Safe and Flexible Memory Management in Cyclone

Michael Hicks Greg Morrisett
Department of Computer Science and UMIACS Department of Computer Science
University of Maryland, College Park Cornell University
Dan Grossman Trevor Jim

Department of Computer Science AT&T Labs Research
Cornell University

July 18, 2003

Abstract one can write library routines accepting pointers into any
part of memory, including the stack, a lexical region, or

Cyclone is a type-safe programming language intendége heap.

for applications requiring control over memory manage- giack allocation is an important and pervasive idiom

ment. Our previous work on Cyclone included supportfﬂg C programs, providing efficient allocation, access,

stack allocation, lexical region allocation, and a garbaggﬁd deallocation. Region allocation is another impor-
cqllecteq heap. We achieved.safety (i.e., prevented daf); memory-management idiom, due to the efficiency of
gling pointers) through a region-based type-and-effegfScheq deallocation of objects. It is used in compilers
system. This paper describes some new MemoLyjp 55| CC [18] and servers such as Apache [4]. How-
management r_neche_mlsms that we have integrated into g\)’ér, Cyclone’s type system previously supported only re-
clone: dynamic regions, unique pointers, and referenggs s that followed a strict last-in-first-out (LIFO) disci-

counted objects. Our experience shows that these Ngwe The | IFO restriction keeps type checking simple
mechanisms are well suited for the timely recovery of o hd naturally provides a form of region subtyping that is

Je_cts in S|tugt|ons where it is awkward _to use lexical r?r'nportant for writing reusable code (see Section 2).
gions. Crucially, programmers can write reusable func-

tions without unnecessarily restricting callers’ choices Unfortunately, LIFO. behavior hgs w,elljkn.ownlllmlta—
among the variety of memory-management options. §gns. A key problem is that an obj_ects lifetime is flxe(_i
achieve this goal, Cyclone employs a combination when itis allocated, so subsequent input and computation
polymorphism and scoped constructs that temporarily f&" neither shorten nor extend the lifetime. Furthermore,

us treat objects as if they were allocated in a lexical rrée_gions are efficient for large collections of objects that
gion. need to be deallocated together, but they are less so for

small collections. In particular, the costs for creating and
deallocating a region make regions expensive for single

1 Introduction objects. Until now, garbage collection has been our best
solution in such cases.

Cyclone is a type-safe, C-like language intended for use inThe work described here augments Cyclone with ad-
systems programs where control is needed over low-leddional type-safe memory-management options to help
details such as data representations and resource manaiggrammers with these situations. The new options, de-
ment. In previous work [22], we described a region-basedribed in Sections 3-5, include (a) dynamic regions, (b)
type system for Cyclone, based on the work of Tofte amthique pointers, and (c) reference-counted objebtg-
Talpin [39], that gives programmers type-safe support foamic regiongprovide support for region deallocation at
stack allocation and lexically-scoped regions. We alatmost any program point and thus can be used to avoid
showed how these manual memory-management medha- LIFO constraints of lexical regions. However, this
nisms could be safely combined with heap allocation afidxibility incurs some run-time overhead and possible ex-
a (conservative) garbage collector to give programmesesptions.Unique pointersare based on linear (more prop-
a range of memory-management options. One attractardy, affine) type systems and provide lightweight memory
feature of the design is that all data objects are treated@snagement for individual objects. In particular, a unique
if they live in some region. Using regigmolymorphism pointer’s object can be deallocated at any program point.

However, unique pointers cannot be freely copied, andvoid foo(int x) {
there are restrictions on how they can be accessed when if (x)

placed in a shared object. Finally, pointersreference- L:{ int y = 3;
counted objectare treated similarly to unique pointers bar (&y) ;
except that copies of the pointer are allowed at the price }

of maintaining a reference count. When all copies of the}

pointer are destroyed, the object is deallocated.))
&ptermg the block labeled creates a region named.

In our experience, it is extremely useful to have su 4 allocat for the local variableTh .
a large set of memory-management options so that p?@— allocates space for the local variable The region
ipeallocated after the call tear. If the programmer

rammers can choose a strategy that works best for tHgif .
g 9y its the label on a block, the compiler generates a fresh

application. Section 6 demonstrates how we tuned iy | Stack reqi I ial f lexical
performance of two systems applications: an event-ba: @ge!. stackregions are really a Special case ot lexical re-

web server and MediaNet [29], an overlay network f ons t_hat admi'Fs a faster implementation by disallowing
streaming data. In both cases we were able to keep mé&H22 M allogauon. . ,
ory consumption very low. For MediaNet, using unique e?<|cal regions also have creation and deallocation de-
and reference-counted pointers increased throughputt mmeo_l by scope, bUt a handle lets the pr_ogr’am_ aII_ocate
up to 42% compared to relying entirely on conservati ects_ Into _thg_reglon throughout the region’s I|fet|m_e.
garbage collection. A Ipcatlpn _pnmmves take har_1d|es. SO programs dete_rmlne
. . object lifetimes at an allocation site. For example, in the
However, there is a danger that so many different ORinction:
tions will overly complicate the language and make it im-
possible to write reusable libraries. Thus, our most im-void baz() {
portant contribution is a design that focuses on uniformity { region<‘r> h;
and code reuse. For example, dynamic regions reuse the int *x = rmalloc(h,sizeof (int));
lexical region machinery, and reference-counts are built *x = 3;
on top of unique pointers. Furthermore, we provide con- int *y = baf(h,x);
structs calledopen and alias that support controlled }
“pinning” for dynamic regions and controlled aliasing for 3
unique pointers respectively. Crucially, these constructs
let programmers write generic functions that can operat€ create a fresh region nameédwith an allocation han-
over lexical-region, dynamic-region, unique or referencéle h. The handle can be passedrigalloc to allocate
counted pointers. storage. It can also be passed to a user-defined function,
such asvaf, so a callee can allocate data in the region,
and return results that might point into it. In our example,
. . all data placed im’s region is deallocated after the call to
2 Lexical Reglons baf. The ability to pass handles as first-class objects lets
us allocate a dynamically-determined number of objects
We begin by reviewing our previous work on region-baséd any caller’s region.
memory management for Cyclone [22]. We then describeThe primary goal of the type system is to ensure pro-
important limitations of this work. grams never dereference dangling pointers. To do so, we
track the set of regions that are live at each program point,
and augment pointer types with tihegion nameof the
2.1 Review region into which the value points. Thus, an attempt to
dereference a pointer into a region is allowed only if the
All memory objects in Cyclone are placed in a logicakgion is still live. The lexical scoping discipline makes
container called a region The previous version of Cycloiteeasy to track the set of live regions statically because
had three basic kinds of regions: There is beap region deallocation happens only at structured program points.
(“H) with global scope that conceptually lives forever. Ob- Region names are type-level variables that describe re-
jects allocated in the heap cannot be reclaimed except withns instead of types. For exampl€] is the region
an optional conservative garbage collector. name for the heap, ancht *‘H is a heap pointer. Lex-
Stack regioncorrespond to local-declaration blockgcal regions have names that are in scope for the corre-
Entering a block creates a stack region and allocates spseending code block. Handles have types of the form
in that region for the local variables. When control exits 5
. . ur previous paper [22] referred to lexical regionsdgmamic re-
the block, the stack region’s objects are deallocated. FQjhsdue to their dynamically-determined sizes; in this paper we use the
example, in the function: latter term for regions with dynamically-determined lifetimes.

