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Misspecification happens for various reasons in weight adjustment procedures

in survey data analysis. To study the consequences of weight misspecifications, we

study the effects of using a multiplicative biasing factor to describe the weight ad-

justments and reflect the distributional change from design/initial weights to final

weights. The necessary and sufficient condition of the Horvitz-Thompson (HT) es-

timator of a population total being consistent is then given in a superpopulation

setting. When HT is consistent, we first investigate the bias in other estimators

for population totals. We show the necessary condition for bias in Generalized Re-

gression (GREG) estimator and the resulting bias formula in the superpopulation

limiting sense. We also link the bias in a model-based estimator of Zheng and Little

to the failure of extrapolated model-fitting outside the sample. Both findings are

validated in simulation studies. Next we find that the biasing factor affects estima-

tors so that one particular estimator may have the smallest variance under design

weights but not under misspecified weights due to variance inflation. A preliminary



analysis on simulated samples drawn from a population of real American Commu-

nity Survey (ACS) data illustrates the quality of fit of the biasing factor model we

proposed to the ACS data with weights modified by a few calibration/raking steps.
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Chapter 1. Introduction

1.1 General introduction

Sample surveys are useful tools for understanding population characteristics

such as quantitative information about economy and society in academic research,

business decision making, and government planning. The population that we are

interested in understanding is often called the target population. The population

regarding which we have a whole list from which we could design the sampling

scheme is often called sampling frame. In general, survey samples can be divided into

two types: probability samples and non-probability samples. In this dissertation,

we only focus on probability samples.

Sampling weights, or survey weights are important in constructing unbiased

estimators with the collected the sample. One important example is the Horvitz-

Thompson (HT) estimator, used to estimate population total of a measured at-

tribute, which will be introduced in Section 1.1. Without using sampling weights,

the estimates may reflect only nuances of a particular sample and may contain signif-

icant levels of bias. Ideally, the weight of a unit, which is a positive value associated

with the unit in the sample, should be the size of the population subgroup that the

1



sampling unit represents in the target population.

Sampling weights are usually calculated or constructed in the following ways.

1). After the careful design of the sampling procedure, we can often calculate

the inclusion probabilities for the sampling units. The design weights, or initial

weights are defined as reciprocals of the inclusion probabilities. After collecting the

sample, all the design weights usually are known within the sample. 2). After design

weights are computed, weight adjustments are usually necessary due to nonresponse,

the correction of frame deficiencies, and techniques (such as weight-trimming) used

to reduce variances of estimators. 3). Those mentioned adjusting steps could be

repeated if necessary. 4). If properly adjusted, the resulting sets of weights, called

final weights, would enter into the analysis stage and be used to construct many

different population quantities of interest.

Weight adjustments generally rely on extra model assumptions and exter-

nal information. For example in adjusting for nonresponse, we have to assume a

response-propensity model and in matching the population totals of covariates, we

have to import extraneous information that we believe is reliable and accurate. The

published literature explains, when those assumed models and imported information

are truely reliable, the resulting set of weights will bring benefits such as reducing

variance of estimators. We call such resulting set of weights properly adjusted sam-

pling weights. However, it is important also to investigate the consequences when

any of the model assumptions or exogenous information are not correct. For exam-

ple, we may use a wrong response-propensity model that we believe to be correct,

or use wrong totals that we consider to be accurate. In such a case we refer to the
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weights are misspecified, or inappropriately adjusted. Whether such a set of weights

could still produce design-unbiased estimators, or estimators with smaller variances,

remain to be studied carefully.

In this dissertation, we will focus on six estimators, some of which are design-

based and some of which are model-based. Therefore, it is also worth introducing

the ideas of and the differences between design-based and model-based approaches.

The design-based approach views all collected information including measurements

of interest and auxiliary information as forming a big array of constants. When

investigating biases and variances of the estimators, we view the randomnesses as

coming only from whether the unit is sampled or not and take expectation with re-

spect to the sample design. In this approach, a probability sample must be selected.

In the model-based approach, we may view the collected information associated

with each unit as forming a vector, which is a realization of an unknown underly-

ing stochastic mechanism. We consider the population distributional structure in

deciding on an estimator. This approach can be applied to either probability or

non-probability samples. In this dissertation, the model-based methods we have

considered are all applied to probability samples.

1.2 Overview

We consider probability sampling designs over a finite set of elements labeled

by integers U = {1, 2, . . . , N} with N being the finite population size. Let vector Yi

be the variable of interest associated with unit i ∈ U . The set {Yi}Ni=1 is denoted by
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F , called a finite population. To simplify, we assume Yi’s are real numbers in this

prospectus. Besides Yi’s, some auxiliary information, denoted by covariate column

vector Xi, is associated with unit i. From now on let us define F = {(Yi, Xi)}i∈U .

We consider probability sampling designs where a random sample S, a set of

selected labels, is drawn from the finite population F according to the inclusion

probabilities π0
i = P (i ∈ S), for i = 1, . . . , N . Let I[i∈S] be the indicator variable

for unit i, defined as below.

I[i∈S] =


1 if unit i is included in the sample S,

0 otherwise.

Suppose the main interest of the sample survey is to estimate the population total

of the outcome variable Yi, defined as tY =
∑N

i=1 Yi. The example of Y -total is not

fully general, but many other parameters of interest can be expressed as functions

of one or more attribute totals.

1.3 Superpopulation and pseudo-random samples

Design-based approaches view Yi and Xi as elements of a big array and rows

of a big matrix when constructing estimator of finite population parameter θ, say

θ̂. The only randomness in the estimator θ̂ is viewed in this approach to come from

I[i∈S]. Define π0
i be the inclusion probability with P (i ∈ S) = π0

i . It is sometimes

sufficient to discuss design-bias and design-variance of estimator θ̂.

Another type of approach is called model-based. It is also common to for-
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mulate the survey data analysis into a statistical parameter estimation problem.

Commonly used statistical models include linear regression models and generalized

linear models. Then it would be natural to ask questions about consistency of esti-

mates of the model parameters and finite population parameters as well. This leads

to the superpopulation set up. We may consider the finite population F to be gen-

erated by a unknown hypothetical underlying stochastic mechanism. For example,

we consider F = {(Yi, Xi, π
0
i )}Ni=1 independently identically distributed (iid) with a

joint distribution function G, where π0
i could be viewed as depending on Xi (and

possibly on other independent random variables) and therefore is random through

Xi. The sample (Yi, Xi)i∈S then is drawn from the finite population F . The unit

i is included in the sample with probability π0
i . Mathematical derivations on con-

sistency, limiting distributions under this approach could be developed based on

specific assumptions on G. We are considering iid superpopulation samples in this

thesis, but it is worth mentioning that sometimes non-iid superpopulation samples

are more practical for example in cluster sampling setting. Discussions could be

found in Korn and Graubard (1998); Graubard and Korn (2002).

Although it often makes sense to view (Yi, Xi, π
0
i ) as iid samples from a hy-

pothetical distribution G, we may want to add more elements into (Yi, Xi) to in-

corporate other probabilistic mechanisms such as nonresponse or calibration. We

then introduce the pseudo-random variable idea to represent all other probability

procedures done after we collect the sampled units. For example, following the idea

of Oh and Scheuren (1983), each unit i ∈ F is associated with a random variable

Ri which is 1 if the unit would respond to the survey if sampled and 0 otherwise.
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We would not see Ri for i /∈ S just as we do not observe (Yi, Xi) for i /∈ S. But

hypothetically, we view Ri as a pre-generated random element before the probability

sampling procedure and therefore Ri could be added into (Yi, Xi) and F could be

written as {(Yi, Xi, Ri)}Ni=1. All other probability mechanisms like calibration could

be viewed as such pseudo-random variables and therefore are part of superpopula-

tion iid samples. Later in Chapter 2 we will introduce the weight biasing factor

incorporating all probability procedures related to weight modifications and/or ad-

justments. By borrowing the idea of pseudo-random survey variables, such a biasing

factor could be viewed as a feature of superpopulation iid samples as well.

1.4 Brief introduction of six estimators considered

There are six estimators of tY considered in this thesis. All estimators in-

troduced in this section have superscripts d, which implies that design weights

di = 1/π0
i have been used. Later when we introduce the weight misspecification

idea, we will use superscripts w to denote the estimators under misspecified weights.

• Horvitz-Thompson (HT) estimator is a design-unbiased estimator of the finite

population total with unequal probabilities of inclusion, defined as

t̂HT, dY =
∑
i∈S

Yi
π0
i

.

Here design-unbiased is defined as

Ed

(
t̂HT, dY

∣∣∣ F) = tY

6



where Ed(·| F), the design expectation, denotes the average over all possi-

ble samples under the design for the specific finite population F (Isaki and

Fuller 1982; Fuller 2011). As long as we have π0
i > 0 for all i ∈ U , this

inverse probability weighting approach would provide unbiased estimation of

the population total regardless of the sampling scheme adopted. Moreover,

this universal unbiased property does not depend on any distributional model

assumption of survey measurement Yi and covariates Xi. When the outcome

variable and the inclusion probability are weakly linearly correlated, the HT

estimator could be very inefficient, i.e., could have large variance.

• Generalized regression estimator (GREG) (Särndal et al. 1992; Fuller 2002),

given by (1.1), is design-consistent utilizing the association between covariate

Xi and outcome Yi when the total tX =
∑
U Xi is known:

t̂GREG, dY = (N, ttrX)β̂ = t̂HT, dY +

((
N

tX

)
−
(∑

i∈S 1/π0
i

t̂HTX

))tr
β̂ (1.1)

where t̂HT, dX =
∑

i∈S Xi/π
0
i and

β̂ =

(∑
S

1

π0
i

(
1

Xi

)⊗2
)−1(∑

S

1

π0
i

(
1

Xi

)
Yi

)
,

and the inverse is assumed to exist. Here the operator “⊗2” is defined as

x⊗2 = xx′. Following Fuller’s definition (Fuller 2011), design-consistency of

t̂GREGY indicates that given a sequence of increasingly large finite populations

{FN} and an associated sequence of sample designs with increasing sample
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size, for every ε > 0,

lim
N→∞

Pd

{
|t̂GREGY − tY | > ε

∣∣∣FN} = 0, a.s.,

where the notation means that we condition on the realized finite population

FN and the probability Pd{ · | FN} is with respect to the sample design, similar

to Ed.

• Zheng and Little’s methods (ZL). Zheng and Little (2003) considered smooth-

ing the outcome variable by modeling Yi against the inclusion probability

using a p-spline function, defined in (1.2). One has to decide how delicate

the p-spline model is by choosing the degree p and number of knots m. The

exponent k also needs to be decided and commonly used values are k = 0, 1/2

or 1. Zheng and Little suggested using random-effect terms as coefficients

γp+1, . . . , γp+m. To simplify, only fixed effects were considered in this study.

Yi = γ0 +

p∑
j=1

γj(π
0
i )
j +

m∑
l=1

γp+l(π
0
i − κl)

p
+ + εi,

where εi
iid∼ N

(
0, (π0

i )
2kσ2

ε

)
.

(1.2)

Let γ = (γ0, γ1, . . . , γp+m)tr. After weighted least-squares estimates γ̂ are

obtained using (1.2), predicted Yi values denoted by Ŷ ZL, d
i , are given by

Ŷ ZL, d
i = γ̂0 +

p∑
j=1

γ̂j(π
0
i )
j +

m∑
l=1

γ̂p+l(π
0
i − κl)

p
+.
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If π0
i ’s are only known for the sample S, the estimated population total is

given by

t̂ZL1, d
Y =

∑
i∈S

Ŷ ZL, d
i /π0

i . (1.3)

If π0
i ’s are known for the whole population, the estimated population total

could be given by

t̂ZL2, d
Y =

∑
i∈S

Yi +
∑
i/∈S

Ŷ ZL, d
i . (1.4)

• Pfeffermann-Sverchkov’s method (PS). Pfeffermann and Sverchkov (1999) con-

sidered smoothing the weights by a function of covariates and then applying

the weighted least squares. We consider only least-squares estimation, which

is semi-parametric in the sense that the residuals Yi − (1, X tr
i )β are assumed

to have mean zero but are not otherwise distributionally restricted. The esti-

mated coefficient vector has the form

β̂PS, d =

(∑
i∈S

di

d̃i

(
1

Xi

)⊗2
)−1(∑

i∈S

di

d̃i

(
1

Xi

)
Yi

)
, (1.5)

where the operator “⊗2” is defined as x⊗2 = xxtr for column vector x and d̃i

is obtained as the predictor of di from Xi under the regression model

log(di − 1) = (1, Xi)
trβ + εi, εi

iid∼ N (0, σ2).

Here di = 1/π0
i .

• Beaumont’s method (B). Beaumont (2008) dealt with the inefficiency of the
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HT estimator by smoothing weights against the outcome variable. Estimated

smoothed weights d̂i are obtained by a least-squares regression of log(di − 1)

on vector hi which is a known function of Yi. Then the smoothed estimator of

population total could be given by

t̂BY =
∑
i∈S

d̂iYi. (1.6)

1.5 Brief introduction of sampling methods considered

Assume that all inclusion probabilities π0
i ’s have been designed and computed.

A practical issue in the simulation study is how to draw the sample S such that

P (i ∈ S) = π0
i .

Assume that we are interested in probability-proportional-to-size sampling without

replacement (PPSWOR).

• One quick solution Poisson sampling, sampling procedure in which each ele-

ment i ∈ U is chosen for inclusion in the sample S according to an independent

Bernoulli trial. A detailed introduction was given in Section 3.2 of Särndal

et al. (1992). In Poisson sampling,

I[i∈S]
iid∼ Bernoulli(π0

i ), i = 1, . . . , N.
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Since I[i∈S]’s are independent, the joint inclusion probability π0
ij for distinct

units i, j is simply π0
i × π0

j . This simplifies some calculations in variance

estimation. The disadvantage of Poisson sampling is that the actual sample

size is random with expectation
∑N

i=1 π
0
i .

• Another easy method is systematic sampling (Madow 1949), available in R

function UPsystematic in package sampling (Tillé and Matei 2016). When it

is used in unequal probability sampling, rather than simply counting through

elements of the population and selecting every k
th

unit, each element is al-

located a segment along a number line according to its inclusion probability.

Then a random starting point from Unif(0, 1) is generated. We then move

along the number line in steps of 1 and select those elements into whose seg-

ments the successive steps fall.

• The third solution is called rejective sampling, proposed and summarized in

Rao (1963), Carroll and Hartley (1964), and Hájek (1964). The idea is that we

compute a probability vector ai, i = 1, . . . , N and perform Poisson sampling.

Samples with size not equal to n would be rejected so that we get a sample

of size n exactly. Probability vector ai is calculated beforehand, such that the

overall inclusion probability is exactly π0
i for unit i.

• Similar to Hájek ’s idea, Sampford (1967) selects units sequentially. The idea

is to reject that sample if the same unit appears more than once and select a

new sample. Assuming that Vi is the size variable associated with unit i ∈ U ,

usually we set π0
i = nVi

/∑N
j=1 Vj to be the desired inclusion probability where

11



n represents the sample size. Using Sampford’s idea, we start by selecting a

unit from U with probability Ṽi = Vi
/∑N

j=1 Vj. Then the subsequent units

are selected with probability proportional to

Ṽi

1 − nṼi
,

with replacement under the assumption that nṼi < 1 for all i ∈ U . The

whole sample is accepted only if it contains n distinct units. This sampling

method is available in UPsampford function in R package sampling (Tillé and

Matei 2016).

In this dissertation, all sampling procedures are always PPSWOR unless oth-

erwise specified. When doing PPSWOR, Poisson sampling is used in simulations

investigating bias in population totals; the Sampford method is used in simulations

investigating variances; and systematic sampling is used in ACS-data simulations

which will be explained clearly later in Chapter 6.

