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Chapter 1

Introduction

In statistical practice, for investigations involving aja number of observed variables,
it is often useful to simplify the analysis by consideringwaedl number of linear com-
binations of the original variables. For example, schatasthievement tests usually
consist of a number of examinations in different subjecasrdn attempting to rate
students applying for admission, college administratoeguently attempt to reduce
the scores from all subject areas to a single, overall scrthe reduction can be
done with minimal information loss, it is better. Princigzdmponent Analysis (PCA)
is a method for data reduction. It is used to find linear comatxams of the original
variables which account for most of the variance in the aagsample [2].

In many scientific fields, notably psychology and other dostences, we are
often interested in quantities, such as intelligence oras¢status, that are not directly
measurable. However, it is often possible to measure othantdies which reflect the
underlying variable of interest. Factor analysis is amagtieto explain the correlations
between observable variables in terms of underlying factehich are themselves not
directly observable. For example, measurable quantitieb as performance on a
series of tests can be explained in terms of an underlyirtgrfaach as intelligence.

At first glimpse, factor analysis closely resembles priatipomponents analy-



sis. Both use linear combinations of variables to explaia sebbservations of many
variables. In principal component analysis, the obsenaliles are themselves the
guantities of interest. The combination of these variabigbe principal components
is primarily a tool for simplifying the interpretation oféhobserved variables. Princi-
pal components analysis is merely a transformation of the. ddo assumptions are
made about the form of the covariance matrix of the data. @rother hand, factor
analysis assumes that the data comes from a statisticall nvbad can be expressed
in terms of a few underlying, but unobservable, random dtiestcalledfactorsand
some additional sources of variation calledor. Factor analysis can be considered
as an extension of principal components analysis. Both cavidveed as attempts
to approximate the covariance matrix. Applications of PCA &actor analysis have
become very popular in many fields such as psychology, ecmspsociology, mete-
orology, medicine, political science, taxonomy and arohagy. Both of them have
been successfully used in acoustic and phonetic reseaitcimgue position by Harsh-
man et al. (1977) , Jackson (1988), Nix et al. (1996), and&atral. (1997).

The PARAFAC model was pioneered by Harshman et al. (1977)s & iech-
nique for extracting “articulatory prime” shapes from datbbwing non-orthogonal
components to scale differently for different speakerse ain concern underlying
the PARAFAC model is how to modify the small set of prime shapil large vari-
ance of sound production for different speakers, withoguieng large numbers of
parameters for all speaker and sound combinations. PCA rdigktell in reducing
the dimension without extracting the behaviors for indiatispeaker differences. On
the other hand, the PARAFAC model succeeds in decomposiggiéoshape data into
tongue shape factors. In my thesis, PCA, Factor Analysis aadPARAFAC model

are introduced. A model hierarchy is defined, and then isieghppb coronal tongue



cross-section ultrasound data of multiple subjects catem the laboratory of Dr. M.
Stone [22]. We also discuss the interpretation for the tergata of the assumptions
defining the models presented. Then we present data anedgtidts to distinguish

which model is adequate.

1.1 Principal Component Analysis

PCA is concerned with explaining the variance-covariancgctire through a few
linear combinations of the original variables. The defonitof Principal Components
in the population is as follows.

Suppose the random vector

has the covariance matrix Since we will be interested only in the variance-covare&anc
structure, we assume that the mean vecteor iset/ be ap-component column vector

such that!/ = 1. The variance of'Y is
E('YY') =I'sl. (1.1)

Thei’th Principal Component, usually denoted BY;, can be defined inductively.
The first principal componer®C} is the linear combinatiof{ Y wherel; is the vector
which maximizesVar(l}Y") subject tolll; = 1. The second principal component
PC, is the linear combinatioffY” wherel, maximizesVar(I5Y') subject tolfl, = 1
andCov (1Y, 1Y) = 0. Similarly, thei'th principal component’C;= I!Y" wherel;
maximizesVar(IlY") subject toltl; = 1 andCov(IY,I!Y) = 0 for k < i. Thus,

the first principal component has the largest variance anadingtandardized linear



combinations of”. Similarly, the second principal component has the largasance
among all standardized linear combinations’otincorrelated with the first principal
component, and so on.

By the method of Lagrange multipliers, we can obtain tRat; = v!Y’, where

(A1,v1), (A2, v2), ..., (A, vp) are the eigenvalue-eigenvector pairsoivith
M>X> . >0>0
and

COU(PO“ POJ) == >\261] (12)

p
> Var(Yy) =M +...+ A, (1.3)
=1

Equation (1.3) is true when all the eigenvectors are distiiccan be arranged to be

true by the following two lemmas if some eigenvalues are #mes[2].

Lemma 1. Suppose\, ;1 = Ary2 = ... = Aoy = t; then (X — ¢1) is of rankp — m.
Furthermore, the x m matrix whose columns consist of an m-tuple of orthonormal
eigenvectors*= (v, . . . U4, ) Of (X —11) is uniquely determined up to multiplication

on the right by an orthogonal matrix.

Lemma 2. An orthogonal transformation” = CY of a random vectoy” leaves
invariant the generalized variance and the sum of the vagsnof the components.

The generalized variance ®f is defined as the determinantBt’Y" if EY = 0.

The proof can be found in (Anderson 1984). The proportiorotdltvariance due

to the k’'th principal component is

M
Mt A



The vectors; used in defining thé'th principal component of the original variables
are called Principal Directions. In general, there are asynpaincipal components as
variables. However, because of the way they are calculdtedysually desirable to
consider only a few of the principal components, which tbhgeexplain most of the
original variation. The most popular criterion to determthe numbet; of principal

components to retain in describing data is

Z:l Ak
SV 2>1-« (1.4)
Aj

j=1

for suitably defined constant, usually,.05 or .10.

1.2 Factor Analysis

Factor analysis is a branch of statistical science. Thdroaffactor analysis is as-
cribed to Charles Spearman (1904). He was called the fattiactoir analysis because
of his remarkable work in developing psychological thesrieolving factor analysis

(Harman 1976). The further development of psychologicabtles and mathemati-
cal foundations of factor analysis was continued by Cyril BKgrl Pearson, Godfrey
Thomson, etc. Applications of factor analysis in fields otti@n psychology have
become very popular since 1950, along with the developmigiaisocomputers. The

main applications of factor analytic techniques are to cedihe number of variables
and to detect structure in the relationships between Vasathat is, to classify vari-

ables. Therefore, factor analysis is applied as a data tieduar structure detection
method. In order to analyze observed data, one approachpmowde a statistical

model, to explain the underlying behavior of the data.

The general factor analysis model is defined as follows:hletabservable vector



Y be written as
Y:g+Af+U (1.5)

whereY’, ui, andU are column vectors gf componentsi is ap x ¢ matrix of constants
with ¢ fixed and less thap, andf is a¢ x 1 random vector. The elements &fare
called factor loadings and the matrix\ is called thdoading matriz. The elements
of f are calledcommon factors and the elements bf are calledunique factors. We
assume thaf ~ N(0,1,), U ~ N(0,V), f andU are independent, antl is ap x p
diagonal matrix. Therefore, the general random-effedbfamodel can be expressed
as

Y ~ N(g, AN+ 0).

We will present the parameter space of this model (MO) in #ad ohapter.

1.3 Overview of the Thesis

In Chapter 2, we introduce the general factor models and artst model hierarchy
(Figure 1.1 and Figure 1.2) for the application to tonguegedata. For each model,
we introduce the model assumptions and the parameter s@amkthen give a proof
of identifiability of the model from data. The general sufiti condition for identifi-
ability in the general random effect factor model (MO) hasleen accomplished yet,
but we find some new results related to the non-identifiabléetsoand the parameters
in the boundary of the parameter space.

In Chapter 3, we find the maximum likelihood estimators forgheametersX, V)
in the factor models with error-matrik proportional to/,, (model M1) or todiag(e)

for a vectore with entriesO or 1 (model M1R). In Section 3.2, we introduce the idea



of profile likelihood and use it to find the maximum likelihoedtimators for the pa-
rameters under (M1R). In Section 3.3, we discuss profileihkeld optimization in
(MO0). In Section 3.4, we find a necessary condition to cheekdhal maximum like-
lihood estimate. In Section 3.5, we consider the score teistny(M1) for the problem
Hy : vj; = 0vs Hy : ¢j; > 0. In Section 3.6, we discuss the likelihood ratio
test for testing fit of the PARAFAC (M4a) against the fixed-effeactor model (M3).
The PARAFAC model is a restricted model of (M3) in which eacimponent of the
fixed-effect factor is decomposed as a product of two ternesail® are in Chapter 2.

In Chapter 4, we introduce the EM algorithm and Newton-Raplogaimization
method and develop an EM algorithm to compute the maximueiitikod estimator
(MLE) for (MO). The performance of the algorithm on simuldtiata is described, par-
ticularly in relation to approximate non-identifiabilitf.he Newton-Raphson method
is also used to calculate the MLE of the profile likelihooddtion /,(¥) and is shown
to give results for random effect factor models (MO) thaesgwith the EM algorithm.
We find a new result that an MLE can be found on the boundaryegbtinameter space
when the model is non-identifiable. Details of computationMATLAB for (M4a)
and Splus for (M3), are also given in this chapter.

In Chapter 5, we introduce a real data set of ultrasound @estenal images of
the human tongue during speech. The PARAFAC (M4a) model had seccessfully
used in some tongue image data. However, Slud et al. [224gfound (M4) which
is similar to PARAFAC but with orthogonal loading matrix isailequate to represent
the data. Therefore, a more general model such as PARAFACIr(idde) or fully
general fixed effect factor model (M3) is needed for représgrcross-classified data.
Thus, the well-defined model hierarchy we constructed mdy teerationalize the

choice of models. In this chapter, the Likelihood Ratio TédRT) is used to test



whether the more general models (M3) or (M4a) represent thenal tongue data
better. We construct an algorithm and use a MATLAB toolboxgéb the MLE for
(M4a). We find that the more general model (M3) fits the coréoafue data better
than the PARAFAC (M4a) model.

In Chapter 6, we summarize the results from this researchjigndss future work.

1.4 Some Definitions and Notations

In this section, we define some notations that will be usedimthesis.

Notation 1.1. Let M,;, denote the space of real x b matrices and letM!, denote
the subset of matrices i, satisfying the additional constraint that the first nonzero

element in each column is positive.
Notation 1.2. The notation)/* for a matrix M € M, denotes the transpose bf.

Notation 1.3. LetR? denote the Euclideamdimensional space consists of all ordered

p-tuples of real numbers. Symbolically,
R? = {(v1,...,v,) 1 v1,...,v, € R}

We denotd’, as a subspace dk? which consists of all ordereg-tuples of positive

real numbers.

Notation 1.4. The notationdiag(v) for a vectorv = (vy,...,v,) € RP? denotes the

square diagonap x p matrix with (vy, ..., v,) on the diagonal.



Notation 1.5. Letwy, ws, ..., w, beq vectors inR”. The matrixiV consisting of the
q vectorswy, ws, ..., w, as its column vectors is denoted By = (w;|ws|. .. |w,).

Thus,IW € M,,.

Notation 1.6. Let W = (w;|ws|...|w,). The notationcol(W) for the matrix IV’
denotes the column spatE. Thencol(W) = span{wi,ws,...,w,}, which is the

space spanned by the column vectorglaf

Notation 1.7. Let O,, denote the space @f x ¢ matrices)M with real components
and orthogonal columns, ordered by decreasing norm, (netrices satisfying/‘ M

= diag(vy, va, ..., vy) Withvy > vy > ... > v, > 0), and IetO;q denote the subset
of matrices inO,, satisfying the additional constraint that the first nonzelement in

each column is positive.

Notation 1.8. Let M € M,,. The notationrange(M) = {Mv : v € R?} is the range

of the matrix) .

Definition 1.9. Let M € M,,. If v!Mv > 0 for all non-zero vectors € R?, then)M
is said to be positive definite dk®. If viMv > 0 for all v € R?, then) is said to be
positive semidefinite (or non-negative definite). Posdefniteness (semidefiniteness)

of a symmetric matrix is denoted By - 0 (M = 0).

Definition 1.10. Let A = (a;;) € M,,. The trace of4, denoted byr(A), is defined

as tT’(A) = Z?zl Qjj



Model Hierarchy (1)

General Random Effect Factor Model(MO)
Y=u+Af+U

F ~N(O, I),

U~ N(0, diag(¢)), ¢=(¢1, ..., ¢p)

< Random Effect Factors >

<(M0) General Factor Model Y=y + Af + U>

|

< (M0a) x=u1 >
|

< (M1) ©=0, U has equal variance >
(MIR) £=0, p1=...= ¢r=0,
and ¢r+, ..., @p are equal

Figure 1.1: Model Hierarchy.
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Model Hierarchy (2)
Cross-classified Models

s === N
I F|xed Factors <Random Factors>
mmmmmmm o < (M2) Random

; (M3) ) Factors

‘. Fixed Factors !

. (Ma) PARAFAC N
I A may not have !
N orthogonal columns -/

——————————————

. l_ ______ (M4 prime)
,” (M4) e PARAFAC +
' A has orthogonal 1 Random Effect
N columns /'

— o - . o = e

Figure 1.2: Cross-Classified Model Hierarchy.
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Chapter 2

Factor Analysis Models and Model Hierarchy

In this chapter, we introduce the general factor models andtcuct a model hierarchy
for application to tongue image data. In each model, we ptese model assumptions

and the parameter spaces, and then give the proof of idéiitifia

2.1 General Factor Analysis Models

Let {Y™;r = 1,..., R} be an independent sequence of random column vectors of
p components with mean and covariance matriX,. Then we say that the-factor

model [15] holds fo®” ™) if Y can be written in the form
Y = g+ Af0 + U0 (MO0)

wherey is a column vector op componentsj is ap x ¢ matrix of constants witly
fixed and less thap; ") is ag x 1 random vector; an@ ") is ap x 1 random vector
forr = 1,..., R. The elements oA are calledfactor loadings, the elements of ")
are calledcommon factors and the elements &f") are calledunique factors.
Assume (as in Mardia Kent Bibby [15]) thét) ~ N(0,1,), U™ ~ N(0,¥), and
£ andU™) are independent where = diag(z)) is ap x p diagonal matrix with the

vectory = (¢1,...,v¢,) € R? on the diagonal. Therefore, the General Factor Model

12



can be expressed

Y~ N(p, AN+ T)

The observed data always consist{af ");r» = 1,...,R}. The parametef =

(1, A, ¥) is assumed to belong to the space
OO0 = R” x O, x R} (2.1)

whereO,! is defined in Notation 1.7 anit; is defined in Notation 1.3. This model is

called model (MO).

2.1.1 Generality of¥y produced by the model

In model (M0),Y'") is normally distributed with mean and covariance
Yy = AN + diag(w)) (2.2)

whereV¥ = diag(y). In this case, there is a problem of existence of the model: fo
a normal population with meam* and covariance matriX*, is there a factor model
(MO) that can generate this population? The essential questwhether the equation
¥* = AA" + diag (1)) can be solved, or what condition is needed to solve the aexjuati

It is of interest to compare the number of parametersiinwith the number of
free parameters in the factor model. Therejastements of) andpq elements of\.
However, in any solutiom\ can be replaced b7, whereT is anyq x ¢ orthogonal
matrix and7" hasq(q — 1)/2 independent elements. Thus, a solutiore O, must
satisfy¢(¢ — 1)/2 additional column orthogonality constraints. Since thenbar of
distinct elements ofy is p(p+1)/2, we see that the number of covariance parameters

minus the number of additional independent constraints is

C(p,q) = %p(p +1) = [pg+p— %q(q —1)]
= %[(p— 9)? — (p+q)] (2.3)

13



Usually,C(p, q) > 0, sincep is much larger than. In general, a solutiof\, 1)) under
the additional constraints can be unique only’ifp, ) < 0. Setting the quadratic

C(p, q) equal to zero and solving fat, the two roots are given by
1
q= 5[(2}9 +1)++/8p+1] (2.4)

For any fixed value op, the plot of the quadratic functiofi(p, ¢) is a parabola which

opens up vertically. Hence the valuesgafuch thatC'(p, ¢) < 0 are given by

%[(2}9 P4 Rprl] 2> max(%[(Qp +1) = Rp+11.0) (2.5)

2.1.2 Identifiability for (MO) model

A parametep for a family of probability density function®y = {py : 6 € O} is said
to be identifiable if the distinct values éfcorrespond to distinct probability densities.
That is, 0 is identifiable if6 # ¢ impliespy # pe. The existence of a consistent
estimator of a parametér (in independent identically distributed samples fréty)
implies identifiability off.

In the general factor analysis model (M®){") is assumed to be multivariate nor-
mally distributed with meam and covariance matriXy = AA* + diag(¢). Thus,

identifiability of the model requires precisely that the mizg

(1, A, ) — (p, AN + diag(e)))

be one-to-one. Therefore, given covariance matrand a numbeq of factors, we ask
whether there exists unigyd, ) to satisfy (2.2). It is clear that ifA,) is a solution
of (2.2), then \T',¢)) is also a solution of (2.2), for any x ¢ orthogonal matrixi'.
So the problem is whether we can find constraints such theg tee unique solution

under the constraints Withi@;].

14



As we count the number of equations and number of free paeasietthe previous
section, identifiability corresponds roughly to a solutsat of dimensiod. However,
the counting of equations does not really give enough in&ion for a sufficient con-
dition. We should investigate the problem more fully. Lefiost start from observing

some examples of non-identifiable models.