region_t<‘r>, where‘r is the name of the region intobe live across the call. By default, Cyclone assumes all
which objects are placed when the handle is used for edgion parameters are live across the call. In practice, this
location. For instance, i has typeregion_t<‘r>, then default works well and thus programmers almost never
rmalloc(h,sizeof (int)) returns a pointer of typent write explicit effects.
*‘r. We use intraprocedural type inference and well- Finally, we have a natural notion of subtyping: If the
chosen defaults to avoid writing many region annotationggion named r1 outlivesthe region namedr2, then
for example, the region annotations »ny, andh are in- we can coerce a value of type*‘r1 to typer *‘r2 be-
ferred in the examples above. cause the latter type allows access at strictly fewer pro-

Functions and type constructors may be parameterizgdm points. For instance, the following code is well-
by type and region variables. For example, the followirfgrmed:
length function accepts lists with any element type and
with the list spine allocated in any (still-live) region. void h(int *‘rl x, int *‘r2 y) {

L:{ int *‘L z = (rand()) 7 x : y;
struct List<‘a, ‘r> {

‘a hd; 3
struct List<‘a, ‘r> *‘r tl; }
};
int length(struct List<‘a, ‘r>*‘r 1lst) { Note thatz is assigned either &1 or ‘r2 pointer. Since
int i=0; both regions must be live across the call, they naturally
for(; 1lst != NULL; lst = lst->tl) ++i; outlive ‘L, so we can safely promoteand y to‘L pointer
return i; types. If regions did not have structured scope, such sub-
} typing would not arise naturally. We remark that the type

) .) system supportdeepsubtyping along read-only pointers.
For safety, a pointer type is considered well form us, ifr, is a subtype of» and ‘r1 outlives ‘r2, then
only when its region name is in scope. For example, COM% ¢r1 is a subtype o, const *‘r2.

sider a function that tries to return a dangling pointer to aFor this and several other reasons, lexical regions lead

local variable: to convenient programming and a simple type system.
Perhaps the most compelling advantage is that the sys-
tem is completely static, so there is no need for run-time
checks.

int *‘L bad() {
L: { int x = 3;
return &x;

}
¥ 2.2 Limitations of Lexical Regions

Beca}iw i(s declared in_ block., the addres§ ok hgs Unfortunately, lexical regions provide insufficient con-
type int *‘L. Our scoping rules{ state thalL is not in | gver memory lifetimes. First, the region-deallocation
scope outside the block, smt ‘L is not well-formed i is determined at region-allocation time, so programs

as areturn type, and Cyclone would flag this as an errotannot choose to deallocate based on computation follow-
However, Cyclone supporesistential typeswhich can g region allocation. For instance, we cannot decide to

hide a region in a function’s return type. For example, o€ 5jiocate a region based on a user input.

can write something similar to: Second, regions are often forced to live longer than nec-
(3¢r. int *‘r) bad() { essary. For example, a callee cannot deallocate a region
L: { int x = 3; allocated by a caller, even if the caller will not later ac-
return pack(‘L,&x) as 3°r. int *‘r; cess the region. Conversely, callees cannot give callers
} freshly allocated regions, which forces callers to allocate
} regions earlier than necessary. This restriction makes im-
portant idioms impossible, such as the copying collector
(The actual syntax for existentials is shown in Section &f Wang and Appel [44]. In general, any iterative pro-
The result type is well-formed and allows a danglingess that maintains state across iterations is forced to leak
pointer. Thus, in general, the set of live regions is a subsa¢mory; the state must reside in a region allocated out-
of those that are in scope. To prevent access to a deagiole of the loop. In other words, there is no support for
cated region, the type system keeps track of which regign¥ail-call” that deallocates a region before performing a
are live at each program point. An intraprocedural anaiall.
ysis is extended across function boundaries by requiringThird, objects often live longer than necessary because
an expliciteffectthat records the set of regions that mugtinters allocated before a region exists cannot be used to

access an object in the region. In particular, global vavishether the region has been deallocated, as well as a ref-
ables can access only heap-allocated data. erence to the region itself. This state must persist beyond

Fourth, manipulating nonstack regions takes more tirttee lifetime of the region because it may be consulted af-
and space than usingalloc/free for an individual ob- ter the region has been deallocated. In this example, the
ject. For regions holding many objects, amortization ovestate is stored in the heap regidni), but, in general, the
comes this cost. But for many programs, individual olstate can be allocated anywhere. The key can be used only
jects have distinct points of “last use” so aggregating lifeshen the region in which it resides is known to be live.
times retains excessive memory.

In other implementations and designs, these limitationsin the example abover is a region name in scope
have been noted and partially addressed. For instariBefoo. However, it isnot assumed to be live upon en-
the ML Kit compiler [38] includes a speciakset prim- try to the function—by default, regions occurring within
itive that is used to deallocate regions early, but its usedgnregion_t are not assumed live (though an explicit ef-
an internal optimization whose soundness is not captuifédt can indicate otherwise). Thus, any attempt to derefer-
by the type system. The Capability Calculus [41] sugnce a pointer intdr will be rejected by the type checker.
ports deallocation at any program point, but requires mu€he open construct allows access to a dynamic region
more elaborate effects and region aliasing informatiogiven a key. In particularregion h = open(k); S
Other approaches are discussed in Section 7, but no stdes a keyk, checks that the region has not been deal-
tion seems to provide the degree of control we have fouleg¢ated, and if so, binds a handle for the regiom t\c-
necessary. Thus, we have adapted several mechanisngess to the region is granted throughout the scope of the
dynamic regions, unique pointers, and reference-coungéatement. Thus, in the scope of an open, one can freely
objects—each with its own strengths and weaknessesaigcate, dereference and pass to functions pointers into
provide programmers a better set of tradeoffs. The fdhe region, exactly as though it were a lexical region.

lowing sections discuss these new mechanisms. o
The primitive free_dynregion takes a key and re-

. . claims the storage of the associated region, updating the
3 Dynamic Regions key's state to record that the region is no longer accessi-
ble. Thus, subsequent attemptsoigen will result in an

Our first addition to Cyclone is a form afynamic regions exception. If the region ispen or it has already been
inspired by the work of Hawblitzel and von Eiken [25]deallocated, thefiree_dynregion fails.

Dynamic regions, like lexical regions, are containers that
allow allocation of individual objects, but only dealloca- Adding dynamic regions to Cyclone was extremely
tion of the entire container. Unlike a lexical region, a dysimple, as we already had an effect system to keep track of
namic region can be explicitly deallocated at (almost) anggions that can be safely accessed. Indeed, we can think
program point. of the lexical-region declaratiaregion<‘r> h; Sasan

To ensure that a dynamic region is not accessed afbbreviation for creating a dynamic region, opening it for
it has been deallocated, we associate extra state withtthee scope ofS, and callingfree_dynregion upon exit
region that must be checked at runtime before granting fom S. The user is never given access to the key for
cess to the region. If the region has been deallocated, tlreso.S cannot deallocate the region, but it can be safely
access check fails by throwing an exception. This checldsallocated outside .
analogous to a checked type cast to a live, lexical region.

To avoid checking the state each time a dynamic regionWWhen coupled with existential types, dynamic regions
is accessed, we provide a lexically scopgén construct, are fully first class: they can be placed in data structures
as this example demonstrates: (e.g., a hash table) and deallocated at will (e.g., when re-

void foo(dynregion_t<‘r, ‘H> k) { moving an item from the table).

int *‘r x;
{ region h = open(k); //gives access to
x = rmalloc(h, sizeof(int));

. Dynamic regions have some drawbacks. First, unlike
fexical regions, there is a potential for an exception to be
thrown when opening or freeing a dynamic region. Sec-

¥x = 42; ond, the key state for a dynamic region (12 bytes in our

bar (h,x); current implementation) has to be stored somewhere and
¥ can become a source of leaks. For instance, we can code
free_dynregion(k); //destroys ‘r

an iterative algorithm, such as Wang and Appel’s copying

¥ collector, but we end up leaking a key for each collection.
The function takes a parametethat is akeyfor the dy- A unique pointer to the key can prevent this leak and is an
namic region‘r. The key contains the state indicatingmportant synergy of our mechanisms.

