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Wireless communications has gained great popularity over the past decades. The

wireless medium has many unique characteristics, which create new challenges as well

as new opportunities in the communication problem. This thesis is devoted to the

study of the ultimate performance limits of wireless communications. We study the

effects of correlation, cooperation and interference in wireless communications from

an information-theoretic perspective.

The main focus of the thesis is on capacity results for entirely wireless networks.

Correlated data is an inherent part of wireless networks. We study the multiple access

channel with a special form of correlated data, called common data, in fading. We

obtain a characterization of the ergodic capacity region, and characterize the optimum

power allocation schemes that achieve the rate tuples on the boundary of the capacity

region.

In practical situations, correlated data manifests itself in more general forms than

common data. We study a more general form of correlation by considering a sensor



network problem, where in addition to correlation, there is opportunity for cooper-

ation. We first provide lower and upper bounds for the optimal performance of the

sensor network under consideration. Then, we focus on the case where the underly-

ing data satisfies some general conditions and evaluate the lower and upper bounds

explicitly, and show that they are of the same order, for a wide range of power con-

straints. Thus, for these cases, we determine an order-optimal achievability scheme,

which is separation-based, and identify the optimal performance.

Interference is unavoidable in wireless networks with multiple source-destination

pairs. The capacity region of the interference channel is open except for some spe-

cial cases, e.g., the discrete additive degraded interference channel. We generalize

the capacity result for the discrete additive interference channel to a wider class of

degraded interference channels, and provide a single-letter characterization for the

capacity region.

The traditional interference channel is a simple model for four isolated nodes; and

the need to modify the interference channel, so that it represents a stage of a multi-hop

wireless network, is clear. We study a modified interference channel, the Gaussian Z-

channel, and derive an achievable region and show that this region is almost equal to

the capacity region by proving most of the converse. We also derive some additional

lower and upper bounds for the capacity region of the Gaussian Z-channel.
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Chapter 1

Introduction

An information-theoretic view of the problem of communication involves the study

of the ultimate performance limits of communication channels, i.e., utilizing the full

capability of the communication channel to maximize the amount of information

correctly conveyed. The results guide us in the design of communication systems,

and inspire us to search for practical schemes that approach or reach the performance

limits.

Wireless communications has gained great popularity over the past decades. The

wireless medium, compared with the wired medium, has many unique characteristics.

The signal strength decays rapidly with distance, the transmitted signal is affected by

random fluctuations in the wireless channel, called fading, and all transmitted signals

are heard by all receivers. These create new challenges as well as new opportunities

in the communication problem: interference, cooperation, correlation, diversity and

feedback.

Cellular networks and wireless LANs are special cases of wireless networks where

only one hop of communication, to and from the base station, is wireless. The data

generated by the users is independent, and the structure of the communication is pre-
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determined and inflexible, in the sense that, the users can communicate only with

the base stations and not among themselves. Information theoretically, uplinks and

downlinks of single-cell cellular networks correspond to multiple access and broadcast

channels, which have been very well studied. The capacity region of the multiple

access channel was found by Liao [50] and Ahlswede [1]. In the case of fading, the sum

capacity was found by Knopp and Humblet [44], and the entire capacity region was

found by Tse and Hanly [79]. Yu et al. proposed an iterative waterfilling algorithm

to compute the sum capacity of a multiple antenna multiple access channel [97]. The

broadcast channel was first studied by Cover in [19] where an achievable region was

found. The region was later proved to be the capacity region for degraded broadcast

channels in [8,31]. The capacity region in fading was found in [49]. The sum capacity

for the case of multiple antenna broadcast channel was found in [82, 84, 96], despite

the fact that the multiple antenna broadcast channel is not degraded. Algorithms to

compute the sum capacity of the broadcast channel explicitly were given in [39, 95],

and the entire capacity region was finally characterized in [86–88].

Recently, the research emphasis has shifted from cellular networks to networks

which are entirely wireless, such as ad-hoc networks and sensor networks. In such

wireless networks, the information is transmitted from the source nodes to the desti-

nation nodes through multiple hops of wireless communication. The fact that multiple

source nodes communicate with multiple destination nodes through the same wire-

less medium makes the interference management problem much more difficult. At the

same time, since such networks are expected to have more flexible structures, nodes

will have the freedom of exploiting the over-heard information, and cooperate in var-
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ious ways. In addition, correlated data arises naturally in such wireless networks. It

arises mainly for three reasons: the observed data may be correlated (as in sensor

networks) [4, 21, 76], the correlated data may be created by communication between

the transmitters (as in user cooperation diversity) [73], and correlated data may re-

sult from decoding the data coming from the previous stages of a larger network (as

in relaying and multi-hopping) [20, 23, 34, 72]. Hence, efficient means of exploiting

correlated data, cooperating using over-heard information, and managing undesired

interference in entirely wireless networks are of significant practical and theoretical

importance.

In spite of recent progress, entirely wireless networks are not yet well understood.

In this thesis, we tackle some of the new issues that arise in entirely wireless net-

works; namely, our focus will be on understanding certain aspects of correlated data,

cooperation and interference.

Correlated data is an inherent part of wireless networks. Even in the simple

multiple access channel, the optimal transmission of arbitrarily correlated data is an

extremely difficult and open problem, with attempts made in [21,25,40,41,66]. Thus,

in Chapter 2, we investigate correlated data by considering a simplified model for

the correlation following Slepian and Wolf [75], which is called common data. In this

multiple access channel, the two transmitters each have their individual messages,

which will be denoted by W1 and W2, respectively. Also, there is a common message

W0, which is known to both transmitters. All three messages are independent. It

can be seen that the data available at both transmitters are correlated through W0.

The goal is to determine the rates, R0, R1 and R2, at which all three messages
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can be decoded with negligible error. The capacity will be a volume in the three

dimensional space. Slepian and Wolf established the capacity region of the multiple

access channel with common data for discrete memoryless channels in [75]. Prelov

and van der Meulen gave the capacity expression for a Gaussian multiple access

channel with common data in [67]. The characterization of the capacity region in [67]

is implicit, in that the capacity region is expressed as a union of regions, and the

boundary points on the capacity region are not determined explicitly. In the first

part of Chapter 2, namely, in Section 2.2, we provide an explicit characterization for

the capacity region and provide a simpler encoding/decoding scheme, compared to

that mentioned in [75]; our encoding/decoding scheme is specially tailored for the

Gaussian channel.

In the wireless medium, the presence of reflecting objects and scatterers in the

environment creates fluctuations in the amplitude of the transmitted signal. This

phenomenon is called fading. In information theory, the fading coefficients are mod-

eled as channel side information. When the channel side information is known to

both the transmitters and the receivers, it has been shown that, by adapting the

transmission strategies according to the values of the side information, we may fully

utilize the varying nature of the channel and convey more information. Hence, in

the remainder of Chapter 2, we investigate optimal transmission strategies to combat

fading when correlated data is present in the wireless network. More specifically, we

concentrate on the case where there is fading in the multiple access channel with

common data, and obtain a characterization of the ergodic capacity region. We also

characterize the optimum power allocation schemes that achieve the rate tuples on
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the boundary of the capacity region. In addition, we provide an iterative method for

the numerical computation of the ergodic capacity region, and the optimum power

control strategies.

In Chapter 2, we focus on correlated data in the special form of common data.

However, in practical situations, correlated data manifests itself in more general forms.

One practically interesting application is the sensor networks. Sensor networks typ-

ically compose of many sensor nodes and a collector node. The collector node is in-

terested in some underlying random process, say temperature, over a limited region.

Sensor nodes are deployed in the limited region in large numbers to distributedly

sense the environment at their own locations and transmit the information to the

collector node through the wireless medium. Due to the facts that the underlying

random process is often correlated in space and the distances between near-by sensor

nodes are very small, the data that the sensor nodes gather is often correlated. It is

important to design the sensor network such that the collector node obtains accurate

knowledge about the underlying environment by exploiting the correlatedness of the

data gathered by the sensor nodes. In Chapter 3, we study the effects of correlation

by considering a sensor network problem. More precisely, we investigate the optimal

performance of a dense sensor network by studying the joint source-channel coding

problem. The sensor network is composed of N sensors, where N is very large, and a

single collector node. Each sensor node has the capability of taking noiseless samples

from an underlying random process. Each node in the sensor network is equipped

with one transmit and one receive antenna to transmit and receive signals through the

wireless medium, i.e., all nodes hear a linear combination of the signals transmitted by
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all other nodes at that time instant. The overall goal of the sensor network is to take

measurements from a one-dimensinal underlying random process S(u), 0 ≤ u ≤ U0,

code and transmit those measured samples to a collector node, which wishes to re-

construct the entire random process with as little distortion as possible; see Figure

1.1. Due to the existence of receive antennas at the sensor nodes and a transmit

antenna at the collector node, the communication channel is a Gaussian cooperative

multiple access channel with noisy feedback. We investigate the minimum achievable

expected distortion and a corresponding achievability scheme when the underlying

random process is Gaussian.

From an information theoretic point of view, our problem is a joint source-channel

coding problem for lossy communication of correlated sources over a cooperative

Gaussian multiple access channel with noisy feedback. This channel model contains

both elements of correlation and cooperation. We have already mentioned that the

optimal transmission of correlated data in forms other than common data is an ex-

tremely difficult problem and remains open. Furthermore, the optimal method of

cooperation is not yet well understood. The simplest channel model that contains

the element of cooperation is the relay channel. The relay channel contains a relay

node that aids the communication of a transmitter-receiver pair. The relay channel

was first proposed in [20], where achievability and converse results were provided,

though, in general, they do not coincide. Since both correlation and cooperation are

difficult open problems, a direct and closed-form expression for the optimal perfor-

mance of sensor networks seems unlikely to be obtained. But since the number of

sensor nodes is large, a weaker result that is of great practical interest, is the order
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Figure 1.1: Sensor network.

optimal performance of the sensor network.

One branch of research on entirely wireless networks focuses on large wireless

networks, which are made up of many nodes, where the number of nodes tends to

infinity. In large networks, the capacity results need not be expressed in exact formu-

las; only the lower and upper bounds on the capacity need to be of the same order.

The seminal paper of Gupta and Kumar [36] dealt with the network of many nodes

in a fixed area. Messages traverse in the network in a multi-hop fashion, where relays

decode the information using single user decoding techniques. Other works on the

order performance of large wireless networks include [10, 34, 48, 94].

While the multi-hop wireless ad-hoc networks, where users transmit independent

data and utilize single-user coding, decoding and forwarding techniques, do not scale

successfully [36], Scaglione and Servetto [71] investigated the scalability of the sensor

networks. Sensor networks, where the observed data is correlated, may scale success-

fully for two reasons: first, the correlation among the sampled data increases with

the increasing number of nodes and hence, the amount of information the network

needs to carry does not increase as fast as in ad-hoc wireless networks; and second,
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correlated data facilitates cooperation, and may increase the information carrying

capacity of the network. The goal of the sensor network in [71] was that each sensor

reconstructs the data measured by all of the sensors using sensor broadcasting. In

Chapter 3, we focus on the case where the reconstruction is required only at the

collector node.

Marco et al. [59] is the first paper to formulate the sensor network problem consid-

ered in Chapter 3, where there is a single collector node which wishes to reconstruct

the random process; see also [60]. The channel model used in [59] was similar to that

used in [36], and is interference limited. The sensor encoders were limited to scalar

quantization with entropy-rate coding. It was shown that the system performance

becomes asymptotically poor as the number of sensors grows, i.e., the sensor net-

work under consideration does not scale successfully. El Gamal [29] studied the same

problem as in [59], but removed the constraint that the channel model is interference

limited. By modelling the channel as a cooperative Gaussian multiple access chan-

nel, [29] showed that all spatially band-limited Gaussian processes can be estimated

at the collector node, subject to any non-zero constraint on the mean squared distor-

tion, i.e., the sensor network scales successfully. In Chapter 3, we study the minimum

achievable expected distortion for space-limited, and thus, not band-limited, random

processes, and we determine the rate at which the minimum achievable expected

distortion decreases to zero as the number of nodes increases.

In Chapter 3, we first provide lower and upper bounds for the minimum achievable

expected distortion for arbitrary Gaussian random processes whose Karhunen-Loeve

expansion exists. Then, we focus on the case where the Gaussian random process
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also satisfies some general conditions, such as the eigenvalues of its Karhunen-Loeve

expansion decrease roughly inverse polynomially in order x, i.e., the k-th eigenvalue

is roughly k−x. For these random processes, we evaluate the lower and upper bounds

explicitly, and show that they are of the same order, for a wide range of power con-

straints. Thus, for these random processes, under a wide range of power constraints,

we determine an order-optimal achievability scheme, which is separation-based, and

identify the minimum achievable expected distortion as a function of the number of

nodes and the sum power constraint. We show that the minimum achievable expected

distortion decreases to zero at the rate of (log NP (N))1−x, where P (N) is the sum

power constraint on the sensor nodes. In multi-user information theory, generally

speaking, separation principle does not hold. However, in our case, we have found a

scheme which is separation based, and is order-optimal.

In the first part of the thesis, i.e., in Chapters 2 and 3, we focused on the corre-

lation and cooperation aspects of entirely wireless networks. In the remainder of this

thesis, i.e., in Chapters 4 and 5, we will focus on the interference aspects of entirely

wireless networks. Interference is unavoidable in wireless networks with multiple

source-destination pairs. Since all transmissions share the same wireless medium, the

desired information co-exists with undesired information in the received signal. Thus,

a fundamental question that needs to be answered in order to optimize the achievable

rates of wireless networks is: how should the interference be treated? To answer this

question, we need to start with the investigation of the simplest model that carries

the characteristics of the interference, namely, the interference channel [2]. On the

other hand, such traditional interference channels are simple models for four isolated
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nodes; and the need to modify the interference channel, so that it represents a stage

of a multi-hop wireless network, is clear. Therefore, we studied the interference in

two directions: in its traditional definition in Chapter 4, and in a modified version

that reflects the fact that it is a part of a larger network in Chapter 5.

The traditional definition of the interference channel is a channel with two trans-

mitter-receiver pairs, sharing the same communication medium [14]. The capacity re-

gion of the interference channel is open except for the special cases, for example, strong

and very strong Gaussian interference channels [13,70], additive degraded interference

channels [5], a class of deterministic interference channels [28]. Some achievability and

converse results were provided in [2,14,37,68,69,81,93], and [2,15,17,45,69], respec-

tively. Currently, there are three known ways of treating interference: first, treating

interference as noise, second, decoding interference while treating the useful informa-

tion as noise and then subtracting it off, or third, time sharing the channel between

the two transmitter-receiver pairs, e.g., as in TDMA (time division multiple access).

Finding the capacity region and the optimal way to manage interference in a general

interference channel is an extremely difficult problem, and has been open for more

than thirty years. The simplest interference channel is the Z-interference channel

or the degraded interference channel, where only one transmitter-receiver pair suf-

fers from interference, i.e., the other transmitter-receiver pair sees, in effect, a clean

channel.

Due to the power constraint imposed on the Gaussian interference channel, finding

the capacity region of the Gaussian interference or Z-interference channel may be

more difficult than the general discrete interference channels. Therefore, it is wise
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to start the study of interference management with a discrete interference channel

rather than the Gaussian case which involves the power constraint. For some discrete

degraded interference channels, treating interference as noise is optimal [5]. Thus,

to study interference management in discrete interference channels, the first question

to answer is, under what conditions on the channel, is treating interference as noise

optimal? In Chapter 4, we provide sufficient conditions on degraded interference

channels such that treating interference as noise is optimal. We provide a single-letter

characterization for the capacity region of a class of degraded interference channels.

The class includes the additive degraded interference channel studied by Benzel [5] as

a special case. We show that for the class of degraded interference channels studied,

encoder cooperation does not increase the capacity region, and therefore, the capacity

region of the class of degraded interference channels is the same as the capacity region

of the corresponding degraded broadcast channel, which is known.

As mentioned before, there are clear needs to study modified versions of the in-

terference channel such that they model building blocks of a larger network. To this

end, achievability and converse results have been established for a number of mod-

ified interference channels, e.g., interference channel with common information [62],

interference channel with cooperation [61], and interference channel with degraded

message sets [92]. In Chapter 5, we follow the modified interference channel model

proposed in [83], and study the Gaussian Z-channel. As mentioned before, an interfer-

ence channel is a simple two-transmitter two-receiver network, where each transmitter

has a message for only one of the receivers. A more general network structure is the

X-channel [83], where the channel is the same as the interference channel except that
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both transmitters have messages for both receivers. [83] has proposed a new multiuser

model, called the Z-channel; see Figure 1.2. The Z-channel is a special case of the

X-channel in that there is only one cross-over link and as a consequence, the trans-

mitter that does not have a cross-over link has only one message to send. In [83], an

achievable region for the Gaussian Z-channel is provided for the case of α > 1 + P1.

In Chapter 5, we focus on the model of the Gaussian Z-channel where the cross-over

link is weak, more specifically, α < 1. We derive an achievable region and show that

this region is almost equal to the capacity region by proving most of the converse.

We also derive some lower and upper bounds on the capacity region. Finally, for the

special case of α = 1, we determine the capacity region exactly.

The rest of the thesis is organized as follows. In Chapter 2, we investigate the

effects of correlation by studying a multiple access channel with common data. In

the first part of Chapter 2, we focus on the case where there is no fading, and provide

an explicit characterization of the capacity region and a simpler encoding/decoding

scheme. In the remainder of Chapter 2, we concentrate on the case where there is

fading in the system, and obtain a characterization of the ergodic capacity region. We

also characterize the optimum power allocation schemes that achieve the rate tuples

on the boundary of the capacity region. In addition, we provide an iterative method

for the numerical computation of the ergodic capacity region, and the optimum power

control strategies. In Chapter 3, we study correlated data in a more general form in

the setting of sensor networks, where cooperation also comes into play. We investi-

gate the optimal performance of dense sensor networks by providing separation-based

lower and upper bounds for the minimum achievable expected distortion when the
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Figure 1.2: The Z-channel.

underlying random process is Gaussian. When the Gaussian random process satisfies

some general conditions, we evaluate the lower and upper bounds explicitly, and show

that they are of the same order for a wide range of power constraints. Thus, for these

random processes, under these power constraints, we determine the rate at which the

minimum achievable expected distortion decreases to zero as a function of the number

of sensor nodes and the power constraint, and present a separation-based achievability

scheme that is order optimal. In Chapters 4 and 5, we investigate the effects of inter-

ference in entirely wireless networks. In Chapter 4, we study the interference channel

in its traditional definition and provide sufficient conditions on degraded interference

channels such that treating interference as noise is optimal. We provide a single-letter

characterization for the capacity region of a class of degraded interference channels,

which was previously unknown. In Chapter 5, we study a modified version of the

interference channel, and focus on the model of the Gaussian Z-channel where the

cross-over link is weak. We derive an achievable region and show that this region is

almost equal to the capacity region by proving most of the converse. We also derive

some additional lower and upper bounds for the capacity region. Finally, in Chapter

6, we provide concluding remarks and suggestions for future work.
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Chapter 2

Capacity Region and Optimum Power Control Strategies for

Fading Gaussian Multiple Access Channels with Common

Data

Correlated data arises naturally in many applications of wireless communications.

In this chapter, we consider the transmission of correlated data in a multiple access

channel (MAC). However, even in the simple MAC, finding capacity results for the

transmission of arbitrarily correlated data is known to be extremely difficult [21,

25, 40, 41, 66]. Therefore, in this chapter, we constrain ourselves to a special kind of

correlated data, correlated data in the sense of Slepian and Wolf [75], which we will call

common data. In this MAC, the two transmitters each have their individual messages,

which will be denoted by W1 and W2, respectively. Also, there is a common message

W0, which is known to both transmitters. All three messages are independent. The

goal is to determine the rates, R0, R1 and R2, at which all three messages can be

decoded with negligible error. The capacity will be a volume in the three dimensional

space. This model includes the traditional MAC as a special case, when R0 = 0. It

also includes the two-transmitter one-receiver point-to-point system as a special case,
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when R1 = R2 = 0, except that we have individual power constraints for the two

transmit antennas here, instead of a single sum power constraint as one would have

in a point-to-point system [78].

The capacity region of the Gaussian MAC with common data with no fading is

known [67,75]. The characterization of the capacity region in [67] is implicit, in that

the capacity region is expressed as a union of regions, and the boundary points on

the capacity region are not determined explicitly. We first provide an explicit charac-

terization for the capacity region and provide a simpler encoding/decoding scheme,

compared to that mentioned in [75]; our encoding/decoding scheme is specially tai-

lored for the Gaussian channel. We then concentrate on the case where there is fading

in the channel and obtain a characterization of the ergodic capacity region. We also

characterize the optimum power allocation schemes that achieve the rate tuples on

the boundary of the capacity region. Finally, we provide an iterative method for

the numerical computation of the ergodic capacity region, and the optimum power

control strategies.

2.1 System Model

The Gaussian MAC we consider in this chapter has two transmitters and one receiver.

Without fading, the inputs and the output are related as

Y = X1 + X2 + Z (2.1)
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where Z is a Gaussian random variable with zero-mean and unit-variance and inde-

pendent of everything else. Transmitters 1 and 2 are subject to power constraints

P̄1 and P̄2, respectively. We have three independent messages W0, W1 and W2,

which are uniformly distributed in the sets {1, 2, · · · , 2nR0}, {1, 2, · · · , 2nR1} and

{1, 2, · · · , 2nR2}, respectively. Transmitter 1 knows W0 and W1, and transmitter 2

knows W0 and W2. Therefore, X1 is a function of W0, W1, and X2 is a function of

W0, W2.

A rate triplet (R1, R2, R0) is achievable if there exists a sequence of ((2nR0 ×

2nR1, 2nR0 × 2nR2), n) codes with average probability of error approaching zero as n

goes to infinity. Here, the probability of error is the probability that any of the

three messages is decoded incorrectly. The capacity region is the closure of the set of

achievable (R1, R2, R0).

With fading, the inputs and the output are related as

Y (k) =
√

H1(k)X1(k) +
√

H2(k)X2(k) + Z(k) (2.2)

where Xi(k) and Hi(k) are the transmitted symbol and the fading process of user

i, and Z(k) is the zero-mean unit-variance Gaussian noise sample, at time k. H1(k)

and H2(k) are jointly stationary and ergodic, and the stationary distribution has

continuous density. H1(i) and H2(i), for all i, are independent of messages W0, W1,

W2 and Z(k) for all k. The user signals are subject to average power constraints of

P̄1 and P̄2. We assume that both the transmitters and the receiver know H1(k) and

H2(k) at time k, for all k. The ergodic capacity region is the closure of the set of
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achievable rates in this scenario. For notational convenience, let C(x) = 1
2
log(1 + x).

All logarithms are defined with respect to base e.

2.2 Capacity Region without Fading

The capacity region of the Gaussian MAC with common data is all triplets (R1, R2, R0)

[67]

R1 ≤ C
(

αP̄1

)

(2.3)

R2 ≤ C
(

βP̄2

)

(2.4)

R1 + R2 ≤ C
(

αP̄1 + βP̄2

)

(2.5)

R0 + R1 + R2 ≤ C

(

P̄1 + P̄2 + 2
√

(1 − α)(1 − β)P̄1P̄2

)

(2.6)

for some α and β such that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

An alternative representation of the capacity region is obtained by defining P1 =

αP̄1, P2 = βP̄2. With these definitions, the capacity region is all triplets (R1, R2, R0)

such that

R1 ≤ C (P1) (2.7)

R2 ≤ C (P2) (2.8)

R1 + R2 ≤ C (P1 + P2) (2.9)

R0 + R1 + R2 ≤ C (P1 + P2 + P0) (2.10)
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for some 0 ≤ P1 ≤ P̄1, 0 ≤ P2 ≤ P̄2 and P0 =
(

√

P̄1 − P1 +
√

P̄2 − P2

)2

. For fixed

P1, P2, let B(P1, P2) denote the set of all rate triplets that satisfy (2.7)-(2.10). In the

set B(P1, P2), certain points are of interest, which we define here: Q = (0, 0, C(P1 +

P2 + P0)), S = (C(P1), 0, C(P1 + P2 + P0) − C(P1)), T = (C(P1), C(P1 + P2) −

C(P1), C(P1 + P2 + P0) − C(P1 + P2)) and the expressions for points V and U are

the same as those for points S and T when the roles of users 1 and 2 are swapped.

An example of B(P1, P2) and the corresponding points Q, S, T, U, V are shown in

Figure 2.1. The capacity region is the union of B(P1, P2) over all P1, P2 satisfying

0 ≤ P1 ≤ P̄1 and 0 ≤ P2 ≤ P̄2.

We can interpret the capacity region in (2.7)-(2.10) in the following way. Transmit-

ter 1 spends power P1 for transmitting its individual message, W1, and the remaining

power, P̄1 − P1, for transmitting the common message, W0. Similarly, transmitter

2 spends power P2 for transmitting its individual message, W2, and the remaining

power, P̄2 −P2, for transmitting the common message. Since the common message is

known to both transmitters, the effective received power for the common message is

P0, which may also be interpreted as the beamforming gain as in a two-transmitter

one-receiver point-to-point system.

Both capacity region representations above are implicit in the sense that one has to

vary some variables in their valid intervals and take the union of regions corresponding

to each valid allocation of these variables in order to obtain the capacity region. Next,

we seek an explicit characterization of the capacity region. Let the rate pair (R1, R2)
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Figure 2.1: B(P1, P2).

be such that it satisfies the conditions

R1 ≤ C
(

P̄1

)

, R2 ≤ C
(

P̄2

)

, R1 + R2 ≤ C
(

P̄1 + P̄2

)

(2.11)

Let us define c1 = e2R1 − 1, c2 = e2R2 − 1 and c = e2(R1+R2) − 1. Then, the powers P1

and P2 in representation (2.7)-(2.10) have to satisfy

P1 ≥ c1, P2 ≥ c2, P1 + P2 ≥ c (2.12)

For a fixed pair (R1, R2), the largest possible R∗
0 achievable is

R∗
0 =max

P1,P2

C

(

P̄1 + P̄2 + 2
√

(P̄1 − P1)(P̄2 − P2)

)

− R1 − R2 (2.13)

where the maximization in (2.13) is over all P1, P2 that satisfy (2.12). Note that

(R1, R2, R
∗
0) is on the boundary of the capacity region.
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To solve the maximization problem in (2.13), it suffices to maximize f(P1, P2)
△
=

(P̄1 − P1)(P̄2 − P2) subject to (2.12). Let P ∗
1 and P ∗

2 be the solution to this max-

imization problem. Then, (P ∗
1 , P ∗

2 ) lies on the line P1 + P2 = c since f(P1, P2) is

monotonically decreasing in both P1 and P2. Hence, it suffices to maximize f(P1, P2)

subject to the constraints that P1 + P2 = c and c1 ≤ P1 ≤ c − c2. Given that

P1 +P2 = c, f(P1, P2) becomes a quadratic form and the validity of the following can

be checked easily.

1. When c2 > P̄2−P̄1+c
2

,

P ∗
1 = c − c2, P ∗

2 = c2 (2.14)

Moreover, point U on B(P ∗
1 , P ∗

2 ) is the (R1, R2, R
∗
0) point.

2. When c1 > P̄1−P̄2+c
2

,

P ∗
1 = c1, P ∗

2 = c − c1 (2.15)

Moreover, point T on B(P ∗
1 , P ∗

2 ) is the (R1, R2, R
∗
0) point.

3. In all other cases,

P ∗
1 =

P̄1 − P̄2 + c

2
, P ∗

2 =
P̄2 − P̄1 + c

2
(2.16)

Moreover, some point on the line segment TU of B(P ∗
1 , P ∗

2 ) is the (R1, R2, R
∗
0)

point.
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This characterization is explicit because for a fixed rate pair (R1, R2), we can

calculate R∗
0 such that (R1, R2, R

∗
0) is on the boundary of the capacity region. With

this characterization, we can easily plot the capacity region of the Gaussian MAC

with common data. An example is shown in Figure 2.2 with P̄1 = 2 and P̄2 = 1.

It is interesting to note that all points on the capacity region are achieved by some

point on the line segment TU of B(P1, P2) for some 0 ≤ P1 ≤ P̄1, 0 ≤ P2 ≤ P̄2. All

other points of B(P1, P2), for example, points Q, S and V are never on the boundary

of the capacity region unless they coincide with point T or U .

Let us define D(P1, P2) to be the set of (R1, R2, R0) such that

R0 ≤ C(P0) (2.17)

R1 ≤ C(P1) (2.18)

R2 ≤ C(P2) (2.19)

R0 + R1 ≤ C(P0 + P1) (2.20)

R0 + R2 ≤ C(P0 + P2) (2.21)

R1 + R2 ≤ C(P1 + P2) (2.22)

R0 + R1 + R2 ≤ C(P0 + P1 + P2) (2.23)

for a fixed P1, P2 and P0 =
(

√

P̄1 − P1 +
√

P̄2 − P2

)2

. In the set D(P1, P2), certain

points are of interest, which we define here: Q, M , S, T , U and V are the points

(R1, R2, R0) where equations [(2.17), (2.20), (2.23)], [(2.17), (2.21), (2.23)], [(2.18),

(2.20), (2.23)], [(2.18), (2.22), (2.23)], [(2.19), (2.22), (2.23)], [(2.19), (2.21), (2.23)]
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Figure 2.2: The capacity region of the Gaussian MAC with common data.

are all satisfied with equality, respectively. An example of D(P1, P2) and the corre-

sponding points Q, M, S, T, U, V are shown in Figure 2.3.

