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Gaussian Elimination, Perturbation Theory,

and Markov Chains
G. W. Stewart

1. Introduction

The purpose of this paper is to describe the special problems that emerge when
Gaussian elimination is used to determinine the steady-state vector of a Markov
chain. Although there are many iterative techniques for solving this problem,
direct methods are appropriate when the problem is small or when it is sparse
and unstructured. In such cases, Gaussian elimination, the simplest of the direct
methods, is a natural candidate.

The analysis of direct methods for linear systems has traditionally combined
rounding-error analysis with perturbation theory —the former to establish the
stability of the algorithm in question and the latter to assess the accuracy of the
solution. This fruitful interplay carries over to the solution of Markov chains, and
will be one of the main themes of this paper.

The paper begins with a review of the basic facts about Gaussian elimination
for general linear systems. We then turn to the application of the algorithm to
general Markov chains. The theory here is quite satisfactory and justifies the
algorithm for many, if not most, applications. However, there is an important
class of chains for which the algorithm fails —the nearly completely decomposable
(NCD) chains. Paradoxically, although the algorithm fails, the problem is well
determined in the sense that all the information necessary to compute a solution
is available at the outset of the computations. A closer study of this paradox
motivates a variant of Gaussian elimination proposed by Grassmann, Taksar, and
Heyman [6].

Throughout out this paper we will assume that the reader is familiar with
Gaussian elimination and its relation to the LU decomposition. Treatments of
this material can be found in most introductory books on numerical linear algebra
(e.g., [5, 12, 17]). The symbol || - || denote a family of consistent matrix norms;

i.e., one for which ||AB|| < ||All|| B||, whenever the product AB is defined.

2. Gaussian Elimination and Linear Systems

The need for a formal rounding-error analysis of Gaussian elimination became crit-
ical as the arrival of the electronic computer made it impossible for a human to
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monitor the individual numbers in a calculation. In an early analysis, the statisti-
cian Hotelling [8] arrived at the conclusion that the errors in Gaussian elimination
could grow exponentially with the size of the matrix, which would have precluded
its use for matrices of even modest size. A subsequent analysis by von Neumann
and Goldstine [16] showed that the algorithm would solve positive definite systems
accurately, provided they were what we now call well conditioned. Finally, in 1961
Wilkinson [18] provided a comprehensive error analysis of Gaussian elimination
for general linear systems.

A key component of Wilkinson’s treatment is the projection of the errors back
onto the original problem, a procedure known as backward rounding-error anal-
ysis. Specifically, he showed that if Gaussian elimination is used to solve the
system

Arx =10

Y

where A is of order n then the computed solution ¥ satisfies the equation
(A4 E)z =b, (2.1)

where
£ < @(n)yem. (2.2)

Here ¢(n) is a slowly growing function of the size of the matrix that depends on
the norm and details of the arithmetic used in the computations, and ¢y is the
rounding unit for the arithmetic. The number ~ is the largest matrix element
encountered in the course of the elimination.

The analysis shows that provided v is not large compared with A—i.e., there
has been no undue growth of elements in the elimination —then the computed
solution is the exact solution of a problem differing from the original by terms of
order of magnitude of the rounding error. Since such errors are generally smaller
than errors already present in the elements of A, the algorithm itself cannot be held
responsible for inaccuracies in the solution. An algorithm with such a backward
error analysis is said to be stable. By the above error analysis, partial pivoting
(the practice of interchanging rows to bring the largest element in the column into
the diagonal) is seen to be a device to ensure stability by limiting the growth of
elements as reflected by ~.

Although stability is a compelling reason for using an algorithm, it is not suffi-
cient for users who want to know the accuracy of their solutions. Consequently, it
is customary to supplement a rounding-error analysis with a perturbation theory
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for the problem being solved. The basic perturbation theory for linear systems is
particularly simple. If Az = b and & satisfies (2.1), then

t=x—A'Ex + O(HEHQ)
It follows that T | 12|
T—2x
—— S K(A) T
[Ea [ Al
where r(A) = ||A||||A7!]| is the condition number of A. The left-hand side of

(2.3) is a relative error in the computed solution. The fraction on the right is the
relative error in A due to the perturbation F. The number £(A), which is always
greater than one, is a magnifying factor that says how much the error in A is
magnified as it passes to an error in x.

A

(2.3)

Together the rounding-error analysis and the perturbation analysis form a neat
summary of the properties of Gaussian elimination. The rounding error analysis
shows that any inaccuracies in the solution must come from exceedingly small
changes in the problem: the perturbation analysis gives us a means of assessing
the errors in the solution due to these changes. We will now turn to a similar
analysis of the use of Gaussian elimination to solve Markov chains.