4 Unique Pointers 4.1 Simple Unique Pointers

Lexical and dynamic regions are not efficient memo%‘énique pointer can be created by callinglloc and
management mechanisms for small sets of objects, or #§stroyed by callingree. To distinguish unique point-
sets of objects that need to be deallocated at widely vays from pointers into a lexical or dynamic region, we use
ing times. Cyclone’sinique pointeraddress these situatyPes of the formr x“U. Here, ‘U is a distinguished re-
tions by providing for the safe and efficient deallocatiofon name that indicates uniqueness. Semantically, we
of individual objects usingree. think of 7 * ‘U as an abbreviation for(r. *‘r) where

In the presence of aliasef;ee can lead to unsafe pro-We interpret the binding ‘r as meaning “there exists a
grams. In particular, callingree (x) may deallocate an fresh region‘r.” In other words, each unique pointer is
object referred to by another variabje introducing a conceptually a reference into a region that contains a sin-
dangling pointer. By limiting use ofree to unique— g!e object, and that region is distinct from any other re-
unaliased—pointers, we avoid the problem. gion.

Like a dynamic region, the object that a unique pointer AS a simple example, we can write:
points to can be deallocated at will. Unlike a dynamic re-)]) .
gion, there is no run-time state to ensure that subsequerftt™#ct point { int x; int y; } *U p;
accesses are prevented. Instead, we rely on a conventionBl = malloc(sizeof (struct point));
flow analysis to ensure that an object is never accessel % = 13
once it has been deallocated. The analysis is greatly simP™>Y = 25
plified by disallowing copies of unique pointers. More -
properly, at any program point, there is at most one (us-fr¢¢(P);

able) copy of a value assigned a unique-pointer type'T'Itlis code declarep to be a unique pointer to a point,

that p0|r_1ter’s objectis freed, then_ we need notworry aboér”ocates storage for the point, initializes its components,
preventing access through an alias.

Theid £ USi : inters is derived f i and ultimately frees it.
€ |dea of using unique pointers IS derived from inear 5, intraprocedural, flow-sensitive, path-insensitive

and affine type systems, and has been suggested in %ySiS guarantees that variables and components of data

other seftings (see Section 7). However, we found th fuctures araefinedbefore they are used. The analy-

conventional approach to linearity was far 00 restrlctlv_gis is a largely straightforward abstract interpretation that

"} pz_;\rtlcll_JIar, a (E)(_)nvtenfuor?sl Imeal_r type sg/_stetm pILOhtIE I[‘)sperates over a heap abstraction that includes must points-
placing finear objecls Inside noniinear objects. FUMNgE .0 mation, (The details of the analysis are described

more, a convennongl Ilqegr type sy§tem forces the “SeH rossman’s dissertation [20].) The important point for
follow awkward coding idioms. For instance, to calcula is paper is that a unique pointer can becaroesumed

the length of a list, the list must be torn apart and reco ., by passing it taree), in which case the analysis

structed. Finally, the introduction of linearity complicate, ignals an error if there is a subsequent attempt to use it.

type abstraction (i.e., polymorphism) since we must d'\?\?e chose an intraprocedural analysis to ensure that type-

t'T‘Q“'Sh Ilne:_ir and nonhqear .types. In turn, it becom%ﬁecking remains modular, and a path-insensitive analysis
difficult to write reusable libraries. o

. . . to ensure scalability.

Our design extends conventional approaches to Imear:l_o simplify the analysis further, we ensure that there is

ity in three key respects: at most one usable copy of a unique pointer value by treat-

1. We allow unique pointers to be embedded withiRg copies as destructive. For instancepifs a unique

shared objects, and provide an atomic swap opepQ.jntel’ variable, and we assign its valuegtadhen in the
tor that lets them be accessed safely. continuation,p is considered to be consumed. This en-
sures that if we caltree onq, the deallocated object can-
2. We provide support for temporarily treating a collegiot be accessed through the aljasAt run-time, we do
tion of unique pointers as if they were pointers into got actually destroy the referencegnReading through a
lexical region. Hence we can reuse code for “readqfinique pointer (e.g#p or p->x) does not consume fit.
functions (e.qg., calculating a list’s length) without us- By default, the analysis considers unique pointers
ing awkward coding idioms. passed to function calls as consumed, expecting the callee
3. We provide additional polymorphism to let us ad® deallocate the valug, return it to the caller, or place.it
stract over types that can contain unique pointers g datg ;tructure. This treatment can be oyer’rldden with
nonunigue pointers. an explicitnoconsume attnl_)ute on the function’s proto-
type. If present, the caller is ensured that the value is still
The following sections discuss these aspects of our diefined upon return, and the callee cannot consume the
sign. value.

At join points in the control-flow graph, our analysiglobal variable. To overcome this limitation, we provide
conservatively considers a value consumed if there is aamatomicswapoperation, writtere; :=: e5. The addition
incoming path on which it is consumed. For instance, ifof swap was inspired by Baker's work on a linear vari-
is a defined unique pointer and we write: ant of LISP [6]. In Cyclone, swap can be performed on
any pair of (left-hand-side) expressions of unique-pointer
type, including paths that go through nonunique pointers.

then in the continuation, the analysis tregtss being con- It is roughly equivalent to, temp = e1; €1 = €3; ez
sumed. Unfortunately, this can lead to leaks, so we fs-temp;” The intuition behind the soundness of swap
sue a warning in this situation (and a few others suchigighat it preserves our crucial invariant: at any program
overwriting a defined unique pointer). We could geneQint there is at most one usable copy of a unique pointer
ate an error instead, but we have found that this restf@due. This idea is formalized in our work on linearly
in too many type errors, primarily because of exceptidPed assembly language [14] and can also be justified
handlers. These handlers typically have a large numbetéth formalisms such as alias types [37].

incoming control-flow edges (at least one for each func-Here is a simple example of the utility of swap:

tion call within the scope of the handler) and it is almost int *‘U g = NULL;

never the case that the same unigue pointers have beepid init(int x) {

if (rand()) free(p);

consumed on every edge. int *‘U temp = malloc(sizeof(int));
A few other details are necessary to ensure the system xtemp =
is sound. First, we must prevent pointer arithmetic or ex- g :=: temp;

pressions likezp->y whenp is a unique pointer because if (temp != NULL) free(temp);
free expects a pointer to the beginning of the object. Sec-}

ond, polymorphism must be treated with some care, as were,g is a global variable that holds a unique pointer

discuss in Section 4.3.) o ; ; ;
to anint. Theinit routine creates the unique pointer
Finally, we must ensure that copies of unique pointers
and stores it in a temporary variable. Then, the value of
are made only alongnique paths A unique pathu has
the temporary is swapped for the valuegf After the
the form
swap, iftemp is NOtNULL, then we free the pointer. It is
u ::=x | u.m | u->m | *u ; - :
easy to verify that at any program point, there is at most

wherez is a local variable, and is a unique pointer. To
. . - : ..~ one usable copy of any unique value. Furthermore, since
appreciate the unique-path restriction, consider this incgre, swap is atomic, this property holds even if multiple

rect code: threads were to execuimit concurrently.
int £(int *U *‘r x) { Our atomic swap operator makes it possible to build a
int *‘U x‘r y = x; //x and y alias set of protocols for shared, concurrent objects without los-
int *U z = xy; ing the advantages of local reasoning afforded by unique
free(z); pointers. An obvious extension is to provide a form of
return **x; //accesses freed storage! compare-and-swap so that we could build arbitrary wait-
} free structures [28].