1.6 Outline of the dissertation

The rest of the dissertation is organized in the following way: in Chapter 2 we

discuss weight misspecification, propose the idea of biasing factor and two classes

of probabilistic model that the biasing factor may follow. At the end of Chapter

2, we discuss the condition under which that HT using misspecified weights is still

consistent. In Chapter 3, we investigate the bias in GREG and in Chapter 4,

12



we examine the bias in ZL. In Chapter 5, the anticipated variance of considered

estimators is considered under misspecified weights. A real data example based on

American Community Survey (ACS) data is given in Chapter 6, showing a data

analysis assessing one of the biasing factor models proposed in Chapter 2.
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Chapter 2. Probabilistic Models for Weight Misspecification

2.1 Overview of weighting

Sampling weights play important roles in producing population estimates. In

a probability sample survey when estimating a population total, the simple total

t̃Y =
∑

i∈S Yi, ignoring the sampling scheme would lead to severe levels of bias.

Instead the HT estimator with the form t̂HT, dY =
∑

i∈S diYi is a design-unbiased

estimator of population total, where di is the corresponding analysis weight. The

general goal in weighting, or weight modification procedures, is to find a set of

weights, wi, that can be used in all analyses (including those with different attributes

Yi) to produce estimates for the target population under study. The HT estimate

is one example; regression model analyses could also use the same set of weights if

the same set of predictor variables remains suitable. If properly constructed, a set

of weights can provide approximately unbiased and consistent estimates of many

different population parameters of interest. As a result, one set of weights can serve

many purposes, which is a major practical advantage.

Starting with the base or design weights, the common procedures of weight

modifications include 1) adjustment for unknown eligibility, for example, distribut-
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ing the total sample weights of the sampled units found not to be eligible among

those determined to be eligible; 2) adjustment for nonresponse; 3) use of auxiliary

data, for example calibration, to reduce variances and correct for frame deficiencies;

4) other changes including weight trimming and collapsing cells (Lohr 2009; Pfeffer-

mann and Rao 2009; Valliant et al. 2013). From now on let di be the design weight

or base weight for unit i ∈ U , which is the weight before all modifications. Then

π0
i = P (i ∈ S) = 1/di is the inclusion probability. Let wi’s be the final weights or

modified weights, which are available in the released final data sets to the public and

the microdata users. Let πFi = 1/wi denote the reciprocal of the modified weight

for unit i. In general,

di 6= wi, i ∈ S . (2.1)

2.2 Motivation for misspecified weights

A frequently used nonresponse adjustment method to handle nonresponse

in sample surveys is propensity weighting, extending methods first introduced in

Rosenbaum and Rubin (1983). Define φi as function of Xi to be the propensity

score associated with unit i ∈ U which implies the probability of responding to the

survey if the unit is sample. φ̂i’s could be given from the predicted probability of

response versus nonresponse through a logistic or probit model, which would be

called the response-propensity model. Then the adjusted weight for unit i could be

given by di/φ̂i if we go with propensity weighting or di

(
1
|c|
∑

j∈c φ̂j

)−1

if we group
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φ̂i’s into C classes and i ∈ class c, an idea of long standing in surveys, discussed

for example by by Little (1986). Särndal and Lundström (2005) pointed out that

nonresponse bias can be reduced without increasing variance if covariates that are

highly associated with the response indicator and the survey outcome variable are

used. However, such covariates often are difficult to find (Kreuter et al. 2010). If an

incorrect or misspecified response-propensity model is used, then wi and π0
i would

generally not cancel out when taking the design expectation of the HT estimator

given F .

The calibration approach, as defined in Deville and Särndal (1992), Deville

et al. (1993) and Särndal (2007), using population auxiliary information or auxiliary

information from a larger sample, for example tX in GREG, constructs estimators

which may have good efficiency if linear combinations of the covariates Xi with

known population totals are highly correlated with Yi. A model misspecification

issue may arise when we do not have a reliable source for the population totals of

Xi. Let ui be a variable with a known total
∑
U ui. When

∑
U u

2
i is unavailable, we

have to exclude u2
i from Xi which may hurt the efficiency if Yi truly depends on u2

i .

Another issue is that sometimes the auxiliary information may not be available and

therefore needs to be imported from an outside source considered accurate enough.

When the imported information deviates from the truth, the calibration may reduce

the precision of survey estimates. Repeated weight trimmings may bring problems

too. In the presence of extreme values, weight trimmings are desirable to reduce

variance. If there is no additional raking or calibration performed after weight

trimming, matched cell counts or population totals of covariates may be affected.
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To summarize, misspecification happens when we calibrate on wrong totals

and/or missing important totals, when wi’s are based on an incorrect response-

propensity model in terms of covariates, or when the weights have been moved

too much. Inappropriate modification steps may have been done in multiple steps

performed in different possible orders. When such misspecifications happen, no

theory guarantees that the estimator based on wi’s is still design-consistent. This

problem is different from that of Ybarra and Lohr (2008) who discussed measurement

error in auxiliary information in small area estimation models.

2.3 Probabilistic models of weight misspecification

We first, introduce a random variable η > 0 accounting for the random mod-

ification processes, and assume (wi, di, ηi)’s satisfying

wi = diηi. (2.2)

Let us denote F = {(Yi, Xi, di, ηi, wi)}i∈U . Equation (2.2) says that the hypothetical

random factor ηi’s completely explain the changes of design weights due to mod-

ification procedures. Each modification step except for weight trimming more or

less has covariates involved in it. Considering Xi to contain all auxiliary informa-

tion that has been used in modification procedures, it is reasonable to assume that

(Yi, Xi, di, ηi, wi)’s are iid. In practice, the user would like to maintain the aver-

age relative difference between the modified and design weights to be close to zero,

which means E(wi/di) = 1; and within each modifying stage, the survey practition-
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ers would try to avoid extreme changes and extreme values of modified wi. Therefore

it is reasonable to further assume that ηi’s are iid samples of some general distri-

bution Fη which would give us reasonable values of ηi and wi. Such iid assumption

may not hold if weights have been adjusted due to the presence of stratum jumpers

(Beaumont and Rivest 2007). That means, some units are wrongly classified into

strata that they do not belong to and weight adjustments must be done to correct

this. In this thesis, we exclude this possibility and still assume iid samples. These

two assumptions, and an additional assumption are summarized as following,

A.1 E(η) = 1;

A.2 ηi
iid∼ Fη;

A.3 E(ηY ) = E(Y ).

Next, Proposition 1 is given discussing when HT under w would still be unbi-

ased.

Proposition 1. Assume (Yi, di, wi, ηi)’s are superpopulation iid samples. Under

unequal probability sampling, assume that unit i ∈ U is selected with probability

π0
i = 1/di. Only the final weight wi = diηi enters into analysis stage. Then HT is

unbiased if and only if A.3 holds.

Proof of Proposition 1. HT estimator under w has expectation of

E
(
t̂HT,wY

)
= E

(
N∑
i=1

I[i∈S]diηiYi

)

= E

(
N∑
i=1

ηiYi

)
.
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Therefore t̂HT,wY is unbiased if and if only

E

(
N∑
i=1

ηiYi

)
= E

(
N∑
i=1

Yi

)
,

indicating that E(ηY ) = E(Y ) is the necessary and sufficient condition for unbias

of HT estimator under w.

In the following chapters of this dissertation, we assume A.1 through A.3,

but will continue our discussion under the general assumption that HT remains

unbiased.

Next, two general models of ηi will be introduced in Section 2.3.1 to 2.3.2,

following the assumptions A.1 to A.3.

2.3.1 Binary probabilistic model of weight misspecification

The first model considers an extreme case where η = w/d only has two

possible values, whose probability distribution depends on X. The biasing factor η

and outcome variable Y are independent given the covariate X.

η = 1− ζ + 2ζI(X) (2.3)

where I(X) is an indicator function depending on X with expectation 1/2, where ζ

is a constant in (0, 1) determining the level of misspecification.
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2.3.2 Continuous probabilistic model of weight misspecification

A probabilistic model of weight misspecification is introduced as the following



ηi = c(Xi) ·
(
mζ(a(Xi))

)−1

· exp
(
a(Xi)ζi

)
ζi

iid∼ Fζ

E[c(Xi)] = 1

(2.4)

where mζ(·) is the moment generating function of ζ, and ζi is independent of (Yi, Xi)

and of other random variables used in modeling. The probabilistic model (2.4)

suggests that the modification procedures depend on the covariates Xi’s and some

other purely random factors which are accounted for by ζi. It is easy to see that

(2.4) satisfy A.1 and A.3. Here a(·) and c(·) are real-valued functions. Notice that

directly from (2.4) we have

E(ηi|Xi) = c(Xi).

If c(Xi) ≡ 1, then we still have unbiased HT estimator by

E
(
t̂HTY
)

= Ep

(
Ed

(
N∑
i=1

I[i∈S]wiYi

∣∣∣ F)) =
∑
U

Ep(Yi). (2.5)

The Ep(·) denotes the expectation with respect to the superpopulation model, fol-

lowing Isaki and Fuller (1982). If, however, c(Xi) 6= 1 for any Xi and E
(
Yic(Xi)

)
6=

Ep(Yi), then we lose unbiasedness of HT and the relative bias (RB) of HT estimator
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is given by

RB(HT ) =
E
(∑

U I[i∈S]wiYi

)
− E

(∑
U Yi

)
E
(∑

U Yi

) = E
(
Yi(ηi − 1)

)/
E(Yi).

2.4 Discussion

In this chapter, we introduced the idea of weight misspecification and proposed

two classes of probabilistic model that the biasing factor may follow. Then we

discussed the condition under which HT under misspecified weights is still consistent.

In next three chapters, we will discuss how the biasing factor will affect our estimates

of the population total. Specifically, Chapter 3 focuses on bias in GREG, Chapter

4 focuses on bias in ZL and Chapter 5 focuses on anticipated variances.
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Chapter 3. Bias in Generalized Regression Estimator

As discussed in the previous chapter, HT under modified weights, t̂HT,wY , is

still consistent as long as

E(ηY ) = E(Y ). (3.1)

Similarly, the HT estimator of the population total of X under misspecified weights

wi, denoted by t̂HT,wX , is consistent if we have the following

E(ηX) = E(X). (3.2)

As mentioned in Chapter 1, the generalized regression estimator (GREG) under

modified weights, t̂GREG,wY , has the following form

t̂GREG,wY = t̂HT,wY +

((
N

tX

)
−
(
N̂HT,w

t̂HT,wX

))tr

β̂GREG,w, (3.3)

where N̂HT,w =
∑

i∈S wi and Xi is not linearly degenerate in the sense that for fixed

F there exists a constant vector c of the same dimension as Xi such that

∑
i∈U

(
X tr
i c − 1

)2
= 0.
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If we have equations (3.1) and (3.2) hold, then the GREG estimator under w,

t̂GREG,wY , is still consistent. In reality, it is possible that (3.2) does not hold but (3.1)

holds, in which case the consistency of HT under w is guaranteed. The interpretation

behind this situation is that, some covariates are not appropriately calibrated, as

indicated by

E(ηX) 6= E(X).

If this is true, then the second term in (3.3) might not have mean zero even with large

sample size, implying that GREG under modified weights would not necessarily be

consistent when t̂HT,wY is consistent. Later in this chapter, Proposition 3 will be

given explaining this in detail.

In this chapter, we discuss the potential consequences of using w in GREG

when t̂HT,wY is consistent. All of the following sections including simulation studies

in this chapter assume (3.1). A brief review of GREG is given followed by the dis-

cussion of t̂GREG,wY . A bias formula of GREG in the limiting sense is given, showing

that when the outcome model is wrongly specified and the inappropriately adjusted

weights are being used, GREG may have serious bias. In the simulation study, an

example of a misspecified E(Yi|Xi) is presented where only the correct main-effect

terms are used in GREG. Under the misspecification model and parameters chosen

guaranteeing the consistency of HT using w, the simulation results show that HT is

always consistent as we expect while GREG sometimes becomes inconsistent when

misspecified wi’s are used, indicating that misspecifying both the outcome model

and sampling weights may lead to meaningful bias.
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3.1 Brief review on generalized regression estimator

GREG (Särndal et al. 1992; Fuller 2002), given by (3.4), is design-consistent

utilizing the association between covariate Xi and outcome Yi when the total tX =∑
U Xi is assumed to be known. First, we address the case where the weights

are properly specified in the sense of being equal to the inverse single-inclusion

probabilities.

t̂GREG, dY = (N, ttrX) β̂GREG, d

= t̂HT, dY +

((
N

tX

)
−
(
N̂HT, d

t̂HT, dX

))tr

β̂GREG, d
(3.4)

Let N̂HT, d =
∑

i∈S di and t̂HT, dX =
∑

i∈S diXi in (3.4). We follow Fuller’s definition

(Fuller 2011) of design-consistency. That is, given the finite population sequence

FN = {(Yi, Xi)}Ni=1 indexed by N , a sequence of associated sample designs with

sample size n tending to ∞, t̂GREG, dY satisfies

∀ε > 0, lim
N→∞

Pd

{∣∣t̂GREG, dY − tY
∣∣ > ε

∣∣∣ FN} = 0, a.s. (3.5)

where the notation means that we condition on the realized finite population FN

and the probability Pd{ · | FN} is with respect to the sample design. In (3.5), “a.s.”,

short for “almost surely”, means that the property holds for all sequences except

for a set of measure zero.
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The estimated coefficient β̂GREG, d has the following form,

β̂GREG, d =

(∑
S

di

(
1

Xi

)⊗2
)−1(∑

S

di

(
1

Xi

)
Yi

)
(3.6)

. Assume that the element (Yi, Xi) ∈ F are independent realizations of random

vector (Y,X) following an unknown distribution and define µ = E(X), Fuller (2011)

showed that β̂GREG, d has a limit in probability, as N, n → ∞

βGREG, d = E

((
1

X

)⊗2
)−1

E

((
1

X

)
Y

)

=


1 µtr

µ E(X⊗2)


−1(

E(Y )

E(XY )

)
.

(3.7)

As fully discussed in the literature (Estevao and Särndal 2000; Särndal 2007),

there are various benefits of constructing GREG when possible:

• Usually we assume we know the exact total of X, tX , or a very good estimate

of tX from other sources and it is often true that

∑
i∈S

diXi 6= tX .

The calibration procedure reproduces exactly the known total for X. That is,

the calibrated procedure adjusts {di}i∈S to {d̃i}i∈S in such a way that

∑
i∈S

d̃iXi = tX . (3.8)
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It is a well known propoerty of GREG that t̂GREG, dY =
∑

i∈S d̃iYi for a set

of weights {d̃i}i∈S that are called “linearly calibrated weights” (Deville and

Särndal 1992; Deville et al. 1993).

• Another important reason for constructing GREG at the analysis stage is

that GREG has a smaller asymptotic variance than the HT estimator t̂HT, dY =∑
i∈S diYi unless the covariates are all completely uncorrelated with Y .

3.2 GREG under misspecified weights

Under the misspecified weights wi’s, the estimated regression coefficient is

given by

β̂GREG,w =

(∑
S

diηi

(
1

Xi

)⊗2
)−1(∑

S

diηi

(
1

Xi

)
Yi

)
. (3.9)

By including the biasing factor ηi into F and treating (Yi, Xi, di, ηi) as realizations of

independent samples of random vector (Y,X, d, η) following an unknown distribution

and defining µ∗ = E(ηX) and A = E(ηX⊗2), we know that β̂GREG,w has a limit in

probability

βGREG,w =


1 µ∗ tr

µ∗ A


−1(

E(Y )

E(ηXY )

)
. (3.10)

So using wi the GREG estimator divided by population size has a large-sample limit

µwY = (1, µtr)βGREG,w.
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If (1, µtr)βGREG,w = E(Y ), then GREG would still be design-consistent, even with

misspecified weights wi’s used. The following two propositions state GREG’s con-

sistency in different situations. We will assume the following,

A.4 E(η) = 1 and E(ηY ) = E(Y );

A.5 t̂HT, dY , t̂HT, dX are design-consistent for finite population characteristics tY , tX .

