
Safe and Flexible Memory Management in Cyclone

Michael Hicks
Department of Computer Science and UMIACS

University of Maryland, College Park

Greg Morrisett
Department of Computer Science

Cornell University

Dan Grossman
Department of Computer Science

Cornell University

Trevor Jim
AT&T Labs Research

July 18, 2003

Abstract

Cyclone is a type-safe programming language intended
for applications requiring control over memory manage-
ment. Our previous work on Cyclone included support for
stack allocation, lexical region allocation, and a garbage-
collected heap. We achieved safety (i.e., prevented dan-
gling pointers) through a region-based type-and-effects
system. This paper describes some new memory-
management mechanisms that we have integrated into Cy-
clone: dynamic regions, unique pointers, and reference-
counted objects. Our experience shows that these new
mechanisms are well suited for the timely recovery of ob-
jects in situations where it is awkward to use lexical re-
gions. Crucially, programmers can write reusable func-
tions without unnecessarily restricting callers’ choices
among the variety of memory-management options. To
achieve this goal, Cyclone employs a combination of
polymorphism and scoped constructs that temporarily let
us treat objects as if they were allocated in a lexical re-
gion.

1 Introduction

Cyclone is a type-safe, C-like language intended for use in
systems programs where control is needed over low-level
details such as data representations and resource manage-
ment. In previous work [22], we described a region-based
type system for Cyclone, based on the work of Tofte and
Talpin [39], that gives programmers type-safe support for
stack allocation and lexically-scoped regions. We also
showed how these manual memory-management mecha-
nisms could be safely combined with heap allocation and
a (conservative) garbage collector to give programmers
a range of memory-management options. One attractive
feature of the design is that all data objects are treated as
if they live in some region. Using regionpolymorphism,

one can write library routines accepting pointers into any
part of memory, including the stack, a lexical region, or
the heap.

Stack allocation is an important and pervasive idiom
in C programs, providing efficient allocation, access,
and deallocation. Region allocation is another impor-
tant memory-management idiom, due to the efficiency of
batched deallocation of objects. It is used in compilers
such as LCC [18] and servers such as Apache [4]. How-
ever, Cyclone’s type system previously supported only re-
gions that followed a strict last-in-first-out (LIFO) disci-
pline. The LIFO restriction keeps type checking simple
and naturally provides a form of region subtyping that is
important for writing reusable code (see Section 2).

Unfortunately, LIFO behavior has well-known limita-
tions. A key problem is that an object’s lifetime is fixed
when it is allocated, so subsequent input and computation
can neither shorten nor extend the lifetime. Furthermore,
regions are efficient for large collections of objects that
need to be deallocated together, but they are less so for
small collections. In particular, the costs for creating and
deallocating a region make regions expensive for single
objects. Until now, garbage collection has been our best
solution in such cases.

The work described here augments Cyclone with ad-
ditional type-safe memory-management options to help
programmers with these situations. The new options, de-
scribed in Sections 3–5, include (a) dynamic regions, (b)
unique pointers, and (c) reference-counted objects.Dy-
namic regionsprovide support for region deallocation at
almost any program point and thus can be used to avoid
the LIFO constraints of lexical regions. However, this
flexibility incurs some run-time overhead and possible ex-
ceptions.Unique pointersare based on linear (more prop-
erly, affine) type systems and provide lightweight memory
management for individual objects. In particular, a unique
pointer’s object can be deallocated at any program point.

1

However, unique pointers cannot be freely copied, and
there are restrictions on how they can be accessed when
placed in a shared object. Finally, pointers toreference-
counted objectsare treated similarly to unique pointers
except that copies of the pointer are allowed at the price
of maintaining a reference count. When all copies of the
pointer are destroyed, the object is deallocated.

In our experience, it is extremely useful to have such
a large set of memory-management options so that pro-
grammers can choose a strategy that works best for their
application. Section 6 demonstrates how we tuned the
performance of two systems applications: an event-based
web server and MediaNet [29], an overlay network for
streaming data. In both cases we were able to keep mem-
ory consumption very low. For MediaNet, using unique
and reference-counted pointers increased throughput by
up to 42% compared to relying entirely on conservative
garbage collection.

However, there is a danger that so many different op-
tions will overly complicate the language and make it im-
possible to write reusable libraries. Thus, our most im-
portant contribution is a design that focuses on uniformity
and code reuse. For example, dynamic regions reuse the
lexical region machinery, and reference-counts are built
on top of unique pointers. Furthermore, we provide con-
structs calledopen and alias that support controlled
“pinning” for dynamic regions and controlled aliasing for
unique pointers respectively. Crucially, these constructs
let programmers write generic functions that can operate
over lexical-region, dynamic-region, unique or reference-
counted pointers.

2 Lexical Regions

We begin by reviewing our previous work on region-based
memory management for Cyclone [22]. We then describe
important limitations of this work.

2.1 Review

All memory objects in Cyclone are placed in a logical
container called a region The previous version of Cyclone
had three basic kinds of regions: There is oneheap region
(‘H) with global scope that conceptually lives forever. Ob-
jects allocated in the heap cannot be reclaimed except with
an optional conservative garbage collector.

Stack regionscorrespond to local-declaration blocks.
Entering a block creates a stack region and allocates space
in that region for the local variables. When control exits
the block, the stack region’s objects are deallocated. For
example, in the function:

void foo(int x) {
if (x)
L:{ int y = 3;

bar(&y);
}

}

entering the block labeledL creates a region named‘L
and allocates space for the local variabley. The region
is deallocated after the call tobar. If the programmer
omits the label on a block, the compiler generates a fresh
label. Stack regions are really a special case of lexical re-
gions that admits a faster implementation by disallowing
dynamic allocation.

Lexical regions1 also have creation and deallocation de-
termined by scope, but a handle lets the program allocate
objects into the region throughout the region’s lifetime.
Allocation primitives take handles so programs determine
object lifetimes at an allocation site. For example, in the
function:

void baz() {
{ region<‘r> h;
int *x = rmalloc(h,sizeof(int));
*x = 3;
int *y = baf(h,x);

}
}

we create a fresh region named‘r with an allocation han-
dle h. The handle can be passed tormalloc to allocate
storage. It can also be passed to a user-defined function,
such asbaf, so a callee can allocate data in the region,
and return results that might point into it. In our example,
all data placed inh’s region is deallocated after the call to
baf. The ability to pass handles as first-class objects lets
us allocate a dynamically-determined number of objects
in any caller’s region.

The primary goal of the type system is to ensure pro-
grams never dereference dangling pointers. To do so, we
track the set of regions that are live at each program point,
and augment pointer types with theregion nameof the
region into which the value points. Thus, an attempt to
dereference a pointer into a region is allowed only if the
region is still live. The lexical scoping discipline makes
it easy to track the set of live regions statically because
deallocation happens only at structured program points.

Region names are type-level variables that describe re-
gions instead of types. For example,‘H is the region
name for the heap, andint *‘H is a heap pointer. Lex-
ical regions have names that are in scope for the corre-
sponding code block. Handles have types of the form

1Our previous paper [22] referred to lexical regions asdynamic re-
gionsdue to their dynamically-determined sizes; in this paper we use the
latter term for regions with dynamically-determined lifetimes.

region_t<‘r>, where‘r is the name of the region into
which objects are placed when the handle is used for al-
location. For instance, ifh has typeregion_t<‘r>, then
rmalloc(h,sizeof(int)) returns a pointer of typeint
*‘r. We use intraprocedural type inference and well-
chosen defaults to avoid writing many region annotations;
for example, the region annotations onx, y, andh are in-
ferred in the examples above.