Here,x is a pointer into a conventional regiém and thus 43 Polvmorphism
its value can be freely copied inta We then extract a ™ y P

unique pointer from the contents pfind free it. Then we Cyclone supports polymorphism, which is crucial for

attempt to access the deallocated storage thraugh writing reusable library functions. With some care, Cy-
In most languages based on linear types, this problengisne’s polymorphism can be extended to handle unique

avoided by requiring that linear objects cannot be placg@inters. The following function illustrates some of the

in nonlinear containers. Our approach is similar, excegifficulties. It takes a (nonempty) list and turns it into a

that we forbid copying of a unique value unless the pagiycular list:

to the value is unique. In the example above, the attempt

to initialize z with xy is a compile-time error. typedet

struct List<‘a, ‘r> *‘r list_t<‘a, ‘r>;

list_t<‘a, ‘r> cycle(list_t<‘a, ‘r> x) {
list_t<‘a, ‘r> res = x;

With no additional access mechanism, the unique-pathre- while (x->tl1 != NULL) x = x->t1;

striction prevents using a unique pointer that is placed =x->tl1 = res;

within a shared object, which is too restrictive. For in- return res;

stance, we could never use a unique pointer stored in &

4.2 Unique Pointers in Shared Data

The full type of the function might informally be written list_t<‘a::TopBT, ‘r::TopR>
imp_rev(list_t<‘a, ‘r> x) {

V¢a::BT, ‘r::R.1list_t<‘a, ‘r> — list_t<‘a, ‘r> if (x == NULL) return NULL;
list_t<‘a,‘r> y = NULL;
where ¢a ranges over boxed types, indicated by the kind x—>tl :=: y;
BT, and ‘r ranges over regions, indicated by the kind while (y !'= NULL) {
Circular lists clearly violate our uniqueness invariant, list_t<‘a, ‘r> temp = NULL;
so, we do not expeatycle to work on lists allocated temp :=: y->tl;
in ‘U. Indeed, if we instantiatér with ‘U, the body of y—>tl = x;
the function does not typecheck, becaud®ecomes con- X =Y
sumed at the assignmenttes, so it cannot be used in y = temp;
the while loop. To prevent this, we make a distinction be- b
tween ‘U and other regions: we makethe kind of honu- return Xx;
nique regions, and we have a separate, incompatible kind
UR for ‘U.

Careful examination shows that the code is well-typed,
A different problem arises if we attempt to instantiate @gardless of the boxed type we use to instantiater
type variable with a unique-pointer type. Consider: the kind of region we use fofr.
Unfortunately, the restrictions imposed by the top kinds
‘a hd(list_t<‘a,‘r> x) { return x->hd; } prevent us from writing many useful polymorphic func-
tions. For example, many functions need to alias their
If we instantiate‘a with int * ‘U, the code does not typearguments internally, in a way that is not visible to the
check because we access a unique pointer via a nonuniggler. It should be safe to call such a function with a
path. To avoid this problem, we introduce a kind distingmique pointer, but this will not be permitted by the kind
tion between unique pointer typess(r) and other boxed discipline we have described. The next section gives a
types. solution to this problem.
These distinctions are sufficient to make our polymor-
phism safe, but they do not help us as much as we wogflfj4 Temporary Aliasing
like. For example, theength function of Section 2 ap-
plies only to lists of elements that are not unique pointefrogrammers often write code that aliases values tem-
We can write a version for lists of unique pointers jugtorarily, e.g., by storing pointers in loop iterator variables
by changing the kind of the element typeUsT, but that or by passing them to functions. Even withconsume,
version would not work on lists with nonunique elementsuch reasonable uses would be severely hampered by the
To address this, we further augment the kind system 8iystem presented thus far. To address this problem, we in-
adding “top” elements to type and region kinds. The kirfoduce a primitive calledlias that permits temporary
TopR ranges over unique and non-unique regions, and gli&sing of a unique pointer for the duration of a state-
kind TopBT ranges over all boxed types, resulting in a nafaent block, provided that no aliases are live when the

ural sub-kinding lattice for both regions and types: block completes. This primitive resembles and extends
Walker and Watkinslet! [43], theunpack primitive of
TopR TopBT alias types [37], and Clarke’s notion of borrowing [15].

/ \ / \ Here is a contrived example:
R R BT OBT void inc(int *‘rl cell) {
int *‘rl t = cell;

print_cell(t);

The top kinds are restricted by all of the constraints im-
*cell = *xt + 1;

posed by their subkinds. For instance, a value of type
‘a::TopBT cannot be freely duplicated, must be accessed}
via unique paths or a swap, and cannot be freed. We notgoid g() {
that kinds and sub-kinding were already necessary in Cy- int *‘U xptr = malloc(sizeof (int));
clone to distinguish types from regions, and boxed types xxptr = 3;
from other types. Fortunately, default kinds and kind in- { alias <‘r2> int *‘r2 temp = xptr;
ference minimize the programmer’s burden. inc (temp) ;

Top kinds make it possible to write functions that are }
polymorphic over uniqueness. For instance, the following free(xptr);
function destructively reverses lists: }

Imagine thatinc is an existing, widely-used library func-The clist_t constructor is the same asst_t except
tion that was not written with the constraints of uniquehat the list spine must be read-only. Téength func-
ness in mind. In this simple example, it copies its pointéon takes a read-only list where each cons cell is, as far
argument (using both copies) and passes its pointer argsithe function is concerned, allocated in a nonunique re-

ment off to another functionpfint_cell). Thus,inc
would not be well-typed if we replacetk1 with ‘U, so
‘r1is restricted to nonunique regions (kiRjl

The functiong creates a unique pointefptr that it
wishes to pass tdnc. It does so by using aalias
declaration to (a) introduce a fresh region variatte of
kind R and (b) introduce an alias faptr in the locally-

gion ‘r. Through conventional subtyping, it is possible

to pass alist_t, allocated in some nonunique region

to clength. That is,list_t<‘a, ‘r> is a subtype of

clist_t<‘a, ‘r> for any type‘a and any regiorir.
However, it is also possible to pass a uniquet_t

to clength as shown by the functionlength. In that

function, we first coerce the valueto a read-only list.

bound variabletemp. The temp alias is assigned theWe then bind it with thealias construct to a temporary
typeint *‘r2 and can thus be passeditnc and freely that allows us to promote thelist_t<‘a, ‘U> value to
copied. The original unique pointetptr, is considered a clist_t<‘a, ‘r2> value. We then pass ther2 ver-
consumed for the duration of the block. Thus, it is imposion toclength. At the end of the function, we are en-
sible for the value to be freed during the execution of tiseired thak is not consumed which is required due to the
declaration’s block. At the end of thelias block, any noconsume attribute. In turn, this ensures that the caller
copies of the unique pointer become unusable, sim@ can continue to use, and ultimately free, the list.
goes out of scope. This allows us to once again ttpat What is the intuition behind the soundness of such a
as ifitis a unigue pointer so that we can, for instance, pdgeep” alias? It is clear that region scoping prevents any
itto free. copies of the pointers from escaping. By assigning these
In short, alias lets us temporarily treat a unigudail pointers nonunique pointer types, we are preventing
pointer as if it were a pointer into a conventional resome function from deallocating one of the cells through-
gion, without losing the ability to recycle the storage latesut the call tolength. Furthermore, because we have a
Throughout the scope of the ias, we can make copiesunique root for the data structure (i.e., exclusive owner-
of a pointer, place it in conventional (shared) data strughip), there can be no other way to get to these values and
tures, etc. The fresh region namfe;2, ensures that nofree them.
(usable) copies escape the scope of the construct. It may seem that the read-only requirement is too
Viewed from another perspective, the flow analysis astrong, but the counterexample below shows its necessity.
type system are preventing the unique pointer from beihrgthe example, we overwrite one of the unique pointers
deallocated, at least temporarily. Thus, if we introdueeth another to create a circular list by taking advantage of
a lexically scoped regionr2, the unique pointer will al- alias. The type-checker would not reject the assignment
waysoutlive ‘r2. Thus, it is safe to treat *‘U as a sub- since we have temporarily given all the unique pointers
type ofr *‘r2. Indeed, it is sound to extend this subtypthe same type (a list pointer into regiém). But on exit
ing relationthrough read-only type constructgrso that from thealias, we free what the tail of the list points
we can treat an indeterminate number of unigque pointéos namely the list itself. We then attempt to access the
as if they were references inta2. deallocated storage. To prevent this problem, we must
For example, consider the following definitions: therefore restrict deep aliasing to read-only paths. This is
not surprising as deep subtyping, in general, is restricted

struct CList<‘a, ‘r> { // read-only lists . i
in the same fashion.