Note that, for any given P1 and P2, D(P1, P2) is a strict subset of B(P1, P2) since

there are extra constraints involved in the definition of D(P1, P2). However, the

capacity region of the Gaussian MAC with common data can also be written as the

union of D(P1, P2) over all 0 ≤ P1 ≤ P̄1 and 0 ≤ P2 ≤ P̄2. This is because, the

coordinates of the points on line segment TU of B(P1, P2) are exactly the same as

those on line segment TU of D(P1, P2). Since only the line segment TU appears on

the final capacity region, the union of D(P1, P2) over all 0 ≤ P1 ≤ P̄1 and 0 ≤ P2 ≤ P̄2

gives the same capacity region.

D(P1, P2) is very similar to the capacity region of the three-user Gaussian MAC

with independent messages. This suggests that encoding and decoding schemes simi-

lar to those of the three-user Gaussian MAC with independent messages can be used

to achieve the points on the boundary of the capacity region of the Gaussian MAC
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Figure 2.3: D(P1, P2).

with common data. To achieve a rate triplet (R1, R2, R0) on the boundary of the

capacity region, we first calculate P ∗
1 , P ∗

2 according to (2.14), (2.15) or (2.16). De-

pending on the values of (R1, R2, R0), we want to achieve either point T or U or some

point on the line segment TU of region D(P ∗
1 , P ∗

2 ). Points T and U can be achieved

by successive decoding and, the remaining points on the line segment TU can be

achieved by time sharing, just as in a three-user Gaussian MAC with independent

messages.

More specifically, to achieve point T [similarly, point U ], we generate three inde-

pendent random codebooks C0, C1 and C2 of sizes (2nR′
0 , n), (2nR′

1, n) and (2nR′
2, n),

respectively, where (R′
1, R

′
2, R

′
0) is the coordinates of point T [similarly, point U ]. Each

entry of these codebooks is generated according to a zero-mean, unit-variance Gaus-

sian random variable. When the messages to be transmitted are W0 = w0, W1 = w1

and W2 = w2, transmitter 1 transmits the sum of the w0th row of C0 scaled by

√

P̄1 − P ∗
1 and the w1th row of C1 scaled by

√

P ∗
1 , and transmitter 2 transmits the
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sum of the w0th row of C0 scaled by
√

P̄2 − P ∗
2 and the w2th row of C2 scaled by

√

P ∗
2 .

The effective received power for W0, W1 and W2 are P ∗
0 =

(

√

P̄1 − P ∗
1 +

√

P̄2 − P ∗
2

)2

,

P ∗
1 and P ∗

2 , respectively. The receiver treats the received signal as if it comes from

a three-user Gaussian MAC with independent messages, and successively decodes in

the order of W0 first, then W2, and finally W1 [similarly, W0 first, then W1, and finally

W2]. The encoding scheme proposed in [75] generates two large correlated codebooks,

instead of three small independent codebooks as we do here. The decoding scheme

proposed in [75] uses joint Maximum Likelihood (ML) detection of two codewords

coming from the two large codebooks, while in our case, we can reduce the complex-

ity by successive decoding, i.e., by applying ML detection to one codeword from a

small codebook at a time, while treating other undecoded codewords as noise. If the

aim is to achieve some interior point on the line segment TU , then time sharing is

used between points T and U . This simpler encoding/decoding scheme is possible

because we have a Gaussian channel.

Yet another way to write the capacity region, which will be useful in the devel-

opment of the fading case in the next section, is the following. The capacity region

is all triplets (R1, R2, R0) such that inequalities (2.7)-(2.10) hold true for some P1,

P2, P0 ≥ 0, 0 ≤ ρ ≤ 1 such that P1 + ρ2P0 = P̄1 and P2 + (1 − ρ)2P0 = P̄2. This

representation of the capacity region can be interpreted as follows: P1, P2 and P0

are the received powers for messages W1, W2 and W0, respectively. In order for the

received power for the common message to be P0, transmitter 1 spends ρ2P0 power

and transmitter 2 spends (1− ρ)2P0 power. Note that the two powers add up to less

than P0 which is to be expected because there is a beamforming gain for the common
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message. Transmitter 1 spends a total of P1 + ρ2P0 power, and this must equal the

power constraint P̄1, and transmitter 2 spends a total of P2 + (1 − ρ)2P0 power and

this must equal P̄2. Here, ρ can be interpreted as the “portion” of the received power

of the common message that comes from transmitter 1.

2.3 Capacity Region in Fading

Consider the system model in (2.2), in the simple case when H1(k) = h1 and H2(k) =

h2 for all k. Using the representation of the capacity region with P0, P1, P2 and ρ, the

capacity region is the set of all triplets (R1, R2, R0) such that inequalities (2.7)-(2.10)

hold true for some P1, P2, P0 ≥ 0, 0 ≤ ρ ≤ 1 such that 1
h1

P1 + ρ2

h1
P0 = P̄1 and

1
h2

P2 + (1−ρ)2

h2
P0 = P̄2. Here, again, P1, P2 and P0 are all received powers.

Now, we consider the case where the channel is time-varying and both the trans-

mitters and the receiver track the channel perfectly. Let us denote the channel state

as a vector h = [h1, h2]
T . Let p = [p1, p2, p0]

T be a mapping from the channel state

space, H, to the received power vector in R
3
+. Also, let us define ρ to be a mapping

from H to [0, 1]. Then, heuristically, when the channel state is h, p1(h)
h1

is the power

that transmitter 1 uses for W1, and ρ(h)2p0(h)
h1

is the power that transmitter 1 uses for

W0. Similarly, p2(h)
h2

is the power that transmitter 2 uses for W2, and (1−ρ(h))2p0(h)
h2

is

the power that transmitter 2 uses for W0. Let Cf(p, ρ) be the set of (R1, R2, R0) such
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that

R1 ≤ E [C (p1(h))]
△
= f1(p, ρ) (2.24)

R2 ≤ E[C (p2(h))]
△
= f2(p, ρ) (2.25)

R1 + R2 ≤ E[C (p1(h) + p2(h))]
△
= f3(p, ρ) (2.26)

R0 + R1 + R2 ≤ E[C (p1(h) + p2(h) + p0(h))]
△
= f4(p, ρ) (2.27)

where the expectation is taken over the joint stationary distribution of the fading

states h1 and h2.

Theorem 2.1 The ergodic capacity region of the fading Gaussian MAC with common

data when perfect channel state information is available at the transmitters and the

receiver is

C(P̄1, P̄2) =
⋃

(p,ρ)∈F
Cf (p, ρ) (2.28)

where

F =

{

(p, ρ) : p0(h), p1(h), p2(h) ≥ 0, 0 ≤ ρ(h) ≤ 1, ∀h

E

[

p1(h)

h1

+
ρ(h)2p0(h)

h1

]

≤ P̄1, E

[

p2(h)

h2

+
(1 − ρ(h))2p0(h)

h2

]

≤ P̄2

}

(2.29)

A proof of Theorem 2.1 is given in Appendix 2.6.1.

To explicitly characterize the capacity region, we solve for the boundary surface of

the capacity region. As in [79], the boundary surface of the capacity region C(P̄1, P̄2)
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is the closure of all points R∗ = (R∗
1, R

∗
2, R

∗
0) such that R∗ is a solution to the problem

max
R

µ1R1 + µ2R2 + µ0R0 subject to R ∈ C(P̄1, P̄2) (2.30)

for some µ = [µ1, µ2, µ0]
T ∈ R

3
+. This optimization problem is equivalent to

max
(R,P̃1,P̃2)

µ1R1 + µ2R2 + µ0R0 subject to (R, P̃1, P̃2) ∈ L, P̃1 ≤ P̄1, P̃2 ≤ P̄2 (2.31)

where

L = {(R, P̃1, P̃2) : P̃1, P̃2 ∈ R+,R ∈ C(P̃1, P̃2)} (2.32)

Lemma 2.1 L is a convex set.

A proof of Lemma 2.1 is given in Appendix 2.6.2.

Due to the convexity of L, there exist lagrange multipliers λ = [λ1, λ2]
T ∈ R

2
+

such that R∗ is a solution to the optimization problem

max
(R,P̃1,P̃2)∈L

µ1R1 + µ2R2 + µ0R0 − λ1P̃1 − λ2P̃2 (2.33)

Since C(P̃1, P̃2) is a union over Cf (p, ρ), we first express (R, P̃1, P̃2) in terms of (p, ρ)

and then optimize over (p, ρ). It can be seen that the capacity region is unchanged
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if we replace the two power constraint inequalities with equalities in (2.29). Hence,

P̃1 = E

[

p1(h)

h1
+

ρ(h)2p0(h)

h1

]

(2.34)

P̃2 = E

[

p2(h)

h2

+
(1 − ρ(h))2p0(h)

h2

]

(2.35)

Instead of considering all R ∈ C(P̃1, P̃2), it suffices to consider R ∈ Cf (p, ρ) that

maximizes µ1R1 + µ2R2 + µ0R0 for each (p, ρ). Thus, we first focus on the following

problem:

max
R

µ1R1 + µ2R2 + µ0R0 subject to R ∈ Cf (p, ρ) (2.36)

where Cf(p, ρ) is a region with shape as in Figure 2.1. Due to the nature of Cf (p, ρ),

when µ0 ≥ max(µ1, µ2), point Q = [0, 0, f4(p, ρ)] achieves the maximum. When

µ1 ≥ µ0 ≥ µ2, point S = [f1(p, ρ), 0, f4(p, ρ)−f1(p, ρ)] achieves the maximum. When

µ1 ≥ µ2 ≥ µ0, point T = [f1(p, ρ), f3(p, ρ) − f1(p, ρ), f4(p, ρ) − f3(p, ρ)] achieves the

maximum. When µ2 ≥ µ1 ≥ µ0, point U = [f3(p, ρ) − f2(p, ρ), f2(p, ρ), f4(p, ρ) −

f3(p, ρ)] achieves the maximum. When µ2 ≥ µ0 ≥ µ1, point V = [0, f2(p, ρ), f4(p, ρ)−

f2(p, ρ)] achieves the maximum. Hence, the optimization problem as defined in (2.36)

is solved and the solution is expressed in terms of (p, ρ).

We are ready to solve the optimization problem in (2.33) now. According to

the solution to the optimization problem in (2.36), we have five cases: 1) µ0 ≥

max(µ1, µ2), 2) µ1 ≥ µ0 ≥ µ2, 3) µ1 ≥ µ2 ≥ µ0, 4) µ2 ≥ µ1 ≥ µ0 and 5) µ2 ≥ µ0 ≥ µ1.

We will concentrate on the first three cases since case 4) is the same as case 3) and
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case 5) is the same as case 2) by swapping indices 1 and 2.

1) When µ0 ≥ max(µ1, µ2), the optimization problem in (2.33) is equivalent to

min
p≥0,0≤ρ≤1

E [−µ0 log (1 + p1(h) + p2(h) + p0(h))

+λ1

(

p1(h)

h1

+
ρ(h)2

h1

p0(h)

)

+ λ2

(

p2(h)

h2

+
(1 − ρ(h))2

h2

p0(h)

)]

(2.37)

Since the cost function is an expectation and the probability distributions are nonneg-

ative, it suffices to consider the minimization for a fixed channel state h = (h1, h2),

i.e.,

min
p(h)≥0,0≤ρ(h)≤1

− µ0 log (1 + p1(h) + p2(h) + p0(h)) + λ1

(

p1(h)

h1
+

ρ(h)2

h1
p0(h)

)

+ λ2

(

p2(h)

h2

+
(1 − ρ(h))2

h2

p0(h)

)

(2.38)

Though the cost function is not convex in (p(h), ρ(h)), it is a quadratic function of

ρ(h) when p(h) is fixed. The optimal ρ∗(h) is

ρ∗(h) =
h1

λ1

h1

λ1
+ h2

λ2

(2.39)

Since the dependencies of the cost functions on ρ(h) in all three cases are the same,

ρ∗(h) is in fact the optimal solution for all three cases. Thus, we proceed with ρ∗(h)

in place of ρ(h) and the problem becomes convex. We write the Karush-Kuhn-Tucker

29



(KKT) necessary conditions as follows:

− µ0

1 + p1(h) + p2(h) + p0(h)
+

1
h1

λ1

− ω1(h) = 0 (2.40)

− µ0

1 + p1(h) + p2(h) + p0(h)
+

1
h2

λ2

− ω2(h) = 0 (2.41)

− µ0

1 + p1(h) + p2(h) + p0(h)
+

1
h1

λ1
+ h2

λ2

− ω0(h) = 0 (2.42)

p1(h), p2(h), p0(h), ω0(h), ω1(h), ω2(h) ≥ 0 (2.43)

ω0(h)p0(h) = ω1(h)p1(h) = ω2(h)p2(h) = 0 (2.44)

where ω0(h), ω1(h) and ω2(h) are the complementary slackness variables. The KKTs

have a unique solution and thus the solution is the global optimum. Let us define

two regions in R
2
+,

R1 ={(x, y) : x + y ≥ 1

µ0
} (2.45)

R2 ={(x, y) : x + y <
1

µ0

} (2.46)

Then, the optimum solution is

p0(h) =















µ0(
h1

λ1
+ h2

λ2
) − 1, if

(

h1

λ1
, h2

λ2

)

∈ R1

0, if
(

h1

λ1
, h2

λ2

)

∈ R2

(2.47)

p1(h) =0 (2.48)

p2(h) =0 (2.49)
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The transmit powers can be found by dividing these received powers with correspond-

ing channel gains. As seen from (2.48) and (2.49), in the case of µ0 ≥ max(µ1, µ2),

the transmitters use their entire power to transmit the common message; they do not

allocate any power to transmit their individual messages. When h1

λ1
+ h2

λ2
≥ 1

µ0
, i.e.,

the combined channel is good enough, the transmitters transmit the common mes-

sage using beamforming as if we have a two-transmitter one-receiver point-to-point

system. When the channel is poor, i.e., h1

λ1
+ h2

λ2
< 1

µ0
, the transmitters both keep

silent and save their powers for better channel states. This is shown in Figure 2.4.

2) When µ1 ≥ µ0 ≥ µ2, the optimization problem in (2.33) is equivalent to

min
p≥0,0≤ρ≤1

E

[

− µ0 log (1 + p1(h) + p2(h) + p0(h)) − (µ1 − µ0) log(1 + p1(h))

+ λ1

(

p1(h)

h1

+
ρ(h)2

h1

p0(h)

)

+λ2

(

p2(h)

h2

+
(1 − ρ(h))2

h2

p0(h)

)]

(2.50)

Following the same argument as in case 1), let us define four regions in R
2
+,

S1 =

{

(x, y) : x ≥ 1

µ1

,
y

x
<

µ1

µ0

− 1

}

(2.51)

S2 =

{

(x, y) : x <
1

µ1
, x + y <

1

µ0

}

(2.52)

S3 =

{

(x, y) :
1

x
− 1

x + y
≥ µ1 − µ0, x + y ≥ 1

µ0

}

(2.53)

S4 =

{

(x, y) :
1

x
− 1

x + y
< µ1 − µ0,

y

x
≥ µ1

µ0
− 1, x + y ≥ 1

µ0

}

(2.54)
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Figure 2.4: Power control policy in the case of µ0 ≥ max(µ1, µ2).

Then, the optimal solution is

p0(h) =































µ0

(

h1

λ1
+ h2

λ2

)

− 1, if
(

h1

λ1
, h2

λ2

)

∈ S3

µ0

(

h1

λ1
+ h2

λ2

)

− (µ1 − µ0)

(

1
h1
λ1

− 1
h1
λ1

+
h2
λ2

)−1

, if
(

h1

λ1
, h2

λ2

)

∈ S4

0, otherwise

(2.55)

p1(h) =































µ1
h1

λ1
− 1, if

(

h1

λ1
, h2

λ2

)

∈ S1

(µ1 − µ0)

(

1
h1
λ1

− 1
h1
λ1

+
h2
λ2

)−1

− 1, if
(

h1

λ1
, h2

λ2

)

∈ S4

0, otherwise

(2.56)

p2(h) =0 (2.57)

Again, the transmit powers are found by dividing these with appropriate channel

gains. As seen from (2.57), in the case of µ1 ≥ µ0 ≥ µ2, transmitter 2 never uses

its power to transmit its individual message. When both channels are poor, no

one transmits. When the channel of the first transmitter is much better than that
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of the second transmitter, transmitter 1 transmits only its individual message and

transmitter 2 keeps silent. When the channel of the second transmitter is much better

than that of the first transmitter, both transmitters cooperate using beamforming to

transmit the common message. When both channels are more or less equally good,

both common message and individual message from transmitter 1 are transmitted.

These regions are shown in Figure 2.5.

3) When µ1 ≥ µ2 ≥ µ0, the optimization problem in (2.33) is equivalent to

min
p≥0,0≤ρ≤1

E

[

− µ0 log (1 + p1(h) + p2(h) + p0(h)) − (µ2 − µ0) log(1 + p1(h) + p2(h))

− (µ1 − µ2) log(1 + p1(h)) +λ1

(

p1(h)

h1
+

ρ(h)2

h1
p0(h)

)

+λ2

(

p2(h)

h2

+
(1 − ρ(h))2

h2

p0(h)

)]

(2.58)

Let us define eight regions in R
2
+,

T1 =

{

(x, y) : x <
1

µ1

, y <
1

µ2

, x + y <
1

µ0

}

(2.59)

T2 =

{

(x, y) : x + y ≥ 1

µ0
,
1

y
− 1

x + y
≥ µ2 − µ0,

1

x
− 1

x + y
≥ µ1 − µ0

}

(2.60)

T3 =

{

(x, y) : x ≥ 1

µ1
,
y

x
< min

(

µ1

µ2
,
µ1

µ0
− 1

)}

(2.61)

T4 =

{

(x, y) : y ≥ 1

µ2

,
x

y
<

µ2

µ0

− 1,
1

x
− 1

y
≥ µ1 − µ2

}

(2.62)

T5 =

{

(x, y) : x + y ≥ 1

µ0
,
1

x
− 1

x + y
< µ1 − µ0,

µ1

µ0
− 1 ≤ y

x
<

√

µ1 − µ0

µ2 − µ0

}

(2.63)

T6 =

{

(x, y) : x + y ≥ 1

µ0

,
x

y
≥ µ2

µ0

− 1,
1

y
− 1

x + y
< µ2 − µ0,

1

x
− 1

y
≥ µ1 − µ2

}

(2.64)
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Figure 2.5: Power control policy in the case of µ1 ≥ µ0 ≥ µ2.

T7 =

{

(x, y) : y ≥ 1

µ2
,
1

x
− 1

y
< µ1 − µ2,

x

y
< min(

µ2

µ1
,
µ2

µ0
− 1)

}

(2.65)

T8 =

{

(x, y) : x + y ≥ 1

µ0
,
1

y
− 1

x + y
< µ2 − µ0,

1

x
− 1

y
< µ1 − µ2,

µ2

µ0
− 1 ≤ x

y
< min





√

µ2 − µ0

µ1 − µ0
,

(

c +
√

c2 + 4

2

)−1


 , where c =
µ1 − µ2

µ0

}

(2.66)

Then, the optimal solution is

p0(h) =



















































µ0

(

h1

λ1
+ h2

λ2

)

− 1, if
(

h1

λ1
, h2

λ2

)

∈ T2

µ0

(

h1

λ1
+ h2

λ2

)

− (µ1 − µ0)

(

1
h1
λ1

− 1
h1
λ1

+
h2
λ2

)−1

, if
(

h1

λ1
, h2

λ2

)

∈ T5

µ0

(

h1

λ1
+ h2

λ2

)

− (µ2 − µ0)

(

1
h2
λ2

− 1
h1
λ1

+
h2
λ2

)−1

, if
(

h1

λ1
, h2

λ2

)

∈ T6

⋃

T8

0, otherwise

(2.67)
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p1(h) =



















































µ1
h1

λ1
− 1, if

(

h1

λ1
, h2

λ2

)

∈ T3

(µ1 − µ0)

(

1
h1
λ1

− 1
h1
λ1

+
h2
λ2

)−1

− 1, if
(

h1

λ1
, h2

λ2

)

∈ T5

(µ1 − µ2)

(

1
h1
λ1

− 1
h2
λ2

)−1

− 1, if
(

h1

λ1
, h2

λ2

)

∈ T7

⋃

T8

0, otherwise

(2.68)

p2(h) =



































































µ2
h2

λ2
− 1, if

(

h1

λ1
, h2

λ2

)

∈ T4

(µ2 − µ0)

(

1
h2
λ2

− 1
h1
λ1

+
h2
λ2

)−1

− 1, if
(

h1

λ1
, h2

λ2

)

∈ T6

µ2
h2

λ2
− (µ1 − µ2)

(

1
h1
λ1

− 1
h2
λ2

)−1

, if
(

h1

λ1
, h2

λ2

)

∈ T7

(µ2 − µ0)

(

1
h2
λ2

− 1
h1
λ1

+
h2
λ2

)−1

− (µ1 − µ2)

(

1
h1
λ1

− 1
h2
λ2

)−1

, if
(

h1

λ1
, h2

λ2

)

∈ T8

0, otherwise

(2.69)

As in the previous two cases, the transmit powers are found by dividing these with

the corresponding channel gains. There are two subcases in the case of µ1 ≥ µ2 ≥ µ0.

When 1
µ1

+ 1
µ2

≤ 1
µ0

, i.e., µ0 is very small, the common message never gets transmitted

due to its small weight. When both channels are poor, no one transmits. When

channel of the first transmitter is much better than that of the second transmitter,

individual message W1 is transmitted only. When channel of the second transmitter is

much better than that of the first transmitter, individual message W2 is transmitted

only. When both channels are more or less equally good, both individual messages

are transmitted. These regions are shown in Figure 2.6.

In the other subcase of 1
µ1

+ 1
µ2

> 1
µ0

, all three messages get a chance to be

transmitted. These regions are shown in Figure 2.7.
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Thus far, we have solved the optimization problem in (2.33) in terms of the la-

grange multipliers λ. Next, we need to solve for λ. Since there is no duality gap, we

will solve for λ by solving the dual problem, i.e., we will find λ that maximizes the

dual function, g(λ). The maximizer of the dual function enables the power policies

to satisfy the power constraints with equalities due to the uniqueness of the optimal

p0, p1, p2, ρ for each given λ. We will solve the dual problem by using the subgradient

method [9]. For our problem,

u(λ)
△
=









E
[

p1(h)
h1

+ ρ∗(h)2p0(h)
h1

]

− P̄1

E
[

p2(h)
h2

+ (1−ρ∗(h))2p0(h)
h2

]

− P̄2









(2.70)

is a subgradient of the dual function and the set {λ : λ ≥ 0, g(λ) > −∞} = {λ :

λ > 0}. We start from an arbitrary point λ(0) ∈ {λ : λ > 0}. At iteration k, we

have available λ(k − 1) from the previous iteration, and we compute (p0, p1, p2, ρ) by

setting λ = λ(k − 1). Then, using the (p0, p1, p2, ρ) we obtained, we compute the

subgradient vector u(λ(k − 1)) by equation (2.70) and update λ using

λ(k) = max[λ(k − 1) + s(k)u(λ(k − 1)), ǫ] (2.71)

where s(k) is a positive scalar stepsize at step k and ǫ = [ǫ1, ǫ2]
T is a positive vector

very close to zero so that λ(k) stays in {λ : λ > 0}. We stop when both components

of vector u(λ(k)) are small enough. In [9], it is proved that for small enough step

sizes, this algorithm converges.

Due to the strict concavity of the log function, the lagrange multipliers are unique.
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The uniqueness of the lagrange multipliers ensures that the boundary rate triplet that

solves (2.30) is unique for all µ vectors except for the following three singular cases:

µ0 = µ1 = µ2 = 0, µ1 > µ0 = µ2 = 0 and µ2 > µ0 = µ1 = 0. Thus, by varying the

µ vector over all possible values, and expressing the rates in limiting expressions for

the singular cases, we obtain the entire boundary surface of the capacity region. In

the process, we also obtain the power control policies that achieve the rate tuples on

the boundary.

2.4 Simulations

In this section, we present simulation results for a two-user Gaussian MAC with

common data in the presence of fading. The channel gains are assumed to be i.i.d.

exponential with mean 1, independent across the two users. In our simulations, we

use the subgradient method, and we picked the stepsize s(k) by method (a) in [9, page

508].

In Figure 2.8, we show the ergodic capacity region of this two-user Gaussian MAC

with common data in fading. The power constraints are P̄1 = 2 and P̄2 = 1. We

calculated the rate triplets on the boundary of the capacity region by varing µ over

all possible values. It is straightforward to see that point R is the solution to case

1), which is independent of µ0. Points between R and S are the solutions to case 2).

Points between T and U are solutions to subcase 1 of case 3) and case 4). Points

between V and R are solutions to case 5). All points on the surface of RSTUV are

solutions to subcase 2 of case 3) and case 4). Surface Y ST is the singular case of
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Figure 2.8: The ergodic capacity region of the Gaussian MAC with common data in
fading.

µ1 > µ0 = µ2 = 0, and surface UV Z is the singular case of µ2 > µ0 = µ1 = 0.

We next compare the achievable rate µ1R1 + µ2R2 + µ0R0 under different power

allocation schemes. We choose µ1 = 0.45, µ2 = 0.35 and µ0 = 0.2 which corresponds

to an interesting case where all three rates, R0, R1 and R2, are non-zero, i.e., subcase

2 of case 3). In Figure 2.9, we plot the achievable rate as a function of the sum of

the power constraints, i.e., P̄1 + P̄2. In this experiment, we assume that the power

constraints are the same for both users, i.e., P̄1 = P̄2. The top-most curve in Figure

2.9 corresponds to the rate achieved by the optimum power allocation scheme we

developed in this chapter. It is numerically solved by using the subgradient method.

The “optimal channel-independent power control” curve corresponds to the solution
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of the following problem

max
0≤P1≤P̄1,0≤P2≤P̄2

E

[

µ0 log

(

1 + h1P̄1 + h2P̄2 + 2
√

h1h2(P̄1 − P1)(P̄2 − P2)

)

+ (µ2 − µ0) log(1 + h1P1 + h2P2) + (µ1 − µ2) log(1 + h1P1)

]

(2.72)

where we choose P1 and P2 to maximize the expectation in (2.72). Note that P1

and P2 are constants, and not functions of the channel realizations. This corresponds

to the largest achievable rate µ1R1 + µ2R2 + µ0R0 when there is no channel state

information at the transmitters, i.e., the transmitters only know the statistics of

the channel gains. This maximization is solved numerically by searching over all

admissible P1 and P2. The lowest curve in Figure 2.9 corresponds to the case where

we choose P1 = P2 = P0, with P0 =
(

√

P̄1 − P1 +
√

P̄2 − P2

)2

. This corresponds

to a case where the transmitters do not know the channel realizations or the channel
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statistics. Consequently, the transmitters use “equal” powers for all three messages.

For this instance, we see from Figure 2.9 that there is a relatively large performance

gain due to adjusting the transmit powers according to the channel realizations. For

this particular fading distribution, using optimum channel-independent power control

provides only a small gain over choosing “equal” powers for all three messages.

2.5 Chapter Summary and Conclusions

In this chapter, we study the Gaussian MAC with common data. In the case of

no fading, we provide an explicit characterization for the capacity region, and a

simpler encoding/decoding scheme. In the case of fading, we characterize the ergodic

capacity region, as well as the power control policies that achieve the rate tuples on

the boundary of the capacity region. As expected, the common message enjoys a

beamforming gain. The received power of the common message comes from both

transmitters. In fact, the amount of power each transmitter spends for the common

message is proportional to its channel gain at that time instant. Furthermore, the

common message is only transmitted when both channels from the transmitters to

the receiver are reasonably good.

The results of this chapter have been published in [51, 57].

2.6 Appendix

2.6.1 Proof of Theorem 2.1

The achievability part follows from an argument similar to [79] and thus is omitted.
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For the converse, we develop a series of bounds on the achievable rates.

nR1 =H(W1|Hn) (2.73)

≤H (W1|Y n,Hn) + I(W1; Y
n|Hn) (2.74)

(a)

≤nǫn + I(W1; Y
n|Hn) (2.75)

(b)

≤nǫn + I(W1; Y
n|W0, X

n
2 ,Hn) (2.76)

where (a) follows from Fano’s inequality [22] and (b) follows from the fact that W1

and (W0, X
n
2 ) are independent, conditioned on Hn.