Functions and type constructors may be parameterized
by type and region variables. For example, the following
length function accepts lists with any element type and
with the list spine allocated in any (still-live) region.

struct List<‘a,‘r> {
‘a hd;
struct List<‘a,‘r> *‘r tl;

};
int length(struct List<‘a,‘r>*‘r lst) {
int i=0;
for(; lst != NULL; lst = lst->tl) ++i;
return i;

}

For safety, a pointer type is considered well formed
only when its region name is in scope. For example, con-
sider a function that tries to return a dangling pointer to a
local variable:

int *‘L bad() {
L: { int x = 3;

return &x;
}

}

Becausex is declared in blockL, the address ofx has
type int *‘L. Our scoping rules state that‘L is not in
scope outside the block, soint *‘L is not well-formed
as a return type, and Cyclone would flag this as an error.

However, Cyclone supportsexistential types, which can
hide a region in a function’s return type. For example, one
can write something similar to:

(∃‘r. int *‘r) bad() {
L: { int x = 3;

return pack(‘L,&x) as ∃‘r. int *‘r;
}

}

(The actual syntax for existentials is shown in Section 6).
The result type is well-formed and allows a dangling
pointer. Thus, in general, the set of live regions is a subset
of those that are in scope. To prevent access to a deallo-
cated region, the type system keeps track of which regions
are live at each program point. An intraprocedural anal-
ysis is extended across function boundaries by requiring
an expliciteffectthat records the set of regions that must

be live across the call. By default, Cyclone assumes all
region parameters are live across the call. In practice, this
default works well and thus programmers almost never
write explicit effects.

Finally, we have a natural notion of subtyping: If the
region named‘r1 outlives the region named‘r2, then
we can coerce a value of typeτ *‘r1 to typeτ *‘r2 be-
cause the latter type allows access at strictly fewer pro-
gram points. For instance, the following code is well-
formed:

void h(int *‘r1 x, int *‘r2 y) {
L:{ int *‘L z = (rand()) ? x : y;

...
}

}

Note thatz is assigned either a‘r1 or ‘r2 pointer. Since
both regions must be live across the call, they naturally
outlive‘L, so we can safely promotex and y to‘L pointer
types. If regions did not have structured scope, such sub-
typing would not arise naturally. We remark that the type
system supportsdeepsubtyping along read-only pointers.
Thus, if τ1 is a subtype ofτ2 and‘r1 outlives‘r2, then
τ1* ‘r1 is a subtype ofτ2 const *‘r2.

For this and several other reasons, lexical regions lead
to convenient programming and a simple type system.
Perhaps the most compelling advantage is that the sys-
tem is completely static, so there is no need for run-time
checks.

2.2 Limitations of Lexical Regions

Unfortunately, lexical regions provide insufficient con-
trol over memory lifetimes. First, the region-deallocation
point is determined at region-allocation time, so programs
cannot choose to deallocate based on computation follow-
ing region allocation. For instance, we cannot decide to
deallocate a region based on a user input.

Second, regions are often forced to live longer than nec-
essary. For example, a callee cannot deallocate a region
allocated by a caller, even if the caller will not later ac-
cess the region. Conversely, callees cannot give callers
freshly allocated regions, which forces callers to allocate
regions earlier than necessary. This restriction makes im-
portant idioms impossible, such as the copying collector
of Wang and Appel [44]. In general, any iterative pro-
cess that maintains state across iterations is forced to leak
memory; the state must reside in a region allocated out-
side of the loop. In other words, there is no support for
a “tail-call” that deallocates a region before performing a
call.

Third, objects often live longer than necessary because
pointers allocated before a region exists cannot be used to

access an object in the region. In particular, global vari-
ables can access only heap-allocated data.

Fourth, manipulating nonstack regions takes more time
and space than usingmalloc/free for an individual ob-
ject. For regions holding many objects, amortization over-
comes this cost. But for many programs, individual ob-
jects have distinct points of “last use” so aggregating life-
times retains excessive memory.

In other implementations and designs, these limitations
have been noted and partially addressed. For instance,
the ML Kit compiler [38] includes a specialreset prim-
itive that is used to deallocate regions early, but its use is
an internal optimization whose soundness is not captured
by the type system. The Capability Calculus [41] sup-
ports deallocation at any program point, but requires much
more elaborate effects and region aliasing information.
Other approaches are discussed in Section 7, but no solu-
tion seems to provide the degree of control we have found
necessary. Thus, we have adapted several mechanisms—
dynamic regions, unique pointers, and reference-counted
objects—each with its own strengths and weaknesses, to
provide programmers a better set of tradeoffs. The fol-
lowing sections discuss these new mechanisms.

3 Dynamic Regions

Our first addition to Cyclone is a form ofdynamic regions
inspired by the work of Hawblitzel and von Eiken [25].
Dynamic regions, like lexical regions, are containers that
allow allocation of individual objects, but only dealloca-
tion of the entire container. Unlike a lexical region, a dy-
namic region can be explicitly deallocated at (almost) any
program point.

To ensure that a dynamic region is not accessed after
it has been deallocated, we associate extra state with the
region that must be checked at runtime before granting ac-
cess to the region. If the region has been deallocated, the
access check fails by throwing an exception. This check is
analogous to a checked type cast to a live, lexical region.

To avoid checking the state each time a dynamic region
is accessed, we provide a lexically scopedopen construct,
as this example demonstrates:

void foo(dynregion_t<‘r,‘H> k) {
int *‘r x;
{ region h = open(k); //gives access to ‘r
x = rmalloc(h, sizeof(int));
*x = 42;
bar(h,x);

}
free_dynregion(k); //destroys ‘r

}

The function takes a parameterk that is akeyfor the dy-
namic region‘r. The key contains the state indicating

whether the region has been deallocated, as well as a ref-
erence to the region itself. This state must persist beyond
the lifetime of the region because it may be consulted af-
ter the region has been deallocated. In this example, the
state is stored in the heap region (‘H), but, in general, the
state can be allocated anywhere. The key can be used only
when the region in which it resides is known to be live.

In the example above,‘r is a region name in scope
in foo. However, it isnot assumed to be live upon en-
try to the function—by default, regions occurring within
dynregion_t are not assumed live (though an explicit ef-
fect can indicate otherwise). Thus, any attempt to derefer-
ence a pointer into‘r will be rejected by the type checker.
The open construct allows access to a dynamic region
given a key. In particular,region h = open(k); S
takes a keyk, checks that the region has not been deal-
located, and if so, binds a handle for the region toh. Ac-
cess to the region is granted throughout the scope of the
statementS. Thus, in the scope of an open, one can freely
allocate, dereference and pass to functions pointers into
the region, exactly as though it were a lexical region.

The primitive free_dynregion takes a key and re-
claims the storage of the associated region, updating the
key’s state to record that the region is no longer accessi-
ble. Thus, subsequent attempts toopen will result in an
exception. If the region isopen or it has already been
deallocated, thenfree_dynregion fails.

Adding dynamic regions to Cyclone was extremely
simple, as we already had an effect system to keep track of
regions that can be safely accessed. Indeed, we can think
of the lexical-region declarationregion<‘r> h; S as an
abbreviation for creating a dynamic region, opening it for
the scope ofS, and callingfree_dynregion upon exit
from S. The user is never given access to the key for
‘r, soS cannot deallocate the region, but it can be safely
deallocated outside ofS.

When coupled with existential types, dynamic regions
are fully first class: they can be placed in data structures
(e.g., a hash table) and deallocated at will (e.g., when re-
moving an item from the table).