‘a hd;

s ¢ (4 ¢ .
struct CList<‘a, ‘r> *const ‘r tl; ‘a foo(list_t<‘a, ‘U> x) {

{ alias<‘r> list_t<‘a, ‘r> temp = x;
temp->tl = temp; //bad: creates cycle!

};
typedef struct CList<‘a, ‘r>*const ‘r
clist_t<‘a, ‘r>; }
int clength(clist_t<‘a, ‘r::R> x);
int ulength(list_t<‘a, ‘U> x)
__noconsume (1) __ {
int res; }
{ alias<‘r2> clist_t<‘a,‘r2> t =
(clist_t<‘a, ‘U>)x; For improved programmer convenience, the Cyclone
res = clength(t); typechecker optimistically insertslias blocks around
} function-call arguments that are unique pointers when the
return res; formal-parameter type is polymorphic in the pointer’s re-
} gion. If this modified call does not type-check, we re-

[4

list_t<‘a, ‘U> tail =
free(tail);
return x->hd;

x->tl;

move the inserted1lias. For example, one can rewrite We assign‘RC the kindTopR. Thus pointers into it are
theulength function from the previous section as simtreated the same as unique pointers, except they cannot
ply: form part of a unique path, and cannot be passed-ée.
Thus, a function such asnp_rev (Section 4.3) that ab-
stracts oveopR can be passed a reference-counted ob-
ject.

int ulength(list_t<‘a, ‘U> x)
__noconsume (1) __ {
return clength(x);

}

This backtracking scheme is much like Aiken et al® Programming Experience
approach for inferring uses of a similabnfine con-
struct [3]. Cyclone has been used for several projects where safety
We have not yet proven the soundness of alitas is important and designers felt garbage collection was in-
construct, though we are confident that it is true. As meappropriate [34, 33, 10]. We have used the language to
tioned previously, the shallow version efias can be build the Cyclone compiler, and a large collection of li-
seen as a version of Walker and Watkinst !. However, braries and tools. In this section, we describe our overall
we have left the soundness of dedifias to future work. assessment of Cyclone’s memory-management support,
followed by more detailed experiences with an event-
. based web server and in an overlay network for streaming
5 Reference-Counted ObJeCtS data [29]. We also present performance results demon-

L L strating the ability to control memory consumption from
Reference counting is often used to track the lifetimes f g y y P

. . o - Within our language.

shared objects in systems applications; for example, |t\’?s nou guag

used in both COM and in the Linux kernel. Cyclone sup-

ports a form of reference counting that builds on uniq@&1 Overall Experience

pointers. This has two great advantages: First, we intro-

duce almost no new language features, rather only sobfd surprisingly, code that O_|OGS_ only heap aIIocatiqn and
simple run-time support. Second, the hard work that wéf{i€S Upon garbage collection is the easiest to write and
into ensuring that unique pointers coexisted with cof@intain. On the other hand, we generally found that we

ventional regions is automatically inherited for referencE9uld improve performance and/or space overheads by ju-
counted objects. dicious appllcatl'on of the other optlons. '

We define a neweference-counted regiofRC, whose Stack and lexical region aII_ocatlon are relatively easy to
objects, when allocated, are prepended with a hiddé$f: due to the local region inference, the carefully cho-
reference-count field. As with unique pointers, the floen default effects, and the fact that we developed most of

analysis prevents the user from making implicit aliaser libraries with region allocation in mind. For instance,
Instead,RC pointers must be copiegkplicitly by calling the string, standard I/O, list, and hashtable libraries all ex-

alias_refptr, which has type: pect region-_allocated data. _There are a_m_n_oying aspec_ts,
such as having to parameterize type definitions by a suit-
(4 ¢ s (4 [4 . . .
a *‘RC alias_refptr(‘a *‘RC) able number of regions, and having to pass region handles
—-noconsume (1) __; to the right functions. Support for nested functions (i.e.,

Callingalias_refptr creates an alias and increases ti§¢osures) would ease the latter considerably.

reference count of the underlying object. Thesonsume ~ DYynamic regions are as easy to use as lexical regions,
attribute specifies that the caller can still use the origir@itd sometimes easier. For instance, dynamic region keys
pointer, as well as the newly returned pointer. In essené@n be placed in global variables that hold cached results,
they are both explicit capabilities for the same object. such as lexemes in our compiler.

A reference-counted pointer is destroyed by a call to: Our initial design for unique pointers had no support
for alias or placing unique pointers in shared objects.
We quickly found this design unusable. When we added
This consumes the given pointer and decrements the sbpport for these features, coding become easier, though
ject's reference count; if the count becomes zero, thtll somewhat tedious. With the addition of our primitive
memory is freed. As with unique pointers, the flow ana#lias inference, writing code becanmeucheasier.
ysis warns when anRC pointer is potentially “lost” at a Nonetheless, room for improvement remains. For in-
control-flow join point. This helps ensure that we do natance, ounlias inference is restricted to function call
forget to decrement the counter on some path. Most inentexts. In MediaNet, inference discovers 71% of the 66
portantly, we guarantee a pointer is not prematurely freedededalias statements. Of the ones that remain, the
due to a mismanaged count. majority are due to the need to perform pointer arithmetic

void drop_refptr(‘a *‘RC);

I reserved

on or take the address of unique pointers. A more general e
unique

constraint-based inference could discover these and other
uses. Similarly, support foreestrict mechanisminthe
style of Aiken et al. [3] might help eliminate the need for
swapping, at least for single-threaded code.

6.2 Web Server

We built a simple, space-conscious web server to demon-
strate how unique pointers give Cyclone programmers
fine-grained control over memory use. The web server
allocates its objects either statically, on the stack, or with
unique pointers. Consequently, it does not need a garbage
collector at all, and we linked it with the Lea allocator [30] Time (CPU clock ticks) 144K
instead.