A.6 N−1
(∑

i∈S diηi
(

1
Xi

)⊗2
)

, and N−1
(∑

i∈S diηi
(

1
Xi

)
Yi

)
are design-consistent for

finite population characteristics
∑N

i=1 ηi
(

1
Xi

)⊗2
/
N , and

∑N
i=1 ηi

(
1
Xi

)
Yi

/
N .

Assumptions A.5 and A.6 are very weak assumptions, corresponding to laws of large

numbers for the summed quantities and would fail only when there is extraordinarily

strong dependence or imbalance in magnitude among the summands.

First let us consider the GREG under wi with conditional mean of outcome

variable Y given covariate X, E(Y |X) being correctly specified. If η and Y are un-

correlated given X, then the GREG under wi is still consistent. This is summarized

in the following proposition. The proof can be found at the end of this chapter in

Section 3.6.

Proposition 2. Let FN = {(Yi, Xi, di, ηi)}Ni=1 be a sequence of identically distributed

independent realizations of random vector (Y,X, d, η). Let π0
i = 1/di. Assume A.4

to A.6 and further assume the following:

A.7 E(Y |X) = (1, X tr)β;

A.8 E(ηY |X) = E(η|X)E(Y |X).
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Then (N, ttrX)β̂GREG,w converges to E(Y ) in probability, as both n,N go to ∞.

However in practice, the specified outcome model might be wrong. That is,

A.7 may not hold. When the outcome model is wrong, it would be interesting to

evaluate µwY = (1, µ)trβGREG,w to see if constructing GREG under wi is still a good

idea.

Based on the results on limiting distribution for the regression coefficients

given by Fuller (2011), the following proposition states the general formula for the

large-sample bias induced by regression coefficient β̂GREG,w. The proof can be found

at the end of this chapter in Section 3.6.

Proposition 3. Let FN = {(Yi, Xi, di, ηi)}Ni=1 be a sequence of identically distributed

independent realizations of random vector (Y,X, d, η). Let π0
i = 1/di and A =

E(ηX⊗2). Define µ = E(X), µ∗ = E(ηX) and ∆ = 1− µ∗ trA−1µ∗. Let us assume

A.4 to A.6 and the following:

A.9 E(X⊗2) and A are invertible.

Then (N, ttrX)β̂GREG,w/N has a limit in probability as both n,N go to ∞, equal to

(1, µtr) βGREG,w

= E(Y ) + (µ− µ∗)tr
{
I +

A−1µ∗⊗2

∆

}
A−1E

(
ηY (X − µ∗)

)
.

(3.11)

Equation (3.11) gives the bias formula for GREG under misspecified weights.

From (3.11), we see that E(X) 6= E(ηX) or µ 6= µ∗ when t̂GREG,wY is inconsistent.

With that being said, E(X) 6= E(ηX) is a necessary but not sufficient condition for
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bias. From now on let us denote the bias term for GREG under wi, equal to the

right-hand side of (3.11) minus E(Y ), by Bias(GREG, w).

3.3 Simulation models

This section presents the simulation models that will be used in this and later

chapters. To be specific, we present the outcome models that describe the Y on X

relationship and the propensity models that view inclusion probabilities as a function

of covariate X. Chapters 3 and 4 discuss the bias in GREG and ZL, separately, and

repeatedly use different versions of the outcome and propensity models that are

described in this chapter. Again, let us assume outcome variable Y is a scalar and

covariate X is p-dimensional. When discussing the dependence between outcome

variables Yi, covariate column vectors Xi and inclusion probabilities π0
i , we treat the

vectors (Xi, Yi, π
0
i ) as superpopulation independent and identically distributed (iid)

samples. In simulation sections of later chapters, some variables for example X,

may follow different distributions depending on the purpose of the simulation. But

here, we focus on the relationship between the variables.

3.3.1 Outcome model

We consider a class of linear models as outcome models of the form

Yi = φ0 + X tr
i φ1 + W tr

i φ2 + εi, εi
iid∼ N (0, σ2

ε), (3.12)
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where Wi’s include squares of and cross terms between components of Xi. When

constructing GREG, it is interesting to evaluate GREG in the presence of both

misspecified weights and misspecified outcome model. Given the form of (3.12), one

easy form of outcome model misspecification is ignoring Wi, i.e. using

Yi = (1, X tr
i )β + εi

as working model.

3.3.2 Propensity model

Assuming probability-proportional-to-size (PPS) sampling, let Vi represent the

size associated with unit i ∈ U , defined as

Vi =
c1

c2 + c3 (E(Yi|Xi))
ν + δi

, (3.13)

where δi’s are iid N (0, σ2
δ ), independent of (Xi, εi). In (3.13), c1, c2 and c3 are

constants, and ν could be 1/2, 1 or 2. Parameters are chosen so that Vi > 0 for all

i ∈ U . The inclusion probability π0
i is taken proportional to size Vi, that is

π0
i =

nVi∑N
j=1 Vj

where N is the finite population size and n is the sample size. Such a size variable is

roughly associated with inverse E(Yi|Xi) and hence depends onXi through E(Yi|Xi).
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So inclusion probabilities could be viewed approximately as a function of Xi.

3.4 Simulation studies

Simulation studies are conducted to study and illustrate how GREG esti-

mates may be biased when both the wrong outcome model and misspecified adjusted

weights are used, when HT is unbiased. First we simulate finite populations with

different numbers of covariates, following the outcome model described in (3.12).

Random probability-proportional-to-size samples are then drawn from the finite

populations with inclusion probabilities π0
i ∝ Vi where Vi is the measure of size as-

sociated with unit i ∈ U . Specifically, π0
i and Vi follow the propensity model (3.13).

The binary biasing factor ηi, following (2.3), is taken to be

ηi = 1− ζ + 2ζI{γtrXi>γtrE(Xi)}, (3.14)

where γ is a p-dimensional column vector and ζ is a chosen constant controlling

the level of misspecification, with a larger value indicating a worse case of weight

misspecification.

We simulate different population sizes, 10, 000 and 50, 000 with sample sizes

100 and 500 respectively. For each outcome model, propensity model and sample

size, 50 realizations of finite frame population data are generated. For each randomly

generated frame population, 1, 000 random samples are drawn with inclusion prob-

abilities π0
i using Poisson sampling. So the inclusion indicator I[i∈S]’s independently

follow Bernoulli-trial distribution with parameters π0
i . For each sample drawn, HT
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and GREG estimators are calculated using di and wi, respectively.

While searching for examples showing that GREG estimates may be biased

when both the outcome model and weights are misspecified, we search for parameters

in outcome model (3.12) and biasing factor model (2.3) that maximize the relative

bias of GREG under wi, ∣∣∣Bias(GREG, w)
∣∣∣

E(Y )
,

where Bias(GREG, w) is given in Proposition 3, under some constraints. When

maximizing the relative bias, one is able to see how bad the bias could be under wi.

Usually, a relative bias exceeding 5% should be considered as a warning sign. We

have to point out that the current choices of parameters given in this section do not

represent the worst relative biases since only local maximizers are searched. Our

purpose is to illustrate that, within the class of outcome models (3.12), the relative

bias of GREG might be as bad as 5% or worse with some choices of parameters,

while HT is still unbiased under wi. Therefore the first constraint we should impose

is

E(ηY ) = E(Y ),

which guarantees that HT is unbiased under wi. The second constraint is

∣∣∣µ(j) − µ∗ (j)
∣∣∣ ≤ K

σj√
n
, j = 1, . . . , p, (3.15)

where x(j) represents the j
th

entry of vector x, µ∗ = E(ηX) and σ2
j = V ar

(
X

(j)
i

)
and K is constant to be chosen below. This constraint implies that the weights are
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misspecified in a way that X might be miscalibrated to a moderate extent. From

Proposition 3, we know that when bias in GREG under wi is present, it must be

true that

µ 6= µ∗. (3.16)

It is not surprising that large errors would introduce bias. It would be more interest-

ing to see if bias also exists when the miscalibration on X component totals is mild

and is less likely to be identified by investigators or data users through preliminary

statistical tests. Therefore, we put an upper bound of K × σj/
√
n on absolute bias

in each X-component total. When K = 1.96, this upper bound is equivalent to a

multiple p-fold Z-test at .05 significance level.

As mentioned, we searched parameters through optimization in such a way

that GREG is biased under wi. We should keep in mind that when di’s are used,

GREG maintains consistency even if the working model ignores important nonlinear

and interaction terms in the present section, with moderate to large sample size n.

When n is relatively small, we may still observe some bias in GREG.

When examining the simulation results, two things may be interesting besides

checking relative biases:

1. Based on sampling theory, the investigator could construct a confidence in-

terval (CI) for tY using t̂GREG,wY ignoring the misspecified weights under the
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Poisson sampling design, i.e.

(
t̂GREG,wY ± z1−α/2

√∑
i∈S

(w2
i − wi)

(
Yi −X tr

i β̂
GREG,w

)2
)
, (3.17)

where zq represents the q
th

quantile for standard normal distribution. So

z1−q satisfies P{Z ≤ zq} = q, where 0 < q < 1 and Z ∼ N (0, 1). If the

coverage probability of (3.17) is far lower than the nominal level 1 − α that

the investigator would expect, then the investigator might report much higher

confidence than is warranted.

2. With tX assumed to be known, data users often would find that

∑
i∈S

wiXi = tX (3.18)

do not hold for some prediction variables with known totals. But investigators

may still believe that all covariates being used have been well calibrated if

no significant test results indicate miscalibrations. Specifically, define Z =∑N
i=1 (wiIi − 1)Xi and consider the hypothesis test

H0 : no miscalibration, i.e.Ed(Z) = 0

versus

H1 : there is miscalibration, i.e. Ed(Z) 6= 0.

Test 1 Under H0 in the Poisson sampling setting, the variance-covariance matrix
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of Z, denoted by ΣZ , has the form

∑
i∈U

(di − 1)X⊗2
i ,

which is estimated by Horvitz-Thompson style estimator

Σ
∧

Z =
∑
i∈S

(d2
i − di)X⊗2

i .

So the χ2 test statistics

X 2 = Ztr Σ
∧−1

Z Z ∼ χ2
p

under H0. We reject H0 if p − value < .05 where p − value = 1 −

Fχ2
p
(X 2), with Fχ2

p
representing the cumulative distribution function of

χ2
p. This test works well if the investigator is testing against many subtle

miscalibrations, for example against alternatives with

|E(Z)| ≥ (λ0, . . . , λ0)tr,

where λ0 > 0 is small.

Test 2 Reject H0 if

max
1≤j≤p

∣∣∣ (Σ
∧−1/2

Z Z
)(j) ∣∣∣ > C,
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where C is determined in such a way that

Pd,H0

{
max
1≤j≤p

∣∣∣Σ∧−1/2

Z Z
∣∣∣ ≤ C

}
≥ 1− α.

The notation Pd,H0{·} indicates the probability with respect to sampling

design under H0. In the present simulation, C = Φ−1
(

(1−α)1/p+1
2

)
. This

test works well if the investigator is testing against alternatives in which

one coordinate of Ed(Z) is large, i.e.

max
1≤j≤p

(Ed(Z))(j) ≥ λ1

3.4.1 Single covariate case

First we consider an outcome model with a single covariate, i.e. Xi’s are real

numbers. In (3.12), let φ1 = 0, Wi = X2
i , σ2

ε = 1, the scalar variables Xi
iid∼

N (0, σ2
x). In propensity model (3.13), c1 = 500, c2 = 10, c3 = .1, ν = 1, and

σδ = 1.5. In the weight misspecification model, I(Xi) = I{Xi>0}. Then HT under

wi is unbiased with

E(ηYi) = φ0 + φ2E(ηiX
2
i )

= φ0 + φ2

(
(1− ζ)σ2

x + 2ζσ2
x/2
)

= φ0 + φ2σ
2
x = E(Yi),

(3.19)
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and the bias for GREG under w is a function of (ζ, σx, φ0, φ2). Two sets of

(σx, φ0, φ2) given ζ = .3, .4 are searched by optimizing the relative bias of GREG

under w, as described in (3.20).

max
σx,φ0,φ2

∣∣∣Bias(GREG, w)
∣∣∣

E(Y )
. (3.20)

Table 3.1 summarizes two choices of ζ, corresponding values of (σx, φ0, φ2) and

relative bias calculated from (3.11). Under both sets of parameters, the resulting

relative bias values are greater than 5%. The last column of Table 3.1 shows E(ηX).

It is worth pointing out that in the current single covariate case, (3.16) reduces to

2ζ
σx√
2π

< K
σx√
n

which leads to

n <
2π

ζ2
(3.21)

if K = 2. This means that n ≤ 69 if ζ = .3, so that this kind of example could arise

only in very small sample surveys. The highlight of Table 3.1 should be column 5,

which refers to the theoretical relative bias in percentage in the limiting sense when

both n and N go to infinity. We expect to see a good approximation of relative bias

by the empirical average of relative bias when n is relatively large.
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Table 3.1: Selected simulation parameters in single covariate case. Parameter search-

ing was done under two different choices of ζ. Here E(X1) = 0. Column 5 is the

relative bias in the GREG estimator of tY under wi in percent.

ζ σx φ0 φ2 Relative
Bias
(%)

E(ηX1)

0.3 2.45 0 1.82 -6.08 0.59

0.4 2.39 0 1.79 -11.34 0.76

Table 3.2: Simulation results for single covariate case.

HT GREG

ζ (n, N) Weights RB(%) RB(%) Bias(β̂0) Bias(β̂1) CRY (%) RRX(%)

0.3 (100,10000) d 0.09 -3.15 -0.36 -0.03 87.56 4.98

w 0.02 -8.72 -0.96 1.03 81.12 55.93

(500,50000) d 0.08 -0.60 -0.07 0.01 93.14 5.00

w 0.11 -6.62 -0.73 1.12 79.88 99.82

0.4 (100,10000) d -0.11 -3.22 -0.29 0.03 87.10 4.91

w 0.01 -13.82 -1.38 1.45 73.83 82.07

(500,50000) d 0.02 -0.63 -0.05 -0.00 92.88 4.75

w 0.01 -11.80 -1.20 1.50 59.37 100.00

Table 3.2 summarizes the simulation results in the single covariate case. The

first column represents the value of ζ from 3.14 defining ηi, controlling the level of

misspecification; the second column shows the sample size (n) and frame population

size (N); column 3 indicates which set of weights have been used in the analysis

where d indicates that design weights are used and w means modified weights are

used; columns 4-5 show the empirical average of percent relative bias in tY for

HT and GREG where “RB” represents relative bias; and columns 6-7 show the

empirical average of bias in the regression coefficients estimated from the GREG
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method; column 8 is the empirical coverage rate for 95% confidence interval (3.17),

where “CR” stands for “coverage rate”; column 9 is the empirical rejection rate of

Test 1, where “RR” means “rejection rate”. In the single covariate case with p = 1,

Test 1 and Test 2 are equivalent.

As implied by (3.19), HT should be unbiased even when misspecified weights

are used. This is also validated in Table 3.2 since HT has nearly zero relative bias

across different choices of sample size. As for GREG, the nice properties of GREG

guarantee that it is still consistent under d when important variables are dropped.

From columns of β0 and β1 we can see that when the sample size is relatively small

(n = 100), there is still some bias in regression coefficients under d, which leads to

some degree of bias in GREG under di. But this bias is due to relatively small sample

size, and could be easily corrected by large sample size. When n increases to 500,

the biases in coefficients almost shrink to zero and the relative bias in GREG also

disappears with larger n. But the bias we see in GREG under wi is not corrected by

large sample size. When misspecified weights wi’s are used, the estimated regression

coefficients stay biased even when sample size is increasing. When n gets large, the

empirical average of relative bias in GREG stays around 6.61% when ζ = .3 and

11.79% when ζ = .4, both of which match the relative biases shown in Table 3.1.