Dynamic regions have some drawbacks. First, unlike
lexical regions, there is a potential for an exception to be
thrown when opening or freeing a dynamic region. Sec-
ond, the key state for a dynamic region (12 bytes in our
current implementation) has to be stored somewhere and
can become a source of leaks. For instance, we can code
an iterative algorithm, such as Wang and Appel’s copying
collector, but we end up leaking a key for each collection.
A unique pointer to the key can prevent this leak and is an
important synergy of our mechanisms.

4 Unique Pointers

Lexical and dynamic regions are not efficient memory
management mechanisms for small sets of objects, or for
sets of objects that need to be deallocated at widely vary-
ing times. Cyclone’sunique pointersaddress these situa-
tions by providing for the safe and efficient deallocation
of individual objects usingfree.

In the presence of aliases,free can lead to unsafe pro-
grams. In particular, callingfree(x) may deallocate an
object referred to by another variabley, introducing a
dangling pointer. By limiting use offree to unique—
unaliased—pointers, we avoid the problem.

Like a dynamic region, the object that a unique pointer
points to can be deallocated at will. Unlike a dynamic re-
gion, there is no run-time state to ensure that subsequent
accesses are prevented. Instead, we rely on a conventional
flow analysis to ensure that an object is never accessed
once it has been deallocated. The analysis is greatly sim-
plified by disallowing copies of unique pointers. More
properly, at any program point, there is at most one (us-
able) copy of a value assigned a unique-pointer type. If
that pointer’s object is freed, then we need not worry about
preventing access through an alias.

The idea of using unique pointers is derived from linear
and affine type systems, and has been suggested in many
other settings (see Section 7). However, we found that a
conventional approach to linearity was far too restrictive.
In particular, a conventional linear type system prohibits
placing linear objects inside nonlinear objects. Further-
more, a conventional linear type system forces the user to
follow awkward coding idioms. For instance, to calculate
the length of a list, the list must be torn apart and recon-
structed. Finally, the introduction of linearity complicates
type abstraction (i.e., polymorphism) since we must dis-
tinguish linear and nonlinear types. In turn, it becomes
difficult to write reusable libraries.

Our design extends conventional approaches to linear-
ity in three key respects:

1. We allow unique pointers to be embedded within
shared objects, and provide an atomic swap opera-
tor that lets them be accessed safely.

2. We provide support for temporarily treating a collec-
tion of unique pointers as if they were pointers into a
lexical region. Hence we can reuse code for “reader”
functions (e.g., calculating a list’s length) without us-
ing awkward coding idioms.

3. We provide additional polymorphism to let us ab-
stract over types that can contain unique pointers or
nonunique pointers.

The following sections discuss these aspects of our de-
sign.

4.1 Simple Unique Pointers

A unique pointer can be created by callingmalloc and
destroyed by callingfree. To distinguish unique point-
ers from pointers into a lexical or dynamic region, we use
types of the formτ *‘U. Here,‘U is a distinguished re-
gion name that indicates uniqueness. Semantically, we
think of τ *‘U as an abbreviation for (ν‘r. τ *‘r) where
we interpret the bindingν‘r as meaning “there exists a
fresh region‘r.” In other words, each unique pointer is
conceptually a reference into a region that contains a sin-
gle object, and that region is distinct from any other re-
gion.

As a simple example, we can write:

struct point { int x; int y; } *‘U p;
p = malloc(sizeof(struct point));
p->x = 1;
p->y = 2;
...
free(p);

This code declaresp to be a unique pointer to a point,
allocates storage for the point, initializes its components,
and ultimately frees it.

An intraprocedural, flow-sensitive, path-insensitive
analysis guarantees that variables and components of data
structures aredefinedbefore they are used. The analy-
sis is a largely straightforward abstract interpretation that
operates over a heap abstraction that includes must points-
to information. (The details of the analysis are described
in Grossman’s dissertation [20].) The important point for
this paper is that a unique pointer can becomeconsumed
(e.g., by passing it tofree), in which case the analysis
signals an error if there is a subsequent attempt to use it.
We chose an intraprocedural analysis to ensure that type-
checking remains modular, and a path-insensitive analysis
to ensure scalability.

To simplify the analysis further, we ensure that there is
at most one usable copy of a unique pointer value by treat-
ing copies as destructive. For instance, ifp is a unique
pointer variable, and we assign its value toq, then in the
continuation,p is considered to be consumed. This en-
sures that if we callfree onq, the deallocated object can-
not be accessed through the aliasp. At run-time, we do
not actually destroy the reference inp. Reading through a
unique pointer (e.g.,*p or p->x) does not consume it.

By default, the analysis considers unique pointers
passed to function calls as consumed, expecting the callee
to deallocate the value, return it to the caller, or place it
in a data structure. This treatment can be overridden with
an explicitnoconsume attribute on the function’s proto-
type. If present, the caller is ensured that the value is still
defined upon return, and the callee cannot consume the
value.

At join points in the control-flow graph, our analysis
conservatively considers a value consumed if there is an
incoming path on which it is consumed. For instance, ifp
is a defined unique pointer and we write:

if (rand()) free(p);

then in the continuation, the analysis treatsp as being con-
sumed. Unfortunately, this can lead to leaks, so we is-
sue a warning in this situation (and a few others such as
overwriting a defined unique pointer). We could gener-
ate an error instead, but we have found that this results
in too many type errors, primarily because of exception
handlers. These handlers typically have a large number of
incoming control-flow edges (at least one for each func-
tion call within the scope of the handler) and it is almost
never the case that the same unique pointers have been
consumed on every edge.

A few other details are necessary to ensure the system
is sound. First, we must prevent pointer arithmetic or ex-
pressions like&p->y whenp is a unique pointer because
free expects a pointer to the beginning of the object. Sec-
ond, polymorphism must be treated with some care, as we
discuss in Section 4.3.

Finally, we must ensure that copies of unique pointers
are made only alongunique paths. A unique pathu has
the form

u ::= x | u.m | u->m | *u
wherex is a local variable, andu is a unique pointer. To
appreciate the unique-path restriction, consider this incor-
rect code:

int f(int *‘U *‘r x) {
int *‘U *‘r y = x; //x and y alias
int *‘U z = *y;
free(z);
return **x; //accesses freed storage!

}

Here,x is a pointer into a conventional region‘r and thus
its value can be freely copied intoy. We then extract a
unique pointer from the contents ofy and free it. Then we
attempt to access the deallocated storage throughx.

In most languages based on linear types, this problem is
avoided by requiring that linear objects cannot be placed
in nonlinear containers. Our approach is similar, except
that we forbid copying of a unique value unless the path
to the value is unique. In the example above, the attempt
to initializez with *y is a compile-time error.

4.2 Unique Pointers in Shared Data

With no additional access mechanism, the unique-path re-
striction prevents using a unique pointer that is placed
within a shared object, which is too restrictive. For in-
stance, we could never use a unique pointer stored in a

global variable. To overcome this limitation, we provide
an atomicswapoperation, writtene1 :=: e2. The addition
of swap was inspired by Baker’s work on a linear vari-
ant of LISP [6]. In Cyclone, swap can be performed on
any pair of (left-hand-side) expressions of unique-pointer
type, including paths that go through nonunique pointers.
It is roughly equivalent to, “temp = e1; e1 = e2; e2

= temp;” The intuition behind the soundness of swap
is that it preserves our crucial invariant: at any program
point there is at most one usable copy of a unique pointer
value. This idea is formalized in our work on linearly
typed assembly language [14] and can also be justified
with formalisms such as alias types [37].

