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The Poxviridae are large DNA viruses that replicate in the cytoplasm of

vertebrates or invertebrates. The genus Orthopoxvirus includes variola virus, the

cause of smallpox, and vaccinia virus (VACV), the prototypal family member used in

the licensed smallpox vaccine. Interest in the development of an alternative smallpox

vaccine emerged because of complications associated with recent vaccination efforts

and the growing number of people excluded from vaccination.  Antibody therapies

are also of interest for Orthopoxvirus infection treatment instead of vaccinia immune

globulin from human donors. Essential to these efforts are studies that elucidate

aspects of the immune response required for protection against disease. Two

infectious forms of virus exist, intracellular mature virus (IMV), which mediates

spread between hosts, and extracellular virus (EV), which is required for efficient

spread within a host. IMV and EV each possess an outer membrane with viral



proteins targeted by the adaptive immune response.

            I have used soluble baculovirus-expressed forms of VACV proteins from the

IMV and EV in order to understand the role of immunity to these particles during

infection. Subcutaneous immunization of mice multiple times with the EV proteins

A33 and B5 and the IMV protein L1 either individually or in combinations induced

specific antibody responses and protected against weight loss and death caused by

virus infection, especially following immunization with A33+B5+L1 or A33+L1.

Similar patterns of protection were observed by passive immunization of mice with

polyclonal or monoclonal antibodies against A33, B5, or L1 prior to or after

intranasal challenge. A27 was investigated as an alternative IMV protein to L1, but

proved less effective alone or in combination with A33. Potent and more rapid

immune responses to the A33 and L1 proteins were stimulated by the use of the

adjuvants QS-21, or alum mixed with CpG oligodeoxynucleotides.  Protection against

a lethal challenge was observed in a small study with monkeys that were immunized

with A33, B5, and L1 and challenged with monkeypox.  My data indicate protection

against orthopoxviruses is seen in animal models so long as a good antibody response

is made to both the IMV and EV forms.
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Chapter 1

 General Introduction and Research Goals

The Poxviridae are a family of large enveloped DNA viruses that encode a

diverse array of structural and nonstructural gene products and infect a wide range of

hosts.  Variola virus (VARV), a member of the genus Orthopoxvirus, is the causative

agent of smallpox, a horrific disease that has shaped the course of human history,

including the development of the science of vaccination.  Variola virus was

eradicated more than 30 years ago, and the majority of the global population is not

immune to this virus.  The rising specter of the use of smallpox as a biological

weapon has revived interest in vaccination against variola virus.  The licensed live

virus vaccine against smallpox is comprised of vaccinia virus (VACV), a closely

related orthopoxvirus that induces cross-protective immunity but does not cause the

severe morbidity and mortality associated with VARV.  Despite the successful use of

this vaccine during the global eradication campaign, the numerous side effects

associated with vaccination have caused growing reluctance towards its use in the

general population.   For this reason, next generation smallpox vaccines are being

developed with the hope of creating a product that induces effective protection with

fewer side effects, especially for use in immunocompromised or otherwise ineligible

individuals. 
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The main goal of my dissertation is to study new active and passive

immunization strategies for protection against orthopoxvirus infection in animal

models. The specific aims of these studies include:

1. Testing the efficacy of recombinant vaccinia virus proteins, individually or

in combination, as immunogens in a mouse model of respiratory infection.

2. Examining protection of mice passively immunized with polyclonal or

monoclonal antibodies against individual vaccinia virus proteins with the

same virus challenge model.

3. Comparing the use of different immunostimulatory adjuvants for

optimization of the immune responses and protection induced by

recombinant vaccinia virus protein immunization.

4. Testing protection of cynomolgous monkeys immunized with recombinant

vaccinia virus proteins against a lethal intravenous monkeypox virus

challenge.
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Chapter 2

Review of Literature

2.1  The Poxviridae

2.1.1 Classification.

The family Poxviridae are enveloped DNA viruses with an ovoid or brick-

shaped morphology.   Particles are typically 140-260 nm in diameter and 220-450 nm

in length.  Poxviridae are divided into two subfamilies, the Chordopoxvirinae that

infect vertebrate hosts and Entomopoxvirinae that infect invertebrate hosts.

Chordopoxvirinae are classified into eight genera based on sequence similarity, and

members of each genus infect common hosts and are antigenically similar.  The genus

Orthopoxvirus includes members that infect a wide variety of hosts including

humans, primates and rodents.  Vaccinia virus (VACV) is a member of the

orthopoxviruses and has no known natural host.  VACV shares genetic and antigenic

similarities with other members, including variola virus (VARV), which is the cause

of smallpox disease, and monkeypox (MPXV), a zoonotic infection that resembles a

smallpox-like disease in humans.  VACV has effectively been used as the vaccine

strain in the live virus vaccine for smallpox and is commonly used in the laboratory

as a tool to understand the basic virological properteries of the orthopoxviruses.

Members of the Chordopoxvirinae are the only known poxviruses that have been

observed to infect humans, and VARV and molluscum contagiosum virus infections

(genus Molluscipoxvirus) are restricted to humans.
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2.1.2 Genome organization.

The viral core of poxviruses contains a single molecule of linear double

stranded DNA (130-375 kBps) that is joined at either end by a covalently closed

hairpin structure approximately 100 base pairs (bp) in length [1].  Genes that are

highly conserved amongst the Poxviridae are located in the center of the molecule

and are involved in essential functions including transcription, translation and DNA

replication.  Less conserved genes with host range and immune defense functions are

found towards the ends of the genome.  A pair of identical A+T-rich inverted terminal

repetitions (ITRs) is located in opposite orientation at either end of the genome [2].

The ITRs are approximately 10,000 bps long, and each include a partially base-paired

loop of approximately 100 bps that connects the two DNA strands [3].  Several open

reading frames (ORFs) have also been identified within the ITRs and there is also a

series of 13 to 17 tandem 70-bp repeats sequences on either side of a 435-bp

intervening sequence [4].  Another feature characteristic of all ITRs is a highly

conserved sequence of approximately 100 bp that is required for resolution of

concatameric genomic DNA into unit length segments [5, 6].  A schematic

representation of the viral genome is shown in figure 2-1A.

VACV is the most commonly studied orthopoxvirus because it is a convenient

and safe alternative to more pathogenic viruses, including variola virus and

monkeypox.  Early studies with VACV were carried out prior to knowledge of the
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Figure 2-1.  Diagramatic representations of the Vaccinia virus (VACV) genome.

(A)  Schematic representation of double stranded DNA genome of VACV.  Loops on

the right and left hand sides represent covalently closed loops connecting the two

DNA strands. The yellow boxes represents inverted terminal repetitions; L represents

less conserved genes involved in host range and immunomodulatory functions; C

represents conserved genes involved in transcription, translation and DNA

replication.  (B) Diagram of HindIII fragments generated by digestion of genomic

DNA.  Fragments are enumerated alphabetically with the largest fragment denoted by

the letter A.

A

B

           N  M   K            P   O

  L                  C                         L
I

    C   F  E  I   G L J H  D      A  B

I
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complete genome sequence, and the genome was defined by enumerating fragments

(letters A-O, followed by number within fragment) that resulted from HindIII

restriction endonuclease digestion of the genomic DNA.  The largest fragment is

labeled A, and smaller fragments are labeled alphabetically by decreasing size.  ORFs

are numbered within each fragment in order from left to right, and each gene includes

an L or R letter that indicates the left or right direction of the ORF.  An example of a

gene name is A33R, which is the 33rd ORF in the A fragment in the right orientation.

VACV has approximately 200 ORFs that have been confirmed or predicted, and other

orthopoxviruses have a similar number of ORFs.  A schematic diagram of the genome

organization of VACV is shown in figure 2-1B.  Genes will herein be described just

by their letter and number (i.e., A33).

2.1.3 Virion Morphology and Types of Infectious Particles.

Vaccinia virus has two types of infectious particles, intracellular mature virus

(IMV) and enveloped virus (EV), which were first defined by electron microscopy

(EM) and density gradient centrifugation.  The intracellular mature virion (IMV)

appears as a rectangular or ovoid particle surrounded by single lipid bilayer [7-9] that

contains an electron-dense core with a dumbbell shape, which may be membrane-

bound [10] and lateral bodies parallel to the biconcave core.  IMVs are assembled

within the cytoplasm of infected cells and are released upon cell lysis.  Enveloped

virions are IMVs surrounded by an additional lipoprotein membrane and form a

similar shape as IMVs.  EVs either remain associated with the plasma membrane as

cell-associated enveloped virus (CEV) or are released from the cell surface as

extracellular enveloped virus (EEV) [11].
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2.1.4 Viral Proteins.

Orthopoxviruses have approximately 200 ORFs and encode a diverse number

of proteins involved in every step of the virus life cycle [1].  Enzymes for RNA

synthesis, mRNA capping and poly(A)-tail formation, DNA replication,

phosphorylation and disulfide bond formation have been identified in VACV.

Several immune defense molecules are also encoded by VACV, including,

complement binding protein, cytokine and chemokine binding proteins, cytokine

receptor homologs, protein kinase R inhibitors, caspase inhibitors and serine protease

inhibitors [1, 12] .  The viral core contains enzymes involved in establishing viral

transcription in the cytoplasm, including the RNA polymerase, enzymes involved in

mRNA capping and polyadenylation, and early transcription factors.  The core also

contains DNA binding proteins and proteins that may be involved in morphogenesis

of immature particles into infectious mature particles [13]. VACV encodes multiple

structural proteins integrated in the IMV membrane that are required for entry and

fusion and virion morphogenesis.  A unique complement of proteins is associated

with the EV membrane and these proteins are engaged in particle morphogenesis,

movement of particles to the cell surface via microtubles, and actin tail-mediated

spread of EVs between cells [14].

2.2  Viral Replicative Cycle

2.2.1 Viral Binding and Fusion.

The Poxviridae are unique among DNA viruses because they replicate entirely

within the cytoplasm, which is enabled by the numerous enzymes encoded by the
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viral genome for transcription and replication.   The first step of the virus life cycle is

binding and entry into the host cell.  The proteins involved in cell penetration have

only recently been elucidated and the mechanism of entry is still not well defined.

Our understanding of entry is also complicated by the existence of two forms of

infectious virus, IMV and EV.   IMV has been shown to directly fuse to the plasma

membrane by EM [15, 16] and this was confirmed by biochemical studies [17, 18].

There is no evidence that the EV membrane fuses directly with the plasma

membrane; rather, a recent study provides evidence that the EV membrane may be

disrupted by a ‘ligand-induced nonfusogenic reaction’ mediated by polyanionic

molecules on the plasma membrane [19].  This reaction disrupts the EV membrane

and exposes the IMV membrane, thus making it available for fusion. Genetic studies

with conditional lethal mutant viruses have revealed that repression of the genes A21,

A28, H2, L5, or A16 causes a similar phenotype [19-24].  These viruses replicate and

form normal progeny in the presence of the inducer IPTG, which drives expression by

displacement of the E.coli lac repressor protein from the operator sequence

downstream from the synthetic promoter. In the absence of IPTG, virions are able to

bind to cells, but viral cores are not seen in the cytoplasm. Virions with repression of

any one of these genes cannot trigger low-pH-induced cell-to-cell fusion from within

or without. This unique phenotype was the first evidence of specific genes involved in

poxvirus entry.  Another study identified the G3, G9, and J5 proteins as possible

additional members of the putative entry complex by immunoaffinity purification and

mass spectrometry, although genetic studies have not yet confirmed these findings

[25]. Earlier studies also showed that the IMV proteins D8, H3, and A27 bind to
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glycosaminoglycans [26-28].  This interacation may be a precursor to fusion,

although none of these genes are essential for virus entry.  After membrane fusion is

complete, the viral core is trafficked away from the cell periphery via microtubules

[29].

2.2.2 Temporal Expression of Viral Genes and Genome Replication.

Poxvirus gene expression occurs in three temporal stages, early, intermediate,

and late, and specific promoters with unique sequence features govern the time of

expression [30].  Viral cores contain a single copy of the genome and all of the

proteins needed for synthesis of early viral mRNA.  These proteins are synthesized

late in infection and are packaged into the viral core and include the RNA

polymerase, mRNA capping and polyadenylation enzymes, and early transcription

factors.  Roughly half of all viral genes are transcribed early [31], including the

enzymes for viral DNA replication, namely, the DNA polymerase, nucleoside

triphosphatase, uracil DNA glycosylase, and a DNA polymerase processivity factor.

Other early proteins include viral growth factor, immune defense molecules and

intermediate transcription factors.    Early messenger RNA transcripts  (mRNAs) are

characterized by an A+T-rich consensus core promoter sequence of AAA AAA TGA

AAA AA/TA and initiation occurs 12 to 17 nucleotides (nts) downstream from the

promoter at an A or G [32]. Early mRNAs are unique from intermediate or late

mRNAs because they also have a highly conserved termination signal sequence of

TTTTTNT usually found at the end of an early gene [33].  Transcript termination

occurs 20 to 50 bps downstream from this signal after which transcripts are

polyadenylated.  Early mRNAs can be made in vitro inside the viral core and are
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extruded via an ATP-dependent mechanism [34].  Early mRNAs are detected in

vaccinia virus-infected cells at 20 minutes post-infection and peak at 100 minutes

post-infection [35]. Microscopy studies have shown that early mRNAs and their

translation products accumulate and form distinct granular structures at a distance

from the viral core [36, 37].  These RNA structures are distinct from the site of DNA

replication as well.  Both early mRNAs and viral cores associate with microtubules,

which may facilitate the organization of distinct subcellular compartments for

translation and replication.   These studies also confirmed earlier biochemical

evidence that protein synthesis is required for core uncoating and subsequent DNA

replication [38], and this transition is associated with termination of early

transcription.  Levels of early mRNAs decrease rapidly after core decondensation and

this may be due to cessation of early transcription as well as the high-rate of both

cellular and viral mRNA degradation during infection [35].

DNA replication occurs in discrete foci in the cytoplasm of infected cells that

are called viral factories.  These structures can be visualized by fluorescent

microscopy through the use of fluorescent DNA labels like Hoecht’s stain.  One or

more DNA factories are usually seen near the periphery of the cell’s nucleus and may

be associated with the cytoplasmic side of the ER as described above.

Orthopoxviruses encode enzymes for deoxyribonucleotide biosynthesis, which may

be required to attain optimal levels of dNTP precursors for viral genome replication

[1].  DNA replication begins 1 to 2 hours post-infection (hpi) through 12 hpi in

cultured cells and is dependent entirely upon viral proteins including the DNA

polymerase (E9), a DNA processivity factor (A20), a uracil DNA glycosylase (D4)
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and a nucleoside triphosphatase (D5) [39].  Initiation of DNA replication conceivably

begins with nicking of the closed double-stranded genome, most likely near one or

both of hairpin termini, although an origin of replication has yet to be identified.

Elongation occurs next with dNTP addition at the free 3’ ends of the nicked DNA,

which is followed by displacement of the template with the nascent DNA strand.

Large concatamers of genomic DNA are formed during elongation and are resolved

into unit-length molecules by the Holliday junction resolvase (A22) at the

concatameric junctions formed at the hairpins [40, 41].

Intermediate genes are transcribed and expressed after the onset of DNA

replication, usually around 100 minutes post infection.  Few intermediate genes have

been identified, including three late transcription factors [42].  Intermediate genes are

defined by an A+T-rich sequence 14-bps upstream from a TAAA initiator element,

and initiation occurs at an AAA sequence [43].  Intermediate transcription requires

the viral RNA polymerase, capping enzyme, and two viral intermediate transcription

factors. Intermediate transcripts cannot be synthesized in vitro without addition of a

nuclear extract, and the mammalian proteins Ras-GTPase-activating protein SH3

domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated

protein (p137) are sufficient to complement transcription and may be required for in

vivo intermediate transcription [44, 45].

Late gene transcription commences after intermediate transcription, starting at

140 minutes post-infection and lasting until 48 hours post-infection.  Late proteins

include the structural proteins required for virus particle formation and components of

the early transcription machinery that are packaged into the viral cores.  Late
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promoters are different from those of early and intermediate genes and have three

defined regions: an A+T-rich sequence of about 20 bps, a 6-bp spacer region, and a

TAAAT element initiation element [46].  The second T of the initiation element is

usually followed by a purine, and the presence of AAA residues upstream from the

translation initiation site results in formation of a poly(A) leader sequence in late gene

transcripts downstream from the 5’-cap.   [47, 48].  Both intermediate and late

transcripts do not have defined 3’-ends and also lack poly(A) tails.  Three viral late

transcription factors that are expressed from intermediate transcripts are required for

late transcription, in addition to a host protein, in the presence of the viral RNA

polymerase and capping enzyme [49].

2.2.3  Maturation of Viral Particles and Viral Egress

Virus particle formation follows late transcription, and the majority of

proteins found in mature virus particles are the products of late transcripts.  Several

intermediate stages precede formation of the infectious mature virion as denoted in

figure 2-2.  The different stages of viral morphogenesis were first defined by EM

studies [50]. Crescent-shaped membranes surround areas of electron-dense viroplasm

and form spherical immature virions (IVs) that soon contain a single copy of the viral

genome, seen as dense nucleoid matter within the IV.  The source of the crescent

membrane has yet to be definitively characterized.  Crescents may be formed by an

unidentified de novo mechanism [9],  although recent evidence suggests that

membranes may originate from the endoplasmic reticulum-Golgi intermediate

compartment [51, 52].   Genetic studies have revealed a multiprotein viral
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Figure 2-2: Replicative cycle of orthopoxviruses.  A virus particle (intracellular
mature virion (IMV) or enveloped virion (EV)) contains the DNA genome,
replication enzymes and transcription factors.  Attachment begins with disruption of
the outer membrane of EV particles, and the exposed IMV membrane mediates fusion
with a multiprotein complex.  The core is released into the cytoplasm and early
mRNAs are synthesized from the core, including genes for intermediate transciption
factors, host defense and viral growth factors.  Uncoating commences after early
gene transcription, followed by replication of concatamers of the full-length viral
genome.  Intermediate mRNAs are transcribed, and translation of these molecules
includes late transcription factors.  Late mRNAs are transcribed and translated and
include structural proteins, and the late enzymes and transcription factors that are
packaged into viral particles.  Discrete structures surrounded by crescent-shaped
membranes are formed at the beginning of virion assembly.  Concatameric DNA
molecules are resolved into unit-length genomes and a single molecule is packaged
into an immature virus particle (IV).  IMVs are formed by further maturation steps,
including proteolytic processing, and some particles are wrapped with additional
membranes to form IEVs.  IEVs are transported to the cell periphery and fuse with
the plasma membrane.  Particles remain associated with the cell surface as cell-
associated enveloped particles (CEVs) or are propelled by actin tails to nearby cells
as extracellular enveloped particles (EEVs).  Bold-faced text denotes viral replication
events depicted in the cartoon shown above. Figure adapted from reference 1.
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complex required for IV formation, which include the proteins F10L, H5R, G5R,

A14L, A17L, D13R and AllR [44, 53-62].   Proteolytic cleavage of both membrane

(A17L) and core (A4L, A10L, and L4R) proteins is required for maturation of the IV

into the infectious IMV particle [63-67].  Two viral proteins, I7L and G1L, have been

characterized as putative proteases required for cleavage and/or IMV formation in

cell culture [68, 69].  The outer membrane of mature IMVs contain several

transmembrane proteins with disulfide bonds, in spite of the fact that these proteins

are expressed in the cytoplasm.  Typically in uninfected cells, the cellular thiol

oxidation machinery resides in the highly oxidizing environment of the ER.  IMV

protein disulfide bond formation appears to be mediated by three viral proteins, E10,

a member of the ERV1/ARL family of sulfhydryl oxidases with a characteristic CxxC

motif, A2.5, which contains a similar CxxxC motif, and G4, a glutaredoxin with in

vitro thiol transferase activity [70-74].  E10R forms a disulfide-bonded heterodimer

with A2.5, followed by formation of a disulfide-bonded heterodimer between A2.5

and G4.  G4 forms a similar dimer with the viral protein substrates, including L1, an

essential protein that is the target of neutralizing antibodies, as well as several

members of the entry-fusion complex including A16, A21, A28, and L5.

IMV particles are infectious, but are only released from the cytoplasm by cell

lysis. Some IMVs are wrapped by a double membrane derived from the trans-Golgi

network or early endosome to form intracellular enveloped viruses (IEVs) [75-78].

IEVs are transported to the cell surface by a microtubule-dependant mechanism, and

the outermost membrane of the IEV fuses with the plasma membrane.  The

extracellular particles remain associated with the plasma membrane as cell-associated
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extracellular viruses (CEVs) at the tips of actin-containing microvilli or are released

as extracellular enveloped viruses (EEVs) [79], and both CEV and EEV particles

consist of an IMV surrounded by an additional lipoprotein envelope [80].  Since CEV

and EEV are identical in all respects excluding attachment to the cell, they will be

collectively referred to as enveloped virus (EV).

2.3  Smallpox, Edward Jenner and the Dawn of Vaccination

2.3.1 Smallpox and Variola Virus

Smallpox is a disease caused by variola virus and is known only to infect

humans.  Variola major was the prominent strain responsible for human illness,

although a milder strain, variola minor, was first described at the beginning of the 20th

century [81].   Variola virus likely emerged from a rodent reservoir, which is typical

of other orthopoxviruses, and may have mutated in an intermediate animal, like cattle

or equids, 10,000-12,000 years ago at the time of the first agricultural revolution and

the establishment of human settlements, which included the domestication of such

animals [82].  Smallpox disease has been described by several ancient civilizations

beginning approximately 3,000 years ago and was endemic in China, India, North

Africa and Europe.  Explorers colonizing the New World brought the disease which

decimated native populations who had not previously been exposed to smallpox [83].

The severity of disease caused by smallpox was reduced by intentional inoculation of

the skin or by inhalation with scab material or pustule fluid derived from smallpox

infection.  This practice of “variolation” was first seen in India 1000 years ago and

soon after in China, and was later adapted in Europe [82].  This is the first time that



16

deliberate infection was used as a method to protect against severe disease and is

evidence of the first foray into the practice of vaccination.

2.3.2 Edward Jenner and the Discovery of Vaccination

Edward Jenner was an English physician and scientist living in Berkeley,

Gloucestershire in the late 18th century when he published a monograph detailing use

of cowpox material as a method of inoculation against smallpox [84].  The terms

“vaccine” and “vaccination” from the Latin word for cow, vacca were coined to

honor Jenner’s work.  This discovery has been considered one of the most important

in medicine, but the practice of vaccination with cowpox, and soon after, vaccinia,

was also met with controversy.  The sources of vaccine in the 18th and 19th centuries

were from the arms of vaccinated humans or the flanks of vaccinated calves.  This

vaccine could not be stored for long periods, and its potency was somewhat variable.

Immunized individuals were sometimes not completely protected against smallpox

and people were reluctant to be vaccinated with material derived from a cow[81].

Long term storage and large-scale vaccine production emerged in the middle of the

20th century, at which time smallpox became practically nonexistent in North

America and Europe [85].

2.3.3 Smallpox Eradication

The success of modern vaccine production led to a proposal in 1958 by the

World Health Organization (WHO) to carry out a global smallpox eradication

program [86].  The majority of remaining smallpox outbreaks was in Sub-Saharan

Africa and India, and two approaches greatly improved the success of the eradication
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program.  Firstly, surveillance and containment protocols were greatly improved, and

a “ring” vaccination approach was adapted to contain outbreaks by rapid diagnosis of

smallpox and vaccination of all contacts of newly diagnosed cases.  Secondly, the use

of the bifurcated needle for administration of the vaccine significantly improved the

“take” rate of vaccine and enabled vaccination to be carried out in regions with

limited resources and a lack of trained medical professionals [87].  The last naturally-

occuring case of smallpox was diagnosed in Somalia in 1977, although a tragic

infection of a laboratory worker in 1978 was the last official case of smallpox.  The

disease was declared eradicated by the WHO in 1980, and this success is due in part

to the fact that humans are the only hosts to this virus [87].  The stunning success of

eradication has led to the suspension of smallpox vaccination of the general public,

and now 80% of the population is estimated to be unvaccinated [88].

2.3.4 Smallpox as a Biological Weapon

The successful eradication of smallpox has left in its wake a continuing debate

over whether or not to destroy the remaining stocks of variola virus.  Presently, the

Center for Disease Control and Prevention (CDC) in Atlanta, GA, and the State

Center for the Virology and Biotechnology in Koltsovo, Russia are the only two

locations presently believed to be holding these stocks.  Unfortunately, since the

Bacillus anthracis attack of October 2001 in the United States, new concern has

emerged over the nefarious use of biological agents by terrorists.  Smallpox is

considered as a biological weapon because (1) it is easily transmitted from infected to

uninfected individuals via aerosol, (2) the majority of individuals have not been

vaccinated,  (3) smallpox disease has a 30% mortality rate and high morbidity, (4)
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most health care professionals have never seen a case of human smallpox and there

would likely be a delay in initial diagnoses, and (5) no antiviral drugs have been

tested for effectiveness against human smallpox [89].  The federal law called Project

Bioshield was signed into law in July 2004 and facilitates the development of new

strategies for protection against chemical, biological, radiological and nuclear attacks.

One aim of Project Bioshield is the development of a safer second-generation

smallpox vaccine—further evidence that smallpox may effectively be gone but not

forgotten [90].