I(W1; Y
n|W0, X

n
2 ,Hn)

(c)

≤ I(Xn
1 ; Y n|W0, X

n
2 ,Hn) (2.77)

(d)

≤
n
∑

i=1

I(X1i; Yi|X2i, W0,Hi) (2.78)

=
n
∑

i=1

∫

H
pHi

(h)I(X1i; Yi|X2i, W0,h)dh (2.79)

=
n
∑

i=1

∫

H
pHi

(h)

(

h
(

√

h1X1i + Zi|W0,h
)

− 1

2
log(2πe)

)

dh

(2.80)

where (c) follows from the data processing inequality [22] and (d) follows from the

usual converse argument that upper bounds the mutual information of n-sequences

by the sum of the mutual informations of the single letters, based on the fact that

the channel is memoryless conditioned on the channel fading coefficients. In (2.80),
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h(·) denotes the differential entropy.

h
(

√

h1X1i + Zi|W0,h
)

= Es

[

h
(

√

h1X1i + Zi|W0 = s,h
)]

(2.81)

(e)

≤ 1

2
log(2πe) (h1Es [V (X1i|W0 = s,h)] + 1) (2.82)

where V (·) is the variance of a random variable and (e) follows from the fact that given

the variance, Gaussian distribution maximizes the entropy, and applying Jensen’s

inequality [22] afterwards. Then,

R1 ≤
1

n

n
∑

i=1

∫

H
pHi

(h)
1

2
log (1 + h1Es [V (X1i|W0 = s,h)]) dh + ǫn (2.83)

(f)
=

∫

H
pH(h)

1

n

n
∑

i=1

1

2
log (1 + h1Es [V (X1i|W0 = s,h)]) dh + ǫn (2.84)

(g)

≤
∫

H
pH(h)

1

2
log

(

1 + h1
1

n

n
∑

i=1

Es [V (X1i|W0 = s,h)]

)

dh + ǫn (2.85)

where in writing (f) we define H to be a random variable whose distribution is the

same as the stationary distribution of Hi, and (g) follows from the concavity of the

function log(1 + x).

1

n

n
∑

i=1

Es [V (X1i|W0 = s,h)] =
1

n

n
∑

i=1

(

Es

[

E[X2
1i|W0 = s,h] − E2[X1i|W0 = s,h]

])

(2.86)

=
1

n

n
∑

i=1

E[X2
1i|h] − 1

n

n
∑

i=1

Es

[

E2[X1i|W0 = s,h]
]

(2.87)
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Let us define P1(h) = 1
n

∑n
i=1 E[X2

1i|h] and (1 − α(h))P1(h) = 1
n

∑n
i=1 Es[E

2[X1i|W0 =

s,h]] and by definition, 0 ≤ α(h) ≤ 1. Hence,

R1 ≤
∫

H
pH(h)

1

2
log (1 + h1α(h)P1(h)) dh + ǫn (2.88)

Let us define P2(h) = 1
n

∑n
i=1 E[X2

2i|h] and (1 − β(h))P2(h) = 1
n

∑n
i=1 Es[E

2[X2i|W0 =

s,h]]. Then, a symmetric argument gives

R2 ≤
∫

H
pH(h)

1

2
log (1 + h2β(h)P2(h)) dh + ǫn (2.89)

Following arguments similar to (2.73)-(2.84), we get an inequality akin to (2.85) as

R1 + R2

≤
∫

H
pH(h)

1

2
log

(

1 +
1

n

n
∑

i=1

Es

[

V
(

√

h1X1i +
√

h2X2i|W0 = s,h
)]

)

dh + ǫn

(2.90)

(h)
=

∫

H
pH(h)

1

2
log

(

1 + h1
1

n

n
∑

i=1

Es

[

V
(

√

h1X1i|W0 = s,h
)]

+

h2
1

n

n
∑

i=1

Es

[

V
(

√

h2X2i|W0 = s,h
)]

)

dh + ǫn (2.91)

=

∫

H
pH(h)

1

2
log (1 + h1α(h)P1(h) + h2β(h)P2(h)) dh + ǫn (2.92)

where (h) follows from the fact that, without loss of generality, we may consider

encoders that depend only on the current channel state. Then, it follows that, con-

ditioned on the common message W0 and the current channel state Hi = h, X1i and
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X2i are independent.

For the case of R0 + R1 + R2, again, by following similar arguments, we get an

inequality akin to (2.85) as

R0 + R1 + R2 ≤
∫

H
pH(h)

1

2
log

(

1 +
1

n

n
∑

i=1

V
(

√

h1X1i +
√

h2X2i|h
)

)

dh + ǫn

(2.93)

Now,

1

n

n
∑

i=1

V
(

√

h1X1i +
√

h2X2i|h
)

(2.94)

≤ 1

n

n
∑

i=1

E

[

(

√

h1X1i +
√

h2X2i

)2

|h
]

(2.95)

=
1

n

n
∑

i=1

Es

[

E

[

(

√

h1X1i +
√

h2X2i

)2

|W0 = s,h

]]

(2.96)

=
1

n

n
∑

i=1

(

h1E[X2
1i|h] + h2E[X2

2i|h] + 2
√

h1h2Es [E[X1iX2i|W0 = s,h]]
)

(2.97)

≤ h1P1(h) + h2P2(h) + 2
√

h1h2
1

n

n
∑

i=1

(

Es[E
2[X1i|W0 = s,h]

)
1
2

(

Es[E
2[X2i|W0 = s,h]]

)
1
2 (2.98)

≤ h1P1(h) + h2P2(h)

+ 2

√

√

√

√h1h2

(

1

n

n
∑

i=1

Es[E2[X1i|W0 = s,h]]

)(

1

n

n
∑

i=1

Es[E2[X2i|W0 = s,h]]

)

(2.99)

= h1P1(h) + h2P2(h) + 2
√

h1h2(1 − α(h))(1 − β(h))P1(h)P2(h) (2.100)
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Hence,

R0 + R1 + R2 ≤
∫

H
pH(h)

1

2
log

(

1 + h1P1(h) + h2P2(h)

+ 2
√

h1h2(1 − α(h))(1 − β(h))P1(h)P2(h)

)

dh + ǫn (2.101)

The power constraints of the system are:

1

n

n
∑

i=1

X2
1i ≤ P̄1,

1

n

n
∑

i=1

X2
2i ≤ P̄2 with probability 1 (2.102)

Hence,

∫

H
pH(h)P1(h)dh =

∫

H
pH(h)

1

n

n
∑

i=1

E[X2
1i|h]dh =

1

n

n
∑

i=1

E[X2
1i] ≤ P̄1 (2.103)

∫

H
pH(h)P2(h)dh =

∫

H
pH(h)

1

n

n
∑

i=1

E[X2
2i|h]dh =

1

n

n
∑

i=1

E[X2
2i] ≤ P̄2 (2.104)

The rates triplets (R1, R2, R0) have to satisfy

R1 ≤
∫

H
pH(h)

1

2
log(1 + h1α(h)P1(h))dh + ǫn (2.105)

R2 ≤
∫

H
pH(h)

1

2
log(1 + h2β(h)P2(h))dh + ǫn (2.106)

R1 + R2 ≤
∫

H
pH(h)

1

2
log(1 + h1α(h)P1(h) + h2β(h)P2(h))dh + ǫn (2.107)

R0 + R1 + R2 ≤
∫

H
pH(h)

1

2
log

(

1 + h1P1(h) + h2P2(h)

+ 2
√

h1h2(1 − α(h))(1 − β(h))P1(h)P2(h)

)

dh + ǫn (2.108)
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for some α(h) and β(h) that map state space to [0, 1] and P1(h) and P2(h) that

satisfy

∫

H
pH(h)P1(h)dh ≤ P̄1 (2.109)

∫

H
pH(h)P2(h)dh ≤ P̄2 (2.110)

We make the following variable changes:

p1(h) = h1α(h)P1(h) (2.111)

p2(h) = h2β(h)P2(h) (2.112)

p0(h) =
(

√

h1(1 − α(h))P1(h) +
√

h2(1 − β(h))P2(h)
)2

(2.113)

ρ(h) =

√

h1(1 − α(h))P1(h)
√

p0(h)
(2.114)

Thus,

R1 ≤ E [C (p1(h))] (2.115)

R2 ≤ E[C (p2(h))] (2.116)

R1 + R2 ≤ E[C (p1(h) + p2(h))] (2.117)

R0 + R1 + R2 ≤ E[C (p1(h) + p2(h) + p0(h))] (2.118)

for some ρ(h) that maps the state space to [0,1], and some p1(h), p2(h) and p0(h)
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that satisfy

E

[

p1(h)

h1
+

ρ(h)2p0(h)

h1

]

≤ P̄1 (2.119)

E

[

p2(h)

h2

+
(1 − ρ(h))2p0(h)

h2

]

≤ P̄2 (2.120)

p0(h), p1(h), p2(h) ≥ 0 (2.121)

2.6.2 Proof of Lemma 2.1

Let (Ra, P̃ a
1 , P̃ a

2 ) and (Rb, P̃ b
1 , P̃ b

2 ) be two elements in set L. To prove that set L is

convex, we need to show that for any 0 ≤ θ ≤ 1, (θRa + (1 − θ)Rb, θP̃ a
1 + (1 −

θ)P̃ b
1 , θP̃ a

2 + (1 − θ)P̃ b
2 ) is in set L.

For i = a or b, (Ri, P̃ i
1, P̃

i
2) ∈ L means that Ri ∈ Cf (p

i, ρi) for some (pi, ρi) such

that

E

[

pi
1(h)

h1
+

ρi(h)2pi
0(h)

h1

]

≤ P̃ i
1, E

[

pi
2(h)

h2
+

(1 − ρi(h))2pi
0(h)

h2

]

≤ P̃ i
2 (2.122)

pi
0(h), pi

1(h), pi
2(h) ≥ 0, 0 ≤ ρi(h) ≤ 1 (2.123)

i.e., there exist (pi(h), ρi(h)) that satisfy (2.122) and (2.123) and

Ri
1 ≤ E

[

C
(

pi
1(h)

)]

(2.124)

Ri
2 ≤ E[C

(

pi
2(h)

)

] (2.125)

Ri
1 + Ri

2 ≤ E[C
(

pi
1(h) + pi

2(h)
)

] (2.126)

Ri
0 + Ri

1 + Ri
2 ≤ E[C

(

pi
1(h) + pi

2(h) + pi
0(h)

)

] (2.127)
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Let

p1(h) = θpa
1(h) + (1 − θ)pb

1(h) (2.128)

p2(h) = θpa
2(h) + (1 − θ)pb

2(h) (2.129)

p0(h) = θpa
0(h) + (1 − θ)pb

0(h) (2.130)

ρ1(h) =

√

θpa
0(h)ρa(h)2 + (1 − θ)pb

0(h)ρb(h)2

θpa
0(h) + (1 − θ)pb

0(h)
(2.131)

1 − ρ2(h) =

√

θpa
0(h)(1 − ρa(h))2 + (1 − θ)pb

0(h)(1 − ρb(h))2

θpa
0(h) + (1 − θ)pb

0(h)
(2.132)

It is straightforward to verify that ρ1(h) ≥ ρ2(h) for all possible h, θ, pa
0(h), pb

0(h),

ρa(h), ρb(h). Due to the concavity of the log function,

θRa
1 + (1 − θ)Rb

1 ≤ E [C (p1(h))] (2.133)

θRa
2 + (1 − θ)Rb

2 ≤ E[C (p2(h))] (2.134)

(θRa
1 + (1 − θ)Rb

1) + (θRa
2 + (1 − θ)Rb

2) ≤E[C (p1(h) + p2(h))] (2.135)

(θRa
0 + (1 − θ)Rb

0) + (θRa
1 + (1 − θ)Rb

1)+(θRa
2 + (1 − θ)Rb

2) ≤

E[C (p1(h) + p2(h) + p0(h))] (2.136)

Also, it is easy to check that

E

[

p1(h)

h1
+

ρ1(h)2p0(h)

h1

]

≤ θP̃ a
1 + (1 − θ)P̃ b

1 (2.137)

E

[

p2(h)

h2
+

(1 − ρ1(h))2p0(h)

h2

]

≤ E

[

p2(h)

h2
+

(1 − ρ2(h))2p0(h)

h2

]

≤ θP̃ a
2 + (1 − θ)P̃ b

2

(2.138)
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From (2.133)- (2.138), we see that θRa + (1 − θ)Rb ∈ Cf ([p1, p2, p0]
T , ρ1). Also,

p0, p1, p2 ≥ 0, 0 ≤ ρ1 ≤ 1 and satisfy the power constraints of θP̃ a
1 + (1 − θ)P̃ b

1 and

θP̃ a
2 + (1 − θ)P̃ b

2 .

Hence,

θRa + (1 − θ)Rb ∈ C(θP̃ a
1 + (1 − θ)P̃ b

1 , θP̃ a
2 + (1 − θ)P̃ b

2 ) (2.139)

and (θRa + (1 − θ)Rb, θP̃ a
1 + (1 − θ)P̃ b

1 , θP̃ a
2 + (1 − θ)P̃ b

2 ) ∈ L as desired. Thus, L is

convex.
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Chapter 3

Scaling Laws for Dense Gaussian Sensor Networks and the

Order Optimality of Separation

In Chapter 2, we focused on correlated data which was in the special form of common

data. However, in practical situations, correlated data manifests itself in more general

forms. One practically interesting application is the sensor networks.

With recent advances in the hardware technology, small cheap nodes with sens-

ing, computing and communication capabilities have become available. In practical

applications, it is possible to deploy a large number of these nodes to sense the envi-

ronment. In this chapter, we investigate the optimal performance of a dense sensor

network by studying the joint source-channel coding problem. The sensor network

is composed of N sensors, where N is very large, and a single collector node. Each

sensor node has the capability of taking noiseless samples from an underlying random

process. Each node in the sensor network is equipped with one transmit and one

receive antenna to transmit and receive signals through the wireless medium, i.e., all

nodes hear a linear combination of the signals transmitted by all other nodes at that

time instant. The overall goal of the sensor network is to take measurements from an
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underlying random process S(u), 0 ≤ u ≤ U0, code and transmit those measured sam-

ples to a collector node, which wishes to reconstruct the entire random process with

as little distortion as possible; see Figure 1.1. Due to the small distances between the

sensor nodes and the correlation in the measured data, the underlying sensor samples

are correlated, and due to the existence of receive antennas at the sensor nodes and

a transmit antenna at the collector node, the communication channel is a Gaussian

cooperative multiple access channel with noisy feedback. We investigate the mini-

mum achievable expected distortion and a corresponding achievability scheme when

the underlying random process is Gaussian.

El Gamal [29] showed that all spatially band-limited Gaussian processes can be

estimated at the collector node, subject to any non-zero constraint on the mean

squared distortion, i.e., the sensor network scales successfully. In this chapter, we

study the minimum achievable expected distortion for space-limited, and thus, not

band-limited, random processes, and we show the rate at which the minimum achiev-

able expected distortion decreases to zero as the number of nodes increases. Also,

in [29], it is assumed that the channel gains between the nodes are decreasing func-

tions of the distance between them, without enforcing any upper bounds. This implies

that, when the sensors are placed very densely, the channel gains between nearby sen-

sors become unboundedly large. This physically impossible situation arises because

although the channel model used in [29] is valid only in the far field of the transmitter,

it is used for all distances. In this chapter, we have used a a more realistic channel

model, where we assume that the channel gains decrease with distance, however, they

are lower and upper bounded.
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Kashyap et al. [43] studied the source coding part of the problem investigated in

this chapter. The paper showed that for any distortion constraint that is independent

of N , the difference between the rate achievable by distributed source coding and the

rate achievable by centralized source coding is bounded by a constant, independent

of N . Though we study a joint source-channel coding problem, both our converse

and achievability proofs are separation-based, and thus, we show a similar result:

in the source coding part we show that the ratio between the rate achievable by

distributed source coding and the rate achievable by centralized source coding is

bounded by a constant, independent of N . In contrast to [43] where the distortion

constraint is independent of N , we allow the distortion to go to zero as a function of

N . Moreover, [43] deals with stationary Gaussian random processes, while we allow

for nonstationarity of the underlying random process. It is not immediately evident

whether the methods in [43] apply in the scenario considered in this chapter.

Neuhoff and Pradhan [64] studied the source coding part of the problem investi-

gated in this chapter by allowing the random process to be unbounded in space. The

sensors are densely as well as widely distributed. In this case, results from Grenander-

Szego [35] were used. However, for the case of a finite interval, as considered in this

chapter, such results cannot be used.

Gastpar and Vetterli [33] studied the case where the sensors observe a noisy version

of a linear combination of L Gaussian random variables which all have the same

variance, code and transmit those observations to a collector node, and the collector

node reconstructs the L random variables. In [33], the expected distortion achieved

by applying separation-based approaches was shown to be order worse than the lower
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bound on the minimum achievable expected distortion. In this chapter, we study

the case where the data of interest at the collector node is not a finite number of

random variables, but a random process, which, using Karhunen-Loeve expansion,

can be shown to be equivalent to a set of infinitely many random variables with

varying variances. We assume that the sensors are able to take noiseless samples, but

that each sensor observes only its own sample. Our upper bound on the minimum

achievable distortion is also developed by using a separation-based approach, but it

is shown to be of the same order as the lower bound, for a wide range of power

constraints, for random processes that satisfy some general conditions.

We first provide lower and upper bounds for the minimum achievable expected

distortion for arbitrary Gaussian random processes whose Karhunen-Loeve expan-

sion exists. Then, we focus on the case where the Gaussian random process also

satisfies some general conditions. For these random processes, we evaluate the lower

and upper bounds explicitly, and show that they are of the same order, for a wide

range of power constraints. Thus, for these random processes, under a wide range of

power constraints, we determine an order-optimal achievability scheme, and identify

the minimum achievable expected distortion as a function of the number of nodes

and the sum power constraint. Our achievability scheme is separation-based: each

sensor node first performs multi-terminal source coding [30], then, performs chan-

nel coding, and utilizes the cooperative nature of the wireless medium through the

amplify-and-forward scheme [32]. In multi-user information theory, generally speak-

ing, the separation principle does not hold. However, in our case, we have found a

scheme which is separation based, and is order-optimal.
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3.1 System Model

The collector node wishes to reconstruct a continuous random process S(u), for 0 ≤

u ≤ U0, where u denotes the spatial position; S(u) is assumed to be Gaussian with

zero-mean and a continuous autocorrelation function K(u, v). The N sensor nodes

are placed on a straight line at positions 0 ≤ u1 ≤ u2 ≤ · · · ≤ uN ≤ U0, and observe

samples

SN =

[

S(u1) S(u2) · · · S(uN)

]T

(3.1)

For simplicity and to avoid irregular cases, we assume that the sensors are equally

spaced, i.e.,

ui =
i − 1

N
U0, i = 1, 2, · · · , N (3.2)

The distortion measure is the squared error,

d
(

S(u), Ŝ(u)
)

=
1

U0

∫ U0

0

(

S(u) − Ŝ(u)
)2

du (3.3)

Each sensor node and the collector node, denoted as node 0, is equipped with

one transmit and one receive antenna. To simplify the presentation, from now until

Section 3.6, we will assume that the collector node does not use its transmit antenna,

and thus, there is no feedback in the system. We will allow the collector node to use its

transmit antenna and provide feedback to the sensor nodes in Section 3.6, and show
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that the results of the previous sections remain unchanged. The transmissions through

the wireless medium are time slotted. The channel is assumed to be memoryless

between the time slots. At any time instant, let Xi denote the signal transmitted by

node i, and Yj denote the signal received at node j. Let hij denote the channel gain

from node i to node j. Then, the received signal at node j can be written as,

Yj =

N
∑

i=1,i6=j

hijXi + Zj, j = 0, 1, 2, · · · , N (3.4)

where {Zj}N
j=0 is a vector of N + 1 independent and identically distributed, zero-

mean, unit-variance Gaussian random variables. Therefore, the channel model of the

network is such that all nodes hear a linear combination of the signals transmitted by

all other nodes at that time instant. We assume that the channel gain hij is bounded,

i.e.,

h̄l ≤ hij ≤ h̄u, i = 1, · · · , N, j = 0, 1, · · · , N (3.5)

where h̄u and h̄l are positive constants independent of N . This model is very general

and should be satisfied very easily. By the conservation of energy, h2
ij ≤ 1, and since

all nodes are within finite distances of each other, the channel gains should be lower

bounded as well.

We assume that all sensors share the sum power constraint P (N). The two most

interesting cases for P (N) are P (N) = NPind, where each sensor has its individual

power constraint Pind, and P (N) = Ptot, where the sum power constraint is a constant
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Ptot and does not depend on the number of sensor nodes. In the latter case, when

more and more sensor nodes are deployed, the individual power of each sensor node

decreases as Ptot/N . Our goal is to determine the scheme that achieves the minimum

achievable expected distortion

1

U0

∫ U0

0

E

[

(

S(u) − Ŝ(u)
)2
]

du (3.6)

at the collector node for a given sum power constraint P (N), and also to determine

the rate at which this distortion goes to zero as a function of the number of sensor

nodes and the sum power constraint.

Next, we give a more precise definition of our problem. Each sensor node observes

a sample of a sequence of spatial random processes {S(l)(u)}n
l=1, where index l denotes

time, u denotes the spatial position, and n is the block length of the sequence of

random processes, and also the delay parameter, which may be a function of N , the

number of sensor nodes. The sequence of spatial random processes {S(l)(u)}n
l=1 is

assumed to be i.i.d. in time. For now, we assume that n channel uses are allowed for

n realizations of the random process; the case where we allow the number of channel

uses and the number of realizations to differ will be treated in Section 3.6. At time

instant m, sensor node j transmits

Xj(m) = F
(m)
j ({S(l)(uj)}n

l=1, {Y
(l)
j }m−1

l=n+1), m = n + 1, n + 2, · · · , 2n,

j = 1, 2, · · · , N (3.7)
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i.e., after waiting n time slots to obtain a block of observations, the sensor node

transmits, at time m, a signal that is a function of its observations of the entire block

of random process samples and also the signal it received before time m. We are

interested in the performance in the information-theoretic sense and hence, we allow

the delay n to be arbitrarily large. By the assumption of sum power constraint, we

have

1

n

n
∑

m=1

N
∑

j=1

E[X2
j (m)] ≤ P (N) (3.8)

The collector node reconstructs the random process as

{Ŝ(l)(u), u ∈ [0, U0]}n
l=1 = G(Y

(n+1)
0 , Y

(n+2)
0 , · · · , Y

(2n)
0 ) (3.9)

For fixed encoding functions of the nodes {F (m)
j }m=2n,j=N

m=n+1,j=1 and the decoding function

of the collector node G, the achieved expected distortion averaged over time is

DN =
1

n

n
∑

l=1

E
[

d
(

S(l)(u), Ŝ(l)(u)
)]

(3.10)

and we are interested in the smallest achievable expected distortion over all encoding

and decoding functions where n is allowed to be arbitrarily large.

In this chapter, our purpose is to understand the behavior of the minimum achiev-

able expected distortion when the number of sensor nodes is very large. We introduce

the big-O, big-Ω and big-Θ notations. We say that f is O(g), and g is Ω(f), if there

exist constants c and k, such that |f(N)| ≤ c|g(N)| for all N > k; we say that f is
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Θ(g) if f(N) is both O(g) and Ω(g). All logarithms are defined with respect to base e,

and ⌊x⌋ denotes the largest integer smaller than or equal to x. (x)i and ||x|| denote

the i-th element and the Euclidean norm of vector x, respectively. ||A||2 denotes

the spectral norm of matrix A, which is defined as the square root of the largest

eigenvalue of matrix ATA [38].

3.2 A Class of Gaussian Random Processes

For a Gaussian random process S(u) with a continuous autocorrelation function, we

perform the Karhunen-Loeve expansion [65],

S(u) =
∞
∑

k=0

S̄kφk(u) (3.11)

to obtain the ordered eigenvalues {λk}∞k=0, and the corresponding set of orthonormal

eigenfunctions {φk(u), u ∈ [0, U0]}∞k=0.

Let A be the set of Gaussian random processes on [0, U0] with continuous auto-

correlation functions, that satisfy the following conditions:

1. There exist nonnegative constants dl, du, and nonnegative integers cl, cu, K0 ≥

cu + 1 and two sequences of numbers {λ′
k}∞k=0 and {λ′′

k}∞k=0 defined as

λ′
k =















λk, k ≤ K0

dl

(k+cl)x , k > K0

(3.12)
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and

λ′′
k =















λk, k ≤ K0

du

(k−cu)x , k > K0

(3.13)

for some constant x > 1, such that

λ′
k ≤ λk ≤ λ′′

k (3.14)

The condition that x > 1 is without loss of generality, because for all continuous

autocorrelations, the eigenvalues decrease faster than k−1.

2. In addition to continuity, K(u, v) satisfies the Lipschitz condition of order 1/2 <

α ≤ 1, i.e., there exists a constant B > 0 such that

|K(u1, v1) − K(u2, v2)| ≤ B
(

√

(u1 − u2)2 + (v1 − v2)2
)α

(3.15)

for all u1, v1, u2, v2 ∈ [0, U0].

3. For k = 0, 1, · · · , the function φk(v) and the function K(u, v)φk(v) as a function

of v satisfy the following condition: there exist positive constants B1, B2, B3,

B4, β ≤ 1, γ ≤ 1, and nonnegative constant τ , independent of k, such that

|φk(v1) − φk(v2)| ≤ B3(k + B4)
τ |v1 − v2|γ (3.16)
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and

|K(u, v1)φk(v1) − K(u, v2)φk(v2)| ≤ B2(k + B1)
τ |v1 − v2|β (3.17)

for all u, v1, v2 ∈ [0, U0].

The reasons why these conditions are needed for the explicit evaluation of the lower

and upper bounds on the minimum achievable expected distortion will be clear from

the proofs. Here, we provide some intuition as to why they are needed. Condition 1

states that we consider random processes that have eigenvalues λk which decrease at

a rate of approximately k−x. The rate of decrease in the eigenvalues is an indication

of how the randomness of the random process is distributed upon the eigenfunctions.

For example, a small x means that the randomness is distributed rather evenly upon

all eigenfunctions, while a large x means that the randomness is mostly concentrated

upon a subset of eigenfunctions. Thus, the minimum achievable expected distortion

depends crucially on the rate of decrease parameter x. The lower (upper) bound on

the eigenvalues in (3.14) will be used to calculate the lower (upper) bound on the

minimum achievable expected distortion. Conditions 2 and 3 are needed because

instead of the random process itself that is of interest to the collector node, the

collector node, at best, can know only the sampled values of the random process. How

well the entire process can be approximated from its samples is of great importance

in obtaining quantitative results. Lipschitz conditions describe the quality of this

approximation well. By condition 3, we require the variation in the eigenfunction φk

to be no faster than kτ . We note that the well-known trigonometric basis satisfies
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this condition.

We also note that our conditions are quite general. Many random processes sat-

isfy these conditions, including the Gauss-Markov process, Brownian motion process,

centered Brownian bridge, etc. For example, a Gauss-Markov process, also known

as the Ornstein-Uhlenbeck process [80, 85], is defined as a random process that is

stationary, Gaussian, Markovian, and continuous in probability. It is known that the

autocorrelation function of this process is [11, 24, 42]

K(u, v) =
σ2

2η
e−η|u−v| (3.18)

The Karhunen-Loeve expansion of the Gauss-Markov process yields the eigenfunctions

{φk(u)}∞k=0

φk(u) = bk



cos

√

σ2

λk

− η2u +
η

√

σ2

λk
− η2

sin

√

σ2

λk

− η2u



 (3.19)

where {λk}∞k=0 are the corresponding eigenvalues and bk are positive constants chosen

such that the eigenfunctions φk(u) have unit energy. It can be shown that {λk}∞k=0

may be bounded as

λ′
k ≤ λk ≤ λ′′

k (3.20)
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where {λ′
k}∞k=0 is defined as

λ′
k =















λk, k ≤ K0

σ2U2
0

(k+1)2π2 , k > K0

(3.21)

with K0 = max
(

2,
⌊

η2U2
0

π2 − 3
4

⌋)

, and {λ′′
k}∞k=0 is defined as

λ′′
k =















λk, k ≤ K0

σ2U2
0

(k−1)2π2 , k > K0

(3.22)

Thus, we observe that the Gauss-Markov process satisfies the conditions defined

in this section with x = 2, dl = du and α = β = τ = γ = 1.

The lower and upper bounds on the minimum achievable expected distortion will

be calculated using {λ′
k}∞k=0 and {λ′′

k}∞k=0, respectively. Some properties of {λ′
k}∞k=0

and {λ′′
k}∞k=0 which will be used in later proofs are stated in Lemmas 3.5 and 3.6 and

proved in Appendix 3.8.1.

3.3 A Lower Bound on the Achievable Distortion

3.3.1 Arbitrary Gaussian Random Processes

A lower bound is obtained by assuming that all of the sensor nodes know the random

process exactly, i.e., S(u), u ∈ [0, U0], and the sensor network forms an N -transmit 1-

receive antenna point-to-point system to transmit the random process to the collector

node. Let CN
u be the capacity of this point-to-point system in nats per channel use
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and Dp(R) be the distortion-rate function of the random process S(u) [6]. In this

point-to-point system, the separation principle holds, and therefore

DN ≥ Dp(C
N
u ) (3.23)

To evaluate Dp(C
N
u ), we first find the distortion-rate function, Dp(R), of S(u) [6,

Section 4.5] as,

R(θ) =
∞
∑

k=0

max

(

0,
1

2
log

(

λk

θ

))

(3.24)

and

D(θ) = U−1
0

∞
∑

k=0

min(θ, λk) (3.25)

where θ is an intermediate variable used to describe the distortion-rate function.

The distortion-rate function Dp(R) characterizes the minimum achievable expected

distortion when we use R nats per source realization to describe the random process.