Here is a simple example of the utility of swap:

int *‘U g = NULL;
void init(int x) {
int *‘U temp = malloc(sizeof(int));
*temp = x;
g :=: temp;
if (temp != NULL) free(temp);

}

Here,g is a global variable that holds a unique pointer
to anint. Theinit routine creates the unique pointer
and stores it in a temporary variable. Then, the value of
the temporary is swapped for the value ofg. After the
swap, iftemp is notNULL, then we free the pointer. It is
easy to verify that at any program point, there is at most
one usable copy of any unique value. Furthermore, since
the swap is atomic, this property holds even if multiple
threads were to executeinit concurrently.

Our atomic swap operator makes it possible to build a
set of protocols for shared, concurrent objects without los-
ing the advantages of local reasoning afforded by unique
pointers. An obvious extension is to provide a form of
compare-and-swap so that we could build arbitrary wait-
free structures [28].

4.3 Polymorphism

Cyclone supports polymorphism, which is crucial for
writing reusable library functions. With some care, Cy-
clone’s polymorphism can be extended to handle unique
pointers. The following function illustrates some of the
difficulties. It takes a (nonempty) list and turns it into a
circular list:

typedef
struct List<‘a,‘r> *‘r list_t<‘a,‘r>;

list_t<‘a,‘r> cycle(list_t<‘a,‘r> x) {
list_t<‘a,‘r> res = x;
while (x->tl != NULL) x = x->tl;
x->tl = res;
return res;

}

The full type of the function might informally be written

∀‘a::BT,‘r::R.list_t<‘a,‘r> → list_t<‘a,‘r>

where‘a ranges over boxed types, indicated by the kind
BT, and‘r ranges over regions, indicated by the kindR.

Circular lists clearly violate our uniqueness invariant,
so, we do not expectcycle to work on lists allocated
in ‘U. Indeed, if we instantiate‘r with ‘U, the body of
the function does not typecheck, becausex becomes con-
sumed at the assignment tores, so it cannot be used in
the while loop. To prevent this, we make a distinction be-
tween‘U and other regions: we makeR the kind of nonu-
nique regions, and we have a separate, incompatible kind
UR for ‘U.

A different problem arises if we attempt to instantiate a
type variable with a unique-pointer type. Consider:

‘a hd(list_t<‘a,‘r> x) { return x->hd; }

If we instantiate‘a with int *‘U, the code does not type
check because we access a unique pointer via a nonunique
path. To avoid this problem, we introduce a kind distinc-
tion between unique pointer types (UBT) and other boxed
types.

These distinctions are sufficient to make our polymor-
phism safe, but they do not help us as much as we would
like. For example, thelength function of Section 2 ap-
plies only to lists of elements that are not unique pointers.
We can write a version for lists of unique pointers just
by changing the kind of the element type toUBT, but that
version would not work on lists with nonunique elements.

To address this, we further augment the kind system by
adding “top” elements to type and region kinds. The kind
TopR ranges over unique and non-unique regions, and the
kind TopBT ranges over all boxed types, resulting in a nat-
ural sub-kinding lattice for both regions and types:

R UR

TopR

�
��

@
@I

BT UBT

TopBT

�
��

@
@I

The top kinds are restricted by all of the constraints im-
posed by their subkinds. For instance, a value of type
‘a::TopBT cannot be freely duplicated, must be accessed
via unique paths or a swap, and cannot be freed. We note
that kinds and sub-kinding were already necessary in Cy-
clone to distinguish types from regions, and boxed types
from other types. Fortunately, default kinds and kind in-
ference minimize the programmer’s burden.

Top kinds make it possible to write functions that are
polymorphic over uniqueness. For instance, the following
function destructively reverses lists:

list_t<‘a::TopBT,‘r::TopR>
imp_rev(list_t<‘a,‘r> x) {
if (x == NULL) return NULL;
list_t<‘a,‘r> y = NULL;
x->tl :=: y;
while (y != NULL) {
list_t<‘a,‘r> temp = NULL;
temp :=: y->tl;
y->tl = x;
x = y;
y = temp;

}
return x;

}

Careful examination shows that the code is well-typed,
regardless of the boxed type we use to instantiate‘a or
the kind of region we use for‘r.

Unfortunately, the restrictions imposed by the top kinds
prevent us from writing many useful polymorphic func-
tions. For example, many functions need to alias their
arguments internally, in a way that is not visible to the
caller. It should be safe to call such a function with a
unique pointer, but this will not be permitted by the kind
discipline we have described. The next section gives a
solution to this problem.

4.4 Temporary Aliasing

Programmers often write code that aliases values tem-
porarily, e.g., by storing pointers in loop iterator variables
or by passing them to functions. Even withnoconsume,
such reasonable uses would be severely hampered by the
system presented thus far. To address this problem, we in-
troduce a primitive calledalias that permits temporary
aliasing of a unique pointer for the duration of a state-
ment block, provided that no aliases are live when the
block completes. This primitive resembles and extends
Walker and Watkins’let! [43], theunpack primitive of
alias types [37], and Clarke’s notion of borrowing [15].
Here is a contrived example:

void inc(int *‘r1 cell) {
int *‘r1 t = cell;
print_cell(t);
*cell = *t + 1;

}

void g() {
int *‘U xptr = malloc(sizeof(int));
*xptr = 3;
{ alias <‘r2> int *‘r2 temp = xptr;
inc(temp);

}
free(xptr);

}

Imagine thatinc is an existing, widely-used library func-
tion that was not written with the constraints of unique-
ness in mind. In this simple example, it copies its pointer
argument (using both copies) and passes its pointer argu-
ment off to another function (print_cell). Thus,inc
would not be well-typed if we replaced‘r1 with ‘U, so
‘r1 is restricted to nonunique regions (kindR).

The functiong creates a unique pointerxptr that it
wishes to pass toinc. It does so by using analias
declaration to (a) introduce a fresh region variable‘r2 of
kind R and (b) introduce an alias forxptr in the locally-
bound variabletemp. The temp alias is assigned the
typeint *‘r2 and can thus be passed toinc and freely
copied. The original unique pointer,xptr, is considered
consumed for the duration of the block. Thus, it is impos-
sible for the value to be freed during the execution of the
declaration’s block. At the end of thealias block, any
copies of the unique pointer become unusable, since‘r2
goes out of scope. This allows us to once again treatxptr
as if it is a unique pointer so that we can, for instance, pass
it to free.

In short, alias lets us temporarily treat a unique
pointer as if it were a pointer into a conventional re-
gion, without losing the ability to recycle the storage later.
Throughout the scope of thealias, we can make copies
of a pointer, place it in conventional (shared) data struc-
tures, etc. The fresh region name,‘r2, ensures that no
(usable) copies escape the scope of the construct.

Viewed from another perspective, the flow analysis and
type system are preventing the unique pointer from being
deallocated, at least temporarily. Thus, if we introduce
a lexically scoped region‘r2, the unique pointer will al-
waysoutlive‘r2. Thus, it is safe to treatτ *‘U as a sub-
type ofτ *‘r2. Indeed, it is sound to extend this subtyp-
ing relationthrough read-only type constructors, so that
we can treat an indeterminate number of unique pointers
as if they were references into‘r2.

For example, consider the following definitions:

struct CList<‘a,‘r> { // read-only lists
‘a hd;
struct CList<‘a,‘r> *const ‘r tl;

};
typedef struct CList<‘a,‘r>*const ‘r
clist_t<‘a,‘r>;

int clength(clist_t<‘a,‘r::R> x);
int ulength(list_t<‘a,‘U> x)
__noconsume(1)__ {
int res;
{ alias<‘r2> clist_t<‘a,‘r2> t =

(clist_t<‘a,‘U>)x;
res = clength(t);

}
return res;

}

The clist_t constructor is the same aslist_t except
that the list spine must be read-only. Theclength func-
tion takes a read-only list where each cons cell is, as far
as the function is concerned, allocated in a nonunique re-
gion ‘r. Through conventional subtyping, it is possible
to pass alist_t, allocated in some nonunique region
to clength. That is, list_t<‘a,‘r> is a subtype of
clist_t<‘a,‘r> for any type‘a and any region‘r.