2.4 Orthopoxvirus Pathogenesis

2.4.1 The Two Forms of Infectious Virus and Their Role in Disease

As described earlier, two infectious forms of virus are formed during poxvirus

infection, the IMV and EV.  The discovery of these two forms was crucial to

understanding the pathogenesis of poxvirus-induced infections.   The different forms

of virus were first defined by EM studies, but a series of animal studies demonstrated

that antigenically distinct responses were generated against IMV and EV.  Boulter,

Appleyard and co-workers showed that rabbits were better protected against

rabbitpox, another orthopoxvirus, after immunization with live VACV as compared to

inactivated VACV [91-93].  Inactivated virus was produced from purified IMV, and

induced an IMV-specific immune response.  High levels of IMV-neutralizing

antibodies were detected in antisera from inactivated virus immunization, but this

antisera was unable to inhibit the formation of ‘comet-shaped’ plaques in cell

monolayers that were formed by the release of EV.  On the other hand, live virus

vaccination resulted in an infection, and an immune response to both IMV and EV.
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Antisera from live virus vaccination were able to neutralize IMV in vitro and inhibit

comet plaque formation. These and similar studies with VACV alone [94, 95]

provided the first evidence that two kinds of infectious particles existed, and immune

responses were different following immunization with inactivated versus live virus

vaccines.  IMV is considered the primary form responsible for the spread between

hosts, and EV is responsible for long range spread within a host.  Payne also provided

evidence from rabbit studies that higher levels of EV were released by certain VACV

isolates, and this was associated with greater spread into the brain of intranasally-

infected mice [96].   More importantly, this study showed for the first time that

passive immunization with antisera raised against the outer EV envelope was

sufficient to protect mice from a lethal VACV challenge.  These studies also put to

rest the likelihood that an inactivated IMV vaccine would be sufficient to replace the

live virus since vaccination did not induce responses against EV.

The initial immunological characterization of two infectious forms of virus

was also followed by biochemical characterization of these particles.  Cesium

chloride density gradient centrifugation of the two particles revealed that each had a

different buoyant density; EV had a buoyant density of 1.23-1.24 g/ml, and IMV were

1.27-1.28 g/ml [93].  These buoyant density measurements agreed with EM studies

showing an additional membrane around the EV [92, 97].  The EV particle was

further characterized  by the presence of a unique complement of polypeptides

including A33 [98], A34 [99], A56 [100], B5 [101, 102], and F13 [103].  The

formation of the IEV precedes the exocytosis and release of the EV during virus

replication, and an additional membrane wraps the IEV as compared to EV.  The IEV
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membrane also contains two additional polypeptides, A36 and F12, and these proteins

are involved in IEV movement towards the plasma membrane via microtubles, and, in

the case of A36R, the formation of actin tails associated with CEV[104, 105].     None

of the EV or IEV proteins are essential for virus replication, and viruses lacking any

of these genes, excluding A56, show a similar phenotype.  These deletion mutants all

produce wild type levels of IMV and form small plaques.  Curiously, viruses with

deletions of A33 [106], A34 [107] or one of the short consensus repeats (SCR) in B5

[108-110] produced much higher levels of EV, and mice challenged with viruses

containing deletions of A34, A36, B5, F12, F13, or B5 SCRs showed attenuated

disease and reduced pathogenicity, in spite of the level of EV production [111].  EV

produced by these deletion mutants may have abnormal outer envelopes that reduce

the spread or penetration of virus in vivo.  Another reason for attenuation is that some

of these mutants produce higher levels of EEV and reduced levels of CEV may be

attenuated because of reduced cell-to-cell spread of virus by CEV.  The discovery of

two different forms of infectious virus has been essential to understanding the

pathogenesis of poxvirus disease in animal models and is central to the development

of alternative smallpox vaccines.

2.4.2 Primary Infection of Humans with Variola Virus

An understanding of primary smallpox infection in humans is necessary for

the development and use of appropriate animal models. Transmission of human

smallpox occurs most commonly by inhalation of droplets emitted from the oral or

nasopharyngeal mucosa of infected individuals.  Smallpox can also be acquired from

close contact to and inhalation of scab material, but this route of transmission is less
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efficient [81].  An incubation period of 12 to 14 days (with a range of 7-17 days)

follows during which the infected individual shows no signs of illness and does not

shed any virus.  Influenza-like symptoms follow the incubation period for 2 to 5 days

and include high fever, malaise, and prostration with headache and backache.  The

fever and flu-like symptoms subside, but the characteristic macropapular rash erupts

at this time, in spite of the individual feeling better.  Lesions first appear on the mucus

membranes of the mouth and nose, the face, hands and forearms.  Lesions spread to

the trunk after a few days, and this centrifugal formation of lesions is a key

characteristic of smallpox disease diagnosis. The lesions in the nasal and oral cavities

ulcerate several days after eruption and release large amounts of virus that can be

spread to uninfected individuals by droplets dispersed from coughing or sneezing.

Lesions develop from macules to papules  to vesicles and finally to pustules.  The

pustules eventually scab 8 to 9 days after rash eruption.  Scabs eventually fall off and

the underlying skin heals as a pitted depigmented scar.  Death usually occurs at the

end of the first or the beginning of the second week of illness and is attributed to

massive viremia.  Two main forms of variola virus have been described, variola

major and variola minor.  Variola major has been typically more severe with patients

bed ridden and showing higher fevers, a greater number of lesions, and more severe

prostration and a mortality rate of 30%.  On the other hand, the symptoms of variola

minor are less severe and the mortality rate is around 1%.  Hemorrhagic and

malignant smallpox are two rare forms of disease.  Hemorrhagic smallpox is

characterized by a rash that causes hemorrhage of the mucus membranes and

gastrointestinal tract and is almost always lethal.  Malignant smallpox is defined by
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lesions that do not progress to the papule stage and remain soft and flat and is also

fatal [81, 112].

2.4.3 Ectromelia Virus as a Model for Viral Pathogenesis

Mousepox, also known as ectromelia virus (ECTV), is an orthopoxvirus

whose natural host is the mouse.  ECTV-Hampstead was first discovered in 1930 in a

laboratory mouse colony [113], and new strains were also isolated from later

outbreaks in the United States and Europe, including the recently isolated ECTV

strain Naval and the highly virulent ECTV strain Moscow[114, 115].  ECTV

reservoirs likely exist in wild mouse populations in North America and abroad, as

suggested by the emergence of ECTV Naval in laboratory mice injected with pooled

sera from mice of diverse origin. The disease caused by ECTV in mice is most similar

to VARV in humans, thus ECTV is a powerful tool for understanding the

pathogenesis of orthopoxviruses.  Mice are naturally infected through minute wounds

in the skin from direct contact with infected mice or from contaminated materials

(e.g., bedding), but mice can also be experimentally infected subcutaneously,

intradermally, intranasally, intravenously, intracerebrally or orally [116].  The route

of infection is different from VARV in humans, which enters by respiration of

infectious droplets.  The different entry routes also suggest that primary infection

differs between ECTV and VARV since the immunological landscape differs greatly

between the skin and the upper respiratory tract. Primary ECTV virus replication

occurs in the dermal and epidermal skin layers and virus spreads to and replicates in

nearby draining lymph nodes.  Viral replication in the lymph nodes causes a primary

viremia in the bloodstream, followed by replication in the liver and spleen and a
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secondary viremia that leads to the eventual formation of skin lesions distal from the

site of initial infection [117].   The initial entry of virus into the skin also initiates a

cascade of pro-inflammatory cytokines in response to the wound.  Interestingly,

analysis of histological sections from primary lesions caused by ECTV inoculation

show no evidence of infiltrating inflammatory cells, like macrophages and

neutrophils, in spite of the presence of virus [118].  This is indirect evidence of the

work of viral immunomodulators that are able to quell the typical flood of cytokines

usually associated with infection.  ECTV, as well as the other orthopoxviruses,

expresses proteins that bind cytokines and chemokines, inhibit the complement

cascade, and block apoptosis [118].

ECTV has also been used to characterize the immune responses associated

with orthopoxvirus infection in a natural host.  Indeed, this is one of the best models

for understanding the immune responses to VARV since ECTV has coevolved with

its host much like VARV in humans.  Immunological studies of ECTV infection have

also benefited from the use of inbred mouse strains that are resistant (C57BL/6,

AKR/J) or are susceptible (BALB/c, A/J, DBA/2) to infection [119]. Interferon-α/β

and interferon-γ are required for clearance of a primary ECTV infection, and the

activation of phagocytic monocytes, CD8+ cytotoxic T cells (TCD8+), and NK cells is

essential to controlling viral infection [120-124].   A recent study illustrated that

resistant mice (C57BL/6) generate a T-helper cell type 1-polarized cytokine response,

including the upregulation of IFN-γ, TNF, and IL-2, followed by a strong TCD8+

response and effective clearance of the virus.  Alternatively, susceptible mice (A/J

and BALB/c) generate a T-helper cell type 2-polarized response, showing an increase
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in IL-4 levels, but little IFN-γ and IL-2.  These mice have a weak TCD8+ response,

high levels of virus replication, and succumb to infection [125].   This study is the

first to show the profoundly different responses to orthopoxvirus infection in

correlation to the type of T-helper cell response.

A study using CD40 knockout mice proposed that antibody and cell-mediated

mechanisms are complementary to the successful clearance of ECTV infection [126] .

These mice were initially able to limit virus replication, and they also had sustained

ECTV-specific TCD8+ cell responses [127].  In spite of a strong cell-mediated immune

(CMI) response, mice eventually succumbed to mousepox. This result was most

likely caused by the absence of a strong antibody response, thus hindered by a lack of

TCD4+ cell costimulation mediated by the interaction of CD154 and CD40.

The critical parameters for protection against a secondary response to ECTV

were defined in a study that showed profound differences as compared to protection

against a primary infection [128].   Neither interferons nor TCD8+ are required for

protection against a secondary challenge, but a potent antibody response is most

important for control of infection. These findings contribute to the determination of

the optimal immune responses needed for both early infection and long-term

clearance of virus, and are essential to the design of an appropriate next-generation

smallpox vaccine. The study of ECTV in mice has revolutionized our understanding

of poxvirus immunology, but many immunological studies have also been conducted

in mice with vaccinia virus.
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2.4.4 Vaccinia Virus as a Model for Viral Pathogenesis

Edward Jenner used VACV in place of cowpox virus to inoculate humans

against smallpox soon after the publication of his monograph on vaccination [84].

The earliest reports of complications caused by vaccination were from humans with

congenital immunological defects that were immunized with VACV.  These

observations were the basis of our understanding of the immune response to

poxviruses.   Boulter observed that VACV immunization caused high morbidity or

mortality in individuals with defects in both the CMI and humoral responses [91].

Individuals with a defect in the CMI response alone that generated a measurable

antibody response developed a less severe disease. Progressive vaccinia is an example

of an inappropriate side effect to vaccination in humans with defective CMI responses

and is characterized by uncontrolled spread of the primary lesion, rapid onset of

primary viremia, formation of similar secondary lesions and death [129]. These

observations suggested that both arms of the adaptive immune response are needed

for optimal control of infection, but the presence of anti-VACV antibodies lessened

the severity of disease.

Many studies have been carried out in inbred mice with VACV to understand

the nature of the immune response to both primary infection and virus challenge

following immunization.  Recent work by Xu and co-workers supports evidence for

the importance of the humoral response [130].   Their studies used both Ab-mediated

depletion of cell subsets and knockout mice to determine the essential elements for

protection against an acute infection.  They concluded that in the presence of a good

humoral response, TCD8+ cells contribute little to virus clearance.    They also showed
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that TCD8+ cells control infection in the absence of an effective antibody response.

Several recent studies have defined the essential immune response elements required

for protection following immunization with both live virus vaccine and replication

deficient strains of vaccinia virus (Modified vaccinia Ankara (MVA) and NYVAC).

Belyakov and co-workers showed that antibody-mediated protection was most

important following immunization with the live or replication deficient virus upon a

lethal challenge [131].  Immunized mice that were B-cell deficient were not well

protected from virus challenge, although mice depleted of TCD4+ or TCD8+ cells were

better able to control infection. Infection was not restricted in unimmunized mice

depleted of both TCD4+ and TCD8+ cells, but was better controlled in mice when either

of these cell subsets was depleted prior to challenge.  The strategies used to study the

immune response in this study differed from those used by Xu and co-workers, with

respect to methods by which to exclude immune cell subsets (e.g., immunization

route, knockout mice, antibody-mediated depletion, and adoptive transfer), but both

of these studies concluded that antibody-mediated protection is the most important

arm of the adaptive immune response for control of acute infection and long-term

protection.  Another study with an array of MVA-immunized knockout mice showed

that B-cell-deficient and β2-microglobulin-deficient mice were well protected from a

stringent virus challenge [132].  Protection was reduced in either TCD4+ cell or MHC

class II knockout mice and even more so in MHC class I and class II double knockout

mice. These results indicate that TCD4+ cells and MHC II are pivotal for the activation

of an optimal adaptive immune response that includes both cell-mediated and

humoral arms.  As described above, TCD4+ cell depletion immediately prior to
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challenge does not reduce protection [131], but CD4 knockout mice are not protected

[132].  This discrepancy can be accounted for by central role of TCD4+ cells in

generating the primary B cell and TCD8+ cell responses rather than the effector

function of TCD4+ cells towards infected cells.  Recently, TCD4+ cells have been shown

to be fundamental for promotion of an appropriate memory TCD8+ cell response [133].

A study in human smallpox vaccinees supports the role of TCD4+ cells such that

individuals with detectable VACV-specific TCD4+ cells (observed many years after

primary vaccination) showed rapid and robust expansion of TCD4+  and TCD8+ cells

after a second vaccination [134].

TCD4+ cell-dependent antibody responses are of great importance for control of

primary and secondary poxvirus infections, but studies with both ECTV and VACV

also define a role for TCD8+ cells for effective virus clearance.  To this end, human and

murine TCD8+ cell peptide determinants have recently been defined [135-139].  A

study carried out by Tscharke and co-workers showed that the hierarchy of TCD8+ cell

responses to 5 different peptide determinants varied based on the route of infection

and the virus strain, but the majority of stimulated T cells were specific to the

immunodominant determinant (IDD) from the B8 gene of VACV [139].  These

peptide determinants were conserved among orthopoxviruses, but the B8 peptide was

conserved in a fragment of a gene in MVA, suggesting that methods used for

discovery of immunogenic peptides within ORFs may overlook other determinants.

Interestingly, mice immunized with the B8 peptide were partially protected from

ECTV, thus the IDD is not only cross-reactive, but also cross-protective.  This

discovery of a diverse array of peptide determinants restricted to MHC class I
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molecules reveals the diverse TCD8+ cell responses generated within a population and

indicates that attenuated vaccine strains with deletions in a number of ORFs may be

less effective at inducing a protective TCD8+ response.

2.4.5 The Complement Cascade and its Role During VACV Infection

The complement system is collection of over 30 proteins that participate in

both innate and antibody-mediated mechanisms targeting infected cells, bacteria and

viruses.  Complement was first characterized many years ago as a heat-labile fraction

in plasma that promoted antibody-mediated killing of bacteria [140].  Complement is

also a part of the innate immune response and does not require antibody for this

activity.   Complement proteins participate in opsonization, which aids in

phagocytosis of bacteria or infected cells, neutralization of virus particles, stimulation

of the inflammatory response, and clearance of antigen-antibody complexes.

Activation of complement occurs through a “triggered-enzyme cascade” in which a

pro-enzyme or zymogen proteolytically cleaves itself and then cleaves its substrate.

Many of the complement proteins are found in the blood and tissues but do not cause

inflammation until specifically activated by self-cleavage in the presence of antibody

or bacteria.  An advantage of a triggered-enzyme cascade is that relatively few

molecules are involved in initiating the cascade, but a huge effector response is

generated.

Three different pathways can initiate complement activation, and these

pathways eventually converge to form an effector complex.  The classical

complement pathway involves both the innate and adaptive immune responses and is

initiated by direct binding of C1q to the cell surface or to antigen-antibody complexes
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and subsequent formation of the C1qr2s2 complement protein complex.  The

alternative pathway is part of the innate immune response and typically targets

bacteria.  Spontaneously cleaved C3 protein binds to the surface of cell membranes or

bacteria to initiate the alternative pathway, although further damage to host cells is

blocked by complement regulatory proteins.  The mannan-binding lectin pathway is

the third route of complement initiation and is activated by the serum protein

complex, mannan-binding lectin, binding to mannose residues from carbohydrates on

the surface of bacteria or viruses.  A series of complement proteins are cleaved in

each pathway that all lead to deposition of proteins in the target membrane.  These

proteins form the membrane attack complex (MAC) and are comprised of the C5b,

C6, C7, C8 and C9.  Initially, C5b, C6 and C7 come together as a hydrophobic

complex that binds to the membrane and a small pore is formed by C8 interacting

with this complex.  C9 interacts with the C5b678 complex and expands the pore, thus

allowing it to function as an ionic channel that destroys the cell or bacteria by osmotic

lysis [141].

The lysis mechanism described above has typically been observed in infected

cells or bacteria, but the mechanism of complement-mediated lysis of viral particles

may be different.  Lesions on the viral membrane of avian infectious bronchitis virus

were observed in the presence of complement by electron microscopy [142]. Lysis

mediated by pore formation was hypothesized as the mechanism by which

complement destroyed viral particles, but studies with the pore forming drug nystatin

did not cause lysis of rat leukemia virus [143].  Complement, presumed to be the

MAC, lysed these viral particles and reduced infectivity, and the drug melittin also
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reduced infectivity.  The results of this study suggested that while pore formation was

not required for lysis, complement proteins may cause lysis by destabilizing the viral

membrane.   Human immunodeficiency virus (HIV) is also lysed by complement and

is dependent on the classical pathway and formation of the MAC [144].  Many

studies have been conducted with HIV and complement as well as both HIV-specific

and non-specific antibodies, but the mechanism of lysis and how it relates to

prototypical MAC-driven membrane disruption remains elusive [145, 146].

Complement is a highly effective first line of defense against invading pathogens and

also augments the effectiveness of antibodies.  Viruses have evolved with several

different strategies to elude or quell complement activity.   Orthopoxviruses,

specifically VACV, express a regulator of complement activity called the VACV

complement control protein (VCP) [147, 148].  VCP inhibits both the classical and

alternative pathways by interacting with C4b and C3b, respectively [149].  Deletion

of VCP from VACV attenuates infection in both guinea pig and rabbit models,

suggesting that complement can indeed limit infection [149].   EV particles have also

been described as innately resistant to complement in the absence of EV-specific

antibodies and this has been attributed to the presence of regulators of complement

activity derived from the host cell and present in the EV membrane [150].  The

strategies used by VACV do not completely extinguish complement activity and

leave open the possibility of other complement-dependent mechanisms to inhibit

infection, including those involving antibody.
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2.5  Past, Present and Futures Immunization Strategies Against Smallpox

2.5.1 Dryvax Vaccination of Humans and its Side Effects

The present method for vaccinating humans against smallpox has changed

little since the time of Edward Jenner.  Vaccinia virus is the only approved and

licensed vaccine strain and was successfully administered during the global

eradication of smallpox.  Several different seed strains have been used as sources for

vaccine production, including the Lister strain, which originated in England and was

used by the WHO for its eradication program, and the New York City Board of

Health (Dryvax) strain, which was produced by Wyeth Laboratories and is presently

in use in the United States [81].  VACV designated for vaccine use was grown on the

skin of calves by dermal scarification and the resulting lesions were harvested by

scraping.  The virus was purified from the skin lesions using fluorocarbon and

differential centrifugation and lyophilized for indefinite storage at –20°C [81, 151].

Small amounts of antibiotics were added during vaccine production to reduce the

level of contamination typically associated with virus grown in this manner.  Virus is

reconstituted for inoculation in a diluent comprised of 50% glycerin, and 0.25%

phenol in sterile water [152].  A bifurcated needle is dipped into the reconstituted

inoculum and holds approximately 0.0025ml (equal to 2.5 x 105 pfu), and the vaccine

is administered percutaneously on the arm over the insertion of the deltoid muscle by

a rapid multiple-puncture technique.  A “robust take” is defined as formation of a

papule 2 to 5 days after vaccination, which progresses to a vesicle and then an

umbilicated, indurated pustule and accompanied by an area of erythema 8 to 12 days

post vaccination.  Regional lymphadenopathy, fever, and malaise typically manifest
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at this point and subside as the pustule forms a scab [152].  A single dose of smallpox

vaccine is sufficient for vaccination of the general population, although it is

recommended that laboratory workers who are regularly exposed to orthopoxviruses

be revaccinated every ten years. As described earlier, several adverse reactions are

associated with this live vaccine and a growing segment of the population is

contraindicated for vaccination because of health conditions including eczema, a

diagnosed heart condition, or immunocomprised status from HIV infection, organ

transplantation, or cancer treatment [153].  The recent smallpox vaccine campaign in

2002 and 2003 targeting health care workers was largely unsuccessful because of

individuals fearing unforeseen side effects and adverse reactions caused by

vaccination against a disease that exists only as a threat [154].  The federal

government has set aside funding for the research and development of safer smallpox

vaccines, in part, due to the failure of this vaccine campaign.

2.5.2 Attenuated Poxviruses as Vaccines

A need for safer smallpox vaccines has been apparent since the global

eradication effort in the 1960’s.  Serial passage of VACV was used as a strategy to

make attenuated strains for vaccines.  One such strain is modified vaccinia Ankara

(MVA) that was attenuated by >570 passages in chick embryo fibroblasts.  The

genome of MVA is 15% smaller than its parental strain and has several deletions in

genes required for host range and evasion of the host immune response [155-157].  Its

replication is markedly diminished or inhibited in most mammalian cell lines, which

is due to a blockage late in virus assembly caused by several different deletions or

mutations [158-160].  Nonetheless, MVA has been tested in animal models, including
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immune-suppressed non-human primates [161, 162], as well as in humans without

causing any adverse effects [163, 164].  MVA was intended for use as an attenuated

smallpox vaccine in non-endemic regions and was used to vaccinate >100,000

individuals in Germany and Turkey, but its efficacy was never tested during a

smallpox outbreak [164].

Interest has re-emerged in MVA as a smallpox vaccine in light of concern

over the use of smallpox as a biological weapon [165].    The development of new

vaccines is hampered by the fact that they cannot be field-tested against smallpox.

Therefore, the FDA has put forth a policy to approve new vaccines and antiviral

drugs against smallpox based on animal efficacy studies [166].  In light of this policy,

murine and primate models have recently been employed to better understand

immune responses to MVA and to compare MVA with Dryvax.  A mouse study by

Wyatt and co-workers showed a dose-dependent response to MVA vaccination with

respect to induction of TCD8+ cell and antibody responses [132].  Mice immunized

with a single dose of MVA were protected equally as well as mice immunized with

Dryvax following a lethal respiratory challenge.  Studies in non-human primates have

also shown significant protection against lethal intravenous or respiratory monkeypox

challenge following immunization with two doses of MVA [167, 168].   These results

lend support to the use of MVA as an alternative vaccine in immunocompromised

individuals.  MVA could also be administered as a primary vaccine to be followed by

Dryvax in order to reduce the side effects of Dryvax vaccination in otherwise healthy

individuals.
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2.5.3 DNA and Protein Subunit Vaccines

An important goal in the development of a new vaccine is to create a product

that is efficacious and safe.  The next generation smallpox vaccines must be as

effective as Dryvax but with fewer negative side effects, and one strategy is the

development of a subunit vaccine.  Subunit vaccines are comprised of immunogenic

components of the pathogen, such that immunization generates an appropriate and

lasting immunological response should the host be infected.  Subunit vaccines are

comprised of recombinant DNA or proteins, and multiple antigens can be combined

for induction of a broad immune response.  Characterization of the immune responses

that are protective against orthopoxvirus infection has been described above.  Optimal

protection against disease is associated with immune responses against both types of

infectious particles, the IMV and EV.  This knowledge has led to the design of

subunit vaccines targeting responses to these particles. Selection of appropriate

immunogens has been in part driven by the discovery of the targets of neutralizing

antibodies.  In vitro detection of IMV-neutralizing antibodies is straightforward, but

the delicate nature of the outer EV envelope has made in vitro EV neutralization

assays less reliable [169-171].  Several individual recombinant proteins have been

tested as immunogens, including the IMV protein A27, which is a known target of

neutralizing antibodies and was shown to protect mice from a lethal intraperitoneal

vaccinia virus challenge [172, 173].  The immune responses to recombinant EV

proteins was investigated by Galmiche and co-workers, and they observed that mice

immunized with B5 produced antisera that neutralized EV in vitro, and these mice

were protected against a lethal respiratory challenge with vaccinia virus [174].
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Surprisingly, mice immunized with A33, another EV protein, were protected against a

lethal challenge but did not have any detectable EV-neutralizing antibodies detected

by in vitro assay (refer to page 40 for additional information).

Hooper and co-workers studied the immunogenicity of and protection induced

by a multi-subunit DNA vaccine in both mouse and monkey lethal challenge models

[175-177].  They included the IMV genes A27 and L1, both known targets of

neutralizing antibodies [172, 178, 179], and the EV proteins A33 and B5.  Mice and

monkeys immunized with all four genes generated specific antibodies to these targets.

Antisera from immunized animals was also able neutralize IMV, presumably

targeting both A27 and L1.  Anti-EV antibodies were also detected in vitro by the

comet reduction assay, as shown by a reduction in the formation of satellite plaques

in infected cell monolayers.  Mice and monkeys were best protected when immunized

with both IMV and EV genes, and diminished protection was observed in animals

given IMV or EV genes alone.