Columns 8-9 of Table 3.2 reflect what data users would experience when esti-

mating Y -total using GREG. Ideally, the coverage rate in column 8 should be close

to 95%, the nominal coverage of the CI for GREG. The observed coverage rate un-

der di is lower than 95% when n is small but increases to around 93.2% when n is

500, implying that statistical inference based on di would give us results as expected
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from theory. But things change when we use wi to construct CI. When using wi,

the coverage rate is systematically lower than 95% and this empirical average drops

further as the weight misspecification becomes worse. When ζ = .4, the observed

coverage rate drops as n grows. Column 9 shows the proportion of rejections in Test

1 with nominal type I error being 5%. When using di and therefore there are no

miscalibrations on X-totals, the rejection rates are all around 5%. When using wi

meaning there is some miscalibration of X-totals, the rejection rates are very high,

even close to 100% when sample size is large. The high rejection rates reflect that

the data users may be suspicious about the “bad” weights in practice, which is a

good thing. This coincides with discussion in (3.21). When n > 2π/ζ2, we always

have ∣∣∣µ − µ∗
∣∣∣ > 2σx√

n
,

so that it is not surprising that miscalibrations on X-totals could be identified

correctly under wi when the number of covariates is small.

3.4.2 Multi-covariate case

Next we simulate a different model, now for p = 10. For the outcome model,

let φ0 = 1, φ1 = 3 · 110, Wi = (X
(1) 2
i , X

(2) 2
i , X

(3) 2
i , X

(1)
i X

(2)
i , X

(1)
i X

(3)
i )tr, φ2 = 2 · 15,

where 1q is a q−dimension column vector with all entries being 1. All the covariates

are independently normally distributed with mean zero. Again in propensity model

(3.13), c1 = 500, c2 = 10, c3 = .1, ν = 1 and σδ = 1.5. In the biasing factor,

I(X) = I{γtrX>0}. We take ζ = .4, .6. When ζ = .4, V ar(X
(j)
i ) = 3 for j = 1, 2, 3;
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when ζ = .6, V ar(X
(j)
i ) = 5 for j = 1, 2, 3. For the rest j, V ar(X

(j)
i ) = 10. When

n = 100, K = 2 in (3.15) and k = 5 if n = 500. Given the above choices of

parameters and ζ, the relative bias of GREG under wi is a function of γ only. Four

sets of γ are found by solving (3.22).

max
γ

Bias(GREG, w)

E(Y )

where E(η Y ) = E(Y ),∣∣∣µ(j) − µ∗ (j)
∣∣∣ ≤ K

√
V ar(X(j))

n
,

j = 1, . . . , 10.

(3.22)

The parameter search results are summarized in Table 3.3. Again, the con-

straint E(η Y ) = E(Y ) forces HT under wi to be unbiased and the second constraint

restricts the miscalibrations on X-total within a mild range. The resulting param-

eter γopt is found according to (3.22) based on choices of ζ, N, n and K. We chose

K = 5 for larger sample size n because of the difficulty of optimization, which im-

plies that some coordinate may have µ(j) − µ∗ (j) > 1.96
√
V ar(X(j))/n. We should

keep in mind that, in the simulation results, it is very likely that we observe large

rejection rates of both tests Test 1 and Test 2 when sample size is large. Table

3.4 records the resulting relative biases of GREG under w. We find that under our

current examples of models, sample sizes and level of weight misspecifications, the

bias of GREG under wi could be worse than 5%.
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Table 3.3: Selected simulation parameters in multi-covariate case. Parameter search-

ing was done under four different choices of (ζ, K) and γopt was maximizer of (3.22).

K in column 3 is as defined in (3.15).

ζ (n, N) K γopt

0.4 (100, 10000) 2 123.93,98.35,98.35,-13.74,-13.74,-13.74,-13.74,-13.74,-13.74,-13.74

(500, 50000) 5 -137.5,-93.31,-93.31,13.89,13.89,13.89,13.89,13.89,13.89,13.89

0.6 (100, 10000) 2 10.44,10.44,10.44,-4.78,-4.78,-4.78,-4.78,-4.78,4.15,4.15

(500, 50000) 5 68.78,68.78,68.78,-29.57,-3.08,-29.7,-35.53,19.96,-12.74,-12.5

Table 3.4: The theoretical relative bias calculated from selected parameters in multi-

covariate case. Parameter searching was done under four different choices of (ζ, K).

K in column 3 is as defined in (3.15).

ζ (n, N) K Relative
Bias (%)

0.4 (100, 10000) 2 -5.41

(500, 50000) 5 -5.44

0.6 (100, 10000) 2 -8.40

(500, 50000) 5 -10.46

Table 3.5: Simulation results for multi-covariate case.

HT GREG

ζ (n, N) Weights RB(%) RB(%) max|Bias(β̂j)| CRY (%) RR
(1)
X (%) RR

(2)
X (%)

0.4 (100, 10000) d -0.21 -3.99 0.73 82.19 5.50 5.52

w -0.03 -7.97 1.49 74.17 21.31 14.91

(500, 50000) d -0.03 -0.85 0.17 92.37 5.29 5.30

w -0.06 -6.00 1.47 68.86 99.74 97.98

0.6 (100, 10000) d 0.09 -5.07 1.55 79.75 4.93 5.33

w 0.17 -11.08 3.41 65.16 61.95 21.68

(500, 50000) d 0.04 -1.08 0.32 91.40 5.07 4.91

w 0.07 -10.85 3.34 41.00 100.00 99.99

Table 3.5 summarizes the simulation results in the multi-covariate case. Again,
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“RB” stands for relative bias, “CR” means “coverage rate” and “RR” means “re-

jection rate”. All relative biases mentioned in this table are empirical averages of

percent relative bias in tY . Column 5 is the maximum of empirical average of biases

in regression coefficients. Columns 8-9 are rejection rates of Test 1 and Test 2,

respectively. As expected, HT under wi is unbiased across different choices of ζ and

sample sizes since we designed the examples in this way. Similar to the results of the

single covariate case in Table 3.2, GREG under di shows some biases when sample

size is small but this bias diminishes with increasing n. As expected, GREG under

wi is biased with relative bias greater than 5%. The coverage rates of Y-total’s CI

under wi are all far below 95%, indicating that it is very hard for data users to

make a good statistical inference on Y -total using GREG under wi. The rejection

rates under di of two tests on miscalibration of X-total are about 5%, as expected.

The same quantities under wi tell different stories depending on sample size. When

sample size is small, there is some chance that data users would not be able to

tell if the miscalibration on X-totals exists when it does. When the sample size is

relatively large, both rejection rates increase close to 1 which is a good sign, indicat-

ing that the data users may be able to tell something is wrong with the estimated

X-total when there truly are some miscalibrations. Rejection rates together with

the relative bias and coverage rate tell us that when sample size is small, it may be

dangerous for data users estimating Y -total using GREG under wi and any possible

error originated from misspecified weights are hard to detect.
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3.5 Discussion

Survey samplers often prefer GREG since it is more efficient than HT unless

all the covariates used in GREG are irrelevant to the outcome variable. However

sometimes we have to compromise with a working model ignoring some important

terms if
∑

i∈U u
2
i or

∑
i∈U uivi are not available. Our simulation shows that such

ignorance may lead to serious bias in Y -total estimates when misspecified weights

are used. When weight misspecification exists, we may have miscalibrations on X-

total. When the number of covariates is small, it may be easy for data users to

detect such a condition. When the number of covariates increases, i.e., the working

model is more complex, data users might not be able to detect such errors with a

relatively small sample size.

3.6 Proofs

3.6.1 Proof of Proposition 2

Proof: The estimated regression coefficient under wi has the form

β̂GREG,w =

(
1

N

∑
S

diηi

(
1

Xi

)⊗2
)−1(

1

N

∑
S

diηi

(
1

Xi

)
Yi

)

which is design consistent for

βGREG,wN =

(
N∑
i=1

ηi

(
1

Xi

)⊗2
)−1( N∑

i=1

ηi

(
1

Xi

)
Yi

)
.
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by the design consistency of 1
N

∑
S diηi

(
1
Xi

)⊗2
and 1

N

∑
S diηi

(
1
Xi

)
Yi assumed in A.5

and A.6. Also we have βGREG,wN − βGREG,w = Op

(
N−1/2

)
under superpopulation

iid sample assumption, where

βGREG,w =


1 µ∗ tr

µ∗ A


−1

E

(
η

(
1

X

)
Y

)
.

Then we know that

β̂GREG,w → βGREG,w, n,N → ∞,

indicating that

t̂GREG,wY /N
p.→ (1, µtr)βGREG,w. (3.23)

Under A.7 and A.8,

βGREG,w = E

(
η

(
1

X

)⊗2
)−1

E

(
η

(
1

X

)
Y

)

= E

(
η

(
1

X

)⊗2
)−1

E

(
E(η|X)

(
1

X

)
E(Y |X)

∣∣∣X)

= E

(
η

(
1

X

)⊗2
)−1

E

(
η

(
1

X

)⊗2
)
β

= β.

(3.24)

Equations (3.23) and (3.24) guarantee that t̂GREG,wY /N is consistent for E(Y ).
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3.6.2 Proof of Proposition 3

Proof: By similar argument, we have

β̂GREG,w → βGREG,w, n,N → ∞,

indicating that t̂GREG,wY /N has a limit (1, µtr)βGREG,w.

By the block matrix inverse (Bernstein 2005),


B11 B12

B21 B22


−1

=


(B11 −B12B

−1
22 B21)−1 −(B11 −B12B

−1
22 B21)−1B12B

−1
22

B−1
22 B21(B11 −B12B

−1
22 B21)−1 B−1

22 + B−1
22 B21(B11 −B12B

−1
22 B21)−1B12B

−1
22

 .

Let B11 = 1, B12 = Btr
21 = µ∗ tr and B22 = A, then


1 µ∗ tr

µ∗ tr A


−1

=


∆−1 −∆−1µ∗ trA−1

−A−1µ∗∆−1
(
I + A−1µ∗⊗2

∆

)
A−1

 , (3.25)

where the lower right block follows from

A−1 + A−1µ∗⊗2A−1/∆ =

(
I +

A−1µ∗⊗2

∆

)
A−1.
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Therefore A.4 together with (3.25) imply that

(
1

µ

)tr
βGREG,w = (1, µtr)


∆−1 −∆−1µ∗ trA−1

−A−1µ∗∆−1
(
I + A−1µ∗⊗2

∆

)
A−1


(
E(ηY )

E(ηXY )

)

=
EY

∆
− µ∗ trA−1E(ηXY )

∆
− µtrA−1µ∗EY

∆

+ µtr
(
I +

A−1µ∗⊗2

∆

)
A−1E(ηXY ). (3.26)

Repeatedly using the fact that 1 = ∆ + µ∗ trA−1µ∗, we further simply (3.26) as

EY

∆
− µ∗ trA−1E(ηXY )

∆
− µtrA−1µ∗EY

∆
+ µtr

(
I +

A−1µ∗⊗2

∆

)
A−1E(ηXY )

= E(Y )
∆ + µ∗ trA−1µ∗

∆
− E(Y )µtrA−1µ∗

∆ + µ∗ trA−1µ∗

∆

− µ∗ trA−1E(ηXY )
∆ + µ∗ trA−1µ∗

∆
+ µtr

(
I +

A−1µ∗⊗2

∆

)
A−1E(ηXY )

= E(Y ) + µ∗ trA−1µ∗E(Y )/∆− µtrA−1µ∗E(Y )− µtrA−1µ∗⊗2A−1

∆
µ∗E(Y )

− µ∗ trA−1E(ηXY )− µ∗ trA−1µ∗⊗2A−1

∆
E(ηXY )

+ µtr
(
I +

A−1µ∗⊗2

∆

)
A−1E(ηXY )

= E(Y )− µ∗ tr
(
I +

A−1µ∗⊗2

∆

)
A−1E(ηXY ) + µtr

(
I +

A−1µ∗⊗2

∆

)
A−1E(ηXY )

+ µ∗ trA−1E(ηY µ∗)
∆ + µ∗ trA−1µ∗

∆
− µtrA−1E(ηY µ∗)

− µtrA−1µ∗⊗2A−1

∆
E(ηY µ∗)

= E(Y ) + (µ− µ∗)tr
(
I +

A−1µ∗⊗2

∆

)
A−1E(ηXY )

+ (µ∗ − µ)trA−1E(ηY µ∗) + (µ∗ − µ)tr
A−1µ∗⊗2

∆
A−1E(ηY µ∗)

= E(Y ) + (µ− µ∗)tr
{
I +

A−1µ∗⊗2

∆

}
A−1E

(
ηY (X − µ∗)

)
.
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which completes the proof.
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Chapter 4. Bias in Zheng and Little’s Methods

4.1 Spline models based on truncated power functions

In practice, we often encounter the problem that we only have some general

knowledge about a function, say g(x), and do not know g fully. In this case, we

want to find a nice approximation of g(x), say g̃(x). One way to construct g̃ is spline

approximation and smoothing. Assuming we are estimating g(·) over the interval

[a, b], we may subdivide the interval as

a ≤ τ1 ≤ τ2 ≤ · · · ≤ τm ≤ b,

and on each subinterval use polynomials with low degree. Often we impose some

piecewise or global continuity restrictions on g̃(·) and its derivatives to achieve

smoothness. Then at any point x ∈ [a, b], the approximation of g(x) is a sum

of one or more piecewise polynomials evaluated at x. Assume that the approxi-

mation, g̃(x), is formed as the linear combination of linearly independent functions

{bj(x)}Jj=1,

g̃(x) =
J∑
j=1

cjbj(x).
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Such g̃(x) is called a “spline”. Functions bj(x) are called spline basis functions.

One type of commonly used spline basis functions is called “truncated power

functions” (or power functions, TPF). For m chosen knots and degree p, there are

k + p+ 1 basis elements bj(x):

1, x, . . . , xp, (x− τ1)p+, . . . , (x− τm)p+,

where x+ = max{x, 0} denotes the positive part of x. A convenient feature of

TPF is that after p is chosen, adding or deleting knots is equivalent to adding or

removing the basis function (x − τi)
p
+ for some i’s. Formal methods for choosing

knots include stepwise idea (Gentle 2009) and regularization method (Ruppert 2002;

Ruppert et al. 2003).

Often we estimate coefficients cj’s by least-squares with a roughness penalty.

As summarized in Schoenberg (1964, 1988), the solutions of such optimization prob-

lems, within broad classes of potential solutions, are in fact splines. Such a regres-

sion spline fit is called a penalized spline, or p-spline model fit. In this chapter, the

smoothing method proposed by Zheng and Little (2003) is discussed and examined.

4.2 Zheng and Little’s methods

As always let π0
i be the actual inclusion probability for unit i ∈ U which

is sometimes known to the users. Let di = 1/π0
i be the design weight for unit

i. Assume wi’s are the modified or final weights after all the weight adjustment

procedures. Define πFi = 1/wi. Final weights wi are always available in the final
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data analysis stage. According to Zheng & Little’s idea, one may replace Yi in

the HT estimator using a spline-model-based estimator of E(Yi|π0
i ), which is more

robust to misspecification than simpler parametric models and still provides more

efficient estimation of tY than the HT estimator. Consider the model

Yi = γ0 +

p∑
j=1

γj(π
0
i )
j +

m∑
l=1

γp+l((π
0
i )
j − κl)p+ + εi

where εi
iid∼ N

(
0, (π0

i )
2kσ2

ε

) (4.1)

Let us further denote bj(π
0
i )’s to be the spline basis functions



b0(π0
i ) = 1,

bj(π
0
i ) = (π0

i )
j, j = 1, . . . , p,

bp+l(π
0
i ) = (π0

i − κl)
p
+, l = 1, . . . ,m.

(4.2)

and denote

b(π0
i ) = (b0(π0

i ), . . . , bp+m(π0
i ))

tr.