However, it is also possible to pass a uniquelist_t
to clength as shown by the functionulength. In that
function, we first coerce the valuex to a read-only list.
We then bind it with thealias construct to a temporary
that allows us to promote theclist_t<‘a,‘U> value to
a clist_t<‘a,‘r2> value. We then pass the‘r2 ver-
sion toclength. At the end of the function, we are en-
sured thatx is not consumed which is required due to the
noconsume attribute. In turn, this ensures that the caller
can continue to use, and ultimately free, the list.

What is the intuition behind the soundness of such a
“deep” alias? It is clear that region scoping prevents any
copies of the pointers from escaping. By assigning these
tail pointers nonunique pointer types, we are preventing
some function from deallocating one of the cells through-
out the call tolength. Furthermore, because we have a
unique root for the data structure (i.e., exclusive owner-
ship), there can be no other way to get to these values and
free them.

It may seem that the read-only requirement is too
strong, but the counterexample below shows its necessity.
In the example, we overwrite one of the unique pointers
with another to create a circular list by taking advantage of
alias. The type-checker would not reject the assignment
since we have temporarily given all the unique pointers
the same type (a list pointer into region‘r). But on exit
from thealias, we free what the tail of the list points
to, namely the list itself. We then attempt to access the
deallocated storage. To prevent this problem, we must
therefore restrict deep aliasing to read-only paths. This is
not surprising as deep subtyping, in general, is restricted
in the same fashion.

‘a foo(list_t<‘a,‘U> x) {
{ alias<‘r> list_t<‘a,‘r> temp = x;
temp->tl = temp; //bad: creates cycle!

}
list_t<‘a,‘U> tail = x->tl;
free(tail);
return x->hd;

}

For improved programmer convenience, the Cyclone
typechecker optimistically insertsalias blocks around
function-call arguments that are unique pointers when the
formal-parameter type is polymorphic in the pointer’s re-
gion. If this modified call does not type-check, we re-

move the insertedalias. For example, one can rewrite
the ulength function from the previous section as sim-
ply:

int ulength(list_t<‘a,‘U> x)
__noconsume(1)__ {
return clength(x);

}

This backtracking scheme is much like Aiken et al.’s
approach for inferring uses of a similarconfine con-
struct [3].

We have not yet proven the soundness of ouralias
construct, though we are confident that it is true. As men-
tioned previously, the shallow version ofalias can be
seen as a version of Walker and Watkins’let!. However,
we have left the soundness of deepalias to future work.

5 Reference-Counted Objects

Reference counting is often used to track the lifetimes of
shared objects in systems applications; for example, it is
used in both COM and in the Linux kernel. Cyclone sup-
ports a form of reference counting that builds on unique
pointers. This has two great advantages: First, we intro-
duce almost no new language features, rather only some
simple run-time support. Second, the hard work that went
into ensuring that unique pointers coexisted with con-
ventional regions is automatically inherited for reference-
counted objects.

We define a newreference-counted region‘RC, whose
objects, when allocated, are prepended with a hidden
reference-count field. As with unique pointers, the flow
analysis prevents the user from making implicit aliases.
Instead,‘RC pointers must be copiedexplicitly by calling
alias_refptr, which has type:

‘a *‘RC alias_refptr(‘a *‘RC)
__noconsume(1)__;

Callingalias_refptr creates an alias and increases the
reference count of the underlying object. Thenoconsume
attribute specifies that the caller can still use the original
pointer, as well as the newly returned pointer. In essence,
they are both explicit capabilities for the same object.

A reference-counted pointer is destroyed by a call to:

void drop_refptr(‘a *‘RC);

This consumes the given pointer and decrements the ob-
ject’s reference count; if the count becomes zero, the
memory is freed. As with unique pointers, the flow anal-
ysis warns when an‘RC pointer is potentially “lost” at a
control-flow join point. This helps ensure that we do not
forget to decrement the counter on some path. Most im-
portantly, we guarantee a pointer is not prematurely freed
due to a mismanaged count.

We assign‘RC the kindTopR. Thus pointers into it are
treated the same as unique pointers, except they cannot
form part of a unique path, and cannot be passed tofree.
Thus, a function such asimp_rev (Section 4.3) that ab-
stracts overTopR can be passed a reference-counted ob-
ject.

6 Programming Experience

Cyclone has been used for several projects where safety
is important and designers felt garbage collection was in-
appropriate [34, 33, 10]. We have used the language to
build the Cyclone compiler, and a large collection of li-
braries and tools. In this section, we describe our overall
assessment of Cyclone’s memory-management support,
followed by more detailed experiences with an event-
based web server and in an overlay network for streaming
data [29]. We also present performance results demon-
strating the ability to control memory consumption from
within our language.

6.1 Overall Experience

Not surprisingly, code that does only heap allocation and
relies upon garbage collection is the easiest to write and
maintain. On the other hand, we generally found that we
could improve performance and/or space overheads by ju-
dicious application of the other options.

Stack and lexical region allocation are relatively easy to
use, due to the local region inference, the carefully cho-
sen default effects, and the fact that we developed most of
our libraries with region allocation in mind. For instance,
the string, standard I/O, list, and hashtable libraries all ex-
pect region-allocated data. There are annoying aspects,
such as having to parameterize type definitions by a suit-
able number of regions, and having to pass region handles
to the right functions. Support for nested functions (i.e.,
closures) would ease the latter considerably.

Dynamic regions are as easy to use as lexical regions,
and sometimes easier. For instance, dynamic region keys
can be placed in global variables that hold cached results,
such as lexemes in our compiler.

Our initial design for unique pointers had no support
for alias or placing unique pointers in shared objects.
We quickly found this design unusable. When we added
support for these features, coding become easier, though
still somewhat tedious. With the addition of our primitive
alias inference, writing code becamemucheasier.

Nonetheless, room for improvement remains. For in-
stance, ouralias inference is restricted to function call
contexts. In MediaNet, inference discovers 71% of the 66
neededalias statements. Of the ones that remain, the
majority are due to the need to perform pointer arithmetic

on or take the address of unique pointers. A more general
constraint-based inference could discover these and other
uses. Similarly, support for arestrict mechanism in the
style of Aiken et al. [3] might help eliminate the need for
swapping, at least for single-threaded code.

6.2 Web Server

We built a simple, space-conscious web server to demon-
strate how unique pointers give Cyclone programmers
fine-grained control over memory use. The web server
allocates its objects either statically, on the stack, or with
unique pointers. Consequently, it does not need a garbage
collector at all, and we linked it with the Lea allocator [30]
instead.

The server is single threaded, and supports concurrent
connections using non-blocking I/O and an event library
in the style of libasync [31] and libevent [35]. After open-
ing a socket to listen for HTTP connections, the server en-
ters an event loop that dispatches ready file descriptors or
signals to callbacks registered by the server. A callback
is implemented as a closure consisting of a pointer to a
function and an environment that is passed to the function
when it is called. Because concurrent HTTP connections
overlap in a non-nested fashion, we used unique pointers
to implement closures and environments, rather than us-
ing our lexical region constructs.