2.5.4 Vaccinia Immune Globulin and Passive Antibody Therapy

Vaccinia immune globulin (VIG) was developed as a therapeutic drug nearly

60 years ago for the treatment of adverse reactions from vaccination or the early

stages of smallpox.  Dr. Henry Kempe was the first to suggest the use of VIG, upon

observation that vaccinated infants with poor “takes” had high levels of circulating

maternal antibodies [180].  Kempe’s efforts to develop VIG for the treatment of

individuals with complications following vaccination was based on the belief that

these problems were related to a deficient or absent IgG response.  Unfortunately, the

early use of VIG was not through a placebo-control clinical trial, but a retrospective
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review of the clinical efficacy of VIG indicates that it is effective for the reduction of

mortality and morbidity associated with progressive vaccinia and eczema vaccinatum,

which are otherwise lethal complications [181].  Presently, indications for VIG

therapy include, abberant infections caused by VACV, including inoculation of the

eye or mouth, eczema vaccinatum, progressive vaccinia, severe generalized vaccinia,

and VACV infections in individuals with pre-existing skin lesions (due to burns,

eczema, impetigo, poison ivy or varicella-zoster virus) [182].

VIG has also been recommended as a therapy for smallpox infection and as a

prophylactic treatment of contacts of smallpox-infected individuals.  These

recommendations are based on both anecdotal evidence showing reduced severity of

disease in infected individuals and accelerated responses in vaccines following

coadministration of VIG [183].  The potential value of VIG as a therapeutic drug in

light of a biological attack or as a tool for managing complications caused by

vaccination has lead to the renewed production of this product as an intravenous

preparation [184].

Regrettably, VIG is derived from the serum of vaccinated humans and the

production and use of large quantities of this human-derived blood product is both

difficult and inherently risky.  As a result, alternative VIG products are being

developed that include antibodies targeting specific antigens of the IMV and EV.

Several groups have studied the specificity of antibodies to VACV in VIG and have

defined the both IMV and EV antigens [185, 186].  Alternatively, passive transfer

studies have shown partial protection of mice with antibodies or antisera against the

IMV proteins A27 or H3 [28, 173] and EV proteins A33 and B5 [174, 187].
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Chimeric chimpanzee/human mAbs against B5 have also been able to protect mice

against a lethal respiratory challenge [188].  A defined VIG product comprised of

MAbs will be a nearly unlimited source of product that will hopefully be both safer

and equivalently therapeutic as the present VIG.
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Chapter 3

 Protective Vaccination of Mice with Recombinant Outer Membrane

Proteins from the Extracellular and Intracellular Forms of Vaccinia

Virus

3.1 Introduction

Growing interest surrounds the development of an alternative smallpox

vaccine in light of concern over the use of smallpox as a biological weapon.   The

licensed live vaccinia virus vaccine provided sufficient protection against variola

virus, the causative agent of smallpox, and was successfully used to eradicate this

disease [87].  The use of this vaccine has been met with some resistance during the

recent vaccine campaign in 2002-2003 because of the considerable range of side

effects associated with vaccination at a time of smallpox existing only as a threat

rather than an epidemic [154].  A well-accepted alternative vaccine would be able to

provide sufficient immunity without the adverse events associated with live virus

vaccination, including generalized vaccinia, progressive vaccinia, eczema

vaccinatum, encephalitis, or heart attack [189].  The absence of endemic smallpox

makes it difficult to field test a new vaccine, but the expanding body of knowledge

regarding poxvirus replication and immunology aid in the design of new kinds of

vaccines, including attenuated viruses, recombinant DNA or proteins [167, 174, 177].

Orthopoxvirus replication produces two infectious forms of virus, the IMV

and EV.  The majority of infectious particles produced during infection are IMVs,
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which are highly stable membrane-bound virions found in the cytoplasm and only

released by cell lysis, and are considered responsible for spread between hosts.  EVs

are formed by wrapping of IMVs by a double membrane followed by exocytosis and

fusion of the outermost membrane with the plasma membrane [111].  Thus the EV

particle is an IMV particle enveloped by one additional membrane.   EVs remain cell-

associated and mediate cell-to-cell spread or are released from the cell surface and

disseminate throughout a host [96, 190].

Studies in animal models show that superior protection against a lethal

challenge is associated with immune responses to both IMV and EV.  Live virus

vaccination induces antibody responses against both types of particles and provide

better protection against a challenge compared to inactivated virus vaccination which

only induces anti-IMV immunity [94, 95].  The outstanding protection associated

with immunity to IMV and EV may be due to the fact that these two kinds of particles

have unique outer membranes and may bind to and enter cells by different

mechanisms [191].  IMV entry is mediated through direct fusion of the outer viral

membrane with the plasma membrane [17, 18, 25], and this mechanism is dependant

on a multi-protein complex of integral and peripheral proteins associated with IMV

membrane [20-25].  On the other hand, the outer membrane of EVs is disrupted by

interactions with polyanionic molecules on the plasma membrane surface,

consequently exposing the IMV membrane and enabling IMV-mediated fusion [192].

Orthopoxvirus infection induces antibodies (Abs) capable of in vitro

neutralization, and some of the proteins with neutralizing epitopes have been

identified, including A27, D8, H3, and L1 [28, 172, 178, 179, 193].  Of these



40

proteins, mice immunized with an E.coli-expressed recombinant A27 formed

neutralizing antibodies and were partially protected against a lethal intraperitoneal

challenge [173].  Similarly, a monoclonal antibody against A27 provided passive

protection when administered before or after a lethal challenge [173].  The

identification of EV proteins important for protection has been hindered by the lack

of a reliable in vitro EV-neutralization assay [169, 194, 195].  Interestingly, mice

immunized with recombinant forms of the EV proteins A33 or B5 were protected

from a lethal intranasal challenge, but only antiserum from B5-immunized mice

neutralized EV in vitro [174].  These results suggest that EV-specific antibodies that

are protective in vivo do not necessarily neutralize virus in vitro.  These studies also

demonstrate that recombinant proteins can induce a protective immune response in a

mouse model.  Hooper and co-workers carried out similar studies in mice immunized

with recombinant DNA plasmids encoding the IMV genes A27 and L1 and EV genes

A33 and B5 [175, 176].  IMV-neutralizing antibodies were detected in sera of mice

immunized with plasmids expressing IMV proteins.  Antibodies able to inhibit the

spread of EV in vitro, as measured by the comet inhibition assay, were detected in

mice immunized with A33 and B5.  Most importantly, mice immunized with

plasmids that induced expression of a combination of IMV and EV proteins were

better protected from a lethal challenge than mice immunized with individual

plasmids.  The results of these DNA immunization studies reiterate the importance of

generating immune responses against both EV and IMV, and this observation should

continue to guide the design of future smallpox vaccines.
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We have expressed recombinant forms of two EV proteins, A33 and B5 and

the IMV protein L1 using the baculovirus expression system.   A33 is a 23-38 kDa

type II membrane protein that forms homodimers and also associates with A36R,

another EV-associated membrane protein [196-198].  A33 is expressed at both early

and late times during infection and includes several post-translational modifications,

including N- and O-linked glycosylation [196, 197], phosphorylation of serine and

threonine residues [198] and acylation [196, 199].  A33 is not required for virus

replication, as shown by construction of an A33 deletion mutant virus that formed

infectious IMV and EV, but showed a small plaque phenotype in tissue culture,

indicative of a role for A33 in cell-to-cell spread [200].

B5 is another non-essential EV protein expressed at early and late times and is

expressed as a 42 kDa membrane-bound monomer with a type I topology or as a 35

kDa secreted protein [201-203].  A deletion mutant virus lacking B5 forms small

plaques in tissue culture, and produces significantly less EV, unlike the A33 deletion

mutant [203-206].  The B5 deletion mutant is significantly attenuated in vivo based on

studies with intranasally-infected mice [205]. B5 also has several post-translational

modifications, including N-glycosylation [196, 201, 202] and acylation [196, 199]

and associates with the EV protein F13L during IMV wrapping [196], and with A33

and A34R to mediate extracellular release of cell-associated EV [198].  Interestingly,

B5 contains four domains with sequence similarity to the short consensus repeats

(SCRs) of complement control proteins [201].

L1 is a myristylated IMV protein expressed late in infection [178, 207-209].

L1 is an essential viral protein and is required for virion morphogenesis [210].  L1 has
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three disulfide bonds that are formed in the cytoplasm of infected cells by a virally

expressed redox system [73].  L1 is the target of neutralizing antibodies, and as such,

it has been suggested that it may be involved in binding to target cells, although it has

not been found in the multiprotein fusion complex [25, 178, 179].

The study described in this chapter investigates the protective immunity

induced by immunization of mice with recombinant forms of A33, B5, and L1.  The

goals of this study include characterization of the antibody responses following

immunization and determination of the protection provided by immunization with

these proteins individually or in various combinations.  The hypothesis guiding the

design of this study is that immunization with proteins of both the IMV and EV

provides superior protection from a lethal challenge than immunization with solely

IMV or EV proteins.  This study has been previously described in reference 222.

3.2 Materials and Methods

3.2.1 Cells and Viruses

BS-C-1 (ATCC CCL-26) monolayer cells were maintained in Earle’s

modified Eagle medium (EMEM) (Quality Biologicals, Gaithersburg, MD)

supplemented with 10% heat-inactivated fetal bovine serum (Hyclone, Logan, UT),

2 mM L-glutamine (Invitrogen, Carlsbad, CA), 10 U/ml penicillin (Invitrogen), and

10 µg/ml streptomycin (Invitrogen) at 37°C and 5% CO2.  HeLa S3 (ATCC CCL-2.2)

were maintained in suspension at 37°C in modified Eagle medium for spinner cells

(Quality Biologicals) supplemented with 5% heat-inactivated equine serum

(Hyclone), 2 mM L-glutamine, 10 U/ml penicillin and 10 µg/ml streptomycin.  Serum
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was heat-inactivated by incubation at 56°C for 30 minutes to destroy complement

activity.

The vaccinia virus (VACV) strains used were Western Reserve (VACV-WR)

(ATCC VR-1354), International Health Department-J (IHD-J) (from S. Dales,

Rockefeller University), recombinant VV-WR-NP-SIINFEKL-EGFP [211, 212], and

Wyeth smallpox vaccine seed (Wyeth Ayerst Laboratories, Marietta, PA).  Viral

stocks were grown in HeLa S3 suspension cells and purified by sucrose gradient

centrifugation [213].  Viral titers were determined by plaque assay in confluent

BS-C-1 monolayers grown in six-well cluster plates. Briefly, 10-fold serial dilutions

of viral stocks were prepared in EMEM supplemented with 2.5% heat-inactivated

fetal bovine serum, L-glutamine, penicillin, and streptomycin (infection medium).

Cells were washed with infection medium, overlayed with 0.5 ml of serially-diluted

virus inoculum and incubated for two hours at 37°C and 5% CO2, after which virus

inoculum was removed and cells were washed once again.  Cells were overlayed with

semi-solid medium (EMEM with 0.5% methylcellulose) and incubated for 48 hours,

and resultant plaques were visualized by staining monolayers with a solution of 0.1%

crystal violet (w/v) and 20% ethanol in deionized water.

3.2.2 Recombinant Proteins

Recombinant proteins were prepared by collaborators in the laboratory Drs.

Gary Cohen and Roselyn Eisenberg at the University of Pennsylvania, Philadelphia,

PA. Recombinant forms of A33, B5, and L1 were expressed using recombinant

baculoviruses as described by Aldaz-Carroll et al [214].  Secreted and soluble forms

of each protein were made by polymerase chain reaction (PCR) amplification of each
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ORF excluding their predicted transmembrane domains.  Each PCR product was

cloned into a baculovirus transfer vector (pVT-Bac) to allow for recombination into

the baculovirus genome at the polyhedrin locus.  Cloned PCR products were inserted

in frame into pVT-Bac downstream from the mellitin signal sequence in order to

target recombinant proteins into the secretory pathway of baculovirus-infected insect

cells.  A six-histidine residue tag was included at the NH2-terminus of B5 and the

COOH-termini of A33 and L1 for purification of secreted protein by nickel-

nitrilotriacetic acid affinity chromatography.  Protein concentrations were measured

with the bichinchoninic acid assay (BCA, Pierce, Rockford, IL) using bovine serum

albumin as a standard.  These recombinant proteins were used for both immunization

and enzyme-linked immunosorbant assays.

3.2.3 SDS-PAGE and Western Blot Analysis

Protein purity was determined by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE).  Protein samples were diluted in NuPage LDS sample

buffer (Invitrogen) and heated for 10 minutes at 70°C.  Samples were resolved by

electrophoresis through 12% NuPage gel with 3-(N-morpholino)propanesulfonic acid,

4-morpholinepropanesulfonic acid running buffer (Invitrogen).  Proteins were

visualized directly in gels fixed with 50% methanol and 10% acetic acid in deionized

water and stained with GelCode Blue (Pierce), a colloidal Coomassie stain.  Western

blotting was carried out by transferring proteins to NitroPure supported nitrocellulose

(Osmonics, Westborough, MA) followed by overnight blocking at 4°C with 10%

milk in tris-buffered saline with 0.1% Tween-20 (TBST).  Membranes were probed

with specific monoclonal or polyclonal primary antibodies against A33, B5 or L1 for
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1 hour at room temperature (RT).  Membranes were washed with TBST and probed

with secondary horseradish peroxidase-conjugated (HRP) anti-rabbit (polyclonal

Abs), anti-mouse (against A33 and L1 MAbs) (Amersham Biosciences) or anti-rat

(against B5 MAb) (Jackson Laboratories) for 1 hour at RT.  Following several washes

with TBST, bands were visualized by chemiluminescence (Pierce).

3.2.4 PNGase F Treatment of Recombinant Proteins

Protein samples were denatured and reduced with 0.5% SDS and 1% β-ME,

respectively, at 100°C for 10 minutes.  Samples were then diluted in 50 mM sodium

phosphate pH 7.5 and 1% NP-40 in the absence or presence of 1500 units of PNGase

F (New England Biolabs, Beverly, MA) and incubated for 1 hour at 37°C.  Samples

were analyzed by SDS-PAGE and western blotting with an anti-tetra-His antibody

(Qiagen). Anti-mouse-HRP was used as a secondary antibody followed by

visualization with chemiluminescence.

3.2.5 Mouse Immunization Protocol

5- to 6-week old female BALB/c mice were purchased from Taconic

(Germantown, NY) and housed at the National Institutes of Health in sterile

microisolators.  Recombinant proteins were diluted in a stable emulsion of phosphate

buffered saline (PBS) with a Ribi adjuvant system comprised of monophosphoryl-

lipid A and trehalose dicorynomycolate (MPL+TDM; Sigma-Aldrich, St. Louis,

MO).  Alternatively, proteins were diluted in PBS with the saponin adjuvant QS-21

(Antigenics, Inc., New York, NY).  Proteins were diluted such that mice were

immunized 10 µg of each protein in a total injection volume of 0.1 ml.  MPL+TDM
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adjuvant was freshly prepared prior to each immunization according to

manufacturer’s instructions.  QS-21 aliquots (2 mg/ml in sterile water) were thawed

from storage at -20°C and were diluted to a final injection concentration of 15 µg in

0.1 ml.  Protein immunizations were administered subcutaneously at the nape of the

neck with a 25-gauge hypodermic needle.  Purified VACV strain Wyeth was used for

live virus vaccination by tail scarification.  Aliquots of purified Wyeth diluted to 109

plaque forming units (pfu) in PBS were thawed from storage at -80°C and briefly

sonicated to disrupt virus aggregates.  10 µl of virus was pipetted at the base of the

tail and introduced into the skin by a series of 25-30 scratches with a 25-gauge needle

at the site of the inoculum.  Pustules or scabs were observed at the site of inoculation

3 to 4 days after scarification and this was characterized as a “robust response.”   Tail

vein bleeds were performed one day prior to each immunization and serum was

separated from clotted blood samples following centrifugation.  Serum pools were

prepared from groups of mice immunized with like immunogens and these samples

were heat-inactivated at 56°C for 30 minutes.

3.2.6 Vaccinia Virus-Infected Cell Lysates

An infected cell lysate was prepared for use in antibody binding assays.  HeLa

S3 cell monolayers were prepared in T-150 flasks and infected with VACV-WR at a

multiplicity of 2.  Infected cells were harvested 72 hours post infection and pelleted at

208 x g for 5 minutes.  Cell pellets were resuspended in 10 mM Tris-HCl pH 8.0,

homogenized with a Dounce homogenizer and centrifuged for 5 minutes at 208 x g to

remove nuclei.  Supernatants were decanted and pelleted by high-speed centrifugation
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at 112,845 x g for 30 minutes.  Lysate pellets were resuspended in 10 mM Tris-HCl

pH 8.0, aliquoted and stored at -80°C.

3.2.7 Enzyme-Linked Immunosorbent Assay (ELISA)

ELISAs were used to measure antibody binding to VACV and recombinant protein

antigens.  96-well round bottom polystyrene cluster plates (Corning, Inc., Acton, MA)

were coated with 0.1 ml/well of recombinant protein antigens diluted in PBS by

overnight incubation at 4°C.  Optimal concentrations of A33, B5, and L1 were

determined to be 90 ng, 100 ng and 40 ng per well, respectively. VACV-infected cell

lysate was diluted 1:500 in Universal Coating Buffer (Immunochemistry

Technologies, Bloomington, MN) for coating plates with 0.1 ml/well overnight at

37°C.  VACV-infected cell lysate-coated plates were fixed for 10 minutes at RT with

2% paraformaldehyde in PBS following overnight incubation, after which both lysate

and protein coated plates were washed in a solution of 27 g NaCl and 3 ml Tween-20

in 60 ml of deionized water (ELISA wash).  Plates were incubated with 0.2 ml/well

blocking buffer (5% nonfat dry milk with 0.2% Tween-20 in PBS) for 1 hour at 37°C

followed by washing with ELISA wash.  Serial twofold dilutions of mouse sera were

made in duplicate in plates using blocking buffer as a diluent, followed by incubation

at 37°C for 1 hour.  Plates were washed and mouse antibodies were detected by

addition of 0.1 ml/well of HRP-conjugated anti-mouse IgG (γ-chain) (Roche

Diagnostics GmbH, Mannheim, Germany) diluted 1:5000 in PBS/0.2% Tween-20

and incubation for 1 hour at 37°C.  Isotype-specific ELISAs were carried out with

HRP-conjugated anti-mouse IgG1 or IgG2a secondary antibodies (BD Pharmingen,

San Diego, CA) diluted 1:1000 in PBS/0.2% Tween-20.  Plates were washed again
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and incubated with 0.1 mL/well of a ready-to-use solution of 3,3’, 5,5’-

tetramethylbenzidine (BM Blue, POD substrate; Roche) for 30 minutes at RT.  A

Spectra MAX Plus plate reader (Molecular Devices, Sunnyvale, CA) was used to

measure absorbance at A370 and A492, and endpoint titers were determined to be the

serum dilution with an absorbance value more than two standard deviations greater

than absorbance measured in wells with no mouse sera.

3.2.8 IMV Neutralization and Comet Reduction Assays

IMV neutralization was determined using a flow cytometry-based assay

described in detail elsewhere [215].  Briefly, twofold serial dilutions of mouse sera

were made a 96-well cluster plate in MEM spinner/2% FBS and mixed with a

recombinant vaccinia virus expressing green fluorescent protein (VV-WR-NP-

SIINFEKL-EGFP) and incubated for 1 hour at 37°C.  HeLa S3 suspension cells were

then added to the antibody-virus mixture in the presence of cytosine arabinoside (to

inhibit virus replication) and cells were incubated 16 to 18 hours at 37°C.  Single

color flow cytometery was used to determine the percentage of infected cells in the

absence and presence of serially diluted mouse sera, and the 50% inhibitory

concentration for each sera sample was calculated from these measurements.

The comet reduction assay was used to observe reduction of the size and

shape of comet-shaped plaques in the presence of EV-specific antibodies.  BS-C-1

cells were grown to confluency in 12-well cluster plates (Corning) and were infected

for 2 hours at at 37°C with 40 plaques/well of VACV strain IHD-J diluted in infection

medium.  The virus inoculum was subsequently removed and cells were washed with

infection medium and treated with mouse sera diluted to different concentrations in
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the same medium.  The plates were incubated for 48 hours at 37°C and stained with

crystal violet.

3.2.9 Intranasal Vaccinia Virus Challenge of Mice

 An aliquot of purified VACV-WR was thawed and sonicated immediately

prior to challenge.  The virus was diluted in sterile PBS to a final challenge

concentration of 106 pfu or 2x107 pfu per 20 µl.  These virus doses correspond to 5

and 100 times the 50% lethal dose (LD50), respectively in mice of a similar age.  Mice

were sedated with inhaled isoflurane and inoculated intranasally with 20 µl of virus

(approximately 10 µl/nostril).  Daily weights were measured as weight loss is an

indirect sign of vaccinia-induced disease and mice were euthanized if their weight

loss was greater than 30% of their initial weight.  Mice were bled from the tail vein

one day prior to challenge for serological analysis.  All mouse experiments were

carried out in accordance to protocols approved by the Animal Care and Use

Committee (ACUC) of the National Institute of Allergy and Infectious Diseases,

National Institutes of Health, Bethesda, MD.

3.2.10 Statistical analysis

The StatView statistical software package (SAS Institute, Inc., Cary, NC) was

used for analysis of mouse weight data.  Multiple pairwise comparisons were made to

determine the effect of different kinds of immunizations on weight loss following

virus challenge using analysis of variance (ANOVA). ANOVA showed that some

differences between groups were significant, thus a post hoc test, The Fisher’s
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protected least significance difference test, was used to quantitate the differences

between groups.  Significance levels were set at a p-value of 0.05.

3.3  Results

3.3.1 Biochemical Analysis of Recombinant Vaccinia Virus Proteins

Recombinant forms of the VACV EV proteins A33 and B5 and the IMV

protein L1 were expressed as secreted, polyhistidine-tagged forms in insect cells

infected with recombinant baculoviruses.  These proteins were purified from

supernatants by nickel-nitrilotriacetic acid affinity chromatography.  This work was

carried out by collaborators in the laboratory of Drs. Gary Cohen and Roselyn

Eisenberg at the University of Pennsylvania, Philadelphia, PA. The recombinant

proteins were truncated compared to their viral counterparts because transmembrane

domains were excluded to permit secretion from insect cells.  A melittin signal

sequence was also included to target proteins to the secretory pathway of infected

insect cells. SDS-PAGE and Coomassie staining was used to assess the purity of each

batch of protein as shown in figure 3-1.  The mobility of recombinant A33 was 16

kDa for the monomer and 32 kDa for the dimer, 34 kDa for B5 and 22 kDa for L1.

B5 and L1 samples also had faint bands that were larger than the primary band.  B5-

and L1-specific antibodies did not recognize these bands by western blot analysis,

suggesting that these bands may be minor contaminants that co-purified with these

proteins. Western blot analysis of recombinant proteins (figure 3-2) confirmed the

identity of the non-reduced proteins shown in figure 3-1. The anti-A33 and anti-L1

mAbs in figure 3-2A recognize only native forms of the viral proteins, therefore
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recognition of recombinant proteins by these mAbs suggested that they were in the

correct structural conformation. Protein samples reduced with β-mercaptoethanol

(β-ME) showed a shift in mobility, as seen in the middle panel of figure 3-2A, and in

all three panels of figure 3-2B.  This mobility shift can be attributed to a change in

tertiary structure caused by disruption of disulfide bonds. Mulitple bands or a single

broad band were observed for each protein, and this may be attributed to co- and post-

translational modifications, such as glycosylation.  Asparagine-linked (N-linked)

glycosylation occurs co-translationally on asparagines residues within the sequence

Asn-X-Ser or Asn-X-Thr during translocation into the endoplasmic reticulum.  The

presence of such a modification can cause a change in mobility.  Treatment of

recombinant proteins with PNGase F glycosidase removes the polysaccharides added

by N-linked glycosylation and figure 3-3 shows the effect of PNGase F treatment on

recombinant A33, B5, and L1. A33 has 2 predicted N-linked glycosylation sites, and

B5 and L1 each have 3, and unsurprisingly, PNGase F treatment resulted in a single,

faster-migrating band for each of these proteins.  Viral EV proteins, including A33

and B5, are normally glycosylated.  On the other hand, IMV proteins, like L1, are

translated and processed in the cytoplasm and disulfide bonds are formed by

poxvirus-encoded thiol oxidoreductase.  IMV proteins do not undergo further

processing in the secretory pathway, but the mobility shift in L1 seen in figure 3-3

suggests that the recombinant form is glycosylated and is  different from viral L1.

Proper folding of recombinant L1 was indicated by recognition with a conformation-

dependant anti-L1 mAb (figure 3-2A), but immunogenicity may be affected by

glycosylation.
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Figure 3-1: Coomassie staining of recombinant baculovirus proteins.

Protein samples were diluted in NuPage LDS sample buffer, heated for ten minutes at

70°C and resolved on 12% NuPage Bis-Tris SDS-polyacrylamide gels with MOPS

buffer.  Gels were fixed with 50% methanol and 10% acetic acid and stained with

GelCode Blue, a colloidal Coomassie stain.   Approximately 1 µg of protein was

loaded for each sample. The molecular weight of each protein was approximated

according to the migration of protein bands from a molecular weight marker

represented by dash marks on the left side of the panel.
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Figure 3-2:  Western blot analysis of recombinant proteins.  Recombinant proteins (200

mg/lane) were denatured and reduced and resolved by SDS-PAGE on 12% Bis-Tris NuPage

gels with MOPS running buffer.  Proteins were transferred to reinforced nitrocellulose for

Western blot analysis and the molecular weight of each protein was approximated according

to the migration of a molecular weight marker.  (A) Western blots shown here include

reduced or non-reduced samples (+ or - b-ME) probed with primary mAbs specific to A33

(left), B5 (middle), or L1 (right) and HRP-conjugated secondary Abs for visualization by

chemiluminescence.  A33 and L1 mAbs only recognized non-reduced forms of recombinant

proteins, while the anti-B5 mAb recognized both reduced and non-reduced forms. (B)

Western blots probed with PAbs raised in rabbits immunized with the same recombinant

proteins showed recogntion of both reduced and non-reduced forms of A33 (left), B5

(middle), and L1 (right).  Abbreviations: b-ME, b-mercaptoethanol; Ab, antibody; mAb,

monoclonal Ab; pAb, polyclonal Ab.
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3.3.2 Antibody Responses Induced by Immunization with IMV and EV

Proteins.