Next, we find CN
u , the capacity of the N -transmit 1-receive antenna point-to-point

system [78] as,

CN
u =

1

2
log

(

1 +

N
∑

i=1

h2
i0P (N)

)

nats/channel use (3.26)

To see how CN
u changes with N , using (3.26) and (3.5), we can lower and upper bound
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CN
u as

1

2
log
(

1 + h̄2
l NP (N)

)

≤ CN
u ≤ 1

2
log
(

1 + h̄2
uNP (N)

)

(3.27)

For arbitrary Gaussian random processes, a lower bound on the minimum achievable

expected distortion is

DN
l = Dp(C

N
u ) (3.28)

3.3.2 The Class of Gaussian Random Processes in A

Next, we evaluate Dp(C
N
u ) for the class of Gaussian random processes in A. Based

on the structure of the eigenvalues in (3.12) and (3.14), and the properties of {λ′
k}∞k=0

in Lemma 3.5 in Appendix 3.8.1, the rate-distortion function of the random process

satisfies the following lemma.

Lemma 3.1 For Gaussian random processes in A, for any constant 0 < κ < 1, we

have

R(θ) ≥ κxd
1
x
l

2
θ−

1
x (3.29)

D(θ) ≥ κ

(

1 +
κ

x − 1

)

d
1
x
l

U0

θ1− 1
x (3.30)

when θ is small enough .

A proof of Lemma 3.1 is provided in Appendix 3.8.2. Using Lemma 3.1, and rec-

ognizing the facts that D(θ) is a nondecreasing function of θ, and R(θ) is a strictly
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decreasing function of θ when θ < λ1, i.e., its inverse function θ(R) exists when R

is large enough, we have the next theorem which presents a lower bound for the

distortion-rate function of the random process.

Theorem 3.1 For Gaussian random processes in A, for any constant 0 < κ < 1, we

have

Dp(R) ≥ κ

(

1 +
κ

x − 1

)

(κx

2

)x−1 dl

U0
R1−x (3.31)

when R is large enough.

We will divide our discussion into two separate cases based on the sum power

constraint, P (N). For the first case, P (N) is such that

lim
N→∞

1

NP (N)
= 0 (3.32)

The cases P (N) = NPind and P (N) = Ptot are included in P (N) satisfying (3.32).

From (3.27), we see that in this case CN
u increases monotonically in N . Hence, when

N is large enough, CN
u will be large enough such that Theorem 3.1 holds. Hence,

for any constant 0 < κ < 1, a lower bound on the minimum achievable expected

distortion is

DN
l = Dp(C

N
u ) ≥ κ2

(

1 +
κ

x − 1

)

(κx)x−1 dl

U0

(

1

log (NP (N))

)x−1

(3.33)
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when N is large enough. Hence, when sum power constraint P (N) satisfies (3.32),

the minimum achievable distortion is

Ω

(

(

1

log(NP (N))

)x−1
)

(3.34)

For the second case, P (N) is such that (3.32) is not satisfied. In this case, CN
u

is either a constant independent of N or goes to zero as N goes to infinity. The

minimum achievable distortion does not go to zero with increasing N .

Therefore, for all possible sum power constraints P (N), the minimum achievable

distortion is

Ω

(

min

(

(

1

log(NP (N))

)x−1

, 1

))

(3.35)

When the sum power constraint P (N) grows almost exponentially with the num-

ber of nodes, the lower bound on the minimum achievable expected distortion in

(3.35) decreases inverse polynomially with N . Even though this provides excellent

distortion performance, it is impractical since sensor nodes are low energy devices

and it is often difficult, if not impossible, to replenish their batteries. When the sum

power constraint P (N) is such that (3.32) is not satisfied, the transmission power is

so low that the communication channels between the sensors and the collector node

are as if they do not exist. From (3.35), the lower bound on the estimation error

in this case is on the order of 1, which is equivalent to the collector node blindly

estimating S(u) = 0 for all u ∈ [0, U0]. Even though the consumed sum power P (N)
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is very low in this case, the performance of the sensor network is unacceptable; even

the lower bound on the minimum achievable expected distortion does not decrease

to zero with the increasing number of nodes. For practically meaningful sum power

values, including the cases of P (N) = NPind and P (N) = Ptot, the lower bound on

the minimum achievable expected distortion in (3.35) decays to zero at the rate of

1

(log N)x−1 (3.36)

3.4 An Upper Bound on the Achievable Distortion

3.4.1 Arbitrary Gaussian Random Processes

Any distortion found by using any achievability scheme will serve as an upper bound

for the minimum achievable expected distortion. We consider the following separation-

based achievable scheme. First, we perform multi-terminal rate-distortion coding at

all sensor nodes using [30, Theorem 1]. After obtaining the indices of the rate-

distortion codes, we transmit the indices as independent messages using the amplify-

and-forward method introduced in [32]. The distortion obtained using this scheme

will be denoted as DN
u .

First, we determine an achievable rate region for the communication channel from

the sensor nodes to the collector node. The channel in its nature is a multiple access

channel with potential cooperation between the transmitters. The capacity region for

this channel is not known. We get an achievable rate region for this channel by using

the idea presented in [32].
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Theorem 3.2 When the sum power constraint P (N) is such that there exists an

ǫ > 0 where

lim
N→∞

P (N)N
1
2
−ǫ > 1 (3.37)

for any constant 0 < κ < 1, the following rate region is achievable,

N
∑

i=1

RN
i ≤ κν log(NP (N))

△
= CN

a nats/channel use (3.38)

where RN
i is the rate achievable from sensor i to the collector node, ν is a positive

constant independent of N ,

ν = min

(

ǫ

1 + 2ǫ
,
1

4

)

(3.39)

when N is large enough. Otherwise, the sum rate is bounded by a nonnegative constant

as N → ∞.

A proof of Theorem 3.2 is provided in Appendix 3.8.3. Theorem 3.2 shows that

when the sum power constraint is such that (3.37) is satisfied, the achievable rate

increases with N . Furthermore, the achievable rate is the same as the upper bound

on the achievable sum rate in (3.26) order-wise. Otherwise, the achievable sum rate

is either a positive constant or decreases to zero, which will result in poor estimation

performance at the collector node. The achievability scheme proposed in the proof

of Theorem 3.2 incurs a delay that is proportional to the number of sensor nodes.
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From a practical point of view, it is desirable to have achievability schemes that

perform better in terms of the latency. In this chapter, we propose an achievability

scheme that meets the lower bound order-wise, and leave the issue of developing

better achievability schemes to future work.

Since the achievable rate region developed above is only characterized by the

sum rate constraint, in the source coding part, for a fixed distortion constraint, we

only need to characterize the achievable sum rate, rather than the achievable rate

region. We apply [30, Theorem 1], generalized to N sensor nodes in [16, Theorem

1], to obtain an achievable sum rate-distortion point. The achievability scheme is an

indirect version of the achievability scheme developed by Berger and Tung [7].

Theorem 3.3 For all Gaussian random processes, the following sum rate and dis-

tortion are achievable,

DN
a (θ) =

1

U0

∫ U0

0

(

K(u, u) − U0

N
ρT

N (u) (Σ′

N
+ θI)

−1
ρN(u)

)

du (3.40)

RN
a (θ) =

N−1
∑

k=0

1

2
log

(

1 +
µ

(N)′

k

θ

)

(3.41)

where

ρN (u) =

[

K (u, 0) K
(

u, U0

N

)

K
(

u, 2U0

N

)

· · · K
(

u, (N−1)U0

N

)

]T

(3.42)
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and

ΣN = E[SNST
N ] (3.43)

=

























K(0, 0) K
(

0, U0

N

)

· · · K
(

0, (N−1)U0

N

)

K
(

U0

N
, 0
)

K
(

U0

N
, U0

N

)

· · · K
(

U0

N
, (N−1)U0

N

)

...
...

...
...

K
(

(N−1)U0

N
, 0
)

K
(

(N−1)U0

N
, U0

N

)

· · · K
(

(N−1)U0

N
, (N−1)U0

N

)

























(3.44)

and Σ′

N
= U0

N
ΣN and µ

(N)′

0 , µ
(N)′

1 , · · · , µ
(N)′

N−1 are the eigenvalues of Σ′

N
.

A proof of Theorem 3.3 is provided in Appendix 3.8.4.

We further evaluate DN
a (θ) in the next lemma.

Lemma 3.2 For all Gaussian random processes, we have

DN
a (θ) ≤ 2A(N) + B(N) + DN

b (θ) (3.45)

where A(N), B(N) and DN
b (θ) are defined as

A(N) =
1

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

K(u, u)− K

(

i − 1

N
U0,

i − 1

N
U0

))

du

+
2

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

ρN

(

i − 1

N
U0

)

− ρN (u)

)

i

du (3.46)

and

B(N) =
2

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∣

∣

∣

∣

∣

∣

∣

∣

ρN

(

i − 1

N
U0

)

− ρN(u)

∣

∣

∣

∣

∣

∣

∣

∣

du (3.47)
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and

DN
b (θ) =

1

U0

N−1
∑

k=0

(

1

θ
+

1

µ
(N)′

k

)−1

(3.48)

respectively.

A proof of Lemma 3.2 is provided in Appendix 3.8.5. Lemma 3.2 tells us that the

expected distortion achieved by using the separation-based scheme is upper bounded

by the sum of three types of distortion. The first two types of distortion, A(N) and

B(N), have nothing to do with the rate and only depend on how well the samples

approximate the entire random process. The third distortion, DN
b (θ), depends on the

rate through variable θ.

The function RN
a (θ) is a strictly decreasing function of θ, thus, the inverse function

exists, which we will denote as θN
a (R). Let us define Da(R) as the composition of the

two functions DN
a (θ) and θN

a (R), i.e.,

Da(R) = DN
a (θN

a (R)) (3.49)

An upper bound on the minimum achievable distortion, i.e., the achievable distortion

by the separation-based scheme described above, is

DN
u = Da

(

CN
a

)

(3.50)

where CN
a is defined in (3.38).
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We will perform this calculation when the underlying random process is in A.

3.4.2 The Class of Gaussian Random Processes in A

We analyze the three types of distortion in (3.45) for Gaussian random processes in

A. We will focus on A(N) and B(N) in Lemma 3.3, and on DN
b (θ) in Lemma 3.4.

Lemma 3.3 For Gaussian random processes in A, we have

A(N) = O
(

N−α
)

(3.51)

B(N) = O
(

N
1
2
−α
)

(3.52)

A proof of Lemma 3.3 is provided in Appendix 3.8.6. The result depends crucially on

condition 2 in the definition of A in Section 3.2, i.e., the smoothness of the autocor-

relation function K(u, v). Note that since 1/2 < α ≤ 1, both A(N) and B(N) decrease

to zero inverse polynomially as N goes to infinity.

It remains to calculate the functions RN
a (θ) and DN

b (θ) for random processes in A.

To do so, we need some properties of {µ(N)′

k }N−1
k=0 which are stated in Lemmas 3.7 and

3.8 and proved in Appendix 3.8.7. Lemma 3.7 is of great importance, as it serves as a

tool to link {µ(N)′

k }N−1
k=0 to {λk}∞k=0, which is used in the derivation of the lower bound

in Section 3.3, through the lower and upper bounds {λ′
k}∞k=0 and {λ′′

k}∞k=0. Armed

with the properties of µ
(N)′

k , λ′
k and λ′′

k in Lemmas 3.5, 3.6, 3.7 and 3.8 in Appendices

3.8.1 and 3.8.7, we can show the following lemma. First, we define two sequences ϑN
L
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and ϑN
U , which are functions of N , that satisfy

lim
N→∞

1

ϑN
L Nmin(xγ

2τ
, αx
x−1

, βx
x+τ+1)

= 0, lim
N→∞

ϑN
U = 0 (3.53)

Lemma 3.4 For Gaussian random processes in A, for any constant 0 < κ < 1, lower

and upper bounds for the function RN
a (θ) are

κxd
1
x
l

4
θ−

1
x ≤ RN

a (θ) ≤ d
1
x
u (x2 − (1 − log 2)x + (1 − log 2))

2(x − 1)κ2
θ−

1
x (3.54)

and an upper bound for the function DN
b (θ) is

DN
b (θ) ≤ d

1
x
u (1 + κ2(x − 1))

κ3(x − 1)U0
θ1− 1

x (3.55)

for θ ∈ [ϑN
L , ϑN

U ] and N large enough.

A proof of Lemma 3.4 is provided in Appendix 3.8.8. The proof of Lemma 3.4 uses

conditions 1, 2 and 3 in Section 3.2. Let us define a sequence ϑN
LL, which is a function

of N , that satisfies

lim
N→∞

1

ϑN
LLNmin(xγ

2τ
,
(α−1/2)x

x−1
, βx
x+τ+1)

= 0 (3.56)

Combining (3.45), (3.51), (3.52), (3.54) and (3.55), we have the following theorem.

Theorem 3.4 For Gaussian random processes in A, for any constant 0 < κ < 1,
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the achievable distortion-rate function, Da(R), is upper bounded as

Da(R) ≤ du(1 + κ2(x − 1)) (x2 − (1 − log 2)x + (1 − log 2))
x−1

U0κ2x+22x−1(x − 1)x
R1−x (3.57)

for R in the interval of

[

d
1
x
u (x2 − (1 − log 2)x + (1 − log 2))

2(x − 1)κ2

(

ϑN
U

)− 1
x ,

κxd
1
x
l

4

(

ϑN
LL

)− 1
x

]

(3.58)

when N is large enough.

A proof of Theorem 3.4 is provided in Appendix 3.8.9. This theorem shows that when

R is in the interval (3.58), the achievable distortion-rate function is the same as the

lower bound on the distortion-rate function in (3.31) order-wise.

Theorem 3.5 For Gaussian random processes in A, when the sum power constraint

satisfies (3.37) and

lim
N→∞

NP (N)

eN
min( γ

2τ , 2α−1
2(x−1)

,
β

x+τ+1)
= 0 (3.59)

an upper bound on the minimum achievable expected distortion, or equivalently, the

achievable rate in the separation-based scheme, is

DN
u = Da

(

CN
a

)

(3.60)

≤ du(1 + κ2(x − 1)) (x2 − (1 − log 2)x + (1 − log 2))
x−1

U0κ3x+12x−1(x − 1)xνx−1

(

1

log(NP (N))

)x−1

(3.61)
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when N is large enough.

A proof of Theorem 3.5 is provided in Appendix 3.8.10. Theorem 3.5 implies that,

when the sum power constraint satisfies (3.37) and (3.59), the minimum achievable

expected distortion is

O

(

(

1

log(NP (N))

)x−1
)

(3.62)

For the interesting cases of P (N) = NPind and P (N) = Ptot, the upper bound on

the minimum achievable expected distortion decays to zero at the rate of

1

(log N)x−1 (3.63)

When the sum power constraint is such that (3.37) is not satisfied, an upper bound

on the minimum achievable expected distortion is Θ(1).

3.5 Comparison of the Lower and Upper Bounds for Gaussian Ran-

dom Processes in A

3.5.1 Order-wise Comparison of Lower and Upper Bounds

In this section, we compare the lower bound in (3.35) and the upper bound in (3.62).

When the sum power constraint is large, i.e., P (N) is so large that (3.59) is not

satisfied, our methods in finding the upper bound do not apply. Even though our

lower bound in (3.35) is valid, we have not shown whether the lower and upper bounds
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meet. However, in this case, P (N) is larger than eN
min( γ

2τ , 2α−1
2(x−1)

,
β

x+τ+1)

N
, and this region

of sum power constraint is not of practical interest.

When the sum power constraint is medium, i.e., P (N) is in the wide range of

N−1/2+ǫ to eN
min( γ

2τ , 2α−1
2(x−1)

,
β

x+τ+1)

N
, our lower and upper bounds do meet and the mini-

mum achievable expected distortion is

DN = Θ

(

(

1

log(NP (N))

)x−1
)

(3.64)

One possible order-optimal achievability scheme is a separation-based scheme, which

uses distributed rate-distortion coding as described in [30] and optimal single-user

channel coding with amplify-and-forward method as described in [32]. In fact, when

the sum power constraint is medium, as shown in (3.31) and (3.57), lower and upper

bounds on the distortion-rate function, Dp(R) and Da(R) coincide order-wise. In

addition, as shown in (3.27) and (3.38), the lower and upper bounds on the achievable

sum rate, CN
a and CN

u , coincide order-wise as well. The practically interesting cases of

P (N) = NPind and P (N) = Ptot fall into this region of medium sum power constraint.

In both of these cases, the minimum achievable expected distortion decreases to zero

at the rate of

1

(log N)x−1 (3.65)

Hence, the sum power constraint P (N) = Ptot performs as well as P (N) = NPind

“order-wise”, and therefore, in practice we may prefer to choose P (N) = Ptot. In fact,
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we can decrease the sum power constraint to P (N) = Θ
(

N−1/3
)

and the minimum

achievable distortion will still decrease to zero at the rate in (3.65).

When the sum power constraint is small, i.e., P (N) ranges from N−1 to N−1/2,

our lower and upper bounds do not meet. Our lower bound in (3.35) decreases to

zero as 1
(log N)x−1 but our upper bound is a non-zero constant. The main discrepancy

between our lower and upper bounds comes from the gap between the lower and

upper bounds on the sum capacities, CN
a and CN

u , for a cooperative multiple access

channel. In fact, when the sum power constraint is small, as shown in (3.31) and

(3.57), lower and upper bounds on the distortion-rate function, Dp(R) and Da(R)

still coincide order-wise. This sum power constraint region should be of practical

interest, because in this region, the sum power constraint is quite low, and yet the

lower bound on the distortion is of the same order as one would obtain with any P (N)

which increases polynomially with N . Hence, from the lower bound, it seems that

this region potentially has good performance. However, our separation-based upper

bound does not meet the lower bound, and whether the lower bound can be achieved

remains an open problem.

When the sum power constraint is very small, i.e., P (N) is less than N−1, our

lower and upper bounds meet and the minimum achievable expected distortion is

a constant that does not decrease to zero with increasing N . This case is not of

practical interest because of the unacceptable distortion.

In the case of Gauss-Markov random process, we have x = 2 and α = β = τ = γ =

1. Inserting these values into the above results, we see that in the medium sum power

constraint region, i.e., P (N) is in the wide range of N−1/2+ǫ to eN1/4

N
, the minimum
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achievable expected distortion is

DN = Θ

(

1

log(NP (N))

)

(3.66)

For the Gauss-Markov random process, in the cases of P (N) = NPind and P (N) =

Ptot, the minimum achievable expected distortion decreases to zero at the rate of

1

log N
(3.67)

3.5.2 Comparison of the Constants in the Lower and Upper Bounds

Though the lower and upper bounds meet order-wise in a wide range of sum power

constraints, the constants in front of them are different and we aim to compare these

constants for various sum power constraints in this section.

Combining (3.33) and (3.61), when P (N) satisfies (3.37) and (3.59), the minimum

distortion DN satisfies

κ2

(

1 +
κ

x − 1

)

(κx)x−1 dl

U0

(

1

log (NP (N))

)x−1

≤ DN

≤ du(1 + κ2(x − 1)) (x2 − (1 − log 2)x + (1 − log 2))
x−1

U0κ3x+12x−1(x − 1)xνx−1

(

1

log(NP (N))

)x−1

(3.68)

Note that κ can be made as close to 1 as possible for large enough N . Let π(x, ν)

be the ratio of the constant in the lower bound and the constant in the upper bound

79



when N is large enough. Then,

π(x, ν) =
dl

du
(2ν)x−1

(

x2 − x

x2 − (1 − log 2)x + (1 − log 2)

)x−1

(3.69)

Here, x is a parameter of the underlying Gaussian random process and ν depends

on the sum power constraint of the sensor nodes, P (N). It is straightforward to see

that since from (3.39), ν ≤ 1/4, π(x, ν) is a monotonically decreasing function of x

for a fixed ν. Hence, we conclude that the constants in front of the lower and upper

bounds differ more as x gets large. Since x is an indication of how concentrated the

randomness of the random process is, this means that the more evenly distributed

the randomness, the more the constants in the lower and upper bounds meet. For a

fixed underlying random process, i.e., for a fixed x, π(x, ν) is a decreasing function

of ν. This means that the less the sum power constraint we have, the more different

the constants will be.

In the Gauss-Markov random process, x = 2, and dl = du. When P (N) = NPind

and P (N) = Ptot, the ratio of the two constants is

π(2, 1/4) =
1

3 + log 2
≃ 0.2708 (3.70)

When P (N) = Θ (N−ω), 0 < ω < 1
2
, the ratio of the two constants is

π

(

2,
1

2
− 1

4

1

1 − ω

)

=

(

1

2
− 1

4

1

1 − ω

)

4

3 + log 2
(3.71)
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For example, when P (N) = Θ
(

N−1/3
)

, the ratio of the constants is

π (2, 1/8) =
1

2
π(2, 1/4) ≃ 0.1354 (3.72)

3.6 Further Remarks

We have shown that the minimum achievable expected distortion behaves order-wise

as

Θ

(

(

1

log(NP (N))

)x−1
)

(3.73)

Due to the order-optimality of separation, this result can be generalized straightfor-

wardly to several other scenarios.

The result in (3.73) still holds when we allow the collector node to use its transmit

antenna with an arbitrary power constraint. The collector node, using its transmit

antenna, can send some form of feedback to the sensor nodes. However, the lower

bound on the minimum distortion remains unchanged in this case, because in deriving

our lower bound, we assumed that all sensor nodes know the entire random process,

thus, forming a point-to-point system. In a point-to-point system, feedback, perfect

or not, does not change the capacity. Meanwhile, our upper bound is still valid, as in

this achievable scheme, we choose not to utilize the feedback link. Hence, our result

in (3.73) remains valid.

The result in (3.73) still holds when we allow K channel uses per realization of

the random process, where K is a constant independent of N . This is because both
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lower and upper bounds are derived using separation-based schemes. The minimum

achievable distortion still behaves as (3.73), and the number K will only effect the

constant in front. Due to the same reasoning, the minimum achievable distortion

behaves as (3.73) when we allow multiple transmit and receive antennas at each

node, as long as the number of antennas on each node is a constant, independent of

N .

The assumption of the polynomial decay of the eigenvalues play a key role for the

separation principle to hold order-wise. For example, when the eigenvalues decrease

exponentially, i.e., the k-th eigenvalue is roughly e−k, the distortion rate function of

the lower bound is

Dp(R) = Θ
(√

Re−2
√

R
)

(3.74)

Thus, in the lower bound the distortion goes to zero almost exponentially with the

rate R, as opposed to the polynomial decrease in R as in (3.31). It can be shown, us-

ing the exact same proof techniques as those used in Section 3.4.2, that the achievable

distortion-rate function is the same order as (3.74), for a wide range of sum power

constraints. However, in the channel coding part, the converse and the achievability

of the sum rate meet only order-wise, i.e., the lower and upper bounds on the sum

rate are of the form c1 log(NP (N)) and c2 log(NP (N)) where c1 < c2. The differ-

ence in the constants in the lower and upper bounds on the sum rate will cause an

order difference in the distortion, i.e.,
√

c1 log(NP (N))e−2
√

c1 log(NP (N)) is strictly of

a larger order than
√

c2 log(NP (N))e−2
√

c2 log(NP (N)) for c1 < c2. Hence, when the

82



underlying random process is such that the eigenvalues decrease exponentially, sep-

aration principle does not hold, even order-wise. This agrees with the observation

made in Section 3.5.2 that the constants in front of the lower and upper bounds differ

more as x gets large.

For simplicity, we have considered only one dimensional spatial random processes.

We expect the generalization to two dimensional random fields to be straightforward,

but nonetheless tedious. Our results do not generalize straightforwardly when the

samples that the sensor nodes obtain are subject to noise. Since the lower bound of

assuming all sensors know the entire random process would remain the same with or

without noise, the lower bound becomes too loose. Hence, the optimal performance

under the noisy sensor scenario remains open.

3.7 Chapter Summary and Conclusions

In this chapter, we investigated the performance of dense sensor networks by study-

ing the joint source-channel coding problem. We provided separation-based lower and

upper bounds for the minimum achievable expected distortion when the underlying

random process is Gaussian. When the random process satisfies some general con-

ditions, such as polynomial decrease rate of the ordered eigenvalues of the random

process, i.e., the k-th eigenvalue is roughly k−x, we evaluated the lower and upper

bounds explicitly, and showed that they are both of order 1
(log(NP (N)))x−1 for a wide

range of sum power constraints ranging from N− 1
2
+ǫ to eN

min( γ
2τ , 2α−1

2(x−1)
,

β
x+τ+1)

N
. In the

most interesting cases when the sum power constraint is a constant or grows linearly
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with N , the minimum achievable expected distortion decreases to zero at the rate

of 1
(log N)x−1 . For random processes that satisfy these general conditions, under these

power constraints, we have found an order-optimal scheme that is separation-based,

and is composed of distributed rate-distortion coding [30] and amplify-and-forward

channel coding [32].

The results of this chapter were published in [54, 55], and have been accepted for

publication in [53].

3.8 Appendix

3.8.1 Some properties of λ′
k

and λ′′
k

In this subsection, we provide two lemmas which characterize some properties of

{λ′
k}∞k=0 and {λ′′

k}∞k=0, defined in (3.12) and (3.13), which will be useful in deriving

our main results.

Lemma 3.5 For any constant 0 < κ < 1, we have

∞
∑

k=

$

“

dl
θ

” 1
x −cl+1

%

λ′
k ≥ κd

1
x
l

(x − 1)
θ1− 1

x (3.75)

and

$

“

dl
θ

” 1
x −cl

%

∑

k=0

1

2
log

(

λ′
k

θ

)

≥ κxd
1
x

l

2
θ−

1
x (3.76)
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when θ is small enough.

Lemma 3.6 For any constant 0 < κ < 1, we have

∞
∑

k=

—

( du
θ )

1
x +cu

�

+1

λ′′
k ≤ d

1
x
u

(x − 1)κ
θ1− 1

x (3.77)

and

—

( du
θ )

1
x +cu

�

∑

k=0

1

2
log

(

1 +
λ′′

k

θ

)

≤
(

log 2 + x

2κ

)

d
1
x
u θ−

1
x (3.78)

when θ is small enough.

Proof of Lemma 3.5

We will first prove (3.75).

∞
∑

k=

$

“

dl
θ

” 1
x −cl+1

%

λ′
k =

∞
∑

k=

$

“

dl
θ

” 1
x −cl+1

%

dl

(k + cl)x
(3.79)

≥ dl

x − 1

1
⌊

(

dl

θ

)
1
x + 1

⌋x−1 (3.80)

≥ κd
1
x
l

(x − 1)
θ1− 1

x (3.81)
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where (3.79) is true when θ is small enough, more specifically, when
⌊

(

dl

θ

)
1
x − cl + 1

⌋

>

K0. We have (3.80) because of the inequality

∞
∑

k=n

1

kx
≥
∫ ∞

n

1

yx
dy =

1

(x − 1)nx−1
(3.82)

and (3.81) is true when θ is small enough, i.e., for any 0 < κ < 1, there exists a

θ0(κ) > 0 such that when 0 < θ ≤ θ0(κ), (3.81) is true.

Next, we will prove (3.76).

$

“

dl
θ

” 1
x −cl

%

∑

k=0

1

2
log

(

λ′
k

θ

)

=

K0
∑

k=0

1

2
log

(

λk

θ

)

+

$

“

dl
θ

” 1
x

%

−cl

∑

k=K0+1

1

2
log

(

dl

(k + cl)
x θ

)

(3.83)

=

K0
∑

k=0

1

2
log

(

λk

dl

)

+
1

2

(⌊

(

dl

θ

)
1
x

⌋

− cl + 1

)

log

(

dl

θ

)

− x

2
log

(⌊

(

dl

θ

)
1
x

⌋

!

)

+
x

2
log ((K0 + cl)!) (3.84)

≥1

2

(⌊

(

dl

θ

)
1
x

⌋

− cl + 1

)

log

(

dl

θ

)

− x

2

(⌊

(

dl

θ

)
1
x

⌋

+
1

2

)

log

⌊

(

dl

θ

)
1
x

⌋

+
x

2

⌊

(

dl

θ

)
1
x

⌋

− x

24
⌊

(

dl

θ

)
1
x

⌋ +

K0
∑

k=0

1

2
log

(

λk

dl

)

+
x

2
log ((K0 + cl)!) −

x

4
log(2π)

(3.85)

≥x

2

⌊

(

dl

θ

)
1
x

⌋

+
x

2

(

−cl +
1

2

)

log

⌊

(

dl

θ

)
1
x

⌋

− x

24
⌊

(

dl

θ

)
1
x

⌋ + c3 (3.86)

≥κxd
1
x
l

2
θ−

1
x (3.87)
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where (3.83) is true when θ is small enough, more specifically, when
⌊

(

dl

θ

)
1
x − cl

⌋

>

K0, and (3.85) follows by using Stirling’s approximation,

n! <
√

2πnn+ 1
2 e−n+ 1

12n (3.88)

(3.86) follows because c3 is a constant, independent of θ, defined as

c3
△
=

K0
∑

k=0

1

2
log

(

λk

dl

)

+
x

2
log ((K0 + cl)!) −

x

4
log(2π) (3.89)

and (3.87) is true when θ is small enough, i.e., for any 0 < κ < 1, there exists a

θ1(κ) > 0 such that when 0 < θ ≤ θ1(κ), (3.87) is true.

Therefore, for any 0 < κ < 1, (3.75) and (3.76) hold when θ is small enough.

Proof of Lemma 3.6

We will first prove (3.77).