Our callbacks are implemented with Cyclone structs:

struct CB { <‘a::TopBT>: regions(‘a) > ‘H
void (*f)(int,short,‘a);
‘a env;

};

Here,‘a is an existentially-bound type variable that rep-
resents the type of the environment, andf is a function
pointer that expects the environmentenv of type ‘a to
be passed as its third argument. The first argument off
will be the ready file descriptor or signal, and the sec-
ond argument tells the function whether the first argu-
ment is a descriptor ready for reading, a descriptor ready
for writing, or a signal. The environment type‘a is de-
clared with kindTopBT, which is the kind of boxed types
that are potentially unique pointers. (The outlives con-
straint “regions(‘a) > ‘H” is necessary in practice as
described in our previous work [22], but for simplicity, we
ignore it here.) In our web server, environments are either
integers or unique pointers to compound objects. When
the environment is a unique pointer, our convention is that
the callback itself is responsible for freeing the environ-
ment if necessary.

File-descriptor callbacks are registered with thefdcb
function, which has the following type:

void fdcb(int fd, short ev,
struct CB *‘U cb);

reserved
unique

44

1.44 KTime (CPU clock ticks)

M
em

or
y

U
se

d
(K

B
)

Figure 1:Memory use of the web server with up to 40 concur-
rent clients

For example,fdcb(5,EV_READ,cb) registers a callback
that waits for input (indicated by the constantEV_READ)
on file descriptor 5. Herecb is a unique pointer to a call-
back structure that the caller must allocate. The callback
structure is freed by the event loop when the callback is
invoked.

Our web server is optimized for space usage. When a
file is requested by a client, the server allocates a small
buffer and uses the buffer to read the file and send it to
the client in chunks. We used a 1KB buffer size for our
measurements, but of course the size is configurable. Fig-
ure 1 demonstrates the tight control over memory that we
achieved, by tracking the memory use of the web server
under a sustained load with a maximum of 40 concurrent
connections. The x-axis plots CPU time in terms of clock
ticks (as determined by theclock() system call), while
the y-axis plots memory consumed. We also plot the to-
tal space reserved by the allocator (i.e., acquired from the
operating system). Our profiler confirms that all dynamic
memory is stored in the unique region, which occupies at
most 40KB or so (1KB per 40 connections) of the total
reserved memory of 44KB. The server thus makes very
efficient use of heap memory, with little fragmentation.
And, of course, there are no pauses introduced by garbage
collection.

6.3 MediaNet

MediaNet is an overlay network for performing on-line,
adaptive scheduling for packet streams with user-specified
resource constraints [29]. Each node in the network runs
a local server, implemented in Cyclone, that communi-
cates with the other servers to deliver and adaptively trans-
form streaming data. Each local server behaves accord-
ing to a configuration program called aContinuous Media
Network(CMN). This is simply a directed acyclic graph

(DAG) of operations, where each operation works on the
data as it passes through. As network conditions change, a
global scheduler may reconfigure local schedulers to im-
plement better-performing CMNs. On each local sched-
uler, the new CMN will begin to run alongside the old one,
until all old data has been delivered and the old CMN can
be removed.

In the local-scheduler implementation, we allocate
CMNs in dynamic regions; the currently-active CMN is in
thecurrentregion, while the new CMN, present only dur-
ing reconfiguration, is in thenewregion. After reconfigu-
ration, thecurrentregion can be freed, and thenewregion
becomescurrent. Regions work well for CMNs because
all the relevant data is allocated and logically deleted at
the same time. Dynamic regions are necessary because
the lifetimes of the current and new CMNs overlap, but
are not nested.

The packets sent between operations are implemented
as a simpler variant of Linux’sskbuffs, calledstream-
buffs:

struct StreamBuff { <i::I>
... // three omitted header fields
tag_t<i> numbufs;
struct DataBuff<‘RC> bufs[numbufs];

};

The packet data is stored in the arraybufs. Note that
bufs is not a pointer to an array, but is flattened directly
within StreamBuff. Thus StreamBuff elements will
vary in size, depending on the number of buffers in the ar-
ray. Thenumbufs field holds the length ofbufs. The no-
tation<i::I> introduces an existential type variable that
has integer kindI, and is used by our type system to en-
force the correspondence between thenumbufs field and
the length of thebufs array.Databuffsstore packet data:

struct DataBuff<‘r> {
unsigned int ofs;
char ?‘r buf;

};

The buf field points to an array of the actual data. The
? notation designates a pointer to a dynamically-sized
buffer, which is accompanied by bounds information to
prevent overflow. Theofs field indicates an offset, in
bytes, into thebuf array. This offset is necessary when
‘r is ‘U or ‘RC since pointer arithmetic is disallowed in
those cases; theStreamBuff definition allocatesbuf in
‘RC.

While databuffs are reference-counted, we allocate
streambuffs uniquely, so they can be freed immediately af-
ter the corresponding data is sent. When multiple stream-
buffs must refer to portions of the same packet data, we
clone them as shown in Figure 2. Here, three individ-
ual streambuffsA, B, andC share some underlying data;

A buffer with data

1234

0 4 00 0

A B C

Figure 2:Pointer graph for three streambuffs

unique pointers have open arrowheads, while reference-
counted ones are filled in. This situation could have arisen
by (1) receiving a packet and storing its contents inA; (2)
creating a new bufferB that prepends a sequence number
1234 to the data ofA; and (3) stripping off the sequence
number for later processing (assuming the sequence num-
ber’s length is4 bytes). Thus,C andA are equivalent.
When we free a streambuff, we decrement the reference
counts on its databuffs, so they will be freed as soon as
possible.

An earlier version of MediaNet stored all packet data in
the garbage-collected heap, and used essentially the same
structures for packet data. One important difference was
that databuffs contained an explicitrefcnt field managed
by the application to track aliasing. If an operation deter-
mined that no aliases to a packet’s data existed, the data
could be safely mutated, improving performance. Unfor-
tunately, this approach yielded a number of hard-to-find
bugs whose appearance depended on configuration, data
format, and timing. The current version uses‘RC pointers
instead of manual counts. This greatly reduces the possi-
bility of mismanaging the count, and lets us free the data
immediately after its last use.

6.3.1 Performance

Although moving streambuffs and databuffs to unique
pointers and reference counting does not eliminate Me-
diaNet’s reliance on the garbage collector, it does signifi-
cantly improve performance. In a simple experiment, we
used the TTCP microbenchmark [32] to measure Medi-
aNet’s packet-forwarding throughput and memory use for
varying packet sizes. We measured two configurations:

• gc+free is MediaNet built as described above, us-
ing the Boehm-Demers-Weiser (BDW) conservative
garbage collector [9], version6.2α4, for garbage col-
lection and manual deallocation.

• gc is as above, but with streambuffs and databuffs
stored in the garbage-collected heap.

For our experimental setup, we used three 1 GHz Pentium
III’s, each running Linux kernel 2.4.18 with 250 MB of
RAM. The machines were directly connected in a line via
gigabit Ethernet (using Intel Pro/1000 F cards), with the

100 1000 10000
packet size (bytes)

0

100

200

300
th

ro
ug

hp
ut

 (M
b/

s)

gc+free
gc

Figure 3: MediaNet throughput

middle machine acting as a router. The MediaNet server
ran on this machine, and the TTCP sender and receiver
ran on opposite ends.

Figure 3 plots the total throughput of MediaNet, in me-
gabits per second, as a function of packet size (note the
logarithmic scale). Each point is the median of 21 trials
in which 5000 packets are transferred, with little variance:
the semi-interquartile range2 is typically less than 0.1% of
the median. The two configurations perform roughly the
same for smaller packet sizes, butgc starts to fall behind
as packets become larger than512 bytes. The largest gap
is for 2 KB packets, where thegc+freecase achieves 42%
better throughput; at 32 KB packets the improvement is
21%.

Figure 4 illustrates the memory usage of each config-
uration for the experiment in which 5000 4 KB packets
are transferred. This graph has the same format as the
graph in Figure 1, but additionally shows the heap and
reference-counted regions. Also, the reserved memory for
thegc+freecase is not shown.