Mice were immunized subcutaneously four times at three-week intervals with

recombinant proteins and MPL+TDM adjuvant in order to characterize the immune

response to each protein.  The enzyme-linked immunosorbent assay (ELISA) was

used to determine the endpoint antibody titers of pooled mouse sera, and antibodies

against A33, B5, and L1 were detected by this assay using plates coated with the

respective recombinant protein.  Figure 3-4 shows antibody titers generated in mice

immunized multiple times with each protein.  Little or no antibodies were detected

after one immunization, but increased most remarkably after two or three

immunizations and very slightly, if at all, after a fourth immunization.  Table 3-1

includes ELISA endpoints from mice immunized 4 times with individual or multiple

proteins.  Mice immunized with individual proteins showed little cross-reactivity with

other antigens, suggesting that very low levels of insect cell or baculovirus

contaminants were present.  Mice immunized with protein combinations had

measurable antibodies to each immunogen, but titers were slightly lower than in mice

immunized with a single protein.  Table 3-1 also shows that antibodies from protein-

immunized mice also reacted to in VACV-infected cell lysates and these results

suggest that mice may be protected from a virus challenge. Variation between titers

measured on purified proteins or lysates was most likely due to differences in the

abundance of specific viral proteins in the lysate as well as limitations in the amount

of lysate used on coated plates.  A33 immunization induced the highest titers, as

measured with both purified protein and lysate ELISAs.  
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Another group of mice was immunized once with live virus (107 pfu of VACV

Wyeth) by tail scarification to recapitulatate human smallpox immunization.  This

immunization strategy reproducibly induces the formation of a pustular lesion at the

site of immunization on the base of the mouse tail without causing any other signs of

illness.  Figure 3-4 shows antibody titers measured with an infected cell lysate ELISA

in mice immunized at week 0 with Wyeth virus.  Antibodies were first detected 3

weeks after immunization, peaked at 6 weeks post-immunization, and were

maintained at peak levels until challenge (12 weeks).  Wyeth-immunized mice also

produced antibodies that were detected with protein ELISAs, but were lower than

titers measured in protein-immunized mice (Table 3-1).  Mice immunized with

multiple proteins had lower antibody titers compared to mice given individual

proteins (Table 3-1).  The lower antibody titers may be due to the activation of

multiple B-cell subsets by T-helper cells.  Crosstalk between different T-helper cells

may inhibit the different B-cell populations in order to modulate overall antibody

response.

3.3.3 IgG Isotypes Induced by Protein and Virus Immunization

Unstimulated B-cells express IgM molecules with transmembrane domains,

and antigen stimulation induces differentiation of B-cells into plasma cells that

express secreted IgM.  Stimulated B-cells may also undergo isotype switching, which

results in expression of different IgG isotypes depending on the cytokine

microenvironment [140].  Induction of IgG2a is characteristic of a Th1-polarized T-

helper cell response, often induced during viral infection.  Th2-polarized responses
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Figure 3-3:  Deglycosylation of recombinant proteins.  Denatured and reduced

proteins (200 µg/lane) were treated with PNGase F glycosidase and analyzed by

SDS-PAGE and Western blotting with anti-His antibody.  Bands were visualized by

chemiluminescence.  Molecular weight markers were used to approximate the

molecular weight of each protein.
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Figure 3-4:  Antibody responses following multiple immunizations with

recombinant proteins.  Female BALB/c mice (n=12-14/group) were subcutaneously

inoculated four times at three-week intervals with 10 µg of purified recombinant A33,

B5, or L1 with MPL+TDM adjuvant.  An additional group of mice was immunized

once at week 0 with VACV Wyeth (107 pfu) by tail scarification.  Mice were bled

from the tail vein prior to immunization at week 0 and one day prior to each protein

immunization.  The reciprocal endpoint titers in pooled sera were determined by

ELISA with the respective recombinant protein serving as the antigen for protein-

immunized mice, or a VACV-infected cell lysate for mice immunized with VACV

Wyeth. The lowest dilution of serum was 1:800.  Δ, day of immunization.
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Table 3-1: Reciprocal endpoint ELISA titers.

Titera with respective ELISA plate antigen
Immunization

A33 B5 L1 VV
Lysate

IC50
b

Wyeth 12,800 3200 12,800 25,000 6684

A33 600,000 <800 <800 150,000 <100

B5 <800 125,000 <800 2400 <100

L1 <800 <800 75,000 6400 13,890

A33+B5 400,000 62,500 <800 100,000 <100

A33+L1 400,000 <800 75,000 100,000 9765

B5+L1 <800 75,000 75,000 6400 6927

A33+B5+L1 400,000 50,000 100,000 87,500 10,992
 
a  Results for each immunization group represent the averages of two independent

   experiments that included 10 to 12 mice per group.

b  IC50, 50% inhibitory concentration; reciprocal serum dilution that inhibits virus

    infection by 50% in the GFP-based neutralization assay
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are associated with IgG1 production and are typically induced by bacterial and

protein immunogens.  Different adjuvants can sometimes cause a shift in the type of

T-helper response induced, especially with respect to promoting production of IgG2a

antibodies against protein antigens.  IgG isotypes were characterized in mice

immunized with recombinant proteins or virus using isotype-specific ELISAs.  As

expected, protein immunization induced a primarily IgG1 response, regardless of the

kind of protein (figure 3-5A).  The use of the saponin adjuvant QS-21 with A33, B5

and L1 proteins, which has been observed to promote Th1-type responses, did not

induce significant production of IgG2a against these antigens (figure 3-5A). Not

surprisingly, IgG2a antibodies were primarily induced following Wyeth

immunization (figure 3-5B).  Both protein and virus immunizations induced both

IgG1 and IgG2a isotypes, but in each case, a dominant isotype was readily apparent.

3.3.4 Characterization of Neutralizing Antibodies Induced by

Recombinant Protein Immunization

 Neutralizing antibodies against poxviruses have typically been measured

using purified IMV particles in a cytopathic effect or plaque reduction assay.  Initial

observations showed that antisera from L1-immunized mice caused plaque reduction.

Neutralization was quantified using a flow cytometric assay with a recombinant

VACV expressing green fluorescence protein (GFP) reporter gene for measurement

of infectivity [215].  Mice immunized with L1 alone or in combination with one or

two EV proteins showed an increase in neutralizing Abs following 2 or 3

immunizations, and these titers were represented by the reciprocal serum dilution that
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Figure 3-5: Characterization of IgG isotypes.  (A) Mice groups (n=12-14

mice/group) were immunized 4 times with protein and MPL+TDM or QS-21

adjuvant, as described in figure 3-4.  Sera collected three weeks following the fourth

immunization was pooled and analyzed using an isotype-specific ELISA for IgG1 or

IgG2a (1 or 2a). (B)  A group of mice (n=12-14 mice) was immunized once with 107

pfu of VACV Wyeth virus by tail scarification, and isotype responses were analyzed

12 weeks after immunization. Two independent experiments (Exp 1 and Exp 2) were

analyzed and the results are represented in both panels A and B.  Abbreviations:  1,

IgG1; 2a, IgG2a; Imm, immunization; Ag, antigen.
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Figure 3-6: Induction of neutralizing antibodies against IMV and EV.  (A)

Groups of mice (n=8-14) were immunized with recombinant L1, L1 and A33 or B5,

or all three proteins as described in figure 3-4.  An additional group of mice (n=12-

14) was immunized with 107 pfu of VACV strain Wyeth one time by tail scarification.

IMV neutralization was quantified with a quantitative flow cytometry assay using a

recombinant VACV expressing green fluorescence protein.  The serum dilution that

inhibited the number of infected (fluorescent) cells by 50% (IC50) is plotted above.

(B)  The comet inhibition assay was used to observe the presence of anti-EV

antibodies that were able to inhibit the spread of EV in vitro.  BS-C-1 cells were

infected with IHD-J virus and then incubated with a liquid overlay contain a 1:50

dilution of pooled serum from 12 mice prior to immunization (Pre-Imm) or 3 weeks

after 4 protein immunizations with A33 or 12 weeks after immunization with Wyeth

virus (Post-Imm).  Infected cell monolayers were fixed and stained with crystal violet

following a 2 day incubation.



62

inhibited GFP expression by 50% compared to GFP expression in cells not treated

with serum (figure 3-6A).  The increase in neutralizing antibody titers was similar to

trends observed with ELISA titers in figure 3-4 (figure 3-6A).  Immunization of L1

with additional proteins resulted in IC50 neutralization values within twofold of values

obtained from L1 alone as shown in figure 3-6 and table 3-1.   Wyeth virus

immunization resulted in a steady increase in neutralizing antibodies 3 and 6 weeks

following immunization, but titers remained level between 6 and 12 weeks (figure 3-

6A).  Immunization with live virus induces neutralizing antibodies against multiple

targets, although it is likely that a subset of antibodies is L1-specific.  Animals

immunized with EV proteins did not have any measurable neutralizing antibodies,

which is an expected result for this IMV-specific assay (Table 3-1).

The comet reduction assay was used to detect antibodies that inhibit or reduce

the formation of secondary satellite plaques via EV in cell culture.  The IHD-J strain

of VACV was used to infect BS-C-1 cell monolayers because this strain

characteristically produces high levels of EV due to a mutation the A34R gene [190],

and as a result, forms comet shaped plaques under liquid medium.  IHD-J-infected

cells were treated with diluted antisera and these monolayers were fixed and stained

with crystal violet after a 48-hour incubation for visualization of plaque morphology.

Figure 3-6B shows that sera collected from mice prior to immunization with A33 or

Wyeth did not inhibit comet formation and virus spread occured throughout the

monolayer.  Sera from mice immunized A33 or Wyeth did cause a striking reduction

in comet size (figure 3-6B), although B5 antisera did not significantly reduce plaques

(data not shown), which may be attributed to lower levels of antibody (Table 3-1).
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Sera from L1-immunized mice also did not inhibit comet formation since IMV

antibodies are not expected to inhibit EV-mediated virus spread.

3.3.5 Protection of Immunized Mice to an Intranasal Challenge with 5

LD50 of VACV WR

Groups mice (n=6) were immunized with 10 µg of A33, B5, or L1 mixed with

MPL+TDM adjuvant 4 times at three-week intervals.  An additional group of mice

was immunized a single time by tail scarification with 107 pfu of VACV Wyeth

during the time of the first protein immunization.  Three weeks after the final protein

immunization, all groups were challenged intranasally (IN) with 106 pfu of VACV

WR, which was determined to be equivalent to 5 LD50 in age-matched mice.  Mice

were weighed daily as an indirect measure of virus replication because others have

demonstrated a correlation between weight loss and viral replication in the lungs, a

target organ of IN challenge [216].   Mice were sacrificed if they lost greater than

30% of their initial weight, and this percentage of weight loss has been shown to be

naturally lethal in 98% of infected mice [217].  Data from two independent

experiments with identical designs were averaged and shown in figure 3-7.  The

majority of unimmunized mice died naturally or were euthanized by 10 days post-

challenge, while all mice immunized with protein or VACV Wyeth survived (figure

3-7).  Differences between immunizations were discernable by analysis of weight

loss, and A33 immunization provided the best protection against weight loss

throughout the course of challenge.  Mice immunized with A33 had statistically

significantly less weight loss compared to those given B5 or L1 between 6 and 8 days
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after challenge, which is typically the time of greatest weight loss.  Surprisingly, mice

immunized with A33 alone showed no statistically significant differences in weight

loss compared to VACV Wyeth. The superior protection seen in A33-immunized

mice may be attributable to the higher antibody responses observed with this

immunogen (Figure 3-4, Table 3-1).

3.3.6 Protection of Immunized Mice to an Intranasal Challenge with

100 LD50 of VACV WR

The successful protection of mice immunized with individual recombinant

proteins with a low challenge dose led us to investigate if mice could be successfully

protected against a high challenge dose.  We immunized mice with individual

proteins as well as combinations of proteins in order to induce a more broadly

protective immune response.  As described for the previous challenge experiment,

groups of mice (n=6-10 mice/group) were immunized with 10 µg of A33, B5 or L1

alone, or with all possible pairings or with all three proteins. Once again, a group of

mice was immunized with VACV Wyeth and an additional group was unimmunized.

All mice were challenged IN with 2 x 107 pfu of VACV WR which is equivalent to

100 LD50 and two identically designed independent experiments were carried out.

Following challenge, all unimmunized mice died by 9 days after challenge, as well as

more than two-thirds of mice immunized with B5 or L1 alone (figure 3-8A).  Fewer

mice died with A33 or B5+L1 immunization, and survival was further enhanced by

immunization with A33+L1 or A33+B5 (figure 3-8A).  Impressively, all mice given
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Figure 3-7:  Weight loss of mice following intranasal challenge with 106 pfu of

VACV WR.  Mice were immunized subcutaneously four times with 10 µg of

recombinant A33, B5, or L1 and MPL+TDM adjuvant or a single time with VACV

Wyeth by tail scarification.  3 weeks following the fourth protein immunization and

12 weeks after VACV Wyeth immunization, mice were challenged intranasally with

106 pfu of VACV WR.  Mice were weighed daily and were euthanized if weight fell

below 30% of initial weight.  The data shown is the average percentage of initial

weight for each surviving mouse in each group from two independent experiments

with 12 mice total per group.  Abbreviations:  Unimm, unimmunized; †, number of

mice died or sacrificed on given day.
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Figure 3-8:  Survival and weight loss of mice challenged IN with 2 x 107 pfu of

VACV WR. (A) Mice (groups of 6-10) were immunized with 10 µg of each

recombinant protein or possible combinations thereof as described for figure 3-7.  An

additional group of mice was immunized with VACV Wyeth and another group was

unimmunized.  Mice were challenged IN with 2x107 pfu of VACV WR, were

weighed daily and were euthanized if weight decreased more than 30% of initial

weight.  The percentage of surviving mice is shown for each group and was the

average of two independent experiment.  (B) Similar to figure 3-7, the percentage of

initial weight was determined for each mouse daily and the average percentage of

initial weight was averaged from two independent experiments. Abbreviations:

Unimm, unimmunized; Unchall, unchallenged
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all three proteins survived challenge, which was better than observed in mice given

VACV Wyeth (figure 3-8A).

Weight loss after challenge was used as another measure of protection (figure

3-8B).  Significant weight loss was observed in mice immunized with individual

proteins or with B5+L1 or A33+B5.  VACV Wyeth immunization resulted in

approximately a 20% maximal weight loss, while mice immunized with A33+L1 or

all three proteins suffered less than a 10% weight.  In fact a significant difference of

relative weight loss was seen between VACV Wyeth and A33+L1 or A33+B5+L1

during days 4 through 6 (VV-Wyeth versus A33+L1, p < 0.008; VACV Wyeth versus

A33+B5+L1, p < 0.001).  An untreated and unchallenged (Unchall) group of mice

was also included in this study as an additional control following challenge and as a

way to observe normal daily fluctuations in weight.  These results support the

hypothesis that superior protection is attained with immunity against both IMV and

EV, but the superior protection seen with A33+L1 compared to B5+L1 may be

caused by differences in antibody responses to individual proteins.

3.3.7  Multiple Immunizations are Required for Protection

Four immunizations were given to mice used in the challenge experiments

described above, as this was a similar strategy successfully used by Galmiche and co-

workers [174].  We wanted to determine the minimal number of immunizations

sufficient for protection against the high dose of challenge (2 x 107 pfu of VACV

WR).  Groups of 8 mice were immunized 1, 2, 3, or 4 times with A33, B5, and L1

proteins and MPL + TDM adjuvant as described for previous experiments.  An

additional group was given VACV Wyeth one time as previously explained.  The
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study was designed such that all groups of mice were given their final immunization

at the same time and all groups were intranasally challenged three weeks later with 2

x 107 pfu of VACV WR.  None of the mice immunized once survived, while 7 of 8

mice given two immunizations survived, as did all of the mice given three or four

immunizations (figure 3-9).  Weight loss was significant in unimmunized and singly

immunized mice, but was less so in mice given 2 immunizations (figure 3-9).  On the

other hand, mice given 3 or 4 immunizations showed equivalently limited weight loss

and fared better than mice given VACV Wyeth (figure 3-9).  The results of this

experiment indicate that 3 or 4 immunizations supply an equivalent degree of

protection against a highly lethal challenge in mice.
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Figure 3-9: Multiple immunizations are required for protection against a lethal

IN challenge with 2 x 107 pfu of VACV WR. Mice were immunized 1, 2, 3, or 4

times with A33, B5, and L1 proteins mixed with MPL+TDM adjuvant as previously

described.  All mice received final immunization at the same time and were

challenged three weeks later with 2 x 107 pfu of VACV WR (100 LD50).

Abbreviations: Unimm, unimmunized; Unchall, unchallenged; †, number died on

specified day; ABL, A33+B5+L1; 1x one immunization; 2x, two immunizations; 3x,

three immunizations; 4x, four immunizations.
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3.4 Discussion

This chapter describes the use of recombinant VACV proteins that were

successfully used immunogens to protect mice against infection in a lethal respiratory

challenge model.  We were reassured that the recombinant forms of A33, B5, and L1

would be good vaccine candidates by biochemical evidence showing their

resemblance to their viral counterparts.  The viral proteins contain transmembrane

domains, but baculovirus expression of recombinant versions required exclusion of

these domains and inclusion of an insect signal peptide to allow secretion into the

media of baculovirus-infected cells.  A polyhistidine tag was also included for

purification of proteins by affinity chromatography.  Recombinant L1 contained

intramolecular disulfide bonds, and A33 formed a disulfide-bonded dimer and both of

these properties are characteristic of the viral proteins.  All three proteins reacted with

monoclonal antibodies that are also known to react with their respective viral proteins

and are also protective against virus challenge when used as a passive immunization

(to be described in chapter 4).  Recombinant L1 also induced IMV-neutralizing

antibodies, further evidence that the recombinant protein resembles its viral

counterpart, in spite of the fact that unlike viral L1, the recombinant form is

glycosylated.  Indeed, these recombinant proteins are potentially cross-protective

against variola virus since A33, B5, and L1 are highly conservered orthopoxvirus

proteins with an amino acid identity of 94%, 93%, and 99%, respectively between

variola and vaccinia orthologs.  On the other hand, the relative ease of expressing

these proteins using recombinant baculoviruses suggests that similar variola versions

could also be expressed in such a manner.
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This recombinant multiprotein vaccine induced specific antibody responses as

well as IMV-neutralizing antibodies and antibodies that inhibited EV-mediated cell-

to-cell spread in vitro. In fact, administration of four protein immunizations resulted

in higher antibody titers than induced by live virus vaccination. The coadministration

of these recombinant proteins with a Ribi adjuvant system, MPL+TDM, or QS-21, a

saponin adjuvant, resulted in predominantly IgG1 antibodies, which was

characteristic of a Th2-polarized response.  On the other hand, live virus vaccination

resulted in a Th1-polarized response, indicated by the predominance of IgG2a

antibodies. TCD8+ responses were not measured in this study because of the Th1-

skewed response induced by and typical of protein immunization. TCD8+ responses

have been shown to play a role in the optimal clearance of a primary poxvirus

infection [120, 124, 130] and may be especially critical for controlling infection prior

to a full-scale antibody response.   Then again, antibodies alone are sufficient for

protection [131, 132], and TCD8+ cells contribute little to the overall immune response

in the presence of a strong humoral response [130].

Our results showing effective protection following immunization with a

combination IMV and EV proteins confirm the results obtained by Hooper and co-

workers using DNA vaccination and an intraperitoneal virus challenge [175, 176].

We have used a well-characterized intranasal challenge model instead for our

experiments because it better recapitulates a respiratory illness seen with smallpox, it

requires a lower LD50 for challenge, which is also similar to smallpox infection, and it

has been used extensively to test vaccines [131, 218] and study viral pathogenesis.

Nonetheless, both of these studies provide compelling evidence that individual IMV
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and EV targets can induce a protective immune response and may serve as a safe

alternative to live virus vaccination.  If antibodies are primarily responsible for

controlling infection upon virus challenge, how may they be functioning?  Intranasal

challenge requires inoculation of purified IMV into the nostrils of mice, therefore

anti-IMV proteins may be important for neutralizing the inoculum.  Anti-EV proteins

may inhibit virus dissemination during viral replication, and this is indirectly evident

by inhibition of comet-shaped plaques by anti-EV sera in vitro.  Anti-B5 antibodies

have been shown by others to neutralize EV particles directly in addition to inhibiting

comet formation [174].   Antibodies have other well-defined functions, including

antibody-dependent cell-mediated cytotoxicity, formation of antigen-antibody

complexes, and activation of complement.  Vanderplasschen et al. have shown that

anti-EV antibodies can cause aggregation of cell-associated EV on the plasma

membrane, further evidence of the multiple means employed by antibodies to inhibit

or control infection [194].

The confirmation of the hypothesis that multiple recombinant IMV and EV

proteins can induce protective immunity in a lethal murine challenge model promotes

further exploration of the mechanisms behind antibody-mediated protection.  In

addition, further testing and optimization of this and similar candidate vaccines

should be considered.
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Chapter 4

Passive Protection of Mice with Antibodies against Multiple Outer

Membrane Proteins of the Extracellular and Intracellular Forms of

Vaccinia Virus

4.1 Introduction

The study in the preceding chapter shows that mice immunized with

recombinant vaccinia virus proteins are protected from a lethal respiratory virus

challenge.  Antibody responses were detected against both the IMV and EV forms of

VACV, and the antibody response is required for effective control of both primary

and secondary poxvirus infections [126, 131, 132, 219].  Vaccinia immune globulin

(VIG) has been used to treat adverse reactions to smallpox vaccination and to reduce

the severity of smallpox disease, and can also be used for immediate protection of

naïve individuals in the event of a smallpox outbreak [220, 221].  In fact, anecdotal

evidence suggested that prophylactic VIG treatment reduced the incidence of

smallpox by one-quarter compared to no treatment during an epidemic [222].

Unfortunately, VIG is derived from the serum of recently vaccinated humans, making

it both an inherently hazardous and scarce product.  In this regard, there is interest in

the development of a well-defined anti-vaccinia antibody product to replace VIG,

preferably by using hybridoma cells, which are relatively limitless source of

antibodies.

Several potential antibody targets have been defined in recent work towards

the development of alternative smallpox vaccines comprised of recombinant DNA or
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proteins [175-177, 223].  The results of these studies support the design of a vaccine

or therapeutic antibody mixture that targets both the IMV and EV forms of infectious

virus.  Immunization of rabbits with inactivated IMV resulted in poor protection

against a lethal otherpoxvirus challenge, and passive immunization with anti-IMV

serum also protected poorly against challenge, thus affirming the importance of

antibodies against EV as well as IMV [224, 225] .  Passive immunization experiments

with individual antibodies partially protected mice against virus challenge, but they

have targeted either IMV [226, 227] or EV [174].  The goal of the study described in

this chapter is to determine if passive immunization with individual or combinations

of antibodies against defined IMV and EV proteins will protect mice against a lethal

respiratory challenge.  BALB/c or severe combined immunodeficiency disease

(SCID) mice were passively immunized with rabbit polyclonal (PAbs) or rodent

monoclonal (MAbs) antibodies against the IMV protein L1 or the EV proteins A33

and B5.  Mice were challenged intranasally with a lethal dose of VACV WR prior to

or following passive immunization and were monitored daily for signs of illness and

weight loss. Our results indicate that passive immunization with the individual

antibodies partially protects against challenge, but protection was enhanced when

mice were given a combination of antibodies targeting both the IMV and EV.  These

results support the development of human monoclonal antibody-based replacement

for VIG.  This study was previously described in reference 273.
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4.2 Materials and Methods

4.2.1 Cells and Viruses.

HeLa S3 suspension cells and BS-C-1 monolayers were maintained as

described in chapter 3, section 3.2.1.  Stocks of the viruses VACV WR, IHD-J, and

VV-NP-SIINFEKL-EGFP were grown in HeLa S3 suspension cells and purified by

sucrose density centrifugation as previously described in chapter 3, section 3.2.1.

Viral titers were determined by plaque assay as described in chapter 3, section 3.2.1.

4.2.2 Hybridomas and Monoclonal Antibodies.

Anti-A33 MAb (IgG3), anti-L1 MAb (IgG2a), and anti-B5 MAb were

harvested from the supernatants of mouse hybridoma 1G10, mouse hybridoma, 7D11

(both provided by Dr. Alan Schmaljohn, USAMRIID), and rat hybridoma 19C2 [78],

respectively.  The 1G10 and 19C2 hybridomas were maintained in Dulbecco’s

modified Eagle medium (Quality Biologicals) containing 5% heat-inactivated fetal

bovine serum, l-glutamine and antibiotics as described in chapter 3, section 3.2.1.