3. Gaussian Elimination and Markov Chains

Now let P be the transition matrix of an irreducible Markov chain. Then up to
normalization factors, P has unique, positive right and left eigenvectors corre-
sponding to the eigenvector one. The right eigenvector is e; i.e., the vector whose
components are all one. Qur problem is to compute the left eigenvector, which
we will denote by yT.

The problem can be cast in a form that is more convenient for Gaussian elim-
ination. Let

Q=1-P
Then
y'Q=y' —y'P=y —y' =0
Thus the problem has been transformed from that of finding an eigenvector of P

to that of finding a null vector of ).! Note that Qe = 0; i.e., the row sums of Q
are zero.

1t is worth noting that this kind of reduction cannot be applied to the general eigenvalue
problem, since we will not ordinarily know the eigenvalue a priori.
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Gaussian elimination can be used to solve the equation y*@Q) = 0 as follows.

1. Use Gaussian elimination to decompose Q' = LU, where L is
unit lower triangular and U is upper triangular.

2. Partition
U, u
U= ( 0 0 ) '

The matrix U, will be upper triangular and nonsingular.

3. Compute
T (_UTU*_T 1)
T =TT D

where ||z]|; = eT|z|.

The third step of the algorithm is almost self-explanatory. Since L is nonsingular,
any null vector of QT is a null vector of U and vice versa. The third step then
amounts to computing a null vector of U by assuming its last component is one,
solving the resulting triangular system, and normalizing.

The nonsingularity of U,, which is not obvious, is closely bound up with the
problem of pivoting. To see what is going on let us consider the first two columns
of QT, which we write in the form

d11 q12
421 422
q1 42

The quantities ¢1; and g¢92 are nonnegative, while ¢21, ¢12, ¢1, and ¢o are non-
positive. Moreover, since the components of the first column sum to zero, g1
can be zero only if go; and ¢y are zero, in which case @) is reducible, contrary to
assumption.

Thus the first step of Gaussian elimination can be performed on the second
column, yielding a new column of the form

G12=10
_ 421412
422 = {22 —

q11
_ q1912
92 =q2 —

q11
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By considering the signs of the quantities involved, we find that

L. q22 2 o2,
2. g2 > qa.

In other words, the diagonal element decreases while the off-diagonal elements
increase in magnitude. Since the column sums are still zero, we have ¢y9 > goo >
—qi2 (1 > 2), which implies that all the elements in the reduced second column
are bounded in magnitude by ¢s9; 1.e., there is no net growth in the elements of
the reduced column. Finally, the quantity ¢.2 can be zero only if both ¢; and ¢
are zero, which contradicts irreducibility.

Since any column of QT can be symmetrically permuted into the second col-
umn, the above observations apply to any column. Thus the result of the first step
of Gaussian elimination is an irreducible matrix with positive diagonal elements
and nonpositive off-diagonal elements. By induction the same is true of the the
subsequent steps, save the last, which must produce the single number w,, = 0.
Since there is no net growth in the elements, the reduction can be carried to com-
pletion, and the diagonal elements of U,, which are the pivots in the elimination
are positive. Since the growth factor v in (2.2) is one, the algorithm is stable.
This stability was first pointed out by Funderlic and Mankin [4].

Two further points. not only is there no need to pivot in the algorithm, but
the usual form of partial pivoting is in some sense harmful. The reason is that
interchanging two rows of QT (without interchanging the corresponding columns)
destroys the properties that keep growth from occurring, and we are left with the
(admittedly unlikely) possibility of instability. The second point is that symmetric
pivoting, in which two rows and the same two columns are interchanged, does
preserve the structure of () and can be used with complete freedom. This fact is
important in applications involving sparse matrices, in which pivoting is necessary
to avoid fill-in [2].

Turning now to the perturbation theory of Markov chains, the basic theory
goes back almost a quarter of a century and has been presented in a variety of
ways [3, 7, 9, 10]. Here we give it in a form that will be useful in the sequel. For
proofs see [14].

It can be shown that the matrix P has the spectral decomposition

P=ey’ + XBY"', (3.1)

(Vo) =tex

where
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Alternatively,
(e X)7'P(e X) = diag(1, B);

that is, (e X) transforms P via a similarity transformation into a block-diagonal
matrix. It follows that the eigenvalues of B must be those of P other than one,
and hence I — B is nonsingular.

Now assume that P = P 4+ F is an irreducible stochastic matrix, and let §*
be its steady-state vector. Then it can be shown that

JT T T (T - BT, (32)
from which it follows that

HgT - yTH < X(] B —lyT F
g S ||[X(I - B) H£1[- (3.3)
1y

This is the desired perturbation bound.