∞
∑

k=

—

(du
θ )

1
x +cu

�

+1

λ′′
k =

∞
∑

k=

—

( du
θ )

1
x +cu

�

+1

du

(k − cu)x
(3.90)

=
du

(x − 1)
(⌊

(

du

θ

)
1
x

⌋)x−1 (3.91)

≤ d
1
x
u

(x − 1)κ
θ1− 1

x (3.92)
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where (3.90) follows when θ is small enough, more specifically, when
⌊

(

du

θ

)
1
x + cu

⌋

+

1 > K0. In obtaining (3.91) we used

∞
∑

k=n

1

kx
≤
∫ ∞

n−1

1

yx
dy =

1

(x − 1)(n − 1)x−1
(3.93)

and (3.92) follows when θ is small enough, i.e., for any 0 < κ < 1, there exists a

θ2(κ) > 0 such that when 0 < θ ≤ θ2(κ), (3.92) is true.

Next, we will prove (3.78).

—

( du
θ )

1
x +cu

�

∑

k=0

1

2
log

(

1 +
λ′′

k

θ

)

=

K0
∑

k=0

1

2
log

(

1 +
λk

θ

)

+

—

( du
θ )

1
x +cu

�

∑

k=K0+1

1

2
log

(

1 +
du

(k − cu)xθ

)

(3.94)

≤
K0
∑

k=0

1

2
log

(

2λk

θ

)

+

—

( du
θ )

1
x +cu

�

∑

k=K0+1

1

2
log

(

2du

(k − cu)xθ

)

(3.95)

=

K0
∑

k=0

1

2
log

(

2λk

θ

)

+

—

( du
θ )

1
x +cu

�

∑

k=cu+1

1

2
log

(

2du

(k − cu)xθ

)

−
K0
∑

k=cu+1

1

2
log

(

2du

(k − cu)xθ

)

(3.96)

=

⌊

(

du

θ

)
1
x

⌋

1

2
log 2 − x

2
log

(⌊

(

du

θ

)
1
x

⌋

!

)

+
1

2

(⌊

(

du

θ

)
1
x

⌋)

log
du

θ

+
cu + 1

2
log

du

θ
+ c1 (3.97)
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≤
⌊

(

du

θ

)
1
x

⌋

1

2
log 2 − x

4
log(2π) − x

2

(⌊

(

du

θ

)
1
x

⌋

+
1

2

)

log

⌊

(

du

θ

)
1
x

⌋

+
x

2

⌊

(

du

θ

)
1
x

⌋

− x

24
⌊

(

du

θ

)
1
x

⌋

+ 2
+

1

2

(⌊

(

du

θ

)
1
x

⌋)

log
du

θ
+

cu + 1

2
log

du

θ
+ c1

(3.98)

≤
(

log 2 + x

2κ

)

d
1
x
u θ−

1
x (3.99)

where (3.94) is true when θ is small enough, more specifically, when
⌊

(

du

θ

)
1
x + cu

⌋

>

K0. We have (3.95) because

du

(k − cu)xθ
> 1 (3.100)

for all k between K0 + 1 and
⌊

(

du

θ

)
1
x + cu

⌋

, and when θ is small enough such that

θ ≤ λk, k = 1, 2, · · · , K0 (3.101)

We have (3.97) because we defined

c1
△
=

K0
∑

k=1

1

2
log

2λk

du
−

K0
∑

k=cu+1

1

2
log

2

(k − cu)x
(3.102)

We used Stirling’s approximation,

n! >
√

2πnn+ 1
2 e−n+ 1

12n+1 (3.103)

to obtain (3.98), and (3.99) follows when θ is small enough, i.e., for any 0 < κ < 1,
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there exists a θ3(κ) > 0 such that when 0 < θ ≤ θ3(κ), (3.99) is true.

Therefore, for any 0 < κ < 1, (3.77) and (3.78) hold when θ is small enough.

3.8.2 Proof of Lemma 3.1

For any 0 < κ < 1, when θ is small enough, the results of Lemma 3.5 hold.

From (3.24), we have

R(θ) =

∞
∑

k=0

max

(

0,
1

2
log

(

λk

θ

))

(3.104)

≥
∞
∑

k=0

max

(

0,
1

2
log

(

λ′
k

θ

))

(3.105)

=

$

“

dl
θ

” 1
x −cl

%

∑

k=0

1

2
log

(

λ′
k

θ

)

(3.106)

≥ κxd
1
x
l

2
θ−

1
x (3.107)

where in (3.105) we have used the definition of sequence λ′
k in (3.12) and the ob-

servation in (3.14). (3.106) follows when θ is small enough, more specifically, when

θ < λK0 and
⌊

(

dl

θ

)
1
x − cl

⌋

> K0. (3.107) follows from (3.76) in Lemma 3.5.
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From (3.25), we have

D(θ) = U−1
0

∞
∑

k=0

min(θ, λk) (3.108)

≥ U−1
0

∞
∑

k=0

min(θ, λ′
k) (3.109)

= U−1
0

$

“

dl
θ

” 1
x −cl

%

∑

k=0

θ + U−1
0

∞
∑

$

“

dl
θ

” 1
x −cl+1

%

λ′
k (3.110)

≥ U−1
0

(⌊

(

dl

θ

)
1
x

⌋

− cl + 1

)

θ + U−1
0

κd
1
x
l

(x − 1)
θ1− 1

x (3.111)

≥ κ

(

1 +
κ

x − 1

)

d
1
x
l

U0

θ1− 1
x (3.112)

where in (3.109) we have used the definition of sequence λ′
k in (3.12) and the observa-

tion in (3.14). (3.110) follows when θ is small enough, more specifically, when θ < λK0

and
⌊

(

dl

θ

)
1
x − cl + 1

⌋

> K0. (3.111) follows from (3.75) in Lemma 3.5. (3.112) is true

for small enough θ, i.e., for any 0 < κ < 1, there exists a θ4(κ) > 0 such that when

0 < θ ≤ θ4(κ), (3.112) is true.

Therefore, for any 0 < κ < 1, (3.29) and (3.30) hold when θ is small enough.

3.8.3 Proof of Theorem 3.2

We will show that each sensor node i can achieve a rate of CN
a , while the other sensor

nodes have rate zero, then by the time sharing argument [22], we can achieve the rate

91



region of

N
∑

i=1

RN
i ≤ CN

a (3.113)

We will consider the transmission of the data of node i. All other sensor nodes have

no data to transmit and are helping with the communication between sensor node i

and the collector node. Node i codes its message using capacity achieving single-user

coding techniques with codeword length n̄. Each codeword symbol requires two time

slots. In the first time slot, node i transmits its codeword symbol using power P (N).

All other nodes remain silent, and receive a noisy version of node i’s transmitted

signal. The collector node ignores its received signal, which is suboptimal but eases

calculation and does not affect the scaling law of the achievable rate. In the second

time slot, all sensor nodes, except node i, amplify and forward what they have received

in the previous time slot to the collector node using a sum power constraint P (N).

The collector node, after 2n̄ time slots, decodes using capacity achieving single-user

decoding techniques. The scheme described satisfies the sum power constraint of

P (N). Now, we calculate the rate achievable with this scheme. In the first time slot,

sensor node j receives

Yj = hijXi + Zj, i, j = 1, 2, · · · , N, j 6= i (3.114)
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and in the second time slot, sensor node j transmits

Xj = βijYj (3.115)

= βijhijXi + βijZj , i, j = 1, 2, · · · , N, j 6= i (3.116)

where βij is the scaling coefficient of node j when it amplifies the signal it received

from node i. In order to satisfy the sum power constraints, {βij}N
j=1,j 6=i have to satisfy

N
∑

j=1,j 6=i

β2
ij

(

h2
ijP (N) + 1

)

≤ P (N), i = 1, 2, · · · , N (3.117)

The collector node receives

Y0 =
N
∑

j=1,j 6=i

hj0Xj + Z0 (3.118)

=

(

N
∑

j=1,j 6=i

βijhijhj0

)

Xi +

(

N
∑

j=1,j 6=i

hj0βijZj

)

+ Z0 (3.119)

Therefore, the achievable rate is,

1

4
log






1 +

(

∑N
j=1,j 6=i βijhijhj0

)2

P (N)
∑N

j=1,j 6=i (βijhj0)
2 + 1






(3.120)

where we have 1
4

because we used two time slots to transmit one codeword symbol.

We choose

βij = ζhijhj0 (3.121)
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where, in order to satisfy the power constraint, the constant ζ must satisfy

ζ2 ≤ P (N)
(

∑N
j=1,j 6=i h

4
ijh

2
j0

)

P (N) +
(

∑N
j=1,j 6=i h

2
ijh

2
j0

) (3.122)

We can choose ζ as

ζ2 =
P (N)

h̄6
uNP (N) + h̄4

uN
(3.123)

Thus, from (3.120), a lower bound on the achievable rate is

1

4
log






1 +

ζ2
(

∑N
j=1,j 6=i h

2
ijh

2
j0

)2

P (N)

ζ2
(

∑N
j=1,j 6=i h

2
ijh

4
j0

)

+ 1






≥ 1

4
log

(

1 +
h̄8

l ζ
2(N − 1)2P (N)

h̄6
uζ

2N + 1

)

△
= CN

b

(3.124)

Clearly, rate CN
b can be achievable by any node i. We have

CN
b =

1

4
log

(

1 +
h̄8

l (P (N))2 (N−1)2

N

2h̄6
uP (N) + h̄4

u

)

(3.125)

≥ 1

4
log

(

1 +
h̄8

l (P (N))2 N

4h̄6
uP (N) + 2h̄4

u

)

(3.126)

where the last step follows when N is large enough such that (N−1)2

N
> N

2
.

When P (N) is such that

lim
N→∞

1

P (N)
= 0 (3.127)
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for any 0 < κ < 1, we have,

CN
b ≥ 1

4
log

(

1 +
h̄8

l (P (N))2 N

8h̄6
uP (N)

)

(3.128)

=
1

4
log

(

1 +
h̄8

l

8h̄6
u

NP (N)

)

(3.129)

≥ κ

4
log (NP (N)) (3.130)

for N large enough, i.e., there exists N1(κ) > 0, such that when N > N1(κ), (3.128)

and (3.130) are true.

When P (N) is such that

lim
N→∞

P (N) = l (3.131)

and l is a number that satisfies 0 < l < ∞, fix some small l0 > 0, there exists an

N2(l0) > 0 such that when N > N2(l0), we have,

l − l0 < P (N) < l + l0 (3.132)

Hence, when N > N2(l0), for any 0 < κ < 1,

CN
b ≥ 1

4
log

(

1 +
h̄8

l (l − l0)

4h̄6
u(l + l0) + 2h̄4

u

P (N)N

)

(3.133)

≥ κ

4
log (NP (N)) (3.134)

where the last step follows when N is large enough, i.e., when there exists an N3(κ) >
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0, such that when N > max (N2(l0), N3(κ)), (3.134) is true.

When P (N) is such that

lim
N→∞

P (N) = 0 (3.135)

and there exists a constant 0 < ǫ < 1
2
, such that

lim
N→∞

P (N)N
1
2
−ǫ > 1 (3.136)

we have, for 0 < κ < 1,

CN
b ≥ 1

4
log

(

1 +
h̄8

l

4h̄4
u

(P (N))2N

)

(3.137)

≥ κ

4
log
(

(P (N))2N
)

(3.138)

=
κ

4
log(NP (N)) +

κ

4
log(P (N)) (3.139)

≥ κ

4

4ǫ

1 + 2ǫ
log(NP (N)) (3.140)

where the last step follows from

κ

4

(

1 − 4ǫ

1 + 2ǫ

)

log(NP (N)) +
κ

4
log(P (N)) =

κ

4

2

1 + 2ǫ
log(P (N)N

1
2
−ǫ) ≥ 0

(3.141)

when N is large enough, i.e., there exists an N4(κ) > 0, such that when N > N4(κ),

(3.137), (3.138) and (3.141) are true, and therefore, (3.140) is true.

Thus, combining all possible cases of P (N), we see that when P (N) is such that
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there exists a constant ǫ > 0, such that

lim
N→∞

P (N)N
1
2
−ǫ > 1 (3.142)

for any 0 < κ < 1, the following rate CN
a from sensor node i to the collector node is

achievable,

CN
a = κν log(NP (N)) (3.143)

where constant ν is

ν = min

(

ǫ

1 + 2ǫ
,
1

4

)

(3.144)

when N is large enough.

Since the achievable rate CN
a is achievable for any sensor i, by a time sharing

argument, the region

N
∑

i=1

RN
i ≤ CN

a (3.145)

is achievable.

For all other P (N), from (3.126), we see that the achievable sum rate approaches

a positive constant or zero as N goes to infinity.
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3.8.4 Proof of Theorem 3.3

We restate the generalization of [30, Theorem 1], which appeared in [16, Theorem 1]

for N sensor nodes below. This provides us with an achievable sum rate-distortion

point, since the sum rate constraint is always tight [16].

Theorem 3.6 [16,30] A rate-distortion sum rate Rc and distortion Dc are achievable

if there exist random variables T1, T2, · · · , TN with

(S(u), u ∈ [0, U0], S{i}c , T{i}c) → Si → Ti, i = 1, 2, · · · , N (3.146)

and an estimator function

Ŝ(u) = g(T1, T2, · · · , TN) (3.147)

such that

Rc ≥ I(S1, S2, · · · , SN ; T1, T2, · · · , TN) (3.148)

Dc ≥ E[d(S(u), g(T1, T2, · · · , TN))] (3.149)

where random variables {Si}N
i=1 are defined as Si = S(ui), i = 1, 2, · · · , N .

We obtain an achievable rate-distortion point when we specify the relationship be-

tween (S(u), {Si}∞i=1, {Ti}∞i=1) as

Ti = Si + Wi, i = 1, 2, · · · , N (3.150)
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where Wi, i = 1, 2, · · · , N , are i.i.d. Gaussian random variables with zero-mean and

variance σ2
D and independent of everything else. Here, we can adjust σ2

D to achieve

various feasible rate-distortion points [30].

We choose the MMSE estimator to estimate S(u) from observations {Tk}N
k=1.

Hence, the achieved distortion is

DN
c (σ2

D) =
1

U0

∫ U0

0

(

K(u, u) − ρT
N (u)

(

ΣN + σ2
DI
)−1

ρN(u)
)

du (3.151)

The sum rate required to achieve this distortion is

RN
c (σ2

D) = I(S1, S2, · · · , SN ; T1, T2, · · · , TN)

=
1

2
log det

(

I +
1

σ2
D

ΣN

)

(3.152)

=

N−1
∑

k=0

1

2
log

(

1 +
µ

(N)
k

σ2
D

)

(3.153)

where µ
(N)
0 , µ

(N)
1 , · · · , µ

(N)
N−1 are the eigenvalues of ΣN .

Next, let θ = U0

N
σ2

D, Σ′

N
= U0

N
ΣN and therefore, µ

(N)′

k = U0

N
µ

(N)
k . We define two

functions of θ as

RN
a (θ)

△
= Rc(σ

2
D) =

N−1
∑

k=0

1

2
log

(

1 +
µ

(N)′

k

θ

)

(3.154)

and

DN
a (θ)

△
= DN

c (σ2
D) =

1

U0

∫ U0

0

(

K(u, u) − U0

N
ρT

N(u) (Σ′

N
+ θI)

−1
ρN(u)

)

du (3.155)
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and by definition, sum rate RN
a (θ) and distortion DN

a (θ) are achievable for an arbitrary

Gaussian random process.

3.8.5 Proof of Lemma 3.2

Using the matrix inversion lemma [38],

(Σ′

N
+ θI)

−1
= Σ′−1

N
−Σ′−1

N

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

(3.156)

we have

DN
a (θ) =

1

U0

∫ U0

0

(

K(u, u) − U0

N
ρT

N(u)Σ′−1
N

ρN(u)

)

du

+
1

N

∫ U0

0

ρT
N (u)Σ′−1

N

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

ρN(u)du (3.157)

=D(N)
s + D(N)(θ) (3.158)

where we have defined

D(N)
s

△
=

1

U0

∫ U0

0

(

K(u, u) − U0

N
ρT

N (u)Σ′−1
N

ρN(u)

)

du (3.159)

D(N)(θ)
△
=

1

N

∫ U0

0

ρT
N(u)Σ′−1

N

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

ρN (u)du (3.160)
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We continue evaluating D(N)(θ),

D(N)(θ)

=
1

N

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

ρT
N

(

i − 1

N
U0

)

− ∆T
i (u)

)

Σ′−1
N

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

(

ρN

(

i − 1

N
U0

)

− ∆i(u)

)

du (3.161)

=
1

U0

N
∑

i=1

(

(

1

θ
I + Σ′−1

N

)−1
)

(i,i)

− 2
1

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∆i(u)

)

i

du

+
1

N

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∆T
i (u)Σ′−1

N

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∆i(u)du (3.162)

where ∆i(u) is defined as

∆i(u) = ρN

(

i − 1

N
U0

)

− ρN(u) (3.163)

for i−1
N

U0 ≤ u ≤ i
N

U0, and (3.162) follows based on the fact that

ρT
N

(

i − 1

N
U0

)

Σ′−1
N

=
N

U0
ei (3.164)

where ei is the row vector whose i-th entry is 1 and all other entries are 0.

The eigenvalues of Σ′−1
N

(

1
θ
I + Σ′−1

N

)−1
Σ′−1

N
are

θ

µ
(N)′

k + θ

1

µ
(N)′

k

, k = 0, 1, · · · , N − 1 (3.165)
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which are smaller than the corresponding eigenvalues of Σ′−1
N

, i.e., 1

µ
(N)′

k

. Thus, the

third term in (3.162) is bounded by

1

N

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∆T
i (u)Σ′−1

N

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∆i(u)du ≤

1

N

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∆T
i (u)Σ′−1

N
∆i(u)du (3.166)

To further upper bound the third term in (3.162), we write

D(N)
s =

1

U0

∫ U0

0

(

K(u, u) − U0

N
ρT

N(u)Σ′−1
N

ρN(u)

)

du (3.167)

=
1

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

K(u, u) − U0

N

(

ρT
N

(

i − 1

N
U0

)

− ∆i(u)T

)

Σ′−1
N

(

ρN

(

i − 1

N
U0

)

−∆i(u)

))

du (3.168)

=
1

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

K(u, u) − K

(

i − 1

N
U0,

i − 1

N
U0

))

du

+
2

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(∆i(u))i du − 1

N

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∆i(u)TΣ′−1
N

∆i(u)du (3.169)

= A(N) − 1

N

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∆i(u)TΣ′−1
N

∆i(u)du (3.170)

where A(N) in defined in (3.46). Then, we have the third term in (3.162) upper

bounded by A(N) because of (3.166), (3.170) and the fact that D
(N)
s is non-negative,

i.e.,

1

N

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∆T
i (u)Σ′−1

N

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∆i(u)du ≤ A(N) (3.171)
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Furthermore, we can see from (3.170) that

D(N)
s ≤ A(N) (3.172)

Now, we evaluate the second term in (3.162). Since,

∣

∣

∣

∣

∣

(

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∆i(u)

)

i

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∆i(u)

)

i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.173)

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

· ||∆i(u)|| (3.174)

= max
0≤k≤N−1

(

µ
(N)′

k

)−1
(

1

θ
+

1

µ
(N)′

k

)−1

||∆i(u)||

(3.175)

≤ ||∆i(u)|| (3.176)

Therefore, the second term in (3.162) is bounded by

∣

∣

∣

∣

∣

−2
1

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

(

1

θ
I + Σ′−1

N

)−1

Σ′−1
N

∆i(u)

)

i

du

∣

∣

∣

∣

∣

≤ B(N) (3.177)

where B(N) is defined in (3.47). Finally, the first term in (3.162) can be written as

1

U0

N
∑

i=1

(

(

1

θ
I + Σ′−1

N

)−1
)

(i,i)

=
1

U0

N−1
∑

k=0

(

1

θ
+

1

µ
(N)′

k

)−1

△
= DN

b (θ) (3.178)

where the last step is by the definition of DN
b (θ) in (3.48). Hence, for an arbitrary

Gaussian random process, by (3.158), (3.162), (3.171), (3.172), (3.177) and (3.178),
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we have shown that

DN
a (θ) ≤ 2A(N) + B(N) + DN

b (θ) (3.179)

3.8.6 Proof of Lemma 3.3

We first consider A(N).

A(N) =
1

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

K(u, u)− K

(

i − 1

N
U0,

i − 1

N
U0

))

du

+
2

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

ρN

(

i − 1

N
U0

)

− ρN (u)

)

i

du (3.180)

≤B
(

2
α
2 + 2

)

Uα
0

1

Nα
(3.181)

=Θ
(

N−α
)

(3.182)

where (3.181) follows from condition 2 in Section 3.2. Using similar ideas, we have

B(N) =
2

U0

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∣

∣

∣

∣

∣

∣

∣

∣

ρN

(

i − 1

N
U0

)

− ρN(u)

∣

∣

∣

∣

∣

∣

∣

∣

du (3.183)

≤ 2BUα
0

N
1
2

Nα
(3.184)

= Θ
(

N
1
2
−α
)

(3.185)
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3.8.7 Some properties of µ
(N)′

k

Lemma 3.7 For all Gaussian random processes in A, let K1(N) be a sequence of

numbers that satisfies

lim
N→∞

1

K1(N)
= 0 (3.186)

lim
N→∞

K1(N)2τ

Nγ
= 0 (3.187)

lim
N→∞

K1(N)x+1+τ

Nβ
= 0 (3.188)

Then, for each k such that k ≤ K1(N), there exists an eigenvalue µ(N)′ , different for

each k, of Σ′

N
such that

∣

∣

∣
µ(N)′ − λk

∣

∣

∣
≤ d1

(k + B7)
τ

Nβ
(3.189)

for some d1 > 0 and some positive integer B7, both independent of k and N , when N

is large enough.

Lemma 3.7 shows that the convergence of µ
(N)′

k to λk is not uniform, and the ap-

proximation of µ
(N)′

k using λk is accurate only when k << N
γ
2τ and λk >> d1

(k+B7)τ

Nβ .

When the conditions of Lemma 3.7 are satisfied, we label the µ(N)′ that satisfies

(3.189) to be µ
(N)′

k for k ≤ K1(N). The remaining N − K1(N) eigenvalues of µ(N)′

will be labelled according to the order from large to small.

Lemma 3.8 For all Gaussian random processes in A, let two sequences ϑN
L and ϑN

U
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satisfy (3.53). Then, for any constant 0 < κ < 1, we have

N−1
∑

k=

—

( du
θ )

1
x +cu

�

+1

µ
(N)′

k ≤ d
1
x
u

(x − 1)κ2
θ1− 1

x (3.190)

when θ ∈ [ϑN
L , ϑN

U ] and N is large enough, and ϑN
L and ϑN

U satisfies (3.53).

Lemma 3.8 shows that the sum of the eigenvalues that do not converge to λk for

k = 0, 1, · · · ,
⌊

(

du

θ

)
1
x + cu

⌋

is the same order as
∑∞

k=

—

( du
θ )

1
x +cu

�

+1
λ′′

k as calculated in

(3.77).

Proof of Lemma 3.7

By definition, λk for any k satisfies

λkφk

(

l − 1

N
U0

)

=

∫ U0

0

K

(

l − 1

N
U0, v

)

φk(v)dv, ∀l = 1, 2, · · · , N (3.191)

We rewrite the right hand side of (3.191) by

U0

N

N
∑

i=1

K

(

l − 1

N
U0,

i − 1

N
U0

)

φk

(

i − 1

N
U0

)

+ ǫk
N

(

l − 1

N
U0

)

∀l = 1, 2, · · · , N

(3.192)

where ǫk
N

(

l−1
N

U0

)

is defined as

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

K

(

l − 1

N
U0, v

)

φk(v) − K

(

l − 1

N
U0,

i − 1

N
U0

)

φk

(

i − 1

N
U0

))

dv

(3.193)
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Using (3.191) and (3.192), we have for any l = 1, 2, · · · , N ,

λkφk

(

l − 1

N
U0

)

=
U0

N

N
∑

i=1

K

(

l − 1

N
U0,

i − 1

N
U0

)

φk

(

i − 1

N
U0

)

+ ǫk
N

(

l − 1

N
U0

)

(3.194)

Let us define vector a
(N)
k of length of N by defining its l-th element to be

√

U0

N
ǫk
N

(

l−1
N

U0

)

and vector b
(N)
k of length of N by defining its l-th element to be

√

U0

N
φk

(

l−1
N

U0

)

, we

have in matrix form

λkb
(N)
k = Σ′

N
b

(N)
k + a

(N)
k (3.195)

The links between the eigenvalues of Σ′

N
and the eigenvalues of K(u, v), i.e., the λks,

will be determined using (3.195). To do this, we first bound three quantities,
∣

∣

∣

∣

∣

∣
a

(N)
k

∣

∣

∣

∣

∣

∣
,

∣

∣

∣

∣

∣

∣b
(N)
k

∣

∣

∣

∣

∣

∣,
∣

∣

∣b
(N)T

m b
(N)
l

∣

∣

∣ for k, m, l ≤ K1(N) and m 6= l.

Now, we analyze the norm of a
(N)
k . From the definition of ǫk

N

(

l−1
N

U0

)

in (3.193),

we have

∣

∣

∣

∣

ǫk
N

(

l − 1

N
U0

)∣

∣

∣

∣

≤
N
∑

i=1

∫ i
N

U0

i−1
N

U0

∣

∣

∣

∣

K

(

l − 1

N
U0, v

)

φk(v) − K

(

l − 1

N
U0,

i − 1

N
U0

)

φk

(

i − 1

N
U0

)∣

∣

∣

∣

dv

(3.196)

≤ B2U
1+β
0

(k + B1)
τ

Nβ
(3.197)

where (3.197) follows because the random process satisfies condition 3 in Section 3.2.
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Thus, the norm of vector a
(N)
k is bounded by

∣

∣

∣

∣

∣

∣
a

(N)
k

∣

∣

∣

∣

∣

∣
≤ B2U

3/2+β
0

(k + B1)
τ

Nβ
(3.198)

Now, we will calculate the norm of vector b
(N)
k . We write

1 =

∫ U0

0

φ2
k(u)du =

N
∑

i=1

U0

N
φ2

k

(

i − 1

N
U0

)

+ δk
N (3.199)

where δk
N is defined as

δk
N =

N
∑

i=1

∫ i
N

U0

i−1
N

U0

(

φ2
k(u) − φ2

k

(

i − 1

N
U0

))

du (3.200)

We first upper bound |φk(u)|, for u ∈ [0, U0]. Let Fk(s) be defined as

∫ s

0

φ2
k(u)du (3.201)

Then, by the mean value theorem on interval [0, U0], we have that there exists a

U ′ ∈ [0, U0], such that

1 = Fk(U0) − Fk(0) = φ2
k(U

′) (3.202)

Hence, using condition 3 in Section 3.2, we have

|φk(u) − φk(U
′)| ≤ B3(k + B4)

τUγ
0 , u ∈ [0, U0] (3.203)
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Thus,

|φk(u)| ≤ B3(k + B4)
τUγ

0 + 1, u ∈ [0, U0] (3.204)

which means

max
u∈[0,U0]

|φk(u)| ≤ B3(k + B4)
τUγ

0 + 1 (3.205)

Using (3.16), we have for any v1, v2 ∈ [0, U0],

∣

∣φ2
k(v1) − φ2

k(v2)
∣

∣ = |φk(v1) + φk(v2)| |φk(v1) − φk(v2)| (3.206)

≤ 2 max
v∈[0,U0]

|φk(v)|B3(k + B4)
τ |v1 − v2|γ (3.207)

≤ 2 (B3(k + B4)
τUγ

0 + 1) B3(k + B4)
τ |v1 − v2|γ (3.208)

where (3.208) follows from (3.205). The approximation error, δk
N satisfies

|δk
N | ≤

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∣

∣

∣

∣

φ2
k(u) − φ2

k

(

i − 1

N
U0

)∣

∣

∣

∣

du (3.209)

≤ U1+γ
0

2 (B3(k + B4)
τUγ

0 + 1)B3(k + B4)
τ

Nγ
(3.210)

≤ U1+γ
0

2 (B3(K1(N) + B4)
τUγ

0 + 1)B3(K1(N) + B4)
τ

Nγ
(3.211)

≤ B5 (3.212)

where (3.210) follows from (3.208), and (3.212) is due to the fact that K1(N) satisfies

(3.186) and (3.187), for a fixed constant B5 that satisfies 0 < B5 < 1, Then, there
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exists an integer N0 > 0, such that for N ≥ N0,

U1+γ
0

2 (B3(K1(N) + B4)
τUγ

0 + 1)B3(K1(N) + B4)
τ

Nγ
≤ B5 (3.213)

Finally, by the definition of b
(N)
k , we have

∣

∣

∣

∣

∣

∣
b

(N)
k

∣

∣

∣

∣

∣

∣
=

√

√

√

√

N
∑

i=1

U0

N
φ2

k

(

i − 1

N
U0

)

=
√

1 − δk
N (3.214)

where (3.214) follows from (3.199). From (3.212), we have

√

1 − B5 ≤
∣

∣

∣

∣

∣

∣
b

(N)
k

∣

∣

∣

∣

∣

∣
≤
√

1 + B5 (3.215)

Next, we show that based on the orthogonality of the eigenfunctions of φk(t), the

sampled version b
(N)
k s are almost orthogonal. Using (3.16), we have

|φm(v1)φl(v1) − φm(v2)φl(v2)| (3.216)

= |φm(v1)φl(v1) − φm(v1)φl(v2) + φm(v1)φl(v2) − φm(v2)φl(v2)| (3.217)

≤ |φm(v1)φl(v1) − φm(v1)φl(v2)| + |φm(v1)φl(v2) − φm(v2)φl(v2)| (3.218)

≤ max
v1∈[0,U0]

|φm(v1)| |φl(v1) − φl(v2)| + max
v2∈[0,U0]

|φl(v2)| |φm(v1) − φm(v2)| (3.219)

≤ (B3(m + B4)
τUγ

0 + 1)B3(l + B4)
τ |v1 − v2|γ

+ (B3(l + B4)
τUγ

0 + 1)B3(m + B4)
τ |v1 − v2|γ (3.220)

=
(

2B2
3(m + B4)

τ (l + B4)
τUγ

0 + B3(l + B4)
τ + B3(m + B4)

τ
)

|v1 − v2|γ (3.221)
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where (3.220) follows from (3.205). Let m and l be two different integers, that belong

to {1, 2, · · · , N}. Then, we have

0 =

∫ U0

0

φm(u)φl(u)du =

N
∑

i=1

U0

N
φm

(

i − 1

N
U0

)

φl

(

i − 1

N
U0

)

+ εm,l
N (3.222)

Then, we have

∣

∣

∣
εm,l

N

∣

∣

∣
≤

N
∑

i=1

∫ i
N

U0

i−1
N

U0

∣

∣

∣

∣

φm(v)φl(v) − φm

(

i − 1

N
U0

)

φl

(

i − 1

N
U0

)∣

∣

∣

∣

dv (3.223)

≤U1+γ
0

2B2
3(m + B4)

τ (l + B4)
τUγ

0 + B3(l + B4)
τ + B3(m + B4)

τ

Nγ
(3.224)

≤2U1+γ
0

B2
3(K1(N) + B4)

2τU1+γ
0 + B3(K1(N) + B4)

τ

Nγ
(3.225)

≤2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ
(3.226)

where (3.224) follows from (3.221), (3.226) follows when N is large enough due to

the fact that K1(N) satisfies (3.186), i.e., there exists an integer N2 such that when

N > N2, (3.226) is true. The right hand side of (3.226) converges to zero as N goes

to infinity due to the fact that K1(N) satisfies (3.187). We have

∣

∣

∣
b(N)T

m b
(N)
l

∣

∣

∣
=

∣

∣

∣

∣

∣

N
∑

i=1

U0

N
φm

(

i − 1

N
U0

)

φl

(

i − 1

N
U0

)

∣

∣

∣

∣

∣

=
∣

∣

∣
εm,l

N

∣

∣

∣
(3.227)

≤ 2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ
(3.228)

which means that vectors b
(N)
m and b

(N)
l become more orthogonal as N gets larger.

