. This result strongly suggests that as a result of

the reduction in performance differential between drivers, the drivers are competing

with drivers across the performance spectrum rather than competing with drivers in

their performance neighborhood. This can also be seen in Figure 2.3, where during

rain races, there is perceptually no difference in risk taking between higher and lower

performing drivers when compared to the curve of the dry races.

Comparing the coefficients of control variables across the two sub-samples

highlights the difference in the effect of the various variables as the environment

changes. While drivers starting behind in grid position take more risks in dry races,

grid position does not seem to matter in rain races. Additionally, the effect of the

prior number of crashes in the season does not seem to have an effect on the risk-

taking behavior of drivers in rain races, suggesting the influence of reduction in

performance differentials on the risk taking of drivers. The lower performing drivers

sense an opportunity to compete better, and thus, possibly disregard their earlier

instances of crashes. Finally, the effect of the race length, which in dry races allows

for creations of separation on the track between drivers, goes away in rain races,

indicating the loss in advantage for faster cars in rain races. The coefficients of other

variables such as age, team performance, and champion decided seem to be in line
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with expectations.

As I described earlier, braking in F1 plays a major role in that drivers attempt

to overtake each other by outbreaking their competitors. Brakes of the cars work

under tremendous stress as cars decelerate from nearly 200 miles per hour to 60

miles per hour in under 3 seconds. Drivers have to be careful how they use their

brakes, as a failure can lead to a premature end to their participation in the race.

As a result, I use the amount of brake failure as an alternate dependent variable.

The results are similar in nature to what I obtained earlier.

2.4.2 Addressing the confounding effect of rain

Legitimate concerns can arise due to the incidence of rain as a proxy for

environmental uncertainty, with crashes being a measure for risk taking. It can

be argued that it is the bad conditions as a result of rain, and not competition,

which contributes to increased risk taking by drivers. I provide a couple of pieces of

empirical evidence showing that it is primarily the increase in competitive crowding

that inspires increased risk taking by drivers. As explained earlier, winning the

championship is the primary objective of any driver in the competition. When

a championship winner has been decided, the other drivers, who could have won

the championship, have less of an incentive to continue competing, which would

be reflected in a lower incidence of risk-taking. The consistent negative coefficient

of champion decided across the models provides a general evidence to that effect.
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The coefficient of champion decided * rain in Table 2.9 provides further evidence

that drivers turn cautious in the rain and take less risk once a championship has

been decided. One point of note here is that the championship being decided has

much less significance to drivers in the lower half of the performance hierarchy than

in the upper half. This is the primary reason behind the low significance level

of these coefficients. I run the same analysis as in Table 2.9 with only the top-

half and top-quarter of performing drivers in the sample. The effect is consistent

and statistically significant and provides evidence that the increased risk-taking is a

result of increased crowding and not the result of rain. Table 2.8 provides additional

evidence of the same. Rain does have an effect on the number of crashes once the

season has been decided. A similar inferences can be drawn from Figure 2.3 in

which the effect of rain on risk taking is dissimilar across the position standing after

accounting for individual driver effects.

2.5 Discussion

In this study, I investigate how uncertainty and competition affect risk taking

by organizations. I argue that uncertainty not only reduces the mean performance

of organizations but that higher and lower performing organizations experience dif-

ferential amounts of performance reduction, with higher performing organizations

experiencing greater declines. This leads to an increase in competitive crowding

around organizations, which in turn encourages organizations to engage in greater

risk taking. The extent of risk-taking is expected to differ for higher and lower per-
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forming organizations, with higher performing organizations taking less risk. Con-

sistent with these expectations, my results indicate that, on average, greater risk

occurs in uncertain environments; and differentiating among organizations, that

lower performing organizations take more risk than higher performing ones.

The findings have important implications. First, the findings show that there

is a contraction in performance differentials across organizations as uncertainty in-

creases. The fact that better performing organizations lose their traditional advan-

tage over competitors in uncertain environments should be concerning to the market

leaders. On the other hand, market challengers can view uncertainty as an oppor-

tunity to compete and challenge the market leaders. The creation of a more level

playing field has consequences for competitive interactions between organizations.

As organizations compete with others, settling on a stable strategy becomes difficult

and puts a strain on the cognitive resources of managers.

Second, the evidence for increased risk taking during uncertainty has impor-

tant implications for managerial decision making. Organizations commonly engage

in risk taking to make up for performance shortfalls (Lehman and Hahn, 2013) or

to keep up with their peers. An important consideration, however, is the cost of

risk taking and the potential consequences of unfavorable outcomes. Risk taking

typically pushes organizations to undertake activities outside their normal purview.

While activities such as investment in new technology and entry into new markets

are important for growth and survival, engaging in such activities as a quick reaction

to the sudden emergence of an opportunity or threat can have potentially negative
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consequences. Uncertainty creates an opportunity to engage in risk taking for po-

tential gains but is accompanied by a high probability of an unfavorable outcome.

Managers must be cognizant of such tradeoffs when responding to uncertainty.

Finally, this study has important implications for organizational adaptation

and fit. With environments regularly buffeted by technological and political change,

followed by periods of uncertainty, managers of lower performing organizations

should leverage these periods of uncertainty to become more competitive with better-

established rivals. However, they must also learn to capitalize on such opportunities

by holding onto the gains made during the period of uncertainty once the environ-

ment stabilizes. Higher performing organizations need to be adaptive to avoid being

challenged by lower performing organizations during a period of environmental un-

certainty. This brings us to the core concept of organizational fit. Having the ability

to adapt to changing environmental conditions is essential for both the short term

and long term performance of an organization (Lengnick-Hall and E., 2005)). What

starts as a temporary disadvantage and advantage for both high and low perform-

ing organizations, can become more sustained depending upon their ability to adapt

and reconfigure their fit with the environment.
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Table 2.1: Summary Statistics of Races from 1995 to 2015

Statistic N Mean St. Dev. Min Max

Crashes 371 2.491 2.357 0 13
Rain 371 0.164 0.371 0 1
Year 371 2,005.334 6.074 1,995 2,015
Champion Decided 371 0.075 0.265 0 1
Round 371 9.375 5.170 1 20
Num Drivers 371 21.752 1.533 18 26
Circuit Length 371 3.133 0.514 2.075 4.356
Race Distance 371 189.451 15.242 106.861 226.891
Turns 371 16.221 2.858 9 25

Table 2.2: Summary Statistics of Races from 2011 to 2015

Statistic N Mean St. Dev. Min Max

Crashes 95 1.516 1.590 0 6
Rain 95 0.126 0.334 0 1
Std. Dev Speed 95 3.590 0.813 1.450 5.425
Average Speed (M/hr) 95 116.852 12.829 85.581 144.571
Year 95 2,012.979 1.422 2,011 2,015
Champion Decided 95 0.105 0.309 0 1
Round 95 10.021 5.541 1 20
Num Drivers 95 22.295 1.630 18 24
Circuit Length 95 3.238 0.491 2.075 4.356
Race Distance 95 189.164 7.431 158.898 193.415
Turns 95 16.947 3.227 9 25

Table 2.3: Summary Statistics of Driver Level Observations

Statistic N Mean St. Dev. Min Max

Crashes 7,471 0.112 0.315 0 1
Season Standing 7,471 11.540 6.565 1 27
Rain Race 7,471 0.174 0.379 0 1
Prior Crashes 7,471 0.954 1.133 0 8
Grid Position 7,471 11.289 6.347 0 26
Driver Age 7,471 28.556 4.596 17.492 43.893
Driver Exp 7,471 81.111 69.008 1 325
Year 7,471 2,005.383 6.103 1,995 2,015
Team Rank 7,471 5.929 3.169 1 13
Champion Decided 7,471 0.077 0.267 0 1
Round 7,471 9.828 4.887 2 20
Num Drivers 7,471 21.849 1.515 18 26
Length 7,471 3.126 0.527 2.075 4.356
Race Dist 7,471 189.466 15.522 106.861 226.891
Turns 7,471 16.255 2.938 9 25
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Table 2.6: Effect of Uncertainty on Mean Performance in Races

Dependent variable:

Average Performance of Teams in Race (Avg Speed (M per hr))

(1) (2) (3) (4) (5) (6)

Drivers in Race −0.145 −1.504 −1.479 −0.856 0.596 −0.261
(2.552) (1.399) (1.351) (1.184) (1.052) (0.944)

Circuit Length 16.771∗∗∗ 16.721∗∗∗ 16.943∗∗∗ 20.148∗∗∗

(1.835) (1.771) (1.546) (1.953)

Race Length 0.248∗∗ 0.212∗ 0.193∗ 0.459∗∗∗

(0.121) (0.118) (0.103) (0.161)

Turns −2.209∗∗∗ −2.412∗∗∗ −2.506∗∗∗ −2.674∗∗∗

(0.245) (0.248) (0.217) (0.198)

Round 0.368∗∗∗ 0.416∗∗∗

(0.136) (0.119)

Rain −10.111∗∗∗ −9.667∗∗∗ −11.948∗∗∗

(1.921) (1.908) (1.708)

Constant 119.739∗ 88.366∗∗ 94.582∗∗ 86.317∗∗ −0.051 130.485∗∗∗

(60.913) (41.131) (39.768) (34.724) (42.337) (21.876)

FE: Year Yes Yes Yes Yes Yes Yes
FE: Round No No No No Yes Yes
FE: Circuits No No No No No Yes
Observations 95 95 95 95 95 95
R2 0.004 0.717 0.739 0.804 0.907 0.953
Adjusted R2 −0.052 0.691 0.712 0.781 0.867 0.914

Note: Significance: *p<0.1; **p<0.05; ***p<0.01 :: Two tailed SE in parenthesis
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Table 2.7: Effect of Uncertainty on SD of Performance in Races

Dependent variable:

SD of Performance of Drivers in Race (SD Speed)

(1) (2) (3) (4) (5) (6)

Drivers in Race 0.160 0.150 0.151 0.178 0.078 0.069
(0.150) (0.142) (0.143) (0.141) (0.136) (0.130)

Circuit Length 0.454∗∗ 0.453∗∗ 0.463∗∗ 0.355
(0.187) (0.187) (0.184) (0.253)

Race Length 0.014 0.013 0.012 0.002
(0.012) (0.012) (0.012) (0.021)

Turns −0.031 −0.036 −0.040 −0.069∗∗∗

(0.025) (0.026) (0.026) (0.026)

Round 0.009 0.012
(0.014) (0.014)

Rain −0.451∗ −0.723∗∗∗ −0.798∗∗∗

(0.229) (0.247) (0.235)

Constant 0.231 −3.110 −2.952 −3.321 1.480 2.279
(3.591) (4.186) (4.207) (4.141) (5.477) (3.004)

FE: Year Yes Yes Yes Yes Yes Yes
FE: Round No No No No Yes Yes
FE: Circuits No No No No No Yes
Observations 95 95 95 95 95 95
R2 0.138 0.270 0.274 0.306 0.612 0.780
Adjusted R2 0.089 0.202 0.197 0.223 0.447 0.595

Note: Significance: *p<0.1; **p<0.05; ***p<0.01 :: Two tailed SE in parenthesis
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Table 2.8: Effect of Uncertainty on Risk Taking At Race Level