The server is single threaded, and supports concurrBitjure 1:Memory use of the web server with up to 40 concur-
connections using non-blocking 1/0 and an event librargnt clients
in the style of libasync [31] and libevent [35]. After open-

ing a socket to listen for HTTP connections, the server ens, example£dcb (5, EV_READ, cb) registers a callback

te_rs an event loop that d_ispatches ready file descriptor%l(zé{t waits for input (indicated by the constaiw_READ)
signals to callbacks registered by the server. A callbac():n file descriptor 5. Hereb is a unique pointer Eo a call-
is implemented as a closure consisting of a pointer toDa i

. . . back structure that the caller must allocate. The callback
function and an environment that is passed to the funcugtrr'ucture is freed by the event loop when the callback is

when it is called. Because concurrent HTTP connections
invoked.

overlap in a non-nested fashion, we used unique pointer%ur web server is optimized for space usage. When a

to implement closures and environments, rather than HRe is requested by a client, the server allocates a small

m%%lirclsrl(gﬁlggrznir%orllz:rr]iﬁtsé d with Cvclone StI’UCtS'bUﬁer and uses the buffer to read the file and send it to
P y ‘the client in chunks. We used a 1KB buffer size for our

struct CB { <‘a::TopBT>: regions(‘a) > ‘H measurements, but of course the size is configurable. Fig-

Memory Used (KB)

void (*f) (int,short, ‘a); ure 1 demonstrates the tight control over memory that we
‘a env; achieved, by tracking the memory use of the web server
}; under a sustained load with a maximum of 40 concurrent

connections. The x-axis plots CPU time in terms of clock

Ricks (as determined by thelock () system call), while

pointer that expects the environmesntv of type ‘a to the y-axis plots memory consumed._ we also_ plot the to-
0%al space reserved by the allocator (i.e., acquired from the

be passed as its third argument. The first argumerit . : : .

. . . ; operating system). Our profiler confirms that all dynamic

will be the ready file descriptor or signal, and the sec: 7 ;

. ' memory is stored in the unique region, which occupies at

ond argument tells the function whether the first argu- .
) . . . most 40KB or so (1KB per 40 connections) of the total

ment is a descriptor ready for reading, a descriptor read
o . . : reserved memory of 44KB. The server thus makes very

for writing, or a signal. The environment type is de-

clared with kindTopBT, which is the kind of boxed typesefﬂuent use of heap memory, with _Ilttle fragmentation.

. . . . And, of course, there are no pauses introduced by garbage
that are potentially unique pointers. (The outlives con- .

C e) PR . . collection.
straint “regions(‘a) > ‘H”is necessary in practice as
described in our previous work [22], but for simplicity, we)
ignore it here.) In our web server, environments are eitfer3 MediaNet
|nteger§ or unique pom_ters 0 .compound objec_ts. .th?/{]ediaNet is an overlay network for performing on-line,
the environment is a unique pointer, our convention is that . . ; o
adaptive scheduling for packet streams with user-specified

the ca}llback ltself is responsible for freeing the EVITORS source constraints [29]. Each node in the network runs
ment if necessary.

File-descriptor callbacks are registered with thib a local SEIVer, implemented in chlone, that communi-
. . .) cates with the other servers to deliver and adaptively trans-
function, which has the following type: .
form streaming data. Each local server behaves accord-
void fdcb(int fd, short ev, ing to a configuration program calledCmntinuous Media
struct CB *‘U cb); Network(CMN). This is simply a directed acyclic graph

Here, ‘a is an existentially-bound type variable that re
resents the type of the environment, ahd a function

(DAG) of operations where each operation works on the
data as it passes through. As network conditions change, a

global scheduler may reconfigure local schedulers to im- ‘ 0 ‘ ‘\0\ u\o\ \‘ ‘\4\\ \‘\O\T \‘
plement better-performing CMNs. On each local sched- /4 Vi
uler, the new CMN will begin to run alongside the old one, /Z B c

until all old data has been delivered and the old CMN can
be removed.

In the local-scheduler implementation, we allocate
CMNs in dynamic regions; the currently-active CMN is in
thecurrentregion, while the new CMN, present only durunique pointers have open arrowheads, while reference-
ing reconfiguration, is in theewregion. After reconfigu- counted ones are filled in. This situation could have arisen
ration, thecurrentregion can be freed, and thewregion by (1) receiving a packet and storing its contentsljr(2)
becomesgurrent Regions work well for CMNs becausecreating a new buffeB that prepends a sequence number
all the relevant data is allocated and logically deleted B34 to the data ofd; and (3) stripping off the sequence
the same time. Dynamic regions are necessary becauseber for later processing (assuming the sequence num-
the lifetimes of the current and new CMNs overlap, biver’s length is4 bytes). Thus(C and A are equivalent.
are not nested. When we free a streambuff, we decrement the reference

The packets sent between operations are implemengtednts on its databuffs, so they will be freed as soon as
as a simpler variant of Linux'skbuffs, calledstream- possible.
buffs An earlier version of MediaNet stored all packet data in
the garbage-collected heap, and used essentially the same
structures for packet data. One important difference was
that databuffs contained an explieéf cnt field managed
by the application to track aliasing. If an operation deter-
3 mined that no aliases to a packet's data existed, the data

’ could be safely mutated, improving performance. Unfor-
The packet data is stored in the arfayfs. Note that tunately, this approach yielded a number of hard-to-find
bufs is not a pointer to an array, but is flattened directljugs whose appearance depended on configuration, data
within StreamBuff. Thus StreamBuff elements will format, and timing. The current version us&s pointers
vary in size, depending on the number of buffers in the arstead of manual counts. This greatly reduces the possi-
ray. Thenumbufs field holds the length dfufs. The no- bility of mismanaging the count, and lets us free the data
tation<i: : I> introduces an existential type variable thammediately after its last use.
has integer kind, and is used by our type system to en-
force the correspondence betweenihebufs field and 31 performance
the length of thé&ufs array. Databuffsstore packet data:

Figure 2:Pointer graph for three streambuffs

struct StreamBuff { <i::I>
. // three omitted header fields
tag_t<i> numbufs;
struct DataBuff<‘RC> bufs[numbufs];

Although moving streambuffs and databuffs to unique

struct DataBuff<‘r> { pointers and reference counting does not eliminate Me-
unsigned int ofs; diaNet's reliance on the garbage collector, it does signifi-
char 7°r buf; cantly improve performance. In a simple experiment, we
i used the TTCP microbenchmark [32] to measure Medi-

The but field points to an array of the actual data. ThaNet's packet-forwarding throughput and memory use for
? notation designates a pointer to a dynamically-siz¥g"Ying packet sizes. We measured two configurations:

buffer, which is accompanied by bounds information to
prevent overflow. Thefs field indicates an offset, in
bytes, into theouf array. This offset is necessary when
‘r is ‘U or ‘RC since pointer arithmetic is disallowed in
those cases; th&treamBuff definition allocateduf in
‘RC. e gcis as above, but with streambuffs and databuffs
While databuffs are reference-counted, we allocate stored in the garbage-collected heap.
streambuffs uniquely, so they can be freed immediately af-
ter the corresponding data is sent. When multiple streaRor our experimental setup, we used three 1 GHz Pentium
buffs must refer to portions of the same packet data, Wks, each running Linux kernel 2.4.18 with 250 MB of
clone them as shown in Figure 2. Here, three indivilRAM. The machines were directly connected in a line via
ual streambuffsA, B, andC' share some underlying datagigabit Ethernet (using Intel Pro/1000 F cards), with the

e gct+free is MediaNet built as described above, us-
ing the Boehm-Demers-Weiser (BDW) conservative
garbage collector [9], versidh2a4, for garbage col-
lection and manual deallocation.

A = O=-=0 g40ks

| reserved
| heap
| M unique

— O- - gc+free
—e— gc

throughput (Mb/s)

Memory Used (KB)

100 1000 10000
packet size (bytes)

Figure 3: MediaNet throughput Time (CPU clock ticks) 1.0 clocks

gc configuration
7.78 KB refent
. . . . M heap
middle machine acting as a router. The MediaNet server M unique

ran on this machine, and the TTCP sender and receiver
ran on opposite ends.

Figure 3 plots the total throughput of MediaNet, in me-
gabits per second, as a function of packet size (note the
logarithmic scale). Each point is the median of 21 trials
in which 5000 packets are transferred, with little variance:
the semi-interquartile randés typically less than 0.1% of
the median. The two configurations perform roughly the
same for smaller packet sizes, lgatstarts to fall behind
as packets become larger thalr2 bytes. The largest gap
is for 2 KB packets, where thgc+freecase gchieves 42% . Tine (CPU clock ticks) 7.0 ook
better throughput; at 32 KB packets the improvement is ge+free configuration
21%.

