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Gaussian Elimination, Perturbation Theory,and Markov ChainsG. W. Stewart1. IntroductionThe purpose of this paper is to describe the special problems that emerge whenGaussian elimination is used to determinine the steady-state vector of a Markovchain. Although there are many iterative techniques for solving this problem,direct methods are appropriate when the problem is small or when it is sparseand unstructured. In such cases, Gaussian elimination, the simplest of the directmethods, is a natural candidate.The analysis of direct methods for linear systems has traditionally combinedrounding-error analysis with perturbation theory|the former to establish thestability of the algorithm in question and the latter to assess the accuracy of thesolution. This fruitful interplay carries over to the solution of Markov chains, andwill be one of the main themes of this paper.The paper begins with a review of the basic facts about Gaussian eliminationfor general linear systems. We then turn to the application of the algorithm togeneral Markov chains. The theory here is quite satisfactory and justi�es thealgorithm for many, if not most, applications. However, there is an importantclass of chains for which the algorithm fails| the nearly completely decomposable(ncd) chains. Paradoxically, although the algorithm fails, the problem is welldetermined in the sense that all the information necessary to compute a solutionis available at the outset of the computations. A closer study of this paradoxmotivates a variant of Gaussian elimination proposed by Grassmann, Taksar, andHeyman [6].Throughout out this paper we will assume that the reader is familiar withGaussian elimination and its relation to the LU decomposition. Treatments ofthis material can be found in most introductory books on numerical linear algebra(e.g., [5, 12, 17]). The symbol k � k denote a family of consistent matrix norms;i.e., one for which kABk � kAkkBk, whenever the product AB is de�ned.2. Gaussian Elimination and Linear SystemsThe need for a formal rounding-error analysis of Gaussian elimination became crit-ical as the arrival of the electronic computer made it impossible for a human to1



2 Gaussian Elimination and Markov Chainsmonitor the individual numbers in a calculation. In an early analysis, the statisti-cian Hotelling [8] arrived at the conclusion that the errors in Gaussian eliminationcould grow exponentially with the size of the matrix, which would have precludedits use for matrices of even modest size. A subsequent analysis by von Neumannand Goldstine [16] showed that the algorithm would solve positive de�nite systemsaccurately, provided they were what we now call well conditioned. Finally, in 1961Wilkinson [18] provided a comprehensive error analysis of Gaussian eliminationfor general linear systems.A key component of Wilkinson's treatment is the projection of the errors backonto the original problem, a procedure known as backward rounding-error anal-ysis. Speci�cally, he showed that if Gaussian elimination is used to solve thesystem Ax = b;where A is of order n then the computed solution ~x satis�es the equation(A+ E)~x = b; (2:1)where kEk � '(n)
�M: (2:2)Here '(n) is a slowly growing function of the size of the matrix that depends onthe norm and details of the arithmetic used in the computations, and �M is therounding unit for the arithmetic. The number 
 is the largest matrix elementencountered in the course of the elimination.The analysis shows that provided 
 is not large compared with A|i.e., therehas been no undue growth of elements in the elimination|then the computedsolution is the exact solution of a problem di�ering from the original by terms oforder of magnitude of the rounding error. Since such errors are generally smallerthan errors already present in the elements ofA, the algorithm itself cannot be heldresponsible for inaccuracies in the solution. An algorithm with such a backwarderror analysis is said to be stable. By the above error analysis, partial pivoting(the practice of interchanging rows to bring the largest element in the column intothe diagonal) is seen to be a device to ensure stability by limiting the growth ofelements as re
ected by 
.Although stability is a compelling reason for using an algorithm, it is not su�-cient for users who want to know the accuracy of their solutions. Consequently, itis customary to supplement a rounding-error analysis with a perturbation theory



Gaussian Elimination and Markov Chains 3for the problem being solved. The basic perturbation theory for linear systems isparticularly simple. If Ax = b and ~x satis�es (2.1), then~x = x�A�1Ex+O(kEk2):It follows that k~x� xkkxk <� �(A)kEkkAk ; (2:3)where �(A) = kAkkA�1k is the condition number of A. The left-hand side of(2.3) is a relative error in the computed solution. The fraction on the right is therelative error in A due to the perturbation E. The number �(A), which is alwaysgreater than one, is a magnifying factor that says how much the error in A ismagni�ed as it passes to an error in x.Together the rounding-error analysis and the perturbation analysis form a neatsummary of the properties of Gaussian elimination. The rounding error analysisshows that any inaccuracies in the solution must come from exceedingly smallchanges in the problem: the perturbation analysis gives us a means of assessingthe errors in the solution due to these changes. We will now turn to a similaranalysis of the use of Gaussian elimination to solve Markov chains.3. Gaussian Elimination and Markov ChainsNow let P be the transition matrix of an irreducible Markov chain. Then up tonormalization factors, P has unique, positive right and left eigenvectors corre-sponding to the eigenvector one. The right eigenvector is e; i.e., the vector whosecomponents are all one. Our problem is to compute the left eigenvector, whichwe will denote by yT.The problem can be cast in a form that is more convenient for Gaussian elim-ination. Let Q = I � P:Then yTQ = yT � yTP = yT � yT = 0:Thus the problem has been transformed from that of �nding an eigenvector of Pto that of �nding a null vector of Q.1 Note that Qe = 0; i.e., the row sums of Qare zero.1It is worth noting that this kind of reduction cannot be applied to the general eigenvalueproblem, since we will not ordinarily know the eigenvalue a priori.