Dependent variable:

Risk Taking(Number of Crashes)

(1) (2) (3) (4) (5) (6) (7)

Drivers in Race 0.314 0.338 0.332 0.337 0.347∗ 0.312 0.305
(0.212) (0.209) (0.218) (0.210) (0.210) (0.208) (0.206)

Circuit Length −0.025 −0.021 −0.131 −0.143
(0.246) (0.249) (0.240) (0.241)

Race Length −0.026∗∗∗ −0.026∗∗∗ −0.024∗∗∗ −0.024∗∗∗

(0.008) (0.008) (0.008) (0.008)

Turns 0.039 0.039 0.033 0.032
(0.041) (0.042) (0.040) (0.040)

Round −0.002 −0.002 0.002 0.011
(0.023) (0.023) (0.025) (0.042)

Rain 1.616∗∗∗ 1.668∗∗∗ 1.805∗∗∗ 1.807∗∗∗

(0.304) (0.310) (0.313) (0.313)

Champion Decided −0.079 −0.072 −0.022
(0.512) (0.546) (0.511)

Rain x Champion Decided −1.640 −2.749∗ −2.746∗

(1.603) (1.665) (1.663)

Constant −3.181 0.623 0.764 0.146 −0.124 −2.545 −2.372
(5.239) (5.406) (5.603) (5.394) (5.406) (5.220) (5.172)

FE: Year Yes Yes Yes Yes Yes Yes Yes
FE: Round No No No No No Yes Yes
FE: Circuits No No No No No No Yes
Observations 371 371 371 371 371 371 371
R2 0.173 0.205 0.205 0.266 0.268 0.382 0.382
Adjusted R2 0.124 0.150 0.147 0.210 0.208 0.265 0.267

Note: Significance: *p<0.1; **p<0.05; ***p<0.01 :: Two tailed SE in parenthesis

52



Table 2.9: Effect of Uncertainty on Risk Taking At Driver Level

Dependent variable:

Crash

(1) (2) (3) (4) (5) (6)

Grid Position 0.027∗∗∗ 0.019∗ 0.019∗ 0.019∗ 0.025∗∗ 0.024∗∗

(0.010) (0.010) (0.010) (0.010) (0.011) (0.010)

Prior Crashes −0.234∗∗∗ −0.237∗∗∗ −0.237∗∗∗ −0.238∗∗∗ −0.217∗∗∗ −0.180∗∗∗

(0.048) (0.048) (0.048) (0.048) (0.048) (0.045)

Driver Exp 0.002 0.002 0.002 0.002 0.001 0.004
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Team Rank 0.065∗∗ 0.066∗∗ 0.066∗∗ 0.151∗∗∗ 0.150∗∗∗

(0.027) (0.027) (0.027) (0.033) (0.032)

Num Drivers 0.088 0.089 0.092 0.094 0.054
(0.094) (0.097) (0.097) (0.097) (0.093)

Rain 0.794∗∗∗ 0.810∗∗∗ 0.798∗∗∗ 0.881∗∗∗

(0.105) (0.106) (0.106) (0.104)

Champion Decided −0.028 0.019
(0.257) (0.226)

Season Standing −0.076∗∗∗ −0.074∗∗∗

(0.015) (0.015)

Champion Decided x Rain −1.035 −1.159∗

(0.721) (0.701)

Season Standing x Rain 0.033∗∗ 0.032∗∗

(0.015) (0.015)

Constant −0.297 −2.486 −2.994 −3.071 −4.370∗ −2.640
(1.065) (2.543) (2.619) (2.621) (2.639) (2.517)

FE: Year Yes Yes Yes Yes Yes Yes
FE: Circuits Yes Yes Yes Yes Yes Yes
FE: Round Yes Yes Yes Yes Yes Yes
FE: Team Yes Yes Yes Yes Yes Yes
FE: Driver Yes Yes Yes Yes Yes Yes
Observations 7,471 7,471 7,471 7,471 7,471 7,471
Log Likelihood −2,258.446 −2,255.125 −2,227.118 −2,225.716 −2,213.982 −2,206.834

Note: Significance: *p<0.1; **p<0.05; ***p<0.01 Standard Error Clustered at the Race Level
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Table 2.10: Using driver standing in terms of Quarters – DRY RACES (1-4) vs WET RACES (5-8)

Dependent variable:

Crash

(1) (2) (3) (4) (5) (6) (7) (8)

Second Quarter 0.020 0.021 0.020 0.017 −0.133 −0.121 −0.099 −0.116
(0.177) (0.176) (0.176) (0.175) (0.374) (0.366) (0.365) (0.353)

Third Quarter −0.550∗∗ −0.554∗∗ −0.551∗∗ −0.549∗∗ −0.353 −0.338 −0.340 −0.299
(0.232) (0.232) (0.231) (0.231) (0.456) (0.445) (0.442) (0.429)

Last Quarter −0.647∗∗ −0.644∗∗ −0.634∗∗ −0.645∗∗ −0.336 −0.373 −0.275 −0.348
(0.281) (0.281) (0.278) (0.278) (0.554) (0.540) (0.535) (0.518)

Prior Crashes −0.193∗∗∗ −0.200∗∗∗ −0.216∗∗∗ −0.223∗∗∗ −0.165 −0.171 −0.175 −0.225∗∗

(0.056) (0.056) (0.055) (0.055) (0.110) (0.108) (0.108) (0.104)

Grid Position 0.033∗∗∗ 0.033∗∗∗ 0.034∗∗∗ 0.034∗∗∗ −0.010 −0.011 −0.012 −0.008
(0.012) (0.012) (0.012) (0.012) (0.025) (0.025) (0.024) (0.024)

Driver Exp 0.002 0.002 0.002 0.002 0.008 0.008 0.008 0.007
(0.005) (0.005) (0.005) (0.005) (0.012) (0.012) (0.012) (0.011)

Team Rank 0.084∗∗ 0.084∗∗ 0.086∗∗ 0.084∗∗ 0.207∗∗∗ 0.206∗∗∗ 0.200∗∗∗ 0.194∗∗∗

(0.038) (0.038) (0.037) (0.037) (0.068) (0.067) (0.067) (0.065)

Champion Decided −0.352 −0.386 −0.170 −0.186 −2.927 1.047 0.606 −0.191
(0.270) (0.258) (0.237) (0.228) (2.367) (1.007) (0.888) (0.787)

Round 0.104 0.106∗∗ −0.943∗ 0.155
(0.124) (0.050) (0.508) (0.123)

Num Drivers 0.034 0.027 0.149 0.114 29.151 −0.649 −0.165 −0.154
(0.109) (0.105) (0.102) (0.100) (1,562.346) (0.764) (0.433) (0.305)

Race Distance −0.008∗∗ −0.011∗∗∗ −0.007 −0.002
(0.003) (0.003) (0.008) (0.006)

Constant −1.303 −1.442 −4.300 −2.825 −699.061 17.241 8.093 3.214
(2.986) (2.886) (2.819) (2.739) (37,496.310) (18.417) (11.566) (8.169)

FE: Year Yes Yes Yes Yes Yes Yes Yes Yes
FE: Circuits Yes Yes No No Yes Yes No No
FE: Round Yes No Yes No Yes No Yes No
FE: Constructor Yes Yes Yes Yes Yes Yes Yes Yes
FE: Driver Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,169 6,169 6,169 6,169 1,306 1,306 1,306 1,306
Log Likelihood −1,691.384 −1,702.122 −1,727.783 −1,754.886 −438.593 −449.598 −457.555 −477.581

Note: p<0.1; **p<0.05; ***p<0.01 S.E. Clustered at Race Level. Some non-significant covariates were dropped.
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Figure 2.1: Organizational Fit and Environment

Figure 2.2: Number of Wet Vs Dry Race Across Years
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Figure 2.3: Interaction Effect of Season Standing and Rain
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Chapter 3: Innovation and Competitive Positioning: Location

Choice at the Consumer Electronics Show

3.1 Introduction

An important way in which firms compete is the positions that they

stake out relative to one another. Firms position their products relative to

each other, such as with Airbus’s product line up versus Boeing’s. Firms posi-

tion themselves geographically versus one another, like restaurants at freeway

exits. Firms can position themselves with the strategies they follow, such as

differentiation versus low cost. Firms seek positions with high profitability,

and then both defend current positions and seek better positions through ac-

tions such as marketing campaigns or new product introductions (Smith et

al., 1992). In turn, firms respond to competitors’ positioning. For example,

Wang and Shaver (2014) show that firms reposition in response to changing

competitive landscape.

While firms seek high profitability positions, they more naturally com-

pete with firms similar to themselves along important dimensions. This be-

havior is the central premise of the localized competition literature. Baum
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and Mezias (1992) argue that firms with more similar resource requirements

compete more intensely; consistent with localized competition, they show that

hotels located in the more densely populated regions of distributions for size,

experience higher failure rates. More recently Kalnins (2016) replicates and

extends these findings, showing hotels located in densely populated regions

of distributions of price and location, in addition to size, experience higher

failure rate. While competition is localized, firms might seek better positions

and move beyond their original localized competition group.

In seeking better positions, Schumpeter (1934) argues that firm compe-

tition is a series of innovation moves taken by firms to try and lead the market.

Firms introduce new features to differentiate their products from competitors

and to occupy niches (Benner and Tripsas, 2012). In turn, firms introduce

new products in response to product introductions by rivals to protect their

market share (MacMillan et al., 1985). Innovations are not only important for

firms to gain and keep their customers, innovations by firms influence other

stakeholders as well, such as stock markets (Bettis and Weeks, 1987). As such,

I expect innovation to be an important stepping stone for firms to seek bet-

ter positions and potentially move beyond their original localized competition

group.

In this paper, I focus on how firms’ innovations affect their competitive

positioning. As a baseline, in the absence of firms having innovations, I ex-

pect localized competition: similar firms compete with each other. Deviations
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from localized competition occur when firms have innovations; an innovation

wielding firm might choose to place itself in direct competition with a new set

of firms by moving close to them in the competition space. Firms’ innovations

facilitate this repositioning.

From among important localized competition dimensions location, size,

and price; I focus on size localized competition. Size is the only dimension

that shows consistent results at a market (city) and sub-market (neighbor-

hood) level in Baum and Mezias (1992) and Kalnins (2016). I examine where

firms of different size locate in geographic space, relative to each other. With

size localized competition, a smaller innovation wielding firm might choose

to compete with larger firms by locating close to them geographically. The

smaller firm’s objective would be to gain some of the larger firms’ customers.

Of course, some larger firms might also have innovations themselves; whom

the smaller, innovation wielding firm would want to avoid else the smaller

firm while gaining some of the larger firm’s customers, might end up losing

more of its customers.

Besides competition, firms locating close to each other may create posi-

tive demand externalities, where proximate firms’ aggregate activity heightens

demand for all. A related consideration is that some locations in the compe-

tition space will feature more demand than others. Assuming such demand

heterogeneity, firms would initially vie for the higher demand locations and

if taken, then proceed to the worse ones. But note that an initially worse
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location might supersede initially better ones if multiple firms locate at the

initially worse location and heighten demand via demand externalities.