Figure 4 illustrates the memory usage of each config- Figure 4: MediaNet memory profile (4 KB packets)
uration for the experiment in which 5000 4 KB packets

are transferred. This graph has the same format as the

graph in Figure 1, but additionally shows the heap andFor comparison, we also ran our experiment using the

reference-counted regions. Also, the reserved memory f@a allocator. It performed slightly better thao+free,

thegc+freecase is not shown. exhibiting slightly higher throughput, and reserving less

Thegcconfiguration exhibits a sawtooth pattern, whef@emory (only 25 KB as opposed to 128 KB).

each peak roughly coincides with a garbage collection. In-

terestingly, the locations of the peaks also exhibit a saw-

tooth trend; the BDW collector often collects before asly Related Work

available memory is exhausted, and delays some work to)) _)

reduce pause times. The large gap between the topmid® ML Kit [38] implements Standard ML with regions.

peak and the amount of reserved data is evidently frafhole-program analysis (type inference) assigns regions

mentation. Thegc+free configuration both uses and reYsing a system that (like Cyclone) has LIFO regions as

serves far less memory (128 as opposed to 840 KB for 8- backbone [39]. Extensions to avoid some LIFO re-

served memory, and 8 as opposed to 420 KB of peak uskdctions include an analysis for late allocation and early

memory) There is some initial data allocated in the hegﬁallocation of regions [2], integration with an accurate

that stays constant through the run, and the refereng@tbage collector [23], and a regieaset analysis.

counted and unique data (the small line at the bottom)The RC language and compiler [19] provides language

never consume more than a single packet's worth of spagéPport for regions in C. Access control for regions is ac-

since each packet is freed before the next packet is readsfnplished by dynamic reference counts instead of static
type tests, though an analysis tends to eliminate much of

2The semi-interquartile range is similar to the standard deviation, e OVerh.ead- _RC does not prevent dangling pointer; to
is relevant when choosing the median as the single-point summarizetlata not in regions, so there is no support for ensuring

Memory Used (KB)

conventional uses afalloc/free are safe. an effects system leads to different design decisions. Boy-
Work by Bacon et al. [5] and Boyapati et al. [11] tdand [13] summarizes several projects and proposes using
prevent data races in Java uses unique pointers as onestajc analysis to avoid the disadvantages of destructive
to prevent two threads from simultaneously accessing ti@@ds. An intraprocedural analysis can allow aliases of
same object. These projects use special syntax for “dédique objects so long as multiple aliases are not used on
structive reads” (swapping in NULL). Boyapati et al. [12&ny program path.
have recently used a region-based type system for avoidJniqueness types in the functional language Clean [1]
ing run-time errors in Real-Time Java [7] programs. Real!low in-place update and functional I/0. Such types can
Time Java regions are like Cyclone’s dynamic regions bigffer only to values pointing to objects not otherwise ref-
have a more awkward semantics. A region is implicitigrenced. A flow-sensitive “sharing” analysis ensures this
deallocated when no thread has it opened and a ratigstriction.
ad hoc“portal” field is NULL. Without portals, threads Berger et al.’'sreaps[8] combine the run-time perfor-
would have no way to share memory that did not outance advantages of regions (batched deallocation) with
live one of the threads. With unique pointers to dynamitdividual objects (fine-grained deallocation). They per-
region keys, Cyclone programmers can encode portalsmit deallocating objects within regions and report perfor-
Work on linear types [40], alias types [37, 42], capdnance superior to application-specific allocators. Reaps
bilities [41], and linear regions [43, 27] provide imporVvalidate the importance of regions and individual objects,
tant foundations for safe manual memory managementt®# they do not prevent dangling-pointer dereferences.
which we have built. In making these ideas convenient inFinally, sophisticated interprocedural analyses are start-
a source language, we have needed interesting extensio@$o appear to detect leaks (e.g., [26]) or more generally
like alias and reading through unique pointers withougason about temporal heap properties (e.g., [36]). Itis not
consuming them. yet clear if they are cheap enough to run on every compi-
Vault [16, 17] is another project adapting work on rdation or if they can give the strong safety guarantees of
gions and linearity to a source language. Unique poiftyclone’s intraprocedural analysis, especially in the pres-
ers allow Vault to track sophisticated type states, inclugiice of threads and/or separately compiled libraries. On
ing whether memory has been deallocated. To relax #hé other hand, these analyses typically need far fewer an-
uniqueness invariant, they use noegloptionandfocus notations.
operators. Adoption lets programs violate uniqueness by
choosing a unique object to own a no-longer-unique ol- .
ject. Deallocating the unique object deallocates both dB- Conclusions

jects. Compared to Cyclone’s support for unique point- | ich ¢ saf
ers in nonunique context, adoption prevents more spa@:}éc one now supports a rich set of safe memory-

leaks, but the semantics requires hidden data fields sowagemer?t_'d'oms for users unwilling to use only au-
run-time system can deallocate large data structures fMatic techniques:

plicitly. Focus allows adopted objects to be temporarily Stack/lexical regions:We can avoid any run-time

unique. Compared tewap focus does notincur run-time ot for data whose lifetime is known sufficiently
overhead, but the type system to prevent access through |, .|| when allocated.

an unknown alias requires more user annotations. That

said, the type system appears expressive enough to er- Dynamic regions: We can aggregate the run-time
code swap. Compared #ias, focus is less powerful be- cost and potential failures for data that can be deal-
cause it applies only to a single object. Focus also does |ocated simultaneously.

not work as-is with multithreading, whereas implement-

ing swap atomically makes our approach sound in a multi-e Heap region:We can use conservative garbage col-
threaded setting. Integration with Cyclone’s multithread- lection for a portion of a program’s data.

ing design [21] remains future work.

Numerous projects have enriched imperative Ianguages'
with unique pointers using destructive reads to preserve
uniqueness. Using swaps instead of an implicit NULL
is rare, but has been done [6, 24]. Most systems allow

temporary aliasing of an individual object, but nothing , Reference countingWe can support explicit copies

like our “deep”alias. Clarke's recent work on exter- of otherwise unaliased data and reclaim the data
nal uniqueness [15] us@svnership typeso ensure refer- when no copies remain.

ences do not escape the scope of a temporary alias. The
technique is similar to our use of regions, but the lack tfsers can use the best idioms for their application.

UniquenessWe can support manual deallocation of
unaliased data. We can put unigue pointers in non-
unique data structures by using a swap operator to
access them.

Moreover, we have designed linguistic constructs fof7] G. Bellella, editor. The Real-Time Specification for
tying these idioms together in a coherent language that
supports reusable code amid well-known tradeoffs. Lex-

ical regions are the backbone of our system and exploﬁg

the convenience of data lifetime corresponding to scope.
We regain this convenience for dynamic regions with
open and for unique and reference-counted pointers with
alias. The latter extends previous approaches by allow-
ing temporary aliasing of entire data structures. We als
use polymorphism to write reusable code without tem-
porary aliasing, but the coding style is often too awk-
ward. Finally, we provide run-time checking when static

enforcement is too onerous: Dynamic regions provif&0]

checkable keys to relax the compile-time constraints of

lexical regions. Analogously, reference-counting provides

checkable counts to relax the uniqueness invariant.
Together, these idioms represent significant progress

toward our goal of enforcing sound, user-specified idion{%.l]

Looking forward, we envision a need for more specific
aliasing information and more first-class status for refer-

ence counts. Nonetheless, we have been pleased with our

ability to support natural invariants that improve actual ap-

plication performance and predictability.