The 7D11 hybridoma was maintained in RPMI 1640 (Quality Biologicals) that was

supplemented in the same manner as described above.  Gamma immunoglobulin

(IgG) antibodies were purified from the supernatants of each hybridoma cell line with

the Montage antibody purification-Prosep A kit (Millipore, Billerica, MA).    The

Montage kit is an affinity chromatography system for purification of antibodies from

cell supernatants by centrifugation through a matrix made of protein A immobilized

on porous glass.  Antibodies were eluted from the Prosep-A matrix with a 0.2 M

glycine/HCl buffer, pH 2.5, and the eluate was dialyzed against PBS and concentrated
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using an Amicon Ultra-15 centrifugal filtration unit (Millipore).   Antibodies used in

the experiment described in section 4.3.4 were purified by affinity chromatography

on protein A sepharose from ascites fluid made in ICR SCID mice.   Purified 7D11

and 19C2 MAbs were aliquoted and stored at -20°C, while aliquots of 1G10 were

stored at 4°C to prevent precipitation typically resulting from freezing and thawing of

an antibody of the IgG3 isotype.  SDS-PAGE and Coomassie blue stain was used to

ascertain the purity of purified antibodies. Protein concentrations were determined by

measurement of absorbance at 280 nm prior to each passive immunization

experiment.

4.2.3 Polyclonal Antibodies

Soluble forms of the VACV proteins A33, B5 and L1 were expressed by and

secreted from insect cells infected with recombinant baculoviruses as described in

chapter 3, section 3.2.2.  Proteins were affinity purified and used for preparation of

polyclonal sera in rabbits.  Different rabbits were immunized with 100 mg of each

purified protein diluted in PBS with an equal volume of Freund’s complete adjuvant

by subcutaneous and intramuscular routes.  Rabbits were boosted in the same manner

four times at 2-week intervals with 50 mg of the same protein diluted in PBS with an

equal volume of Freund’s incomplete adjuvant.  Blood was collected by terminal

exsanguinations two weeks after the final immunizations and serum was separated by

centrifugation.  IgG was purified from serum by affinity chromatography with protein

A sepharose as described in section 4.2.2 of this chapter.  Polyclonal serum was

prepared by collaborators in the laboratories of Drs. Gary Cohen and Roselyn

Eisenberg at the University of Pennsylvania, Philadelphia, PA.
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4.2.4 Vaccinia Immune Globulin

Vaccinia immune globulin intravenous (VIGIV; Dynport Vaccine Company

LLC) lot 1 was kindly provided by Dr. Dorothy Scott (Center for Biologics

Evaluation and Research, Food and Drug Administration, Bethesda, MD).   VIGIV is

a sterile liquid preparation of human immunoglobulin stabilized with 1% human

serum albumin and 5% sucrose [182].  The source of immunoglobulin for VIGIV is

plasma from human donors who have been boosted with Dryvax smallpox vaccine.

The product is vialed at a final concentration of 50 mg of immunoglobulin per ml,

and is primarily IgG with trace amounts of IgM and IgA.

4.2.5 Enzyme-Linked Immunosorbent Assays (ELISAs)

The presence of passively administered antibodies was detected in mouse

serum using the enzyme-linked immunosorbent assay (ELISA) as described in

Chapter 3, section 3.2.7.   96-well cluster plates were coated with antigens that

included recombinant A33, B5, or L1 proteins, or a VACV-infected cell lysate.

Twofold serial dilutions of purified antibodies, mouse serum, or human vaccinia

immune globulin (VIG) was added to antigen-coated plates and antibodies were

detected with HRP-conjugated anti-rat, anti-mouse, anti-rabbit, or anti-human

secondary antibodies and a ready-to-use solution of 3,3’,5,5’-tetramethylbenzidine

(BM Blue, POD substrate, Roche).  A spectrophotometer was used to measure A370

and A492 values following incubation at room temperature for 30 minutes.  Endpoint

titers were established as the serum dilution with an absorbance measurement two

standard deviations above the absorbance measured in wells not incubated with
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primary antibody or serum but treated with HRP-conjugated secondary antibody and

BM Blue.

4.2.6 IMV Neutralization and Comet Reduction Assays

IMV neutralization was measured using recombinant VACV expressing

EGFP (VV-NP-SIINFEKL-EGFP) treated with different concentrations of antibody.

HeLa S3 cells were infected with antibody-treated virus and EGFP expression was

measured as an indicator of virus replication by flow cytometry.  Neutralization titers

were reported as the antibody concentration that inhibited infection by 50% compared

to infection in the absence of antibody.  The assay is described in detail in chapter 3,

section 3.2.8 and reference 214.

The comet reduction assay was used to detect the presence of antibodies that

inhibited the formation of secondary satellite plaques in cell culture by blocking EV-

mediated infection.  6-well cluster plates containing confluent BS-C-1 monolayers

were infected with 50 pfu/well of VACV strain IHD-J for 2 hours at 37°C.  The virus

inoculum was removed and monolayers were treated with different concentrations of

antibody diluted in infection medium as defined in chapter 3, section 3.2.8.  Plates

were incubated at 37°C for 36 hours and plaques were visualized by staining with

crystal violet.

4.2.7 Passive Immunization and Intranasal Virus Challenge

Female BALB/c mice (7- or 14-weeks old) were purchased from Taconic.

Female BALB/c SCID (14-weeks old, strain C3Smn.CB17- Prkdc scid /J) were

purchased from the Jackson Laboratory (Bar Harbor, ME).  Purified antibodies at
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different concentrations were diluted in sterile PBS and administered for passive

immunization by intraperitoneal (IP) injection.  Unimmunized were given an equal

volume of sterile PBS by IP injection in parallel to passive antibody immunization.

Mice were challenged either before or after passive immunization by

intranasal inoculation with VACV WR as previously illustrated in chapter 3, section

3.2.9.   The LD50 of IN-inoculated VACV WR in female BALB/c mice was

calculated to be 1.5 x 105 pfu for 7-week old mice and 3 x 105 pfu in 14-week old

mice.  Mice were weighed daily for 2 to 12 weeks as an indirect measure of viral

replication and were euthanized if their weight fell below 70% of their initial weight.

The NIH Animal Care and Use Committee approved this mouse protocol.

4.2.8 Statisical Analysis

The percentage of weight change observed in mice immunized with different

antibodies caused by virus challenge was analyzed statistically by analysis of

variance (ANOVA) with the Statview statistical software package (SAS Institute

Inc.).   ANOVA showed a significant difference between at least two groups of

immunized mice, thus the Fisher protected least-significance-difference test was

applied post hoc to determine which groups showed significant differences between

each other.  A p-value less than 0.05 was considered significant.
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4.3 Results

4.3.1 Characterization of PAbs and MAbs Used for Passive

Immunization.

The principle goal of this chapter is to determine if mice can be protected by

passive immunization with antibodies against IMV and EV proteins, therefore PAbs

were generated as experimental reagents by multiple immunization of rabbits with

recombinant forms of A33, B5, and L1.  Secreted forms of these proteins were

expressed by infection of insect cells with recombinant baculoviruses.  The preceding

chapter included biochemical characterization of the recombinant proteins and a

demonstration of protective immunity induced in mice.  PAbs were used as affinity-

purified IgG and were characterized for antigen specificity with ELISAs with

recombinant proteins or VACV-infected cell lysate as antigens as summarized in

table 4-1.  Each PAb reacted specifically with its respective antigen and also showed

reactivity with the VACV lysate.  A limited amount of viral A33, B5, or L1 may be

the cause of the lower titers observed with lysate ELISAs compared to titers obtained

with purified protein antigens. Vaccinia immune globulin (VIG), a purified IgG

preparation derived from the plasma of Dryvax-immunized humans, was also

analyzed by ELISA.  Indeed, antibodies against each recombinant protein antigen

were detected in VIG, as well as antibodies reactive to the VACV-infected cell lysate

(table 4-1).  Antibody titers were lower to specific antigens compared to

monospecific PAbs, but this result is anticipated from VIG since it contains

antibodies against numerous viral proteins (table 4-1).
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Table 4-1: Reciprocal endpoint ELISA titers of PAbs and MAbs.

Antigen
Antibodya

A33 B5 L1 Lysate

A33 PAb 330,000 --b -- 25,600

B5 PAb -- 300,000 -- 12,800

L1 PAb -- -- 61,000 1,600

VIG 1,600 6,400 800 6,400

A33 MAb 800,000 -- -- --

B5 MAb -- 800,000 -- --

L1 MAb -- -- 1,000,000 --

a IgG (1 mg/ml).

b --, not determined.
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IMV neutralization was measured using a flow cytometric assay with a recombinant

VACV that expresses GFP as described in reference 214 and in chapter 3, section

3.2.8.  Both anti-L1 PAb IgG and VIG showed measurable IMV neutralization,

and anti-A33 and anti-B5 had no detectable neutralization activity.  VIG had

threefold greater neutralizing activity than anti-L1 PAb IgG (IC50 of 6.7 µg and 2.3

µg, respectively), in spite of anti-L1 having significantly greater L1 binding activity

compared to VIG (table 4-1).  This supports data from a study by Aldaz-Carroll and

co-workers showing that L1 is not the main target of neutralizing antibodies in VIG

[228].

 The ability of PAbs to inhibit EV infection was observed using the comet

reduction assay.  The comet reduction assay is preferred over an EV neutralization

assay because earlier studies have shown that antibodies that are protective in vivo

also effectively reduce comets, while not all protective antibodies neutralize EV in

vitro, including those against A33 [92, 229, 230].  In fact, a recent study showed that

B5 was the major in vitro EV-neutralizing antibody in VIG, but removal of anti-B5

antibodies did not significant reduce the ability of VIG to reduce comet formation.

As expected, anti-A33 and anti-B5 PAbs effectively reduced comet formation upon

treatment of infected cells with 20 µg of IgG per ml (figure 4-1).  No comet reduction

was observed with anti-L1 PAb with 20 µg of IgG per ml (figure 4-1).

MAbs against A33, B5, and L1, which have previously been described and

characterized in Chapter 3, section 3.3.1 and in references 230 and 231, were also

used for passive immunization.  Anti-EV antibodies include 1G10, an anti-A33 MAb

that does not neutralize EV in vitro but binds specifically to the viral protein [175],
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and 19C2, a MAb specific to B5 [78]. 7D11, a MAb specific to the IMV protein L1,

was also used.  All three MAbs had higher endpoint titers compared to the respective

PAbs when measured with specific protein ELISAs (table 4-1).  This may be due to

the accessibility of the epitope bound by each MAb, as well as the likelihood that

PAb preparations probably contain contaminating non-specific rabbit IgG.  Anti-EV

MAbs reduced comet formation similarly to PAbs, and, likewise, anti-L1 MAb did

not cause any comet reduction (figure 4-1). 7D11 MAb had 16-fold higher binding to

L1 than L1 PAb as based on ELISA endpoint titers, but its relative neutralizing

activity was much greater (IC50 equals  3.1 ng for MAb 7D11 versus 2.3 µg for L1

Pab).
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Figure 4-1: Comet reduction in the presence of anti-EV antibodies.  BS-C-

1 cell monolayers were infected with VACV strain IHD-J for 2 hours,

followed by incubation with no antibody (None; top two wells) or with 20 mg

per ml of purified PAbs or MAbs against A33, B5, or L1 diluted in infection

medium.  Plaques were visualized by staining of cell monolayers with crystal

violet 36 hours post infection.
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4.3.2 Protection of Mice with Individual or Combinations of PAbs

The ability of passively administered antibodies to protect mice was tested

with an intranasal virus challenge model.  This model recreates infection of the

respiratory tract similar to that seen in humans during smallpox infection and the

rationale for its use is discussed in chapter 3, section 3.3.5.  14-week old female

BALB/c mice were used for passive immunization to correspond with the age of mice

at the time of virus challenge following multiple protein immunizations as described

in chapter 3.   Mice were immunized intraperitoneally (IP) with purified PAb IgG and

challenged one day later IN with 106 PFU (3 LD50) of VACV WR.  A preliminary

experiment in which mice were immunized with 1 mg each of A33, B5 or L1 PAb

resulted in no survival after virus challenge.  Therefore, the following experiments

used 5 mg of PAb.  Mice immunized with 5 mg of A33, B5, or L1 PAb had

circulating antibody titers measured prior to challenge that were similar to those

observed after multiple protein immunizations (table 4-2).   Figure 4-2A shows that

none of the unimmunized mice, and the majority of mice given VIG did not survive

challenge.  On the other had, at least 3 of the 4 mice given PAb against A33, B5, or

L1 did survive challenge but lost weight to varying degrees (figure 4-2A and B).

Weight loss was less severe than observed in unimmunized mice, and this difference

was statistically significant on days 3 and 4 post-infection for mice given anti-L1

(p=0.0114 and p=0.0235, respectively for anti-L1 versus unimmunized).
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Table 4-2: Comparison of ELISA endpoint titers following passive or active

immunization.

Antigen

A33 B5 L1

A33 passivea 304,437  --c --

A33 activeb 565,685 -- --

B5 passive -- 304,437 --

B5 active -- 100,00 --

L1 passive -- -- 59,460

L1 active -- -- 70,711

a Serum titers 24 hours after IP injection with 5 mg PAb.

b Serum titers after three protein immunizations (geometric mean titers; chapter 3 and

   reference 222)

c --; not determined.
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Figure 4-2:  Protection of mice by passive immunization with PAbs.  (A,B)  14-week old

female BALB/c mice (n=4 mice/group) were injected IP with 5 mg of purified rabbit

polyclonal antibodies against A33, B5, or L1, or 5 mg of VIG.  Unimmunized mice were

injected in parallel with PBS and untreated mice were not immunized or challenged.  One day

later, mice were challenged IN with 106 pfu of VACV WR and weighed daily for 12 days.

Mice were euthanized if their weight fell below 70% of initial weight.  Panel A shows the

percent of survivors and the mean percentage of weight change in all surviving mice +/-

standard error of the mean (SEM) is shown in panel B. (C,D) Mice were immunized with 2.5

mg each of anti-A33 plus anti-L1 and 2.5 mg each of anti-B5 plus anti-L1 such that all mice

received a total of 5 mg of PAb.  Control mice were unimmunized as described above or

received 5 mg of an anti-herpes simplex virus gD PAb.  Virus challenge was carried out as

described in panel A and B.  Abbreviations: Unimm, unimmunized; Untr, untreated.
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Similarly, mice receiving anti-A33 showed a statistically significant less weight loss 5

and 6 days after challenge compared to unimmunized mice (p=0.0477 and p=0.0320,

respectively), but no statistical differences were seen in mice given B5 PAb in spite

of an observable difference in weight loss.  VIG was given as a positive control to

protect mice from virus challenge at a dose 2.5 times greater than the recommended

human dose based on weight.  This human polyclonal antibody mixture was less

protective against death and weight loss compared to any of the rabbit PAbs (figure 4-

2A and B), and the weight recovery shown in figure 4-2B after 7 days post-infection

represents the one surviving mouse.

The limited protection of mice with individual PAbs suggested that a

combination of PAbs may better protect against weight loss following challenge.

Mice were immunized IP with combinations of PAbs so the total dose was 5 mg of

IgG.  Serum titers were proportionate to the amount of PAb administered and were

typically less than or similar to titers observed after 3 immunizations with multiple

proteins (table 4-3).  We immunized an additional group of mice with rabbit PAb

against an unrelated protein, gD, from herpes simplex virus.  PAb against gD was

also raised in rabbits by multiple immunizations with a recombinant protein

expressed in baculovirus-infected insect cells and purified by nickel affinity

chromatography.  Once again, mice were challenged IN with 106 pfu of VACV WR

one day after passive immunization.  None of the unimmunized or gD PAb-

immunized mice survived challenge and showed dramatic weight loss (figure 4-2C

and D).  Both groups of mice immunized with combinations of PAbs survived

challenge, although mice receiving A33 and L1 PAbs showed less weight loss than
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those given B5 and L1 (figure 4-2C and D).  In fact, the mice immunized with A33

and L1 showed significant less weight loss than unimmunized mice or mice given gD

PAb on 4 days post-infection (p=0.0281 versus unimmunized and p=0.0150 versus

gD).  We concluded from these challenge experiments that passive immunization

with rabbit PAbs against VACV targets protected mice better than human VIG, and

the best protection was observed by immunization with a PAbs against both IMV and

EV targets, in this case anti-L1 with anti-A33 or anti-B5.
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Table 4-3: Comparison of reciprocal ELISA endpoint titers following

immunization with combinations of PAbs or proteins

a Serum titers 24 hours after IP injection with a total of 5 mg PAb.

b Serum titers after three protein immunizations (geometric mean titers; chapter 3 and

ref  222)

c --; not determined.

Antigen

A33 B5 L1

A33+L1 pAba

2.5 mg/Ab 1:152,218  --c 1:75,000

A33+L1 activeb 1:400,000 -- 1:70,711

B5+L1 pAb
2.5 mg/Ab -- 1:29,730 1:29,730

B5+L1 active -- 1:70,711 1:70,711
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4.3.3 Protection of Mice with Individual or Combinations of MAbs

We used the same mouse challenge model as described above to examine

protection of mice by passive immunization with A33, B5 and L1 MAbs.  Mice were

immunized IP with 200 µg of MAbs specific to A33, B5 or L1 and were challenged

one day later.  All unimmunized mice died, but all mice given MAbs survived

challenge and lost approximately 15% of their initial weight prior to recovery (figure

4-3A).  Likewise, practically all the mice shown in figure 4-3B survived, and were

given only 100 µg of each MAb.  Differences in weight loss were statistically

significant in mice given 100 µg of L1 MAb compared to unimmunized mice on 4th

and 6th day post-challenge (p=0.0356 and p=0.0290, respectively), and similar

significance was observed 6 days post-challenge with mice given anti-A33 or anti-B5

MAb (p=0.0400 and p=0.0444, respectively; compared to unimmunized).

Combinations of MAbs provided the best protection against challenge, similar to

observations with mice immunized with PAbs.  25% survival was observed in

unimmunized mice or those given an irrelevant MAb (Kb-ova; specific to an

ovalbumin determinant complexed with an MHC class I comprised of an H-2Kb

heavy chain) (figure 4-3B).  On the other hand, complete survival was seen in mice

immunized with 100 µg each of A33 and L1 MAbs, B5 and L1 MAbs, or all three

MAbs (figure 4-3B).
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Figure 4-3: Protection of mice by passive immunization with MAbs.  (A) 14-week

old female BALB/c (n=4 mice/group) were immunized IP with 200 µg of A33, B5 or

L1 MAbs and challenged one day later as described in the legend for figure 4-3.  All

immunized mice surivived and the average percentage of the initial weight +/- SEM

was determined daily for each group.  (B) 14-week old female BALB/c (n=4

mice/group) were immunized IP with 100 µg of each antibody alone or in all possible

combinations.   Mice were challenged one day later in the same manner as described

above, and all immunized mice but one given anti-B5 survived challenge.  The

average percentage of initial weight for each group +/- SEM is shown for each day

after challenge.
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The difference in weight in groups given any of these MAb combinations was

statistically significant compared to unimmunized mice (p=<0.001 on days 4, 5 and 6

for each combination).  Mice given 100 mg each of the two EV antibodies against

A33 and B5 showed greater weight loss than groups given combinations of IMV and

EV MAbs, but weight loss was still significantly better compared to unimmunized

mice (p=.0012 on 6th day post-infection).  Once again, we conclude that superior

protection resulted from passive immunization with a combination of MAbs against

IMV (e.g., L1) and EV (e.g., A33 and B5) targets.

4.3.4 Effect of Time of Passive Immunization of MAbs Relative to

Challenge

The protective effect of passive immunization after challenge was tested next

in light of the successful protection of mice immunized before challenge.  In this

experiment, 7-week old mice were used instead of 14-week old mice, and the younger

age of mice was reflected in greater susceptibility to challenge since the challenge

dose of 106 pfu was calculated to be equivalent to 6 LD50 rather than 3 LD50 (in 14-

week old mice).  The data shown in panels A and B of figure 4-4 is from two

independent identical experiments, each with 5 mice per group, and the total number

of dead mice is shown next to each trend line.  The majority of mice immunized with

anti-A33 or anti-L1 MAb, or a combination of both MAbs, survived challenge,

although less weight loss was seen in mice given the combination of MAbs (figure 4-

4A and B).
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Figure 4-4: Immunization before or after intranasal virus challenge.  (A,B)  7-

week old female BALB/c mice (n=5 mice/group) were immunized with 100 µg of

anti-A33 or anti-L1 MAbs or a combination of both either one day before challenge (-

1) or two days after challenge (+2) with 106 pfu of VACV WR.  Mice were weighed

daily and the number (#/10) indicates how many mice were sacrificed or found dead.

These results represent the average change in weight and total number of dead mice

for two independent experiments.  (C,D) 7-week old female BALB/c mice (n=5

mice/group) were immunized in the same as described above but were challenged

with 5 x 105 pfu of VACV WR instead.  The number of mice that died or were

euthanized is represented by the number (#/5).  The average percentage of initial

weight +/- SEM for each group is shown.
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Mice given anti-A33 MAb prior to challenge were protected from significant weight

loss compared to unimmunized control mice (p< 0.0003 on days 4, 5 and 6 for anti-

A33 compared to control).  Protection from weight loss was also statistically

significant compared to unimmunized mice for groups given anti-L1 or anti-L1 and

anti-A33 MAbs before challenge (p< 0.0022 on days 3, 4, 5 and 6 for anti-L1 or anti-

L1 plus anti-A33 antibodies compared to control).  Immunization of mice two days

after challenge also protected the majority of mice from weight loss and death,

although more immunized mice died and had greater weight loss (figure 4-4B).

The mice used in the experiments shown in figure 4-4 are younger than mice

used in previous experiments, so we also challenged mice with the equivalent LD50

(equal to 5 x 105 pfu) as used in earlier experiments in 14-week old mice (figure 4-4,

panels C and D).  None of the unimmunized mice survived challenge, but figure 4-4C

shows that weight loss was significantly less severe and survival was improved in all

groups of mice given antibodies before challenge (p< 0.0340 on days 3 to 6 for anti-

A33 and anti-L1 combination compared to control and p< 0.0064 on days 4 to 6 for

anti-A33 or anti-L1 compared to control).  Figure 4-4D shows the lower challenge

dose resulted in greater survival and less weight loss in mice given antibodies 2 days

after challenge compared to control mice (p< 0.0042 on days 5 to 7 for the

combination of antibodies versus control and p=0.0266 on day 7 for anti-A33 versus

control).  Most noticeably, relatively little weight loss was observed in mice given a

combination of MAbs against A33 and L1 after challenge.
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4.3.5 Passive Immunization of SCID Mice

All of the animal challenge experiments described thus far that show

protection by passive immunization use BALB/c mice.  These mice have intact

immune systems and can recruit an adaptive immune response in the face of

challenge, thus passively administered antibodies are not the lone contributors to

protection.  We challenged SCID mice, which lack B- and T-cells and do not generate

adaptive immune responses, as a way to better observe the contribution of passive

immunization to protection.  Mice were immunized with a equal amounts of all three

MAbs or PAbs against A33, B5, and L1 such that the total amount given was 300 µg

of MAb (100 µg/MAb) or 5 mg of PAb (1.67 mg/PAb).  All unimmunized mice

challenged with 106 pfu of VACV WR died or were euthanized by the 11th day after

challenge (figure 4-5A).  Mice immunized with PAb or MAb had prolonged survival,

with a 50% survival time 26 and 46.5 days, respectively (figure 4-5A).  In spite of

prolonged survival, all mice eventually exhibited typical symptoms of VACV

infection prior to being sacrificed or dying, including labored breathing, ruffled fur,

and a hunched posture.  Passive immunization with a combination of MAbs, which

yielded the longest survival time, was repeated with a lower challenge dose to see if

survivial could be further extended.  Once again, all unimmunized control mice died

or were euthanized within two weeks, but 2 of the 5 immunized mice were still alive

after three months, at which time the experiment was terminated (figure 4-5B).
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Figure 4-5: Survival of passive immunized SCID mice following virus challenge.

(A) 8-week old female BALB/c SCID mice (n=5 mice/group) were immunized IP

with a mixture of 1.67 mg each of PAbs against A33, B5 and L1 (5 mg total) or with

100 mg each of MAbs against A33, B5, and L1 (300 mg total).  Mice were

challenged one day later with 106 pfu of VACV WR and were weighed daily and

euthanized if weight fell more than 30% of initial weight.  (B) 8-week old female

BALB/c SCID mice (n=5 mice/group) were immunized IP in the same manner as

panel A and were challenged one day later with 104 pfu of VACV WR and weighed

daily.  Abbreviations: Unimm, unimmunized; Untr, untreated.
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4.4 Discussion

Antibodies have been shown to be essential for best possible protection

against orthopoxvirus infection [92, 231, 232].  Optimal protection is also associated

with immunity against both forms of infectious virus as immunization with

inactivated virus, which is strictly IMV, is insufficient.   Hence, we undertook a study

to determine if polyclonal or monoclonal antibodies against IMV and EV targets

would protect mice against a lethal respiratory virus challenge.  Rabbits were

immunized with recombinant forms of the EV proteins A33 and B5 and the IMV

protein L1 to make specific PAbs since we had previously shown protection of mice

immunized with the same proteins (chapter 3, reference 222).  Characterization of

these recombinant proteins is described in the preceding chapter, and biochemical

analysis suggested that these proteins had similar characteristics as their viral

counterparts and were recognized by monoclonal antibodies specific to viral epitopes

of A33, B5 or L1.  We also used these MAbs for passive immunization experiments,

and initial characterization of these antibodies showed that anti-L1 PAb and MAb

were able to neutralize IMV in vitro, and PAbs and MAbs against A33 or B5

inhibited the spread of EV in cell culture.

Animal challenge experiments used the BALB/c mouse respiratory infection

model with VACV WR challenge as described in chapter 3.  Intranasal infection of

mice causes a severe respiratory illness from virus replication in the lungs, and this

corresponds to weight loss and death typically within 7 to 10 days following

inoculation [217] .  This model is widely used for testing alternative smallpox

vaccines [218, 223, 230, 233] and therapeutic treatments [216, 217, 234] because it
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bears resemblance to the natural route of variola virus infection in humans.