Therefore, in studying firms’ location decisions, I consider four mech-

anisms: (i) gains from taking neighboring firms’ customers when a firm has

an innovation, (ii) possible losses when neighboring firms have their innova-

tions, (iii) gains from positive demand externalities, and (iv) heterogeneity

in locations’ demand across the competition space. With these four mecha-

nisms, a focal firm’s outcome is dependent not only on its choice but is clearly

dependent upon many other firms’ choices. A focal firm’s potential gain can

become a realized loss if neighbors have innovations that take some of the focal

firm’s customers. A focal firm can gain from positive demand externalities if

other firms locate with it. To understand how interactions among these four

mechanisms affect firms’ choices and performance, I set up a simulation model.

Besides modeling these interdependencies, a simulation helps a couple

of other ways. First, given these four mechanisms, a firm’s optimal choice

can change depending upon which of mechanisms has a greater effect relative

to the others. While varying the mechanisms’ relative effects, the simula-

tion model allows me to predict whether and how firms’ best location choices

change. Second, the simulation model allows me to link key unobserved out-

comes to observable ones that can be empirically tested. Measures of a firm’s

performance, such as the number of customers it captures from its location

choice, are difficult to observe. But since customer demand is explicitly linked
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in the simulation to a focal firm’s and its competitors’ location choice, I can

hypothesize and test where firms locate and their resulting neighbors’ traits.

And firms’ location choices and their neighbors’ traits are readily observable.

I test the simulation model’s predictions on data from firms’ booth lo-

cations at the annual Consumer Electronics Show (CES) from 2014 to 2016.

The CES is a useful setting as (1) most firms in the consumer electronics in-

dustry attend, (2) the CES is an important venue for firms to showcase new

and upcoming innovations, and (3) firms’ booth locations are readily observ-

able. A key feature is that the CES is a punctuated event lasting a couple of

days during which all firms have the same objective: maximize their exposure.

Booth location is a key determinant of maximizing exposure as some locations

are closer to entrances and main aisles leading from entrances.

As the simulation’s predictions are dependent upon the key parame-

ters’ values, such as the relative magnitude of the four mechanisms versus

another; I vary all key parameter values across a large range and therefore

the simulation’s predictions are generalizable across these large ranges of val-

ues. The simulation predicts two traits of firms’ location choices contingent

on the firm’s size and innovation: proximity to demand highpoints (entrances)

and neighbor firm size. The simulation predicts that firms with an innova-

tion typically position themselves next to larger neighbors, as firms leverage

their innovation to take customers from larger neighbors and to benefit from

demand externalities. The simulation predicts that this strategic behavior is
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strongest for the smaller and medium-sized firms with the largest firms behav-

ing differently. The simulation predicts the largest firms position themselves

closest to demand highpoints in the landscape since the largest firms prioritize

the demand highpoints versus strategic concerns around whether they or their

neighbors have innovations. These predictions from the model form the basis

of my hypothesis which I test in my empirical context of CES.

In my empirical context, I find results consistent with the simulation’s

predictions. Amongst firms with innovation, I observe an inverted-U shape

relationship between firm size and neighbor size suggesting differences in pref-

erences and ability to benefit from innovation across firms of different sizes.

Medium sized firms appear to alter their positioning the most upon having an

innovation. While the largest firms prioritize positioning themselves close to

entrances, which are the demand highpoints.

By examining firms’ positioning, these results are consistent with the

idea of firms using innovations as a stepping stone to compete with a different

set of firms. In my context, firms that are larger in size. This provides insight

into the evolution of competition.
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3.2 Theory and Hypotheses

3.2.1 Spatial Competition, Innovation and Competitive Posi-

tioning

The literature on spatial competition in strategy research studies how

firms position themselves with respect to their competitors across different

contexts such as geographic, product, or temporal space. Much of this lit-

erature has its origins with Hotelling (1929), where firms compete for cus-

tomers by choosing their position on a line segment and seek to capture local

monopolies by locating apart from competitors. Underlying assumptions for

this outcome is that firms are selling a commodity and demand is uniformly

distributed. But in most settings, firms’ goods are differentiated, and some

positions will feature greater demand than others, which gives rise to strategic

choices in positioning beyond locating apart. Firms target a position based

upon their capabilities to capture a position’s demand. If multiple firms have

similar capabilities, they may target the same position and compete for the

same set of customers. This logic of localized competition leads to more simi-

lar firms competing more directly with each other versus with dissimilar firms.

For example, Baum and Mezias (1992) show a greater number of proximate

similar-sized hotels decrease a focal hotel’s survival. Similarly, Kalnins (2016)

demonstrates that a higher number of similarly located and similarly priced

hotels reducing a focal hotel’s survival. Thus, depending upon the nature
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of demand and firms’ capabilities, firms may be positioned either apart or

together.

Positioning is dynamic. Firms may need to reposition themselves from

time to time, as firms’ environment, capabilities, or both change. A variety

of reasons, either exogenous or endogenous in nature, could result in changes

in the demand experienced in a particular position. Exogenous changes, such

as in consumer preferences or underlying technology, can alter the different

positions’ relative attractiveness: consumer preferences might shift from com-

pact cars to SUVs or vice versa; touchscreen technology saw netbooks killed

off by tablets. Such changes could lead to firms shifting from positions with

declining demand to those with higher and/or increasing demand.

Besides exogenous changes, changes endogenous to the firm also can lead

to repositioning. A key endogenous change could be the innovations that the

firm generates. Innovation is one of the primary means for value creation

(Moran and Ghoshal, 1999). Through innovation, firms renew the value of

their asset endowments and discover novel uses and combinations for their ex-

isting resources (Dougherty, 1992; McGrath et al., 1996). Renewing the value

of their assets means that firms may be able to better defend their current po-

sition by offering customers an improved value proposition. Discovering novel

uses means firms may be able to shift to other positions with greater demand.

These two outcomes can be correlated: an innovation offers a better value

proposition for a firm’s existing customers at its current position but also can
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provide additional capabilities for a firm to serve other positions. For exam-

ple, sport utility vehicles were originally based on truck frame platforms, but

through product innovations, were redesigned to have a uni-body construction

like passenger cars; this made SUVs more car like in ride and handling, and

now SUVs compete with minivans as people movers.

Another source of repositioning is other firms’ repositioning. Just as a

focal firm might have innovation, its competitors may also. Since positioning

is relative to competitors, competitors’ repositioning may prompt a focal firm

to reposition. Encroachment by competitors can reduce a position’s viability,

leading to repositioning. Similarly, retreat by competitors can enhance a po-

sition’s viability, thus reducing the likelihood of repositioning. For example,

Wang and Shaver (2014) show that firms alter their positions in response to

the dominant firm’s repositioning.

In a spatial competition context, innovation can help firms attract more

demand. Innovation might allow a firm to update its offering to provide an

improved value proposition that would draw customers. Or innovation, as

an indicator of novelty, might draw consumers: Hirschman (1980) builds a

framework that explains consumer behavior being driven by consumer’s nov-

elty seeking and other traits. Similarly Sheth (1992) develops a theory of

consumer choice based upon five dimensions one of which is an alternative’s

capacity to arouse curiosity or provide novelty.
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A firm might leverage an innovation’s ability to attract more demand

in its current position. Or a firm might find that repositioning is a better

option, to the extent that the innovation gives the firm capabilities to exploit

other positions. Thus, when having an innovation, firms face the choice of

either staying at their current position in the landscape or shifting to another

position that might be superior. Either staying or repositioning may not be

a straightforward decision, due to multiple mechanisms affecting positions’

demand.

3.2.2 Mechanisms affecting Competitive Positioning

I contend that multiple mechanisms determine the attractiveness of po-

sitions in the spatial landscape, and making the best choice entails evaluating

all the mechanisms. There are a couple of mechanism types: heterogeneity of

demand in the landscape, the level of positive demand externalities, and the

effect of innovation on the focal firm and its competitors. I develop expecta-

tions for each of these mechanisms’ effect on firm positioning separately, and

then later combine them to evaluate them together.

Versus uniform demand everywhere, spatial landscapes tend to have het-

erogeneous demand: at different positions on the landscape, demand will differ.

In geographic space, key locations like the intersection of busy streets or sub-

way stations tend to experience higher demand. In product space, more people

need passenger cars versus minivans. In temporal space, evening and week-
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ends are higher demand periods for television and movie theaters. Firms would

prefer positions that feature higher demand. But positions featuring higher

demand will be attractive to more firms. Thus, those firms whose capabilities

are best suited will populate the high demand positions, and firms with less

suited capabilities will populate the lower demand positions. Take for example

timing of movie openings: big budget action movies tend to open on summer

holiday weekends that have high demand, which pushes other genres to open

on lower demand weekends. And even among positions with lower demand,

firms will be more or less suited for different positions depending upon their

capabilities. Some genres of movies may be better than others at capturing

second-tier weekends’ demand. Firms will sort based upon their capabilities,

to find a position offering the greatest demand. Therefore, given firms with

differentiated capabilities, I expect firms to choose positions with high demand

that are commensurate with their capabilities.

With firms choosing their best possible positions, some positions may

draw multiple competitors. Firms that have similar capabilities are likely to

choose similar positions. This collocation of competitors leads to the sec-

ond mechanism: positive demand externalities from agglomeration. Mar-

shall (1920) suggested both production/supply and demand benefits from geo-

graphic agglomeration. In my setting, I am interested in the demand external-

ities: with firms offering differentiated products, firms can reduce consumers

search costs by collocating. Collocated firms offer customers a more efficient
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evaluation of competing choices, which leads to collocated firms attracting

more customers than if they had located separately.

Positive demand externalities suggest that a focal firm would want to

collocate with others. Among positions with multiple firms, those populated

with firms that draw more customers will create greater demand externalities,

which would make such positions most attractive. Therefore, given positive

demand externalities from firms collocating, I expect firms to choose positions

proximate to more competitors, and competitors that draw more customers.

In addition to these two mechanisms, there are mechanisms related to

firms having innovations: both the focal firm and its competitors. There are

a couple of assumptions about innovations that will inform firms’ positioning

and repositioning.

I assume that firms invest in innovations to improve their capabilities to

capture demand, at their current position and/or relocate to other positions

that feature greater demand. Of course, some innovations may yield minimal

improvements for, be orthogonal to, or be otherwise ineffectual for capturing

demand. My focus is on the subset of innovations that can improve firms’

capabilities to capture demand.

I also assume that any innovation has some fixed cost to its develop-

ment. These may be research, development, commercialization, and/or other
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costs. The particular category is unimportant for my purposes. What mat-

ters is that innovations have associated fixed costs. This has two important

implications. First, innovations are discrete events. Innovations appear inter-

mittently, rather than continuously. And depending on the magnitude of fixed

costs, they may not only be discrete events, but also infrequent events. Thus,

as a determinant of repositioning, innovation-driven repositioning will also be

discrete and possibly infrequent events.

Second, given a fixed cost, a firm will gain greater return by using the

innovation in a position that offers greater demand. This spreads the fixed cost

across greater demand, thus improving the return on the innovation’s fixed

cost. This strongly suggests that firms with innovations will prefer to shift to

positions that offer higher demand than their current one, rather than stay in

their current position. This is contingent on the extent to which an innovation

improves a firm’s capabilities to serve other positions’ demand; though as

stated above, I assume firms invest in innovations to improve their capabilities

to capture demand, at their current position and/or relocate to other positions

that feature greater demand. And if firms realize that spreading of fixed costs

is more advantageous in positions that offer greater demand, they then are

likely to target innovations that improve their capabilities to relocate to other

positions that offer greater demand.