Example 2.1. Let {e,es,...,¢,} denote the canonical basis &”, e¢; the vector
with i-th componend,;, and Iet(K,zZ) be a solution of equation (2.2) satisfying the
conditions that the columns of are orthogonal and the first column afis a - e, for
some scalau. LetA() denote thg-th column of\ and writeA = (a-e;[A@)|. .. |A@),
J:(wl, ...,1p), andXy = (oy;). Substitute them in (2.2); then the (1,1) component
of Xy satisfies the equation

o1 = a® + 1.

We can decomposg; as
o1 = (a* — €) + (e + 1) foranye € (0,a?).

Foranye € [—11,a?), letA, = (Va2 — ee; AP ]ND)andy, = (e+101, g, . .., 1b,).
Then(A,, ¢.) is also a solution of equation (2.2) and is in a neighborhobtﬂh {E).
Hence, there exist infinitely many solutions of (2.2) in hborhood o(K, @Z). Thus,

the model is non-identifiable.

Example 2.2. Consider the dimensiopn = 2 andg = 1, so thatp < 2¢ + 1. Let

Mo =(1,1)", A = (VI \/5)", 6o = (1,1), anduy = (0.9, 12). Then

Aol + diag(iio) = (f ;) — AJAL + diag(¢y) (2.6)

Hence, there exist two solutiorid, ) and (A1, ;) of (2.2). Thus, the model is

non-identifiable.
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Example 2.3. Consider the dimensiom = 3 andq = 2 again satisfying < 2¢ + 1.

Let
1.1 +/3.99
2.1
s (2.7)
1.9
3.99
-1 3
AoA§ + diag (i) = 3 0 | =MA+ diag(yn) (2.8)

Hence, there exist two solutiorid, vy) and (Aq, ;) of (2.2). Thus, the model is

non-identifiable.

In Example 2.2p = 2 andq = 1. There werel parameters to solve for but only
3 equations, which is why there was more than one solutior2 @), In Example
2.3,p = 3 andq = 2. There were8 parameters but only 6 equations. In general,
the equation-counting result in (2.3) suggests that theltebes identifiability only if
C(p,q) > 0,0r(p—q)* > p+q, andp > 2q + 1 is sufficient for this.

In 1956, Anderson and Rubin [1] gave a sufficient conditionifientification of

the general factor analysis model as follows:

Theorem 2.4. A sufficient condition for identification @f and A up to multiplication
on the right by an orthogonal matrix is that if any rowdis deleted there remain two

disjoint sub-matrices of full rank.
They also found a sufficient condition for local identificatj which we now define.

Definition 2.5. (A, ) is said to be locally identifiable within a subgéiof O, x R,
if there exists a neighborhooll of (A, ¢) within O, x R such thatAA* + diag(1))
= A1 A! + diag(v1) has the unique solution\(, ¢1) = (A, ¢) withini/ .
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Now the sufficient condition for local identification promasby Anderson and
Rubin [1] is as follows:
Theorem 2.6.Let ¥ = diag(y)) and® = W — A(A" OTA)TAY If |67 | # 0, that s,
the matrix= with elements,; = gzsfj is nonsingular, therk and+ are locally identified
under the restriction that\! ¥=!'A is diagonal and the non-diagonal elements are

different and arranged in descending order of size.

However, the condition for local identification in the preus theorem is hard to
check. We should find other more practical conditions on #m@meter space such
that the parameter in this parameter space is identifialdern(mo).

We start with a special case, denoted (MOa), of the (MO) matiein,, = 1:1:
Y=pl+Af+U (MOa)

Letp > 2¢ + 1 and let the parametér= (u, A, ). We define the parameter space

of (MOa) as
@M()a =R x O;;] X Rﬁ (29)

whereO; is defined in Notation 1.7. However, the parameter in therpatar space
O m0q 1S NOt identifiable under (M0a). Thus, we need additionakt@ints onA such
that the model (MOa) is identifiable. The constraint coulabhe of the following two

cases:

(¢) A contains a column proportional o (2.10)

(i4) A'1=0 (2.11)
Therefore, we can redefine the parameter space as either nfdhspaces:

Onoar = ©Onroa N {A contains a column proportional ig (2.12)

Omosz = Omoa N{A'1 =0} (2.13)
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We will show identifiability under (M0Oa).
Lemma 2.7. The model (M0a) is identifiable in eith€r,;0,1 Or © 3/042-

Proof. Suppose there exist two paifd, ), (A*,*) both in either©,,y,; or
O n0q2 @nd satisfying (2.2), and 1€t = diag(y), V* = diag(v*). Then

Yy = AN+ U = AFA*E 4 P (2.14)
and
(AA" — A*A*H)1 = (T* — )1, (2.15)

Now the left hand side of this equation is eitl@eif both (A, v), (A*,1*) € O 1042, OF
is a constant times, if both (A, ), (A*,¥*) € O a1 In the first case, we conclude
that the diagonal matriX* — W is the zero matrix, and then from (2.14) it follows
also thatAA* = A*A*'. Since bothA andA* belong to the space;, it follows that
A=A~

In the second case (if (2.10) holds for bath A*), we havel as an eigenvector
of AA! — A*A*t with possibly nonzero eigenvalue, which is a contradictimess

U* — ¥ = cl, for some possibly nonzero constantSincep > 2¢, this is possible

only if c = 0, U* = ¥, AA* = A*A*! because
rank AAY), rank A*A*") < p/2
implies
rank AA" — A*A*") < p = rank(l,).

Thus, we conclude in either case théit= ¥*, AA! = A*A*t. Since bothA and

A* belong toO7 , it follows thatA = A*. O

pq’
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Remark 2.8. The vectorl could be replaced by any other vectgrwith all non-zero
entries which is known in the sense that it is written into theapsater space into
conditions like (2.10) or (2.11), playing the same role fottbA and any potential\*
in (2.14).

Remark 2.9. The assumption in (2.13) automatically implies that theoracal basis

vectors cannot lie in the column space &f In the case (2.12), the restriction to
A matrices containing a column proportional fomeans that we have identifiability
despite allowing possibly that a canonical basis vector miighin the column space

of A.

2.1.3 Identifiability for (MO) (continued)

Now, let us go back to model (M0) and give some conditions $hahthe parameter
is identifiable under (M0). In Example 2.1, we explained tihat contains a column

proportional to any element of the canonical basis, thep&nameter is not identifiable
under (M0). Thus, in order to make the model identifiable cla@onical basis must be

excluded from the column space &f Therefore, we have the the following Lemma.

Lemma 2.10.1f p > 2¢+1 and if, for some. € R?, there exist i, Ao, 1), (1, A1, Y1)
€ Oy defined in (2.1) such that thde;, es, ..., e,} N col(A;) = 0 for j = 0,1,

col(Ag) C col(Ay), and satisfying the condition (2.2), théfy, 1o)= (A1, ¢1).

Proof. Suppose there exigji, Ao, 1), (14, A1,¢1) for somep € RP such that
{er,ea,...,e,} Neol(A;)=0 for j = 0,1, col(Ag) C col(A;), and satisfying the con-

dition
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Let ¥y = diag(vp) and¥, = diag(y),). Then
AgAfy — A AL =Ty — T (2.17)

which implies that the range ¢/, — ¥) must be contained in the space spanned by

the columns of\, andA;. That is,
range(V; — W) C span{col(Ag), col(Aq)}. (2.18)
Here(V, — W,) is diagonal since botk¥, andW, are diagonal. Thus,
range(V; — Vo) = span{e; : (V1 — ¥y);; # 0}. (2.19)
Through equation (2.18) and (2.19), we have
spande; : (V1 — Wg);; # 0} C span{col(Ay), col(Aq)}. (2.20)
Under the restrictiomol(Aq) C col(A;), the above equation becomes
span{e; : (¥ — Wy),; # 0} C col(Ay). (2.21)
This contradicts the assumption tHat, es, ..., e,} Ncol(Ay) = 0. O
The space®),, andO,, have been defined in Notation 1.7. We now define more
general spaceS;, andO; *.

Notation 2.11. Let O;,, denote the space f x ¢ matricesM with real components
and orthogonal columns, ordered by non-increasing norne,,(isatisfyingM ‘M =
diag(vy, va, ..., vg) With vy > vy > ... > v, > 0), and letO; * denote the subset
of matrices in0;, satisfying the additional constraint that the first nonzetement in

each column is positive.
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The spac®),, is a subspace @by, , andO/, is a subspace @b;,,*. Now, we define

a more general parameter space. et (u, A, ). The parameter spa€¥, ,, which

contains® o, is defined as
O30 =R x 05" x RE. (2.22)

The parametef € O, in (2.1) was shown non-identifiable under (MO)if €
col(A) foranyj = 1,2,...,q. We now have the following Lemma connecting the

non-identifiability to a solution of (2.2) in the boundarytbe parameter spaée; ..

Lemma2.12.1f e; € col(A) and if (A, 1)) satisfies the condition (2.2), then there exists
(A*,4*) in the boundary of the parameter spa@g,,, possibly with largeg;, and also
satisfying the condition (2.2).

Proof. Since(A, v) satisfies the condition (2.2), we can decompiseas
Yy = AA" + diag(y)
= (AN +pjejel) + (—ijeje; + diag(v))
= (AA" + 9je;el)
+ diag(y — Y1, 0, Y1, ., ¥p) (2.23)

The first term in (2.23) is positive definite and symmetric. Bg spectral decomposi-

tion theorem, it can be written as
AAt + @/)jejez» = AIAi (224)

whereA; has orthogonal columns and positive norms of columns, untrms of
columns may not be all distinct and ordered. The norms can dserordered non-

increasing if we multiplyA; by a permutation matrix from the right. That s,

AATt = (AR)(ALR)' = AjAL = AN+ yeet (2.25)
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whereA* = AR € O;qﬁ

DenoteV = diag()) and denote the second termin (2.23) as
U™ = diag(y™) (2.26)

wherey* = (¢Y1,...,1%;-1,0,%,41,...,1,). Thep x p diagonal matrix0* is just
like ¥ but thej-th diagonal element i8. This reduces the number of parameters in
U from p to (p — 1). Therefore, if(A,¢)) € O is a solution ofSy = AA! + ¥
with U = diag(v), then there existé\*, ¢*) in the boundary oB?,, such that, with
U = diag(v*),

Yy = AN+ U = A*A*F 4 U, (2.27)

That is, ife; € col(A) and(A,v) € O,y is a solution ofSy = AA" + ¥, then there

exists another solutiom*, )*) in the boundary 0®%,,. O

Now we will explore a relationship between a non-identifealsiodel and the pa-
rameterization in which not the dimensionfout the column space df is reduced.

We need the following Lemma for this purpose.

Lemma 2.13.Let A > 0 be ap x p symmetric, positive semidefinite matrix (cf Defini-

tion 1.9) and let» € R? be a vector in the range of, v # 0. Then

sup{a € R: A —avv' = 0} >0

Proof. Since A is nonnegative definite and symmetric, using the singulareva

decompositionA can be decomposed as

A=WDW! (2.28)
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whereD = diag(dy,...,ds) andd,, ..., ds are the non-zero eigenvaluesfvith the
corresponding unit eigenvectoss, ws, . . ., ws, andW = (w;|ws| ... |ws). Note that
range(A) = span{ws, ..., ws} = col(W).

Note that

inf{x'Az : © € range(A),||z| = 1} = min dj (2.29)

1<k<s

Also, A : range(A) — range(A) is linear, symmetric, invertible and positive definite.
Then anya with 0 < o« < min{d; : 1 < j < s} results inA — al, : range(A) —
range(A) which is invertible and positive definite by (2.28).

Given any vectop in the range of4, we can construct an orthonormal bagisv,,
Vs, ..., U5} Of range(A) such thatl, = vo® + 377 , vjv; as an operator orunge(A).

Therefore, A — awvv! can be decomposed as
A—aw'=(A-al,)+a Z v;V; (2.30)
j=2

which is positive definite onange(A) sinceA — «l, is positive definite omange(A)
anda > 7, v;v; is nonnegative definite. Létange(A))+ denote the orthogonal com-
plement ofrange(A). SinceA — avv® maps(range(A))*+ to0 andA — avv! = 0 on
range(A), we haved — avv' = 0. O

We can now make a statement on the relationship betweerdenifiable models
(MO0) involving parameters with reduced column spaceXoMWe have the following

lemma.

Lemma 2.14.1f (A,v¢) € Oy, and satisfies (2.2), and #; € col(A), then there
exists another solutiof\*, v*) € ©3%,,, which is defined in (2.37), such thatdoes

not belong taol(A*).
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Proof. Ife; € col(A), then we have; € Range(AA'). By Lemma 2.13, there
exists a numbefi = sup{a : AA" — aejel = 0} which is positive. Let) = AA" —
aejel. Then@ is non-negative definite angd ¢ col()) as we shall prove below. The

J

covariance matrix, = AA‘ + ¥ can be decomposed as

Y o= AN+ U

= Q-+ (o?ejez + ) (2.31)

The matrix@ is symmetric and non-negative definite. By the spectral dgosition

theorem, and using the same idea as in the proof of Lemmai2cH? be written as
Q= A*A" (2.32)

whereA* € O} .

Next, we show that; does not belong toange(Q). If e; € range(Q), then by
Lemma 2.13, there exists > 0 such that(Q — ae;e’) = 0 which contradicts the
definition of ). Therefore,e; does not belong teange(()) = col(A*). Hence,A*

does not contain; in its column space. [

We defined the parameter spadeg, in (2.1) and©3;,, in (2.37). To prevent

confusion in the dimension @bl(A), we redefine the notations
0%, = Ouno ando}/, = 03 (2.33)

to specifydim(col(A)) = ¢ in O, and©3,, respectively.

Based on Lemma 2.12 and Lemma 2.14, we conclude that, & col(A) and
(A, W) is a solution ofY = AA" + U, then there exist two other solutio&*, U*).
One hasl* = diag(¢1, ..., ¥j—1, 0,¢;4+1, ..., 1) in the boundary, and for the other,

A* does not contain;, in its column space. Therefore, we have the following lemma.
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Lemma 2.15.1f p > 2¢ andXy = AA' + diag(y)) for model (MO) parameters which
are non-identifiable, then there exigts*, ¢/*) in the boundary of the parameter space

67\;{), for somey > ¢, satisfying the condition (2.2).

Proof. If the model is non-identifiable, then there exist two distipairs(Ay, ¢),
(A1, 1), with ¥g = diag(vg) and ¥y = diag(1)y), satisfying the condition (2.2).

Then we have
Yy = AoAfy + Wy = AjAL + Uy, (2.34)

Given anys € (0, 1), the convex mixturdl — s)(AgAl) + s(A;AY) is non-negative
definite. Therefore, using the Singular Value Decompasitieeorem, we can define

A, € 037 such that
AN = (1—38) - (AgA)) + s+ (A AD). (2.35)
Also, define
Vo= (1—8) 9o+ s ¢y andW, = diag(s,) (2.36)

Then(A,, 1) is also a solution of (2.2). Let, = dim(col(As)). Note thatg, = g.
Thencol(Ag) C col(As) andg < g, by (2.35). Applying Lemma 2.10, there must exist
e; € col(A) for somej. Then, by Lemma 2.12, there exists*, ¢*) in the boundary

of the parameter spa¢, /> also satisfying the condition (2.2), where
Oy =R x O; I x R (2.37)

which is the same &37,, but with possibly different dimension eb/(A). O
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2.2 Factor Model (M1)

Consider the special case of (M0) whén= oI, andu = 0:
Y=Af+U (M1)

wheref ~ N(0,1,), U ~ N(0,0%I,), and where\ is ap x ¢ matrix such that\’A is

diagonal with distinct ordered-decreasing elements.

Under (M1), the covariancE can be expressed in terms dfando? through the

equation
Y= AN + 071, (2.38)

Now, let us define the parameter space for (M1).

Letd = (A, o?). We define the parameter space as
Or1 = O, x Ry (2.39)

whereR , denotes the set of all positive real numbers. We first shotoilngparameter

6 is identifiable from the observed data in (M1).

Lemma 2.16. Model (M1) is identifiable if the parametéris assumed to belong to

@]Vll-

Proof. In model (M1), the covariance matrix 6f(") is given by (2.38). Here?
can be identified by the minimum eigenvalueXf sinceq < p. Therefore, AA" is
identifiable. By the uniqueness of the Singular Value Decasitjpm, A is identified

in O,7,. Therefore, model (M1) is identifiable.]
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2.3 Factor Model (M1R)

Consider the reduced form of the (M1) model:
Y=Af+U (M1R)
wheref ~ N(0,1,), U ~ N(0, V), Ais ap by ¢ matrix and

0, O
U = (2.40)
ot oI, ,
wherer < ¢ < p, 0, is ther x r zero matrix,O is ar x (p — r) zero matrix and
O! denotes the transpose ©6f Under (M1R), the covariance paramel&f can be

expressed in terms df andW through (2.2). For simplicity of notation, partition

Sy ¥ Ap A
Sy=| " T | anda=| " " (2.41)

221 222 A21 A22

whereX, X1, andXq, arer x r,r x (p —r) and(p — r) x (p — r) sub-matrices of

Yy, respectively, and\1, Ajo, Aoy @andAyy arer x r, v x (¢ —r), (p —r) x r and

(p—r) x (¢ —r) sub-matrices of\. Now, let us define the parameter space for (M1R).
Letd = (A, o?) whereA is partitioned as in (2.41). We define the parameter space

as

Ompr=1{ 0= (A,Uz) : A €OS, Ap=0, Ay € My s,

rr

Ay € OF 0 < o? < oo} (2.42)

p—r, q—r?

whereM,, is defined in Notation 1.1. Thu§),,,r is a subset oR? x R,. We next

show that our parametéris identifiable from the observed data in (M1R).