Importantly, intranasal challenge allows us to passively immunize mice by the IP

route and examine protection of systemically available antibodies.

Passive immunization with individual PAbs or MAbs partially protected mice

against weight loss and death, but superior protection resulted from immunization

with a combination of antibodies against IMV and EV targets, namely, L1, A33 and

B5.  Anti-L1 antibodies may inhibit infection caused by the virus inoculum

comprised of purified IMV particles, since these antibodies neutralized IMV in vitro.

Anti-L1 PAb or MAb may also neutralize EV particles with outer membranes

disrupted during virus entry [235, 236] or by complement-mediated mechanisms,

which both result in exposure of the IMV membrane.  Recently, our lab has described

a mechanism by which the presence of an anti-A33 Ab and complement disrupts the

EV membrane and allows for neutralization by anti-L1 Ab.  The combined effect of

anti-A33 and anti-L1 Abs with complement in vitro is one possible reason for their

effectiveness as a combination in vivo.  Interestingly, mice passively immunized with

anti-L1 antibody or actively immunized with L1 protein (chapter 3, reference 236)

had an initial delay in weight loss, although this effect was not statistically

significant.  This observation suggests that anti-L1 antibodies may be neutralizing the

virus inoculum and may be less effective when given after challenge.  Our results

refute this hypothesis since mice given anti-A33 and anti-L1 MAb after challenge

were better protected compared to mice given anti-A33 antibody alone.  Therefore, a

combination of antibodies against EV and IMV effectively reduce virus replication

and systemic spread in vivo.
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SCID mice also showed protection against virus challenge by passive

immunization with a combination of PAbs or MAbs.  Immunized mice eventually

succumbed to illness resembling the symptoms of VACV infection, indicating that

passively administered antibody is not sufficient to clear virus in the absence of other

adaptive immune responses.  Circulating antibody levels were probably quite low

when mice succumbed to disease 1 to 3 months following challenge, since the half-

life of anti-A33 and anti-L1 MAbs was experimentally calculated to be 4.8 and 10.2

days, respectively.  These calculations are similar to published reports of the half-

lives of murine IgG2a and IgG3 [237], and likewise, the half-life of rabbit IgG in

mice has been reported to be 5 to 6 days [238].  The half-life of these antibodies was

not determined in SCID mice, but survival of immunized mice may have been further

prolonged by additional passive immunizations after challenge.

The effective protection of mice with a combination of antibodies against

A33, B5, and L1 is only evident in the face of animal challenge studies.  To this end,

evaluation of new antibody products or assessment of the potency of VIG can only be

effectively tested in animal models in the absence of an in vitro assay that effectively

corresponds to protection studies.  In vitro assays can clearly delineate IMV

neutralizing antibodies, but the anti-EV neutralization assay is less consistent since

EV particles cannot be frozen or stored for long periods of time and the outer

membrane of EV is easily broken.  Anti-IMV antibodies must be used to neutralize

damaged EV particles prior to addition of EV-neutralizing antibodies for an accurate

measure of neutralization.  Most importantly, EV neutralization assays do not

effectively reveal antibodies that are protective in vivo, such as those against A33
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[230].   For these reasons, ELISAs specific to EV proteins and comet reduction assays

are preferred as a strategy to analyze the concentration and functionality of anti-EV

antibodies.   Nonetheless, animal protection studies are the most informative means to

preliminarily evaluate the effectiveness of antibodies.

Mice were immunized with human VIG as a positive control for protection in

the absence of other known and available protective antibodies.  Serological analysis

and challenge experiments showed that VIG was less effective than combinations of

PAbs and MAbs against A33, B5, and L1.  These results indicate that human MAbs

against specific virus proteins may be a safer and a more effective alternative to VIG.
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Chapter 5

Protection of Mice Against a Lethal Challenge by Multiple

Immunizations with Different Proteins of the Intracellular Mature

Virus

5.1 Introduction

The efficacy of recombinant VACV proteins as protective immunogens was

initially evaluated by the experiments described in chapter 3.  Mice immunized with

recombinant forms of the EV proteins A33 and B5 and the IMV protein L1 were

partially protected against a lethal challenge when given any one of the individual

proteins, but superior protection was observed in mice given a combination of EV and

IMV proteins.  The success of this immunization strategy led us to explore the use of

other VACV immunogens.  This chapter will discuss experiments comparing the

protection of mice immunized with A33, L1 and an alternative IMV protein, A27.

A27 is expressed late during infection as a 14-kDa protein and forms

covalently-linked homotrimers [239, 240].  A27 does not contain a transmembrane

domain and is targeted to the surface of IMV by interacting with another VACV

protein, A17, through a C-terminal domain [241].  A27 has been considered to be

important for virus-cell interactions [242] and may play a role in virus attachment,

owing to the ability to bind heparan sulfate [26]. A27 has also been implicated as a

fusion protein [17, 172, 239, 243], but Ward and co-workers recently constructed a
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deletion mutant virus lacking A27 that was able to penetrate cells but was severely

restricted in cell-to-cell spread [244].  A27 is also needed for EV formation and

dissemination since repression of the gene or deletion of the 29 residues at the N-

terminus causes a decrease in EV synthesis [245, 246].

A27 is the target of neutralizing antibodies [172, 247] and passive

immunization with an anti-A27 MAb protects mice against an intraperitoneal (IP)

virus challenge [226].  Mice immunized with an E.coli-expressed form of A27

formed IMV-neutralizing antibodies and were also protected against a lethal IP

challenge [173].  Recent studies have shown that mice immunized with DNA

encoding the A27 gene produce neutralizing antibodies [176] and show proliferation

of TCD4+ cells, as well as induction of antigen-specific TCD8+ and humoral responses

[248].  Surprisingly, mice immunized with A27 DNA alone were not protected

against a lethal IP virus challenge, in spite of inducing A27-specific neutralizing

antibodies [176].  Rhesus monkeys immunized multiple times with a DNA vaccine

comprised of plasmids encoding A27, L1, A33 and B5 also produced neutralizing

antibodies and were protected against a lethal intravenous monkeypox virus challenge

[177].

The goal of the study described in this chapter is to determine if immunization

of mice with A27 induces immune responses similar to or better than induced by L1.

Our previous study analyzed two different EV proteins, and showed that A33 was

consistently more immunogenic and protective than B5.  Therefore, we wanted to

ascertain if an alternative IMV protein would induce superior immune responses
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compared to L1.  A similar study design was used as described in chapter 3, and our

results suggest that A27 is not a superior immunogen in contrast to L1.

5.2 Materials and Methods

5.2.1 Cells and Viruses

BS-C-1 monolayers and HeLas S3 suspension cells were maintained as

detailed in chapter 3, section 3.2.1.  Virus stocks of VACV WR, IHD-J, and VV-NP-

SIINFEKL-EGFP were grown in HeLa cells and purified by sucrose density

centrifugation as described in  chapter 3, section 3.2.1.  Viral titers were determined

by plaque assay.

5.2.2 Recombinant Proteins

Collaborators in the laboratory of Drs. Gary Cohen and Roselyn Eisenberg

(University of Pennsylvania, Philadelphia, PA) prepared the recombinant proteins

used in this study.  Full length A27, and truncated forms of A33 and L1 lacking

transmembrane domains were expressed in insect cells infected with recombinant

baculoviruses as described in detail by Aldaz-Carroll and co-workers [214].  Each

protein included a polyhistidine tag to facilitate purification by nickel affinity

chromatography.  The purity of each protein was confirmed by SDS-PAGE and

staining of gels with a colloidal Coomassie blue dye (GelCode Blue, Pierce) as

described in chapter 3.2, section 3.2.3.  Biochemical analysis of the previously

uncharacterized baculovirus-expressed A27 protein included SDS-PAGE of

denatured protein that was non-reduced or reduced with β-ME.  A27 was also

characterized by Western blot analysis as explained in chapter 3.2, section 3.2.3.
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Briefly, proteins were transferred to a nitrocellulose membrane (Invitrogen) following

electrophoresis and blocked overnight in 5% BSA diluted in TBST.  A polyclonal

anti-A27 antibody raised by multiple immunizations of a rabbit was used as a primary

antibody diluted 1:1000 in 5% BSA/TBST, and an HRP-conjugated anti-rabbit IgG

(Amersham, diluted 1:10,000 in 5% BSA/TBST) and chemiluminescence (Pierce)

was used for visualization.  Purified IMV was also analyzed by Western blotting as a

control to confirm that the anti-A27 PAb recognized the A27 protein.  Purified WR

IMV was thawed and sonicated and diluted in LDS sample buffer and deionized

water with or without β-ME as a reducing agent.  Samples were heated for 5 minutes

at 95°C the equivalent of 2.4x107 pfu of VACV WR was subjected to SDS-PAGE

and western blotting in parallel with recombinant A27 protein.

5.2.3 Immunization Protocol

5- to 6-week old female BALB/c mice were purchased from Taconic and

housed in sterile microisolators at an animal facility at the National Institutes of

Health.  Protein immunizations were carried out in the same manner as described in

chapter 3, section 3.2.5.  Individual or combinations of recombinant proteins were

diluted in an emulsion of MPL+TDM adjuvant (Sigma-Aldrich) and sterile PBS for a

final dose of 10 µg of each protein per 0.1 ml.  Mice were immunized subcutaneously

at the nape of the neck with 0.1 ml with a 25-gauge hypodermic needle.  Three

immunizations were given at three-week intervals and blood was collected from the

tail vein prior to each immunization and prior to challenge.  Serum was separated by

centrifugation from clotted blood samples and sera pools were made from mice
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immunized with the same proteins.  Sera samples were heat-inactivated at 56°C for

30 minutes to destroy complement activity.

5.2.4 ELISA

Plates coated with recombinant protein antigens were used for ELISAs to

detect specific binding antibodies in the sera of immunized mice.  96-well plates were

coated with protein diluted in PBS and incubated at 4°C overnight.  The optimal

concentration for each protein used to coat plates was 90 ng/well for A33, 150

ng/well for A27, and 40 ng/well for L1.  ELISAs were carried out as described in

chapter 3, section 3.2.7 and an HRP-conjugated anti-mouse antibody was used to

detect mouse IgG bound to antigen followed by visualization with a chromogenic

substrate of a ready-to-use solution of 3,3’,5,5’-tetramethylbenzidine (BM Blue, POD

substrate, Roche).  Spectrophotometric measurements were made at A370 and A492 and

reciprocal endpoint titers were determined as the dilution with an absorbance of 0.1

following subtraction of background absorbance of serum samples incubated on

plates not coated with protein.

5.2.5  IMV Neutralization and Comet Reduction Assays

The presence of IMV-neutralizing antibodies was measured using a flow

cytometric-based assay with an EGFP-expressing recombinant VACV (VV-NP-

SIINFEKL-EGFP).  Twofold serial dilutions of serum was mixed with VV-NP-

SIINFEKL-EGFP and used to infect HeLa S3 suspension cells as previously

described in chapter 3, section 3.2.8 and reference 214.  Virus replication was

indirectly quantified by flow cytometric measurement of EGFP expression.  The
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neutralization titers described here are the sera concentrations that inhibit infection by

50% relative to values measured in HeLa cells infected with VV-NP-SIINFEKL-

EGFP, but not treated with sera.

Anti-EV antibodies that inhibit secondary satellite plaques in cell culture were

observed with the comet reduction assay.  BS-C-1 cell monolayers in 6-well plates

were infected with IHD-J and treated with a 1:50 dilution of serum as detailed in

chapter 3, section 3.2.8.  Plates were incubated for 36 hours at 37°C and comet-

shaped plaques were visualized by staining of monolayers with crystal violet.

5.2.6 Virus Challenge

Three weeks following the third protein immunization mice were challenged

intranasally with VACV WR as explained in chapter 3, section 3.2.9.  A fresh aliquot

of purified virus was used for each challenge and was diluted in sterile PBS to a final

concentration of 106 pfu or 2x107 pfu per 20 ml, which is roughly equivalent to 5 and

100 times the LD50, respectively.  Sedated mice were inoculated intranasally with 20

µl of virus (10 µl/nostril) and weighed daily for two weeks.  Mice were euthanized if

their weight was below 70% of their initial weight.  This mouse protocol was

approved by the NIH Animal Care and Use Committee.

5.2.7 Statistical Analysis

Mouse weight loss data was analyzed statistically to determine if any

significant differences existed between mouse groups.  The area under the curve

(AUC) corrected for the follow-up period was calculated for days 2 through 9 as a

summary statistic with a trapezoidal rule using all available measurements [249].



109

AUC values were compared between groups using a non-parametric Wilcoxan rank

sum test adjusting p-values according to the method described by Holm [250] in order

to control family wise error rate in multiple tests.

5.3 Results

5.3.1 Biochemical Characterization of Recombinant A27 Protein

A recombinant form of the A27 protein of VACV was expressed in insect

cells infected with a recombinant baculovirus and purified from the cell supernatant

by nickel affinity chromatography.  A27 is expressed late during virus infection as a

14-kilodalton protein and forms disulfide-bonded trimers that associate with the

A17L protein on the surface of IMV particles.  Figure 5-1, panel A shows SDS-

PAGE and Coomassie staining of recombinant A27 and confirmed the molecular

weight of the monomeric protein under reducing conditions (+ βME) as well as the

formation of a trimer in non-reducing conditions (- βME).  Multiple bands are seen in

both conditions, and the lower molecular weight bands may be truncated or cleaved

forms of the protein.  Previous investigators found that E.coli-based expression of

A27 resulted in the synthesis of full length protein and a 12-kDa form truncated at the

N-terminus [173].  They confirmed that the truncated protein lacked the first two

amino acids but did not determine how or why they were missing. In addition, the

recombinant protein may be glycosylated since one N-glycosylation site is predicted

and may result the higher molecular weight forms observed by Coomassie staining

(figure 5-1A).

Western blotting was used to confirm the identity of the recombinant A27

protein.  A polyclonal antibody was purified from the serum of a rabbit immunized
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multiple times with recombinant A27 protein, as described for the production of PAbs

in chapter 4, section 4.2.3.  As expected, the anti-A27 antibody recognized both the

reduced and non-reduced (+ or - βME) forms of recombinant protein.  This antibody

also recognized protein of a similar electrophoretic mobility in purified virus but the

viral protein did not show the same heterogeneity in molecular weight (figure 5-1B).

This purified protein was used in further experiments as an immunogen and as an

antigen to detect A27-specific binding antibodies.
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Figure 5-1: Coomassie staining and western blot analysis of recombinant A27

protein.  (A) A27 expressed in insect cells with a recombinant baculovirus was

purified by nickel affinity chromatography.  Purified protein was denatured in LDS

sample buffer and water with or without the reducing agent β-ME and was heated at

70°C for 10 minutes and 100 ng of protein was resolved in each lane by gel

electrophoresis on a 12% NuPage Bis-Tris SDS-polyacrylamide gel with MOPS

buffer.  The gel was then stained with a colloidal Coomassie stain (GelCode Blue,

Invitrogen).  The symbols – and + denote the absence or presence of β-ME.  A

molecular weight marker (MWM) is shown in the rightmost lane and molecular

masses are indicated in kilodaltons.

(B) Recombinant A27 protein (20 ng/lane, protein) was denatured and reduced as

described for panel A. Reduced and nonreduced samples of purified IMV (virus)

were also prepared and analyzed in parallel with protein samples.  Resolved protein

samples were transferred to nitrocellulose and analyzed by Western blotting with a

polyclonal rabbit anti-A27 antibody and an HRP-conjugated anti-rabbit antibody

followed by chemiluminescence visualization.
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5.3.2 Antibody Responses Following Multiple Protein Immunizations

The results described in chapter 3 showed that mice immunized with L1

produced antibodies that were able to bind to L1 protein and virus lysate, and at least

a subset of these antibodies neutralized IMV particles in vitro.  Importantly, mice

were partially protected against a lethal challenge when immunized with L1 alone,

and protection was significantly improved by co-immunization with the EV proteins

B5 or even more so with A33.  This study expands on these results by comparing two

different IMV proteins with respect to immunogenicity and protection of mice against

a lethal intranasal challenge.  Female BALB/c mice were immunized three times at

three-week intervals with 10 µg of A33, A27, or L1 alone or with the EV and IMV

protein pairings A33 and L1 or A33 and A27 (10 µg/protein).  One day prior to each

immunization or prior to challenge (at 9 weeks) mice were bled from the tail vein for

serological analysis.  ELISAs were carried out on pooled sera samples with A27,

A33, or L1 used as binding antigens and the average reciprocal endpoints from two

independent experiments are shown in figure 5-2.  In each case, antibody titers were

low after the first immunization but were boosted after the second and third

immunizations.  A33 induced the highest antibody responses after each immunization

as an individual immunogen and this was similar to results observed in the study

described in chapter 3 (figure 5-2).  A33 responses were the same or slightly lower in

mice immunized with A33 combined with L1 or A27 (figure 5-2).  A27 protein alone

induced higher antibody responses compared to L1, especially after two or three

immunizations (figure 5-2).  Mice immunized with pairs of proteins showed slightly

lower responses to A27 or L1 after two immunizations, but there was very little or no
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difference observed after three immunizations (figure 5-2).  Overall, antibody

responses were highest against A33 followed by A27 and L1.  Mice immunized with

combinations of proteins generated responses of a similar magnitude as mice given

individual proteins, especially after three immunizations.
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Figure 5-2:  Analysis of binding antibodies by ELISA.  Female BALB/c mice (n=5

mice/group) were subcutaneously immunized three times at 0, 3, and 6 weeks with 10

µg of A27, A33, or L1 alone or with A33+L1 or A33+A27 (10 µg of each protein)

combined with MPL+TDM adjuvant and PBS.   Mice were bled one day prior to each

immunization or to virus challenge (at 9 weeks), and serum pools were analyzed by

ELISA for binding antibodies specific to A33, A27 or L1.  The reciprocal endpoint

titers shown above are the average endpoints measured from two independent mouse

experiments, and endpoint titers did not vary more than two dilutions between both

experiments for all treatment groups.
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5.3.3 Measurement of Neutralizing Antibodies Induced by Protein

Immunization

Neutralizing antibodies were measured using a flow cytometric-based assay

with a recombinant VACV expressing an EGFP reporter gene as previously explained

in chapter 3, section 3.2.4.  Figure 5-3 shows that neutralizing antibodies were

detected after two immunizations and further increased after a third immunization in

each group as determined from two independent experiments.  Standard deviations

were calculated from the two independent experiments and are shown in figure 5-3.

No significant differences between groups were detected after two or three

immunizations, and neutralizing antibody titers were the same or slightly higher in

mice give individual proteins compared to mice given protein combinations, similar

to the results shown in figure 5-2.  Surprisingly, neutralizing antibody titers were

similar between mice give A27 or L1, in spite of A27 inducing higher binding

antibody responses.

The comet reduction assay was used to observe the activity of anti-EV

antibodies in vitro as described in chapter 3, section 3.2.4.  Figure 5-4 shows the

results of a comet reduction assay carried out with pooled serum samples from the

second of two duplicate studies collected prior to the first immunization (0) or three

weeks following the third and final immunization (3) and is representative of both

studies.  No comet reduction was observed in any groups prior to immunization, and

also was not observed in mice immunized with either IMV protein (figure 5-4).
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Figure 5-3: Measurement of neutralizing antibodies following multiple protein

immunizations.  Mice were immunized as described in figure 5-2.  Neutralizing

antibodies were measured in serum pools collected prior to each immunization at 0, 3

and 6 weeks or before challenge at 9 weeks.  Neutralizing antibodies were measured

in serum pools with an EGFP-based assay and titers were represented as the

concentration of serum that inhibits infection by 50% relative to infected cells not

treated with serum (IC50).  The average titers + or – SD from two independent

experiments are shown above.



117

Serum from mice immunized with A33 alone or combined with A27 or L1

noticeably reduced comets to a similar degree after three immunizations (figure 5-3),

and was comparable to the results described in chapter 3 from mice immunized four

times with A33.

These results indicate that mice responded similarly to A33 and L1 protein

immunizations in this study as previously observed in chapter 3.  Mice immunized

with A27 also showed a significant induction of antibodies and had a similar level of

neutralizing antibodies as mice given L1 protein.

5.3.4 Protection of Mice Following IN Challenge with 106 pfu of VACV

WR

Female BALB/c mice were immunized three times with recombinant forms of

A33, A27 or L1 and the results of serological analysis suggested that high levels of

functional antibodies were produced.  Only three immunizations were administered

because the results of a dose response study described in chapter 3 showed little or no

difference in protection following three or four immunizations with A33, B5, and L1

proteins.  Mice were challenged intranasally with 106 pfu of VACV WR (equal to 5

LD50) as previously described in chapter 3, section 3.2.6.  Mice were weighed daily

for two weeks and were sacrificed if their weight fell below 70% of initial weight.

The average percentage of initial weight for each treatment group from two

independent experiments is shown in figure 5-5.
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Figure 5-4:  Comet reduction assay. The comet reduction assay was used as a way

to detect anti-EV antibodies that inhibit the formation of secondary satellite plaques

in vitro.  Confluent BS-C-1 monolayers were infected with IHD-J virus and treated

with heat-inactivated pooled sera (diluted 1:50) from mice prior to immunization (0)

or three weeks following the final immunization (3).  A well of cells that was infected

but not treated with serum is shown above under the label “None.”  Cells were stained

with crystal violet 36 hours after infection to visualize plaques.
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Figure 5-5: Intranasal challenge with 106 pfu (5 LD50) of VACV WR.  Female

BALB/c mice (n=10 mice/group) were immunized three times at three-week intervals

with 10 µg of A33, A27, or L1 and MPL+TDM adjuvant.  An additional group was

unimmunized.  Three weeks following the third immunization mice were challenged

intranasally with 106 pfu of VACV WR (5 LD50) and were weighed daily for two

weeks.  Mice were sacrificed if their weight fell below 70% of their initial weight.

Only 3 out of 10 unimmunized mice survived after the 7th day post-infection, while

all immunized mice survived.  The data shown above is the average percentage of

initial weight for each group from two independent experiments +/- SEM.

Abbreviations: Unimm, unimmunized; Untr, untreated.
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Additional control groups include unimmunized mice that were challenged with virus

(Unimm) and untreated (Untr) mice that served as a control for daily weight

fluctuations.  Only 3 out of 10 unimmunized mice survived beyond the 7th day after

challenge, but all protein-immunized mice survived challenge.  Mice immunized with

A33 and L1 had a similar degree of weight loss over time, while A27 immunization

resulted in weight loss similar to what was observed in unimmunized mice (figure 5-

5).  Statistical analysis confirmed that L1 was significantly more protective against

weight loss than A27 (p=0.01494) and this comparison suggests that A27 is inferior

to L1 as a protective immunogen.

5.3.5 Protection of Mice Following IN Challenge with 2 x 107 pfu of

VACV WR

Female BALB/c mice were immunized with recombinant forms of A27, A33,

or L1 in the same manner as described in the preceding section.  In addition, mice

were immunized with two different combinations of IMV and EV proteins, A33 and

A27 or A33 and L1.  These combinations were included to determine if there were

any differences in protection of mice immunized with A33 and different IMV

proteins.

A challenge protocol described in chapter 3, section 3.2.6 showed protection

of mice given IMV and EV protein combinations at a higher challenge dose of 2 x 107

pfu (equal to 100 LD50) of VACV WR.  Therefore, mice were challenged three weeks

following the third protein immunization with this virus dose and were weighed for

two weeks.  Figure 5-6, panel A shows the percentage of survivors each day after

challenge. The majority of unimmunized mice or those given A27 or L1 died, and
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half of A33-immunized mice survived.  A dramatic improvement in survival was seen

in mice given either protein combination (figure 5-6A).  Weight loss following

challenge reflected the survival data to a degree.  Overall, greater weight loss was

seen in mice immunized with individual proteins compared to those challenged with

106 pfu of VACV WR (figure 5-6B).  Weight loss in mice given A33+A27 did not

differ from mice given single proteins, but mice immunized with A33+L1 showed the

least weight loss (figure 5-6B).  Statistical analysis confirmed these findings in that

weight loss in A33+L1-immunized mice was significantly less than in mice

immunized with A33 (p=0.02925) or A27 (0.00329) alone.
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Figure 5-6: Intranasal challenge with 2 x 107 pfu (100 LD50) of VACV WR.

Female BALB/c mice (n=10 mice/group) were immunized three times at three-week

intervals with A33, A27, or L1, or the combinations A33+A27 or A33+L1

(10 µg/protein/immunization) and MPL+TDM adjuvant.  An additional group was

unimmunized.  Three weeks following the third immunization mice were challenged

intranasally with 2 x 107 pfu of VACV WR (100 LD50) and were weighed daily for

two weeks. Mice were sacrificed if their weight fell below 70% of their initial weight.

(A) Average percentage of survivors each day after challenge. (B) Average

percentage of initial weight following challenge.  The data shown above was

calculated from the averages of two independent experiments +/- SEM.

Abbreviations: Unimm, unimmunized; Untr, untreated.
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Despite the enhanced survival observed in mice immunized with A33+A27, the

dramatic weight loss following challenge indicates that A27 is inferior to L1 as an

immunogen given alone or in combination with A33.

5.4 Discussion

We investigated the immunogenicity and protection provided by

immunization of mice with a recombinant form of the IMV protein A27.  A previous

study described in chapter 3 demonstrated that recombinant forms of A33, B5 and L1

induced specific antibody responses that were protective against infection in an

intranasal virus challenge mouse model.  L1 immunization also induced formation of

IMV-specific neutralizing antibodies.  In this study, a recombinant form of A27 was

tested as an alternative IMV immunogen.   This recombinant protein behaved

similarly to its viral counterpart with respect to its electrophoretic mobility and its

assembly into homotrimeric complexes. Specific binding antibodies were induced in

mice following multiple immunizations with recombinant A33, L1 or A27.  IMV

neutralizing antibodies were also detected in mice immunized with L1 or A27.