Now, we are ready to establish the link between the eigenvalues of Σ′

N
and λk.
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From (3.195), we have

∣

∣

∣

∣

∣

∣
b

(N)
k

∣

∣

∣

∣

∣

∣
≤
∣

∣

∣

∣

∣

∣
(Σ′

N
− λkI)

−1
∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

∣
a

(N)
k

∣

∣

∣

∣

∣

∣
(3.229)

=

(

min
0≤m≤N−1

∣

∣

∣
µ(N)′

m − λk

∣

∣

∣

)−1 ∣
∣

∣

∣

∣

∣
a

(N)
k

∣

∣

∣

∣

∣

∣
(3.230)

Thus, we have

min
0≤m≤N−1

∣

∣

∣
µ(N)′

m − λk

∣

∣

∣
≤

∣

∣

∣

∣

∣

∣
a

(N)
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
b

(N)
k

∣

∣

∣

∣

∣

∣

(3.231)

≤ B2U
3/2+β
0√

1 − B5

(k + B1)
τ

Nβ
(3.232)

= d0
(k + B1)

τ

Nβ
(3.233)

where (3.233) follows by defining d0 as

d0 =
B2U

3/2+β
0√

1 − B5

(3.234)

Hence, for k = 0, 1, 2, · · · , K1(N), there exists an eigenvalue µ(N)′ of Σ′

N
such that

∣

∣

∣
µ(N)′ − λk

∣

∣

∣
≤ d0

(k + B1)
τ

Nβ
(3.235)

when N is large enough, more specifically, when N ≥ max(N0, N2).

For k = 0, 1, 2, · · · , K1(N), if we label the µ(N)′ that satisfies (3.235) to be µ
(N)′

k ,
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then when λk for different ks are sufficiently close, more specifically,

|λm − λl| ≤ 2d0
(K1(N) + B1)

τ

Nβ
, m, l ≤ K1(N), m 6= l (3.236)

µ
(N)′

m and µ
(N)′

l , though labelled differently, might be the same eigenvalue of Σ′

N
,

which is undesirable. If we relax the minimum distance of d0
(k+B1)τ

Nβ , we will be able

to eliminate this problem. Thus, we will next show that for k = 0, 1, 2, · · · , K1(N),

there exists an eigenvalue µ(N)′ of Σ′

N
, different for each k, such that

∣

∣

∣
µ(N)′ − λk

∣

∣

∣
≤ (2χ̄ + 1)

√

d2d0
(k + χ̄ + B1)

τ

Nβ
(3.237)

when N is large enough, where we define χ̄
△
= max(K0 +1+ cu + cl, 2cu +2cl +1) and

constant d2 as the largest root of the following second-order equation

(1 − B5)d
2
2 − 2 ((1 − B5) + 3χ̄(1 + B5)) d2 + (1 − B5) + 2χ̄(1 + B5) = 0 (3.238)

It can be checked that both roots of the above equation are real, and the largest root

is a positive constant, strictly larger than 2χ̄(1+B5)
1−B5

+1, that is a function of χ̄ and B5.

First, let us define a cluster of λs. We say that χ λs are a cluster, where with no

loss of generality, we may label these λs λk, λk+1, · · · , λk+χ−1, if

λk+l − λk+l+1 ≤ 2
√

d2d0
(k + χ̄ + B1)

τ

Nβ
, 0 ≤ k ≤ K1(N), l = 0, 1, · · · , χ − 1

(3.239)
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Note here that whether the λs are in a cluster depends on N . Next, we prove that

the number of λs within a cluster is upper bounded by χ̄ when N is large enough.

For k > K0, we have

d

(k + cl)x
≤ λk ≤ d

(k − cu)x
(3.240)

d

(k + 2cl + cu + 1)x
≤ λk+cu+cl+1 ≤

d

(k + cl + 1)x
(3.241)

Hence, for every k ≥ K0, the distance between λk and λk+cu+cl+1 satisfies

λk − λk+cu+cl+1 ≥
d

(k + cl)x
− d

(k + cl + 1)x
(3.242)

which is a non-increasing function of k. Thus, for all K0 < k ≤ K1(N), the distance

between λk and λk+cu+cl+1 satisfies

λk − λk+cu+cl+1 ≥
d

(K1(N) + cl)x
− d

(K1(N) + cl + 1)x
(3.243)

=
d

(K1(N) + cl)x

(

1 −
(

1 − 1

K1(N) + cl + 1

)x)

(3.244)

≥ d

(K1(N) + cl)x

(

x
1

K1(N) + cl + 1
− x(x − 1)

2

1

(K1(N) + cl + 1)2

)

(3.245)

=
xd

(K1(N) + cl)x+1
− x(x − 1)d

2(K1(N) + cl)x+2
(3.246)

≥ xd

2(K1(N) + cl)x+1
(3.247)

> 2
√

d2d0
(K1(N) + χ̄ + B1)

τ

Nβ
(3.248)
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where (3.247) is true when N is large enough due to the fact that K1(N) satisfies

(3.186), i.e., there exists an integer N3, such that when N > N3, (3.247) is true, and

(3.248) is true when N is large enough, due to the fact that K1(N) satisfies (3.188),

i.e., there exists an integer N4, such that when N > N4, (3.248) is true.

Hence, for all K0 < k ≤ K1(N), when N is large enough, more specifically,

when N > max(N3, N4), due to the sufficient distance between λk and λk+cu+cl+1,

shown in (3.248), they cannot be in the same cluster. Hence, we may conclude that

for large enough N , the size of a cluster is at most χ̄, which is a finite number.

Let the eigenvalues and the corresponding eigenvectors of Σ′

N
be µ

(N)′

i and u
(N)
i ,

i = 0, 1, · · · , N − 1, with arbitrary labelling of the eigenvalues and eigenvectors.

Following from (3.195), we have

N−1
∑

i=0

(

λk − µ
(N)′

i

)

u
(N)
i u

(N)T

i b
(N)
k = a

(N)
k (3.249)

We take the norm squared on both sides, and due to the orthogonality of eigenvectors

u
(N)
i , we have

N−1
∑

i=0

(

λk − µ
(N)′

i

)2 (

u
(N)T

i b
(N)
k

)2

=
∣

∣

∣

∣

∣

∣
a

(N)
k

∣

∣

∣

∣

∣

∣

2

, k = 0, 1, 2, · · · (3.250)

and we also have

N−1
∑

i=0

(

u
(N)T

i b
(N)
k

)2

=
∣

∣

∣

∣

∣

∣
b

(N)
k

∣

∣

∣

∣

∣

∣

2

, k = 0, 1, 2, · · · (3.251)

Let λk, λk+1, · · · , λk+χ−1 be a cluster, and from previous arguments, we know
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χ ≤ χ̄. Furthermore, we are only interested in the first K1(N) + 1 eigenvalues, and

therefore k + χ − 1 ≤ K1(N). We will prove by contradiction. Suppose that only ς

number of µ
(N)′

i s are within distance

√

d2d0
(k + χ̄ + B1)

τ

Nβ
(3.252)

from any of the λk, λk+1, · · · , λk+χ−1, with 1 ≤ ς < χ, we will show that there is a

contradiction, and therefore, we can conclude that our assumption that ς < χ number

of µ
(N)′

i s are within distance (3.252) from any of the λk, λk+1, · · · , λk+χ is not correct.

Let us label the µ(N)′ that are within distance (3.252) from any of the λk, λk+1, · · · , λk+χ

µ
(N)′

0 , µ
(N)′

1 , · · · , µ
(N)′

ς−1 . Before we dive into the details, let us first explain the basic

idea of the proof. u
(N)
0 ,u

(N)
1 , · · · ,u

(N)
ς−1 form the basis of a ς dimensional subspace. On

the other hand, b
(N)
k ,b

(N)
k+1, · · · ,b

(N)
k+χ−1 are almost orthogonal, according to (3.228),

and roughly form the basis of a χ dimensional subspace. Since all other µ
(N)′

i s, for

i = ς, ς + 1, · · · , N − 1, are farther than distance (3.252) away, by Wedin’s theorem

in perturbation theory [77], the angle between b
(N)
k+l and the subspace is small, for all

l = 0, 1, · · · , χ − 1. But this is not possible, since ς is strictly smaller than χ. Now,

we proceed with the rigorous proof.

Note that ς ≥ 1 because we have already proved (3.235). Based on (3.233), the

distance in (3.252) satisfies

√

d2d0
(k + χ̄ + B1)

τ

Nβ
≥

√
d2||a(N)

k+l||
||b(N)

k+l||
, l = 0, 1, · · · , χ − 1 (3.253)
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Then, based on (3.250), we have

(√
d2||a(N)

k+l||
||b(N)

k+l||

)2 N−1
∑

i=ς

(

u
(N)T

i b
(N)
k+l

)2

≤
∣

∣

∣

∣

∣

∣
a

(N)
k+l

∣

∣

∣

∣

∣

∣

2

, l = 0, 1, · · · , χ − 1 (3.254)

Hence, we have

N−1
∑

i=ς

(

u
(N)T

i b
(N)
k+l

)2

≤ ||b(N)
k+l||2
d2

, l = 0, 1, · · · , χ − 1 (3.255)

Together with (3.251), we have

ς−1
∑

i=0

(

u
(N)T

i b
(N)
k+l

)2

≥ (d2 − 1)||b(N)
k+l||2

d2
, l = 0, 1, · · · , χ − 1 (3.256)

Since the u
(N)
i form a complete set of orthonormal basis in R

N , we can write b
(N)
k+l as

b
(N)
k+l =

ς−1
∑

i=0

αk+l,iu
(N)
i + v

(N)
k+l , l = 0, 1, · · · , χ − 1 (3.257)

where v
(N)
k+l is orthogonal to u

(N)
i , for i = 1, 2, · · · , ς. If we take the expression of b

(N)
k+l

in (3.257) and plug it in (3.256), we get

ς−1
∑

i=0

(αk+l,i)
2 ≥ (d2 − 1)||b(N)

k+l||2
d2

, l = 0, 1, 2, · · · , χ − 1 (3.258)

From (3.257), we get

||b(N)
k+l||2 =

ς−1
∑

i=0

(αk+l,i)
2 + ||v(N)

k+l||2, l = 0, 1, · · · , ς − 1 (3.259)
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Hence, we conclude that

||v(N)
k+l||2 ≤

||b(N)
k+l||2
d2

, l = 0, 1, · · · , ς − 1 (3.260)

Furthermore, from (3.257), we have

b
(N)T

k+mb
(N)
k+l =

ς−1
∑

i=0

αk+m,iαk+l,i + v
(N)T

k+m v
(N)
k+l , m, l = 0, 1, · · · , ς − 1, m 6= l (3.261)

Hence, we have

ς−1
∑

i=0

αk+m,iαk+l,i = b
(N)T

k+mb
(N)
k+l − v

(N)T

k+m v
(N)
k+l , m, l = 0, 1, · · · , ς − 1, m 6= l (3.262)

and for m, l = 0, 1, · · · , ς − 1, m 6= l, we have

∣

∣

∣

∣

∣

ς−1
∑

i=0

αk+m,iαk+l,i

∣

∣

∣

∣

∣

≤
∣

∣

∣
b

(N)T

k+mb
(N)
k+l

∣

∣

∣
+
∣

∣

∣
v

(N)T

k+m v
(N)
k+l

∣

∣

∣
(3.263)

≤ 2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ
+
∣

∣

∣

∣

∣

∣
v

(N)T

k+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
v

(N)
k+l

∣

∣

∣

∣

∣

∣
(3.264)

≤ 2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ
+

∣

∣

∣

∣

∣

∣
b

(N)T

k+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
b

(N)
k+l

∣

∣

∣

∣

∣

∣

d2
(3.265)

≤ 2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ
+

1 + B5

d2
(3.266)

≤ 2(1 + B5)

d2
(3.267)

where (3.264) follows from (3.228) when N > N2, (3.265) follows from (3.260), (3.266)

follows from (3.215) when N > N0, and (3.267) follows when N is large enough, due

to the fact that K1(N) satisfies (3.187), i.e., there exists an integer N6, when N > N6,
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(3.267) is true. Let us define matrix A to be

A =

























αk,1 αk,2 · · · αk,ς

αk+1,1 αk+1,2 · · · αk+1,ς

...
...

. . .
...

αk+ς−1,1 αk+ς−1,2 · · · αk+ς−1,ς

























(3.268)

and define vectors b, v, u to be

b =

























b
(N)T

k b
(N)
k+ς

b
(N)T

k+1 b
(N)
k+ς

...

b
(N)T

k+ς−1b
(N)
k+ς

























, v =

























v
(N)T

k b
(N)
k+ς

v
(N)T

k+1 b
(N)
k+ς

...

v
(N)T

k+ς−1b
(N)
k+ς

























, u =

























u
(N)T

0 b
(N)
k+ς

u
(N)T

1 b
(N)
k+ς

...

u
(N)T

ς−1 b
(N)
k+ς

























(3.269)

Then, by (3.257), we have

b = Au + v (3.270)

In other words,

u = A−1 (b − v) (3.271)

thus, we have

||u||2 ≤
∣

∣

∣

∣A−1
∣

∣

∣

∣

2

2
(||b|| + ||v||)2 (3.272)
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We start by evaluating ||A−1||22, which is equal to the inverse of the smallest eigenvalue

of AT A. From the definition of matrix A in (3.268), we have

ATA = D + E (3.273)

where D is an ς×ς diagonal matrix with the l-th diagonal element being
∑ς−1

i=0 (αk+l−1,i)
2,

and E is an ς × ς matrix with zero diagonals and (m, l)-th element being
∑ς−1

i=0

αk+m−1,iαk+l−1,i, when m 6= l. The absolute difference between the smallest eigen-

value of ATA and D is upper bounded by ||E||2 [77]. The smallest eigenvalue of D

is

min
l∈{0,1,··· ,ς−1}

ς−1
∑

i=0

(αk+l,i)
2 ≥ min

l

(d2 − 1)||b(N)
k+l||2

d2
(3.274)

≥ (d2 − 1)(1 − B5)

d2
(3.275)

where (3.274) follows from (3.258), and (3.275) follows from (3.215) when N > N0

since k + ς − 1 ≤ K1(N). We can upper bound the spectral norm of matrix E, i.e.,

||E||2, by the Frobenius norm of E, i.e,

||E||22 ≤
∑

m6=l

(

ς−1
∑

i=0

αk+m−1,iαk+l−1,i

)2

(3.276)

≤ ς2

(

2(1 + B5)

d2

)2

(3.277)

< χ2 4(1 + B5)
2

d2
2

(3.278)

≤ χ̄24(1 + B5)
2

d2
2

(3.279)
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where (3.277) follows from (3.267). Hence, we may conclude that

∣

∣

∣

∣A−1
∣

∣

∣

∣

2

2
<

(

(d2 − 1)(1 − B5)

d2
− 2χ̄(1 + B5)

d2

)−1

(3.280)

where the right hand side is a positive number, by the definition of d2. Next, we

evaluate ||v||2.

||v||2 =

ς−1
∑

i=0

(

v
(N)T

k+i b
(N)
k+ς

)2

(3.281)

≤
ς−1
∑

i=0

∣

∣

∣

∣

∣

∣
v

(N)T

k+i

∣

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣

2

(3.282)

≤

∣

∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣

2

d2

ς−1
∑

i=0

∣

∣

∣

∣

∣

∣
b

(N)
k+i

∣

∣

∣

∣

∣

∣

2

(3.283)

≤ ς(1 + B5)

d2

∣

∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣

2

(3.284)

<
χ(1 + B5)

d2

∣

∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣

2

(3.285)

≤ χ̄(1 + B5)

d2

∣

∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣

2

(3.286)

where (3.283) follows from (3.260), and (3.284) follows from (3.215) when N > N0

since k + ς − 1 ≤ K1(N). Finally, we evaluate ||b||2.

||b||2 =
ς−1
∑

i=0

(

b
(N)T

k+i b
(N)
k+ς

)2

≤ ς

(

2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ

)2

(3.287)

< χ

(

2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ

)2

(3.288)

≤ χ̄

(

2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ

)2

(3.289)
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where (3.287) follows from (3.228) when N > N2.

Following from (3.272), using (3.286), (3.289) and (3.280), we have

||u||2 ≤
∣

∣

∣

∣A−1
∣

∣

∣

∣

2

2
(||b|| + ||v||)2 (3.290)

<

(

(d2 − 1)(1 − B5)

d2

− 2χ̄(1 + B5)

d2

)−1





√

χ̄(1 + B5)

d2

∣

∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣
+
√

χ̄

(

2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ

)





2

(3.291)

≤
(

(d2 − 1)(1 − B5)

d2

− 2χ̄(1 + B5)

d2

)−1


2

√

χ̄(1 + B5)

d2

∣

∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣





2

(3.292)

=
d2 − 1

d2

∣

∣

∣

∣

∣

∣
b

(N)
k+ς

∣

∣

∣

∣

∣

∣

2

(3.293)

where (3.292) follows when N is large enough, due to the fact that K1(N) satisfies

(3.187), i.e, there exists an integer N5, such that when N > N5,

√
χ̄

(

2B2
3(K1(N) + B4)

2τU1+2γ
0

Nγ

)

≤
√

χ̄(1 + B5)

d2

√

1 − B5 (3.294)

and (3.292) is true, and (3.293) follows from the definition of d2 by (3.238). Hence,

when N is large enough, more specifically, when N > max(N0, N2, N3, N4, N5, N6),

we have a contradiction with (3.256). Therefore, we conclude that there must be

at least χ eigenvalues of Σ′

N
within distance (3.252) away from any of the clustered

λs, furthermore, from the definition of a cluster in (3.239), there must be at least χ
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eigenvalues within distance

(2χ + 1)
√

d2d0
(k + χ̄ + B1)

τ

Nβ
(3.295)

which is less than or equal to

(2χ̄ + 1)
√

d2d0
(k + χ̄ + B1)

τ

Nβ
(3.296)

away from all of the clustered λs. We pick χ eigenvalues of Σ′

N
which are within

distance (3.296) and arbitrarily pair each clustered λ with one of the eigenvalues.

These eigenvalues will not be paired with any other λ because all other clusters of λs

are at least distance 2
√

d2d0
(k+χ̄+B1)

τ

Nβ apart from this cluster.

Finally, by letting

d1 = (2χ̄ + 1)
√

d2d0, B7 = χ̄ + B1 (3.297)

we have the desired results when N is large enough. Note that B7 is a positive integer

and d1 is a positive constant, independent of k and N .

Proof of Lemma 3.8

In the proof of Lemma 3.8, we will need results from Lemma 3.6 and 3.7. Thus, we

will first prove that under the condition of Lemma 3.8, the results of Lemma 3.6 and
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3.7 apply. Since

lim
N→∞

ϑN
U = 0 (3.298)

for any 0 < κ < 1, when N is large enough, θ < ϑN
U is small enough, which means

that the result of Lemma 3.6 is valid. Now we show that the result of Lemma 3.7 is

also true. Let K1(N) =
(

du

ϑN
L

)
1
x

+ cu. Because of

lim
N→∞

1

ϑN
L N

xγ
2τ

= 0, lim
N→∞

1

ϑN
L N

xβ
x+1+τ

= 0 (3.299)

we have (3.187) and (3.188). Because of (3.298) and the fact that ϑN
L ≤ ϑN

U , we have

(3.186).

Hence, for any 0 ≤ k ≤
⌊

(

du

θ

)
1
x + cu

⌋

, result of Lemma 3.7 applies because

k ≤
⌊

(

du

ϑN
L

)
1
x

+ cu

⌋

≤ K1(N) (3.300)

and N is large enough.

Now, we will use the result of Lemma 3.6 and 3.7 to prove Lemma 3.8. From the

properties of the Karhunen-Loeve expansion, we know that

∞
∑

k=0

λk =

∫ U0

0

K(u, u)du < ∞ (3.301)
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Thus, for any constant 0 < κ < 1, we have

—

( du
θ )

1
x +cu

�

∑

k=0

λk =

∞
∑

k=0

λk −
∞
∑

k=

—

( du
θ )

1
x +cu

�

+1

λk (3.302)

≥
∫ U0

0

K(u, u)du−
∞
∑

k=

—

( du
θ )

1
x +cu

�

+1

λ′′
k (3.303)

≥
∫ U0

0

K(u, u)du− d
1
x
u

(x − 1)κ
θ1− 1

x (3.304)

where we have used (3.77) in Lemma 3.6 to obtain (3.304).

From the definition of matrix ΣN , we have

N−1
∑

k=0

µ
(N)′

k =
U0

N
tr (ΣN) =

U0

N

N
∑

i=1

K

(

i − 1

N
U0,

i − 1

N
U0

)

(3.305)

Thus,

N−1
∑

k=

—

( du
θ )

1
x +cu

�

+1

µ
(N)′

k

=
N−1
∑

k=0

µ
(N)′

k −

—

( du
θ )

1
x +cu

�

∑

k=0

µ
(N)′

k (3.306)

≤ U0

N

N
∑

i=1

K

(

i − 1

N
U0,

i − 1

N
U0

)

−

—

( du
θ )

1
x +cu

�

∑

k=0

(

λk − d1
(k + B7)

τ

Nβ

)

(3.307)
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≤ U0

N

N
∑

i=1

K

(

i − 1

N
U0,

i − 1

N
U0

)

−
∫ U0

0

K(u, u)du

+
d

1
x
u

(x − 1)κ
θ1− 1

x +
d1

Nβ

—

( du
θ )

1
x +cu

�

∑

k=0

(k + B7)
τ (3.308)

≤ BU1+α
0 2

α
2

Nα
+

d
1
x
u

(x − 1)κ
θ1− 1

x

+
d1

(⌊

(

du

θ

)
1
x + cu

⌋

+ 1
)(⌊

(

du

θ

)
1
x + cu

⌋

+ B7

)τ

Nβ
(3.309)

≤ d
1
x
u

(x − 1)κ2
θ1− 1

x (3.310)

where (3.307) follows by Lemma 3.7. We have used (3.304) to obtain (3.308), and

condition 2 in Section 3.2 to obtain (3.309), (3.310) follows because

lim
N→∞

1

ϑN
L N

αx
x−1

= 0 (3.311)

and

lim
N→∞

1

ϑN
L N

βx
1+x+τ

= 0 ⇒ lim
N→∞

1

ϑN
L N

βx
x+τ

= 0 (3.312)

and when N large enough, i.e., there exists a N5(κ) > 0 such that when N > N5(κ),
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we have

BU1+α
0 2

α
2 +U0K(0,0)

Nα

d
1
x
u

(x−1)
θ1− 1

x

≤
BU1+α

0 2
α
2 +U0K(0,0)

Nα

d
1
x
u

(x−1)
(ϑN

L )
1− 1

x

≤ 1

2

(

1

κ2
− 1

κ

)

(3.313)

2d1d
τ+1

x
u

(τ+1)θ
τ+1

x Nβ

d
1
x
u

(x−1)
θ1− 1

x

≤

2d1d
τ+1

x
u

(τ+1)(ϑN
L )

τ+1
x Nβ

d
1
x
u

(x−1)
(ϑN

L )
1− 1

x

≤ 1

2

(

1

κ2
− 1

κ

)

(3.314)

Therefore, for any 0 < κ < 1, (3.190) holds for θ ∈ [ϑN
L , ϑN

U ] when N is large enough.

3.8.8 Proof of Lemma 3.4

Since the condition of Lemma 3.4 is the same as Lemma 3.8, the results of Lemma

3.6, 3.7 and 3.8 hold. By the same argument as Lemma 3.6, Lemma 3.5 holds as well.

We first prove (3.54). Since ϑN
L satisfies

lim
N→∞

1

ϑN
L N

βx
x+τ+1

= 0 ⇒ lim
N→∞

1

ϑN
L Nx

= 0 (3.315)

when N is large enough such that

⌊

(

du

θ

)
1
x

+ cu

⌋

+ 1 ≤
⌊

(

du

ϑN
L

)
1
x

+ cu

⌋

+ 1 < N − 1 (3.316)

we can provide an upper bound on RN
a (θ) by splitting the sum of N variables into
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two parts,

RN
a (θ) =

—

(du
θ )

1
x +cu

�

∑

k=0

1

2
log

(

1 +
µ

(N)′

k

θ

)

+

N−1
∑

k=

—

( du
θ )

1
x +cu

�

+1

1

2
log

(

1 +
µ

(N)′

k

θ

)

(3.317)

For any 0 < κ < 1, we start with the first term in (3.317).

—

( du
θ )

1
x +cu

�

∑

k=0

1

2
log

(

1 +
µ

(N)′

k

θ

)

≤

—

(du
θ )

1
x +cu

�

∑

k=0

1

2
log

(

1 +
λk

θ
+ d1

(k + B7)
τ

θNβ

)

(3.318)

≤

—

(du
θ )

1
x +cu

�

∑

k=0

1

2
log

(

1 +
λ′′

k

θ

)

+
d1

2θNβ

—

( du
θ )

1
x +cu

�

∑

k=0

(k + B7)
τ (3.319)

≤
(

log 2 + x

2κ

)

d
1
x
u θ−

1
x +

d1

(⌊

(

du

θ

)
1
x + cu

⌋

+ 1
)(⌊

(

du

θ

)
1
x + cu

⌋

+ B7

)τ

Nβ
(3.320)

≤
(

log 2 + x

2κ2

)

d
1
x
u θ−

1
x (3.321)

where (3.318) follows from Lemma 3.7, (3.319) follows because the derivative of the

function 1
2
log(1+x) is bounded by 1

2
for x ≥ 0 and the observation in (3.14), (3.320)

follows because of (3.78) in Lemma 3.6, and (3.321) follows because of (3.312), and

when N is large enough, more specifically, there exists an N6(κ) > 0 such that when

N > N6(κ), we have

d1d
τ+1

x
u

(τ+1)θ
τ+1+x

x Nβ

(

log 2+x
2

)

d
1
x
u θ−

1
x

≤

d1d
τ+1

x
u

(τ+1)(ϑN
L )

τ+1+x
x Nβ

(

log 2+x
2

)

d
1
x
u (ϑN

L )
− 1

x

<

(

1

κ2
− 1

κ

)

(3.322)
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Now, we will study the second term of (3.317).

N−1
∑

k=

—

( du
θ )

1
x +cu

�

+1

1

2
log

(

1 +
µ

(N)′

k

θ

)

≤ 1

2

N−1
∑

k=

—

( du
θ )

1
x +cu

�

+1

µ
(N)′

k (3.323)

≤ d
1
x
u

2(x − 1)κ2
θ−

1
x (3.324)

where in obtaining (3.323) and (3.324), we have used the fact that log(1+x) ≤ x and

(3.190) in Lemma 3.8, respectively.