Tempering this tendency to reposition is the uncertainty around an in-

novations’ value in improving a firm’s capabilities. Until an innovation is
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applied in the marketplace, it’s true value is unknown. The firm will have

some expectations as to how valuable an innovation is for improving the firm’s

capabilities, but these expectations are unlikely to match an innovation’s true

value. This suggests that a firm will not pursue innovation driven reposition

with all innovations, but only those that it believes are substantial enough

for it to be successful in a new position. Therefore, I expect firms to pursue

innovation driven repositioning when they have innovations that they believe

to be of high value.

Also, tempering a firm’s tendency for innovation driven repositions is its

competitors having their innovations. Positions that have higher demand are

likely to feature multiple competitors. And any of these multiple competitors

may have innovations themselves. While I just argued that firms will target

innovations that improve their capabilities to relocate to positions featuring

higher demand, if a firm is already at a demand highpoint, its innovative efforts

will be focused on better defending its position. And this is the situation firms

looking to move up will encounter: moving up firms will target innovation to

help them shift to demand highpoints, while firms at high points will target

innovations to help them defend their highpoint positions.

Competitors’ innovations can have both positive and negative effects. On

the positive side is the demand externality effect: a competitor’s innovation

increases the demand it can capture and thus potentially further magnifies

the demand externality for proximate others. On the negative side, the better
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value proposition and/or novelty that the competitor’s innovation provides

means that some of the increased demand it experiences comes from proximate

others. Thus, the magnification of demand externality is limited as some of

the demand is just transferred among proximate competitors that contribute

to the creation of the demand externality. If the focal firm is positioned with

competitors that have innovations, it likely losses some of its customers to the

innovation wielding competitor. And this direct loss is unlikely to be offset

by any magnification of demand externality. Therefore, I expect when firms

pursue innovation driven repositioning, they avoid positions with competitors

that have their own innovations.

While I delineate these four mechanisms, a challenge in testing my ex-

pectations for firm behavior is that each expectation is based only on that

one mechanism’s effect in isolation from the other mechanisms. But mecha-

nisms acting in isolation is unlikely. Once a focal firm can have innovations,

its competitors must also be able to have innovations. Innovations result in

innovation-driven reposition that in turn affects the extent of demand exter-

nalities. The extent of demand externalities changes positions’ relative value

versus just the original heterogeneous demand across the spatial landscape.

And some of the expected firm behaviors are in opposing directions or

highly conditional. For example, an innovation wielding focal firm would want

to reposition to a position of higher demand, but maybe not if some competi-

tors in that position have innovations of their own. Typically, such offsetting
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effects would suggest an exercise in assessing which mechanisms’ effect is larger

than the other. But in this case, there are four mechanisms’ effects to assess

relative to each other. As such, any exercise in assessing which mechanism’s

effect is or mechanisms’ effects are larger than others are problematic. Instead,

I use a simulation, in which I can model all mechanisms simultaneously and

vary all the mechanisms’ relative effects versus each other, to develop expecta-

tions for firm behavior that reflect the system of effects that stem from firms

having innovations.

3.3 Simulation Model

In general, there are several reasons to use simulation modeling for the-

ory development. First, simulation modeling gives me the ability to specify the

underlying logic that lies at the core of verbal theory with additional precision

(Carroll and Harrison, 1998). Second, simulation modeling can elucidate the

outcomes of the interactions among multiple underlying organizational and

strategic processes, especially as they unfold over time (Repenning, 2003).

Finally, simulations can overcome challenges stemming from data limitations

to provide richer insight into multi-facet theoretical relationships among con-

structs (Zott, 2003). For these reasons, simulation can be a powerful method

for sharply specifying and extending theory. In my setting, I benefit from all

three of these reasons, as well as another novel one. To illustrate this additional

reason, I first detail some specifics of my context.
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I use an agent-based simulation to model where firms strategically po-

sition themselves on a spatial landscape to maximize demand. To maximize

demand, firms consider four mechanisms when choosing their position: (1)

heterogeneity in positions’ baseline demand, (2) positions’ positive demand

externalities, (3) conquest demand gains when a firm has an innovation, and

(4) demand losses when neighboring firms have innovations. In the prior the-

ory section, while I hypothesized about firms’ behavior for each of these effects

separately, hypothesizing about their aggregate effect is non-obvious as a focal

firm’s demand maximizing choice is a function of these four mechanisms’ rela-

tive magnitudes and importantly other firms’ choices that affect these effects’

relative magnitudes.

I use the simulation model to explicate a firm’s decision making: firms

will evaluate the demand implications of the four mechanisms, across posi-

tions; and chose the position offering the greatest total demand. This decision

making is subject to a couple of key assumptions. First, I conceptualize firm

heterogeneity as a single dimension: firm size; firms are larger or smaller, with

larger firms being more competitive firms having capabilities that allow them

to better capture demand at demand highpoints on the spatial landscape. This

assumption is consistent with empirical work that finds firm size is a determi-

nant of R&D expenditures, innovation (Acs and Audretsch, 1988; Hitt et al.,

1990) and localized competition across firms (Baum and Mezias, 1992). The

second assumption is that the spatial landscape is initially empty and that
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firms, by choosing their positions, fill in the empty landscape. An alternative

is to pre-populate the landscape with firms either randomly or with some rule

and then to have firms reposition themselves when an opportunity presents

from another firm’s entry or exit. I chose the former as a more unconstrained

setting in which to model and understand firms’ competitive positioning and

a setting that is more analogous to my empirical context. Third, firms fill in

sequentially, with larger firms choosing positions first. This is consistent with

aspects of a Stackelberg leader-follower model: firms make strategic choices

sequentially, with the follower knowing the leader’s choice. Instead of out-

put, in my context, firms choose positions. I assume the larger the firms,

the more the leader it is, and the earlier it chooses. Fourth, some firms have

innovations; I assume that innovations’ novelty draws customers away from

neighboring firms. Thus, innovations allow a firm to capture some demand

from the specific competitors that they locate near to.

With these four assumptions, the position offering a firm the greatest

total demand is influenced by both whether the firm has an innovation or not

and the choices of the firms that chose before it. Of note, this indicates two

levels of endogeneity: at a firm-level and a system-level. At a firm level, a

firm’s choice is affected by whether it has an innovation or not. Beyond this

firm-level endogeneity, there is also system-level endogeneity. A firm’s best

choice is governed by other firms’ choices, and these other firms’ choices are

in turn governed by whether they have innovations. With these two levels of
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endogeneity, the standard empirical techniques are inadequate; for example, a

Heckman correction can address the firm-level endogeneity, but not the system-

level endogeneity.

Accounting for these layers of endogeneity is another reason to use sim-

ulation modeling. I can explicitly model the endogenous processes. And thus,

the predictions from the simulation account for endogeneity because the predic-

tions result from explicitly modeling these inter-related endogenous processes.

This then removes the need to account for endogeneity via empirical methods,

which then allows the use of simpler empirical methods. Simulation modeling

allows me to account for endogeneity in the theoretic development rather than

in the empirics. This is an advantage in settings where there are multiple en-

dogenous processes, which empirical methods have difficulty addressing, such

as my setting.

Another important feature is that the simulation model allows me to link

between unobserved constructs and constructs that can be empirically tested.

I model firms maximizing demand based upon the four mechanisms, but de-

mand is difficult to empirically observe either for any of the individual four

mechanisms or in total. Therefore, I generate hypotheses from the simulation

model for an outcome that can be empirically observed: the size of a firm’s

neighbors. Firms maximizing demand is linked to neighbor size: larger firms

are likely to camp on positions with higher baseline demand; larger firms en-

hance demand externalities, and larger firms are a source of conquest demand.
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Neighbor size is a datum that can be calculated from the simulation model

since it tracks where each firm locates, which then can be used to calculate

attributes of any firm’s and all firms’ neighbors.

After introducing additional simulation details below, it becomes ap-

parent that simulation outcomes are driven by the values of key parameters,

which determine the relative importance of the four mechanisms. Thus, I run

the simulation model and vary these key parameters across a wide range of

representative values. This allows me to predicted firm behavior across a wide

range of situations. I then generate summary plots for the focal outcomes: the

demand that firms experience and the size of firms’ neighbors, which I use to

generate my expectations. I then take my expectations to my data to test.

3.3.1 Simulation Details

I use an agent-based simulation model, in which firms locate on a land-

scape to maximize demand. The model has three stages. In the first stage,

firms’ heterogeneous traits are determined. Firms are heterogeneous in two

dimensions: size and whether they have an innovation, and if so, how valu-

able their innovation is. I use size as a generic indicator of correlated firm

traits such as assets, sales, employees, resources, etc. Of note, at this stage,

firms have incomplete information on the value of their innovation; they know

their innovation’s value with some noise. The value, without noise, is revealed

only in the second stage. This assumption is based on a firm not knowing the
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value until an innovation hits the market. Before this, the firm might have

expectations of the value; but this expectation is unlikely to be an innovation’s

true value in the market. This type of incomplete information assumption is

common; for example, Jovanovic (1982) models firms learning their efficiency

only after entering an industry.

In the second stage, firms choose their locations sequentially, in size

rank-order, with larger firms choosing first. The landscape has heterogeneous

baseline demand: some locations feature more demand than others. Only a

single firm can locate in each location. Firms locating adjacent to each other

create positive demand externalities: firms experience more than locations’

baseline demand if more and larger firms are adjacently located. With just

these two demand effects, firms’ behavior is somewhat obvious firms will locate

at highpoints of the baseline demand. These highpoints draw larger firms, near

whom other firms will locate to benefit from the demand externalities.

A strategic dimension emerges from introducing whether firms have in-

novations. When a firm has an innovation, I assume that the innovation’s

novelty draws customers away from neighboring firms. Such conquest demand

may be more important to innovation wielding firms than locations’ baseline

demand or demand externalities. The amount of conquest demand will vary

with (1) the innovation’s value and (2) the focal firm’s size relative to its

neighbors’ size. An innovation of greater value will allow a firm to take more

customers from neighbors. But the size of firms also matters. When an inno-

77



vation wielding firm is smaller, it can take more demand (relative to its size)

from neighbors versus when an innovation wielding firm is larger. The smaller

firm can readily find larger firms to locate close to; in contrast, a larger firm

will be less able to find even larger firms to make its neighbors.

While an innovation wielding firm seeks to take demand from competi-

tors, it needs to be wary of competitors that themselves have innovations.

While the innovation wielding firm takes some demand from others, the com-

petitors’ innovations will allow them, in turn, to take some demand from the

innovation wielding firm. Thus, the innovation wielding firm’s net conquest

demand will be lower if it locates close to competitors with innovations versus

those without.

To avoid competitors with innovations, a firm needs to know which com-

petitors have innovations. Just as a firm doesn’t know the value of its innova-

tion (only the value with noise); a firm also doesn’t know the value of other

firms’ innovations. But while not knowing their value, a firm does know which

competitors have an innovation or not. A firm also knows the mean of the

distribution from which innovations’ values are drawn, which it assigns to any

competitor’s innovation. This is akin to industry participants knowing that

competitors are coming out with innovations, but not knowing the specifics.