Protection against weight loss and death was not significant in A27-immunized mice,

in spite of high binding and neutralizing antibody titers.  Overall, A27 did not match

or surpass L1 as an individual IMV-specific immunogen in the lethal intranasal

mouse challenge model.

Our previous success of using a combination of IMV and EV proteins as

immunogens was tested again by immunizing mice with A33 combined with L1 or

A27.  These results showed superior protection against both low and high virus

challenge doses in mice immunized with A33 and L1, and this was confirmed in the
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present study following challenge with 2 x 107 pfu.  The majority of mice immunized

with A27 and A33 (80% survival) were protected against death, similar to mice given

A33 and L1 (100% survival), but the former group was not significantly protected

against weight loss.  The relatively similar levels of neutralizing Abs measured in

mice immunized with A27 or L1 was not predictive of subsequent protection, and this

may be due to the kinds of Abs produced, including isotypes, and they function to

inhibit infection in vivo.  This data suggests that combining A27 with A33 does

enhance protection compared to using either of these proteins alone, but A33 and L1

appear to provide even greater protection as a combination.

An earlier study by Lai and co-workers showed protection of mice following

immunization with E.coli-expressed A27.  Mice were immunized twice with either 50

or 10 µg of protein with Freund’s adjuvant and formed binding and neutralizing

antibodies [173].  Both immunization doses protected mice against a lethal

intraperitoneal virus challenge, but it is difficult to compare this data to our mouse

model since a different challenge route was employed.  A more recent study by

Hooper and co-workers showed that multiple immunizations with a DNA vaccine

encoding the A27 gene induced a specific and neutralizing antibody response [176].

Unlike the studies presented here and by Lai and co-workers, protection was not

evaluated in mice immunized with A27 DNA alone and challenge experiments were

only done in mice given the gene in combination with other VACV genes.  On the

other hand, mice were better protected against challenge when given B5 and L1

compared to B5 and A27, much like our observations.
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The recombinant form of A27 is an effective protein for induction of both

binding and neutralizing antibodies, but does not function significantly better than L1

as a protective immunogen.  Given the difficulty and expense of developing a subunit

vaccine with multiple immunogens, L1 appears to be the better choice over A27 for

an MV protein in future vaccines.
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Chapter 6

Improved Antibody Responses to Recombinant Protein

Immunization with Different Adjuvants Corresponds to Enhanced

Protection of Mice and Monkeys against Orthopoxvirus Challenge

6.1 Introduction

The vaccine studies described in chapter 3 and 5 provide compelling evidence

that multiple recombinant VACV proteins induce protective immune responses in a

mouse pneumonia model of infection.  Individual EV proteins A33 or B5 or MV

proteins L1 or A27 induced specific and neutralizing antibodies and partially

protected mice after three or four protein immunizations combined with the

MPL+TDM adjuvant system.  Superior protection was observed in mice immunized

with a combination of MV and EV proteins, especially with A33 and L1.  These

results were promising because high antibody levels are often induced by protein

immunization, and the TCD4+ cell-induced antibody response is presently considered

the most important player for protection against orthopoxvirus infection in both

mouse [127, 128, 132, 218] and monkey models [218, 251].  [218]

Immunostimulatory adjuvants can enhance the quality and scale of antibody

responses to protein immunogens.  Studies described by ourselves and others have

been dependant on three or four protein immunizations for protection (Chapter 2,

[174, 223]).  A goal of the present study is to ascertain if different adjuvants can

induce a more rapid and potent immune response to recombinant forms of A33 and
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L1 in our mouse pneumonia model. Aluminum hydroxide gel (alum) is presently the

only vaccine adjuvant licensed for human use and used in both pediatric and adult

vaccines.  Protein and DNA can be adsorbed to alum and these complexes are highly

stable once formed [252].  Immunization with antigen-alum complexes forms an

antigen depot at the site of injection, which enhances antigen uptake by antigen

presenting cells.  More recent studies have better characterized the

immunostimulatory effects of alum, including the activation of cytokines and specific

T-cell subpopulations [253, 254].   We are interested in exploring the efficacy of alum

because of its long history as a safe adjuvant in a wide array of human and animal

vaccines and its ability to be combined with other adjuvants to further enhance

immunostimulation.

Several experimental adjuvants have been developed to induce higher immune

responses to weak antigens or to optimize the type of immune response against a

given pathogen.  Lipopolysaccharide (LPS) from the cell membrane of Gram-

negative bacteria is a potent, but toxic immunogen that was identified as an effective

stimulator of the innate immune response via the toll-like receptor TLR4 [255].  Ribi

and colleagues systematically modified LPS and developed a nontoxic derivative

called monophosphoryl lipid A (MPL) that retained the same immunostimulatory

qualities as LPS [256].  MPL has been safely used as a vaccine adjuvant in animal

models and in human clinical trials against several infectious diseases and has been

effective in shifting immune responses to some antigens from a Th2-dominant to a

Th1-dominant response [257].  Trehalose dicoyrnomycolate (TDM) from the cord

factor of the tubercle bacillus has also been used in combination with MPL to
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enhance the adjuvant effect [258] and this emulsion adjuvant is often used as a safer

alternative to Freund’s complete adjuvant.  Earlier work described in chapter 3 and 5

showed protection of mice following three or four immunizations with recombinant

forms of A27, A33, B5 and L1 proteins combined with MPL+TDM [223].

QS-21 is a water-soluble saponin extracted from the bark of the Quillaja

saponaria Molina tree that is also under development as an experimental adjuvant.

QS-21 has been shown to enhance both humoral and cell-mediated immune responses

and has been widely used in human clinical trials [259].

An emerging adjuvant strategy is the use of synthetic oligodeoxynucleotides

with unmethylated CpG motifs (CpG ODNs).  Bacterial DNA contains a high

frequency of unmethylated CpG motifs, and these motifs alone have been shown to

stimulate the innate immune response like MPL adjuvant but through recognition by

the TLR 9 receptor [260-262].  CpG ODNs have been used in experimental vaccines

and can induce a shift towards Th1-polarized responses in both animal models and

humans [263] and can be combined with both mineral-based adjuvants like alum and

emulsion adjuvants like MPL+TDM.

The study described in this chapter will compare the immunogenicity and

protection of intranasally-infected mice immunized with recombinant forms of the

VACV proteins A33 and L1 combined with alum, alum and CpG ODNs, MPL +

TDM or QS-21 adjuvants. A small primate study will also be described that examines

protection against monkeypox following multiple immunizations with recombinant

VACV proteins A33, B5 and L1 and the QS-21 adjuvant.
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6.2 Materials and Methods

6.2.1 Cells and Viruses

BS-C-1 monolayers and HeLa S3 suspension cells were maintained as

detailed in chapter 3, section 3.2.1.  Vero E6 cells were maintained at 37°C and 5%

CO2 in Dulbecco’s modified essential medium (DMEM) supplemented with 10%

heat-inactivated fetal bovine serum (Hyclone, Logan, UT),  2 mM L-glutamine

(Invitrogen, Carlsbad, CA), 10 U/ml penicillin and10 µg/ml streptomycin

(Invitrogen). Virus stocks of VACV WR, IHD-J, and VV-NP-SIINFEKL-EGFP were

grown in HeLa cells and purified by sucrose density centrifugation as described in

chapter 3, section 3.2.1.  Plaque assays were used to determine titers of viral stocks.

MPXV strain Zaire 79 (V-79-I-005) originally isolated from the scab of an

infected human by incubation in LLC-MK2 cells and passaged twice in BS-C-40 cells

was obtained from J. Esposito and propagated in MA-104 cells. A titered clarified

lysate was used for the virus challenge.

6.2.2 Recombinant Proteins and ODNs

Recombinant baculovirus-expressed forms of A33 and L1 were provided by

our collaborators at the University of Pennsylvania in the laboratory of Drs. Gary

Cohen and Roselyn Eisenberg, and were expressed, purified and characterized as

described in chapter 3.2, section 3.2.3. A mixture of two CpG ODNs

(GCTAGACGTTAGCGT and TCAACGTTGA) were used as vaccine adjuvants . No

endotoxin or protein was detected in ODN preparations as determined by the

chromogenic Limulus amoebocyte lysate assay and bicinchoninic acid protein assay

(Pierce), respectively.
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6.2.3 Immunization Protocol

Female BALB/c mice (5-6 weeks old) were purchased from Taconic and

housed in sterile microisolators at an NIH animal facility. Mice were immunized

subcutaneously and boosted three weeks later with 10 µg each of A33 and L1

proteins in phosphate buffered saline (PBS) alone or with alum, alum and 50 µg of

phosphorothioate oligodeoxynucleotides (ODNs) containing CpG motifs, a Ribi-

adjuvant system (MPL+TDM; Sigma-Aldrich, St. Louis, MO), or a saponin adjuvant

QS-21 (Antigenics Inc., New York, NY).  Proteins or proteins and CpG ODNs were

adsorbed to alum by vortexing tubes containing immunogens while adding alum in a

dropwise manner and then adding PBS to dilute mixtures to the appropriate

concentration.  MPL+TDM was solubilized in PBS to 2x concentration and combined

with immunogens and PBS and vortexed to create a stable oil-in-water emulsion.

QS-21 adjuvant (2 mg/ml stock in sterile water) was diluted with proteins and PBS to

a final concentration of 15 µg/ml. All immunization mixtures were administered

subcutaneously at a final volume of 100 µl.  Mice were bled one day prior to each

immunization or prior to challenge by tail bleed for serological analysis.

6.2.4  Intranasal Virus Challenge of Mice

Mice were challenged intranasally three to four weeks after the second protein

immunization as detailed in chapter 3, section 3.2.9.  An aliquot of purified VACV

WR was thawed, sonicated and diluted in sterile PBS immediately prior to challenge

to a final dose of 106 pfu/20 ml (approximately 5 LD50).  Mice were lightly sedated

by inhalation of isoflurane and intranasally infected with 20 µl of virus inoculum (10

µl/nostril), and were monitored and weighed daily for two weeks.  Mice were
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euthanized if they lost greater than 30% of their initial weight.  The NIH Animal Care

and Use Committee approved this protocol.

6.2.5 Monkey Immunization and Challenge Protocol

Three female cynomolgous monkeys were subcutaneously immunized with

100 µg each of A33, B5 and L1 proteins mixed with 50 µg of QS-21 adjuvant on days

0, 28, 57, and 251 of the study.  A control monkey was immunized in parallel with

only 50 µg of QS-21 and two additional monkeys remained unimmunized.  Mice

were bled one day before each immunization or before challenge for isolation of

serum for serological analysis.  Mice were intravenously challenged four weeks

following the fourth immunization with 5 X 107 pfu of MPXV and monitored daily

for signs of illness.  Supportive care and intravenous fluids were provided as needed

during the course of challenge and blood was collected every three to four days for

further analysis. Monkeys were housed at Bioqual, Inc. (Rockville, MD) during the

immunization period and transferred to US Army Research Institute of Infectious

Diseases (USAMRIID, Ft. Detrick, Frederick, MD) at the time of challenge.  The

USAMRIID and NIH Animal Care and Use Committees approved the protocols.

6.2.6 ELISA

96-well round bottom plates (Corning) were coated with recombinant A33, B5

or L1 proteins or a vaccinia virus-infected cell lysate to detect specific binding

antibodies as previously described chapter 3, section 3.2.7.  Serum was heat-

inactivated at 56°C for 30 minutes prior to analysis and reciprocal endpoint titers

were determined by serial two-fold dilution of pooled mouse serum or individual
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monkey serum samples.  Total mouse IgG was detected by addition of anti-mouse (γ-

chain) horseradish peroxidase (HRP)-conjugated antibody (Roche Diagnostics,

GmbH, Mannheim, Germany) and isotype-specific antibodies were distinguished by

using horseradish peroxidase-conjugated antibodies against murine IgG1 or IgG2a

(BD Pharmingen, San Diego, CA).  Monkey antibodies were detected with an anti-

monkey immunoglobulin, Fc-specific peroxidase-conjugated antibody used at a

1:4000 dilution (Nordic Immunology, Tilburg, The Netherlands). A ready-to-use

solution of soluble 3,3',5,5'-tetramethylbenzidine (BM Blue, POD substrate; Roche

Diagnostics) was added to plates after removal of HRP-conjugated antibody and the

A370 and A492 was measured with a spectrophotometer after incubation for 30 minutes

at room temperature.   Reciprocal endpoint titers were determined for mouse samples

as the dilution with an absorbance of 0.1 after subtraction of background absorbance

of serum samples incubated on plates not coated with protein.  Similarly, titers of

monkey samples were determined as the dilution with an absorbance two standard

deviations above that measured in wells not treated with serum.

6.2.7 MV Neutralization and Comet Reduction Assays

MV neutralizing antibodies were measured with a flow cytometric-based

assay using a recombinant VACV that expresses EGFP (VV-NP-SIINFEKL-EGFP)

as an indirect indicator of virus replication as previously described in reference [215]

and chapter 3, section 3.2.8.  The 50% neutralization titers were determined for both

mouse and monkey sera samples as the concentration correlating to inhibition of

infection by 50% relative to infection in the absence of serum.
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The comet inhibition assay was used to observe inhibition of the spread of

secondary satellite plaques by anti-EV antibodies.  Mouse or monkey sera diluted

1:50 was added to BS-C-1 cell monolayers infected with IHD-J as detailed in chapter

3, section 3.2.8. Plates were incubated for 36-40 hours at 37°C and were stained with

crystal violet to visualize the comet-shaped plaques.

6.2.8 Determination of MPXV Genomes in Blood

Viral DNA was extracted from whole blood using the QIAGEN QIAamp

DNA Mini Kit. A quantitative TaqMan-Minor Groove Binder polymerase chain

reaction was set up with a pan-orthopoxvirus probe as previously described . Each

sample was run in duplicate and the limit of detection for this assay was 200

genomes/ml of blood.

6.2.9 Statistical Analysis

Statistical analysis was carried out with mouse weight loss data collected

following intranasal challenge.  To compare treatment groups, the area under the

curve (AUC) corrected for the follow-up period was calculated for each mouse for

days 2 through 14 post-infection as a summary statistic with a trapezoidal rule using

all available measurements [249]. AUC values were compared between all treatment

groups with the non-parametric Wilcoxon rank sum test adjusting p-values according

to Holm [250] was used to control family wise error rate in the multiple tests. AUC

analysis was also used to compare ELISA titers in individual mice, as well as monkey

viral load and lesion count data, and a t-test was employed to compare groups.
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6.3 Results

6.3.1 Antibody Responses to A33 and L1 Proteins Following

Immunization with Different Adjuvants

In chapter 3, I described a multiprotein subunit vaccine that included the MV

protein L1 and the EV proteins A33 and B5 that effectively protected mice against a

lethal intranasal virus challenge following three or four immunizations [223].  A goal

of the study described in this chapter is to determine if mice can be better protected

from death and illness with fewer protein immunizations by using alternative

adjuvants.  The earlier study showed that mice were protected nearly as well with a

combination of A33 and L1 compared to A33, B5 and L1.  We decided to immunize

mice with only A33 and L1 for this reason and because we thought we would better

discern the effects of different adjuvants. Female BALB/c mice were immunized

subcutaneously and boosted three weeks later with recombinant forms of the VACV

proteins L1 and A33 with or without an adjuvant. The following adjuvants were used:

alum, alum+CpG ODNs, MPL+TDM or QS-21.  A group of mice was immunized

with alum+CpG ODNs as a negative control for protein immunization.  Serum was

collected from mice prior to each immunization or prior to virus challenge to measure

antibody responses.   Mice immunized with protein and QS-21 were the only group to

show a potent antibody response after one immunization and were further boosted

after the second immunization to levels that were comparable to titers reached after

three immunizations in our previous study with the MPL+TDM adjuvant (figure 6-

1A, shaded box).
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Figure 6-1:  ELISA values of pooled mouse sera following immunizations with

A33 and L1 proteins combined with different adjuvants.   Mice (n = 5) were

immunized twice with a mixture containing 10 mg each of A33 and L1 proteins (AL)

alone or combined with the alum, alum+CpG, MPL+TDM (MPL) or QS-21 and

challenged with 106 pfu of VACV WR at 3 weeks after the last immunization. Serum

was collected prior to immunization (week 0), three weeks following immunizations

1 and 2 (shaded area), and two weeks after challenge (unshaded area).  Antibodies to

A33 (A) and L1 (B) were determined on pooled sera by ELISA and reciprocal

endpoint values are plotted.  Serum collected three weeks after the second

immunization was re-analyzed for IgG1 or IgG2a isotype antibodies to A33 (C) and

L1 (D).
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In this study, protein-immunized mice given alum+CpG ODNs or MPL+TDM

adjuvants showed similar anti-A33 titers, albeit lower than in mice given QS-21, but

were higher than in mice immunized with alum or no adjuvant (figure 6-1A).  L1 was

less immunogenic than A33, as seen in our earlier studies, but a strong antibody

response was observed after two protein immunizations with QS-21 or alum+CpG

ODNs.  Anti-L1 responses were lower with MPL+TDM adjuvants and undetectable

with alum or no adjuvant (figure 1B).  The effectiveness of adjuvants on antibody

titers can be ordered as was QS-21 > alum+CpG ODNs > MPL+TDM > alum = no

adjuvant.  Antibody titers following challenge, shown in the non-shaded areas of

figure 6-1, panels A and B, will be discussed in section 6.3.2.

The analysis of binding antibodies was done with pooled serum from mice in

each immunization group.  The serum of individual mice was analyzed after the

second immunization to determine if there were statistically significant differences

between groups and the titers are shown in table 6-1.  Table 6-2 shows the p-values

determined by statistical analysis for both A33 and L1 ELISAs.  Antibody titers

against A33 were significantly higher in mice immunized with protein and QS-21

compared to any other group (p<0.00002), and A33 titers were significantly higher in

mice immunized with proteins and alum and CpG ODNs or with MPL+TDM

compared to protein alone or with alum, but the former adjuvants did not differ

significantly from each other.  Similar trends were observed with L1 titers, but

protein-immunized mice given QS-21 or alum and CpG ODNs did not differ

significantly.
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Table 6-1: Individual ELISA titers against A33 and L1 after two immunizations.

Abbreviations: AL, A33+L1; AL+A, A33+L1+alum; AL+A+C, A33+L1+alum+CpG

ODNs, AL+M, A33+L1+MPL+TDM; AL+Q, A33+L1+QS-21.

ELISA antigen
Immunization Mouse ID

A33 L1

AL 2840 100 200

AL 2841 200 200

AL 2842 100 400

AL 2843 200 200

AL 2844 400 100

AL average 200 220
AL+A 2850 400 100

AL+A 2852 400 100

AL+A 2853 400 100

AL+A 2854 400 100

AL+A average 400 100
AL+A+C 2880 800 1600

AL+A+C 2881 25600 800

AL+A+C 2882 1600 3200

AL+A+C 2883 12800 12800

AL+A+C 2884 3200 12800

AL+A+C average 8800 6240

AL+M 2860 12800 800

AL+M 2861 6400 6400

AL+M 2862 3200 800

AL+M 2863 3200 1600

AL+M 2864 51200 800

AL+M average 15360 2080

AL+Q 2870 204800 3200

AL+Q 2871 409600 51200

AL+Q 2872 409600 25600

AL+Q 2873 204800 6400

AL+Q 2874 409600 3200

AL+Q average 327680 17920
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Table 6-2: P-values determined by pairwise comparisons of individual ELISA

data using t-tests with pooled standard deviations.

     A33 ELISA

AL AL+A AL+A+C AL+M
AL+A 0.3033 - - -
AL+A+C 6.8e-05 0.0013 - -
AL+M 6.6e-06 9.5e-05 0.3033 -
AL+Q 1.8e-10 1.4e-09 1.7e-06 1.6e-05

    L1 ELISA

AL AL+A AL+A+C AL+M
AL+A 0.49920 - - -
AL+A+C 0.00073 0.00017 - -
AL+M 0.02188 0.00533 0.37190 -
AL+Q 2.6e-05 6.8e-06 0.37190 0.02188

Significant p-values (p < 0.05) indicated by numbers in bold.

Abbreviations: AL, A33+L1; AL+A, A33+L1+alum; AL+A+C, A33+L1+alum+CpG

ODNs, AL+M, A33+L1+MPL+TDM; AL+Q, A33+L1+QS-21.
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Typically, protein immunization induces a predominantly Th2 response, which is

characterized by IgG1 as the dominant immunoglobulin isotype in BALB/c mice.

Th1-dominant responses are associated with virus infection and the IgG2a antibody

isotype, but different adjuvants can also favor Th2 responses to protein immunogens.

Figures 6-1A and and 6-1B show the IgG1 and IgG2a levels generated by protein

immunization with different adjuvants in pooled serum collected three weeks after the

second immunization.  IgG1 antibodies against A33 were seen exclusively in mice

given protein alone or with alum, but IgG2a antibodies increased in mice given alum

and CpG ODNs or MPL+TDM (figure 6-1C).  Remarkably, the highest level of

IgG2a was observed with QS-21.  L1 antibodies were mostly of the IgG1 isotype in

all groups but IgG2a titers increased in groups given protein with alum and CpG

ODNs or QS-21 (figure 6-1D).   These results indicate that both the scale and the

isotype specificity of the antibody response are affected by the protein immunogen

and adjuvant.   QS-21 gave the most balanced response, indicated by the relatively

similar levels of IgG1 and IgG2a antibodies.  Alum+CpG ODNs or MPL+TDM were

the next most effective adjuvants for increasing both the magnitude of the overall

response and specific IgG2a titers. The isotype may be dictated by the type of antigen

presenting cells that are most effective in stimulatng the T-helper response, such as B-

cells.
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Figure 6-2: Induction of neutralizing antibody.   The sera described in Figure 6-1

obtained from mice immunized with A33 and L1 (AL) plus the indicated adjuvants

were used. MV neutralizing antibodies were measured with a flow cytometry-based

GFP assay and the 50% inhibitory concentration  (IC50) was determined for each pool

of mouse sera.
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6.3.2  Induction of Neutralizing and Comet-Reducing Antibodies

Neutralizing antibodies were measured with a GFP-based flow cytometry

assay previously described in chapter 3, section 3.2.4.  Figure 6-2 shows that

neutralizing antibodies were undetectable after one immunization but were observed

three weeks after the boost.Protein immunization with QS-21 or alum+CpG ODNs

induced the highest neutralizing antibody titers in mice, while titers were somewhat

lower with MPL+TDM and undetectable with alum or no adjuvant (figure 6-2).  Post-

challenge neutralizing antibody titers are discussed in a following section.

Once again, EV-specific antibodies that inhibit the formation of satellite

plaques in vitro were detected by using the comet reduction assay.  Pooled sera

samples collected three weeks after the booster immunization were added to IHD-J

infected cells as shown in figure 6-3 in the column labeled “pre-challenge.”   As

expected, sera from mice immunized with only alum and CpG ODNs or protein

without adjuvant showed no noticeable plaque reduction.  Protein immunization with

the other adjuvants induced different degrees of comet reduction, and mice given QS-

21 showed the most dramatic reduction, which also correlates to the highest titers

against the EV protein A33 (figure 6-3).  Post-challenge comet reduction will be

discussed in the following section.

6.3.3 The Effect of Different Adjuvants on Protection of Mice Against

Lethal Intranasal Virus Challenge

Our previous studies discussed in chapters 3 and 5 that characterized

protection of mice following multiple protein immunizations used an intranasal

challenge model as a tool to judge protection [223].  The reasons for using this
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Figure 6-3: Induction of comet-reducing antibody. The sera described in Figure 6-
1 obtained from mice immunized with A33 and L1 (AL) plus the indicated adjuvants
were used to detect antibodies that inhibit the formation satellite plaques due to
spread of EV in liquid medium.  BS-C-1 cells were infected with VACV strain IHD-J
(80 pfu/well), overlaid with medium containing a 1:50 dilution of pooled mouse
serum, and 40 h later stained with crystal violet.  Comet-shaped plaques were
counted. The column labeled pre-challenge represents samples collected three weeks
after the second immunization and one day prior to intranasal virus challenge.  The
post-challenge column shows samples collected from surviving mice two weeks
following challenge.  The well shown in the upper left corner shows the typical
formation of comet-shaped plaques in the absence of serum.
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challenge model were previously described in chapter 3, section 3.2.6, including the

measurement of weight loss as an indirect measurement of virus replication and

disease severity.  In this study, mice were challenged with 106 pfu (5 LD50) of VACV

WR three to four weeks after their second immunization and were euthanized if they

lost greater than 30% of their initial weight following challenge.  Unlike previous

studies, we did not challenge a subset of mice with a higher challenge dose because

we expected to discern differences between groups using 5 LD50 after only two

immunizations.  The majority of mice given only alum and CpG ODNs or the A33

and L1 proteins without adjuvant did not survive challenge (figure 6-4A).  Half of the

mice given proteins with alum and 80% of those given protein and MPL+TDM

survived challenge.  Most notably, no deaths were observed in mice immunized with

proteins and QS-21 or alum+CpG ODNs adjuvants (figure 6-4A).  Nearly all of the

surviving mice showed steep weight loss in the first week following challenge, except

for those immunized with proteins and QS-21 (figure 6-4B).  In fact, this group

showed little weight loss and no outward signs of illness during the two-week period

following challenge.  Immunization with proteins with alum and CpG ODNs

provided the next best degree of protection against weight loss compared to the

remaining treatment groups.  A study by Rees and co-workers showed protection of

mice infected with VACV in the upper respiratory tract by prophylactic treatment of

mice with CpG ODNs alone [217].  Protection required administration of ODNs near

the time of challenge, and no protective effect was observed in mice treated three

weeks before challenge, which was the shortest time interval between immunization

and challenge in this study.  CpG ODNs presumably trigger an innate immune
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Figure 6-4:  Survival and weight loss in mice immunized with A33 and L1

proteins and different adjuvants followed by intranasal VACV challenge.  Mice

were immunized as described in Fig. 6-1, and were intranasally challenged three

weeks following the second immunization with 106 pfu of VACV WR. The untreated

(Untr) mice were not immunized or challenged.  The alum+CpG ODN group received

no recombinant protein. Mice were weighed daily for two weeks and sacrificed if

their weight fell below 70% of the initial value.  The percent of survivors (A) and the

percent of initial weight of surviving mice (B) are shown for each group. The data

shown here represents two independent experiments and each group had 4-5

mice/group.  Each data point is the average weight +/-SEM of mice in each group

from the two challenge experiments.
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response, which may protect against virus challenge.  This effect does not appear to

influence our study since no protection was seen in a group of negative control mice

given only alum with CpG ODNs.