Then E(Yi|π0
i ) could be estimated by

Ŷ ZL, d
i = btr(π0

i )γ̂
ZL, d, (4.3)

where γ̂ZL, d is the solution to the estimating equation

∑
i∈S

d2k
i bj(π

0
i )(Yi − btr(π0

i )γ) = 0, j = 0, 1, 2, . . . , p+m. (4.4)
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We can see that the solution γ̂ZL, d is the coefficient set of a spline-fit to the sample

survey data as a function of inclusion probabilities π0
i = di.

If we replace di’s and π0
i ’s with wi’s and πFi ’s in (4.1) – (4.4), we get Ŷ ZL,w

i ,

Ŷ ZL,w
i = btr(πFi )γ̂ZL,w,

where γ̂ZL,w is the solution to the estimating equation

∑
i∈S

w2k
i bj(π

F
i )(Yi − btr(πFi )γ) = 0, j = 0, 1, 2, . . . , p+m. (4.5)

Zheng & Little suggested that sample quantiles of inclusion probabilities within

sample could be chosen as knots κl’s and that one could take k = 0, 1/2 or 1.

After estimating the coefficients of the p-spline by least squares, Zheng and Little

suggested two ways to construct estimates of tY :

(1). If inclusion probabilities are only known for the sampled units, ZL1, the first

estimator of tY constructed by Zheng and Little, is given by

t̂ZL1, d
Y =

∑
i∈S

diŶ
ZL, d
i

t̂ZL1, w
Y =

∑
i∈S

wiŶ
ZL,w
i

(4.6)

(2). If inclusion probabilities are known for all the units in finite frame population,
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ZL2, the second type of estimator of tY constructed by Zheng and Little is

t̂ZL2, d
Y =

∑
i∈S

Yi +
∑
i/∈S

Ŷ ZL, d
i

t̂ZL2, w
Y =

∑
i∈S

Yi +
∑
i/∈S

Ŷ ZL,w
i

(4.7)

According to Zheng and Little (2003), k could be chosen from 0, 1/2 and 1. In

general no matter which set of weights is used, ZL1 would be either HT precisely

or very close to HT under some conditions. This statement is made precise in

Proposition 4. The proof can be found at the end of this chapter, Section 4.5.1.

Proposition 4. Let {(Yi, di, ηi, wi)}Ni=1 be a finite universe of real-valued elements,

and let π0
i and ηi be the corresponding inclusion probability and biasing factor, re-

spectively, associated with i ∈ U . Let S be the set of selected indices. Define

di = 1/π0
i , πFi = 1/wi, where di and wi satisfy

wi = diηi.

Let us then further assume the following:

A.10 The degree of the spline model p ≥ 1.

A.11 (Yi, di, ηi, wi)
iid∼ unknown distribution, i = 1, . . . , N .

A.12 Weights are uniformly bounded from above. That is, ∃ a > 0 s.t.

1 ≤ di, wi ≤ 1/a, for all i ∈ U .
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When constructing ZL1 following (4.6) to estimate tY , ZL1 is either exactly equal to

HT when k = 1/2 or 1, or approximately equal to HT when k = 0 with sufficiently

large p, m, under di or wi.

Unlike ZL1, ZL2 is formed as the summation of Yi’s both within and outside the

sample, based on extrapolation when i /∈ S. Therefore, the success of ZL2 heavily

relies on the quality of spline fitting outside of the sample. This is summarized in

Proposition 5. The proof can be found at the end of this chapter, Section 4.5.2.

Proposition 5. Let {Yi}i∈U be a finite universe of real-valued elements, and let

π0
i and ηi be the corresponding inclusion probability and biasing factor respectively

associated with i ∈ U . Let S be the set of sampled indices. Define di = 1/π0
i ,

πFi = 1/wi, where di and wi satisfy

wi = diηi.

Let γ̂ZL, d and γ̂ZL,w be the solution to (4.4) and (4.5), respectively. Then the fol-

lowing condition,

E

(∑
i/∈S

d2k
i bj(π

0
i )
(
Yi − btr(π0

i )γ̂
ZL, d

))
= 0, j = 0, . . . , p+m, (4.8)

is sufficient for consistency of ZL2 under di in tY . Replacing di with wi in (4.8),

then we get a sufficient condition for the consistency of ZL2 under wi,

E

(∑
i/∈S

w2k
i bj(π

F
i )
(
Yi − btr(πFi )γ̂ZL,w

))
= 0, j = 0, . . . , p+m. (4.9)
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According to Proposition 5, if t̂ZL,wY is not consistent, we should observe that

∑
i/∈S

w2k
i bj(π

F
i )
(
Yi − btr(πFi )γ̂ZL,w

)

is far from zero for at least one j = 0, . . . , p + m. In simulation, we should observe

that the corresponding empirical average is far from zero too.

4.3 Simulation Studies

The idea of the following simulation study is to show that even if the model is

a good fit within the sample, extrapolating the estimated model to the units outside

of sample could be dangerous and could lead to inconsistent estimators. In other

words, ZL2 under wi must have

E

(∑
i/∈S

w2k
i bj(π

F
i )(Yi − Ŷ ZL,w

i )

)
= 0

to be consistent.

4.3.1 Simulation models

In the simulation studies in this chapter, we follow the class of outcome and

propensity models that have been already given in early section (3.12). Assuming

the covariate vectors Xi are of dimension 3, specifically we consider

Yi = β0 +
3∑
j=1

βjX
(j)
i +

∑
j<l

βjlX
(j)
i X

(l)
i + K(Xi)ei (4.10)
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where K(Xi) = .5 + .5
∑3

j=1 X
(j)
i + .5

∑
j<lX

(j)
i X

(l)
i , ei

iid∼ N (0, 1). The inde-

pendent components of Xi, X
(1)
i , X

(2)
i and X

(3)
i follow Unif(1, 5), Unif(1, 6), and

Unif(1, 3) distributions, respectively.

Following the propensity model that has been given in (3.13), the size variable

associated with unit i ∈ U is defined as Vi = 1/ (10 + (E(Yi|Xi))
2 + δi) with δi

iid∼

N (0, 1.52). Following the probability-proportional-to-size (PPS) sampling idea, the

inclusion probability π0
i is then defined as

π0
i = nVi

/ N∑
j=1

Vj (4.11)

To take care of the weight misspecification, we adopted the biasing factor

model (2.4) introduced in Chapter 2, as given in

ηi =
exp{K(Xi)ζ/15}
mζ (K(Xi)/15)

(4.12)

wheremζ(·) is the moment generating function of ζ and ζi is independent of (Xi, Yi, Vi, ei, δi).

The function K(·) in (4.12) is the same with K(·) in (4.10). Therefore under (4.12),

E(ηi) = 1 and E(ηi|Xi) = E
(

exp{a(Xi)ζi}
)/
mζ(a(Xi)) = 1. We also have

E(ηiYi) = E(E(Yi|Xi) · E(ηi|Xi)) = E(Yi) since Yi and ηi are independent given

Xi, so that HT is still consistent under wi.
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4.3.2 Simulation cases

In Section 4.3.1, there are parameters in the outcome and biasing factor models

which will be defined here. Three different sets of choices of those parameters form

three cases, which will later be related to the seriousness of bias in Zheng and Little’s

estimators in simulation results.

Case 4.1 In (4.10) the coefficient vector β = (3, 0, 0, 0, 0, 0, 0), that is, this is a “mean-

only” model. In (4.12), ζi
iid∼ N (0, .52) on interval (−1.8, .8).

Case 4.2 In (4.10) the coefficient vector β = (3, 3, 3, 3, 3, 3, 3), so the conditional mean

include main effects and also two-way interaction terms. In (4.12), ζi
iid∼

N (0, .52) on interval (−1.5, .3).

Case 4.3 In (4.10) the coefficient vector β = (3, 3, 3, 3, 0, 0, 0), so the conditional mean

only includes the main effects. In (4.12), ζi
iid∼ N (0, .82) on interval (−2, 1.2).

The choice of size variable model already gives some advantages to ZL1 and

ZL2. Above parameter choices in three cases are based on how well the spline model

fit would be outside the sample. From Case 4.1 to Case 4.3, the spline model fit

wi gets worse outside of sample. Figure 4.1 shows the comparison of model fitting

between using di and wi within sample. Each row represents one case and. The left

column shows the model fitting under di and the right shows wi. From Figure 4.1,

we barely could see significant difference between the two sets of models, using di

and wi. Figure 4.2 has exactly the same display but all the data points are from

not sampled units. We can clearly observe that, extrapolating the fitted model to
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not sampled part still works very good when using di. But the left column except

the top subplot shows more noisy pattern and the fitted model may not predict well

outside of the sample.

Figure 4.1: Scatter plots showing different levels of spline model fitting within sam-

ple. X-axis is inverse sample weight where “d” refers to design weight and “w”

refers to misspecified weight. Y-axis is outcome variable, Y . Each row represents

one case. The solid line shows the fitted outcome variable using the corresponding

set of weights.
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Figure 4.2: Scatter plots showing different levels of spline model fitting outside the

sample. X-axis is inverse sample weight where “d” refers to design weight and “w”

refers to misspecified weight. Y-axis is outcome variable, Y . Each row represents

one case. The solid line shows the fitted outcome variable using the corresponding

set of weights.

4.3.3 Simulation results

In the p-spline model, we take degree p = 3, number of knots m = 5, and

k = 0. There are 50 frame population data sets generated. For each generated

frame population data set, 1000 samples are drawn using PPSWOR sampling. We

use Poisson sampling again here, for simplicity. For each sample S, two sets of

estimators (HT, ZL1 and ZL2) are computed to estimate tY , one under di and the

other set under wi.
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Table 4.1: Simulation results relating weight misspecification to bias in ZL2. RB

refers to average relative bias in ZL2, defined as bias in ZL2 divided by true popu-

lation total in Y . EE in S is the average of left hand side of (4.5) and EE outside

of S is the average to estimate the expectation in (4.8)

RB(%) EE in sample EE outside of sample

Case Weights HT ZL1 ZL2 min max min max

Case 4.1 d 0.05 0.05 0.04 0 0 0.00 0.42

w 0.07 0.06 -0.83 0 0 15.98 297.92

Case 4.2 d 0.02 0.00 -0.03 0 0 0.01 3.66

w -0.12 -0.16 -5.77 0 0 0.03 2670.75

Case 4.3 d -0.01 -0.01 -0.00 0 0 0.00 0.73

w -0.24 -0.26 -12.16 0 0 9569.37 39082.10

Table 4.1 summarizes the simulation results of Case 4.1 to Case 4.3, as

defined above. All the numbers in the table are empirical averages. The first column

shows which case the results refer to. Column 2 indicates which set of weights have

been used while d stands for design weights and w represents misspecified weights. In

columns 3-5, RB stands for “relative bias” with percentage in parentheses indicating

that the empirical relative biases are divided by tY and multiplied by 100. We

simulate only in settings where HT under wi is consistent. By Proposition 4, ZL1

should also be exactly or approximately consistent under wi. All percent relative

biases in HT and ZL1 in Table 4.1 are close to zero as expected. Zheng and Little’s

second estimator, ZL2, shows a different story. When using di, ZL2 is consistent as

other estimators. But ZL2 under wi shows some biases, in Case 4.2 and Case 4.3.
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EE in sample is calculated as the following

1

R

R∑
r=1

US(a, j, r)

=
1

R

R∑
r=1

∑
i∈S

a2k
i bj(1/ai)

(
Yi − btr(1/ai)γ̂

ZL, a, r
)
, j = 0, . . . , p+m,

(4.13)

where a = d or w, r represents the r
th

replication, γ̂ZL, a, r is the estimated coefficient

in the r
th

replication, j denotes the spline basis index and R is the total number of

replications. Column 6 is the minimum value of (4.13) over j and column 7 is the

maximum value of (4.13) over j. We know that for all r, j, US(d, j, r) and US(w, j, r)

are expected to be zero since we estimate coefficients by solving for (4.4) and (4.5).

On the other hand, EE outside the sample is calculated as

1

R

R∑
r=1

UU /S(a, j, r)

=
1

R

R∑
r=1

∑
i/∈S

a2k
i bj(1/ai)

(
Yi − btr(1/ai)γ̂

ZL, a, r
)
, j = 0, . . . , p+m,

(4.14)

Column 8 is the minimum value of (4.14) over j and column 9 is the maximum

value of (4.14) over j. First when using di, all values of (4.14) are zeros or nearly

zeros, indicating that extrapolating to the whole frame population might be a good

idea since the fitted model also fits the non-sampled data. That is why we observe

consistency in ZL2 under di. When using wi, (4.14) could be very large at least

for one j. By Proposition 5, non-zero values mean possible bias in ZL2 and large

values indicate definite bias in ZL2. The simulation results support our couclusion

in Proposition 5.
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4.4 Discussion

In this chapter, we examined two estimators proposed by Zheng & Little in

their 2003 paper (Zheng and Little 2003). We illustrated and showed why the first

estimator should work well even under wi under the conditions given in Proposition

4. Next, we investigated the second estimator, ZL2, which utilizes all weights in

the finite population using the extrapolation idea. In Proposition 5, we linked the

bias in ZL2 to the estimating equation system outside the sample. In the simulation

studies, we created three cases, all of which guarantee that HT is consistent so that

ZL1 would be consistent too by Proposition 4. In simulation results, we observed

that from Case 4.1 to Case 4.3, the percent relative bias in ZL2 was non-zero while

the estimating equation values are also non-zero, which validated the conclusion in

Proposition 5 too.

4.5 Proof of propositions

4.5.1 Proof of Proposition 4

Proof: The following proof applies to ZL1 under di. The arguments of ZL1 under

wi would be exactly the same.

• When k = 1/2 or 1, the estimating equation j = 0 when k = 1/2 and equation

j = 1 when k = 1 in the system (4.4) and A.10 guarantees

∑
i∈S

Yi − Ŷ ZL, d
i

π0
i

= 0, (4.15)
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implying that t̂HT, dY = t̂ZL1, d
Y .

• If we take k = 0, we have

∑
i∈S

bj(π
0
i )
(
Yi − Ŷ ZL, d

i

)
= 0, for j = 0, 1, . . . , p+m. (4.16)

by (4.4). By A.12, g(u) = 1/u is a continuous function on the interval [a, 1].

Then by Weierstrass approximation theorem (De Branges 1959; De Boor et al.

1978), g(u) can be uniformly approximated as closely as desired by the spline

basis,

1, u, . . . , up, (u− τ1)p+, . . . , (u− τm)p+.

That means, ∀ ε > 0, there exist a degree p, number of knots m and a set of

coefficients c = (c0, . . . , cp+m) such that

sup
a≤u≤1

∣∣∣∣∣1u −
p+m∑
j=0

bj(u)cj

∣∣∣∣∣ ≤ √ε. (4.17)

Replace π0
i with u in (4.17) and let Ωi = di −

∑p+m
j=0 bj(π

0
i )cj. Then we get

|Ωi| ≤
√
ε, i ∈ S . (4.18)

Spline functions can also be used to approximate the function E(Yi|π0
i ), so that

for the same ε, there exists another set of coefficients γ∗ = (γ∗0 , . . . , γ
∗
p+m) such
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that

E

(
Yi −

p+m∑
j=0

bj(π
0
i )γj

)2

=E
(
Yi − E(Yi|π0

i )
)2

+ E

(
E(Yi|π0

i ) −
p+m∑
j=0

bj(π
0
i )γ

)2

is minimized and

E

(
E(Yi|π0

i ) −
p+m∑
j=0

bj(π
0
i )γ
∗
j

)2

≤ ε, (4.19)

using the fact that π0
i are iid samples. By Jensen’s inequality and (4.19), we

also have

E

∣∣∣∣∣E(Yi|π0
i ) −

p+m∑
j=0

bj(π
0
i )γ
∗
j

∣∣∣∣∣ ≤ √ε. (4.20)

On the other hand, solving (4.16) is equivalently to minimize

∑
i∈S

(
p+m∑
j=0

bj(π
0
i )γj − Yi

)2

.

Let γU be the minimizer of

∑
i∈U

(
p+m∑
j=0

bj(π
0
i )γj − Yi

)2

.