They can use history of past innovations’ average value to predict competitors’

forthcoming innovation value.
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To link firm size and innovation, I conceptualize an innovation’s value as

effectively increasing a firm’s size. Innovation’s value is a multiplier of a firm’s

size. For example, if a firm is size 10 and has an innovation with a value of 1.2,

then the firm’s modified size is 121. One implication of having an innovation

is that a firm’s size effectively becomes larger and conceivably, like a larger

firm, move earlier in the size rank-order than they would if they didn’t have

an innovation. However, in order to match the simulation to my empirical

context, I restrict earlier movement by firms in size rank-order. Comparison

of simulation results with and without alteration of size rank-order suggests

no difference between the two.

When a firm’s turn occurs, it calculates the four effects’ demand in all

available locations and chooses the location with the greatest total demand.

Available locations decrease for firms later in the move order. For the first

firm, all locations are available; for later firms, fewer locations are available.

The four effects’ magnitude also changes with move order. Demand highpoints

may only be available early on. Demand externalities appear and build only

once firms locate near one another. Conquest demand is possible only after

other firms to take demand from are on the landscape.

Of note, a firm’s demand maximizing location choice is made with two

levels of incomplete information. At a firm-level, a firm knows what competi-

1I don’t differentiate based on a firm’s size its potential innovation value. Larger or
smaller firms draw from the same distribution for the value of innovations, which are used
as multipliers of firm size. I could easily modify innovation value to favor either smaller or
larger firms with more significant innovations, but for simplicity do not do so.
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tors are already located where on the landscape, and knows which competitors

have innovations, but has incomplete information about these innovations’ val-

ues; and if the firm has its innovation, has incomplete information of its value.

This incomplete information could lead to firms miscalculating conquest de-

mand gains from its innovation and demand losses from others’ innovations,

and thus to choose a location that doesn’t provide the maximum total demand.

At a system-level, a firm chooses the demand maximizing location only based

upon the firms that have already located on the landscape; it can’t take into

account firms’ location decisions who have not yet located on the landscape.

And thus, may also choose a location that doesn’t provide the maximum total

demand.

The third and final stage is after all firms have chosen their respective

locations. Each firms’ total demand is calculated, which is based upon where

all the firms have located and firms’ innovation’s values, without noise.

I now introduce the more detailed model assumptions for firms, landscape

that firms operate on, and how each of the four effects: (i) heterogeneity in

locations’ baseline demand, (ii) locations’ positive demand externalities, (iii)

conquest demand gains when a firm has an innovation, and (iv) demand losses

when neighboring firms have innovations; affect demand.

There are N firms. They operate on a discrete, 2-dimensional landscape

of x by y locations. I set N initially to 100 and x and y both to 10. While
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this sets the number of firms equal to the number of discrete locations on the

landscape, my results/expectations are not sensitive to whether this equality is

maintained; the simulation’s results generalize to when the number of locations

exceeds the number of firms and vice versa2.

Firms are heterogeneous on two dimensions: size and whether they have

innovations. Each firm ‘i’ is allocated a size si. Firm sizes si are draws from a

normal distribution with mean S and standard deviation σs. A portion of the

N firms, freq inv, are randomly assigned an innovation: invi. invi, the value

of firms’ innovations, is one plus the absolute value of a draw from a normal

distribution with mean 0 and standard deviation σI ; this yields values for invi

that are greater than 1. For firms without an innovation, invi = 1. Firms

don’t know invi, but know invi plus a noise term, ei, which is a draw from a

normal distribution with a mean 0 and standard deviation, σe.

The implication for firm si with size si that has an innovation with value

invi, is that the firm is effectively larger. The firm acts like a firm of si x invi

size. This is the firm’s innovation weighted size. But firms perceive that its

innovation’s value is (invi + ei), the value plus some noise. So the firm behaves

as a firm with size, si x (invi + ei), their perceived innovation weighted size.

Firms without innovations have invi = 1 and thus an innovation weighted size

equal to their size, si.

2When number of firms exceed the number of locations, I assume that the excess number
of firms do not enter during the second stage, and thus are eliminated from the total demand
calculations in the third stage.
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Heterogeneous location baseline demand, loc dmdxy, allows different de-

mand in each location versus uniform demand across locations. Adjacent loca-

tions’ demand could be totally random and unrelated or have some structure.

I choose to impose some structure using two features. First, there are several

discrete highpoints that are randomly assigned. Second, demand drops away

from the highpoints based upon a multiplier, decay, which is less than one.

For example, if a highpoint’s demand were 10, then the locations adjacent to

the highpoint would have demand = 10 x decay. The locations adjacent to

those locations would have demand = 10 x decay2; and so forth. Thus, demand

propagating further outwards from a highpoint follows a spatial AR1 relation-

ship at the rate, decay. Each highpoint’s AR1 footprint can overlap with other

highpoints’ footprints such that a particular location’s baseline demand results

from the footprint of several highpoints. This could be visualized as a tent

with multiple supporting poles. Each tent-pole is a highpoint, from which val-

ues decrease. Regions between two tent-poles are higher than regions around

the periphery. With these two features, demand is broadly heterogeneous; but

locally follows a smooth decay process.

I allow each location to house only one firm; thus the firm in location x,y

captures loc dmdxy, on average. Around this average, I build in firm-specific

variation based on firm size. I take size as a proxy for correlated firm traits

including resources. Thus, I expect larger firms those with more resources

to be able to extract more demand from any given location versus a smaller
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firm. For example, using a restaurant analogy, a McDonalds will extract more

demand from a location than a generic burger joint. The firm-specific baseline

demand at location x,y is the baseline demand, loc dmdxy, scaled by the firm’s

size, si, relative to the average firm size, S: loc dmdxy,i = loc dmdxy x (1 +

(si x invi)/S). invi enters the equation as a firm’s innovation value effectively

increases a firm’s size.

Positive demand externalities from firms agglomerating, agglom dmdi, is

defined by the number of firms adjacent to the focal location and their sizes.

With a discrete, two-dimensional landscape, a focal location has eight adjacent

neighbors two horizontal, two vertical, and four diagonal. The underlying

assumption is that greater activity draws customers more than what the firms

would experience separately because collocated firms reduce customers’ search

costs (Shaver and Fredrick, 2000). The additional demand experienced is

defined by the aggregate size of the neighbor firm(s) in the adjacent eight

location(s) times externality, a multiplier that is greater than zero. These

neighbor sizes are their innovation weighted sizes.

Positive demand externalities from firms agglomerating, agglom dmdi, is

defined by the number of firms adjacent to the focal location and their sizes.

With a discrete, two-dimensional landscape, a focal location has eight adjacent

neighbors two horizontal, two vertical, and four diagonal. The underlying

assumption is that greater activity draws customers more than what the firms

would experience separately because collocated firms reduce customers’ search
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costs (Shaver and Fredrick, 2000). The additional demand experienced is

defined by the aggregate size of the neighbor firm(s) in the adjacent eight

location(s) times externality, a multiplier that is greater than zero. These

neighbor sizes are their innovation weighted sizes.

Conquest demand for an innovation wielding firm, inno gaini, comes

from locating adjacent to other firms and attracting some of these firms’ cus-

tomers away. This is based on the assumption that some customers have a

preference for novelty. I define inno gaini as the neighbor’s size, Sneighbor,

times the ratio of the focal firm’s innovation weighted size, (si x invi), over

the sum of the focal firm’s innovation weighted size and the neighbor firm’s

size: inno gaini = Sneighbor x (si x invi) / [(si x invi) + Sneighbor]. This is

a monotonically increasing function with respect to neighbor’s size: taking a

larger portion of a small neighbor’s customers is worse than taking a smaller

portion of a large neighbor’s customers. While a gain for the focal firm, this

is simultaneously a loss for the donor firm. For firms without an innovation,

inno gaini is zero.

Of course, if neighboring firms have their innovation, the neighbors will

attract some of the focal firm’s customers away as well, based upon the

same equation. Thus, firms need to be concerned about such demand losses:

inno lossi. All firms whether they have their innovations or not are subject to

demand loss; for all firms, inno lossi can be non-zero.
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Based on these four effects, firms will choose the location that features

the greatest total demand. In assessing these four effects, firms will not know

their exact effect since the firms have incomplete information on both the value

of their innovation as well as other firms’ innovations.

While having detailed the simulation structure above, in my implementa-

tion of the simulation I set a couple of key parameters so that the simulation

more closely fits my empirical context. I also vary some key parameters so

that the simulation predicts firms’ behavior across a wide variety of condi-

tions. These are detailed below.

si, a firm’s size is N∼(S, σs). I set this to be N∼(20, 5). freq inv, the

portion of firms in the population with innovations, I vary between 0.0 and 0.4.

invi, the value of a firm’s innovation is 1 + N∼(mI , σI). I vary mI between

0.0 and 0.30 and σI is set to be as 0.25*mI . The value of invi is set to be 1 +

N∼(mI , σI). ei, the noise added to a firm’s innovation’s value is N (0, σe). I set

this to be N∼(0, .02). basedemandxy is the heterogeneous baseline demand by

location, which is determined by the number and location of highpoints and

decay, the spatial AR1 reduction from the highpoints’ demand for adjacent

locations. I establish four highpoints at the periphery of the landscape (to

better fit my empirical context). I vary these highpoint values from 10 to

20, allowing for comparable levels of demand from the four mechanisms. I

set decay equal to 0.2. externality, the extra demand firms experience from

having proximate neighbors; I vary between 0.0 and 0.2 times the aggregate
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of neighboring firms’ sizes.

3.3.2 Inference from the Simulation

The simulation predicts two outcomes at a firm’s demand maximizing

location: firm’s total demand (as well as each of the four mechanisms’ in-

dividual demand effect) and firm’s neighbors’ average size (constructed by

knowing where every firm locates). These outcomes will be governed by the

values of key parameters in the simulation. A couple of parameters change

the importance of the four mechanisms’ demand effects relative to each other.

Heterogeneous baseline demand becomes relatively more important when the

number of demand highpoints increases and when decay is less aggressive. De-

mand externality becomes relatively more important by increasing the value

of externality. Conquest demand and demand losses become more important

by increasing freq inv, the portion of firms in the population with innovations

and invi, the value of firm’s innovations. While I vary all of these parameters

to assess their impact on firms’ outcomes, as I note earlier, firm strategic be-

havior emerges from innovation’s effect through conquest demand and demand

losses. As such for the subsequent discussion, I fix the number of demand high-

points (four), and decay (0.2). I choose these values so that each of these four

demand effects has a similar relative influence on total demand. The analysis

that I present generalizes to other situations where these fixed parameters are

set to a wide range of other values; doing so primarily changes each demand
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effect’s size relative to the others. I focus on just two variables, invi and si;

and how variation in their values affect total demand or neighbor size. These

three dimensions, I then can plot as a 3D surface to describe their relationship.

When a firm’s turn occurs, the simulation determines its best location

choice - the location offering it the greatest total demand. The simulation also

at the same time determines the firm’s best location based upon a counterfac-

tual for a firm with innovation, taking its innovation away; for a firm without

innovation, giving it an innovation (which I set to the mean innovation value).