We combine the results of (3.321) and (3.324) and obtain

RN
a (θ) ≤ d

1
x
u (x2 − (1 − log 2)x + (1 − log 2))

2(x − 1)κ2
θ−

1
x (3.325)

Using similar methods, we may also lower bound RN
a (θ). We write

RN
a (θ) =

$

“

dl
θ

” 1
x −cl

%

∑

k=0

1

2
log

(

1 +
µ

(N)′

k

θ

)

+

N−1
∑

k=

$

“

dl
θ

” 1
x −cl

%

+1

1

2
log

(

1 +
µ

(N)′

k

θ

)

(3.326)

129



We start with the first term of (3.326),

$

“

dl
θ

” 1
x −cl

%

∑

k=0

1

2
log

(

1 +
µ

(N)′

k

θ

)

≥

$

“

dl
θ

” 1
x −cl

%

∑

k=0

1

2
log

(

1 +
λk

θ
− d1

(k + B7)
τ

θNβ

)

(3.327)

≥

$

“

dl
θ

” 1
x −cl

%

∑

k=0

1

2
log

(

λ′
k

θ

)

− d1

2θNβ

$

“

dl
θ

” 1
x −cl

%

∑

k=0

(k + B7)
τ

(3.328)

≥ κxd
1
x
l

4
θ−

1
x (3.329)

where (3.327) follows when applying the result of Lemma 3.7, (3.328) follows because

the function 1
2
log(1 + x) has derivative bounded by 1

2
, and (3.329) follows because of

(3.76) in Lemma 3.5 and (3.312), and when N is large enough, we have

d1d
τ+1

x
l

(τ+1)θ
τ+1+x

x Nβ

xd
1
x
l

4
θ−

1
x

≤

d1d
τ+1

x
l

(τ+1)(ϑN
L )

τ+1+x
x Nβ

xd
1
x
l

4
(ϑN

L )
− 1

x

≤ 1

8
(3.330)

A lower bound on the second term of (3.326) is zero. Hence, we can conclude that

RN
a (θ) ≥ κxd

1
x
l

4
θ−

1
x (3.331)
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Now we evaluate DN
b (θ) for large enough N and θ ∈ [ϑN

L , ϑN
U ], and prove (3.55).

DN
b (θ) = U−1

0

N−1
∑

k=0

(

1

θ
+

1

µ
(N)′

k

)−1

(3.332)

= U−1
0

k=

—

( du
θ )

1
x +cu

�

∑

k=0

(

1

θ
+

1

µ
(N)′

k

)−1

+ U−1
0

N−1
∑

k=

—

( du
θ )

1
x +cu

�

+1

(

1

θ
+

1

µ
(N)′

k

)−1

(3.333)

≤ U−1
0

k=

—

( du
θ )

1
x +cu

�

∑

k=0

θ + U−1
0

N−1
∑

k=

—

( du
θ )

1
x +cu

�

+1

µ
(N)′

k (3.334)

≤ U−1
0 θ

(⌊

(

du

θ

)
1
x

+ cu

⌋

+ 1

)

+ U−1
0

d
1
x
u

(x − 1)κ2
θ1− 1

x (3.335)

≤ d
1
x
u (1 + κ2(x − 1))

κ3(x − 1)U0

θ1− 1
x (3.336)

where (3.333) follows because of the same reason as (3.317), and (3.334) follows

because of the fact that for a, b ≥ 0,
(

1
a

+ 1
b

)−1 ≤ min(a, b), and (3.335) follows from

(3.190) of Lemma 3.8, (3.336) follows because θ < ϑN
U , and ϑN

U goes to zero as N goes

to infinity.

Therefore, for any 0 < κ < 1, (3.54) and (3.55) are true for θ ∈ [ϑN
L , ϑN

U ] when N

is large enough.
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3.8.9 Proof of Theorem 3.4

Note that (3.54) implies that

κxxxdl

4xRx
≤ θN

a (R) ≤
(

d
1
x
u (x2 − (1 − log 2)x + (1 − log 2))

2(x − 1)κ2

)x

R−x (3.337)

for large enough N and R in the interval of

[

d
1
x
u (x2 − (1 − log 2)x + (1 − log 2))

2(x − 1)κ2

(

ϑN
U

)− 1
x ,

κxd
1
x
l

4

(

ϑN
L

)− 1
x

]

(3.338)

From the definition of Da(R) in (3.49), we have

Da(R) = DN
a (θN

a (R)) (3.339)

≤ 2A(N) + B(N) + DN
b (θN

a (R)) (3.340)

≤ 2A(N) + B(N) +
d

1
x
u (1 + κ2(x − 1))

κ3(x − 1)U0

(

θN
a (R)

)1− 1
x (3.341)

≤ O
(

N−α
)

+ O
(

N1/2−α
)

+
du(1 + κ2(x − 1)) (x2 − (1 − log 2)x + (1 − log 2))

x−1

U0κ2x+12x−1(x − 1)x
R1−x (3.342)

where (3.340) follows from (3.45), (3.341) follows because of (3.55), (3.342) follows

from (3.51), (3.52), (3.337) and the fact that R in (3.58) implies that R is in (3.338),

and when R is in (3.338), θN
a (R) is in [ϑN

L , ϑN
U ]. When R is in (3.58), we have that

the third term in (3.342) is much larger than the sum of the first and second terms
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when N is large enough due to the fact that

lim
N→∞

1

ϑN
LLN

(α−1/2)x
x−1

= 0 ⇒ lim
N→∞

1

ϑN
LLN

αx
x−1

= 0 (3.343)

i.e., there exists an N9(κ) > 0 such that when N > N9(κ), we have

O (N−α) + O
(

N1/2−α
)

d(1+κ2(x−1))(x2−(1−log 2)x+(1−log 2))x−1

U02x−1(x−1)x R1−x

≤ O (N−α) + O
(

N1/2−α
)

d(1+κ2(x−1))(x2−(1−log 2)x+(1−log 2))x−1

U02x−1(x−1)x

(

xd
1
x

8
(ϑN

LL)
− 1

x

)1−x (3.344)

≤ 1

κ2x+2
− 1

κ2x+1
(3.345)

Therefore, for 0 < κ < 1, (3.57) is true for R in the interval of (3.58) when N is large

enough.

3.8.10 Proof of Theorem 3.5

Pick the sequences ϑN
LL and ϑN

U as

ϑN
LL =





ν

xd
1
x
l

8

log NP (N)





−x

, ϑN
U =







ν

d
1
x
u (x2−(1−log 2)x+(1−log 2))

2(x−1)κ2

log NP (N)







−x/2

(3.346)

Then, because P (N) satisfies (3.37) and (3.59), ϑN
LL satisfies (3.56) and ϑN

U satisfies

(3.53). According to (3.38), we have the achievable rate, CN
a , in the interval of (3.58),

and thus, when N is large enough, Theorem 3.4 applies. Hence, an upper bound on
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the minimum achievable expected distortion, or equivalently, the achievable rate in

the separation-based scheme is

DN
u = Da

(

CN
a

)

(3.347)

≤ du(1 + κ2(x − 1)) (x2 − (1 − log 2)x + (1 − log 2))
x−1

U0κ3x+12x−1(x − 1)xνx−1

(

1

log(NP (N))

)x−1

(3.348)

Therefore, when P (N) satisfies (3.37) and (3.59), for any 0 < κ < 1, (3.61) holds

when N is large enough.
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Chapter 4

The Capacity Region of a Class of Discrete Degraded

Interference Channels

In wireless communications, where multiple transmitter and receiver pairs share the

same medium, interference is unavoidable. How to best manage interference coming

from other users and how not to cause too much interference to other users while

maintaining the quality of communication is a challenging question and of a great

deal of practical interest.

To be able to understand the effect of interference on communications better,

interference channel (IC) was introduced in [74]. The IC is a simple network consisting

of two pairs of transmitters and receivers. Each pair wishes to communicate at a

certain rate with negligible probability of error. However, the two communications

interfere with each other. To best understand the management of interference, we

need to find the capacity region of the IC. However, the problem of finding the

capacity region of the IC is essentially open except in some special cases, e.g., a class of

deterministic ICs [28], discrete additive degraded interference channels (DADICs) [5],

strong ICs [18, 70], ICs with statistically equivalent outputs [1, 14, 69].
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In this chapter, we consider a class of discrete degraded interference channels

(DDICs). In a DDIC, only the “bad” receiver faces interference, while the “good”

receiver has the ability to decode both messages and thus, behaves like the receiver

of a multiple access channel. It is this fact that makes the DDIC easier to analyze as

compared to the IC, where both receivers are faced with interference.

We provide a single-letter characterization for the capacity region of a class of

DDICs. The class of DDICs includes the DADICs studied by Benzel [5]. We show

that for the class of DDICs studied, encoder cooperation does not increase the capacity

region, and therefore, the capacity region of the class of DDICs is the same as the

capacity region of the corresponding degraded broadcast channel, which is known.

4.1 System Model

A discrete memoryless IC consists of two transmitters and two receivers. Transmitter

1 has message W1, which is uniformly distributed in the set {1, 2, · · · , 2nR1}, to send

to receiver 1. Transmitter 2 has message W2, which is uniformly distributed in the set

{1, 2, · · · , 2nR2}, to send to receiver 2. Messages W1 and W2 are independent. The

channel consists of two input alphabets, X1 and X2, and two output alphabets, Y1

and Y2. The channel transition probability is p(y1, y2|x1, x2).

In this chapter, our definition of degradedness is in the stochastic sense, i.e., we

say that an IC is DDIC if there exists a probability distribution p′(y2|y1) such that

p(y2|x1, x2) =
∑

y1∈Y1

p(y1|x1, x2)p
′(y2|y1) (4.1)
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for all x1 ∈ X1, x2 ∈ X2 and y2 ∈ Y2. However, we note that for any DDIC, we can

form another DDIC (physically degraded) by

p(y1, y2|x1, x2) = p(y1|x1, x2)p
′(y2|y1) (4.2)

which has the same marginals, p(y1|x1, x2) and p(y2|x1, x2), as the original DDIC.

Since the receivers do not cooperate in an IC, similar to the case of the broadcast

channel [22, Problem 14.10], the capacity region is only a function of the marginals,

p(y1|x1, x2) and p(y2|x1, x2), and the rate pairs in the capacity region can be achieved

by the same achievability scheme for different ICs with the same marginals. Hence,

the capacity results that we obtain for DDICs which satisfy (4.2) will be valid for any

DDIC that has the same marginals, p(y1|x1, x2) and p(y2|x1, x2). Thus, without loss

of generality, from now on, we may restrict ourselves to studying DDICs that satisfy

(4.2).

A DDIC is characterized by two transition probabilities, p′(y2|y1) and p(y1|x1, x2).

For notational convenience, let T ′ denote the |Y2| × |Y1| matrix of transition prob-

abilities p′(y2|y1), and Tx̄2 denote the |Y1| × |X1| matrix of transition probabilities

p(y1|x1, x̄2), for all x̄2 ∈ X2.

Throughout the chapter, ∆n will denote the probability simplex

{

(p1, p2, · · · , pn)

∣

∣

∣

∣

n
∑

i=1

pi = 1, pi ≥ 0, i = 1, 2, · · · , n

}

(4.3)

and Jn will denote the representation of the symmetric group of permutations of n
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objects by the n × n permutation matrices.

The class of DDICs we consider in this chapter satisfies the following conditions:

1. T ′ is input symmetric. Let the input symmetry group be G.

2. For any x′
2, x

′′
2 ∈ X2, there exists a permutation matrix G ∈ G, such that

Tx′
2

= GTx′′
2

(4.4)

3. H(Y1|X1 = x1, X2 = x2) = η, independent of x1, x2.

4. p(y1|x1, x2) satisfies

∑

x2

p(y1|x1, x2) =
|X2|
|Y1|

, x1 ∈ X1, y1 ∈ Y1 (4.5)

5. Let px1,x2 be the |Y1| dimensional vector of probabilities p(y1|x1, x2) for a given

x1, x2. Then, there exists an x̃2 ∈ X2, such that

{

∑

x1,x2

ax1,x2px1,x2 :
∑

x1,x2

ax1,x2 = 1, ax1,x2 ≥ 0

}

⊆
{

G

(

∑

x1

bx1px1,x̃2

)

:
∑

x1

bx1 = 1, bx1 ≥ 0, G ∈ G
}

(4.6)

The definition of an input symmetric channel is given in [91, Section II.D]. For

completeness, we repeat it here. For an m × n stochastic matrix T ′ (an n input, m
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output channel), the input symmetry group G is defined as

G = {G ∈ Jn : ∃Π ∈ Jm, T ′G = ΠT ′} (4.7)

i.e., G is the set of permutation matrices G such that the column permutations of T ′

with G may be achieved with corresponding row permutations. T ′ is input symmetric,

if G is transitive, i.e., any element of {1, 2, · · · , n} can be mapped to every other

element of {1, 2, · · · , n} by some member of G. G being a transitive subgroup means

that the output entropy of channel T ′ is maximized when the input distribution is

chosen to be the uniform distribution, i.e.,

max
p∈∆n

H(T ′p) = H(T ′u) (4.8)

where u denotes the uniform distribution in ∆n. This is because, for any p ∈ ∆n, if

we let q = |G|−1
∑

G∈G Gp, then we have

H(T ′q) = H

(

|G|−1
∑

G∈G
T ′Gp

)

(4.9)

= H

(

|G|−1
∑

G∈G
ΠGT ′p

)

(4.10)

≥ |G|−1
∑

G∈G
H (ΠGT ′p) (4.11)

= H(T ′p) (4.12)

where (4.10) follows from the fact that G ∈ G, and (4.11) follows from the concavity
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of the entropy function. Note that for any G′ ∈ G,

G′q = q (4.13)

by the fact that G is a group. Since G is also transitive, q = u.

Condition 2 implies that for any p(x1), H(Y1|X2 = x2) does not depend on x2.

Combined with condition 1, condition 2 further implies that H(Y2|X2 = x2) does not

depend on x2 either. These two facts will be proved and utilized in other proofs later.

A sufficient condition for condition 3 to hold is that the vectors p(y1|X1 = x1, X2 =

x2) for all (x1, x2) ∈ X1 ×X2 are permutations of each other. This is true for instance

when the channel from Y1 to Y2 is additive [5].

By condition 4, we can show that when X2 takes the uniform distribution, Y1 will

also be uniformly distributed. Combined with condition 1, condition 4 implies that

when X2 takes the uniform distribution, H(Y2) is maximized, irrespective of p(x1).

In condition 5, the first line of (4.6) denotes the set of all convex combinations

of vectors px1,x2 for all x1, x2 ∈ X1 × X2, while the second line denotes all convex

combinations, and their permutations with G ∈ G, of vectors px1,x̃2 for all x1 ∈ X1,

but for a fixed x̃2 ∈ X2. Therefore, this condition means that all convex combinations

of px1,x2 may be obtained by a combination of convex combinations of px1,x̃2 for a

fixed x̃2, and permutations in G.

The DADICs considered in [5] satisfy conditions 1-5, as we will show in Section

4.5.1.

The aim of this chapter is to provide a single-letter characterization for the capac-
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ity region of DDICs that satisfy conditions 1-5, and we will follow the proof technique

of [5] with appropriate generalizations.

4.2 The Outer Bound (Converse)

When we assume that the encoders are able to fully cooperate, i.e., both encoders

know both messages W1 and W2, we get a corresponding degraded broadcast channel

with input x = (x1, x2). The capacity region of the corresponding degraded broadcast

channel serves as an outer bound on the capacity region of the DDIC. The capacity

region of the degraded broadcast channel is known [19,22,31], and thus, a single-letter

outer bound on the capacity region of the DDIC is

co

[

⋃

p(u),p(x1,x2|u)

{

(R1, R2) : R1 ≤ I(X1, X2; Y1|U)

R2 ≤ I(U ; Y2)

}

]

(4.14)

where co denotes the closure of the convex hull operation, and the auxiliary random

variable U , which satisfies the Markov chain U −→ (X1, X2) −→ Y1 −→ Y2, has

cardinality bounded by |U| ≤ min (|Y1|, |Y2|, |X1||X2|). More specifically, for DDICs

that satisfy condition 3, (4.14) can be written as

co

[

⋃

p(u),p(x1,x2|u)

{

(R1, R2) : R1 ≤ H(Y1|U) − η

R2 ≤ I(U ; Y2)

}

]

(4.15)
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Let us define T (c) as

T (c) = max

p(u)p(x1, x2|u)

H(Y1|U) = c

|U| ≤ min (|Y1|, |Y2|, |X1||X2|)

I(U ; Y2) (4.16)

where the entropies are calculated according to the distribution

p(u, x1, x2, y1, y2) = p(u)p(x1, x2|u)p(y1|x1, x2)p
′(y2|y1) (4.17)

Using condition 3, we can show that η ≤ c ≤ log |Y1|. T (c) is concave in c [3, 5], and

therefore, (4.15) can also be written as

⋃

η≤c≤log |Y1|

{

(R1, R2) : R1 ≤ c − η

R2 ≤ T (c)

}

(4.18)

4.3 An Achievable Region

Based on [69, Theorem 4], the following region is achievable,

co

[

⋃

p(x1),p(x2)

{

(R1, R2) : R1 ≤ I(X1; Y1|X2)

R2 ≤ I(X2; Y2)

}

]

(4.19)
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which corresponds to the achievability scheme that the “bad” receiver treats the signal

for the “good” receiver as pure noise, and the “good” receiver decodes both messages

as if it is the receiver in a multiple access channel.

For DDICs that satisfy condition 3, (4.19) reduces to

co

[

⋃

p(x1),p(x2)

{

(R1, R2) : R1 ≤ H(Y1|X2) − η

R2 ≤ H(Y2) − H(Y2|X2)

}

]

(4.20)

We note that (4.20) remains an achievable region if we choose p(x2) to be the uniform

distribution. Furthermore, by choosing p(x2) as the uniform distribution, we have

p(y1) =
∑

x1,x2

p(y1|x1, x2)p(x1)
1

|X2|
(4.21)

=
1

|X2|
∑

x1

p(x1)
∑

x2

p(y1|x1, x2) (4.22)

=
1

|Y1|
(4.23)

where (4.23) uses condition 4. Thus, when p(x2) is chosen as the uniform distribution,

p(y1) results in a uniform distribution as well. Let us define τ as

τ = max
p∈∆|Y1|

H(T ′p) (4.24)

Using the fact that the DDIC under consideration satisfies condition 1, i.e., it satisfies
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(4.8), we have that when p(x2) is uniform, and consequently p(y1) is uniform,

H(Y2) = τ (4.25)

Hence, choosing p(x2) to be the uniform distribution in (4.20), yields the following as

an achievable region,

co

[

⋃

p(x1)

{

(R1, R2) : R1 ≤
1

|X2|
∑

x2

H(Y1|X2 = x2) − η

R2 ≤ τ − 1

|X2|
∑

x2

H(Y2|X2 = x2)

}

]

(4.26)

Due to condition 2, for any p(x1) = p and any x′
2, x

′′
2 ∈ X2, there exists a permutation

matrix G ∈ G such that

H(Y1|X2 = x′
2) = H(Tx′

2
p) (4.27)

= H(GTx′′
2
p) (4.28)

= H(Tx′′
2
p) (4.29)

= H(Y1|X2 = x′′
2) (4.30)

which means that for any p(x1), H(Y1|X2 = x2) does not depend on x2. Furthermore,

for any p(x1) = p and any x′
2, x

′′
2 ∈ X2, there exist permutation matrices G ∈ G and
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Π, of order |Y1| and |Y2| respectively, such that

H(Y2|X2 = x′
2) = H(T ′Tx′

2
p) (4.31)

= H(T ′GTx′′
2
p) (4.32)

= H(ΠT ′Tx′′
2
p) (4.33)

= H(T ′Tx′′
2
p) (4.34)

= H(Y2|X2 = x′′
2) (4.35)

where (4.33) follows from the fact that G ∈ G. (4.35) means that for any p(x1),

H(Y2|X2 = x2) does not depend on x2 either. Hence, the achievable region in (4.26)

can further be written as

co

[

⋃

p(x1)

{

(R1, R2) : R1 ≤ H(Y1|X2 = x2) − η

R2 ≤ τ − H(Y2|X2 = x2)

}

]

(4.36)

for any x2 ∈ X2. Since we will use condition 5 later, we choose to write the region of

(4.36) as

co

[

⋃

p(x1)

{

(R1, R2) : R1 ≤ H(Y1|X2 = x̃2) − η

R2 ≤ τ − H(Y2|X2 = x̃2)

}

]

(4.37)

where x̃2 is given in condition 5.
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Let us define F (c) as

F (c) = min

p(x1)

H(Y1|X2 = x̃2) = c

H(Y2|X2 = x̃2) (4.38)

where the entropies are calculated according to the distribution

p(y1, y2, x1|x̃2) = p(x1)p(y1|x1, x̃2)p
′(y2|y1) (4.39)

In (4.38), we can write min instead of inf by the same reasoning as in [90, Section

I]. Note that F (c) is not a function of x̃2 because of (4.30) and (4.35). Again, by

condition 3, we can show that η ≤ c ≤ log |Y1|. Hence, the achievable region in (4.37)

can be written as,

co

[

⋃

η≤c≤log |Y1|

{

(R1, R2) : R1 ≤ c − η

R2 ≤ τ − F (c)

}

]

(4.40)

which by [5, Facts 4 and 5], can further be written as

⋃

η≤c≤log |Y1|

{

(R1, R2) : R1 ≤ c − η

R2 ≤ τ − envF (c)

}

(4.41)

where envF (·) denotes the lower convex envelope of the function F (·).
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4.4 The Capacity Region

In this section, we show that the achievable region in (4.41) contains the outer bound

in (4.18), and thus, (4.18) and (4.41) are both, in fact, single-letter characterizations

of the capacity region of DDICs satisfying conditions 1-5. To show this, it suffices to

prove that

T (c) ≤ τ − envF (c), η ≤ c ≤ log |Y1| (4.42)

Let us fix a c ∈ [η, log |Y1|]. Let p∗(u), p∗(x1, x2|u) be the distributions that achieve

the maximum in (4.16), i.e.,

H(Y1|U) = c (4.43)

I(U ; Y2) = T (c) (4.44)

Using condition 5, for each u ∈ U , there exists a pu(x1) = pu and a permutation

matrix Gu ∈ G, such that

∑

x1,x2

p∗(x1, x2|U = u)px1,x2 = GuTx̃2p
u (4.45)

Thus, we have

H(Y1|U = u) = H (GuTx̃2p
u) = H (Tx̃2p

u) (4.46)
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(4.46) means that pu is in the feasible set of the optimization in (4.38) when c =

H(Y1|U = u). Hence,

F (H (Y1|U = u)) ≤ H (T ′Tx̃2p
u) (4.47)

We have

H(Y2|U = u) = H (T ′GuTx̃2p
u) (4.48)

= H (ΠuT ′Tx̃2p
u) (4.49)

= H (T ′Tx̃2p
u) (4.50)

≥ F (H (Y1|U = u)) (4.51)

where (4.48), (4.49) and (4.51) follow from (4.45), the fact that G ∈ G, and (4.47),

respectively. Thus,

H(Y2|U) =
∑

u

P (U = u)H(Y2|U = u) (4.52)

≥
∑

u

P (U = u)F (H (Y1|U = u)) (4.53)

≥
∑

u

P (U = u)envF (H (Y1|U = u)) (4.54)

≥ envF

(

∑

u

P (U = u)H (Y1|U = u)

)

(4.55)

= envF (H (Y1|U)) (4.56)

= envF (c) (4.57)
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where (4.53) follows from (4.51), (4.54) follows from the definition of env, and (4.55)

follows from convexity of envF (·).

Finally, for η ≤ c ≤ log |Y1|, we have

T (c) = I(U ; Y2) (4.58)

= H(Y2) − H(Y2|U) (4.59)

≤ τ − envF (c) (4.60)

where (4.60) follows from (4.57) and the definition of τ in (4.24).

Therefore, we conclude that the single-letter characterization of the capacity re-

gion of DDICs satisfying conditions 1-5 is (4.41), and also (4.18). To achieve point

(R1, R2) on the boundary of the capacity region, if R1 and R2 are such that

R1 = c − η, R2 = τ − F (c) (4.61)

for some η ≤ c ≤ log |Y1|, transmitters 1 and 2 generate random codebooks according

to p∗(x1), which is the minimizer of F (R1+η), and p∗(x2), which is the uniform distri-

bution, respectively, and transmit the codewords corresponding to the realizations of

their own messages. Receiver 1 performs successive decoding, in the order of message

2, and then message 1. Receiver 2 decodes its own message treating interference from

transmitter 1 as pure noise. To achieve point (R1, R2) on the capacity region, where

R1 and R2 do not satisfy (4.61), time-sharing should be used. Furthermore, we note

that for these DDICs, encoder cooperation cannot increase the capacity region.
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4.5 Examples

In this section, we will provide three examples of DDICs for which conditions 1-5

are satisfied. The first example is the channel model adopted in [5], for which the

capacity region is already known. In the second and third examples, the capacity

regions are previously unknown, and using the results of this chapter, we are able to

determine the capacity regions.

4.5.1 Example 1

A DADIC is defined as [5]

Y1 = X1 ⊕ X2 ⊕ V1 (4.62)

Y2 = X1 ⊕ X2 ⊕ V1 ⊕ V2 (4.63)

where

X1 = X2 = Y1 = Y2 = S = {0, 1, · · · , s − 1} (4.64)

and ⊕ denotes modulo-s sum, and V1 and V2 are independent noise random variables

defined over S with distributions

pi = (pi(0), pi(1), · · · , pi(s − 1)) , i = 1, 2 (4.65)
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Since Y2 = Y1 ⊕ V2, matrix T ′ is circulant, and thus input symmetric [91, Section

II.D]. Hence, condition 1 is satisfied. It is straightforward to check that conditions

2-5 are also satisfied. For example, when s = 3, we have

T ′ =

















p2(0) p2(2) p2(1)

p2(1) p2(0) p2(2)

p2(2) p2(1) p2(0)

















(4.66)

and the input symmetry group for T ′ is

G =































G0 =

















1 0 0

0 1 0

0 0 1

















, G1 =

















0 0 1

1 0 0

0 1 0

















, G2 =

















0 1 0

0 0 1

1 0 0















































(4.67)

which is transitive, i.e., 1
G2−→ 2, 1

G1−→ 3, 2
G1−→ 1, 2

G2−→ 3, 3
G2−→ 1, 3

G1−→ 2. From

(4.62),

T0 =

















p1(0) p1(2) p1(1)

p1(1) p1(0) p1(2)

p1(2) p1(1) p1(0)

















, T1 =

















p1(2) p1(1) p1(0)

p1(0) p1(2) p1(1)

p1(1) p1(0) p1(2)

















,

T2 =

















p1(1) p1(0) p1(2)

p1(2) p1(1) p1(0)

p1(0) p1(2) p1(1)

















(4.68)
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Conditions 2-4 are satisfied because

T1 = G1T0, T2 = G2T0 (4.69)

η = H(V1) (4.70)

∑

x2

p(y1|x1, x2) = p1(0) + p1(1) + p1(2) = 1 (4.71)

Next, we check condition 5.

{

∑

x1,x2

ax1,x2px1,x2 :
∑

x1,x2

ax1,x2 = 1, ax1,x2 ≥ 0

}

(4.72)

=































a

















p1(0)

p1(1)

p1(2)

















+ b

















p1(2)

p1(0)

p1(1)

















+ c

















p1(1)

p1(2)

p1(0)

















: a + b + c = 1, a, b, c ≥ 0































(4.73)

because even though (4.72) is a convex combination of 9 vectors, due to vectors

repeating themselves in the columns of T0, T1 and T2, the set, in fact, consists of

convex combinations of only 3 vectors. On the other hand, for x̃2 = 0,

{

G

(

∑

x1

bx1px1,x̃2

)

:
∑

x1

bx1 = 1, bx1 ≥ 0, G = G0

}

(4.74)

=































a

















p1(0)

p1(1)

p1(2)

















+ b

















p1(2)

p1(0)

p1(1)

















+ c

















p1(1)

p1(2)

p1(0)

















: a + b + c = 1, a, b, c ≥ 0































(4.75)
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because (4.74) is the convex combinations of the columns of T0, with the unitary

permutation. Thus,

{

∑

x1,x2

ax1,x2px1,x2 :
∑

x1,x2

ax1,x2 = 1, ax1,x2 ≥ 0

}

=

{

G

(

∑

x1

bx1px1,x̃2

)

:
∑

x1

bx1 = 1, bx1 ≥ 0, G = G0

}

(4.76)

⊆
{

G

(

∑

x1

bx1px1,x̃2

)

:
∑

x1

bx1 = 1, bx1 ≥ 0, G ∈ G
}

(4.77)

and condition 5 is satisfied.

4.5.2 Example 2

Next, we consider the following DDIC. We have |X1| = |X2| = |Y1| = 2, |Y2| = 3, and

p(y1|x1, x2) is characterized by

Y1 = X1 ⊕ X2 ⊕ V1 (4.78)

where V1 is Bernoulli with p. p′(y2|y1) is an erasure channel with parameter 0 ≤ α ≤ 1,

i.e., the transition probability matrix is

T ′ =

















1 − α 0

α α

0 1 − α

















(4.79)
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Thus, the channel is such that the “bad” receiver cannot receive all the bits that the

“good” receiver receives. More specifically, α proportion of the time, whether the bit

is a 0 or 1 is unrecognizable, and thus denoted as an erasure e.

It is easy to see that T ′ is input symmetric because the input symmetry group

G =























1 0

0 1









,









0 1

1 0























(4.80)

is transitive. Conditions 2-5 are satisfied because p(y1|x1, x2) is the same as in Ex-

ample 1 in Section 4.5.1.