Thegcconfiguration exhibits a sawtooth pattern, where
each peak roughly coincides with a garbage collection. In-
terestingly, the locations of the peaks also exhibit a saw-
tooth trend; the BDW collector often collects before all
available memory is exhausted, and delays some work to
reduce pause times. The large gap between the topmost
peak and the amount of reserved data is evidently frag-
mentation. Thegc+free configuration both uses and re-
serves far less memory (128 as opposed to 840 KB for re-
served memory, and 8 as opposed to 420 KB of peak used
memory) There is some initial data allocated in the heap
that stays constant through the run, and the reference-
counted and unique data (the small line at the bottom)
never consume more than a single packet’s worth of space,
since each packet is freed before the next packet is read in.

2The semi-interquartile range is similar to the standard deviation, but
is relevant when choosing the median as the single-point summarizer.

reserved
heap
unique

840 KB

81.0 clocksTime (CPU clock ticks)
gc configuration

M
em

or
y

U
se

d
(K

B
)

refcnt
heap
unique

7.78 KB

74.0 clocksTime (CPU clock ticks)
gc+free configuration

M
em

or
y

U
se

d
(K

B
)

Figure 4: MediaNet memory profile (4 KB packets)

For comparison, we also ran our experiment using the
Lea allocator. It performed slightly better thangc+free,
exhibiting slightly higher throughput, and reserving less
memory (only 25 KB as opposed to 128 KB).

7 Related Work

The ML Kit [38] implements Standard ML with regions.
Whole-program analysis (type inference) assigns regions
using a system that (like Cyclone) has LIFO regions as
its backbone [39]. Extensions to avoid some LIFO re-
strictions include an analysis for late allocation and early
deallocation of regions [2], integration with an accurate
garbage collector [23], and a regionreset analysis.

The RC language and compiler [19] provides language
support for regions in C. Access control for regions is ac-
complished by dynamic reference counts instead of static
type tests, though an analysis tends to eliminate much of
the overhead. RC does not prevent dangling pointers to
data not in regions, so there is no support for ensuring

conventional uses ofmalloc/free are safe.
Work by Bacon et al. [5] and Boyapati et al. [11] to

prevent data races in Java uses unique pointers as one way
to prevent two threads from simultaneously accessing the
same object. These projects use special syntax for “de-
structive reads” (swapping in NULL). Boyapati et al. [12]
have recently used a region-based type system for avoid-
ing run-time errors in Real-Time Java [7] programs. Real-
Time Java regions are like Cyclone’s dynamic regions but
have a more awkward semantics. A region is implicitly
deallocated when no thread has it opened and a rather
ad hoc“portal” field is NULL. Without portals, threads
would have no way to share memory that did not out-
live one of the threads. With unique pointers to dynamic-
region keys, Cyclone programmers can encode portals.

Work on linear types [40], alias types [37, 42], capa-
bilities [41], and linear regions [43, 27] provide impor-
tant foundations for safe manual memory management on
which we have built. In making these ideas convenient in
a source language, we have needed interesting extensions
like alias and reading through unique pointers without
consuming them.

Vault [16, 17] is another project adapting work on re-
gions and linearity to a source language. Unique point-
ers allow Vault to track sophisticated type states, includ-
ing whether memory has been deallocated. To relax the
uniqueness invariant, they use noveladoptionand focus
operators. Adoption lets programs violate uniqueness by
choosing a unique object to own a no-longer-unique ob-
ject. Deallocating the unique object deallocates both ob-
jects. Compared to Cyclone’s support for unique point-
ers in nonunique context, adoption prevents more space
leaks, but the semantics requires hidden data fields so the
run-time system can deallocate large data structures im-
plicitly. Focus allows adopted objects to be temporarily
unique. Compared toswap, focus does not incur run-time
overhead, but the type system to prevent access through
an unknown alias requires more user annotations. That
said, the type system appears expressive enough to en-
code swap. Compared toalias, focus is less powerful be-
cause it applies only to a single object. Focus also does
not work as-is with multithreading, whereas implement-
ing swap atomically makes our approach sound in a multi-
threaded setting. Integration with Cyclone’s multithread-
ing design [21] remains future work.

Numerous projects have enriched imperative languages
with unique pointers using destructive reads to preserve
uniqueness. Using swaps instead of an implicit NULL
is rare, but has been done [6, 24]. Most systems allow
temporary aliasing of an individual object, but nothing
like our “deep”alias. Clarke’s recent work on exter-
nal uniqueness [15] usesownership typesto ensure refer-
ences do not escape the scope of a temporary alias. The
technique is similar to our use of regions, but the lack of

an effects system leads to different design decisions. Boy-
land [13] summarizes several projects and proposes using
static analysis to avoid the disadvantages of destructive
reads. An intraprocedural analysis can allow aliases of
unique objects so long as multiple aliases are not used on
any program path.

Uniqueness types in the functional language Clean [1]
allow in-place update and functional I/O. Such types can
refer only to values pointing to objects not otherwise ref-
erenced. A flow-sensitive “sharing” analysis ensures this
restriction.

Berger et al.’sreaps[8] combine the run-time perfor-
mance advantages of regions (batched deallocation) with
individual objects (fine-grained deallocation). They per-
mit deallocating objects within regions and report perfor-
mance superior to application-specific allocators. Reaps
validate the importance of regions and individual objects,
but they do not prevent dangling-pointer dereferences.

Finally, sophisticated interprocedural analyses are start-
ing to appear to detect leaks (e.g., [26]) or more generally
reason about temporal heap properties (e.g., [36]). It is not
yet clear if they are cheap enough to run on every compi-
lation or if they can give the strong safety guarantees of
Cyclone’s intraprocedural analysis, especially in the pres-
ence of threads and/or separately compiled libraries. On
the other hand, these analyses typically need far fewer an-
notations.

8 Conclusions

Cyclone now supports a rich set of safe memory-
management idioms for users unwilling to use only au-
tomatic techniques:

• Stack/lexical regions:We can avoid any run-time
cost for data whose lifetime is known sufficiently
well when allocated.

• Dynamic regions: We can aggregate the run-time
cost and potential failures for data that can be deal-
located simultaneously.

• Heap region:We can use conservative garbage col-
lection for a portion of a program’s data.

• Uniqueness:We can support manual deallocation of
unaliased data. We can put unique pointers in non-
unique data structures by using a swap operator to
access them.

• Reference counting:We can support explicit copies
of otherwise unaliased data and reclaim the data
when no copies remain.

Users can use the best idioms for their application.

Moreover, we have designed linguistic constructs for
tying these idioms together in a coherent language that
supports reusable code amid well-known tradeoffs. Lex-
ical regions are the backbone of our system and exploit
the convenience of data lifetime corresponding to scope.
We regain this convenience for dynamic regions with
open and for unique and reference-counted pointers with
alias. The latter extends previous approaches by allow-
ing temporary aliasing of entire data structures. We also
use polymorphism to write reusable code without tem-
porary aliasing, but the coding style is often too awk-
ward. Finally, we provide run-time checking when static
enforcement is too onerous: Dynamic regions provide
checkable keys to relax the compile-time constraints of
lexical regions. Analogously, reference-counting provides
checkable counts to relax the uniqueness invariant.

Together, these idioms represent significant progress
toward our goal of enforcing sound, user-specified idioms.
Looking forward, we envision a need for more specific
aliasing information and more first-class status for refer-
ence counts. Nonetheless, we have been pleased with our
ability to support natural invariants that improve actual ap-
plication performance and predictability.