With and without innovation, the firm is likely to choose different locations.

And these different locations result in commensurately different total demands.

The difference between total demands that the firm would experience at the

two locations is an estimate of the gain from having an innovation and/or the

loss from not having an innovation.

I plot this gain from innovation as a function of invi and si in Figure 3.1.

Firm’s innovation value, invi is on the x-axis. Firm size, si is on the y-axis.

Change in total demand the gain from having an innovation is on the z-axis.

A similar plot can be made for when firms with innovations have them taken

away. The change in total demand will be universally negative, but otherwise

is a mirror image of Figure 3.1. The lattice shown in Figure 3.1 is constructed

by getting the mean value of change in total demand for Firm size, si, and

Innovation, invi, across a wide range of values. Size, si, varies from 2 to 38

with increments of 1. Since Firm size is a continuous range of values (random
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draws from a normal distribution), I group firms of firm size (si,±0.5) into

each of the 37 points. Innovation, invi varies from 0.02 to 0.48 at increments

of 0.01. As innovation values are in discrete in nature, no similar grouping as

with firm size is needed. The result is a total of 1739 points for constructing

the surface shown in Figure 3.1.

Each point in the lattice corresponds to the average demand change for

all firms that have an innovation invi in the simulation. Firms with size and

innovation value outside the range shown on the axes were not included as the

density at such regions was sparsely populated (overall ¡ 0.1%: since firm size

are drawn from a normal distribution, draws from the tail are uncommon),

and therefore were dropped.

Unsurprisingly, Figure 3.1 indicates that gaining an innovation positively

affects firms’ total demand: the range of total demand change is positive

regardless of values for invi and si. While always positive, looking at the y-

axis from the larger to smaller firms, the effect of si is nonlinear: change in

total demand is minor for the largest firms, but rises quickly and then falls

gradually for smaller firms. The largest of firms, who pick first, prioritize

gains from heterogeneous baseline demand rather than conquest gains from

innovation; they locate at the demand highpoints. Once the highpoints are

taken, conquest gains from innovation matters, as shown by the quick rise. As

I move further down the size rank order, the impact of having an innovation

falls. This results because smaller firms move later, and their location choice
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set diminishes commensurately; as earlier movers take better locations, all that

remains are locations that yield smaller conquest demand. Looking at the

x-axis, increases in firms’ average innovation value, invi, accentuates the non-

linear relationship between firm size and total demand change. The strategic

benefit of conquest demand increases with firms’ average innovation value.

Figure 3.1 shows innovation’s effect on total demand. But, as noted

previously, total demand (or any of the four mechanisms’ demand effect) are

difficult to observe. To link the simulation’s expectations to an empirical

context, I have the simulation calculate not only total demand but also an

empirically observable outcome: neighbor firm size. Neighbor firm size is an

indirect indicator of total demand: larger firms are likely camped on base-

line demand highpoints; larger firms enhance demand externalities, and larger

firms offer greater conquest demand. On the 2D discrete landscape, interior

locations have eight neighboring location (edges have five and corners have

three). Each neighboring location may be occupied by a firm, a neighbor;

or be unoccupied. When a firm’s turn occurs, the simulation calculates the

average size of its neighbors; while interior locations have eight neighboring

locations, some of them may be unoccupied, so the number of neighbors for

the calculation usually is less than eight.

Figure 3.2 plots average neighbor size as a function of firm size, si, and

firm’s innovation value, invi. Change in average neighbor size from having

an innovation is on the z-axis. Figure 3.2’s shape is similar to that in Fig-
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ure 3.1 on the y-dimension, for firm size, si: change in average neighbor size

is minor for the largest firms, but rises quickly and then falls gradually for

smaller firms. But Figure 3.2’s shape differs on the x-dimension, for firm’s

innovation value, invi: instead of being monotonically increasing as in Fig-

ure 3.1, it has an inverted U shape. This difference gives me insight into the

firms’ strategic behavior. Looking at Figure 3.1, the shape along the y-axis

for firm’s innovation value, invi: while monotonically increasing, its rate of

increase flattens out when invi is around 0.35. This flattening corresponds to

the maxima in Figure 3.2. The inverse U-shape is driven by firms switching

priority between two sources of demand externalities versus gains from their

innovation. For firms having an innovation of low or medium size, externality

demand is typically the biggest contributor to overall demand; consequently,

a firm prioritizes locating next to the largest possible neighbors. And large

neighbors with innovations are even better, as they draw even more customers,

increasing the extent of externalities. As the size of the innovation increases,

the gains from innovation start to dominate the demand from externalities.

The firm prioritizes locating next to neighbors that don’t have their innova-

tions allowing the firm to capture neighbors’ customers without commensurate

loss of its own. These neighbors might not be the largest of potential neigh-

bors, thus explaining the decrease in the size of neighbors upon having large

innovations.

With these three sets of effects, I differentiate between firms with and
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without innovation (solid line or dashed line) for a total of six lines. Across all

three effects, the difference between the solid and dashed line is an indication of

how having an innovation changes that demand effect. The lines’ jaggedness at

the extremes of firm size is the result of having fewer observations to calculate

the average values because firm sizes are pulls from a normal distribution.

Looking at heterogeneous location demand’s two (black) lines, the de-

mand is high for larger firms and falls for smaller firms towards zero. Recall

with my heterogeneous demand landscape resembled a tent supported by mul-

tiple tent-poles. The tent-poles are the highpoints with lower regions between

the tent-poles, and the lowest regions around the periphery, where demand de-

creases to zero. Larger firms take the highpoints and higher locations, leaving

lower demand locations for smaller firms. Looking at the difference between

the solid and dashed lines, the value of having an innovation is fairly constant

regardless of firm size. This is because there is no strategic element to het-

erogeneous location demand. A firm extracts firm-specific demand that is a

function of its innovation weighted size. Innovation effectively makes the firm

larger, which allows it to extract more demand from any given location, which

accounts for the gap between the solid and dashed lines.

Looking at demand externalities two (blue) lines, these increase rapidly

from zero for larger firms; demand externalities by definition do not exist until

some firms locate on the landscape and other firms locate adjacent to them.

Externalities then plateau and diminish slowly. The reduction results from
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demand externalities being a function of neighboring firm size and larger firms

moving before smaller one. As all firms want to locate next to larger ones to

experience greater demand externalities, there is a smaller firm feeding up on

larger firm dynamic. This feeding up keeps differences in neighbor firm size to

a minimum. This smooth reduction in neighbor firm size results in the gradual

reduction of demand externalities. Looking at the difference between the solid

and dashed lines, medium-sized firms benefit more from having an innovation.

This results from the strategic behavior for conquest demand described below,

where firms seek larger neighbors. Given that firms with innovations seek

larger neighbors, this is differential for demand externalities is a secondary

effect.

Looking the two (red) lines for the net of conquest demand and demand

loss from neighbors’ innovation, there is a substantial difference between the

solid and dashed lines. This difference is much greater than the differences for

heterogeneous location demand or demand externalities, which is consistent

with my position that firms behave strategically for this demand effect. Note

also that for firms without innovation the effect is negative across the entire

size range. When firms lack innovation, they become targets for other firms

with innovation who are looking to take some of their customers. Turning

to the solid line, it’s initial flat for larger firms, then climbs rapidly to a

maximum, then declines at a somewhat constant rate, but goes negative for

smaller firms. Large firms prioritize heterogeneous landscape demand over
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conquest demand, but once highpoints and the best locations near highpoints

are taken, then firms start to prioritize conquest demand. Because conquest

demand is a function of the donor firm’s size and firms moving in size rank

order, conquest demand decreased gradually. Larger innovation wielding firms

find slightly larger donor firms to locate next to. This feeding up prevents

big differentials in neighbor firm size from forming. This smooth reduction

in neighbor firm size results in the gradual reduction of conquest demand.

Eventually, the landscape is so filled in that the smaller firms face only bad

choices. All available spots have some neighbors that are both larger and have

an innovation. This results in not conquest demand, but demand losses for

smaller firms, even those that have innovations themselves.

3.3.3 Testable Predictions

I can interpret the above figures to state predictions from the simulation

model, some of which are testable in my empirical context.

Figure 3.1 offers two predictions. First, when a firm has an innovation,

the greater a firm’s innovation, the greater the increase in demand that it

experiences. Second, when a firm has an innovation, the relationship between

firm size and demand is an inverted U, with medium size firms deriving the

greatest benefit from having an innovation. As I am unable to measure demand

in my context, I am unable to test these two predictions.
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Figure 3.2 offers two predictions. First, when a firm has an innovation,

the relationship between the innovation’s size and neighbor size is an inverted

U shape. Second, when a firm has an innovation, the relationship between

firm size and neighbor size is an inverted U, with medium size firms having

the largest neighbors.

In my empirical context, I am not able to measure an innovation’s value,

invi, only whether a firm has an innovation or not. This collapses Figure

3.2’s 3-dimensional surface, eliminating the innovation’s value dimension, to 2-

dimensions. This alters Figure 3.2’s first prediction, and becomes: when a firm

has an innovation, its neighbor size is larger. Figure 3.2’s second prediction

remains the same. Therefore:

Hypothesis 1: Firms with an innovation have larger neigh-
bors.

Hypothesis 2: For firms with an innovation, the relation-
ship between the firm’s size and their neighbors’ size is an
inverted U shape.

Figure 3.3 offers an additional prediction beyond those from Figures 1

and 3.2. Since demand externalities and conquest demand are (close to) zero

for the largest firms, the largest firms will prioritize heterogeneous landscape

demand. And in maximizing demand from this mechanism, the largest firms

will locate at the landscape’s highpoints. In my empirical context of the Con-

sumer Electronics Show, the venue’s entrances are the highpoints. Therefore:
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Hypothesis 3: Largest firms locate on and nearest to het-
erogeneous landscape demand highpoints (entrances).

I test H1, H2, and H3 in my empirical context.

3.4 Data & Methods

I test the simulation model’s predictions with the data from firms’ booth

locations at a trade show, the Consumer Electronics Show (CES) that is held

annually in Las Vegas. Every year the CES attracts a full range of firms in

the consumer electronics industry. A central feature is that some firms use the

opportunity to announce upcoming new products, which run the full range

from major product announcements to minor product updates.

This setting matches the simulation model in that firms are looking to

maximize their exposure at the CES; they want to experience the most traffic

(demand) possible. To do so, firms choose their booth location. Traffic at

their booth location will be affected by how close the booth is to the entrances

(heterogeneous location demand), who their neighbors are (externality effect),

and whether a firm has and its neighbors have new products to publicize (con-

quest and loss demand). Reflecting the incomplete information for the value

of a firm’s innovation, firms may suspect the appeal of their new product, but

won’t know how customers respond until it is revealed at the CES. Among

competitors, firms have some knowledge of whether competitors have innova-

tions since firms often issue press releases in advance of the CES publicizing
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future new product announcements, but information about the new products

typically is incomplete.