The matrix (I — P)* = X(I — B)~'Y"T is called the Drazin pseudo-inverse
or the group inverse of the system. The bound (3.3) shows that the norm of the
group inverse is a condition number for the steady-state vector of a Markov chain.

4. Nearly Completely Decomposable Chains

The results of the last section place Gaussian elimination for the solution of
Markov chains on a par with Gaussian elimination for the solution of linear sys-
tems. The algorithms are backwards stable, and the problems have reasonable
perturbation theories. However, in neither case does the analysis apply to matri-
ces whose elements vary widely and systematically in size.

Consider, for example the following matrix:

+0.75287 —0.75283 —0.00003
Q=1 —0.75283 +40.75284 —0.00001
—0.00003 —0.00001 4-0.00004

Since the matrix is symmetric, the left and right eigenvector are both e, and there
is no difference between applying Gaussian elimination to @) or Q.

Working in five decimal digits, we compute the correctly rounded multipliers
for the first step of Gaussian elimination as

0.99996 = f1(—0.75283/0.75287) and 0.39849 - 10~* = (—0.00003/0.75287).
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(Here fl denotes a floating point operation.) If we use these multipliers and make
no further rounding errors, the matrix assumes the form.

+0.75287  —0.75283 —0.00003
Q=1 +0.0 +0.000040113  —0.000039999 (4.1)
+0.0 —0.000039999  +0.000039999

This shows that the last two components of the computed null vector, which
should be equal, will be in a ratio of 40113/39999. Thus, we have only two figures
of accuracy.

Since Gaussian elimination is stable, the only way we can get an inaccurate
answer is for the problem to be ill-conditioned. And indeed it is. For the problem
is an example of a nearly completely decomposable (NCD) chain; that is, one
which, after a suitable reordering of the states, is almost block diagonal. For the
case of three blocks, such a chain has the form

Pll E12 E13
P = E21 P22 E23 )
E31 E32 P33

where the matrices F;; are small. Such chains were introduced by Simon and
Ando [11], and have been studied extensively since (e.g., see [1, 13]).

Since the F£;; are small, each of the matrices FP; has an eigenvalue near one.
Consequently the entire matrix, in addition to an eigenvalue of one, has k£ — 1
eigenvalues near one, where k is the number of blocks. Consequently, the matrix
B in (3.1) has k — 1 eigenvalues near one and the condition number ||(1 — P)#|| =
| X (I — B)~'Y'Y|| will be large.

In spite of this ill-conditioning, the problem can be solved by the following
aggregation-disaggregation technique (here € is the norm of the matrix consisting

of the off-diagonal blocks):

1. Compute 3, the Perron eigenvector? of P;; normalized so that
gle =1.
2. Compute ¢;; = g)iTEije and 7; = ?);'I‘Aiie.

3. The coupling matriz

T11  —€2 —€s3
C = —€1 T2 €23
—€31 —€32 733

2The Perron eigenvector of an irreducible nonnegative matrix is the positive eigenvector
corresponding to the largest positive eigenvalue.
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is easily seen to be an irreducible stochastic matrix. Compute its
steady-state vector (14, vz, v3).

4. Then
y" = (gl v, vsid ) + O(e),

The solution provided by the algorithm has two components: the vectors ! and
the coupling coefficients v;. Provided the diagonal blocks A;; are well behaved, the
former will be insensitive to perturbations in P. On the other hand, unless the
perturbation in P is small compared to the I;;, the elements of C' and hence the
coupling coefficients will be poorly determined. Since the FE;; are small compared
to the Pj;, small relative perturbations in P can be large compared to the F;; and
harm the solution.

All this agrees with the perturbation theory for NCD Markov chains. It can be
shown [14] that under suitable regularity conditions the matrix P has a spectral
decomposition of the form

P=1y"+ X,BY." + X; BY;', (4.2)
where
y' B
VI =(1xx) .
i/fT

The matrix By is a perturbation of the identity, while the matrix Bf has eigenvalues
whose eigenvalues are bounded in magnitude away from one.” In analogy with
(3.2) the perturbed steady-state vector, due to a perturbation F' in P, can be
written

§=y" + X, F(I— B, + X F(I— By) ™'Y, (1.3)

Since the eigenvalues of By are near one while those of By are not, the second
term in (4.3) will dominate; i.e., the perturbations will tend to lie in the space

3The subscripts “s” and “f”, which stand for slow and fast, have the following origin. It is
easy to see that
P =1y + X, B'Y." + X;BlY;".