Theorem 2.17.The paramete) = (A, 0%) € O,r is identifiable under model

(M1R).
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Proof. Write ¥y = AA! + ¥, and partition®)y- andA as in (2.41), obtaining

Y Y2 A AL+ ApAl, A ALy + Al
o1 o2 At Ay 4 Aoty Aoy Ay + AgoAyy + 071,
Thus,ZU = AllAil + A12A32- SinceA12 = 0, we haveZU = AllAil' By the

uniqueness of singular value decompositiomof € O, A7 is uniquely determined

rr?

such thatAY;A;; = B where B = diag(by,...,b,) with by > by > ... > b, > 0.
Moreover, since\;; = 0, alsoYy; = Ay AL, + AxpAly = Ay Al Multiplying the

last equation by\;; from the right, we have
Y11y = At AL A = Ay B, (2.43)
Therefore,
Aoy = T Ay (A A) 7! = S Ay B! (2.44)

is also uniquely determined. Sindg; has full rank,(A{; A1)~ =(Ay) 1 (AL

Then (2.44) can be simplified as
Aoy = Sor (AL (2.45)
Finally,
Yoo = AgiAb; + AgeAb, + 01, . (2.46)
SubstitutingA,; = Y1 (Af,)~! in equation (2.46), we have

Yoo = Yo1(AL) AL SY 4 ApAl, + 071,

= Yo N1 1g + AgpAby + 021, . (2.47)
Subtracts,; X' 21, from (2.47) on both sides, leaving

A22A§2 + Uz[pfr = Mgy — E2121711212

= 222_1. (248)
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Next we show that\,, AL, andA%, A,y have the same the nonzero eigenvalues, and
the nonzero eigenvalues are distinct. Applying the singudue decomposition of
Agz, we havehy, = UDVE, whereU ((p—r) x (¢—r))andV ((¢ —r) x (¢ —r)) are
column orthonormal matrice¥/(U = V'V = I,_,) and D=diag(d, . ..,d,—,) with
positive elements; for 1 < j < (¢ — ). SinceAy, € O, ., di > ... > dy_,.

ThenAg AL, = UD?Ut andAb, Ay = VD2V, Therefore Ay AL, and AL, A, have

the same the nonzero eigenvaldgs. . ., d;_,, and
2> . >d_. (2.49)

Let X551 = QAQ! be the singular value decomposition B§, ;, where@ &<
My gery A=diag(1, 02, . ..,0,—). The values,, o, ..., J,, are the eigenvalues of
Y901 @nd the columns ap are the corresponding standardized eigenvectors. By (2.48)
and (2.49), we hav&’ =  and the eigenvalues 8k, 1, {0; = d>+0%,1 < j < g—r},

are all distinct. Them? can be identified by the minimum eigenvalije,, and then

A22A§2 = Yoo1— U2]p—r
= QAQt - QOQIprQt
= Q(A - UQ[pfr)Qt

is identifiable. By the uniqueness of singular-value-deaositipn of o5 1, Ay iS

identifiable inO;_,, .

O

Remark 2.18. The matrixA in the parametef) € ©,,,r which is defined in (2.42)
does not have orthogonal columns any more. We can alwaysforams\ to have

orthogonal columns by applying the singular-value-decositipn toAA°.

29



2.4 Cross-Classified Factor Model (M2)

In this section, we start to formulate a cross-classified alttigroup model. Let
{y"m . =1,...,R;m = 1,..., M} be a set of vector observations, where the
observationg/ ("™ are vectors irR? which represent vector measurements on an ex-
perimental system ; let=1,..., R index the identically distributed replications and
m = 1,2,..., M index the experimental settings. We are interested in tienoan
situation where experimental settings are doubly indexedabs), for example, to
reflect cross-classification liyeatmentandsubject The models we consider all have

the following structure:

Yiras 1
yres) = : = fas | 1| +AFCe) L ylnes) (2.50)
Ypras 1
That s,
q
Yiras = Has + Z )\ikfkras + Uiras (251)
k=1

We assume thet™*) ~ N(G%, 1), anqu(QAS = (fFLO|FCL2) L | f(A9) s a
sequence of x AS matrices where = 1,..., R. The elements of/ "%, .., are

independentV (0, ajas). Now let us define the parameter space for (M2) by

Om2 = {(w, A G, ) A€ Of andA1 =0,
p="{pas :a=1,..., A s=1,...,5} € R,
Y =(02 4 (a,8) € {1,..., A} x {1,...,5}) € R,

u,as?

G = (G*) € Myas). (2.52)

The model in (2.50) under this parameter space is called hiptsy. We will show

that the parametétis identifiable from the observed data in (M2).
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Lemma 2.19. Model (M2) is identifiable.

Proof. In model (M2), the expectation af %) is
E(Y™®) = 15,1 + AG?), (2.53)
and the covariance matrix &f(**) is

2% = AN 402 T (2.54)

u,as” "

Hereyu,s can be estimated consistently by
. 1 R p
Has = ﬁ rzl ; Yiras
whenR — oo. In equation (2.54)7;, ,, can be identified by the minimum eigenvalues
of ng’s) sinceq < p. Therefore AA! is also identifiable.
Next, we want to identify\. Using the uniqueness of the Singular Value Decom-

position in Lemma A.3 for\ € O

.+ We can uniquely determing.

Finally, we want to identifyG(**). Multiplying (2.53) by A* from the left on both

sides and using the fact that the columng\are orthogonal to th& vector, we have
E(AY @)y = APAG@), (2.55)

Therefore G(@*) = E[(A*A)~!(AtY @*))] is identifiable. [

2.5 Cross-Classified Factor Model (M3)

In (M2), we are interested in the common situation where Bxpntal settings are
doubly indexed by(«, s), for example, to reflect cross-classificationtlgatmentand

subject The common factor§™*) in (M0)-(M2) are considered asindom effects
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that is, random variables. Then the spedffic>*) would not be of interest in them-
selves, because another set of batches in a subsequenitrexgevould provide differ-
entf(»**), What might be of interest is the size of the variation inffi&*). In (M3),
we will think of the factorsf("**) as beingfixed effectseach associated specifically
with one of the experimental settings. Then the spe€ifit*) would be of interest.

In the case of fixed factors, we assume tfat*) = (), and
F = (fOD)F12)] L £ (A5)
defines a non-randomx AS matrix. Define the parameter space to be

Onz = {(M,A, F,?/)) A€ O;;] andA’1 = 0,
p="{pes:a=1,...,A,s=1,...,5} € R,
U= (02, (a,s) €{1,..., A} x {1,...,S}) e R},
F = (f*)) € M, a5 with rows orthonormal

rank(F) = rank(A) = rank(AF) = q}. (2.56)

The model in (2.50) under this parameter space is called hipt8. We will show

that our parametet € O3 is identifiable from the observed data in (M3).
Lemma 2.20. Model (M3) is identifiable.

Proof. In model (M3), the expectation &f %) is
E(YTo)) = 1,1 + Af(@*) (2.57)
and the covariance matrix &f(**) is
) = 62 T (2.58)

u,as™ *
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Hereo? . can be identified by the minimum eigenvaluesitﬁ’s) sinceq < p. In

u,as

equation (2.57), the parameter, can be estimated consistently by

1 &
Has = p—R TZ:; ; Yiras

whenR — oo. Therefore Af(**) is also identifiable. That is\F is identifiable.
Now we identify A and F'. Note thatA and F" arep x ¢ andq x AS matrices,
respectively. Applying the singular value decomposition/oF’, there exist unique

matricesU/, D andV (expect for possible changes of sign of the columns) sudh tha
AF=UDV" (2.59)

whereD = diag(d,, ..., d,) such thai?, ..., d; are eigenvalues ofF(AF)", U is a

p X ¢ matrix and the columns df are standardized eigenvectors\of' (AF)*, andV’

is aAS x g matrix with columns are standardized eigenvector§\df')* AF. Since

F has orthonormal rows i®,,3, by the uniqueness of singular value decomposition
in (2.59),A and F' are uniquely determined. Therefore, the model (M3) is idiabte.

U

2.6 Factor Model (M4)

Assume that the fixed effecf&*) now have the factorized form

flas
flas) — ; and fr., = wvsp fork=1,....¢q (2.60)

fqas
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The parameter space is defined as
Orms = {(w, A, W,V,9p) : A € O, andA'1 = 0,
p="{pas:a=1,...,As=1,...,5} € R,
V= (02, (a,s) €{1,..., A} x {1,...,S}) e R},

A
W = (wer,) € M, with > w2 =1,
a=1

S
V= (Usk) € ./\/lsq with ngk =1,
s=1

rank(A) = rank(W) = rank(V) = ¢ < A, S}. (2.61)

where M 4, and M}, are defined in Notation 1.1. The model in (2.50) under this

parameter space is called (M4) model, which can be written as

q
Yiras = Has + Z )\ikwakvsk T+ Uirqs- <M4)
k=1
We next show that our parameteis identifiable from the observed datain (M4).

Lemma 2.21. Model (M4) is identifiable.

Proof. In model (M4), the expectation &f ™) is

Wq1Us1
E(y(r,a,s)) = fgs1 + A (2.62)
WaqVsq
and the covariance matrix &f("**) is
Y =02 1. (2.63)

Hereo? . can be identified by the minimum eigenvalueXc;if’S) for each ,s) since

u,as

p > q. Theny,s can be estimated consistently by

- 1 R p
Has = ]E Z Z Yiras

r=1 i=1

34



Wq1Us1
whenR — oo, and them\ : is identified through the equation (2.62). That

WaqUsq

iS, > 1, Airwarvs is identified foralla =1,...,A,s =1,...,5,i=1,...,p.
Next, we identifyA, W andV using Jennrich’s Basic Uniqueness Theorem stated

in Lemma A.4. Suppose that there exdst, war, vsr and A\, w?, , vi, such that

q q

* * *
E AikWakVsk = E Ak Wk Ugk
k=1 k=1

whereA'A = diag(y,...,b;), by > by > ... > b, > 0, A*'A* = diag(i, ..., b} ),
by >0b;>...>0;>0, Zf:l wy =1= Zf:1(w2k)2’ 25:1 v =1= 25:1(U:k>2’
andrank(A) = rank(W) = rank(V) = rank(A*) = rank(W*) = rank(V*) =

g < A, S. By Jennrich’s Uniqueness Theorem, we have
A =ARD\,W* =WRD,,V* =VRDs (2.64)

whereR is a permutation matrix anf, , D,, D5 are diagonal matrices with, D, D3 =
I. Let w® be thek-th column vector oV, w*)* be thek-th column vector ofiv*

andR = (R;;). SinceW™* = W RD,, we have
(WD w@*| - Jw @) = (WP |w?|- - [wD)RD,

whereR D, is a row permuted matrix ab,. This impliesw®* = (Dy),w) for some
J which depends on the permutation matixsuch thatk;; = 1. Using the condition

that> 2 w2, =1=3"" (w’,)?, we have

A
1= (wi)” = [lo®? = (Do)iellw? | = (D2 (2.65)

a=1
Therefore,D, = diag(d”,ds?,--- ,d) whered” = +1 or —1. Similarly, we
have D5 = diag(d?®,dy, .- d) whered® = +1 or —1. ThenD,D,D; = I
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implies1 = d\"d”d® whereD, = diag(d",d}",---  d"). Therefored" = +1
or —1. By the conditions thaA’A = diag@:,...,b,), by > by > ... > b, > 0, and
(A*)'(A*) = diag@j, ..., b; ), bf > by > ... > b: >0, we have

diag(by,...,b;) = (A*)'A*
= (ARD;,)"(ARDy)
= DyR"diag(by,...,b,)RD;
— (D\)?R' diag(by, ..., b)R

= R'diag(by,....b,)R. (2.66)

Applying the uniqueness of the Singular Value Decompasifibeorem to equation
(2.66), we haveR = I. Therefore,A* = ARD, = AD; where D, is a diagonal
matrix with+1 or —1 as the diagonal elements. Since we assume that the firstnoonze
element in each column of andA* is positive, thenD; = I. Similarly, sincelV* =
W D4y and the first nonzero element in each colummiotndiV* is positive,Dy = 1
andW = W=,

Finally, V' is identified onceD, = D, = [ andD,D,D3 = I, so thatD; = [ and
V*=VD3;=V;. [

2.7 PARAFAC Model (M4a)

In this section, we consider a model which is similar to (Mdying fixed common
factorsf(»*) but without the orthogonality of columns of loading matrix Consider

the model

y (na.s) _ flas 1+ A, £(as) + [J(r:a:s) (2.67)
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whereA, is ap x ¢ matrix with non-orthogonalized columns. Assume that thedix

factorsf(®*) can be written as

flas
f(a,s) == andfkas = Wk Usk for k= 17 - q. (268)

fqas

The elements of/"**), u;,,, are independen¥ (0,02 ,,). We define the parameter

space
Omae = {( AW V) i pp={ptas :a=1,...,A,s=1,...,5} € R,

A, e M*

. A1 =0, with column norms in decreasing order,

V= (02, (a,8) € {1,..., A} x {1,...,5}) € R,

u,as?

A
W = (we) € M, with > w2 =1,

a=1

S
V = () € Mggwith > v =1,
s=1

rank(Ay) = rank(W) = rank(V) = q¢ < A, S}. (2.69)

Model in (5.2) under this parameter spagg,, is called the PARAFAC model?],

denoted by (M4a), which can be written as

q
Yiras = Has + Z()\ik*>wakvsk + Uirqgs- (M4CL)
k=1

Lemma 2.22. Model (M4a) is identifiable.

Proof. Using the same proof as in Lemma 2.21, we can identify#(**), and

Wq1Vs1
thenA, : is identified. Thatis) 7_, Ak «wakvs: is identified for alla =

WaqUsq
L,...,A,s=1,....,5i=1,...,p.

Suppose that there exis; ., Wak, Vsr @ANA Nk «, Wak, Us, SUCH that

q q
E ik «WakVsk = E ik «WakVsk
k=1 k=1
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A i + 2
where both\, andA, are |n/\/lpq and have column norms ordered decreas[nj@il wo, =

L= o (@a)?, 00 v = 1= 320, (0a)? rank(A) = rank(W) = rank(V') =

rank(A,) = rank(W) = rank(V) = ¢ < A, S. By Jennrich’s Uniqueness Theorem

(Lemma A.4), we have
A, = ARD;, W =WRD,, V=VRDs (2.70)

whereR is a permutation matrix anf},, Dy, D5 are diagonal matrices with, D, D5 =
1. Following the same proof as in Lemma 2.21 and using (2.6%liesD; is a diago-
nal matrix with+1 or —1 as the diagonal elements, for 1,2, 3. SinceA, = A,RD;

and we assume that, #,,4,, the first nonzero element in each columnigfandA,

is positive, thenD, = I. Also we assume that the column norms of bathand A,

are ordered decreasing, this implies the permutafioa I,. Therefore, A, = A,.

Similarly, we havelV = W D, and the first nonzero element in each columiofs

positive, so thaD, = I andWW = W. Finally, V is identified onceD; = D, = I and
DyDsD; =1,sothatD; = TandV =V. O

2.8 PARAFAC Random Model (M4')

In this section, we are interested in the case that the confambors consist both of

fixed and random effects. We assume that

flras
f(r,a,s) = andfkms = WukVsk + Ckras fork = 1, o, q (271)

fqras

where the elementge;.,..., k = 1, ..., ¢} are independenV (0, o?2,,,). Thatis,

Fres) o N (G, %) (2.72)
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where

91as Wa1Vs1

G = | = ; andL{™?) = diag(o2 14y, .. 0L 4as).  (2.73)

» Ye,qas

Gqas WaqUsq

Define the parameter space by

Oy = {(w, A, W,V,4p,e) : A € O, andA'1 =0,
p="{pes:a=1,...,A,s=1,..., 5} € R,
V= (02 . (a,8) € {1,..., A} x {1,...,8}) € R},
€ = (02400 (kyays) € {1,...,q} x {1,..., A} x {1,...,S}) e R

e,kas’

A
W = (wer) € M, with > w2 =1,
a=1

S
V = (Usk) c ng with Zv?k =1,
s=1

rank(A) = rank(W) = rank(V) = ¢ < A, S}. (2.74)

The model in (2.50) under this parameter space is called PARAandom model,
denoted by (Mj. We next show that our parameteis identifiable from the observed

data in (M4).
Lemma 2.23. Model (M4) is identifiable.

Proof. In model (M4), the expectation of (%) is

Wq1Us1
E(Y")) = gl + A : (2.75)
WaqUsq
and the covariance matrix &f(®%) js
S = AB@IN o2 T (2.76)
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wherex (") = diag(0? 145, Ot 2ass - - - > Tegas)- Hereay, .. can be identified by the min-
imum eigenvalue oﬂgf’s) for eacha ands sincep > ¢. Hence AX(*Y Al is identified
through equation (2.76). The parameiter can be estimated consistently by

U QLA
Has = p—R Zzyiras

r=1 i=1

Wq1Vs1
whenR — oco. ThenA : is identified through the equation (2.75). That is,

WaqUsq
> Aikwakvsy is identified foralle = 1,..., A, s =1,...,S,i=1,...,p.

Using Jennrich’s Uniqueness Theorem (Theorem A.4), wedamtify A, 1/ andV as
we did in Lemma 2.21.