My data is for 2014, 2015, and 2016 editions of the CES and comes from

scraping the Consumer Electronics Association website each year. For each

year, I know the exhibitors in the Central Hall at CES and their booth location

choice. The Central Hall houses the leading consumer electronics firms and

experiences the most demand of all the halls at the CES; the other halls focus

on automotive accessories, mobility options, etc. I capture each firms’ both

location, from which I can observe (i) every firms’ neighbors and (ii) distance

to the entrances.

For this study, I take innovation as new or incrementally new products

that firms bring to exhibit at CES. To determine whether a firm announced a

new product at the CES, I make use of two data sources: media articles and

CES Innovation awards. First, I search all available newspapers, magazines,

and blogs articles from the Lexis-Nexis database starting three months before a

year’s CES and ending one month after the year’s CES. To determine whether

the firm has an innovation that year, I do a combination of automated and

manual text analysis. I find articles that contain keywords such “new product”,

“unveil”, “latest” and other variants near “CES” and its variants. I then

manually examine each of these filtered articles to determine whether indeed

the article discusses the firm is having an innovation during that year. Second,

the CES has an annual innovation award for multiple product categories. I
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considered firms under consideration for an award to also have an innovation

that year. The text search flagged 19.8% of firms in my sample as having an

innovation, and 17.7% of firms in my sample were under consideration for an

award over the years. The intersection of these two sources led to 26.4% of

firms being flagged as having an innovation in the overall sample.

For the given period, I have 409 firm-year observations with a total of

185 unique firms. A snapshot of Central Hall, 2015 is provided as Figure 3.5.

3.4.1 Booth Allocation at CES

Understanding the booth allocation process is critical. For the context

to be suitable to test the simulation’s predictions, firms must have a choice

over their booth locations. To assess this, I (1) examined information on the

Consumer Technology Association (CTA who runs the CES) website and

then (2) spoke to the top executive at the CEA who is in charge of the CES.

The CTA website provides information on how exhibitors can request booths

and booth locations. This information provides substantial insight into the

booth allocation process. For example, it specifically asks for an applicant’s

five booth location preferences. However, to gain a full understanding of the

process, I conducted a semi-structured interview with the Vice-President of

Operations at CTA who is specifically responsible for all elements of organizing

the CES.
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Booth allocation at the CES is primarily a function of money spent.

Spending is captured by priority points. A firm earns priority points propor-

tional to its spending for its booth and related services in a given year. The

price of a booth depends on its size. These priority points accumulate year

after year so that a firm exhibiting at the CES longer than others has more

priority points, all other things equal. Firms with more priority points choose

earlier. Firms that are current exhibitors in a year often choose their next

year’s location soon after, based upon their priority points. Unallocated loca-

tions are available to new or intermittent exhibitors after the conclusion of a

year’s CES. Such firms submit location requests, which are processed in the

order that they are received. For requests that are received around the same

time, priority is given to the firm with more priority points. At the conclusion

of a year’s CES, roughly 30% of next year’s booth locations is allocated within

the first week; these typically being the booths closest to the entrances.

When choosing locations, firms are knowledgeable about where other

firms that have chosen earlier are located. Firms that typically choose next

year’s location by the conclusion of the current year’s CES are larger firms that

want the same or similar locations year after year. After the CES concludes,

the CEA website lists and updates were taken and vacant locations. And

an exhibitor can contact the CEA for more detailed information, such as the

identity and location of important reference firms as firms typically have strong

preferences to be located close to or far away from certain other firms. Firms
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also can and do alter their location choices throughout the year, subject to

the stock of remaining vacant locations.

The snapshot of CES’s Central Hall in Figure 6 shows that booths closer

to the entrances are larger and therefore more expensive and systematically

decrease in size farther away from the entrances. So regardless of its priority

points, a firm may have the option of paying more for a larger booth to move

closer to an entrance. But as the number of booths close to entrances is

limited, moving very close to an entrance purely in one year’s spending without

accumulated spending is unlikely. Consistent with this, the venue maps across

years reveal that typically the bigger firms stay in the same spot year after

year, while the medium-sized and smaller firms move around.

Firms choose their spots in the order decided by the priority points and

have knowledge of spots, both taken and vacant, at the time of their choosing.

This enables the firms to strategically choose the location of their booth, taking

into consideration their innovation and other firms’ choices. The structure

of the process allows the firms relative flexibility in choosing their location

taking into consideration their expectation of innovation which is similar to

the structure in my simulation model.
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3.4.2 Measures

My focal dependent variable is “Neighbor Size”, which I operationalize

as the average firm size of the focal firms’ immediately adjacent neighbors.

As the CES has several booth sizes, a particular booth may vary from having

1 to 12 neighbors. For each year of three years I examine, I code a matrix

capturing who neighbored whom. I consider firms across aisles as neighbors;

firms adjacent to each other, but not those blocked by a physical barrier.

Another outcome I consider is “Distance to an Entrance”. Hypothesis

3 states that the largest firms will be at or near entrances. While this is

an outcome for the largest firms, it is also then an important determinant of

neighbor size for other firms. So, distance to the entrance is both a dependent

and independent variable. Thus, having an innovation might drive a firm to

locate close to an entrance to maximize demand, while being able to compete

with larger neighbors due to the innovation. Additionally, I use whether a firm

locates next to an entrance as a control variable in some of the specifications

where neighbor size is the dependent variable. To calculate the mean distance

to an entrance, I use a year’s venue map and calculate the walking distance

between a location and each of the CES Central Hall’s five entrances and then

take the average of the five values.

My focal independent variable, “Innovation”, is whether a firm has inno-

vation in a particular year. This time varying measure is constructed from text
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searches of archival data and lists of innovation award nominees, as described

previously.

Firm size, “Firm size” is log number of employees. I also try log of

revenues, with similar results to those presented later. I choose this measure

since some of my firms are small and privately owned, for which data beyond

employees or sales is limited. I get the majority of employee and revenue data

using a variety of sources such as Hoover’s, Business Source Complete, Factiva

and company websites. In a couple of instances when a firm wasn’t listed on

Hoovers, I searched broadly on Google for the firm’s information. Firm size

varies by year for the large and medium-sized firms. For some of the smaller

firms, however, firm size for different years was not available, and the same

size was used for the missing values.

While the CES setting has several features that map well onto my sim-

ulation, there are other aspects of the CES that may also drive firm location

behavior that I need to account for. A key one is the type of products cat-

egories that a firm participates in. The type and number of products a firm

exhibits at CES would affect its location behavior.

Firms might want to locate next to firms that have similar products to

benefit not from general demand externalities, but product category specific

demand externalities. Alternately, firms might want to locate next to firms

with products that are complementary to its own. For example, firms bring-
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ing phone/tablet/TV accessories may want to locate near firms exhibiting

phones/tablets/TVs.

I take several approaches to accounting for the type and composition of

product categories that a firm participates in. At the most basic, I use dummy

variables for 43 consumer electronics categories that are defined by the CES.

Some categories may lead firms to locate near or farther from entrances, thus

also affecting neighbor size.

In addition to including category dummy variables, I try two different

approaches to representing categories’ effects. Analogous to the firms partic-

ipating in the same versus complementary categories, I develop measures for

product category competition and complementarity.

I create a product competition measure, “Product Competition”, to re-

flect that some product categories have more exhibitors. This is a count of

firms in the same category, with a larger count being greater competition. As

firms participate in multiple categories, I take the average of the individual

categories’ counts. This measure has various possible outcomes. A firm with

a high competition score might want to locate next to a firm with a low score

to escape from high competition. Categories with high counts may lead to

firms locating apart for differentiation. Categories with low counts might lead

to firms collocating to generate demand externalities.
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For product category complementarity, “Product Complement”, I create

a 2-dimensional matrix representing the 43x43 possible combinations of prod-

uct categories. For each firm in my sample, I increment the appropriate cells

by one based upon the product categories that it participates in. For example,

if a firm participates in TVs, mobile phones, and DVRs then the TV-phone,

TV-DVR, and phone-DVR cells get incremented by one. I do the same for all

firms. I divided each cell’s score by the total across all cells, in a given year

at the CES. In the final matrix, the value in each cell now represents the %

of firms carrying products in a given pair of product categories. A higher %

indicates that the pair of product categories is more likely than other combi-

nations, which I take as indicating that category pair is more complementary

more firms have chosen to participate in that category pair. To construct a

firm specific measure of product complementarity, I sum the % scores for the

product categories that a specific firm participates in. For example, for the

firm that participates in TVs, mobile phones, and DVRs; I take the average

from the TVs row (this is the average complementarity of TVs with all other

product categories), mobile phone row, and DVR row. I sum these three aver-

ages, which gives me that firm’s complementarity given the product categories

that it participates in. A firm with high complementarity may be more inter-

ested in locations near firms offering products in complementary categories.

Both the measures of product complementarity and competition were created

for each firm-year.
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I also measure the number of product categories a firm participates in,

“Total Categories”. Most firms at CES exhibit products in several product

categories in a given year. Firms exhibiting in a large number of product

categories might want to stay away from similar firms to avoid competing over

multiple product lines.

I also include year dummies; firms’ spending at CES and thus their loca-

tion choices might be affected by macroeconomic differences. One limitation is

that I only have three years of data. With panel data, I’d prefer to have firm

fixed effects, but key variables, Firm size, and 43 Product category dummy

variables have little within-firm variation. While I present results from pooling

the three years of data, I run models for each year individually, and the results

are similar in nature in direction and significance to those from the pooled

data.

3.4.3 Empirical Analysis

The simulation predicts Neighbor Size and Distance to Entrance, which

are continuous measures, as a function of Firm size and whether firms have

an Innovation. In my empirical analysis, I employ an Ordinary Least Squares

model to test my hypothesis from my simulation model. Of note, while I

typically would be concerned with endogeneity with my empirical methods,

in this case, I have accounted for endogeneity theoretically in generating my

expectations. The predictions of the simulation model result from the explicit
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articulation of the underlying mechanisms, which is what I will test empirically.

My model specification is:

Neighbor Sizei,t = β0 + β1Firm Sizei,t + β2(Firm Sizei,t)
2 + β3Innoi,t +

Interaction Terms + Controlsi,t + εi,t — (1)

Distance to Entrancei,t = β0 + β1Firm Sizei,t + β2(Firm Sizei,t)
2 +

β3Innoi,t + Interaction Terms + Controlsi,t + εi,t — (2)

The subscript ‘i’ is the firm indicator while the subscript ‘t’ is the time

indicator for the panel dataset, εi,t is the error term of the model. I begin

by estimating the effects of the various control variables on a firm’s location

behavior. I then add my independent variable to the model.

3.5 Results

Table 3.1 shows descriptive statistics, and Table 3.2 shows correlations

between the variables in my models. From the descriptive statistics, I can ob-

serve that on firm size, the distribution is left-skewed with a long tail. About

26.4% of the firms in my sample have innovations. A typical firm displays

products in about 5.7 categories at the show across the years with the maxi-

mum being 21 for Sony in 2014.

The negative correlation between firm size and distance to entrance sug-

gest that larger firms typically locate near the entrances. Understandably,

larger firms have products in a larger number of categories. Additionally, the
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positive correlation between firm size and innovation suggest that larger firms

typically bring innovations more frequently to CES when compared to smaller

firms.