Since the eigenvalues of By are near one, B! approaches zero more slowly that the ith power of
Bt, whose eigenvalues are smaller. Consequently the decomposition (4.2) exhibits two transient
behaviors: a fast transient associated with By and a slow transient associated with Bg. This
behavior was noted by Simon and Ando.
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spanned by the rows of Y.I. However, it can be shown that the row space of Y.
is essentially the same as the row space of

g)lT 0 0
0 914 0
0 0 g5

Consequently, the components of T will tend to lie, as they should, along the
directions of the vector §{; however, their relative proportions, which correspond
to the coupling coefficients, will change. Thus, it is the coupling coefficients that
are sensitive to changes in P, a fact which agrees with our comments on the
aggregation algorithm.

5. The GTH Algorithm

The analysis of the preceding section shows that unless we know the elements
of the E;; to high relative accuracy, the steady-state vector of the chain will be
ill-determined. In situations where the F;; must be determined empirically, this
accuracy may be difficult to achieve, since their elements correspond to events
that occur only infrequently. On the other hand, in parameter studies, where the
behavior of a system is being modeled by a Markov chain, the F;; can be taken
as fully accurate. Thus it is reasonable to pose the following problem: How do we
compute the steady-state vector of a NCD chain when the E;; are known to high
accuracy’

The obvious answer is to use the aggregation algorithm. However, this answer
begs the question; for the coupling matrix (' is itself nearly completely decompos-
able and hence ill-conditioned. For example, suppose that

O = 0.9999 0.1499e—3
~\ 0.2499e—3  0.9998

Note that to four decimal digits, C' is a correctly rounded stochastic matrix.
However,

(5.1)

~iqes ( 0.1000 —0.1499
[=e=10 (—0.2499 0.2000

has the positive eigenvector

y = (0.4968 0.5032),
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whereas the corresponding eigenvector of the exactly stochastic matrix

( 0.9998501 0.1499e—3 )
Ctrue =

0.2499e—3 0.9997501

is
Ytrue = (0.5000 0.5000).
Thus the aggregation algorithm will produce coupling coefficients that are inac-
curate in the third figure.
Looking carefully at this example, we see that the problem lies with the diag-
onal elements of I — (', which are inaccurate. However, since the rows of [ —
must sum to zero, we can restore the accuracy by replacing I — €' with

oo [ 01499 —0.1499
—0.2499  0.2499 |

In the general aggregation algorithm, this amounts to computing the coupling
matrix in the form

€12 + €13 —€12 —€13
I-C= —€21 €21 + €23 —€23
—€31 —€32 €31 + €32

This procedure of adjusting the diagonals restores the figures that could not be
represented in the diagonals of the original matrix C.

The idea of diagonal adjustment can be applied to Gaussian elimination. For
example, the trailing 2 x 2 principal submatrix of (4.1) should have zero column
sums. Since it does not, we force them to be by replacing the diagonals with the
sum of the off diagonals, to get the matrix

+0.75287  —0.75283 —0.00003
Q= +0.0 -+0.000039999  —0.000039999 |,
+0.0 —0.000039999  +0.000039999

which gives the right answer.
In general, after k steps of Gaussian elimination applied to Q7, the matrix

assumes the form " "
Uy’ Uy
o vl )
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(%)

where Ul(f) is of order k. Since the row sums of U;,” are known to be zero,
instead of using Gaussian elimination to compute its diagonal elements, we use
the alternative formula

uy;):— > wy, j=k+1,...,n. (5.2)
i=k+1
(£
This, in essence, is the algorithm of Grassmann, Taksar, and Heyman [6] men-
tioned in the introduction. There are three points to be made about it.

In the first place, it is easy to implement and not very expensive. The sums
(5.2) can be accumulated as the off-diagonal elements are generated during the
elimination, which increases the work done in the inner loop by a single addition.*

Second, the numerical properties of the algorithm are not well understood. A
possible justification is that the method never subtracts and hence cancellation
cannot cause it to fail. Unfortunately, this line of reasoning, when formalized, is
essentially the analysis of Hotelling mentioned in the introduction, and it leads
to the same pessimistic conclusions. With G. Zhang, I have given a rounding-
error analysis of a closely related algorithm [15]; however, the original algorithm
remains unanalyzed. Nontheless, I believe that the GTH algorithm is stable and
should be used routinely in the direct solution of Markov chains.

Third, the above discussion is a little unfair to Gaussian elimination, which
is frequently asked to do the impossible: solve a problem that is not in the com-
puter. The matrix (5.1) is a case in point. Owing to initial rounding errors, it is
only approximately singular and Gaussian elimination will do a very good job of
computing an approximate null vector. The fact that this vector is not what we
want cannot be blamed on Gaussian elimination, which has no way of knowing it
is dealing with a Markov chain. In this light, the GTH algorithm is seen to be an

augmentation of Gaussian elimination that does know.?
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