Finally, we need to identifit"*). Sinces? __is identified by the minimum eigen-

u,as

value of2§§”’s) for eacha ands, the equation in (2.76) can be written as
B0 _ g2 = AD@IAL (2.77)

u,as

SinceA is identified and\'A = diag(y, ..., b, ), with by > by, > ... > b, > 0, the

equation (2.77) can be written as

AEE) — 62 DA = (A'A)D@9(AA)

= diag(b},...,02) 5. (2.78)

SinceA' (2" — o2 I)A anddiag(b3, ... ,b?) are identified, so i£Y, O

2.9 Relationship among models in the model hierarchy

For application purposes, we have constructed a hieractaimily of factor models

in this chapter. The model (MO) is the most general factotyasimodel with the
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form in (1.5). The model (M0Oa) is a special case of (MO) in whikbe mean level of
the observations is proportional to thesector. The model (M1) is a more restrictive
model of (M0a) in which the mean level is assumed to be zero andis a scalar
multiple of I,. The model (M1R) is called the reduced model of (M1) which nsean
that the covariance matrix of the error measurement und&R)\has lower rank than
the one under (M1). The hierarchy of models (M2), (M3), (MAJ4a) and (M4) are
models for cross-classified data and can be applied to tomgage data. In model
(M2), the common factors are considered as random effeasleMM3) is similar to
(M2) but the common factors are fixed for a specific experimles#tting. The models
(M4) and (M4a) have similar model assumptions. Both of thewmeHaed factors
which can be decomposed in a specified form, so that both ateden (M3). The
difference between (M4) and (M4a) lies in the model assuvnptin the factor loading
matrix. The loading matrix is assumed to have orthogonalrook in model (M4),
but could have non-orthogonal columns in the PARAFAC modetgM Thus, (M4) is
nested in (M4a). The model (Mddiffers from (M4) in having common factors which
have both fixed and random effects.

Let “(Mb) C (Ma)” denotes the model (Mb) is nested in (Ma). The relatiops
among the models are as follows: (M1R)YM1) C (M0a) C (MO0). In cross-classified

models, we have (M4 (M4a) C (M3), and (M4) C (M2).
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Chapter 3

ML Estimates for Factor Analysis Models

In this chapter, we find the maximum likelihood (ML) estimatdor the parameters
(A, ¥) under the models (M1) and (M1R) defined in Sections 2.2 andI&.$ection
3.2, we introduce the idea of profile likelihood and use it talfthe maximum like-
lihood estimators for the parameters under (M1R). In Se@i8nwe discuss profile
likelihood optimization in (M0O). In Section 3.4, we find a mssary condition to check
the local maximum likelihood estimate. In Section 3.5, wasider the score test for
the problemH, : ¢;; = 0 vs H4 : ¢;; > 0. In Section 3.6, we discuss the likelihood
ratio test for testing the adequacy of the PARAFAC model \&tbe general fixed

effect factor model (M3).

3.1 Maximum likelihood estimate for (M1)

Consider the special case, denoted (M1), of the model (MOnwhe- 0 andV¥ =
0?1

Y=Af+U (M1)
wheref ~ N(0,1,), U ~ N(0,0%1,), and where\ € O

The parameter space,,; for (M1) is defined in (2.39). The probability density
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function of Y under (M1) is

f()__eXp{—%y%AAf+-02%)‘%&
YT T en)p AN + 021 |12

(3.1)

where| A| means the determinant of the matrlx
The maximum likelihood estimator fdr ando can be uniquely determined by the

following lemma [24].
Lemma 3.1. Consider the model
Y=p+Af+U

wheref ~ N(0,1,), U ~ N(0,0%I), and A has orthogonal columns. The maximum

likelihood estimators foy:, A ando? are given by

a=1/n)Y yu=y (3.2)
=1
A =Q,(W, —0%I,)R, (3.3)
and
1 p
62 = —— w;. (3.4)
P=q j=q+1

whereQ, € M,, has the columns which are the principal eigenvector§'gf W, =
diag(ws, . .., w,) such that the entries); are the corresponding eigenvalues@yj,;

and R is an arbitraryg x ¢ orthogonal matrix. Here”,,,, is defined as

Remark 3.2. The equation in (3.4) has a clear interpretation as the vaci “lost”

in the projection, averaged over the lost dimensions.
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3.2 Maximum likelihood estimate for (M1R)

Consider the reduced form of the (M1) model:
Y=Af+U (M1R)

wheref ~ N(0,1,),U ~ N(0,V), Ais ap by ¢ matrix and

g | % O (3.5)
ot o%I,.,

wherer < ¢ < p, 0, is ar x r matrix of zeroes, and is ar x (p — r) matrix
of zeroes. The parameter spa@eg/r is defined in (2.42). To find the maximum
likelihood estimators for the parameteksando? under the model (M1R), we start

with the probability density function df".

3.2.1 Simplifying the probability density function for model (M1R)

The probability density function df under (M1R) is

) = exp{—3y"(AA" + o%1,) "y}
P T P IAN 0?7

For simplicity of notation, partition

so that

Yé AQ UQ

HereY; € R", Y, € RP™", Ay is ar x g matrix andA, is a(p — r) x ¢ matrix.

ProjectingA, to the space generated by rows\qf we can writeA, uniquely as

As = BA; + A (3.9)

44



whereB € M,,_,, and the rows of\, are orthogonal to the rows af;, i.e.,A;A? = 0.

ThenY can be split into

i = Af

Yo = MAof+Us=BY1 + Ay f + U
It follows that the conditional probability distributiorf &5 givenY; is

Ya|Vy ~ Nj— T(BYbA*(A*) +‘72Ip r)-

(3.10)

(3.11)

(3.12)

Therefore, the probability density function Bfunder (M1R) model can be written as

iy, y2) = fvi (1) frap (2]y1) with
exp{—3yi (A A]) "}

le (yl) (27T>T/2|A1A§|1/2
and
Jraiva (42]y1)
exp{—3(y2 — By1)"(A5(A3) + 0°I,—) ' (y2 — By1)}
(2m) =2 AS(A5) + o2, [/ '
So we have

fY17Y2 (yl» yQ)
exp{—3yi (A A]) o}
(2m)7/2| AL AT [1/2

exp{—3(y2 — By1)"(A3(A3)' + 0°L,—,) "' (yo — By1)}

(2m) =D IAG(AS) + 02 T |'/?

exp{—3yi (A1 AY) "y}
(2m)7/2| AL AL |12

exp{—3(y2 — By1)"(MoaAby + 0?1, ) ' (y2 — By1) }

(27)(P=)/2| Agp AL, + J2IP_T’1/2

(3.13)

(3.14)

(3.15)

(3.16)

To show that the equations (3.15) and (3.16) are equivaleatneed to show that

A5(A3)E = AgpAL,. First, we note that in the parameter space under (MAR)js a
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r X r matrix with rankr andA 1, is ar x (¢ — r) zero matrix. Using\3A} = 0 and the

equation (3.9), we have
0 = AJA!
= (Ay — BA)AS
= [(A21|As2) — B(A11|0)](A11]0)°
= AnAl — B(AnAl)

- (A21 - BA11>At11. (317)

SinceA; is ar x r matrix with full rank and therefore invertible, the last etjon can

be simplified as
Ay — BAy; = 0. (3.18)
Now, let us show thah;(A3)" = A AL, using the equation (3.18):

A5(A5)" = [(Axr|Ag) — B(A1|0)][(A21|Agz) — B(A11]0)]
= [(A21 - BAll‘AQQ)][(A21 - BAll‘AQQ)]t
= [(0]A22)][(0]Ag2)]*

Ao by (3.19)

Therefore, the equations (3.15) and (3.16) are equivalent.

3.2.2 Likelihood function and ML equation

Lety,...,y, be a sample ofi independent observations of Y. The joint probability
density functionf(y1,0) - - - f(yn,0), evaluated ay = (v, ..., y»), can be considered

as a function of), sayL(6). We call it the likelihood function. Lefy;,i = 1,...n}
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be a sample. Partition

yi = ( Y ) (3.20)
Y2i

wherey;; andys,; areq x 1 and(p — ¢) x 1 column vectors, respectively. Under (M1R),

the likelihood function for this sample is
L) = [T (w0 H Friva (W10, 243 0) (3:21)
=1

The maximum likelihood estimates éfare valueg of  which maximize the likeli-
hood functionZ (), or equivalently, maximize the logarithm of the likelihofashction,

denoted by (#) with

1)

log(L(0)) = Z log( fyi,va: (Yris y2i; 0))

= ——ZOQ(Q']T) — —ZOQ |A11A11| th A11A11 yli
—5109(\/\22/\52 +0°L,)
l — _
2 > (Yo — Byr) (Moo, + 0°T,) ™ (y2i — Byi) (3.22)
=1

To get maximum likelihood estimates for model (M1R), we firgtimize the log-
likelihood onB with the other parameters,ando? fixed. Once we geB = B(A, 02),
we plug it into the log-likelihood(A, 2, B(A, 0%)) and then optimize the likelihood

on A, o2, This is the idea of therofile log-likelihood.

3.2.3 The profile log-likelihood

The idea of the profile log-likelihood is similar to the contated likelihood from
Anderson (1984). The profile likelihood approach is as fefio Let© be the pa-

rameter space. We decompose the parameter $pau® two subspace®; and©,
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such that® = O, x O,. Letl(f) be the log-likelihood function o®. We optimize
the log-likelihood on one subspace, gay, first with the other parameter component
fixed. Let§1(92) be the maximum likelihood estimate éf for fixed 6. The profile

log-likelihood for 6, is defined as
1(02) = 1(61(62), 02). (3.23)

The maximum likelihood estimatél(ez) is unique for many generalized linear
models. Under certain conditions, the profile log-likebkdamay be used just like any
other log-likelihood as a function of the remaining paraenét. Also, the maximized
profile likelihood is equal to the overall maximized likedibd. That is,

supl(6) = sup {max 1(6162)} = sup 1(61(62),65). (3.24)

The following Lemma (Cheng [4]) shows that a sufficient coioditfor equation

(3.24) to hold is that a unigue maximum likelihood estimét@) exists whery, is

given.

Lemma 3.3. Leti(#) be a continuous log-likelihood function afid= (6, 6). If there

exists a unique continuous functién(d,) such that

max [(01; 02) = 1(01(65),05) = 1,(65) (3.25)
then we have
supl(0) = sup [,(6). (3.26)
0cO 02€02

Furthermore, ifl,(6;) is continuous, an@®, is compact, then the right hand side of

equation (3.26) is a maximum. That is,

9316182 1,(02) = max 1p(02). (3.27)
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Now we will maximize the log-likelihood function in (3.22pf B with A ando?

fixed. This is equivalent to minimizing

n

Z(yzi — By;) (Ao Ay + 0'2[}777")71(3/21' — Byu;). (3.28)

=1
As shown in Theorem 2.1 AL, + 021, . = Y991 WhereXy, ; is defined adlyy ; =

Yoo — 22121‘11212. Expand the formula in (3.28) to get

n

Z[?J;(E;zl.l)yzi - 29§i3t(22_21.1)y2i + yiiBt(EQQI.l)Byli]' (3.29)

i=1
The first summand is a constant independenp§o minimizing (3.29) is equivalent

to minimize the functiory(B) which is given by

n

9(B) = Z[%th(Zzzl)Bylz Q?JéiBt(E;;.l)yli]- (3.30)

i=1
Next, find B = arg minp g(B) by settingVzg = 0. Let B and K be twap — r) x r

matrices and be very small. Consider a small perturbatiBn+ § K of B. Then

_d
K >—

= Zz 1[ yu (22_21.1)3911' +?/§¢Bt(22_21.1)K?J1i

—2y5;(X591) Kyi] + 6 Z[yiiKt(Zil.l)Kyli] |5=0 (3.32)

=1

9(B + 6K)|s=0 (3.31)

yielding

n

1
" Z il K (3551) B + B (25,1 Ky, = Z Yoi (Za21) Ky (3.33)

=1
Let ¢y, = %ZL yyt,, forl = 1,2 andm = 1,2, where{y;,i = 1,...n} is a
sample and eaclj = (yy;, y2;)" is partitioned as in (3.20) withy; andys,; areq x 1 and

(p — q) x 1 column vectors, respectively. Note that b6th andX:,,’, are symmetric.

49



By definition of trace in Definition 1.10, the left hand side 8f33) can be written as

1 ¢ _ _
o Z i K (3521) B + B (35,1 Ky,

= —Ztr{ S501) B + B (3551 Klyniyti}
= tr{[Kt( 21)B + B' (3551 K]Chi }

= 2tr{[K'(Z5},)B]C11}. (3.34)
Similarly, the right hand side of (3.33) can be written as
0 Yai(Ea2.1) Ky n Z tr{(E52.1) Kyriya; }
i=1 i=1
= 2tr{(35,)KCi2} (3.35)
SinceK is an arbitrary matrix, (3.34) and (3.35) gives us
(22721.1)3011 = (22721.1)052 (3.36)
Since bothCy; andX:,,, are invertible, the solution of equation (3.36) is
B =0 (3.37)

which is totally independent of andW.
Next, pluggingB into the log-likelihood in (3.22), we can writg(6,) = 1(0,(62),6,) =

constant + log Ly + log Lo with
log Ly = —5 D log(AnAL]) - Z Y (A AL (3.38)
and
n t 2
lOg L2 = —5 10g(|A22A22 + o ]p—r|)

1 < . - A
5 Z(yzi — By1i)' (A, + O'QIpr> (y2i — Byw). (3.39)

i=1
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Now let us simplifylog L, after substitution 0blos; = Ay AL, + anp_r into expres-

sion (3.39) and using the definition of trace, we have

n

n 1 A _ .
log L, = _5{105%(’222.1‘) + n Z(y% — By1)' (¥22.1) (y2i — Byni)}
i=1

n

- _g{logﬂznl\) +tr((Bp21) - %Z(ym — By1i)(y2i — Byr)'1}

i=1

= S {10g(|Za2a) + tr{(Z5},) o]} (3.40)

where

n

1 N A
Coz = E Z(ym - Byu)(y% - Bylz‘)t-

=1
Note thatiog L, is a function only depending on data and the parameétgrsvhile

log L is a function ofAy, ando? only. Thus, optimizing,,(6,) is equivalent to opti-

mizinglog L, for A;; and to optimizindog L for (Ags, 02).

In log L1, the log-likelihood is maximized, according to Lemma 3.4][2vhen
Ay = U, D>

where we decomposk; A}, = U, D, U}, D, is ar x r diagonal matrix of eigenvalues

dy,do,...,d, withd, > dy > ... > d,., and the columns ol/, are standardized

eigenvectors of\;; AY; with the first nonzero element in each column being positive.
In log L+, the maximum-likelihood estimator fdy,, ando? can be uniquely deter-

mined by Lemma 3.1 [24] with

N

KQ? = Upr(Wy—r — JQIq—r)

p—r

9 1 Z
0 = — wj

P—q.

R
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whereU,_, € O, ., W,_, = diag(wy, ..., w,—,) andR is an arbitrary(q — r) x

(¢ —r) permutation matrix. The column vectorsi@f_, are the principal eigenvectors

of C,, corresponding to the eigenvalues, .. ., w,_,.

3.3 Profile likelihood optimization in (MO)

Consider the (MO) model as defined in Chapter 2, Section 1:
Y = g+ Af0 + U0 (MO0)

wheref™ ~ N(0,1,), U™ ~ N(0,¥), £ andU™ are independent. The matrix
U = diag(1), is ap x p diagonal matrix with the vectap = (¢4,...,,) € R? on

the diagonal. Therefore, the general factor model can beesgpd
Y~ N(p, AN+ ).

The observed data consists{of ); r = 1,..., R}. The log-likelihood is

Rp R
lr(p, Ayp) = ——log2m — o log[%,|
1 R
= 52 W = s Y - ). (3.41)
r=1

Maximizing (g (u, A, ) with respect tqu yields

R
1= (1/R)Y 4y =7 (3.42)
r=1
Substitutings: into (3.41) yields the profile likelihood
R R _
L prof (11, A, ) = —71’ log 2 — - (log |2, | + t7(2,Cy)) (3.43)
with
R
=(1/R)Y (" — )t (3.44)
r=1
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Clearly maximizing (3.43) is equivalent to minimizirgg |%,| + tr(E;l(Jyy) with
respect to\ andq.
Now we conside = ¢2T" with I" known and diagonal. Sindeis known, we can

multiply Y ) by I'-'/2 from the left and transform the (M0) model to
y(m* — w+ AFT) L g+ (3.45)

whereY™)* = =12y = 7712y, A* = T7Y2 A andU* = T-1/2 g

ThenU™* ~ N,(0,021,) just as in (M1). The covariance matrix &f"* is

S5 = ATA* 4 02, (3.46)
The log-likelihood is
Tp(p', A", 07) = —710g27r— log |2}
1 R
= 52 = ()T G - ). (3.47)
r=1
By Lemma 3.1, we obtain, for the model (MO) éi "} with T known,
R
= (1/R)Y y"r, (3.48)
r=1
A = Q (W, — 21,)T, (3.49)
and
1 p
2=— S w, (3.50)
P—q Jj=q+1

where@, € M,, has the columns which are the principal eigenvectoiSof W, =
diag(wy, . .., w,) such that the entries; are the corresponding eigenvalues(gf ;

andT'is an arbitrary; x q orthogonal matrix. Her€’; is a function ofl" defined as

O* _C*( ) 1/20 r~ 1/2
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with
R

Cyy = (1/R) Z(?/(T) - ?j)(y(r) - g)t-

r=1

Therefore, the estimators pf in (3.48),A* in (3.49), andb? in (3.50) are all functions
of I'.

Substituting* into (3.47) yields the profile likelihood

Lro(T) = LR prof(A*(D), ¥™(I))

Rp R . =1
5 log 2w — 5(10g |Zy| + tr((Ey) 1C’yy)). (3.51)

The idea of profile likelihood maximization in the generattta analysis model in
terms ofl" for the vectory is discussed by Magnus and Neudecker [14].

Maximizing (3.51) is equivalent to minimizing
Gpros (A*(L), 0*(1)) = (log || + tr((Z;) 7' Cy,) (3.52)

with respect tal’. Substituting (3.49) and (3.50) in (3.52), and using the tdew
Raphson method to minimiZg,grof(/A\*, o?) iteratively overT so that the current value
of I is used as above, we can finally gAét The Newton-Raphson method will be

introduced in the next chapter.