Then the least-square estimate γ̂ZL, d converges to the population parameter

γU in probability, as n, N go to ∞. So for the same ε and chosen p, m, we

64



have

max
j

∣∣γ̂ZL, dj − γUj
∣∣ ≤ √

ε

p+m

∑
j, a≤u≤1

bj(u). (4.21)

for sufficiently large n and N , with probability greater than 1− ε. The popu-

lation parameter γU and coefficient γ∗ satisfy

max
j

∣∣γUj − γ∗j
∣∣ ≤ √

ε

p+m

∑
j, a≤u≤1

bj(u). (4.22)

for sufficiently large N under superpopulation iid sample assumption. We

could take large N so that both (4.21) and (4.22) hold.

Then by (4.16) and (4.18), we have

1

N

∣∣∣∑
i∈S

di

(
Ŷ ZL, d
i − Yi

) ∣∣∣
=

1

N

∣∣∣∑
i∈S

di

(
Ŷ ZL, d
i − Yi

)
−

p+m∑
j=0

cj
∑
i∈S

bj(π
0
i )
(
Ŷ ZL, d
i − Yi

) ∣∣∣
=

1

N

∣∣∣∑
i∈S

di

(
Ŷ ZL, d
i − Yi

)
−
∑
i∈S

{
p+m∑
j=0

ĉjbj(π
0
i )

}{
Ŷ ZL, d
i − Yi

} ∣∣∣
=

1

N

∣∣∣∑
i∈S

Ωi

{
Ŷ ZL, d
i −

p+m∑
j=0

bj(π
0
i )γ
U
j +

p+m∑
j=0

bj(π
0
i )γ
U
j −

p+m∑
j=0

bj(π
0
i )γ
∗
j

p+m∑
j=0

bj(π
0
i )γ
∗
j − E(Yi|π0

i ) + (Yi|π0
i ) − Yi

}∣∣∣
≤ A1 + A2 + A3 + A4, (4.23)
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where in (4.23), A1 to A4 are defined as

A1 =
1

N

∣∣∣∑
i∈S

Ωi

(
p+m∑
j=0

bj(π
0
i )γ̂

ZL, d
j −

p+m∑
j=0

bj(π
0
i )γ
U
j

)∣∣∣,
A2 =

1

N

∣∣∣∑
i∈S

Ωi

(
p+m∑
j=0

bj(π
0
i )γ
U
j −

p+m∑
j=0

bj(π
0
i )γ
∗
j

)∣∣∣,
A3 =

1

N

∣∣∣∑
i∈S

Ωi

(
p+m∑
j=0

bj(π
0
i )γ
∗
j − E(Yi|π0

i )

)∣∣∣,
A4 =

1

N

∣∣∣∑
i∈S

Ωi

(
E(Yi|π0

i ) − Yi
) ∣∣∣.

The proof will be done as long as (4.23) is sufficiently small with large proba-

bility and sufficiently large n, N . By (4.21),

A1 ≤
n

N

√
ε, (p+m) max

j
|γ̂ZL, d − γUj | sup

j, a≤u≤1
bj(u) ≤ ε, (4.24)

with probability greater than 1 − ε and sufficiently large n and N . Similarly

we have

A2 ≤ ε, (4.25)

with probability greater than 1− ε and sufficiently large N . In A3 by (4.20),

the fact that E(Yi|π0
i ) −

∑p+m
j=1 bj(π

0
i )γ
∗ are iid samples and the law of large
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numbers, we have

A3 ≤
√
ε

1

N

N∑
i=1

∣∣∣{ p+m∑
j=0

bj(π
0
i )γ
∗
j − E(Yi|π0

i )
}∣∣∣

≤
√
ε
{ 1

N

N∑
i=1

∣∣∣{ p+m∑
j=0

bj(π
0
i )γ
∗
j − E(Yi|π0

i )
}
−

E
( p+m∑
j=0

bj(π
0
i )γ
∗
j − E(Yi|π0

i )
)∣∣∣+

E
∣∣∣( p+m∑

j=0

bj(π
0
i )γ
∗
j − E(Yi|π0

i )
)∣∣∣}

≤
√
ε(
√
ε +
√
ε) = 2ε

(4.26)

with probability greater than 1−ε and sufficiently large n, N . In A4, by A.11

and the fact that Ωi is a function of π0
i , Ωi

(
E(Yi|π0

i ) − Yi

)
are iid samples

with mean zero too, we have

A4 ≤ ε, (4.27)

with probability greater than 1 − ε, for sufficiently large n,N , by the law of

large numbers.

Therefore by (4.24) to (4.27), we have

1

N

∣∣∣∑
i∈S

di

(
Ŷ ZL, d
i − Yi

) ∣∣∣
≤ A1 + A2 + A3 + A4

≤ 5 ε
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with probability greater than 1 − 4ε for sufficiently large n and N . There-

fore we proved that the discrepancy between t̂ZL1, d
Y and t̂HT, dY is negligible in

probability when p, m can be chosen arbitrarily large, as population size and

sample size increase.

Using the same arguments on wi, we have t̂ZL1, w
Y = t̂HT,wY when k = 1/2 or 1

and t̂ZL1, w
Y ≈ t̂HT,wY when k = 0.

4.5.2 Proof of Proposition 5

Proof: Again the following proof is based on ZL2 under di. The arguments of ZL2

under wi would be exactly the same.

ZL2 under di has the following expectation,

E
(
t̂ZL2, d
Y

)
= E

(∑
i∈S

Yi +
∑
i/∈S

Ŷ ZL, d
i

)

= E

(
N∑
i=1

Yi +
∑
i/∈S

(
btr(π0

i )γ̂
ZL, d − Yi

))

= E

(∑
i∈U

Yi

)
+ E

(∑
i/∈S

(
btr(π0

i )γ̂
ZL, d − Yi

))
,

(4.28)

where E
(∑

i/∈S

(
btr(π0

i )γ̂
ZL, d − Yi

))
forms the bias part.

If k = 0, the equation of j = 0 in (4.8) implies

E

(∑
i/∈S

(
Yi − btr(π0

i )γ̂
ZL, d

))
= 0.
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The equation of j = 1 if k = 1/2 and equation of j = 2 if k = 1 in (4.8) lead to

zero-bias too. So ZL2 under di is consistent when (4.8) holds.
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Chapter 5. Inflated Variance

In this chapter, we continue to assume that the outcome variable Yi, covariate

vector Xi, design weight di, biasing factor ηi and inclusion indicator I[i∈S] form

the superpopulation iid vector (Yi, Xi, di, ηi, I[i∈S]) which is the element of finite

population F . In Chapter 2, a necessary and sufficient condition under which HT

using w is still consistent was given as,

E(η Y ) = E(Y ),

where the expectation is taken with respect to superpopulation distribution. In

Chapter 3, we also showed that GREG under wi remains consistent if the condi-

tional mean of Y given X is correctly specified. In Chapter 4, we linked the bias

in ZL to an estimating equation system outside the sample. In this chapter, we

focus on variances of population total estimators. It is easy to see that the biasing

factor introduces extra noise, so that estimators may have inflated variance. We are

interested in knowing whether the biasing factor affects some estimators so that one

particular estimator may have the smallest variance under di but not under wi due

to variance inflation.
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5.1 Design variance and anticipated variance

In survey sampling, there are two types of variances associated with estimators.

From a purely design-based point of view, we look at design variance, taken with

respect to sampling design, treating I[i∈S] as the only random variables. For example,

the HT estimator has design variance

Vd

(
t̂HT, dY

)
= V

(
t̂HT, dY

∣∣∣F)
= Ed

((
t̂HT, dY − tY

)2 ∣∣∣F)
=
∑
i∈U

∑
j∈U

π0
ij − π0

i π
0
j

π0
i π

0
j

YiYj

where π0
ij denotes the joint inclusion probability for unit i, j ∈ U , P (i& j ∈ S).

The definition of anticipated variance was first introduced by Isaki and Fuller

(1982) and was also summarized in Fuller (2011). The anticipated variance (AV)

for an estimator θ̂ estimating the population parameter θN is given by

AV {θ̂ − θN} = Ep{Ed[(θ̂ − θN)2 | F ]} − Ep{Ed(θ̂ − θN | F)} (5.1)

Again as we have mentioned earlier, the notation Ep(·) denotes expectation with

respect to the superpopulation distribution, and Ed(·) indicates expectation with

respect to the sampling design. In this chapter, we focus on anticipated variance

and compare the AV’s across different methods under weight misspecification.
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5.2 Important results on optimal weighting

Model-based methods like estimators introduced by Zheng and Little (2003)

and Pfeffermann and Sverchkov (1999) rely on model assumptions. When weights

are properly specified, model-based estimators tend to be more efficient than HT

when the required distributional assumptions hold. In this section, we cite and

summarize important results on optimal weighting. Both GREG and PS involve

estimating the regression coefficient vector β by solving the estimating equation of

the form

∑
i∈S

ui

(
1

Xi

)(
Yi − βtr

(
1

Xi

))
= 0, (5.2)

where ui are the working weights. GREG uses sampling weights and PS uses sam-

pling weights divided by estimated values from a model. Magee (1998) considers

the following outcome model

Y = (1, X tr)β + ε, where

E(ε |X) = 0,

E(ε2 |X) = σ2(X).

(5.3)

and investigates the survey-weighted least squares regression (5.2). Let di be the

usual inverse sample inclusion probabilities. Magee considered weighting by di mul-

tiplied by ai, i.e.,

ui = diai,
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where ai is a function of covariates. This ai should be chosen to minimize the

asymptotic variance, given by Magee in the form

(∑
i∈S

diaiX
⊗2
i

)−1∑
i∈S

d2
i a

2
i ε̂

2
iX
⊗2
i

(∑
i∈S

diaiX
⊗2
i

)−1

. (5.4)

It can be shown that the optimal ai should be taken proportional to 1/ (di × σ2(Xi))

within (5.4). Equivalently speaking, the optimal noninformative weights u∗i = diai

should be proportional to

u∗i ∝
1

σ2(Xi)
. (5.5)

“Noninformative” means the outcome variable Yi and inclusion probability π0
i are

conditionally independent given covariate Xi,

Yi ⊥⊥ π0
i

∣∣∣Xi.

The result in (5.5) implies that, if we know the variance structure clearly, then we

should weight by the inverse of the conditional variance function.

Considering the optimal weighting from this angle, if the outcome model and

propensity model imply that di × σ2(Xi) ≈ constant, then the optimal weighting

should be u∗i ≈ di, implying that using di’s as in GREG would give the optimal

asymptotic variance. At the same time, PS estimates β by taking ui = di/d̂i, where

d̂i is estimated from regression model by taking Xi as regressors. As long as di/d̂i

is somewhat different from di, PS then gives suboptimal asymptotic variance.
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On the other hand, if the working weights for PS, ui = di/d̂i, is roughly

proportional to the optimal weights given by Magee, 1/σ2(X), then PS should out-

perform GREG.

5.3 Simulated cases in comparing anticipated variances

In this section, we explore four cases (Case 1 to Case 4) to study how weight

misspecifications affect the performance of estimators. Under each case, there is

always at least one estimator performing well under di, i.e., the corresponding vari-

ance is relatively small compared to other estimators. However that good estima-

tor turns out to perform not so well under wi, i.e., the corresponding variance is

inflated by misspecified weights and therefore that estimator is outperformed by

some of the rest estimators. Let N be the finite population size and n be the

sample size. Define f = n/N to be the sampling fraction. Again, we consider

probability-proportional-to-size (PPS) sampling and take the inclusion probability

to be π0
i = nVi

/∑N
j=1 Vj = fVi/V̄ where Vj is the size measurement associated

with unit j ∈ U .

We will give four cases Case 1 to Case 4. Each case is defined by an outcome

model, a propensity model and a biasing factor model. All the biasing factor models

in the displayed examples follow (2.4). Explanations will be given in each case why a

particular estimator should have smaller variance under the described outcome and

propensity model than the others. Simulation studies follow in Section 5.4 and 5.5,

validating that particular estimator performs well under di but loses its advantage
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under wi.

Case 1 GREG is favored and better than PS under di. Consider the outcome model

that Yi

Yi = 5 + Xi + εi, where

Xi
iid∼ Unif(5, 25)

εi
iid∼ N

(
0,

152

5 + (Xi − 15)2/2

) (5.6)

The outcome model Y and the scalar covariate Xi are nearly perfectly linearly

correlated. The propensity model is taken to be

Vi =
δi

5 + (Xi − 15)2/2
, where

δi
iid∼ LN (−.52/2, .52),

(5.7)

and δi is independent of (Yi, Xi). The outcome model (5.6) and propensity

model (5.7) show that di× σ2(Xi) ≈ constant, which means that di in GREG

should be the optimal weighting in (5.2). Figure 5.1 displays scatter plots of

population sample in this case. Plot (a) shows that given the large error, Y −X

still has mild and clear linear correlation. Plot (b) is the scatter plot between

inclusion probabilities and Yi indicating that ZL might not be very appealing

since the dependence of Yi on π0
i is weak. Plot (c) shows the dependence of

design weights di on Yi, which Beaumont’s estimator relies on. Plot (b)-(c)

shows that the model-based estimators ZL and B should not be the optimal

in terms of variance among those considered estimators.
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Figure 5.1: Scatter plots showing example defined in Case 1 favoring GREG over

other considered estimators. The red solid line is local polynomial regression curve

fitted by loess defaults in R.

Plot (d) shows that di is approximately a quadratic function of Xi. Implied

by this, if we consider the working model

di = φ0 + φ1Xi + φ2X
2
i + ei, (5.8)

where ei is a purely random normally distributed noise term, then di/d̂i should

be close to one and differ from di in values. This means that PS is not optimal

either in this case.
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Figure 5.2 displays the scatter plots showing various relationships between

outcome variable, coavariate and weights in Case 2. Similarly, we see from

plot (b)-(c) that the methods of Zheng and Little and Beaumont are less

appealing since distributional assumptions are not satisfied.

The biasing factor model is taken to be

ηi =
(
mζ

(
a(Xi)

))−1
exp

{
a(Xi)ζi

}
, where

ζi
iid∼ Unif(−.54, .35),

a(Xi) = 1
/{
−.03

(
.5(Xi − 15)2 + 10

)}
.

(5.9)

In (5.9), ζi is independent of (Yi, Xi, ε, δi) and E(ηi|Xi) = 1. According to

(3.11) given in Proposition 3, we expect that GREG is consistent under wi.

Also ηi and Yi are conditionally independent given Xi,

E(ηiYi) = E(E(ηi|Xi)E(Yi|Xi)) = E(Yi).

Then HT is consistent by (1).

Case 2 PS is favored over GREG. Again we take p = 1 so that Xi are real numbers.

Assume that the outcome model and propensity model are exactly the same

as in (5.6) and (5.7) respectively except that ε iid ∼ N (0, 82) and δi iid ∼
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LN (−.22/2, .22). Specifically, the outcome model follows

Yi = 5 + Xi + εi, where

Xi
iid∼ Unif(5, 25)

εi
iid∼ N

(
0, 82

)
(5.10)

indicating that σ2(X) is a constant. So according to Magee’s results, the

optimal weights should be a constant. The propensity model follows

Vi =
δi

5 + (Xi − 15)2/2
, where

δi
iid∼ LN (−.22/2, .22),

(5.11)

meaning that again, we could obtain good estimates of di denoted by d̂i by

working with (5.8). So di/d̂i should be close to one, and then PS should be

roughly optimal. On the other hand, GREG uses di which should be very

different from di/d̂i so GREG will not be as good as PS. From Figure 5.2 we

can see that the dependence between inclusion probabilities and Yi, and the

dependence between Yi and design weights, are both weak. So it is expected

that the two model-based methods, those of Zheng and Little and of Beaumont,

do not work very well.
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Figure 5.2: Scatter plots showing situations defined in Case 2 favoring PS over

other considered estimators. The red solid line is local polynomial regression curve

fitted by loess defaults in R.