[12]

References

[1]

(2]

[3]

[4]

[5]

P. Achten and R. Plasmeijer. The ins and outs of
Clean I/0. Journal of Functional Programming
5(1):81-110, 1995. [13]
A. Aiken, M. Fahndrich, and R. Levien. Bet-
ter static memory management: Improving region-
based analysis of higher-order languages AGM
Conference on Programming Language Design and
Implementationpages 174-185, La Jolla, CA, June
1995.

A. Aiken, J. S. Foster, J. Kodumal, and T. Terauch[i.ls]
Checking and inferring local non-aliasing. ACM
Conference on Programming Language Design and
Implementation pages 129-140, San Diego, CA16)
June 2003.

Apache Foundation. Apache web servattp://
www.apache.org.

[17]
D. Bacon, R. Strom, and A. Tarafdar. Guava: A
dialect of Java without data races. ACM Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applicationpages 382—-400, Min-
neapolis, MN, Oct. 2000.

[18]
H. Baker. Lively linear LISP—Ilook ma, no garbage.
ACM SIGPLAN Notice7(8):89-98, 1992.

Java Addison-Wesley, 2000.

] E. D. Berger, B. G. Zorn, and K. S. McKinley. Re-

considering custom memory allocation. ACM
Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applicatipngages 1-12,
Seattle, WA, Nov. 2002.

H.-J. Boehm and M. Weiser. Garbage collection in
an uncooperative environmerfoftware — Practice
and Experiencel8(9):807-820, 1988.

H. Bos and B. Samwel. Safe kernel programming in
the OKE. In5th IEEE Conference on Open Archi-
tectures and Network Programmingages 141-152,
New York, NY, June 2002.

C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. AGM Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applicationpages 56—69, Tampa
Bay, FL, Oct. 2001.

C. Boyapati, A. @lcianu, W. Beebee, and M. Ri-
nard. Ownership types for safe region-based mem-
ory management in real-time Java. ACM Con-
ference on Programming Language Design and Im-
plementationpages 324-337, San Diego, CA, June
2003.

J. Boyland. Alias burying: Unique variables with-
out destructive read&oftware Practice and Experi-
ence 31(6):533-553, May 2001.

4] J. Cheney and G. Morrisett. A linearly typed as-

sembly language. Technical Report 2003-1900, De-
partment of Computer Science, Cornell University,
2003.

D. Clarke and T. Wrigstad. External uniqueness. In
International Workshop on Foundations of Object-
Oriented LanguagesNew Orleans, LA, Jan. 2003.

R. DeLine and M. Bhndrich. Enforcing high-level
protocols in low-level software. IACM Conference
on Programming Language Design and Implemen-
tation, pages 59—-69, Snowbird, UT, June 2001.

M. Fahndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming.
In ACM Conference on Programming Language De-
sign and Implementatiqpages 13-24, Berlin, Ger-
many, June 2002.

C. Fraser and D. HansorA Retargetable C Com-
piler: Design and Implementatio®ddison-Wesley,
1995.

[19] D. Gay and A. Aiken. Language support for region§31] D. Mazieres. A toolkit for user-level file systems. In

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

In ACM Conference on Programming Language De-
sign and Implementatiorpages 70-80, Snowbird,
UT, June 2001.

[32]
D. Grossman.Safe Programming at the C Level of
Abstraction PhD thesis, Cornell University, 2003.

33
D. Grossman. Type-safe multithreading in Cy[—]
clone. InACM International Workshop on Types in
Language Design and Implmentatiqmages 13-25,
New Orleans, LA, Jan. 2003.

D. Grossman, G. Morrisett, T. Jim, M. Hicks,[
Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. IACM Conference on
Programming Language Design and Implementa-
tion, pages 282-293, Berlin, Germany, June 2002[35]

N. Hallenberg, M. Elsman, and M. Tofte. Combin-
ing region inference and garbage collectionAlbM [36]
Conference on Programming Language Design and
Implementation pages 141-152, Berlin, Germany,
June 2002.

D. Harms and B. Weide. Copying and swapping: In-
fluences on the design of reusable software compg7]
nents.|IEEE Transactions on Software Engineering
17(5):424-435, May 1991.

C. Hawblitzel and T. von Eiken. Type system sup-
port for dynamic revokation. May 1999.

D. L. Heine and M. S. Lam. A practical row-[38]
sensitive and context-sensitive C and C++ memory
leak detector. IIACM Conference on Programming
Language Design and Implementatiqgrages 168—

181, San Diego, CA, June 2003. [39]

F. Henglein, H. Makholm, and H. Niss. A di-
rect approach to control-flow sensitive region-based
memory management. IRrinciples and Practice

of Declarative ProgrammingFlorence, Italy, Sept. [40]
2001.

M. Herlihy. Wait-free synchronizatio’ACM Trans-
actions on Programming Languages and Systems
13(1):124-149, Jan. 1991. [41

M. Hicks, A. Nagajaran, and R. van Renesse. Medi-
aNet: User-defined adaptive scheduling for stream-
ing data. In6th IEEE Conference on Open Architec-
tures and Network Programmingages 87-96, Sanl42
Francisco, CA, Apr. 2003.

D. Lea. A memory allocator.http://gee.cs.
oswego.edu/dl/html/malloc.html.

USENIX Annual Technical Conferenqeages 261—
274, Monterey, CA, June 2001.

M. Muuss. The story of TTCPattp://ftp.arl.
mil/“mike/ttcp.html.

P. Patel and J. Lepreau. Hybrid resource control of
active extensions. 16th IEEE Conference on Open
Architectures and Network Programmingages 23—
31, San Francisco, CA, Apr. 2003.

4] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and

T. Stack. Upgrading transport protocols using un-
trusted mobile code. 119th ACM Symposium on
Operating System Principle®ct. 2003. To appear.

N. Provos. libevent — an event notification library.
http://www.monkey.org/ provos/libevent/

R. Shaham, E. Yahav, E. Kolodner, and M. Sagiv.
Establishing local temporal heap safety properties
with application to compile-time memory manage-
ment. InStatic Analysis Symposiypages 483-503,
San Diego, CA, June 2003.

F. Smith, D. Walker, and G. Morrisett. Alias
types. In9th European Symposium on Program-
ming, volume 1782 ofLecture Notes in Computer
Science pages 366—381, Berlin, Germany, Mar.
2000. Springer-Verlag.

M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg,
T. H. Olesen, and P. Sestoft. Programming with re-
gions in the ML Kit (for version 4). Technical report,
IT University of Copenhagen, Sept. 2001.

M. Tofte and J.-P. Talpin. Region-based mem-
ory management. Information and Computatign
132(2):109-176, Feb. 1997.

P. Wadler. Linear types can change the world! In
M. Broy and C. Jones, editor®rogramming Con-
cepts and Method$ea of Galilee, Israel, Apr. 1990.

North Holland. IFIP TC 2 Working Conference.

] D. Walker, K. Crary, and G. Morrisett. Typed mem-

ory management in a calculus of capabilitidsCM
Transactions on Programming Languages and Sys-
tems 24(4):701-771, July 2000.

] D. Walker and G. Morrisett. Alias types for recursive

data structures. IVorkshop on Types in Compila-
tion, volume 2071 of ecture Notes in Computer Sci-
ence pages 177-206, Montreal, Canada, Sept. 2000.
Springer-Verlag.

[43]

[44]

D. Walker and K. Watkins. On regions and lin-
ear types. Irbth ACM International Conference on
Functional Programmingpages 181-192, Florence,
Italy, Sept. 2001.

D. Wang and A. Appel. Type-preserving garbage
collectors. I28th ACM Symposium on Principles of
Programming Languagepages 166—178, London,
England, Jan. 2001.