3.3.1 Why itis good to use the profile likelihood?

The profile likelihood method allowed us to reduce the patandimension by work-
ing on the two separate subspaces of parameters when we itteaigh dimensional
problems. For example, in (MO), we optimize log-likelihotd) on A first with the
other parameter componentfixed. LetA(«)) be the maximum likelihood estimate of

A for fixed v». Then the profile log-likelihood for is defined asg(y) = I(A(v), )

which is only dependent op. SinceA € O, and is a vector withp components,
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the number of free parametersArand iny arep-q— @ andp, respectively. Thus,
the parameter dimension is reduced frony —@ +p to p if the profile likelihood
method is used.

In model (M1R), we will be able to find the maximum likelihoodiggator through
the profile likelihood method. However, as in most multiaéeianalysis problems, the
maximum of the profile log-likelihood does not have a closauh analytic form for
0,. That is, the profile log-likelihood equation can not be sdidirectly. We will
use a numerical procedure to compute the maximum likelirestonates iteratively.
There are various iterative procedures such as the Newtphgea method, the EM

(expectation-maximization) algorithm, and the steepestdnt method. We will dis-

cuss these in the next chapter.

3.4 Condition to check the local maximum likelihood
estimate

In Lemma 2.15, we show that jif > 2¢ and the model is non-identifiable, then there
exists(A*, ¢*) in the boundary of the parameter space satisfying the dondi2.2).
We found the same situation in our simulated data, that esptaximum likelihood
estimator(A*, 1)*) may have); = 0 for somej, wherey* = (¢7,...,17;). Therefore,
we want to ask whether the estimator that we found in the bawynof the parameter
space achieves the local maximum of the likelihood functitmverify this, we need
the condition to check whether the log-likelihood is desieg when we approach in
a certain direction, for example, approach from the intesidhe parameter space.
Suppose that* = (A*,¢*) in the boundary of the parameter sp&eand* =
(¥1, ..., ¢r) with ¢} = ... = 4 = 0. Denote the log-likelihood function d&) and
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define

ey o).,
i ) o

Vil (07) = ( (3.53)

whered" is the maximum likelihood estimator in the restricted modé1R) defined
in (2.42) with¥ = diag(v) andy = diag(0, . ..,0,%41,...,1,). To verify whether
the log-likelihood is decreasing when we approach in a gediection is equivalent

to checking the condition

~

Vol0)-e;<0forj=1,....r (3.54)

where{es, ..., e,} is the canonical basis &?.

In (MO), the log-likelihood function is

pR R R _
1(0) = 5 log 27 — 3 log |X,| — §tr(C’yy 0. (3.55)

HereC,, = L7 (4™ — 5)(y™ — §)*. Then the partial derivative of (3.55) with

regard toy; is (Anderson 1984)

p p
. A D) DU L W s (3.56)
J k=1 m=1

wherex, ! = (0) andC,, = (c;;). Thus, the condition in (3.54) is equivalent to

—~—1 —~

-1 —~—1
(Ey — Ey nyzy )jj >0 forj =1,2,...,r (357)

~

whereiz = A, Kg + U, and(/A\r, ) = 0.

3.5 Score TestforH : ¢, = 0 versusHy : ¢; > 0

The efficient score test (Cox and Hinkley [5], p. 324), alsdezHlLocally Most Power-

ful (LMP) test(Lehmann [12]), is a widely applicable method of test cangion that
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provides a convenient alternative to the likelihood rag¢istt Based on the likelihood,
score tests are asymptotically equivalent to likelihodobrizsts but do not require cal-
culation of maximum likelihood estimates from the full, wmstrained model. This
property makes the score test an ideal alternative to tlediHiod ratio tests when
maximum likelihood estimates from the full model are difftdw obtain. Especially

when parameter is not in the interior of the parameter buthenbbundary, LRT is

non-standard and has different distribution (Self and gig0]).

This section summarizes briefly the theory of likelihoodrsdests. Further back-
ground on score test can be found in Cox and Hinkley [5]. lgt6,, 0,) be a log-
likelihood function depending on a response vegtand parameter vectofs andds.
We wish to test the composite hypothe&is: 0, = 0, against the general alternative
H, : 6; is unrestricted. The componentséfare so-called nuisance parameters be-
cause they are not of interest in the test but values musttimeaged for them in order
for a test statistic to be computed. The likelihood scordorscfor ¢, and6d, are the
partial derivatives

ol ol

8128—61 arIdSQZa—e2

(3.58)

respectively. The observed information matrix for the pagters is— H (0) with

9%l Hy Hi
H(0) = = ) 3.59
(9) 0006? Hy, Hoy ( )

The Fisher information matrix i = E(—H ), which is partitioned into the same

blocks asH, yielding

Ill IlZ
Z-21 Z-22

7= (3.60)

The score test statistic is based on the fact that the scaternve = (51, S3) has

mean zero and covariance matfixIf the nuisance vectdt, is known, then the score
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test statistic of{, is
Z =1,"% 85, (3.61)
whereZ,/? stands for any factor such tha}* (Z,/*)! = Z,,, or equivalently
T=2'Z=S15 (3.62)

with S; andZ;;, evaluated at, = #,,. The score vectof is a sum of independent
terms corresponding to individual observations and soyigasotically normal under
standard regularity conditions. It follows thais asymptotically a standard normat
vector under the null hypothesi§, and thatl" is asymptotically chi-square distributed
on p; degrees of freedom, whepe is the dimension of; .

If the nuisance parameters are not known, then the scorsubstitutes for them
their so-called ‘restricted’ maximum likelihood estimaiég’") under the null hypoth-
esis. Settingy, = ég") is equivalent to setting, = 0, so we need the asymptotic
distribution ofS; conditional onS, = 0, which is normal with mean zero and covari-

ance matrix
Ti12 =T — Tia Iy Ton. (3.63)
The score test statistic becomes
T=5S7,5 (3.64)

with S, andZ,, » evaluated af, = 0, andd, = 010. Under the null hypothesifl,,
T is asymptotically chi-square distributed pndegrees of freedom, whegg is the
dimension o®, .

Neyman [16] and Neyman and Scott [17] show that the asyngpdadtribution and

efficiency of the score statisti€ is unchanged if an estimator other than the maximum
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likelihood estimator is used for the nuisance parameteosjged that the estimator is
consistent with convergence rate at le@gt—'/%), wheren is the number of observa-
tions.

If Zo; = 0, thend; andf, are said to be orthogonal. In this casg,andS, are
asymptotically independent aifg, » = Z;;, meaning that the information matrix
does not need to be adjusted for estimatiofi,of

Thep-value is defined as

PT(Tn 2 t)|t=T;{

whereT, is defined in (3.64) and* = St (0, 6a0)[Z11.2(0, 020)] 71 S1(0, f30). Leta be

the level of significance. If the-value< «, then we rejecH,.

3.5.1 Score Test forH, : ¢; = 0vs Hy : ¢; > 0 under (MO) with
p=0

In this section, we will find the score test statistic and Ershformation under (M0)

with 1+ = 0. To test the composite hypothes : ¢, = 0 againsti 4 : ¢, > 0, we

start by calculating the score statistic. The parametérsis(A, ), whereA = ()\;))

is the loading matrix and = (¢4, ..., ,) is a vector such that the covariance of the

error isU = diag(v). Letd, = 1, andéd, be the vector with component{s\;;, v, :

i=1,....p;j=1,...q;k=1,...,7—1,7+1,...p}. The log-likelihood function

of dis

R R R .
1(6) = ==~ log(2m) — 7 log 2| — Str{C,,(2)7]
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whereX = AA! + W. The derivative of with respect to\;,,, is

;

W ifi=j=1
0oij ) A fi=1i# (3.65)
OAim Aim i j=1i#]
0 otherwise.
The derivative of” with respect ta); is
Do T
90, diag(e;). (3.66)
FromXX~! = I, we obtain for any parametér
oyt )y
=y 1 =%l .67
00 00 (3.67)
LetX~! = (¢¥) and use (3.67) to get the partial derivativedf' with regard toy,
Oohkm bi i
= —og™ g™, 3.68
oY; (3:69)
Similarly, the partial derivative o ~! with respect to\,,;, is
aO‘km -1 -1 —1 -1
o = L& )m (BT Ay + (B )ik (BT A)mg- (3.69)
1j
By A.6, we have
Olog |X] oy
oy 2X7" — Ds—1

whereDy, 1 is a diagonal matrix witli'th diagonal element equal to thatBf !. Thus,

the derivative ofog || with respect ta); is

dlog|X| dlog |X| oy
o; m doji, O
~ Jlog|¥| 0% ]

B X 0y

= tr[(2%7" = Dg1)(diag(e;))]

= Z(Qajk — 07" 6) - (diag(e:))n
ik

B, W

= o' (3.70)
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Using (3.65) and the same idea as in the last equation, thatiee of log |%| with

respect to\;,, is

dlog 3|
a)\lm

)
o)

= tr[ (227" = Dyg1) (
p .

= Z O'lj /\jm'
j=1

Then the partial derivative of log-likelihoddd) with respect ta); is

ol(6 R _ _ _ .
3;) :_§'<E F-XTC, YT 1< <g
j

and the partial derivative of log-likelihodd¢) with respect to\,,,;, is

ole) _
a)\mk B

The score statistic

o) R o, oy
81(01782) = ad)] = _5 : (Z t— E lcyyz 1)].7
and
0
Sy(01,02) = a6,

can be obtained through (3.72) and (3.73).

—R- XA =-S7"'C, Y Ak, 1 <m <p,1<k<q

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

Similarly, we can calculate the second partial derivatif/éog-likelihood /(6) to

get
o4(0) R, . - - -
2 FIET5 = ETCE 5 (57N,
forj=1...p,
01(6 - - - 10,5
W(azﬂj R[(Z 1)mj (X 1A)jk_(2 1)mj (X leyE 1A)J'k

_(Z_lcyyx_l)mj (Z_lA)jk]a
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form=1...p,k=1...¢qandj=1...p,and

921(0)

—_— Z_lA . E_lA X 2—1 ) At 2_1A )
ONijOAmk Rl Jmi ( it 4 (57 )im ( Jkj

— (T )y (BTCRETIA )i — (57 )i Oy
- (271)”” (At Eilc’yyzilA)jk - (EilcyyzilA)mj (EilA)ik
- (Zileyzil)mi (AtZilA)kj

+ (E_lcyyz_l)mi (5{k=j} ] (3-78)

fori=1...p,m=1...p,k=1...¢q,andj =1...q.
Taking the expectation on (3.76), (3.77) and (3.78), we get

220, R

B 502 | = —5[(2_1%]2 (3.79)
forj=1...p,
021(0) B _1 3
E[m] = —R[(Z)mj (E7TA) 1] (3.80)

form=1...p,k=1...q,andj =1...p.

921(6)

b [aAijaAmk

= =R Ay (BT A )i+ (7 im (A" Z71A)] (3.81)

for1 <i,m < pandl < j,k < ¢q. Therefore, the Fisher information mattix =

E[—H] can be estimated through (3.79), (3.80) and (3.81), where

. 9%l B Hy Hyp
H(6) = om0 = (H21 | (3.82)

The score test statistic E = S Z;,%, S; with S; andZ,, , evaluated abt, = O,

andé, (= v¢;) = 0.
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3.6 Test of Fit for the PARAFAC Model

Slud et al. [22] found in a specific data example closely eeldb that explored in
Chapter 5 below that the restricted PARAFAC model (M4) did evedl, the more
highly cross-classified the data were. Due to the highly wamed form and inade-
quacy of PARAFAC, a more general model such as 3-mode facttysasanodel (T3)
is needed for representing cross-classified data. The &rfamdor analysis model,
also called Tucker 3 model (T3), was introduced by Tuckef §2&l can be written as
M N
i = 35S NitwamVen i + i) (3.83)
=1 m=1n=1
whereg;...., is the element of a three-mode matéixwhich is called the:ore matriz.
The PARAFAC model (M4a) is a special case of the T3 model when
1 ifl=m=n

Jimn =
0 otherwise.

Zheng et al. [27] mentioned in other tongue and speech telid& sets that the T3
model fits better than PARAFAC (M4a), but it tends to use expasameters. Thus,
the well-defined model hierarchy we constructed may helptiomalize the choice of
models. Model (M3) in the model hierarchy we constructed risase general model
than (T3). Thus, we have (M4} (M4a) C (T3) C (M3). In this section, we will
construct a likelihood ratio test of whether the more gelneradels (M3) or (M4a)

better represent a statistical data set.

3.6.1 The Likelihood Ratio Test

We derive the likelihood ratio test (LRT) that the model fitSor a specified;, the

covariance matrix can be written 8- = AA! + ¥ for somep x ¢ matrix A and
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somep x p diagonal positive definite matri¥. The general strategy of the LRT
is to maximize the likelihood under the null hypothegig, and also to maximize
the likelihood under the alternative hypothesis. If the distribution of the random
sampleY = (y1,...,y,) depends on a parameter vectorand if H, : § € ©, and
H, : 0 € ©, are any two nested hypotheses, then the likelihood ratio ét&jstic for

testingH, againstH; is defined as

Ay) = Lo(60)/L1(6)) (3.84)

where;(6;) is the largest value which the likelihood function takestia parameter

spaced;, i = 0, 1. Equivalently, we may use the statistic
—2log A = 2(11(61) — lo(6y)), (3.85)

wherel;(6;) = log L;(6;),i = 0,1. In general, one tends to favéf, when the LR
statistic (3.84) is low, andi, when it is high. A test procedure based on the LR
statistic is as follows:

The LRT of sizex for testingH, against/; has as its rejection region
Re={y: My) <c} (3.86)
wherec is determined so that
sup Pry(y € R.) = «. (3.87)
60y

However, it may not be possible to obtain exact sizeespecially whem\(Y') is a

discrete random variable. If suchc@oes not exist, we choose an integesuch that
Pry(y € Re) < aandPry(y € Rex_1) > a. (3.88)

The LRT has the following very important asymptotic progg#i].
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Theorem 3.4. (Wald Theorem) In the notation of (3.85)4f is a region inR?, and
if ©y is anr-dimensional subregion @&, then under suitable regularity conditions
including 0 € int(©y) N int(©1), —21log A\ has an asymptotig? . distribution as

n — OQ.

D
Remark 3.5. For degrees of freedom > 100, \/2x% ~ N(v/2d — 1,1).

3.6.2 The LRT for (M4a) against (M3)

In this section, we shall test whether the more general m@da) fits better than
PARAFAC (M4a). Consider the hypothesfs : 0 € 0,4, against; : 0 € O3,
whereO ;3 is defined in (2.56), an@,,, is defined in (2.69).

Maximizing the likelihood under H; : § € O3

To maximize the likelihood under the alternatiife, we use Newton-Raphson method
to minimize—2logL = —21,(6), wheref € ©,,3. For reducing the parameter dimen-
sion, we use the profile likelihood method. We first fixthe (M3) model in (2.50)

under the parameter spa@g,;. The model can be written as

Y(T,a,s) _ A*f(a,s)* + U(r,a,s)* (389)
whereY (%) is ap x 1 vector,A* = (1|A) is ap x (¢-+1) matrix, f(@*)* = 7”) ) ,
fla,s

andU™* is ap x AS matrix. DefineF* = (fFLD* |12+ |f(A9) which is a
(g + 1) x AS matrix.

The log-likelihood functiori(9) is

A S

10) = 5 > D [pRlog(o2) +

a=1 s=1

R
12 Z Hy(r,a,s) _ A*f(a,s)*HQ] (390)

as

o
r=1
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The second term on the right hand side of (3.90) can be decsedzs

R R
Z Hy(r,a,s) _ A*f(a,s)*”2 _ Z(Hy(r,a,s) B ?(.’a,s)HQ)
r=1 r=1

+ R([VES = AT (3.91)

where
1 R
}_/(-,a,s) = _ Y(r,a,s).
R r=1

Minimizing the second term in (3.91), we get
}'\(a,s)* _ (A* t A*)—l At Y(-,a,s) (392)

Pluggingf(“’s)* into the log-likelihood functiori(d) and maximizing it with respect to

2., we have

as’?

R
1 o~
52, = — Y [[y (o) — A fles)2 3.93
pR — | f H ( :

~

Therefore, the maximized log-likelihood functiéf) under (M3) is
1(0) = _RAS_ pR D log(az,). (3.94)

Maximizing the likelihood under Hy : 0 € Oy4,

To get the maximum likelihood estimator in (M4a), we can us&TMAB and the N-
way Toolbox which can be downloaded from

http://www.models.kvl.dk/courses/. We will discuss ittire next chapter.
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Chapter 4

Computational Methods

4.1 EM Algorithm

4.1.1 Introduction

The EM (expectation-maximization) algorithm was first acited by Dempster, Laird,
and Rubin in 1977 [6] for deriving maximum likelihood estiroieg from incomplete
data. Itis a very popular and widely applicable computaioool in various statistical
models. The attractive features of EM algorithm are its $icrtp and stability (e.g.
automatic monotone convergence in likelihood). It is oftesed as an alternative to
the Newton-Raphson method, Fisher-scoring method and ofienization methods
when the latter are too expensive to use or too complicatéapement. However,
the EM algorithms often suffer from slow convergence. Whethes is a real prob-
lem in practice depends on models, data sizes, and progrseds Many acceleration
methods have been proposed to speed up the convergencekNthkgorithm since
Dempster, Laird, and Rubin (1977). Jamshidian and Jenntithdlassify the ac-
celeration methods into three groups: pure, hybrid, andtifdé- accelerators. For
accelerating the slow convergence of EM with stability alabgl convergence, a line

search needs to be employed with any acceleration methadhwtay ruin the sim-
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plicity of the EM algorithm. In fact, the simplicity of the Eldlgorithm is a much more
attractive feature if we consider the operating efficieropt the stage of formulating
the likelihood to the stages of deriving and implementingkgyorithm.