4.5.3 Example 3

Let a, b, c, d, e, f be non-negative numbers such that a+b+c = 1 and d+e+f = 1/2.

We have |X1| = 4, |X2| = |Y1| = 3, and |Y2| = 6. The DDIC is described as

T ′ =









































d e f

e f d

d f e

f e d

e d f

f d e









































, T0 =

















a b c c

b c a b

c a b a

















, T1 =

















c a b a

a b c c

b c a b

















, T2 =

















b c a b

c a b a

a b c c

















(4.81)
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It is straightforward to see that T ′ is input symmetric because the input symmetry

group

G =































G0 =

















1 0 0

0 1 0

0 0 1

















, G1 =

















0 0 1

1 0 0

0 1 0

















, G2 =

















0 1 0

0 0 1

1 0 0

















,

G3 =

















1 0 0

0 0 1

0 1 0

















, G4 =

















0 1 0

1 0 0

0 0 1

















, G5 =

















0 0 1

0 1 0

1 0 0















































(4.82)

is transitive. Conditions 2-4 are satisfied because

T1 = G1T0, T2 = G2T0 (4.83)

η = −a log a−b log b − c log c (4.84)

∑

x2

p(y1|x1, x2) = a + b + c = 1 (4.85)

To show condition 5, we use Figure 4.1. The set on the first line of (4.6) in condition

5 is the convex combination of the following six points,

















a

b

c

















,

















a

c

b

















,

















c

a

b

















,

















b

a

c

















,

















b

c

a

















,

















c

b

a

















(4.86)
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resulting in all the points within the hexagon in Figure 4.1. The three sets

{

G

(

∑

x1

bx1px1,x̃2

)

:
∑

x1

bx1 = 1, bx1 ≥ 0, G = G0

}

=































µ1

















a

b

c

















+ µ2

















b

c

a










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correspond to the points in the three shaded areas, [abc, cba, bca, cab], [acb, abc, bca, cab],

and [bac, cab, abc, bca], respectively. Since the three shaded areas cover the entire
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Figure 4.1: Explanation of condition 5 in example 3.

hexagon, and {G0, G1, G2} ⊂ G, condition 5 is satisfied.

4.6 Chapter Summary and Conclusions

We provide a single-letter characterization for the capacity region of a class of DDICs,

which is more general than the class of DADICs studied by Benzel [5]. We show that

for the class of DDICs studied, encoder cooperation does not increase the capacity

region, and the best way to manage the interference is through random codebook

design and treating the signal for the “good” receiver as pure noise at the “bad”

receiver.

The results of this chapter have been published in [58] and submitted for publi-

cation in [52].
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Chapter 5

On the Capacity Region of the Gaussian Z-channel

In this chapter, we aim to find or bound the capacity region of a modified interference

channel, the Gaussian Z-channel; see Figure 1.2. In [83], an achievable region for the

Gaussian Z-channel is provided for the case of α > 1 + P1. In this chapter, we

focus on the model of the Gaussian Z-channel where the cross-over link is weak, more

specifically, α < 1. We derive an achievable region and show that this region is almost

equal to the capacity region by proving most of the converse. We also derive some

lower and upper bounds on the capacity region. Finally, for the special case of α = 1,

we determine the capacity region exactly.

5.1 System Model

The Gaussian Z-channel has two transmitters and two receivers as shown in Figure 1.2.

The received signals at receivers R1 and R2 are given as,

Y1 = X1 +
√

αX2 + Z1 (5.1)

Y2 = X2 + Z2 (5.2)
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where X1 and X2 are the signals transmitted by transmitters T1 and T2, and Z1, Z2

are independent Gaussian random variables with zero mean and unit variance and

are independent of everything else. The transmitters T1 and T2 are subject to power

constraints P1 and P2, respectively. The received signals in (5.1) and (5.2) can equiv-

alently be written as,

Y1 =
X1√

α
+ X2 +

Z1√
α

(5.3)

Y2 = X2 + Z2 (5.4)

since scaling does not affect the capacity region. For the rest of this chapter, we will

be working with the channel model in (5.3) and (5.4).

Three independent messages are transmitted in a Z-channel: the message from

transmitter T1 to receiver R1, denoted as W11, the message from transmitter T2

to receiver R1, denoted as W21, and the message from transmitter T2 to receiver

R2, denoted as W22. W11, W21 and W22 are uniformly distributed on the sets

{1, 2, · · · , 2nR11}, {1, 2, · · · , 2nR21}, and {1, 2, · · · , 2nR22}, respectively, and they are

independent of each other. The capacity region of the Z-channel is a three dimen-

sional volume, with axes R11, R21 and R22 corresponding to the rates of messages

W11, W21 and W22.

In this chapter, we mainly study the case of α < 1. Reference [83] studied the case

of α > 1 + P1. These two cases correspond to two different kinds of “degradedness”

conditions on the channels from transmitter T2 to both receivers. In the absence of

the link between transmitter T1 and receiver R1, the channels from transmitter T2

159



to both receivers constitute a traditional broadcast channel [22]. Given the existence

of the link from transmitter T1 to receiver R1, the condition, α > 1 + P1 assumed

in [83], corresponds to the case that the signal of transmitter T2 received at receiver

R2 is a “degraded” version of the same signal received at receiver R1 (for Gaussian

inputs). The condition, α < 1, that we assume in this chapter, corresponds to the

case that the signal of transmitter T2 received at receiver R1 is a “degraded” version

of the same signal at receiver R2. The “degradedness” condition we have here is

stronger than the one in [83], in that, it is valid for all distributions of X1.

In this chapter, we consider only deterministic encoders, which incur no loss in

performance [89]. All logarithms are defined with respect to base e.

5.2 Achievable Region

Let us define four quantities:

c11(β) =
1

2
log

(

1 +
P1

αβP2 + 1

)

(5.5)

c21(β) =
1

2
log

(

1 +
α(1 − β)P2

αβP2 + 1

)

(5.6)

c22(β) =
1

2
log (1 + βP2) (5.7)

c1(β) =
1

2
log

(

1 +
P1 + α(1 − β)P2

αβP2 + 1

)

(5.8)

The following theorem states an achievable region for the Gaussian Z-channel when

α < 1.
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Theorem 5.1 If α < 1, the following region is achievable in the Gaussian Z-channel:

R11 ≤ c11(β) (5.9)

R21 ≤ c21(β) (5.10)

R22 ≤ c22(β) (5.11)

R11 + R21 ≤ c1(β) (5.12)

for any 0 ≤ β ≤ 1.

A proof of Theorem 5.1 is given in Appendix 5.6.1.

We show an example of the achievable region in Figure 5.1, where P1 = 1, P2 = 5

and α = 0.5. The boundary of the capacity region is traced as we change β from 0

to 1, and interpret inequalities in (5.9)-(5.12) as equalities. Each fixed β determines

a pentagon on a plane parallel to the R11-R21 plane as defined by inequalities (5.9),

(5.10) and (5.12), and also a rate R22 as defined by inequality (5.11). Therefore, the

achievable region is a concatenation of pentagons of varying sizes along the R22 axis.

We have established the achievability of the region defined by (5.9)-(5.12). Next,

we will investigate the converse of this achievable region. We will show that, in most

places, the achievable region is actually tight, i.e., it is equal to the capacity region

of the channel.
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Figure 5.1: The achievable region.

5.3 The Converse

Theorem 5.2 The achievable rate triplets (R11, R21, R22) have to satisfy

R21 ≤c21(β) (5.13)

R22 ≤c22(β) (5.14)

R11 + R21 ≤c1(β) (5.15)

for some 0 ≤ β ≤ 1.

A proof of Theorem 5.2 is given in Appendix 5.6.2.

Referring back to Figure 5.1, this theorem states that, of the three surfaces that

make up the achievability region, two of them, the surface defined by TRSU and the

surface defined by USV , are actually tight.

The converse that is missing is the part that describes R11, when R21 is so small

that R11 + R21 < c1(β). This will be addressed in the discussion section next by
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developing some lower and upper bounds on the capacity region.

5.4 Discussion

As stated above, combining Theorems 5.1 and 5.2, we see that the achievable region

in Theorem 5.1 for R21, R22, R11 + R21 is in fact tight. The only unsureness comes

from R11.

As mentioned in [83], the Z-channel includes the multiple access channel, the

broadcast channel and the Z-interference channel as special cases. By setting β = 0

in the achievable region in Theorem 5.1, we get

R11 ≤
1

2
log(1 + P1) (5.16)

R21 ≤
1

2
log(1 + αP2) (5.17)

R11 + R21 ≤
1

2
log(1 + P1 + αP2) (5.18)

R22 =0 (5.19)

which is exactly the capacity region for the Gaussian multiple access channel with

link gains 1 and
√

α, and noise variance 1 [22]. By setting P1 = 0 in the achievable

region in Theorem 5.1, we get

R22 ≤
1

2
log(1 + βP2) (5.20)

R21 ≤
1

2
log

(

1 +
α(1 − β)P2

αβP2 + 1

)

(5.21)

R11 =0 (5.22)
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which is exactly the capacity region for the Gaussian broadcast channel with channel

gains 1 and
√

α, and noise variance 1 [22]. By setting R21 = 0 in the capacity

region of the Gaussian Z-channel, we should get the capacity region of the Gaussian

Z-interference channel [17], which is still an open problem.

5.4.1 Sum Capacity of the Gaussian Z-channel

Similar to the Z-interference channel case, the sum capacity of the Gaussian Z-channel

is known for α < 1 based on the achievable region of Theorem 5.1 and the converse

theorem, Theorem 5.2. The sum capacity is

max
0≤β≤1

c22(β) + c1(β) (5.23)

It can be easily verified that when β = 1, we attain the maximum and the sum

capacity for the Gaussian Z-channel when α < 1 is

1

2
log

(

(1 + P2)(1 + P1 + αP2)

1 + αP2

)

(5.24)

The sum capacity is attained at point U in Figure 5.1.

5.4.2 Lower and Upper Bounds for the Capacity Region

Next, we will derive lower and upper bounds for the capacity region for the portion

where a converse is missing. An obvious upper bound for the capacity region is
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obtained by combining

R11 ≤
1

2
log(1 + P1) (5.25)

with (5.10), (5.11) and (5.12) for any 0 ≤ β ≤ 1. In Figure 5.2, the achievable region

in Theorem 5.1 is shown in black and this upper bound is shown in yellow.

Two other achievable regions can be derived to close the gap between the lower

and upper bounds on the capacity region.

Larger Achievable Region 1 : It is clear that the following three points given as

triplets of (R11, R21, R22) are achievable.

Point A:

(

1

2
log (1 + P1) , 0,

1

2
log

(

1 +
αP2

P1 + 1

))

(5.26)

Point B:

(

1

2
log (1 + P1) ,

1

2
log

(

1 +
αP2

P1 + 1

)

, 0

)

(5.27)

Point C:

(

1

2
log

(

1 +
P1

αP2 + 1

)

, 0,
1

2
log (1 + P2)

)

(5.28)

These three points are shown in Figure 5.2. Joining the lines between points A and

B and points A and C, and the curve connecting points B and C, we can obtain a

plane which is achievable by time sharing.

Larger Achievable Region 2 : Using the technique of successive decoding [14], we

can split X2 into three parts:

X2 = X21 + Xcomm + Xpriv (5.29)
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Figure 5.2: All achievable regions and the upper bound in (5.25).

where X21 is a function of message W21 and Xcomm + Xpriv together carry message

W22. Let Xcomm and Xpriv be independent. Xcomm is intended to be decoded by both

receiver R1 and receiver R2, even though receiver R1 is not interested in decoding

any part of message W22. Xpriv is decoded by receiver R2 only. Receiver R1 treats

Xpriv as noise. Transmitter T2 uses power γ̄P2 for X21, power µγP2 for Xcomm, and

power µ̄γP2 for Xpriv, where γ̄ = 1 − γ, µ̄ = 1 − µ and γ and µ vary from 0 to 1.

Receiver R1 uses decoding order X21, then Xcomm and finally X1, and receiver R2

uses decoding order X21, then Xcomm and finally Xpriv. Let A1(µ, γ) be the set of

R11, R21 and R22 that satisfies the following inequalities:

R21 ≤
1

2
log

(

1 +
γ̄P2

P1

α
+ 1

α
+ γP2

)

(5.30)

Rcomm ≤1

2
log

(

1 +
µγP2

P1

α
+ 1

α
+ µ̄γP2

)

(5.31)

R11 ≤
1

2
log

(

1 +
P1

α
1
α

+ µ̄γP2

)

(5.32)
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Rpriv ≤1

2
log (1 + µ̄γP2) (5.33)

R22 =Rcomm + Rpriv (5.34)

Receiver R1 uses decoding order Xcomm, then X21 and finally X1, and receiver R2

uses decoding order Xcomm, then X21 and finally Xpriv. Let A2(µ, γ) be the set of

R11, R21 and R22 that satisfies the following inequalities:

Rcomm ≤1

2
log

(

1 +
µγP2

P1

α
+ 1

α
+ µ̄γP2 + γ̄P2

)

(5.35)

R21 ≤
1

2
log

(

1 +
γ̄P2

P1

α
+ 1

α
+ µ̄γP2

)

(5.36)

R11 ≤
1

2
log

(

1 +
P1

α
1
α

+ µ̄γP2

)

(5.37)

Rpriv ≤1

2
log (1 + µ̄γP2) (5.38)

R22 =Rcomm + Rpriv (5.39)

Then, an achievable region for the part where the converse is missing is the convex

hull of

(

⋃

0≤µ,γ≤1

A1(µ, γ)

)

⋃

(

⋃

0≤µ,γ≤1

A2(µ, γ)

)

(5.40)

Figure 5.2 shows Larger Achievable Region 2 and the lines AB and AC defined in

Larger Achievable Region 1 in blue. As we can see, there is still a gap between the

lower and upper bounds, and additional research is needed to find the exact capacity

region. We would like to mention here that using a coding scheme similar to [63], we
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would get an even larger achievable region than Larger Achievable Region 2.

5.4.3 The Capacity Region when α = 1

Finally, it is worth noting that, similar to [17], the Gaussian Z-channel with α ≤ 1 has

the same capacity region as the channel in Figure 5.3 where Z and Z2 are zero-mean

Gaussian random variables with variance 1
α
− 1 and 1, respectively. Even though

there are three messages in the Gaussian Z-channel, as compared to two messages

in the Gaussian Z-interference channel, the proof in [17, Appendix A] still follows

straightforwardly. Noting that the two channels have the same capacity is useful,

since the capacity region of the channel in Figure 5.3 might be easier to determine

in some cases. For example, for α = 1, Y1 and Y2 are statistically equivalent, thus

both receiver R1 and receiver R2 are able to decode all three messages, W11, W12 and

W22, similar to a multiple access channel. Thus, the capacity region of the Gaussian

Z-channel with α = 1 is

R11 ≤
1

2
log(1 + P1) (5.41)

R21 + R22 ≤
1

2
log(1 + P2) (5.42)

R11 + R21 + R22 ≤
1

2
log(1 + P1 + P2) (5.43)
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5.5 Chapter Summary and Conclusions

In this chapter, we provide an achievable region for the recently proposed Gaussian

Z-channel when α < 1. We are able to prove most of the converse for this achievable

region. We also provide an upper bound and two larger achievable regions to char-

acterize the capacity region better. We determine the exact capacity region when

α = 1.

The results of this chapter have been published in [56].

5.6 Appendix

5.6.1 Proof of Theorem 5.1

For simplicity, we will not present probability of error calculations, but rather, we

will describe a scheme the transmitters and receivers may use to achieve the region

given in (5.9) to (5.12).

Fix a β between 0 and 1, it suffices to show that the two rate triplets: (R11, R21, R22) =

(c11(β), c1(β)−c11(β), c22(β)) and (R11, R21, R22) = (c1(β)−c21(β), c21(β), c22(β)) are

achievable. This is because, if these two triplets are achievable, then all other points
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of the region can be achieved by the usual time-sharing technique.

First, we will show that (R11, R21, R22) = (c11(β), c1(β) − c11(β), c22(β)) can be

achieved. Transmitter T2 dedicates βP2 power for transmitting message W22 using

codebook C22, and (1 − β)P2 power for transmitting message W21 using codebook

C21. It transmits the sum of the two codewords. Transmitter T1 uses all its power

P1 for transmitting message W11 using codebook C11.

Receiver R1 looks at codebook C21 only, treating everything else as noise, and

therefore obtains a rate of

R21 =
1

2
log

(

1 +
(1 − β)P2

P1

α
+ βP2 + 1

α

)

= c1(β) − c11(β) (5.44)

Then, it subtracts the effect of W21 off, looks at codebook C11, treating everything

else as noise, and obtains a rate of

R11 =
1

2
log

(

1 +
P1

α

βP2 + 1
α

)

= c11(β) (5.45)

Together, this is a rate of R11 + R21 = c1(β).

Receiver R2, looks at codebook C21 only, treating everything else as noise, since

R21 =
1

2
log

(

1 +
(1 − β)P2

P1

α
+ βP2 + 1

α

)

(5.46)

≤ 1

2
log

(

1 +
(1 − β)P2

βP2 + 1

)

(5.47)

it can decode W21 without error. Subtracting the effect of W21 off, looking at codebook
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C22, receiver R2 gets a rate of

R22 =
1

2
log(1 + βP2) = c22(β) (5.48)

Thus, rate triplet (c11(β), c1(β) − c11(β), c22(β)) is achieved.

When both transmitters and receiver R2 operate in exactly the same way as

explained above, and receiver R1 performs the successive decoding in the reverse

order (i.e., it decodes W11 first and then W21), the rate triplet (R11, R21, R22) =

(c1(β) − c21(β), c21(β), c22(β)) is achieved.

5.6.2 Proof of Theorem 5.2

We will prove this by using ideas similar to El Gamal’s alternative proof [27] to

Bergmans’ proof [8].

Since there is no cooperation between the two receivers, the capacity region of

this channel depends on the joint distribution p(y1, y2|x1, x2) only through the two

marginals p(y1|x1, x2) and p(y2|x1, x2) [17]. Thus, we will concentrate on the following

channel which will yield the same capacity region as our original channel (5.3)-(5.4),

Y1 =
X1√

α
+ Y2 + Z̃ (5.49)

Y2 = X2 + Z2 (5.50)

where Z̃ and Z2 are Gaussian random variables with zero mean and variance 1
α
− 1

and 1, respectively. Let rate triplets (R11, R21, R22) be achievable. Then by Fano’s
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inequality [22], there exists an ǫn such that

H(W22|Y n
2 ) ≤ nǫn (5.51)

H(W21, W11|Y n
1 ) ≤ nǫn (5.52)

and as n → ∞, ǫn → 0.

We develop a series of bounds on R22,

nR22 = H(W22) (5.53)

= H(W22|Y n
2 ) + I(W22; Y

n
2 ) (5.54)

≤ H(W22|Y n
2 ) + I(W22; Y

n
2 |W21) (5.55)

= H(W22|Y n
2 ) + h(Y n

2 |W21) − h(Y n
2 |W21, W22) (5.56)

= H(W22|Y n
2 ) + h(Y n

2 |W21) − h(Zn
2 ) (5.57)

≤ nǫn + h(Y n
2 |W21) −

n

2
log(2πe) (5.58)

where (5.55) is obtained from (5.54) using the independence of messages W21 and

W22, (5.57) is obtained from (5.56) because we consider deterministic encoders, thus

given W21 and W22, we know Xn
2 , and therefore the only remaining randomness is

in Zn
2 . Finally, (5.58) follows from (5.51) and the fact that Zn

2 is an i.i.d. Gaussian

sequence with unit variance.
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Next, we develop a bound for R21,

nR21 =H(W21) (5.59)

=H(W21|Y n
1 ) + I(W21; Y

n
1 ) (5.60)

≤H(W11, W21|Y n
1 ) + I(W21; Y

n
1 |W11) (5.61)

=H(W11, W21|Y n
1 ) + h(Y n

1 |W11) − h(Y n
1 |W11, W21) (5.62)

≤nǫn + h(Y n
1 |W11) − h(Y n

1 |W11, W21) (5.63)

≤nǫn +
n

2
log(2πe)

(

P2 +
1

α

)

− h(Y n
1 |W11, W21) (5.64)

Finally, we develop a bound for R11 + R21,

n(R11 + R21) =H(W11, W21) (5.65)

=H(W11, W21|Y n
1 ) + I(W11, W21; Y

n
1 ) (5.66)

=H(W11, W21|Y n
1 ) + h(Y n

1 )

− h(Y n
1 |W11, W21) (5.67)

≤nǫn + h(Y n
1 ) − h(Y n

1 |W11, W21) (5.68)

≤nǫn +
n

2
log(2πe)

(

P1

α
+ P2 +

1

α

)

− h(Y n
1 |W11, W21) (5.69)

where (5.64) and (5.69) follow from [26, Lemma 2].
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Consider the following series of inequalities,

n

2
log(2πe)

(

1

α

)

=h(Y n
1 |W11, W21, W22) (5.70)

≤h(Y n
1 |W11, W21) (5.71)

≤h(Y n
1 |W11) (5.72)

≤n

2
log(2πe)

(

P2 +
1

α

)

(5.73)

Thus, there exists a β ∈ [0, 1], such that

h(Y n
1 |W11, W21) =

n

2
log(2πe)

(

βP2 +
1

α

)

(5.74)

From (5.64), (5.69) and (5.74), we see that there exists a β ∈ [0, 1] such that

nR21 ≤ nǫn + nc21(β) (5.75)

n(R11 + R21) ≤ nǫn + nc1(β) (5.76)

Finally, for R22, we argue as follows,

h(Y n
1 |W11, W21) = h(

Xn
1√
α

+ Y n
2 + Z̃n|W11, W21) (5.77)

= h(Y n
2 + Z̃n|W11, W21) (5.78)

= h(Y n
2 + Z̃n|W21) (5.79)

where (5.78) follows because Xn
1 is a deterministic function of W11, and (5.79) follows
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because Y n
2 and Z̃n are independent of W11.

Now, let us consider h(Y n
2 + Z̃n|W21). We know that

h(Z̃n|W21) = h(Z̃n) =
n

2
log(2πe)

(

1

α
− 1

)

(5.80)

Applying entropy power inequality [8, Lemma II], we have

h(Y n
2 + Z̃n|W21) ≥

n

2
log(2πe)

(

e
2
n

h(Y n
2 |W21)

2πe
+

1

α
− 1

)

(5.81)

Combining (5.81) with (5.74) and (5.79), we have

h(Y n
2 |W21) ≤

n

2
log(2πe)(βP2 + 1) (5.82)

Thus, from (5.58), we have

nR22 ≤ nǫn + c22(β) (5.83)

Since ǫn → 0 as n → ∞, using (5.75), (5.76) and (5.83), we obtain the inequalites

(5.13), (5.14) and (5.15), proving the theorem.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Wireless communications has gained great popularity over the past decades. The

wireless medium has many unique characteristics, which create new challenges as

well as new opportunities in the communication problem: interference, cooperation,

correlation, diversity and feedback.

In this thesis we have addressed, from an information-theoretic point of view, some

aspects of the fundamental issues arising in entirely wireless networks: correlation,

cooperation and interference. The results in the thesis owe to the synthesis of several

methods from information theory, estimation and detection theory, optimization the-

ory, matrix analysis, probability and statistics. The main contributions of this thesis

are as follows.

Capacity region and optimum power allocation for fading Gaussian multi-

ple access channel with common data

Correlated data is an inherent part of wireless networks. Even in the simple mul-

tiple access channel, the optimum transmission of arbitrarily correlated data is an
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extremely difficult and open problem. Thus, we investigated correlated data by con-

sidering a simplified model for the correlation, which is called common data. We first

investigated the system where no fading is present and provided an explicit charac-

terization for the capacity region and developed a simpler encoding/decoding scheme,

that is specially tailored for the Gaussian channel. Next, we studied the system with

fading, and obtained a characterization of the ergodic capacity region. We also char-

acterized the optimum power allocation schemes that achieve the rate tuples on the

boundary of the capacity region. In addition, we provided an iterative method for

the numerical computation of the ergodic capacity region, and the optimum power

control strategies.

This thesis provides a first look at the effect of fading on correlated data, and

our results justify the intuition that the common message enjoys the beamforming

gain, and is only transmitted when channels from both transmitters to the receiver

are reasonably good. Furthermore, the received power of the common message comes

from both transmitters. In fact, the amount of power each transmitter spends for the

common message is proportional to its channel gain at that time instant.

Scaling laws for the Gaussian sensor networks and the order optimality of

separation

In practical situations, correlated data manifests itself in more general forms.

One practically interesting application is the sensor networks. The sensor network

is a system where both correlation and cooperation play critical roles. This thesis

studied the effects of correlation and cooperation in the many-to-one sensor network

by characterizing the order optimal performance. Under some general conditions,
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we determined an order-optimal achievability scheme, and identified the minimum

achievable expected distortion at the collector node as a function of the number

of nodes and the sum power constraint. Our order-optimal achievability scheme is

separation-based. In multi-user information theory, generally speaking, separation

principle does not hold. However, in our case, we found a scheme which is separation

based, and is order-optimal.

The results of this work quantify the type of performance we may expect from

sensor networks and provide guidelines for the design of sensor networks. The results

also illustrate how we may exploit correlation in sensor data and cooperate among

sensor nodes in an order-optimal fashion.

Capacity region of a class of discrete degraded interference channels

Interference is unavoidable in wireless networks with multiple source-destination

pairs. Since all transmissions share the same wireless medium, the desired information

co-exists with undesired information in the received signal. The capacity region of

the interference channel is open except for some special cases. We provided sufficient

conditions on degraded interference channels such that treating interference as noise

is optimal. We provided a single-letter characterization for the capacity region of

a class of degraded interference channels. The class includes the additive degraded

interference channels studied by Benzel [5]. We showed that for the class of degraded

interference channels studied, encoder cooperation does not increase the capacity

region, and therefore, the capacity region of the class of degraded interference channels

is the same as the capacity region of the corresponding degraded broadcast channel,

which is known.
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In this thesis, not only have we found the capacity region of a class of discrete

degraded interference channels which was previously unknown, but we have also char-

acterized conditions under which the optimal treatment of interference is treating it as

noise. When looking for new achievability schemes that perform better than treating

interference as noise, based on our results, one should focus on degraded interference

channels that do not satisfy the conditions characterized in this thesis.

On the Gaussian Z-channel

Traditional interference channels are simple models for four isolated nodes; and

the need to modify the interference channel, so that it represents a stage of a multi-

hop wireless network, is clear. We followed the modified interference channel model

proposed in [83], and studied the Gaussian Z-channel, when the cross-over link is

weak. We derived an achievable region and showed that this region is almost equal to

the capacity region by proving most of the converse. We also derived some additional

lower and upper bounds on the capacity region.

This result improves our understanding of interference management in cases where

each transmitter, in addition to the message intended for its own receiver, has mes-

sages for other receivers in the network.

6.2 Future Work

Despite the efforts made in this thesis, and recent progress made by many researchers

in this field, the understanding of the fundamental performance limits of entirely

wireless networks is far from satisfactory. There is much room for future work. We
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list a few problems that the author would like to pursue in the future.

Gaussian sensor networks

We have characterized the order optimal performance when the eigenvalues of the

underlying random process have a polynomial decrease rate and when the sum power

constraint is not too small. In these cases, separation is order-optimal, i.e., it is order

optimal to transmit in two stages, where in the first stage we compress the data to

get rid of the correlation, and in the second stage we let sensors send the compressed

and almost independent data using cooperation.

When one or both of these conditions are not satisfied, it is expected that non-

separation based achievability schemes perform order better than separation-based

schemes, i.e., compressing data first may be suboptimal, as correlation may facilitate

cooperation in the second stage. It is left to future work that we investigate scenarios

not covered in this thesis, and propose non-separation based schemes with better

or even order optimal performance. The two-user non-cooperative multiple access

channel with correlated Gaussian sources studied in [12, 46, 47] may be of help.

Correlation, cooperation and feedback

Through the study of the Gaussian sensor network in this thesis, we have realized

that even though correlation, cooperation and feedback have mostly been studied sep-

arately, there are some connections between these three components. In a multiuser

scenario, the main benefit brought by cooperation and feedback is the increase in cor-

relation in the channel inputs. Therefore, it is preferable to understand these three

phenomena within a unified framework. Interesting questions arise such as how much

additional correlation can be obtained through cooperation and feedback; and what
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amount of underlying correlation renders cooperation and/or feedback links useless.

As a part of our future work, we may conduct our study in the context of a

two-user multiple access channel with cooperation, correlation and/or feedback. For

example, we may study a multiple access channel with correlated data and feedback to

understand how much more correlation can be gained from the feedback link. We may

also study a multiple access channel with correlation and cooperation to understand

the difference in performance between using correlation alone, cooperation alone and

both correlation and cooperation. Eventually we may study a multiple access channel

with all these three components and seek achievability and converse results in this

general problem.

Interference management

The fundamental question on how to manage interference has been partially an-

swered in this thesis, that is, we established the conditions on channels, under which

the most efficient method of managing interference is to treat it as pure noise. Our

future research will target the complete answer to this fundamental question. To this

end, we will start by studying the simple degraded binary non-symmetric interference

channel and investigate the structure of codes that enable better interference man-

agement than treating interference as pure noise. The results obtained may enrich

the methods of interference management in wireless networks.
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