References

[1] P. Achten and R. Plasmeijer. The ins and outs of
Clean I/O. Journal of Functional Programming,
5(1):81–110, 1995.

[2] A. Aiken, M. Fähndrich, and R. Levien. Bet-
ter static memory management: Improving region-
based analysis of higher-order languages. InACM
Conference on Programming Language Design and
Implementation, pages 174–185, La Jolla, CA, June
1995.

[3] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi.
Checking and inferring local non-aliasing. InACM
Conference on Programming Language Design and
Implementation, pages 129–140, San Diego, CA,
June 2003.

[4] Apache Foundation. Apache web server.http://
www.apache.org.

[5] D. Bacon, R. Strom, and A. Tarafdar. Guava: A
dialect of Java without data races. InACM Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 382–400, Min-
neapolis, MN, Oct. 2000.

[6] H. Baker. Lively linear LISP—look ma, no garbage.
ACM SIGPLAN Notices, 27(8):89–98, 1992.

[7] G. Bellella, editor. The Real-Time Specification for
Java. Addison-Wesley, 2000.

[8] E. D. Berger, B. G. Zorn, and K. S. McKinley. Re-
considering custom memory allocation. InACM
Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 1–12,
Seattle, WA, Nov. 2002.

[9] H.-J. Boehm and M. Weiser. Garbage collection in
an uncooperative environment.Software – Practice
and Experience, 18(9):807–820, 1988.

[10] H. Bos and B. Samwel. Safe kernel programming in
the OKE. In5th IEEE Conference on Open Archi-
tectures and Network Programming, pages 141–152,
New York, NY, June 2002.

[11] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. InACM Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 56–69, Tampa
Bay, FL, Oct. 2001.

[12] C. Boyapati, A. S̆alcianu, W. Beebee, and M. Ri-
nard. Ownership types for safe region-based mem-
ory management in real-time Java. InACM Con-
ference on Programming Language Design and Im-
plementation, pages 324–337, San Diego, CA, June
2003.

[13] J. Boyland. Alias burying: Unique variables with-
out destructive reads.Software Practice and Experi-
ence, 31(6):533–553, May 2001.

[14] J. Cheney and G. Morrisett. A linearly typed as-
sembly language. Technical Report 2003-1900, De-
partment of Computer Science, Cornell University,
2003.

[15] D. Clarke and T. Wrigstad. External uniqueness. In
International Workshop on Foundations of Object-
Oriented Languages, New Orleans, LA, Jan. 2003.

[16] R. DeLine and M. F̈ahndrich. Enforcing high-level
protocols in low-level software. InACM Conference
on Programming Language Design and Implemen-
tation, pages 59–69, Snowbird, UT, June 2001.

[17] M. Fähndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming.
In ACM Conference on Programming Language De-
sign and Implementation, pages 13–24, Berlin, Ger-
many, June 2002.

[18] C. Fraser and D. Hanson.A Retargetable C Com-
piler: Design and Implementation. Addison-Wesley,
1995.

[19] D. Gay and A. Aiken. Language support for regions.
In ACM Conference on Programming Language De-
sign and Implementation, pages 70–80, Snowbird,
UT, June 2001.

[20] D. Grossman.Safe Programming at the C Level of
Abstraction. PhD thesis, Cornell University, 2003.

[21] D. Grossman. Type-safe multithreading in Cy-
clone. InACM International Workshop on Types in
Language Design and Implmentation, pages 13–25,
New Orleans, LA, Jan. 2003.

[22] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. InACM Conference on
Programming Language Design and Implementa-
tion, pages 282–293, Berlin, Germany, June 2002.

[23] N. Hallenberg, M. Elsman, and M. Tofte. Combin-
ing region inference and garbage collection. InACM
Conference on Programming Language Design and
Implementation, pages 141–152, Berlin, Germany,
June 2002.

[24] D. Harms and B. Weide. Copying and swapping: In-
fluences on the design of reusable software compo-
nents.IEEE Transactions on Software Engineering,
17(5):424–435, May 1991.

[25] C. Hawblitzel and T. von Eiken. Type system sup-
port for dynamic revokation. May 1999.

[26] D. L. Heine and M. S. Lam. A practical flow-
sensitive and context-sensitive C and C++ memory
leak detector. InACM Conference on Programming
Language Design and Implementation, pages 168–
181, San Diego, CA, June 2003.

[27] F. Henglein, H. Makholm, and H. Niss. A di-
rect approach to control-flow sensitive region-based
memory management. InPrinciples and Practice
of Declarative Programming, Florence, Italy, Sept.
2001.

[28] M. Herlihy. Wait-free synchronization.ACM Trans-
actions on Programming Languages and Systems,
13(1):124–149, Jan. 1991.

[29] M. Hicks, A. Nagajaran, and R. van Renesse. Medi-
aNet: User-defined adaptive scheduling for stream-
ing data. In6th IEEE Conference on Open Architec-
tures and Network Programming, pages 87–96, San
Francisco, CA, Apr. 2003.

[30] D. Lea. A memory allocator.http://gee.cs.
oswego.edu/dl/html/malloc.html.

[31] D. Mazières. A toolkit for user-level file systems. In
USENIX Annual Technical Conference, pages 261–
274, Monterey, CA, June 2001.

[32] M. Muuss. The story of TTCP.http://ftp.arl.
mil/~mike/ttcp.html.

[33] P. Patel and J. Lepreau. Hybrid resource control of
active extensions. In6th IEEE Conference on Open
Architectures and Network Programming, pages 23–
31, San Francisco, CA, Apr. 2003.

[34] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and
T. Stack. Upgrading transport protocols using un-
trusted mobile code. In19th ACM Symposium on
Operating System Principles, Oct. 2003. To appear.

[35] N. Provos. libevent — an event notification library.
http://www.monkey.org/~provos/libevent/.

[36] R. Shaham, E. Yahav, E. Kolodner, and M. Sagiv.
Establishing local temporal heap safety properties
with application to compile-time memory manage-
ment. InStatic Analysis Symposium, pages 483–503,
San Diego, CA, June 2003.

[37] F. Smith, D. Walker, and G. Morrisett. Alias
types. In9th European Symposium on Program-
ming, volume 1782 ofLecture Notes in Computer
Science, pages 366–381, Berlin, Germany, Mar.
2000. Springer-Verlag.

[38] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg,
T. H. Olesen, and P. Sestoft. Programming with re-
gions in the ML Kit (for version 4). Technical report,
IT University of Copenhagen, Sept. 2001.

[39] M. Tofte and J.-P. Talpin. Region-based mem-
ory management. Information and Computation,
132(2):109–176, Feb. 1997.

[40] P. Wadler. Linear types can change the world! In
M. Broy and C. Jones, editors,Programming Con-
cepts and Methods, Sea of Galilee, Israel, Apr. 1990.
North Holland. IFIP TC 2 Working Conference.

[41] D. Walker, K. Crary, and G. Morrisett. Typed mem-
ory management in a calculus of capabilities.ACM
Transactions on Programming Languages and Sys-
tems, 24(4):701–771, July 2000.

[42] D. Walker and G. Morrisett. Alias types for recursive
data structures. InWorkshop on Types in Compila-
tion, volume 2071 ofLecture Notes in Computer Sci-
ence, pages 177–206, Montreal, Canada, Sept. 2000.
Springer-Verlag.

[43] D. Walker and K. Watkins. On regions and lin-
ear types. In6th ACM International Conference on
Functional Programming, pages 181–192, Florence,
Italy, Sept. 2001.

[44] D. Wang and A. Appel. Type-preserving garbage
collectors. In28th ACM Symposium on Principles of
Programming Languages, pages 166–178, London,
England, Jan. 2001.