The biasing factor model in this case is again taken to be

ηi =
(
mζ

(
a(Xi)

))−1
exp

{
a(Xi)ζi

}
, where

ζi
iid∼ Unif(−1.73, .6),

a(Xi) = 1
/{

.38
(
(Xi − 15)2 + 10

)}
.

(5.12)

Except for a few different parameter choices, this biasing factor model is ex-

actly the same as that in Case 1. So again HT under wi is consistent.

Case 3 ZL2 is expected to work very well when the dependence between Yi and in-

clusion probabilities is strong and easily described by a spline model. In this
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case, assume again that the covariate Xi is a scalar. Consider the outcome

model,

Yi = 200 − 22Xi + 2X2
i − .05X3

i + εi, where

Xi
iid∼ Unif(5, 25),

εi
iid∼ N

(
0,
X2
i

4

)
.

(5.13)

From the outcome model the relationship between Yi and Xi is seen to be

clear and strong, but the linear correlation is weak. Also σ2(Xi) = X2
i /4 so

the optimal weights u∗i ∝ 1/X2
i . The propensity model follows

Vi =
δi

200 − 22X
(1)
i + 2X

(1) 2
i − .05X

(1) 3
i

where

δi
iid∼ LN (−.22/2, .22).

(5.14)

From (5.14) and Figure 5.3, Yi and π0
i have a nice functional relationship,

which means that ZL2 may outperform the rest of the estimators. From plot

(d) of Figure 5.3, the dependence between Xi and weights are strong, so if

we choose a good model to obtain d̂i when constructing PS, we should have

di/d̂i close to one, which is very different from u∗i , then PS is not optimal; if

we happen to use a bad model to obtain d̂i, the estimation itself that PS gives

might be very bad. On the other hand, di are proportional to X2
i or X3

i so they

are proportional to u∗i , but considering that the linear correlation between Yi

and Xi is not very strong, we expect that GREG should work better than PS

but no better than HT in this particular case.
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Figure 5.3: Scatter plots showing situations defined in Case 3 favoring ZL over

other considered estimators. The red solid line is local polynomial regression curve

fitted by loess defaults in R.

The biasing factor model follows

ηi = (mζ(1))−1 exp
{
ζi

}
, where

ζi
iid∼ N (0, .82) on interval (−3.5, 1).

(5.15)

In (5.15), ηi does not depend on covariate Xi so it is a purely random noise

factor. So GREG and HT should be consistent under wi.

Case 4 Beaumont’s estimator is not the best in this case, but it is the second best.

Assume that Xi is a 2-dimensional vector where only the first component X
(1)
i

shows up in the conditional mean E(Yi|Xi). We use the same conditional mean
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function of Xi as in Case 3 but different σ2(Xi). Specifically, the outcome

model follows

Yi = 200 − 22X
(1)
i + 2X

(1) 2
i − .05X

(1) 3
i + εi, where

X
(1)
i

iid∼ Unif(5, 25), X
(2)
2 iid ∼ Unif(.5, 1.5),

εi
iid∼ N

0,

[
X

(1)
i X

(2)
i

]2

16

 .

(5.16)

Then σ2(Xi) =
[
X

(1)
i X

(2)
i

]2/
16 and the optimal weights u∗i ∝ 1

/[
X

(1)
i X

(2)
i

]
.

The propensity model gives Beaumont’s method some advantages since it im-

poses strong dependence between E(Yi|Xi) and size variable Vi,

Vi =
δi

200 − 22X
(1)
i + 2X

(1) 2
i − .05X

(1) 3
i

where

δi
iid∼ LN (−.12/2, .12).

(5.17)

From Figure Case 4, we can see that both π0
i − Yi and Yi − di have strong

dependence that can be easily modeled. For similar reason, PS estimator may

not work very well.
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Figure 5.4: Scatter plots showing situations defined in Case 4 favoring Beaumont’s

method over other considered estimators. The red solid line is local polynomial

regression curve fitted by loess defaults in R.

The biasing factor model follows

ηi = (mζ(1))−1 exp(ζi), where

ζi iid ∼ Unif(−.54, .35).

(5.18)

Again ηi is a purely random variable, independent of (Yi, Xi, ε, δi). So that

both HT and GREG are consistent under wi.

In summary, Case 1 to Case 4 define four cases by defining the outcome,

propensity and biasing factor models. Under each case, there is always at least

one estimator performing well under di, i.e., the corresponding variance is relatively
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small compared to other estimators. We then will use the simulation results in

next section to illustrate that how these advantage of a particular estimator may

be damaged by using wi, i.e. the anticipated variance may be inflated so that that

particular estimator may not be the best among all six considered estimators. The

associated simulation results are summarized in next section.

5.4 Simulation results without weight misspecification

Before discussing the simulation results, it is very clear that most estimators

across different cases should be consistent, resulting in nearly zero percent relative

bias. When comparing the anticipated variances, we expect that GREG, PS, ZL2

and B perform the best (or second best) in Case 1 to Case 4 respectively. In this

and the next section, the Sampford PPS sampling method previously discussed in

Section 1.5 is used. Table 5.1 summarizes the comparative results under di. The

first column specifies which estimator is summarized in that row. Columns 2-3 refers

to Case 1 defined in previous section, the rest columns are defined similarly. Again,

RB stands for “relative bias” and RMSE means “relative root mean square error”.

All numbers are empirical average divided by population total of Y .
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Table 5.1: Simulation results comparing anticipated variances without misspecifica-

tion. Case 1-4 are as defined in Case 1 to Case 4.

Case 1 Case 2 Case 3 Case 4

Method RB(%) RMSE(%) RB(%) RMSE(%) RB(%) RMSE(%) RB(%) RMSE(%)

HT 0.00 2.51 0.04 5.12 -0.08 0.74 -0.01 0.41

ZL1 0.00 2.51 0.04 5.12 -0.08 0.74 -0.01 0.41

ZL2 -0.00 2.56 0.03 3.30 -0.11 0.63 -0.45 2.16

B -0.62 2.36 -0.12 5.06 -0.08 0.74 -0.00 0.41

PS -0.01 1.33 -0.02 1.80 0.90 1.09 -0.26 0.44

GREG 0.00 1.06 0.02 2.38 0.02 0.76 0.00 0.34

All relative biases are close to zero, indicating that comparing anticipated

variances is equivalent to comparing relative RMSE taken with respect to both the

design and model. Within Case 1, we see that HT, ZL1, ZL2 and B have about the

same level of RMSE while both PS and GREG have much smaller RMSE. Remember

that in this case, the linear correlation between Yi and Xi was relatively strong and

according to Magee’s results, GREG uses the optimal weights so that GREG should

perform better than PS. Column 3 shows that the RMSE of PS is about 20% larger

than the RMSE of GREG, indicating that GREG, indeed, has the smallest RMSE

among six estimators. We expect PS to be the best in Case 2. Column 5 shows that

HT, ZL1 and B are not efficient compared with PS and GREG. Also, the RMSE of

PS is about 27.4% larger than the RMSE of GREG. Simulation validates that PS

has the smallest variance in this case. Same stories apply to Case 3 and Case 4.

We see that in column 7, ZL2 has much smaller RMSE than the rest and in column

9, B is not the best but roughly the second best.
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5.5 Simulation results with weight misspecification

Table 5.2 summarizes the comparing results under wi. The display is exactly

the same as the previous table except that wi are used. All estimators except B in

Case 2 are consistent. The only observed inconsistency in B in this case may be

due to model assumption failure, compounded by weight misspecification.

In column 3, we see that with all RMSEs increase, GREG is still the best

among all with the smallest RMSE. In Case 1, we did not find a misspecification

situation that makes GREG perform worse than others. In column 5, we see that PS

and GREG have about the same RMSEs, outperforming the rest. Previously when

there was no misspecification, PS was significantly better than GREG. In column 7,

ZL2 is not the best anymore with increased RMSE. With weight misspecification,

GREG performs better than ZL2. In column 9, B is not the second best with weight

misspecification.

Table 5.2: Simulation results comparing anticipated variances with misspecification.

Case 1-4 are as defined in Case 1 to Case 4.

Case 1 Case 2 Case 3 Case 4

Method RB(%) RMSE(%) RB(%) RMSE(%) RB(%) RMSE(%) RB(%) RMSE(%)

HT -0.04 7.55 0.11 6.05 -0.27 7.80 -0.05 4.66

ZL1 -0.04 7.55 0.11 6.05 -0.27 7.80 -0.05 4.66

ZL2 0.00 2.26 0.03 2.95 -1.58 1.68 -0.67 0.76

B 1.19 8.56 3.14 9.03 -0.27 7.80 -0.05 4.66

PS -0.01 2.01 0.04 2.61 0.94 1.18 -0.26 0.44

GREG 0.00 1.33 0.05 2.67 0.07 0.88 0.01 0.35
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5.6 Discussion

In this chapter, we examined anticipated variance and compared all six es-

timators by simulation. We first gave four cases defined by outcome, propensity,

and biasing factor models. In each case, exactly one estimator had the smallest

or the second smallest variances under di. The biasing factor model was chosen to

invalidate the major model assumption that the winner needs in order to perform

the best. If under the given biasing factor model, the weight misspecifications do

alter the rankings of estimators, then we should see the variance of that the winning

estimator is not necessarily the smallest under wi. We gave one weight misspec-

ification scenario for each case. From the simulation we found that PS and ZL2

were strongly affected by weight misspecification while we did not observe such big

changes in GREG and B. This does not mean GREG and B are robust against

weight misspecification though.

87



Chapter 6. ACS Simulation

In Chapter 2 we expressed the weight-misspecification biasing factor as the

ratio of final modified weights to initial or design weights. Two probabilistic mod-

els, (2.3) and (2.4), were also presented to model the biasing factor on covariates

X. In this chapter, we will discuss whether these two proposed models are useful in

an illustrative example for describing the weight modification procedures of nonre-

sponse and miscalibration, i.e. we would like to assess the quality of those proposed

models in describing biasing factor η using covariates X. With this purpose, we

take a realistic dataset as a data frame and draw samples from it. After a few steps

of weight modifications, we then compute the ηi by taking the modified weights

divided by initial weights.

The rest of this chapter is organized as follows: Section 6.1 describes the

extraction of a real data set which will be treated as the finite frame population

from which a sample is drawn; Section 6.2 describes the multiple-stage sampling

procedure, the weight modification procedure that we consider, and some thoughts

on the model fitting.
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6.1 Description of underlying ACS data

The American Community Survey (ACS) is the largest ongoing household

survey that the Census Bureau administers as the key source of information about

American population and housing characteristics. The ACS is weighted to account

for selection and housing unit nonresponse and hence all missing item responses have

been removed (Ramirez and Ennis 2010). The ACS microdata from the year of 2000

to the present is available at IPUMS USA (Ruggles et al. 2007), which preserves and

harmonizes census microdata and provides easy access to this data. In this section,

2016 ACS data was extracted from IPUMS USA∗, which is a 1-in-100 national random

sample of the population, of size 3,156,487. We use variable STATEICP to further

refine the data set into a sample of 2016 ACS from Maryland only. The number

of observations decreases to 59,408. The following variables are considered, most of

which are commonly seen and used demographic and geographic variables. Recoding

is also done for the main purpose of simplifying categories. The detailed information

for variable importing and recoding is as follows:

• Household level

– County, county code where the household was enumerated;

– Ownership of dwelling, categorized into “N/A”, “Owned or being bought

(loan)” and “Rented”.

– House acreage, categorized into “N/A”, “less than 10 acres”, “10 acres

∗https://usa.ipums.org/usa/sampdesc.shtml, section of ACS 2016 sample, accessed on Jan
30, 2018
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or more”;

• Person level

– Person weight, person weight denoted by w0
i for the unit i in our ex-

tracted 2016 ACS Maryland sample;

– Race, coded as 1 if white, 2 if black/African American/Negro, 3 if Amer-

ican Indian or Alaska Native, 4 if Chinese, 5 if Japanese, 6 if other Asian

or Pacific Islander, 7 if other race, 8 if two major races and 9 if three or

more major races. Hispanic origin is assessed in a separate question, see

below. To simplify, variable Race and Hispanic are recoded into a single

variable.

– Hispanic origin, coded as 0 if not Hispanic, 1 if Mexican, 2 if Puerto Ri-

can, 3 if Cuban, 4 if other. We combined and recoded Race and Hispanic

origin. As long as the individual self-identify as being of Hispanic ori-

gin, the new race is recoded into “Hispanic”. Among the individuals who

did not self-identified as Hispanic, Race 4 to 6 are combined into “Asian

or Pacific Islander”, Race 3, 7 and 9 are combined into “Others” due to

very low frequencies.

– Sex, coded as 1 if male, 2 if female;

– Age, integers representing the age in years. Usually the age interval would

be categorized into ≤ 17, 18 − 24, 25 − 44, 45 − 54, 55 − 64 and ≥ 65;

in this chapter, the age intervals are categorized into ≤ 24, 25 − 54 and

≥ 55 for simplicity.
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– Marital status, categorized as 1 if “Married, spouse present”, 2 if “Mar-

ried, spouse absent”, 3 if “Separated”, 4 if “Divorced”, 5 if “Widowed”

and 6 if “Never married/single”. We recode this variable and combine 1

and 2 into “Married”, 3 to 5 into “Separated/Divorced/Widowed” and

leave “Never married/single” as is;

– Employment status, categorized into “N/A”, “Employed”, “Unemployed”

and “Not in labor force”. Categories except for “Employed” are combined

into “Others”.

– Number of own children in the household, assume that this is the

outcome variable of interest, denoted by Yi for unit i.

Let us denote U as the universe of all Maryland residents with size N . Assume

that we are interested in estimating the average number of own children in the

household in Maryland state, i.e.,

∑
i∈U

Yi/N.

6.2 Data example based on ACS

6.2.1 Overview of the data example

In the present data example, we will imitate sampling and weight adjustment

procedures restricted to data from the state of Maryland. Then we will assess the

biasing factor model quality as defined in Chapter 2.
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As mentioned above, all residents in Maryland form the finite frame population

U . The data set with number of rows 59, 408 that were extracted from IPUMS-USA

form an initial sample of U , denoted by U∗. We consider ACS to be a preliminary

sampling stage and then design a PPSWOR/PPSWOR/SRSWOR sampling pro-

cedure and further draw random sample S from U∗ with sub-selection probability

π(i) for i ∈ U∗. Counties are considered as primary subsampling units (PSU);

groups clustered from person weights within county are considered as secondary

subsampling units (SSU). The overall weights of sampled units in S are calculated

as

w1
i = w0

i /πi, (6.1)

where the form of πi will be introduced below in Section 6.2.2 and w0
i are person

weights available from ACS. Therefore all w0
i , πi and w1

i are known for all i ∈ U∗.

The person weights, w0
i , have been used in three ways in this data example. First w0

i

reflects the sampling procedure of ACS; secondly, w0
i have been used as stratification

variable since person weights also reflect geographical information; thirdly, later w0
i

are used in defining a measure of size (MOS) for further sampling stages.

Taking w1
i as input weights, we then perform raking and linear calibration for

several rounds and the final weights after the last round are denoted by wFi . So the

biasing factor would be

ηi = wFi /w
1
i , i ∈ S .
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We would like to assess the quality of (2.4), as a model for ηi in the previous line.

Specifically, we would like to assess the following model

ηi =
(
mζ(a(Xi))

)−1

· exp
(
a(Xi)ζi

)
, (6.2)

where ζi
iid∼ Fζ . Here Fζ is an unknown distribution and mζ(·) is the moment

generating function of the bounded random variable ζ.

Since all covariates considered here are categorical variables, let us use Cl to

denote the cell l, where all units in the same cell have the same value al for the

function a(X) of the covariate vector. Then (6.2) reduces to

ηi =
exp(alζi)

ml

, i ∈ Cl ∩ S,

ml = mζ(al), l = 1, . . . L.

(6.3)

where L represents the total number of cells considering all levels of covariates and

ml and al are just unknown parameters, with some intrinsic restrictions.