The idea of the EM algorithm is to treat the unobservable comfactors as miss-
ing data and the complete data to comprise the observatbgeshier with these un-
observable factors. Lét be a p-dimensional random vector corresponding to the
observed data angy (y, ) be the probability density function, wheteis a vector
of unknown parameters within the parameter space_et Z be the random vector
containing the missing data portion. Th&h= (Y, Z) denotes the vector containing
both the observed and missing data, called the completeatatay (=, #) denotes the
probability density function ofX.

Letlx(0) = log px (X, 0), which is the log likelihood function based on the com-
plete data andy () = log py (Y, ), which is the log likelihood function based on
the incomplete data. The goal of the EM algorithm is to findrtteximum likelihood
estimate of), which is the point achieving the maximumif(6).

The EM algorithm approaches indirectly the problem of mazing the log likeli-
hoodly (¢) based on incomplete data by proceeding iteratively in texinise log like-
lihood based on the complete data(f). Sincelx(6) is unobservable, it is replaced
by the conditional expectation given the observation aedvidues of parameters in

mth iteration:
o+ — arg max Ellx(0)|Y,0™]. (4.1)
€

Thus, starting with an initial valué® < ©, one finds0*, a stationary point ofy-(6),
by alternating between the following two steps € 0, 1, .. .):

E-step: impute the complete data log likelihodd(#) by

Q(6,0") = E[lx(0)|Y, 6] (4.2)
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M-step: determined™+Y) by maximizing the imputed log likelihoo@ (9, (™) re-

garded as a function @fwith §™ fixed:
QO™Y 9™y > Q(6,0™) forall § € O. (4.3)

The E-step and M-step are repeated by turns until they cgaver a specified
sense, such as the smallness of chang@'iri) — 9™|. Dempster, Laird and Rubin
(1977) pointed out that the incomplete data log likelihdp@) is non-decreasing on

each iteration of an EM algorithm, that is,
Iy (DY > 1y-(6™) (4.4)

form = 0,1,2,... This property is useful for debugging the program code ferEiMm
algorithm. Moreover, if the log likelihood- (0) based on incomplete dagas bounded
above, the value of the log likelihood in the iteration preglg- (/™) converges to a
stationary value ofy (0).

Under general conditions, #™ converges, the limiting value can be proved to be
either a local maximum or a saddle pointlp{6) (Boyles, 1983; Wu, 1983). There-
fore, if the likelihood function is unimodal and the first diative of the function
defined in equation (3.1.2) is continuous with respe#d andé, the EM algorithm
converges to the only local maximum. Generally speakingvever, the likelihood
function of the incomplete data is not necessarily unimodherefore, it is necessary
to compare the values of the log likelihood of the convergevalue, starting with

many initial values.

4.1.2 EM algorithm and (M0) model
The random effect factor model (MO) is

Y = g+ Af0 + U0 (MO)
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where all assumptions regarding o™, A, f"), andU") are specified in Chapter 1.
We consider the special case of (M0O) model wheis a zero vector. LeX be the
complete data, which includes observation veciofd and unobservable vectofs),
r=1,2,...,R. Thatis,X = (Y,f). Thus, the complete datd becomes &p + ¢)-
dimensional vector. It is assumed th&t?, X .. X are independently and
identically distributed, and that th@ommon factors® £ . f(®) independently
and identically normally distributed with zero mean andhitity covariance matrix,;

that is,
£ ~ N, (0, I,). (4.5)

The vectorsf(™ are independent of the errot&™, which are assumed to be inde-
pendently and identically distributed a5 (0, ¥) whereV is ap x p diagonal matrix.
Given the unobservable random efféét, the conditional probability distribution over

Y (") is given by
YOO~ Ny (e + AT D), (4.6)

whereVU = diag(¢)). Unconditionally,{Y ™} is independently and identically dis-
tributed with

Y Ny (g, AN+ D). (4.7)

In (MO), the log-likelihood function is

10) =~ 1og 20 - Lrog |5, - S [0 —ZR:(?J(’”) — )" —p)'. (4.8)
2 2 L £ Byl 5
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= D (" =" =)+ R @G- m—p, (4.9)

the MLE of 4 is u = y (by Anderson [2] p60-63). Since the probability density

function of the complete datd can be written ag(x) = p(y|f)p(f) with

pol!) = GV (=g —p = ANV —n= AN} @10)

(2

and

) = G o5} (@.11)

then

1q/2 exp{—§(f N} (4.12)
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The complete data log likelihood function is

Ix(0) = log H p(z™)

R(p+q) &

= = og(m) — Stoglw] - 3 3 wrl(fONFO)!

r=1

R
1 - r T
—5 207 == AfOY W (" — = AT

r=1
R(p+ R
_ p2 q)log(27r) — S logl¥| = tr(Cyy]
R 1 &
—StrvT S == A — p— AF)](4.13)
r=1

whereCyp = L3 | p0(f0),

Pluggingy into (4.13), we have

lX(A7w> = lX(EvAvw)

- _Mlog(%r) — Elog]\I/\ _ R tr[Cy]
2 2 2
R 1 &
=St S 0 =g = A" =g = AFO)]
r=1
_ B 0m) - Riogu) - E iy - Buv ¢,
2 2 2 2
+R-tr[ U ACY,] — gtr[\lfl AC; A" (4.14)

wherel = diag(y), Cyy = £ >0, (v =) (") —g)", andCy, = £ 3.0, fO (y™) -
)", Suppose that ™ and¥ (™ denote the current values dfand¥ afterm cycles of
the algorithm and™ = (p(™, At W™ with (™) substituted byi. By Rubin and
Thayer [18], the basis of the EM algorithm for maximum likelod factor analysis is:

E-step: ComputeE[f ™ |y™] and E[f™)( f™)ty™)] for each data poing™, given
A and (™),
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A — (S0 — ) BIEO L, 0] (3 EIE () ]y, 00) ! (4.15)

w(m-‘rl) = d@ag(\ll(mﬂ))

- —dmg{z (") - g

_A<m+1)E[f(r) ly™, 9(m>](y(r) —9' ) (4.16)

For simplifying the notations, we define

R

1
B=_ ") _ DNE[EM |y glm)t 4.17
R;(y §) B[y, 60m)] (4.17)

and
C = RZE £ (f ™ gm)]. (4.18)

Then the equations (4.15) and (4.16) can be simplified as
A = B o1 (4.19)
and
Pt = diqg(V ) = diag{C,, — AV B'}. (4.20)

Now we will expressB andC' in terms ofA (™) and¥ (™ by calculatingE[ ™) | ™, §0™)]

andE[ £ £0° |y 9(m)]. Since

Yy (™) 1 AN+ 0 A
~ N =, (4.21)

£ 0 At I,

The conditional distribution of ") givenY (") is

FONY T~ Ny + S S0 (Y — ) Eo04) (4.22)
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wherepy = p, piy = 0, S11 = AN 4+ U, 5y = AL, and s = Bgp — B0 31 Sio
= I, — A" (AA"+ ¥)~'A. Then
E[fOy",0™] = 55 (y" ~ g)
= (AU (AT A 4w )T () — )
= (K™)" (4" —7) (4.23)
where
Km — (A(m) (A(m))t + \I;(m))flA(m) (4.24)
Similarly,
E[f(T) (f(r))t |y(r)7 g(m)]
— E[f(r)|y(r)’9(m)] E[f( )’y(r) g(m)]
+ Var(fW|y™, o)
— AM t(A(m)A(m) ty \Ij(m))—1<y(r) y)(y( )t (A(m)A m)t 4 (m ) 1A (m)
+ I, — A A (A g m)) =LA (n
= (K") (4" =) (") = g)" K™ + 1, — (AT K™ (4.25)
Therefore, from (4.17) and (4.23),
B = Oy (A (A 4 gty =1z = ¢ ) (4.26)
and from (4.18) and (4.25),
cC = I,— A (A A g m)y=1 7 (m)
+ A (AMAC gty io (A A gy =T A lm
= I, — (A™)t KM (Kt K™ (4.27)

Thus, the new estimated parametaf™+!), w(m+1)) is given in equations (4.19) and

(4.20) throughB andC as a function ot’,,,, A™, and ¥ (™

74



4.2 Newton-Raphson method

For a functiong : R? — R, the gradient is the vector

dg(0) dg(6)
06, ' 08,

Vg(0) = ( )! (4.28)

and the Hessian matrix is the matrix of second partial daviea

), 1<4,5 <p. (4.29)

The directional derivative of a function: R? — R atx in the directionv is defined
by

. gl@+ov)—g(z) 0
\m 5 = 559!

T+ 6v) |s=o=v" Vg(z) (4.30)

For smooth functions; is convex on a seb if V®2?¢(6) is nonnegative definite for all
6 € O. If V®¥2¢(0) is positive definite for alp € ©, theng is strictly convex orP.
The general unconstrained minimization problem for a siméotctiong is to find

ad such that
9(0) = min g(0), (4.31)

where the minimum is over a#l € ©. In general such & need not exist. Another
problem is that there may be multiple local minima. Gengrdélls impossible to guar-
antee convergence of a numerical algorithm to a global mimiprunless the function
is convex everywhere i®. For this reason, the problem considered will be to find a
local minimum. Maximum likelihood estimates for a log likedod(#) can be found
by minimizing—1(6).

For a smooth functiom, if 4 is a local minimum, thetVg () = 0. If g(d) = 0

andV®2¢(f) is nonnegative definite, thehis a local minimum. Thus the search for a
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minimum can be to find poimésatisfyinng(é) = 0. Such points need not be local
minima, since they could also be local maxima or saddle point

Many algorithms for searching for a local minimum are simiathe following
outline:

1. Given the current point,, choose a direction in which to move next.

2. Find a pointz; = z + sv such thay(z,) < g(zo).

3. Setz, = x1, and repeat the first two steps until convergence.

For getting successful convergence, it is important thatdinectionv chosen at
each stage be a descent directiondoA directionv is a descent direction far at z
if

g(xo + sv) < g(xg) for0 < s < 9, (4.32)
for somed > 0. ltis clear thaw is a descent direction faratz, if v* Vg(zq) < 0 for
0 small enough. We denote the vector of parameter valuesthtérth iteration by

6®) and its converged point by*. Therefore, consider the iteration stopping criterion

according to

(1) [[Vg(e™)] < 1076 (4.33)

(2) ||o%H) — oW || < 1076, (4.34)

To maximize the log likelihood functioi(d; y), we takeg(d) = —I(6;y). The
Newton-Raphson method approximates the objective fundtiom incomplete data
log likelihood function) by a quadratic function and takés maximizer as the next

parameter value. Its formula is:

O+ — 9 1 719" )W o1(0W); 4)) (4.35)
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An iterative numerical method is said to converge linedriyholds that with some

constant (0 < ¢ < 1) and positive integek,,
|0*+D — g%|| < ¢||8™) — 6% || for any k > k. (4.36)

The constant is called the convergence rate. If it holds that with someisage{c; }

converging td) and positive integet,,
[0%+D — 0*|| < ¢ ||8% — 6% | for any k > ko, (4.37)

then the method is said to converge superlinearly. if it bkt with some constant

(0 < ¢ < 1) and positive integek,
[0F+D — %] < ¢||8™ — 6% for anyk > ko, (4.38)

then the method is said to converge quadratically. A nurabnethod with the super-
linear or quadratic convergence property converges napifiér the parameter value
comes close t@*, while a method with the linear convergence property migketa
fairly large number of iterations even after the paramesduescomes close . The
Newton-Raphson method converges quadratically, whichtieeely fast and is an
attractive feature. On the other hand, the Newton-Raphsdhadeequires the ob-
served information matrix, and calculating the Hessiarhefdbjective function takes
much more computational time when the parameter dimensmeases.

Lindstrom and Bates [13] employed the better quasi-Newtothatewhich do not
require calculation of second derivatives and a approxariissian matrix is always

non-singular. Its update formula is:
04 = 0"+ B (0W) )Vl (0P y) (4.39)

where the matrixB,, is updated using only the change in gradignt= V4l (0%); ) —

Vol(6%~1: 1) and the change in parameter vakje= 0*) — §*~1  Quasi-Newton

77



method is like Newton’s method with line search, except thessian matrix is ap-
proximated by a symmetric positive definite matrix which glated at each iteration.

The convergence speed of quasi-Newton algorithms is soparl[13].

4.2.1 Newton-Raphson method on the profile likelihood

If the likelihood has a unique local maximum, then the maxmiikelihood estimators
should be the same no matter which numerical approach is uBeas, we use the
Newton-Raphson method on the profile likelihood to verifybsults we got from the
EM algorithm on the simulated data.

There is an R functiomlm which finds a local minimum of a nonlinear function
using a general Newton-Raphson method optimizer for an iRdunction. Based on
nim, we wrote another R functioBrofileLik whose input is a data set, a starting point
of 6,, a few control parameters, and whose output is the My, Ehe maximized value

of the profile log-likelihood, and the restricted MIZg(6s).

4.3 Computational results on simulated data

In this section, we implement Splus/R functions on simulatata. In our examples,
the dimensions arg = 6,q = 2, the sample size is = 100, and the parameter is
6 = (A,v) as described below. Sindé ~ N, (0, AA" + diag(v))), we can use the
Splus commandmvnormto randomly generate multiple data samples.

First, as true parametefig = (Ao, 1)0) we chose\, € O, such that\j1 = 0 and
satisfying the condition in Theorem 2.4, and chose the entifvy, as independent
Unif([0,0.5]) variates. Thus, the parametgris identifiable from the observed data.

Using this(Ag, ), we randomly generatetlsample data sets, specified to be cases
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(A)-(D) in Figure 4.1. The values af\, v) are listed in Appendix B.

Second, consider the true paramet@rs= (A;,v,) and choose\; with e; €
col(A). The entries of); were chosen in the same way as the entriegofTherefore,
the parametefA, ¢ ) is non-identifiable from the data set, by Lemma 2.12. Using
this (A1, ¢ ), we randomly generatetisample data sets, specified to be cases (O)-(R)

in Figure 4.1. The values a@f\{, ¢);) are listed in Appendix B.

Number of EM iterations for convergence

12000
1

EM iterations
6000 8000 10000
|

4000
1
-
A

2000
1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

degree of non-identifiability (s)

Figure 4.1: Number of iterations needed for EM convergeraset on data samples
generated byAq, ). The x coordinate is the degree of non-identifiability, dedo
by s, which is a parameter of convex combination betweentiftiility and non-
identifiability. The points abov&0, 000 iterations have y-coordinate plotted arbitrarily,

indicating that EM does not converges uplth 000 iterations for these data samples.
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Finally, consider the convex curvds = (1 —s)Ag+sA; for s € (0,1) and choose
150 Such that the entries af;, are independeritnif([0,0.5]) variates. We used this
fixed 4 and the matriced, which are different for each different valygto generate
data samples. Whenis close tol, A, is close to\;, and then the parametek,, 1)
is close to non-identifiable. Since we wanted to explore #tealior of EM algorithm
and Newton-Raphson method when the parameter was close tdemtifiable, we
specifically chose = 1/2,2/3,5/6 and11/12. Whens = 1/2, we generated one
data set usingA, 15 ) as the true parameter, called case (E). Whea 2/3, the
data set we generated was called case (F). Choesing/6, we generated three data
sets, specified to be cases (G)-(I). Finally, with- 11/12, we used the corresponding
(As, 1s0) to generate five data samples, called cases (J)-(N) in Fgtre

Using the true parameters as starting points, for eachriditsge data set, we iter-
ated10000 times in the EM algorithm using formulas in (4.15) and (4.18pplying
the profile likelihood method in (3.24), we can exprdss:- A(¢) as a function ofp.
We substituted it into the log likelihood function, used Newton-Raphson optimiza-
tion in R with commanadlm, and chose various initial parameters from which to find
the maximum likelihood estimates. We used thealues at the300’th iteration or
5000'th iteration of the EM algorithm as the initial values of thkn function. Based
on the stopping criterion in (4.33), we obtained an MQ.ZE @E) in each case.

We followed the further steps in each data set:

Step 1.Check if the MLE is in the interior or boundary of the paramesgace.
Step 2.Use the Hessian matrix we got from the outpuhth and calculate the maxi-
mum and minimum eigenvalues of the Hessian at the convergad vf the parameter.

Observe theondition number

r=2t (4.40)
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wherea; anda, are maximum and minimum eigenvalues of the negative Hess#én
trix, respectively. If the ratio is too large ok, is too small, then the Hessian is close
to singular.

Step 3.Use the MLE, denoted b@/ obtained froomimto check whether the EM con-
verges and check the quality of convergence of EM algoritihe iteration stopping

criterion for EM algorithm is
0% — 9] < 10°* forall k > m. (4.41)

whered®) denotes the current valueséfter k iteration of the EM algorithm.
Step 4.0bserve the convergence of EM to see whether it is approgthénboundary

or remains in the interior of the parameter space.