Statistical analysis was carried out with weight loss data in a similar manner

as described in chapter 5, section 5.3.4.  Area under the curve (AUC) was calculated

as a summary statistic for the weight loss measured in each animal and the

nonparametric Wilcoxan rank sum test with the Holm p-value adjustment method for

multiple tests was used to compare groups.  Table 6-3 summarizes the p-values

calculated between each group.  This analysis confirms that immunization with

proteins and QS-21 was significantly more protective against weight loss than protein

immunization with any other adjuvant. Mice given proteins with alum and CpG

ODNs showed the next best degree of protection followed by those given proteins

and MPL+TDM adjuvant.  Immunization with alum and CpG ODNs and no protein

or with proteins and no adjuvant did differ significant from each other.  These results

paralleled the number of survivors in each group and the levels of antibody responses

induced by immunization since the most protective vaccines had the greatest number

of survivors and induced the highest antibody titers.

Virus challenge induces antibody responses in both naïve and immunized

mice, and the scale and nature of the antibody response is an indirect indicator of the

level of virus replication.  Serum was collected from surviving mice two weeks after

virus challenge and was analyzed by ELISA for binding antibodies to A33 and L1

(figure 6-1A and B).  The mice that showed the best protection, specifically those

given proteins with QS-21 or alum and CpG ODNs, showed little or no increase
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Table 6-3.  Table of p-values calculated with area under the curve analysis

followed by the Wilcoxan rank sum test using the Holm p-value adjustment.

  Alum+CpG  AL AL+A AL+A+C AL+M
AL+A 0.4 0.4 - - -
AL+A+C 0.002 0.002 0.02 - -
AL+M 0.02 0.02 0.4 0.4 -
AL+Q 0.0005 0.0003 0.0005 0.0008 0.0003

Significant p-values (p < 0.05) indicated by numbers in bold.

Abbreviations: AL, A33+L1; AL+A, A33+L1+alum; AL+A+C, A33+L1+alum+CpG

ODNs, AL+M, A33+L1+MPL+TDM; AL+Q, A33+L1+QS-21.
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antibody titers against A33 or L1 (figure 6-1A and B, respectively).  Conversely,

mice with lower antibody responses prior to challenge that not well protected against

disease showed a greater boost in antibodies against these same proteins (figure 6-1A

and B).

A similar trend was seen with respect to IMV neutralizing antibodies and EV-

specific comet reducing antibodies.  Virus challenge induces a polyclonal antibody

response against many viral proteins, including several IMV proteins that induce

neutralizing antibodies.  Therefore post-challenge measurement of neutralizing

antibodies is not specific to L1 as seen prior to challenge.  Mice immunized with

proteins and CpG ODNs showed little change in IMV-specific neutralizing antibodies

after challenge (figure 6-2).  All other groups showed a significant boost and the rise

in post-challenge neutralizing antibodies is probably against multiple IMV proteins.

Likewise, sera from all groups caused significant comet inhibition after challenge,

especially in the groups with lower anti-A33 antibody titers prior to challenge (figure

6-3).

6.3.4 Induction of Binding and Neutralizing Antibodies in Cynomolgous

Monkeys Immunized with Recombinant A33, B5 and L1 Proteins

with QS-21.

A small experiment with cynomolgous monkeys was initiated prior to

completion of the mouse experiments to test the efficacy of recombinant proteins as a

vaccine in a non-human primate model. Three cynomolgous monkeys (monkeys 030,

770, 974) were immunized three times at one-month intervals with 100 µg each of

recombinant A33, B5 and L1 proteins with QS-21 adjuvant.  One monkey was
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immunized with QS-21 adjuvant alone (monkey 026) and two remained

unimmunized (monkeys 398, 419) as negative controls.  Figure 6-5A shows the

ELISA titers from the immunized monkeys at each time point.  One month after the

first immunization antibodies were detected against A33, B5 and L1 in each of the

monkeys and were boosted after the second immunization.  Titers were also boosted

after the third immunization, in spite of falling off after the prior immunization.

Titers fell again during the six-month period between the third and fourth

immunizations more than one log lower than the highest values, but they were

boosted again after the fourth immunization.  Figure 6-5B shows titers measured with

a VACV-infected cell lysate ELISA that detects binding antibodies against many

viral antigens, and antibody responses closely parallel those observed with the protein

ELISA in figure 6-5A.

Neutralizing antibodies against IMV, presumably specific to L1, were

distinguished after one immunization and boosted with each succeeding

immunization (figure 6-5B).  IC50 titers fell to background levels between the third

and final immunizations, similar to results obtained for binding antibodies, but were

boosted to their highest levels after the last immunization.

Murine antibodies specific to the EV proteins A33 and B5 have been shown to

reduce comet formation by inhibiting the spread of EV particles to nearby cells in

tissue culture.  Figure 6-5C shows that protein-immunized monkeys (030, 770, and

974) also produce specific antibodies that inhibit comet formation, while the monkey

immunized with adjuvant only shows no detectable comet inhibition.
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Figure 6-5:  Analysis of monkey sera following immunizations with A33, B5 and L1 combined
with QS-21.  Cynomolgous monkeys were immunized with 100 mg each of recombinant A33, B5 and
L1 proteins combined with the adjuvant QS-21 at days 0, 28, 57 and 251 as indicated by double arrows
below the x-axis.  Four weeks after the fourth immunization, monkeys were challenged intravenously
with 5 X 107 pfu of MPXV as indicated by the solid black triangle above the x-axis. ELISAs specific
for A33, B5, and L1 (A) and against an infected cell lysate (B) were performed on sera collected prior
to each immunization and challenge. IMV-neutralizing antibodies were also measured and the 50%
inhibitory concentrations (IC50) from different serum samples are represented by the y-axis on the right
(B). The presence of EV-neutralizing antibodies in sera collected 4 weeks after challenge was
determined using the comet reduction assay (C).  BSC-1 cells were infected with 80 pfu of VACV-
strain IHD-J for 2 h.  Following removal of the virus inoculum, the cells were overlaid with medium
containing heat inactivated serum and a 1:50 dilution of monkey serum.  Cells were incubated for 36 h
at 37ºC and stained with crystal violet.  Key: None, no serum; 026, adjuvant only monkey serum; 030,
770, 974, sera from immunized monkeys.
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6.3.5 Protection of Monkeys Against an Intravenous MPXV Challenge

Following Multiple Protein Immunizations

Initially, monkeys were to be challenged following the third protein

immunization, but logistical difficulties did not allow for challenge at that time.

Several months later, we were presented with an opportunity to challenge our

monkeys with collaborators at USAMRIID in Fort Detrick, Maryland.  We

immunized monkeys with a fourth dose of proteins to boost antibody titers that had

fallen off in the intervening months.  The monkeys immunized with protein and QS-

21 (030, 770, 974) and the negative control monkeys that received only QS-21 (026)

or nothing (398, 419) were subsequently challenged intravenously four weeks later

with 5 X 107 pfu of MPXV.  Monkeys were monitored daily for signs of illness and

all three negative control monkeys became gravely ill with severe weight loss and

fever as previously described [167], and the QS-21-immunized monkey (026) died 12

days after challenge.

In contrast, all monkeys immunized with protein and QS-21 adjuvant

appeared healthy after challenge during the one-month observation period.  Virus

lesions were counted every three to four days as an indirect measure of virus

replication and disease severity as shown in figure 6-6A.  At their peak 12 days after

infection, all unimmunized monkeys had greater than 500 lesions (figure 6-6A).  The

three immunized monkeys had significantly fewer lesions compared to unimmunized

monkeys as determined by statistical analysis (p=0.02).  The lesions observed in

immunized monkeys were smaller and atypical compared to naïve monkeys and

developed less synchronously.
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Figure 6-6:  Protein immunization reduces skin lesions and circulating virus in

macaques. (A) Skin lesions. Monkeys immunized as described in the legend to figure

6-5 were challenged intravenously with 5 X 107 pfu MPXV and skin lesions were

counted at 3 to 4 day intervals.  (B) Blood samples were collected at 3 to 4 day

intervals and the number of viral genomes was determined in duplicate by real-time

quantitative PCR. The average +/- standard deviation is shown for each time point.

The limit of sensitivity was 200 genomes/ml. Key to monkeys: 026 (QS21 adjuvant

only); 398 and 419 (no immunization); 030, 770 and 974 (QS21 and A33, B5 and L1

proteins).
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Virus replication was monitored with a real-time PCR assay to detect viral genomes

in blood samples collected multiple times after challenge, including immediately after

intravenous infection (day 0).  Figure 6-6B shows a rise in the number of genomes

detected by 6 days after infection, and peak levels were typically observed by day 9.

In spite of the small number of experimental animals, statistical analysis showed that

concentration of circulating genomes was significantly higher in unimmunized

monkeys (026, 398, 419) compared to those immunized with proteins (p=0.04) and

the average difference between the two groups was approximately 2.5 logs.

6.4 Discussion

Recent studies in both murine and non-human primate models have indicated

that the humoral response is essential to protection against orthopoxvirus infection.

Studies with knockout mice [188] or B- and T-cell [130, 131] depletion have

demonstrated that induction of the antibody response by TCD4+ cells is central to

protection against VACV infection.  The pivotal role of antibody has also been

confirmed in the murine ectromelia virus model [126, 128, 219] and in MPXV-

infected immunosuppressed macaque monkeys [251].  Protein immunization typically

induces an antibody-dominated response, thus we sought to test the effectiveness of

recombinant VACV proteins as protective immunogens.

The preliminary characterization of protein subunit vaccines in our mouse

model has been discussed in chapters 3 and 5 and in reference [223].   Our results

showed that a combination of IMV and EV proteins protected mice against intranasal

virus challenge with VACV, but a protective response was dependent on at least three
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immunizations with proteins and the MPL+TDM adjuvant.  The study described in

this chapter set out to test alternative adjuvants in mice immunized with the A33 and

L1 proteins in search of a more potent and rapid vaccine formulation.  To this end, we

have shown that mice immunized twice at three week intervals with proteins and the

QS-21 adjuvant were completely protected against death and significant weight loss

following intranasal challenge with 5 LD50 of VACV WR.  Mice vaccinated in

parallel with the same proteins and alum and CpG ODNs showed the next best

protection, followed by those immunized with proteins and MPL+TDM.  Alum was

the least effective adjuvant and mice were not significantly better protected from

challenge compared to those given protein without adjuvant.  Serological analysis

confirmed that protection correlated with the level of the antibody response, as

measured by ELISA, IMV neutralization and comet reduction assays.  Analysis of

sera collected from surviving mice after challenge revealed a consistent trend in

ELISA and neutralizing antibody titers.  Mice with the highest titers prior to

challenge, especially those immunized with proteins and QS-21 or alum+CpG ODNs

had little or no boosting of titers after challenge.  On the other hand, immunization

groups with lower antibody responses before challenge and poor protection against

infection showed the greatest boost in ELISA and neutralizing antibody titers.  This

trend is most likely due to virus replication since antibody titers against both IMV and

EV proteins were affected in the same manner.

Protein immunization typically drives production of high levels of antibodies

through activation of a Th2-polarized T-helper cell response.  This response activates

B cells to produce antibodies that are predominantly of the IgG1 isotype in mice.
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Conversely, Th1 responses are characteristically activated by virus infection and

stimulate TCD8+ and production of IgG2a antibodies.  Analysis of the isotype profile

induced by immunization with different adjuvants showed that QS-21, and to a lesser

degree, alum+CpG ODNs or MPL+TDM, induced greater levels of IgG2a.  This shift

towards an Th1 response has been observed with other immunogens delivered with

immunostimulatory adjuvants, including QS-21 [264-268] and CpG ODNs [269,

270].  These adjvants can also activate TCD8+, but we did not analyze this immune

response because of the well-documented role of antibody in protection against

orthopoxvirus disease.

This chapter included a small protection study with cynomolgous monkeys

immunized with recombinant forms of A33, B5 and L1 with QS-21 adjuvant.

Monkeys produced robust antibody responses to each immunogen following multiple

immunizations, as seen in our previous study with mice (chapter 3 and ref. 223) and

these responses were dramatically boosted after an intervening period of seven

months.  We decided to include B5 in the monkey study because it has been shown to

induce EV-neutralizing antibodies [174, 223], and anti-B5 antibodies provide passive

protection against a virus challenge [188, 271].  B5 has also recently been

characterized as the major EV neutralizing antibody in human-derived VACV

immune globulin.  We expected that immunization with VACV proteins would

generate cross-protective responses against MPXV since all three proteins show a

high rate of amino acid identity to MPXV homologs, which is 93%, 96%, and 98%

for A33, B5, and L1, respectively.  QS-21 has been used successfully in monkeys

with recombinant HIV proteins [272], but we did not know the result of the
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corresponding protection study in mice when we began immunizations in monkeys.

Binding antibodies were detected after the first immunization and were boosted after

each subsequent boost.  Neutralizing and comet-reducing antibodies were only

detected after the second immunization and neutralizing antibodies were boosted to

peak levels after the fourth immunization.  Both binding and neutralizing antibody

levels fell significantly during the seven-month period between the third and fourth

immunization, but titers rose impressively after the fourth immunization when

measured just prior to virus challenge.  Virus challenge by intravenous delivery of

MPXV is a well-characterized model that has been used to test protection of MVA as

protective vaccine [167].  Following challenge, monkeys were observed daily for

several indicators of disease, including the number of lesions and the virus load in

blood.  Unimmunized monkeys developed greater than 500 lesions and one

succumbed to disease, while unimmunized monkeys were generally healthy, they

developed between 65 and 140 smaller atypical lesions and had significantly lower

virus loads.  Previous studies suggest that protein immunization was not as protective

as immunization with MVA or Dryvax [167], but comparable to immunization with a

multi-gene DNA vaccine [177].  In the future, immunization of monkeys with MPXV

proteins instead of VACV proteins would be one possible strategy to improve

protection in this animal model.
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Chapter 7

Conclusion

In this dissertation, I have sought to develop new active and passive

immunization strategies against orthopoxvirus infection and test their efficacy.

Significant interest in the development of safer smallpox vaccines and therapeutics

was emerging at the time of the inception of my dissertation project in the spring of

2002.  The presently licensed smallpox vaccine is associated with a wide array of side

effects, including heart attacks, that has left the public wary of being vaccinated in the

absence of a clear threat or outbreak.  Passive antibody therapy with human-derived

vaccinia immune globulin has been used in the past for treatment of smallpox or

vaccine-related complications. The development of new antibody products to replace

VIG is also urgently needed in light of its indefinite efficacy and derivation from

human blood products, ideally with the use of hybridoma technology.

My dissertation project has focused on both active and passive immunization

strategies based on previous studies that have demonstrated the importance of

protecting against the two infectious forms of virus. Intracellular mature virions

(IMVs) are formed in the cytoplasm of infected cells, are released by cell lysis, and

are considered the primary form responsible for spread between hosts.  Enveloped

virions (EVs) are IMVs wrapped by an additional membrane and are released from

cells on the tips of actin tails.  The membranes encasing each particle contain a

unique set of viral proteins, and superior protection in animal models is associated

with immunity to proteins from the outer membrane of both particles.  The first active

immunization study, which is described in chapter 3, demonstrated that mice
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immunized multiple times with recombinant forms of the EV proteins A33 and B5

and the IMV protein L1 formed specific binding antibodies that also recognized viral

antigens.  Antisera from mice immunized with A33 or B5 inhibited the spread of EV

in vitro, as shown by the comet reduction assay, and IMV particles were neutralized

in vitro with antisera from L1-immunized mice.  A murine intranasal virus challenge

model with vaccinia virus WR (VACV WR) was used to examine protection since it

resembles the respiratory infection seen in humans infected with variola virus. Each

of these proteins protected mice from challenge with a low dose of virus, and mice

immunized with A33 showed the best protection, which was also correlated with the

highest antibody responses.  Individual proteins protected less well against a higher

challenge dose, while mice immunized with a combination of IMV and EV proteins

showed superior protection.  Comparable protection was observed between groups

immunized with all three proteins and those given A33 and L1, and three or four

immunizations with A33, B5 and L1 also protected similarly.  This study was the first

to demonstrate that significant protection was provided by immunization with a

combination of recombinant IMV and EV VACV proteins.

The results of this first study suggested that passive immunization with

antibodies against A33, B5 and L1 may also be feasible, especially since protein

immunization is associated with a mainly antibody-mediated response.   Chapter 4

presents experiments in which polyclonal (PAb) or monoclonal (MAb) antibodies

specific to A33, B5 or L1 were administered passively before intranasal challenge.

Mice given individual antibodies were partially protected, while those given a

combination of EV- and IMV-specific antibodies showed superior protection, much
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like the results of the previous active immunization study.  Another noteworthy

finding was the ability to protect mice by passive administration of a combination of

anti-A33 and anti-L1 MAbs one day before or two days after challenge.  SCID mice

are unable to recruit an adaptive immune response, but passive immunization with a

combination of all three MAbs or PAbs prolonged survival after virus challenge.  The

mechanisms of antibody protection may be dependent on the target antigen.  IMV-

neutralizing antibodies can neutralize the virus inoculum as well as EV particles with

damaged outer envelopes that expose the IMV membrane.  Anti-EV antibodies may

use different mechanisms since previous work has shown in vitro neutralization of

EV by anti-B5 antibodies [174, 185] but not with anti-A33 antibodies, in spite of their

ability to protect mice and monkeys against virus challenge [174-177, 223, 271].  A

study from our laboratory suggests that anti-A33 antibodies may be working in

concert with complement to disrupt the outer EV membrane, thus rendering it

susceptible to neutralization by IMV antibodies [273].  The results of these passive

immunization experiments attest to the efficacy of antibody-mediated immunity and

support the use of a protein-based vaccine that primarily recruits an antibody

response.  These findings also give hope to the development of a next generation VIG

comprised of specific antibodies and a recent publication has demonstrated the

efficacy of a chimeric chimpanzee/human MAb against B5 to passively protect mice

against disease [188] .  The hope for the future is that more humanized MAbs will be

developed and tested in non-human primates and subsequently be advanced to human

clinical trials.
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The efficacy of recombinant forms of A33, B5 and L1 as protective

immunogens suggested that we examine the use of other viral proteins as potential

vaccine candidates.  A27 is an IMV protein that is the target of neutralizing

antibodies that has been successfully used to immunize mice as a recombinant E.coli-

expressed protein [173].  A multicomponent DNA vaccine including the A27 gene

protected mice and monkeys against lethal orthopoxvirus challenges in combination

with A33, B5, and L1 [176, 177].  The work described in chapter 3 showed that A33

was the more immunogenic and protective EV protein compared to B5, but L1 was

the only IMV protein examined.  The goal of the study described in chapter 5 was to

determine if a baculovirus-expressed form of A27 would be more protective than L1,

such that A33 could be paired with a highly immunogenic IMV protein.  Mice

immunized with A27 produced higher levels of binding antibodies and similar levels

of IMV-neutralizing antibodies, but protection from weight loss was better with L1

alone compared to A27. The majority of mice immunized with A33 combined with

A27 or L1 survived challenge, but weight loss was significantly less with A33 and L1

compared to A33 and A27.  It is important to note that the inferior protection with

A27 was not directly correlated with antibody responses, thus reaffirming the

importance of carrying out animal challenge studies.  This is the first study to

compare A27 with another IMV protein, and L1 appears to be the better choice as an

IMV antigen.

The two active immunization studies described in chapters 3 and 5 were

dependent on three or four protein immunizations accompanied by the MPL+TDM

adjuvant.  A goal of the final study that is detailed in chapter 6 was to evaluate the use
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of different adjuvants in order to stimulate a more rapid and potent immune response

to the recombinant A33 and L1 proteins.  Mice were immunized twice with proteins

combined with the adjuvants alum, MPL+TDM, QS-21, or alum with CpG ODNs and

challenged intranasally in the same manner as used in earlier mouse studies.

Antibody responses to each protein were noticeably higher after each immunization

in mice immunized with proteins and QS-21 adjuvant, and to a lesser extent in mice

given proteins with alum and CpG ODNs.  The antibody response with QS-21 or

alum and CpG ODNs also suggested a shift towards a Th1-polarized response,

indicated by an increasing ratio of IgG2a to IgG1 titers.  Mice immunized with

proteins and QS-21 showed little weight loss or signs of illness following challenge,

and mice given proteins with alum and CpG ODNs showed the next best protection.

The worst protection was observed in mice given proteins alone or with alum and the

overall trend in protection was correlated to the scale and of the antibody responses.

Analysis of convalescent sera from surviving mice also brought to light an interesting

trend.  Mice given proteins with QS-21 or alum and CpG ODNs showed little or no

change in antibody titers after challenge, while mice with the lowest pre-challenge

antibody responses had the greatest boosts after infection.  This result indicates that

well-protected mice were able to quell the initial infection so completely that

anemnestic responses were minimized.

A small monkey study was also initiated at the time of this mouse study in

which three cynomolgous monkeys were immunized four times with A33, B5, and L1

and QS-21 adjuvant.  Specific and neutralizing antibodies were induced against each

protein, and A33 was the most immunogenic protein, much like the results of
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serological analysis in earlier mouse studies.  Monkeys were challenged

intravenously with monkeypox and protein immunization provided significant

protection from disease.  Successful protection of both mice and monkeys lends

further support to future study of these proteins as a subunit vaccine against smallpox.

Many questions remain surrounding the true efficacy of a multiprotein subunit

smallpox vaccine, in spite of the many indications from my research that it may be a

viable alternative.  These proteins are trafficked through the secretory pathway as a

result of expression using recombinant baculoviruses and are subject to post-

translational modifications, including glycosylation.  EV proteins are also trafficked

through the secretory pathway, but IMV proteins are expressed in the cytoplasm of

infected cells are not modified in the same manner.  Therefore, immune responses to

recombinant IMV may be altered by the presence of these uncharacteristic

modifications.  Future recombinant proteins can be engineered to lack glycosylation

motifs, although these changes may alter the protein structure in other ways.  The

effect of mutagenesis on the efficacy of a protein as an immunogen can only fully be

examined by further immunization studies.  Enzymatic deglycosylation may also be

considered, but this is not a realistic option for large-scale protein production.

Alternatively, bacterial expression may be considered as a way to avoid post-

translational modifications, but the ease and convenience of purification of secreted

protein from the medium would be lost.

These studies were carried out with vaccinia virus proteins, but the highly

similar monkeypox and variola virus counterparts to these proteins can be expressed

in the same manner.  The protection offered by any new smallpox vaccines against
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variola virus remains uncertain in the absence of endemic smallpox.  Thus,

recombinant forms of the variola virus proteins may offer greater assurance of

protection, and monkeypox challenge studies may be more informative in monkeys

immunized with monkeypox proteins.  In this same manner, a recent study showed

protection of mice against challenge with ectromelia virus by immunization with a

recombinant form of the ectromelia virus counterpart of A33 [274].  The use of

viruses in their natural hosts, such as ectromelia virus in mice, is one strategy for

understanding protection against smallpox in the absence of a better animal model.

The presently licensed smallpox vaccine (Dryvax) is acceptable for use in the general

population, and next generation smallpox vaccine is primarily targeted towards

individuals excluded from vaccination with live virus.  Modified vaccinia Ankara

(MVA) is an attenuated vaccinia virus that has been used in non-human primates to

protect against monkeypox [167].  MVA is considered a leading candidate for an

alternative smallpox vaccine that can be administered as a primary vaccination to be

followed by Dryvax with the intention of providing the benefits of live virus

vaccination with reduced side effects.  Protein subunit vaccines can also be

considered as primary vaccines, and future studies should address this scenario.

Ideally, a safer alternative primary vaccine with few side effects would be used at any

time while a Dryvax boost would be administered in the face of a true threat or

outbreak.  Perhaps this vaccination regime would be more widely accepted by

members of the general population who are reluctant to be vaccinated but are

otherwise not contraindicated for vaccination.
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The recent elucidation of the VACV entry-fusion complex presents new

candidate proteins for use as immunogens.  Expression of recombinant forms of these

proteins can be carried out in a similar manner as used for A33, B5, L1 and A27, and

immunization studies in mice may not only identify better immunogens, but may also

enrich our knowledge of the nature of virus entry and how it can be blocked.

In conclusion, the results described here have provided a firm foundation for

future work in the development of a multiprotein subunit vaccine for protection

against smallpox.  Further animal studies, especially those using challenge models

with viruses in their natural hosts, can better assess the potential efficacy of such a

vaccine.  Of course, a long term goal of my work is to test a subunit vaccine in human

clinical trials, but I hope the need for this or any smallpox vaccine never arises.
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