Looking at Table 3.3, models 1-6 have Neighbor Size as the dependent

variable. Models 1-2 contain controls variables only. The control variables

Total Categories, Product Competition and Product Complement show little

statistical significance across the models. This is likely due to my inclusion of

42 category dummy variables for 43 CES defined product categories, which are

statistically significant as a group. Total categories does become statistically

significant when Firm size is introduced, as the two are correlated (0.25 from

Table 2). While this collinearity might artificially result in significant t-tests

for the correlated variables, the change in R-squared between column 2 and

3, from 0.273 to 0.369, indicates that inclusion of Firm size is an important

variable in explaining Neighbor Size.

Models 3-6 introduce the focal variables incrementally. Hypothesis 1

predicts that firms with an innovation have larger neighbors. This is tested in

model 5. The coefficient for Innovation is positive and significant indicating

support for Hypotheses 1 which relates innovation and neighbor size. Hypoth-

esis 2 predicts that for firms with innovation, the relationship between the

firm’s size and their neighbors’ size is an inverted U-shape. This is tested in

model 6, which adds Firm size and Firm size2 interacted with Innovation.

The positive and significant coefficient for Firm Size x Innovation along with
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a negative and significant coefficient for Firm Size2 x Innovation suggests an

inverted-U shape relationship between Firm Size and Neighbor Size for firms

with innovation, which supports Hypothesis 2. For smaller firms, upon hav-

ing an innovation, they locate themselves near larger neighbors to capture the

value of their innovation similar to what I observe in my simulation. But, as

the firm size grows larger, the mean size of neighbors continues to fall, con-

sistent with the fact that the largest firms prioritize demand from entrance

rather than from neighboring firms giving an inverted-U shape to the curve.

Models 7-11 in Table 3.3 have Distance from Entrance as the dependent

variable. Similar to with Neighbor Size as the dependent variable in Models

1-6, here also Product Competition and Product Complement show little statis-

tical significance across the models 7-11. The 42 category dummy variables for

43 CES defined product categories are also statistically significant as a group.

But here Total categories does have a consistently negative and significant ef-

fect: firms with products in more categories are closer to the entrances, all else

equal. Hypothesis 3 predicts that the largest firms will locate close to demand

highpoints, which are the entrances. The negative and significant coefficient of

Firm Size across models 811 provides support for Hypothesis 3. Though the

positive and significant coefficient on Firm Size2 tempers this support. The

function monotonically decreases for about 85% of the firms with increasing

firm size and then begins to increase. The reason behind this form is the way

the measure Distance to Entrance is constructed, which is the mean distance
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to all entrances. For the largest firms, this can be high since they are close to

only one entrance and distant from other entrances.

Comparing coefficients of Size of Firm x Innovation and Size of Firm2 x

Innovation between models 6 and 11 in Table 3.3 provides me with an interest-

ing observation. These coefficients are significant in model 6, for the Neighbor

size dependent variable, but not model 11, for the Distance to Entrance depen-

dent variable. In model 6, the two coefficients capture the strategic behavior

of firms when they have innovations; the positive and negative coefficients for

the linear and squared term, respectively, define an inverted U-shape: this

strategic behavior of locating next to larger neighbors is greatest for medium-

size firms. But these same variables don’t have an effect for Distance to En-

trance. In combination, these results suggest that medium-sized firms, with

innovations, are looking for larger neighbors to benefit from, but not the larger

neighbors that are near entrances. This suggests that the strategic behavior of

innovation wielding medium-sized firms seeking larger firms is occurring not

near entrances where most of the largest firms are positioned, but away from

the entrances, in the interior. And in the interior there are likely clusters of

larger firms: the coefficients for Firm Size and Firm Size2 in models 3-6 sug-

gest that the larger a firm, the larger it’s neighbors; which is driven by the

externality mechanism. Such clusters of larger firms in the interior become

attractions for innovation wielding medium-size firms. This behavior is quite

different from simple priors which might suggest that all firms want to be close
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to demand highpoints such as entrances. This finding suggests that some firms

can maximize their demand by locating in the interior and pulling customers

away from neighbors. On a competitive landscape, good choices are exoge-

nously determined demand highpoints, but also alternate highpoints that are

endogenously determined by the presence of competitors that act as donors.

3.6 Discussion

I investigate the effect of a firm having an innovation on its competitive

positioning. I expect that a firm armed with innovation to position itself more

aggressively relative to the type of firm it competes with; that a smaller firm

with innovation will position itself near larger firms than it would otherwise. I

refine my expectations using a simulation to model several underlying mecha-

nisms and then test the simulation’s predictions using empirical data from the

Consumer Electronics Show (CES).

The simulation helps in several ways. First, it allows me to model under-

lying mechanisms that drive firms’ location choice explicitly: (1) gains from

taking neighboring firms’ customers when a firm has an innovation, (2) possible

losses when neighboring firms have their innovations, (3) gains from positive

demand externalities, and (4) heterogeneity in locations’ demand across the

competition space. Second, by explicitly modeling the underlying mechanisms

and their interactions, the simulation allows me to address the endogeneity of

firms’ choices. A focal firm’s choice is a function of the prevailing landscape
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which is determined by many other firms’ choices; this system of endogeneity

is hard to account for using empirical methods. Third, the flexibility of the

simulation allows me to model firm choices over a wide range of values for the

key parameters so that the simulation’s predictions are generalizable across a

wide range of scenarios. Additionally, it helps me overcome the handicap of

limited data I have from my empirical context; I can’t observe customer de-

mand/traffic, but I can observe firms’ location choices and attributes of their

choices that link to customer demand/traffic and therefore test predictions fo-

cus on these outcomes. Finally, the simulation helps me generate hypotheses

that I test using empirical data. The versatility of the simulation model helps

me mimic the context of CES while still being abstract and flexible to be used

for other competitive landscapes.

The Consumer Electronics Show is an empirical context with some de-

sirable features: (1) most firms in the consumer electronics industry attend,

(2) the CES is an important venue for firms to showcase new and upcoming

innovations, (3) firms choose their booth locations with an eye to maximizing

customer demand/traffic, (4) firms’ booth locations are readily observable. My

empirical analysis supports for my hypothesis which was generated using the

simulation model. My empirical results indicate that firms with innovation

position themselves closer to larger firms to benefit from demand externalities

and to attract some of the larger firms customers away based upon their in-

novation. This result is, however not varies with firm size. Larger firms focus
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on choosing a position near demand highpoints, and whether they have an

innovation has limited impact on their positioning decision. However, having

an innovation greatly influences the choices of the medium and smaller sized

firms. As a consequence, I observe an inverted-U shape relationship between

the size of the firm and those of the neighbors for firms with innovation.

An interesting finding is that all firms don’t prioritize exogenously de-

termined demand highpoints. While the largest firms do, medium-sized firms

act strategically when armed with innovation to seek out larger firms in the

interior, apart from exogenously determined highpoints. Larger firms in the

interior, that group together, become pseudo, endogenously determined high-

points for medium-sized firms.

The results in my paper have implications for managerial choices espe-

cially for managers of small and medium-sized firms. The demand highpoints

are inherently attractive. But such prized positions might not be readily avail-

able to the small and medium-sized firm, whose positioning choices might be

constrained by larger competitors. The results of my paper suggest that in

addition to demand highpoints, other attractive positions in the competitive

landscape can be created by other firms’ positioning choices. Firms can po-

sition themselves close to these endogenously created demand highpoints, es-

pecially when they possess an innovation. Having an innovation can allow

managers to alter the positioning of their firms and aid their ability to directly

compete with the larger firms by locating at these quasi-demand high points
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which are near positions of larger firms.
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Table 3.1: Summary Statistics Table

Statistic N Mean St. Dev. Min Max

Neighbor Size 409 4.726 2.268 1.099 11.688
Firm Size 409 4.391 3.310 0.693 12.590
Innovation 409 0.264 0.441 0 1
Distance to Entranace 409 135.449 68.974 10.300 250.100
Product Competition 409 30.705 13.253 1.000 74.500
Product Complement 409 8.810 6.015 0.008 27.781
Product Categories 409 5.746 3.687 1 21

Table 3.2: Correlation Matrix

Variables 1 2 3 4 5 6 7

1 Neighbor Size 1
2 Firm Size 0.43 1
3 Innovation 0.45 0.19 1
4 Distance to Entrance -0.24 -0.16 -0.17 1
5 Product Competition -0.17 -0.35 -0.02 0.09 1
6 Product Complement 0.04 0.05 0.11 0.02 0.38 1
7 Total Categories 0.11 0.25 0.13 -0.02 0.06 0.92 1
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Table 3.3: Effect of Innovation on Neighbor Size

Dependent variable:

Neighbor Size Distance to Entrance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Total Categories 0.168 −0.161 −0.942∗∗ −0.971∗∗ −0.762∗ −0.718∗ −40.772∗∗∗ −30.484∗∗ −31.150∗∗ −33.453∗∗ −33.623∗∗

(0.462) (0.452) (0.435) (0.433) (0.403) (0.397) (14.448) (14.845) (14.774) (14.596) (14.600)

Product Competition −0.007 −0.007 −0.001 −0.003 0.004 0.003 −0.089 −0.170 −0.260 −0.357 −0.316
(0.019) (0.019) (0.017) (0.017) (0.016) (0.016) (0.603) (0.599) (0.598) (0.591) (0.591)

Product Complement 0.163 0.158 0.122 0.130 0.134 0.114 −0.551 −0.102 0.203 0.139 0.609
(0.198) (0.192) (0.179) (0.178) (0.165) (0.163) (6.189) (6.140) (6.112) (6.031) (6.041)

Distance to Entrance −0.008∗∗∗ −0.006∗∗∗ −0.007∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001)

Size of Firm 0.301∗∗∗ 0.037 0.102 −0.150 −3.660∗∗∗ −13.117∗∗∗ −13.730∗∗∗ −15.914∗∗∗

(0.041) (0.136) (0.127) (0.149) (1.381) (4.619) (4.562) (5.469)

Size of Firm2 0.023∗∗ 0.014 0.040∗∗∗ 0.835∗∗ 0.951∗∗ 1.069∗∗

(0.011) (0.011) (0.013) (0.389) (0.386) (0.477)

Innovation 1.748∗∗∗ 0.927 −26.787∗∗∗ −56.922∗∗

(0.228) (0.647) (8.193) (23.763)

Size of Firm x Innovation 0.618∗∗ 11.133
(0.270) (9.997)

Size of Firm2 x Innovation −0.062∗∗∗ −0.666
(0.021) (0.794)

FE: Prod Categories Yes*** Yes*** Yes*** Yes** Yes*** Yes*** Yes*** Yes*** Yes*** Yes*** Yes***
FE: Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 409 409 409 409 409 409 409 409 409 409 409
R2 0.224 0.273 0.369 0.376 0.465 0.484 0.179 0.194 0.204 0.228 0.232

Note: Significance: *p<0.1; **p<0.05; ***p<0.01 :: Two tailed SE in parenthesis
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Figure 3.1: Demand Difference for Firms

Figure 3.2: Difference in Neighbor Size
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Figure 3.3: Difference in Demand from various sources for firms with and without Innovation
at time of choice

Figure 3.4: Number of Product Categories by Firm
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Figure 3.5: Layout from CES 2015 Central Hall
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