4.3.1 Comparison of EM and Newton-Raphson algorithms

First, we observe the results of using the Newton-Raphsohadewith the profile
likelihood strategy to find the MLE. We found that the Newt@aphson algorithm
converged in all of tha9 cases (cases (A)-(R)). The converged values of the param-
eters were in the interior of the parameter spaces in casefCA (E)-(G), (I)-(K),
that is, thex points in Figure 4.1. In each of these cases, the gradieheastimated
maximum of log-likelihood was less thar)—%, so the converged values are the ML
estimators. In cases (D), (H), (1), (L)-(R), we found that tdoverged values of the
parameters were very close to the boundary of the paranpetee sthat is, at least one
of the components, say;, of the estimated entries of was very close td. These
points are indicated a& points in Figure 4.1. After forcingy; = 0 and applying the
same Newton-Raphson method with profile likelihood straieghe reduced model

(M1R) and using the condition introduced in Section 3.4, wenfibthat the converged
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values are the ML estimators and the MEE= (/A\, zZ) is in the boundary of the param-
eter space. Thus, our findings are as follows. The ML estireatere obtained in all
of the cases using the Newton-Raphson algorithm. When thengéeais identifiable,
the MLE was in the interior of the parameter space exceptse ¢B). The MLE was
on the boundary whenever the paramétey; ¢y ) was non-identifiable (cases (O)-(R)).
When the parameter was close to a non-identifiable value, ttie vid more chance
to lie on the boundary. When the parameter was identifiabé&eMbE was in the in-
terior of the parameter space. We will discuss the exceatioase (D) later in this
section.

Second, we observe the results of using the EM algorithm. i@enthe number
of iterations needed for EM to be convergent. We found (iruFégd.1) that the EM
algorithm did not converge up @000 iterations when the model was non-identifiable
(cases (0)-(R)). When the model was identifiable, fewer i@matwere needed. When
the model was close to a non-identifiable parameter values iterations were needed
for EM convergence or the EM algorithm had not converged exeto 10000 itera-
tions. However, there are some exceptions. For examplasm @), the EM algorithm
did not converge even though the parameter was identifiedohe the data. In case (J),
the model is close to non-identifiable, but it only tot?00 iterations to get the EM
algorithm to converge.

Now, we explore the reason why the EM algorithm did not cogeezven though
the parameter was identifiable. In each of cases (A)-(D)ptdrametel Ay, 1)y) was
identifiable. The values of the components/gfwere not close to zero (Appendix B),
so neither were their ML estimators. We found that dslg iterations were needed to
get the EM algorithm to converge, and the converged valuesgeay close to the MLE

obtained from the Newton-Raphson algorithm. In case (C), tenmam value of
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the components af, was0.03667 and the MLE was in the interior of the parameter
space. We found that00 iterations were needed to get EM algorithm to converge
and the convergent values were also very close to the MLEase ¢D), there were
two components of)y, 0.01616 and 0.02967, close to0, and the MLE was on the
boundary of the parameter space. We found that the EM ahgoritid not converge
up to 10, 000 iterations. We also found that"), the values of parameter ath EM
iteration, approached the same MLE even though the speggbodach was very slow.
Thus, the number of iterations needed for EM to converge wsscated with whether

1) is close to the boundary when the model is identifiable.

We next compare the estimate we got from the EM algorithm tiéhMLE from
Newton-Raphson method. The Newton-Raphson method on théepikdiihood was
shown to give results for each data set that agreed with thealg®rithm. That is,
when the MLE we got frormlm function was in the interior of the parameter space,
then the estimate from the EM algorithm was also in the iateri the parameter space
and was close to the MLE.

Now, we explore in cases (E)-(N) the convergence of the EMrélgmn when the
model was close to non-identifiable. Especially, we arere@stied in case (J) where
the model is close to non-identifiable, but it only tot?00 iterations to get the EM
algorithm to converge. Let us observe the condition numier each case: In Table
4.3.1, we record the condition numbem each case. We found that when the MLE
approaches the boundary of the parameter space, the nunsiettremely larger( >
107). That is, the hessian matrix at the estimate maximum ofilaihood is close to
singular. In case (D), the condition number- 10" and the EM algorithm does not
converge up ta0000 iterations even though the model is identifiable. When a misdel

nearly non-identifiable, we expect that the EM algorithml wit be able to converge
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Case (A) (B) (©) (D) (E)

r 20.26 31.89 40.48 390985.4 712.27
EM/nim AN

Case (F) (G) (H) (1 (J)

r 126663.8 9747.19 2245182.00 3365352.00 629.05
EM/nim A ) A A

Case (K) (L) (M) (N) (O)

r 1253.02 1530232.00 8697203.00 2002751.00 4923976.00
EM/nim AW A A Ad

Table 4.1: Table for cases (A)-(O) with the condition numbelhe symbolA indi-
cates the EM algorithm failed to converge afdndicates that the MLE was on the

boundary of the parameter space.

up to 10000 iterations and the MLE we get fromim should be in the boundary of
the parameter space. However, that is not true in case ($er@bdthat the condition
numberr in case (J) waé29.05 which is small compared tt)” and the EM algorithm
converges after 1200 iteration. Also, in case (J), both th&Nrom nim and EM
are close to each other and in the interior of parameter spéles, we found that
the condition number- is strongly associated with the behavior of EM algorithm and
Newton Raphson method.

The convergence of the EM algorithm is based on the follovenitgrion:
16® — || < 107° (4.42)

whered*) is the value of the parameter/dth EM iteration and’ is the MLE obtained
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from the Newton Raphson method. The symboin the following table indicates the
EM algorithm failed to converge an#l indicates that the MLE was on the boundary

of the parameter space.

4.4 The LRT for (M4a) against (M3)

We introduced in chapter 3 the general idea of the LikelihBadio Test (LRT) and
discussed the problem of maximizing the likelihood unégr: 6 € ©,,5. Now we

discuss how to maximize the likelihood undeég : 6 € ©,,4,.

4.4.1 Maximize the likelihood underH; : 0 € O 4,

To get the maximum likelihood estimator in (M4a), we can usATMAB and the
N-way Toolbox which can be downloaded from http://www.misdevl.dk/courses/.
The N-way Toolbox is compatible with MATLAB 5.x and highendican be used to
fit “multi-way” models including PARAFAC (M4a) and (M4) and Tker (T3). The
freely downloadable reference is:

R. Bro The N-way on-line course on PARAFAC and PLS
http://www.models.kvl.dk/courses/; 1998-2002.

To fit a PARAFAC model and investigate the model, we use the MR function
parafacin the N-way Toolbox. The input is a data array, the numbeaofdrs sought,
and a few optional constraints. The optional constraintsbEaput on the loadings of
the different modes for obtaining orthogonal, nonnegatireunimodal solutions. If
the constraint is not defined, then no constraints are usgdl4a), A, need not have
orthogonal columns, so we can use the default of no constrdie can also set the

optional inputs for the convergence criterion. The PARAFAGdeI is fit in a least
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square sense, that is, by minimizing the ndffh— A7||*> whereY  is the input data and
M is the PARAFAC model. The fit of a model is measured by the sungoaes of
residuals. From the data and the model, the fit may thus bénebta

The algorithm for fitting the PARAFAC model is a so-called ati@ing least squares
algorithm. It is iterative and stops when the relative défece in fit between two suc-
cessive iterations is below a certain limit. For most typkedata this limit can be set
to 107% (default in the algorithm), which will ensure that the motetorrect and that
not too many iterations are used. For some data, the modelysdifficult to fit and
a lower convergence criterion may therefore be needed. Jesasonvergence, the
following steps may be used:
(1) Fit the models several times using random initializatio
(2) If all models have the same fit (i.e. loss function valle)models have converged.
(3) If all but a small fraction of the fitted models have the sgland best) fit, the model
have converged and the few models with lower fit may be dischad accidental local
minima.
(4) If all models have different fit values, the model is difilicto fit (maybe too many
components) and the convergence criterion has to be lowered
(5) If the models converge to a few different but distincivétues, i.e. there are sev-
eral models with the same fit values, then there are multgaal Iminima, which is a
tricky situation. Likely, it is possible to circumvent thegher by using some additional
constraints (e.g., non-negativity) or otherwise sligh#dyspecifying the model.

To convert the output parameters to score and loadingsaaatnve use the func-

tion fac2let The loading matrices)” andV/, are normalized, that is

A S

E : 2 1 _ § : 2
Wk = 1= Vs

a=1 s=1

which is expressed by saying that “all variance is kept irfitts¢ modeA”.

86



The MATLAB function parafacis used to fit the restricted PARAFAC model in
which each component of the erGt™**), .., has equal variance?, = o2. How-
ever, since the variances of the error are different in (M&) cannot directly apply
the function in this toolbox. We should transform our moaehtmodel that has equal

variance as follows. If the model for (M4a) is
Y ra,s) __ Af(a ,8 U(r,a,s) (443)

andU ™) ~ N,(0,02,1,), then we re-scale the model by, with

’as

0_2

Qgs = s (4.44)
Zle Zf:l Ugt/AS

Then the model in (4.43) can be transformed to

?(r,as =% (r,a,s /\/Oéias Af(a,s) + ﬁ(r,a,s) (445)
where f(@9) = (@) / /5 and Ure) = gras) /. /o, Then UTe) ~ N(0, o?l,)
with

A S
02 =02,/ = Z Z oy AS. (4.46)

b=1 t=1
The log-likelihood function for (4.43) is

A S
0= LSS pRIoglot) £ LS e afe a4

a=1 s=1 as r=1

and the log-likelihood function for (4.45) is
lr (9) = lrescaled (9)

A S
= > S IpRIog(o?) %ZHW“ AT (a.a9)

a=1 s=1

Plugging (4.46) into (4.48), we get

A S
b0 = —L S S pRIog(o2, Jau) + L 30 VU — Ao
a—lls—j‘ ; r=1
= l<0>+§;;[pmog<aas)1 (4.49)
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Thus, the log-likelihood function for (4.43) i$9), given by

> [ pRlog(0s))- (4.50)

a=1 s=1

1(0) = 1.(9) —

N —

Now we can apply thearafactoolbox to our data in the following steps:
The mean level,,; can be consistently estimated ?E?:l Yiras- Project the data

Y (n%9) to the space orthogonal g denoted by
1 p
Y(r,a,s)* = Y(r,a,s) . Z yiras]-a
p =1
and then take the average over the pure replicaticad, ..., R onY ®)* to obtain
}7(.7(1,5)* _ A*f(a7s) + U(a,s) (451)

ThenY = (i) is ap x A x S three-way array.

Initial input:  the data array "**)* and theA x S re-scaling matri>(a£g)) with
o =1,forl<a< Aandl <s< 8.

Step 1: Use the MATLAB functionparafacin the N-way toolbox, to get estimates
(A,, W, V) based o/ ") ~ N,(0,°I,).

Step 2: Calculate
1 R
(3'28 E— Y(ha,s)* o A* £(a,s) |2 4.52

where thek'th component of the vectof(®*) is given by fias = Wk Ops.

Step 3: Calculate the log-likelihood functiok{f)
R RAS pR R
10) = =22 X33 " log(62,) (4.53)

Step 4: Calculate the new re-scaling matﬁ&,(lls))

~2
o) = Oas (4.54)

YL XL G0 /AS
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and re-define

o) = a4 (4.55)

Step 5: Re-scale the datd =) by a4l to get
y(rasx(1) = yras) al (4.56)
such that (»e#)*(1) satisfies the following model
y a1 = AQ) pas) (1) 4 rras) () (4.57)

andU ™) W ~ N, (0, (¢M)? 1)
Step 6: Repeat Steps 1-3 with the ney,, but calculate the alternative log-

likelihood function in step 3 given by

A S A S

P RAS pR R pR .
10(0,6) = ——=—=7> > log(dz) — - D log(al))  (458)

a=1 s=1 a=1 s=1

Repeat the steps until the relative difference of the loglliltood function on suc-
cessive iterations is less than=¢ and the differences in estimated parameter values

are small, for example,
6% — 9™ || < 1073, (4.59)

We will apply this algorithm in the real tongue image datahia hext chapter to test

the hypothesis that the PARAFAC model fits.

4.5 Recommendations based on computational results

Based on our computational experience, we recommend to e@déethiton type meth-
ods, such as Newton-Raphson method, quasi-Newton methibek Broyden-Fletcher-

Goldfarb-Shanno (BFGS) update, using a profile likelihoodtegy. There are Splus
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function nimin and R functiomnlm which find a local minimum of a nonlinear func-
tion using a general Newton-Raphson method optimizer fonpuatiSplus/R function.
Based omlmin or nlm, we wrote another Splus/R functiérofileLik whose input is a
data set, a starting point 6§, a few control parameters, and whose output is the MLE
0,, the maximized value of the profile log-likelihood, and tlstricted MLEY, (6,).

An advantage of the profile Newton-Raphson method is the testuof the di-
mension of the parameter space. The convergence speed tdiNBye methods is
very fast. If we compare simply the numbers of iterationslahgorithms converge,
the Newton type methods would take fewest iterations. Araetite feature of the
guasi-Newton method is that it automatically produces theeoved information ma-
trix.

It is often objected that the quasi-Newton methods perfasorly at the beginning
of iterations. One can use the EM algorithm for the forst sgviéerations and then
switch to quasi-Newton method (Watanable and Yamaguch).[Z&r example, one
can use the values at tB60’th EM iteration as the initial input of the quasi-Newton
method. Then we can get the converged valués of the full model, denoted b@“”.

If the converged values are in the interior of the parameiacas and the gradient at
the estimated maximum of log-likelihood is less than®, then the converged values
are the ML estimators. If we find that the converged valueb®efdarameters are very
close to the boundary of the parameter space, that is, dtdaasof the component,
sayb,;, of the estimated values 6 is very close td), then we consider to fit the data
with the restricted model (M1R). In this situation, we firstded,; to be0 and apply
the same Newton-Raphson method with the profile likelihooategy in the reduced
model (M1R). Then we can get the converged value§,ah the restricted model,

denoted by?;". Then we can follow the same steps as we previously described
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Chapter 5

Application to 2-D Coronal Tongue Surface

In this chapter, we first introduce a real data set of ultradatross-sectional images
of the human tongue during speech. Then we apply factor sisatyodels (M3) and
(M4a) to the tongue image data. Finally, we use the LikelthBatio Test (LRT) to

test whether the more general models (M3) or (M4a) reprakertongue data better.

5.1 Data Set

The cross-sectional tongue surface was recorded and neelafsursix normal, adult,
native speakers of American English (3 Caucasian femaleBj@&A-American males,

1 Hispanic male) by ultrasound, VCR and thk&ongue software package in the Vo-
cal Tract Visualization Laboratory of M. Stone in BaltimorBach subject attended
three recording sessions and repeated the speech mdieadismes while ultrasound
and acoustic recordings were made. Methods for the ultrasoecordings of tongue
movement are discussed in detail in Stone et al.(1997). TEver vowels sounds of
English ae, ah, aw, e, eh, ih, iy, o, uh, uu, uuh, with respeghonetic symbols (g,

o, 8,6, 1,1, 0,5, U, A), were produced iaCVCo utterances (vowel sounds sandwished

between consonants with “shwa” souridas break points) using two consonant con-

91



texts (/s/, /). The coronal section was recorded in theéoregf the palatal vault to
support the largest variation of tongue movement and sHagbe vault region there
is room for upward tongue motion, and on the palatal contectangue will reflect its
archlike shape.

The cross-sectional tongue surface for six subjects (MS, BIG, CS, GW, and
LG) were extracted from recorded ultrasound images. Thespbtained6 subjects
x 11 vowels x 2 contexts x 5 replications x 3 sessions, for a total 0of980 cross-
sectional tongue images. Each image curve, whatever g#iehong the x-dimension,
is represented by20 pairs (z,y), and different curves do not necessarily have the
same range ofr values. Pre-processing strategies were introduced andnmented
by Slud et al. (2002), involving translation in theandy direction, extension, padding
or truncation within session, and subtracting a mean l@retfch speaker and sound.
After preprocessing, the number of points per curve wasarttisbe 101 based on the
degree of padding chosen.

Let (Tapedis Yabeai), fOr a=1,...,6, b=1,23, ¢ =1,2,...,22, d=1,...,5, i =
1,...120, be our raw data set, where indexes subject) indexes session, in-
dexes sound/contexd, indexes replications within session, andndexes observa-
tions (points) on the image curves. After preprocessimgfittal data set on a common
(z,y) coordinate system based on five replicated measuremeritseim sessions for
each of the six subjects i§r;, yupedi ), Where subject is indexed by = 1....,6, ses-
sion byb = 1,2, 3, vowel/consonant by = 1,2, ..., 22, replication byd = 1, ..., 5,
and observations (points) along the image curve byl, ... 101.

We now focus only on the eleven vowels and six subjects arad the two con-
sonants as pure replications. Then the pure replicatioms2arconsonant contexts

x 5 replications x 3 sessions, for a total df0 replications. Therefore, the data
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can be rewritten as(x;, yi-qs), Where subject is indexed by = 1,...,6, vowel by
s = 1,2,...,11, pure replication by- = 1,...,30, and observations (points) along
the image curve by = 1,...101. For convenience, lett denote the total number of
subjects,S denote the total number of vowelR, denote the number of replications,
andp denote the number of points per curve. Thén= 6, S = 11, R = 30, and

p=101.

5.2 Application of Factor Analysis Models to Tongue
Image Data

The hierarchical family of models (M2), (M3), (M4), (M4a) &@fM4’) we constructed
can be used on real data involving coronal cross-sectioctairps of the human tongue
surface during speech. The PARAFAC model (M4a) has been usewpsly to an-
alyze tongue images data but with different imaging tecbgwl(X-ray instead of ul-
trasound) and different cross-section (lengthwise istddransverse to the tongue).
Harshman and Lundy [8] reported that the success of a PARARRG/sis depends
on the use of adequate statistical pre-processing. Slud §2§ actually found that
the PARAFAC (M4) modelling approach did not adequately repn¢ the coronal
tongue data. They found that the PARAFAC model did less wié#, more highly
cross-classified the data were. Due to the highly constlaioen and inadequacy
of PARAFAC, a more general model such as the 3-mode factor sisatyodel (T3),
defined in (3.83), is needed for representing cross-cladsifata. The model T3 fits
better than PARAFAC on some data, but it tends to use exceampéers (Zheng et al.
[27]. Thus, the model hierarchy we constructed in Chapter ¥ Inedp to rationalize

the choice of models. In this section, the PARAFAC (M4a) mada a more general
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model (M3) extending (T3) are applied to coronal tongue .datae likelihood ratio
test (LRT) is used to test whether the more general modelg (vi8Vi4a) represent
the coronal tongue data better. MATLAB and the N-ways towlace used to get the
MLE in (M4a).