6.2.2 Subsampling scheme

Counties are treated as primary subsampling units (PSU). Let us use j to

denote the index of PSUs, j = 1, 2, . . . , J . All units are grouped into K strata

based on the person weight w0
i , using quantiles of w0

i as cutoff points. Let us use k

denote the index of secondary subsampling units (SSU). Let Uj be the universe of

SSUs within PSU j and Ujk be the universe of units within SSU k, PSU j. Next,
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define the following quantities,

N̂jk =
∑
i∈Ujk

w0
i ,

N̂j =
∑
k∈Uj

N̂jk,

N̂ =
J∑
j=1

N̂j =
∑
i∈U∗

w0
i ,

where N̂ij, N̂j and N̂ actually estimate the sizes of Uij, Uj and U respectively. As

mentioned above, the adopted subsampling scheme is PPSWOR/PPSWOR/SRSWOR.

• First stage: m PSUs are selected. The selection probability of PSU j is defined

as

π(j) = m · Nj

N
.

Selecting PSUs can be achieved using cluster function with method “system-

atic”, in R pacakge sampling.

• Second stage: within each selected PSU, ν SSUs are selected. SSU k within

PSU j has the (conditional) inclusion probability

π(k|j) = ν · Njk

Nj

Selecting SSUs can be achieved using strata function with method “system-

atic”.

• Third stage: within each selected SSU, q individuals are selected via simple
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random sampling with replacement (SRSWOR). For each individual i ∈ Ujk,

the inclusion probability is

π(i|j, k) = q/Njk

Again this could be done via strata function with method “SRSWOR”.

In the present simulation study, we take K = 6, m = 10, ν = 3, q = 200. So in total

the sample is is of the size n = m · ν · q = 6000.

6.2.3 Weight adjustment procedures

Assume that the person weights, w0
i , were already adjusted for nonresponse.

Therefore, we only consider raking and linear calibration. Assume that we have three

rounds of raking and calibration in the subsample. The outcome variable Yi of in-

terest is number of own children in the household, therefore one may want to

consider adjusting for ownership of dwelling, marital status and employment

status besides the commonly considered sex, race, Hispanic origin and age.

The three rounds of weight adjustments are: 1) raking to marginal totals of sex,

race; 2) linear calibration on age; and 3) raking to marginal totals of ownership

of dwelling, marital status and employment status. The final weights are de-

noted by wFi for i ∈ S. These could be done via the calibrate function with

calfun = “linear” or “raking”. All marginal totals we use in raking or calibration,

are defined as internal HT estimated totals using design weights w1
i defined in (6.1).
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Table 6.1: Summary of weight changes after three rounds of adjustments. Weight

ratios are define as modified weights divided by design weights.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Design weights 42.86 583.96 862.40 1002.92 1308.34 4696.42

Weight ratios after round 1 0.90 0.93 0.99 0.99 1.04 1.11

Weight ratios after round 2 0.87 0.95 0.98 0.99 1.03 1.14

Weight ratios after round 3 0.76 0.94 0.98 0.99 1.03 1.20

Table 6.1 summarizes the distribution of design weights w1
i and weight changes

after each further round of adjustment. Weight ratios after each round are defined

as the modified weights after that round divided by the design weights w1
i . The

averages of weight ratios after each round are about 1 which satisfy our assumption

A.1 in Chapter 2 Section 2.3.

6.2.4 Preliminary model fitting for the biasing factor

Assume that we consider race, age and sex in model (6.3), then the total

number of “cells” is L = 5 · 2 · 3 = 30. The numbers of observations are very

different across cells. The minimum number is 8, and the maximum number is 712.

Table 6.2 summarizes the distribution of cell counts. Imbalanced cell counts indicate

imbalanced contributions from different cells when fitting (6.3).

Table 6.2: Distribution of cell counts. The cells are defined according to the values

of age, sex and race.

Cell Counts

≤ 20 21-100 101-200 ≥ 200

Frequency 4 13 3 10
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6.2.4.1 Assuming location-scale family

In (6.3), we have not assumed the distribution of ζ. If given a known and easy-

to-work-with distribution such as normal distribution, we could easily establish the

relationship between ml and al. But ζi are not necessarily normally distributed.

Instead of assuming that ζi follows a specific distribution, let us consider Fζ to

belong to a location-scale family. Then the model (6.3) is equivalent to

log(ηi) + log(ml)

al
= ζi, (6.4)

where ml = mζ(al), l = 1, . . . , L. We could view − log(ml) as cell mean and al as

cell standard deviation. Although ml and al have a definite relationship under (6.3),

we may still estimate − log(ml) by the sample cell mean

− log(m̃l),=
1

|Cl ∩ S |
∑

i∈Cl∩S

log(ηi) (6.5)

and al by the sample cell standard deviation

sl =

√
1

|Cl ∩ S | − 1

∑
i∈Cl∩S

(log(ηi) + log(m̃l))
2. (6.6)

The cell residuals ri
iid∼ (0, 1) are given by

ri =
log(ηi) + log(m̃l)

sl
, i ∈ Cl ∩ S . (6.7)
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Figure 6.1 displays the boxplots of ri within each cell Cl defined by covariates,

sorted by increasing order of cell means log(m̃l) in (6.5). From the figure we see

that the ranges within cells differ from each other.

Figure 6.2 shows the histogram, with estimated density function and normal

quantile-quantile (QQ) plot, of cell residuals ri defined above. We can see that the

residuals ri thin tails and are skewed.

Figure 6.2: Histogram with fitted density and normal quantile-quantile plot of cell

residuals. Gaussian kernel and bandwith .2 were chosen by visual inspection. Den-

sity is estimated at 210 equally spaced points.

If ζi have expectation µζ and variance σ2
ζ , we may assume µζ = 0 without the

loss of generality since

exp(a(ζ ′ + µζ))

mζ′+µζ(a)
=

exp(aµζ) exp(aζ ′)

exp(aµζ)mζ′(a)
=

exp(aζ ′)

mζ′(a)
,

where ζ ′ ∼ (0, σ2
ζ ). From (6.4) and the fact that ri

iid∼ (0, 1), we know that

ζi ∼ σζri, ∀ i ∈ S . (6.8)
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Let us further assume that a = (a1, . . . , aL) satisfies,

‖a‖2/L =
(
a2

1 + · · ·+ a2
L

)2
/L = 1,

then by (6.8) we know that

s2
l = a2

l σ
2
ζ , l = 1, . . . , L.

Therefore we have the following

al = sl/σζ , (6.9)

σ2
ζ = ‖s‖/L, (6.10)

ζi ∼ σζri = ri
√
‖s‖2/L, (6.11)

ml = E(exp(alζ)) = E(exp(slri)). (6.12)

Let f̂(t) be the estimated density function of ri. Then ml can be estimated by a

Trapezoidal rule approximation to
∫

exp(slt)f̂(t)dt,

m̂l =
210−1∑
j=1

(
exp(sltj)f̂(tj) + exp(sltj+1)f̂(tj+1)

) tj+1 − tj
2

, l = 1, . . . , L. (6.13)

Fig 6.3 shows the fit of the density curve to the cell residuals ri of the ACS data.

The X-axis is the cell standard error, sl, defined in (6.6) and the Y-axis is the cell

mean, log(m̃l),defined in (6.5). The dots show the pairs (sl, log(m̃l)). The curve

shows (sl, −log(m̂l)) where m̂l is estimated as (6.13). If the fitting is good, the
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points should be close to the curve. We see that all the points are scattered around

the curve, indicating a less appealing fit of the model (6.3) to the ACS data.

Figure 6.3: Comparing observed (sl, log(m̃l)) with fitted curve

6.2.4.2 Model fit without covariate

A possible reason for the bad fit seen above might be the weak relationship

between ηi and the selected covariates age, sex and race. If the covariates used in

the weight adjustment procedures are ignored, and we consider instead

ηi =
exp(λZi)

mZ(λ)
=

exp(λZi)

exp(λ2/2)

whereZi ∼ N (0, 1), λ > 0,

(6.14)
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followed by

log(ηi)
iid∼ N

(
− λ2/2, λ2

)
.

Then we can estimate λ by maximizing the log-likelihood function with respect to

λ,

−n log(λ) −
n∑
i=1

(log(ηi) + λ2/2)2

2λ2
. (6.15)

Define

ζ̂i =
log(ηi) + λ̂2/2

λ̂
. (6.16)

Figure 6.4: Histogram and normal quantile-quantile plot of ζ̂i in (6.16) checking

normal assumption when fitting ignoring covariates. The line in (b) is the 45 degree

line.

Figure 6.4 displays the histogram and QQ-plot of ζ̂i defined in (6.16). From

the histogram we see that the distribution of ζ̂i may be skewed. But from the
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normal QQ plot, we see that normal assumption may be acceptable when ignoring

all covariates.

6.3 Discussion

The main purpose of this chapter was to check if the biasing factor models that

we have proposed in Chapter 2 are good to explain the possible weight adjustment

procedures in ACS data. A sample of ACS data was obtained and refined and

treated as sampling frame. A PPSWOR/PPSWOR/SRSWOR sampling scheme

was adopted to draw sample from the sampling frame. We considered raking and

linear calibrations in three rounds. The biasing factors ηi were obtained at the end

and model (2.4) was examined.

A preliminary analysis showed that a location-scale family assumption may

not hold with covariates chosen in the current ACS sample. The unsatisfied fit

showed in Figure 6.2 may be due to the model (6.3) reduced from (2.4), imbalanced

cells, or inappropriately chosen set of covariates. We may explore other biasing

factor models following the form

η =
g(X, ζ)

E(g(X, ζ))
.

To have balanced cells, we may design sampling procedure to achieve desired sam-

pling rate within each cell (for example, in each age group by race). When ignoring

covariates and fitting (6.3) under normal assumption, the normal QQ plot in Figure

6.4 showed a better fit to 45 degree line, indicating that the set of covariates we
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have chosen (race, age, sex) may not be very good and another set of covariates

may fit the data and explain the weight adjustment steps better.
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Chapter 7. Contribution and Future Work

7.1 Contributions

• In Chapter 2, we proposed the idea of biasing factors which can be interpreted

as the effect of multiplicative weight adjustments in survey data analysis. Two

classes of probabilistic models for these biasing factors were proposed. The

necessary and sufficient superpopulation condition for the Horvitz-Thompson

(HT) estimator to be consistent under misspecified weights was given. To the

best of our knowledge, the present study is the first research work modeling

the distributional change from design to final weights and investigating the

consequences on bias and variance introduced by such biasing factors.

• In Chapter 3, we examined the bias in the Generalized Regression Estimator

(GREG) under the condition that HT is still consistent. We showed that when

the conditional mean of the outcome variable is correctly specified, GREG is

still consistent under misspecified weights. We then explored the bias in GREG

when both the conditional mean and weights are misspecified, in the limiting

sense. The formula implies that when there is bias in GREG with misspecified

weights, it must be true that some of the covariates are miscalibrated. Sim-
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ulation studies were done showing how misspecified weights could invalidate

the consistency of GREG estimators of survey totals. Especially, data users

might be misled by their estimates, since the 95% CI coverage rates for tY

under misspecified weights were all much smaller than the nominal probabil-

ity, 95%. But we did find out in simulations that when both the number of

covariates and the sample size were moderate to large, it might be easy for

the investigators to detect the miscalibrations among X totals. However, this

finding was limited to the distributional assumptions that we have made in

the simulations.

• In Chapter 4, we examined the bias in two estimators of Zheng and Little

under the condition that HT is still consistent. Zheng and Little proposed

two estimators, ZL1 and ZL2. We showed that ZL1 is either exactly the

same as HT, or very close to HT, under certain conditions. Therefore we

mainly focused on investigating the bias in ZL2 under misspecified weights. We

then linked theoretically the non-zero estimating equation values outside the

sample to the bias in model-based estimator of Zheng and Little. Simulation

results showed that large biases in ZL2 under misspecified weights were always

associated with non-zero estimating equations outside sample, indicating that

misspecified weights might have changed the pattern of dependence between

outcome variable and inclusion probability, so that the model fit well within

the sample but not outside the sample.

• In Chapter 5, we studied anticipated variance under misspecified weights. It
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is not surprising that a biasing factor would introduce extra noise so that

the variances of estimators would be increased, in general. Our focus was on

how the misspecification of weights would affect the relative performance of

different estimators. The examples we found showed that the best estimator

under design weights may not perform well under misspecified weights.

• In Chapter 6, a real data example was given, trying to assess the biasing fac-

tor model that we have proposed in Chapter 2. The biasing factors based on

real ACS data sample (as true population) were obtained after we extracted

the ACS data, did further PPSWOR/PPSWOR/SRSWOR sampling and per-

formed three rounds of weight adjustments. Assuming a location-scale family

of distributions for the log biasing factors, we examined the cell residuals and

found out that the distribution might be skewed and thin-tailed, indicating

that the normal assumption was not suitable in this data example. One should

try other distributions, or evaluate the moment generating function values nu-

merically, which is left for future work.

7.2 Summary

• Proposition 3 provides a necessary condition for bias in GREG under wi. It

implies that if inaccurate population totals have been used in calibrations,

using the resulting set of weights may lead to bias. This suggests that at the

weight adjustment stage, one should be very careful about the imported pop-

ulation total of X. It is possible that the source of information is out-of-date
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and hence does not reflect the truth any more. Or people may import large-

scale accurate survey information when calibrating on a smaller-scale survey.

Therefore when projecting the accurate X-totals onto smaller-scale survey, we

may produce error if the effective target population in the smaller survey may

be different from that of the known total. At the analysis stage when all weight

adjustments have been done, data users may perform statistical tests to check

if the X-totals have been well calibrated. Simulation studies show that it may

be possible to detect miscalibrations on X-totals in a large survey, i.e., when

sample size n is large. It might be difficult to do so in a small survey. If

data users identify some miscalibrations on X-totals, one may continue to use

GREG with those miscalibrated covariates dropped from the working model,

or proceed with other estimators.

• The usage of model-based methods like Zheng and Little’s or Beaumont’s de-

pend on the model assumptions heavily. Our investigations show that when

the fitted model do not fit the data outside of sample well, the second estima-

tor of Zheng and Little may have bias. The extrapolation idea requires strong

model assumptions which we are not able to observe and examine. When

weights are inappropriately adjusted, it is possible that the dependence be-

tween weights and other variables have been affected and therefore the model

assumptions may not hold. At the analysis stage, it is highly recommended

that data users check model assumptions carefully within the sample. Meth-

ods utilizing the extrapolation idea might be dangerous since we are not able
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to examine the data that we do not observe.

7.3 Future work

• In any of the simulation work that we have done here, more classes of outcome

and propensity models should be tried. For example as indicated on the pre-

vious page, the ability of simple hypothesis tests to detect the miscalibrations

in X totals in simulations was limited to the distributional assumptions that

we have made. It may still be true that under certain conditions, it is still

hard for investigators to detect such miscalibrations, which may lead to bias

in GREG.

• In examples like the ACS real data example in Chapter 6, a more system-

atic study of models of the biasing factors could be attempted. First we have

found that with the covariates (race, age, sex) chosen, the normal distribu-

tional assumption does not work well for ACS data. The location-scale family

assumption did not fit the ACS data very well either. As discussed in Section

6.3, the bad fit might be due to the model (6.3) reduced from (2.4), imbal-

anced cells, or inappropriately chosen set of covariates. We may explore other

biasing factor models following the form

η =
g(X, ζ)

E(g(X, ζ))
.
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We may explore other biasing factor models following the form

η =
g(X, ζ)

E(g(X, ζ))
.

To have balanced cells, we may design sampling procedure to achieve desired

sampling rate within each cell (for example, in each age group by race). When

ignoring covariates and fitting (6.3) under normal assumption, the normal QQ

plot in Figure 6.4 showed a better fit to 45 degree line, indicating that the

set of covariates we have chosen (race, age, sex) may not be very good and

another set of covariates may fit the data and explain the weight adjustment

steps better.
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