In (M3), the tongue image data satisfies the equation (2.50):

Yiras 1
Y(r,a,s) — = Jlas + Af(r,a,s) + U(r,a,s)
Ypras 1
That s,
q
Yiras = Mas + Z )\ikfkras + Uiras (51)
k=1

The unknown parameter,, is the mean level of the surface measuremepnts for
the speakes and vowels.

In PARAFAC (M4a), the model we consider is
Y(r,a,s) = llas 1+ A* f(a,s) + U(T,a,s)

whereA, is ap x ¢ matrix with non-orthogonalized columns. The fixed efféét®)

can be written as

flas

= : and fr.s = wapvg fork =1,....¢q

fqas

flas)

The factor weightf.., is represented in PARAFAC as the product of a vowel-indepeinde

speaker weightv,;, and a speaker-independent vowel weight

5.2.1 Principal Component Analysis of Tongue Data

Since the coronal tongue data vectof:**) is in a high dimensional spade'®', it is

a good idea to reduce dimension before we analyze the datag Pncipal compo-
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nent analysis, we can project the coronal tongue data froiimensions down tan,

dimensions. That is,
Y(r,a,s) N X(r,a,s) — Lty(r,a,s) (52)

wherelL is ap x mq loading matrix orthogonal t@ and the columns of are the first
mg eigenvectors corresponding to the first largest eigenvalues of the covariance
matrix of Y*) — (1* 1 y-:#)) 1. We now determine the number, so that it will
retain most of the data information after the dimension c&ida by the PCA.

Let us consider the ratio

i— 1 Mk
R(m) = ==+ (5.3)
k=1 Ak
where),, ..., \, are eigenvalues of the covariance of the Coronal tongueydéatar).

The values ol 00 - (1 — R(m)) are the percent of the total sum of squares for ordinate
values. It can be used to determine the nungbed principal components to retain in
describing data as we described in (1.4). The percentageecfumulated variance
accounted for by the successive PC's a66:377%, 90.391%, 96.617%, 98.863%,
99.553%, 99.830%, 99.933%, 99.975%, 99.990%, 99.996%. So we simply choose

mo = 10.

We can also determine the minimum numbey of m such that—log R(m) ex-

ceeds the threshold 7 to retaif.9% of the data information. That is,
mo = min{m € N : —log R(m) > 7} (5.4)

Figure 5.1 shows the graph thatiog R(m) againstn. We see thatn, = 7 was good
enough to retai®9.9% of the data information, but we simply chose, = 10 and

projected the coronal tongue dat& >* from 101 dimensions down ta0 dimensions.
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-log(R(m)) vs m

5 10 15 20 25

-log(R(m))

Figure 5.1: Graph of- log R(m) againstm for the coronal tongue data.

5.2.2 Test of the Hypothesis that the PARAFAC Model Fits

We use the Likelihood Ratio Test (LRT) to test which model fiistongue data better.
The null hypothesis ig]j : 0 € ©,,4,, against alternativé/; : € ©,,3, where© ;3
ando,,, are defined in (2.56) and (2.69), respectively.

Using the Newton-Raphson method based on a profile likelilsb@degy, we find
the maximum log-likelihood in (M3) i$(5)M3 = —21677.48. Using the MATLAB
function parafacin the N-way toolbox together with the algorithm we consteakcin

Chapter 4, we find the maximized log-likelihood in (M4a)(8) /4, = —22570. The

likelihood ratio statistic

~ ~

—2log A = 2(1(0) a3 — 1(0) p1aa) = 1785.04 (5.5)

Let dim(©) denote the dimension of the parameter sgac8ince it is impossible
for a subject to speak a sound always exactly the same wagysd#, > 0 in the real

tongue data. Thus, the true parameter is in the interioreptdrameter space in both
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PARAFAC and (M3). By Theorem 3.4, under suitable regularitgdibons, for each
0 € O,

—2log A — x3_, whenR — oo
where
d—r = dim(@]y[;;) - dim(@M4a)
= qAS — (Aqg—q+ Sq—q) =102 (5.6)
By Remark 3.5,,/2x%, ~ N( v203, 1). Let X = —2log\(y) and letZ ~
N(0,1). The rejection region is

R = {\y) <c}={X > —-2logc}

= {V2X > /—4logc}
= {V2X — V203 > \/—4logc —V/203}

= {Z>\/—4logc — 203} (5.7)

Theny/—4log M(y) — /203 = /2 - 1785.04 — /203 = 45.50219. Since this is repre-

sents a very extreme quantile fd(0, 1), we reject the null hypothesis. Therefore, the

(M3) model fits the coronal tongue data better than the PARABAZa) model.

5.2.3 Comparison of fitted loading matrices among (M3), (M4a),

and PCA

We chose; = 2 and used the Newton-Raphson method based on a profile likeliho

strategy and the MATLAB functiomparafacto get the estimated in model (M3)
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First Principal Direction

0.2

0.1

0.0

-0.1

125 130 135 140 145
Lateral tongue coordinate

Figure 5.2: First Principal Direction for coronal tongugaldased on (PCA), (M3)
and (M4a).

and the PARAFAC model (M4a), respectively. The first columniois called the
first Principal Direction and the second column/ofis called the second Principal
Direction. We also get the first two Principal Directionsndeed by PC1 and PC2,
based on the Principal Component Analysis (PCA) or equivigldayt model (M1).
Figure 5.2 shows the curves of the first Principal Directibased on PCA, the model
(M3), and the PARAFAC model (M4a). Since we knew from the LR Bection 5.2.2
that (M3) fits the data better than (M4a), we think that thet fm$ncipal direction
(dotted line) based on the model (M3) in Figure 5.2 shouldesgnt the data better
than the principal direction (dashed line) based on PARAFM2Y). By Slud et al.

[22], the percent of variance (after subtraction of curvameccounted for by the two
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Second Principal Direction

0.2

PC2
,,,,,,,,,, Lambda.M3

0.1

0.0

-0.1

125 130 135 140 145
Lateral tongue coordinate

Figure 5.3: Second Principal Direction for coronal tonga¢acbased on (PCA) and
(M3).

PCs wa$9.4 and21.0, respectively. Thus, we think that PC1 plays the more impbrta
role in describing the data than PC2. In Figure 5.2, the fiistcypal direction (dotted
line) based on the model (M3) is very close to PC1 (solid lime) the dash line based
on the PARAFAC model is far from the other two curves. So thdidates that the
PARAFAC model did not adequately represent the data. Thesrdhult in Figure
5.2 agrees with the result of LRT. The second Principal Dioaccan be compared in

Figure 5.3.

99



5.2.4 Identification of vowels and subjects

The values in Table 5.1 af&”, the estimated values of the scaled parameigrat the
10’th iteration convergence based on the MATLAB functjgerafacand the algorithm
we constructed in Section 4.4. The valuesi§f are very stable up to th&d digital

place after thel'th iteration. For a specific subjeatand vowels, the valuea'?

can
be viewed as the variance of speakeand vowels relative to all of the subjects and
vowels. Based on these estimated values @fin Table 5.1, we can try to distinguish
particular vowels or subjects. For example, we found thatuwbwel “iy” has very
largea,; values for most of the subjects. The vowel “uu” could be a V@eend also
having largeio, s values. Now, let us focus on the subjects. We found that thgsu

“C.S.” tends to speak vowels consistently (ie, with reldyivamall variance).

The other information such asands? is listed in Appendix B.
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k=10

M.S. MD. SG. CS. GW LG

ae 1.033 0.955 0.793 0.788 1.161 0.443
ah 0583 0.663 1.073 0.901 0.843 0.996
aw 0.683 0.370 0.922 0.703 0.554 1.312
e 1421 1418 0.832 0.400 1.543 1.307
eh 0.738 0.962 1.002 0.650 1.199 0.691
ih 1.828 1.003 0.920 0.735 1.119 0.498
iy 1.147 3.082 2.784 0.304 3.615 2.241
o 0.548 0.530 0.767 0.634 0.804 1.092
uh 0593 0.372 1.081 0.714 0.539 1.218
uu 2.096 0.976 1.569 0.722 1.110 0.677
uuh 0.480 0.480 1.240 0.655 0.643 1.564

Table 5.1: The estimated values of the scaled parameters

101



Chapter 6

Summary and Future Work

We have constructed a new model hierarchy related to Factalyais, in which vector
measurements are linearly decomposed into a relativelll setaf hypothetical prin-
cipal directions, for purposes of dimension reduction. érarchical family of cross-
classified factor models has been built for the applicatma real tongue data set.
We unified the mathematical specification of unknown paramsdh the models and
established that in the right parameterizations, the uwkrmarameters were uniquely
identifiable from the data. We found some new results retat@dn-identifiable mod-
els and parameter values in the boundary of the parametee:spaere exists a so-
lution of Xy = AA* + diag (1)) on the boundary of the parameter sp&ewhen the
model is non-identifiable.

We found and implemented computationally effective maximlikelihood esti-
mators for the unknown parameters using the Newton-Raphstmaah with a profile
likelihood strategy. This method is much faster computetily since the dimension
is sharply reduced. It is also very effective since the MLIE ba always obtained
in our simulated data samples while the EM algorithm coreerextremely slowly or
sometimes does not converge. We found the MLE from the pridtééhood method

and the converged values of the EM algorithm agree if the Eddrghm converges.

102



We found a condition combined with the restricted model (MidR)heck whether the
converged point on the boundary of the parameter space MItke

We ultimately established statistical tests of goodnefisaifthe models to data. In
this research, we only focused on testing the fit of the PARARA&Iel against (M3)
and built the Likelihood Ratio Test (LRT). In (M3), we maxiret the log-likelihood
using the Newton-Raphson method with profile likelihoodtsfyg. In the PARAFAC
model (M4a), we used the MATLAB functiogmarafacand established a two-step pro-
file likelihood algorithm to transform our model to be comipkg with the parafac
function. The algorithm we constructed starting from the MAB toolbox is ex-
tremely efficient. The speed of convergence is very fast. Nfveay toolbox can also
be used to get the MLE for (M4) or (T3).

We applied the LRT to a real data set involving coronal cresstional pictures of
the human tongue surface during speech. We found that the PARModel (M4a) is
inadequate to represent the data. The more general modgfi(she coronal tongue
data better than the PARAFAC model.

In the next stage of work, we will focus on the following. Ejrave will test the
inadequacy of (M4) and check whether (T3) is adequate. Tdrisghould be easy to
test since the N-way toolbox provides the option to add thestraint onA to have
orthogonal columns. Also the N-way toolbox contains a fiowrcto fit the model (T3).

Second, we would like to test the adequacy of (M1) and (M2).knaw that the
model (M3) is a very general fixed effect cross-classifieddiamodel and we found
that (M3) fits a coronal tongue data set better than (M4a)weutdon’t know whether
(M3) is adequate to present the data. It is possible that {¢&)s0 inadequate for this
coronal tongue data and a more general random effect classfed factor model,

such as (M2), might fit the data better. However, (M3) is nattee in (M2) since
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one is fixed effect and the other is random effect. Since wadan Figure 5.2 that
the first Principal Direction in (M3) is very close to PC1 basedPCA and the PC1
can be interpreted as the first Principal Direction in (M3)Ugynma 3.1, we can test
the goodness of fit for (M1) against (M2) instead of (M3). Thiwe did not prove
the convergence of the alternating algorithms in Sectidri4and we intend to do so.
Finally, we want to apply our research to real sagittal tendata. Since there are only
five replications in the tongue data, we might need to comdidetstrapping strategy

to deal with estimation of variability.
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Appendix A

Matrix Algebra

Theorem A.1. (Graybill [7], p 88) Let A be ap x ¢ matrix. Then the null space of*

is the orthogonal component of the column spacd.ofhat is,
NS(A)={v eV :<v,w>=0forall w e col(A)}
wherecol(A) denotes the column space.f

Lemma A.2. (Singular value decomposition theorem)[15]Afis anp x ¢ matrix of

rankr, thenA can be written as
A=UDV! (A.1)

whereU (p x r) andV (¢ x r) are column orthonormal matrice$/(U = V'V = I,)

and D is ar x r diagonal matrix with positive elements.

Lemma A.3. [1] Given a positive definite symmetric matrix € RP*P, there is
a uniquely determined orthogonal matrix (except for possible changes of sign of
the columns) such thdf* AU is diagonal with diagonal elements arranged in non-

increasing order.

Lemma A.4. (Jennrich’s Basic Unigueness Theorem [10])

If > UaViWi = >, UV Wy, and if the respectively x L, J x L, and K x L,
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matricesU, V, W each have ranl. < I, J, K, then
U*=URD,V* =VRDy, W* =WRDs (A.2)

where R is a permutation matrix and),, D,, and D5 are diagonal matrices with

D1D2D3 - [

Lemma A.5. (Graybill [7], p 266) LetA be ak x k symmetric matrix of independent

real variables (subject only te;; = a;;); then
—— = 2[Aij] = Dyay)

where A;; is the cofactor ofu;; and D4, is a diagonal matrix withi'th diagonal

element equal ta\;;, the cofactor ofi;;.

Lemma A.6. (Graybill [7], p 267) LetA be ak x k symmetric nonsingular matrix of

independent real variables (subject onlydtg = «;;); then

whereD 41 is a diagonal matrix with'th diagonal element equal to that aff !.
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Appendix B

Technical Appendix

B.1 Computational results on simulated data

In Section 4.3, we discussed computational results bassnimartated data. We list the
values of(Aq, vp) and(A4, ¢;) for Cases (A)-(D) and (O)-(R) in the following tables.
The notationAgk) denotes thé’th column of A;, fori =0, 1.

The reason for choosing the values/of listed in Table B.1 was to construct a
Ay satisfying the conditions if®,,¢.o: orthogonal columns, column norms in de-
creasing order, and{1 = 0. Then the parametdr\o, 1)y) is identifiable in model
(M0Oa) in the case: = 0. Starting from a6 x 2 matrix Ay, with the first column
AW = (3,2,1,—-1,-2,-3) and the second column'y) = (1,2,—3,-1,3,-2),
thenA{,1 = 0, but Aoy does not have orthogonal columns. So we used the Gram-
Schmidt orthogonalization process to ggtin Table B.1 which satisfies the conditions
iN © 27042-

In Cases (E)-(N), we choose < (0,1), letA, = (1 —s) - Ag + s - Ay be the
convex combination betweefi, and A; and fix the entries of),, as independent
Unif([0,0.5]) variates, simulated asy, = (0.11654, 0.37053, 0.05444, 0.46252,

0.00746, 0.44479). We generated a data sample, called Case (E), based on the pa-
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rameter(Ag, v4) with s = 1/2; generated a data sample, called Case (F), based on
the parametefA;, 1) with s = 2/3; generated data samples, called Cases (G)-(l),
based on the parametgk;, 15) with s = 5/6; and generated data samples, called

Cases (J)-(N), based on the parameéter 1y,) with s = 11/12.

B.2 Computational result on coronal tongue data

The Sum of Squares of residuals (SSR)Gith iteration is1300.148474. Thus, ther?,
defined in (4.46), is?= SSR/(pR) = 1300.148474/(10 * 30) = 4.333828.
The values in Table B.3 are the ML estimates\ah model (M3) and (M4a), and

the first two principal Directions from PCA.
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(A-(D)  (A)-(D) A) (B) ©) (D)
A A Yo Yo Yo Yo
3 0.46429 0.22186 0.46202 0.08430 0.02967

2 1.64286 0.33539 0.11055 0.31064 0.40038
1 -3.17857 0.29213 0.18112 0.49082 0.30020
-1 -0.82143 0.09462 0.21458 0.03677 0.46742
-2 3.35714 0.36865 0.33569 0.24644 0.01616
-3 -1.46429 0.33451 0.24978 0.03667 0.39166

Table B.1: The simulated values of the first two columnagéndv, in cases (A)-(D)

©OR® OR® © P Q@ ®
A AP e
0.29273 0.47350 0.42129 0.29987

0.03241 0.33326 0.45984 0.04459
0.27562 0.25244 0.46000 0.11360

2 0
0 1
0 0
0 0 0.46130 0.20707 0.10466 0.09580
0 0 0.34056 0.12609 0.15538 0.30627
0 0

0.14803 0.04231 0.20651 0.35284

Table B.2: The simulated values of the first two columnd @&ndi), in cases (O)-(R)
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-~ -~

PC1 AS&[)?) KE&[)&L PC2 AE\?I)S K§\2/1)4a

1.000 0.997 0.959 0.000 0.076 0.902
0.000 -0.076 0.251 1.000 0.981 -0.410
0.000 0.000 0.133 0.000 0.170 -0.131
0.000 -0.019 -0.001 0.000 0.054 -0.037
0.000 -0.002 -0.008 0.000 0.008 0.000
0.000 0.003 0.002 0.000 0.005 0.006
0.000 0.002 0.002 0.000 -0.008 0.001
0.000 0.000 0.000 0.000 -0.003 0.000
0.000 -0.001 -0.001 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

Table B.3: The MLEs ofA in model (M3) and (M4a), and the first two principal
directions from PCA/A\%’})3 denotes thé&’th column of the MLE ofA in model (M3),

andf\%a denotes thé’th column of the MLE ofA in model (M4a)
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