4 Gaussian Elimination and Markov ChainsGaussian elimination can be used to solve the equation yTQ = 0 as follows.1. Use Gaussian elimination to decompose QT = LU , where L isunit lower triangular and U is upper triangular.2. Partition U =  U� u0 0 ! :The matrix U� will be upper triangular and nonsingular.3. Compute yT = (�uTU�T� 1)k(�uTU�T� 1)k1 ;where kxk1 = eTjxj.The third step of the algorithm is almost self-explanatory. Since L is nonsingular,any null vector of QT is a null vector of U and vice versa. The third step thenamounts to computing a null vector of U by assuming its last component is one,solving the resulting triangular system, and normalizing.The nonsingularity of U�, which is not obvious, is closely bound up with theproblem of pivoting. To see what is going on let us consider the �rst two columnsof QT, which we write in the form q11 q12q21 q22q1 q2The quantities q11 and q22 are nonnegative, while q21, q12, q1, and q2 are non-positive. Moreover, since the components of the �rst column sum to zero, q11can be zero only if q21 and q2 are zero, in which case Q is reducible, contrary toassumption.Thus the �rst step of Gaussian elimination can be performed on the secondcolumn, yielding a new column of the form�q12= 0�q22= q22 � q21q12q11�q2 = q2 � q1q12q11



Gaussian Elimination and Markov Chains 5By considering the signs of the quantities involved, we �nd that1: q22 � �q22;2: q2 � �q2:In other words, the diagonal element decreases while the o�-diagonal elementsincrease in magnitude. Since the column sums are still zero, we have q22 � �q22 ���qi2 (i > 2), which implies that all the elements in the reduced second columnare bounded in magnitude by q22; i.e., there is no net growth in the elements ofthe reduced column. Finally, the quantity �q22 can be zero only if both q1 and q2are zero, which contradicts irreducibility.Since any column of QT can be symmetrically permuted into the second col-umn, the above observations apply to any column. Thus the result of the �rst stepof Gaussian elimination is an irreducible matrix with positive diagonal elementsand nonpositive o�-diagonal elements. By induction the same is true of the thesubsequent steps, save the last, which must produce the single number unn = 0.Since there is no net growth in the elements, the reduction can be carried to com-pletion, and the diagonal elements of U�, which are the pivots in the eliminationare positive. Since the growth factor 
 in (2.2) is one, the algorithm is stable.This stability was �rst pointed out by Funderlic and Mankin [4].Two further points. not only is there no need to pivot in the algorithm, butthe usual form of partial pivoting is in some sense harmful. The reason is thatinterchanging two rows of QT (without interchanging the corresponding columns)destroys the properties that keep growth from occurring, and we are left with the(admittedly unlikely) possibility of instability. The second point is that symmetricpivoting, in which two rows and the same two columns are interchanged, doespreserve the structure of Q and can be used with complete freedom. This fact isimportant in applications involving sparse matrices, in which pivoting is necessaryto avoid �ll-in [2].Turning now to the perturbation theory of Markov chains, the basic theorygoes back almost a quarter of a century and has been presented in a variety ofways [3, 7, 9, 10]. Here we give it in a form that will be useful in the sequel. Forproofs see [14].It can be shown that the matrix P has the spectral decompositionP = eyT +XBY T; (3:1)where  yTY T ! = (e X)�1:



6 Gaussian Elimination and Markov ChainsAlternatively, (e X)�1P (e X) = diag(1; B);that is, (e X) transforms P via a similarity transformation into a block-diagonalmatrix. It follows that the eigenvalues of B must be those of P other than one,and hence I �B is nonsingular.Now assume that ~P = P + F is an irreducible stochastic matrix, and let ~yTbe its steady-state vector. Then it can be shown that~yT �= yT + yTFX(I �B)�1Y T; (3:2)from which it follows thatk~yT � yTkkyTk <� kX(I �B)�1Y TkkFk: (3:3)This is the desired perturbation bound.The matrix (I � P )# � X(I � B)�1Y T is called the Drazin pseudo-inverseor the group inverse of the system. The bound (3.3) shows that the norm of thegroup inverse is a condition number for the steady-state vector of a Markov chain.4. Nearly Completely Decomposable ChainsThe results of the last section place Gaussian elimination for the solution ofMarkov chains on a par with Gaussian elimination for the solution of linear sys-tems. The algorithms are backwards stable, and the problems have reasonableperturbation theories. However, in neither case does the analysis apply to matri-ces whose elements vary widely and systematically in size.Consider, for example the following matrix:Q = 0B@ +0:75287 �0:75283 �0:00003�0:75283 +0:75284 �0:00001�0:00003 �0:00001 +0:00004 1CA :Since the matrix is symmetric, the left and right eigenvector are both e, and thereis no di�erence between applying Gaussian elimination to Q or QT.Working in �ve decimal digits, we compute the correctly rounded multipliersfor the �rst step of Gaussian elimination as0:99996 = 
(�0:75283=0:75287) and 0:39849 � 10�4 = 
(�0:00003=0:75287):



Gaussian Elimination and Markov Chains 7(Here 
 denotes a 
oating point operation.) If we use these multipliers and makeno further rounding errors, the matrix assumes the form.Q = 0B@ +0:75287 �0:75283 �0:00003+0:0 +0:000040113 �0:000039999+0:0 �0:000039999 +0:000039999 1CA (4:1)This shows that the last two components of the computed null vector, whichshould be equal, will be in a ratio of 40113=39999. Thus, we have only two �guresof accuracy.Since Gaussian elimination is stable, the only way we can get an inaccurateanswer is for the problem to be ill-conditioned. And indeed it is. For the problemis an example of a nearly completely decomposable (ncd) chain; that is, onewhich, after a suitable reordering of the states, is almost block diagonal. For thecase of three blocks, such a chain has the formP = 0B@ P11 E12 E13E21 P22 E23E31 E32 P33 1CA ;where the matrices Eij are small. Such chains were introduced by Simon andAndo [11], and have been studied extensively since (e.g., see [1, 13]).Since the Eij are small, each of the matrices Pii has an eigenvalue near one.Consequently the entire matrix, in addition to an eigenvalue of one, has k � 1eigenvalues near one, where k is the number of blocks. Consequently, the matrixB in (3.1) has k�1 eigenvalues near one and the condition number k(I�P )#k =kX(I �B)�1Y Tk will be large.In spite of this ill-conditioning, the problem can be solved by the followingaggregation-disaggregation technique (here � is the norm of the matrix consistingof the o�-diagonal blocks):1. Compute ŷTi , the Perron eigenvector2 of Pii normalized so thatŷTi e = 1.2. Compute �ij = ŷTi Eije and �ii = ŷTi Aiie.3. The coupling matrixC = 0B@ �11 ��12 ��13��21 �22 ��23��31 ��32 �33 1CA2The Perron eigenvector of an irreducible nonnegative matrix is the positive eigenvectorcorresponding to the largest positive eigenvalue.



8 Gaussian Elimination and Markov Chainsis easily seen to be an irreducible stochastic matrix. Compute itssteady-state vector (�1; �2; �3).4. Then yT = ��1ŷT1 ; �2ŷT2 ; �3ŷT3 �+O(�):The solution provided by the algorithm has two components: the vectors ŷTi andthe coupling coe�cients �i. Provided the diagonal blocks Aii are well behaved, theformer will be insensitive to perturbations in P . On the other hand, unless theperturbation in P is small compared to the Eij, the elements of C and hence thecoupling coe�cients will be poorly determined. Since the Eij are small comparedto the Pii, small relative perturbations in P can be large compared to the Eij andharm the solution.All this agrees with the perturbation theory for ncd Markov chains. It can beshown [14] that under suitable regularity conditions the matrix P has a spectraldecomposition of the formP = 1yT +XsBsY Ts +XfBfY Tf ; (4:2)where 0B@ yTY TsY Tf 1CA = �1 Xs Xf��1:The matrixBs is a perturbation of the identity, while the matrixBf has eigenvalueswhose eigenvalues are bounded in magnitude away from one.3 In analogy with(3.2) the perturbed steady-state vector, due to a perturbation F in P , can bewritten ~y �= yT +XsF (I �Bs)�1Y Ts +XfF (I �Bf)�1Y Tf : (4:3)Since the eigenvalues of Bs are near one while those of Bf are not, the secondterm in (4.3) will dominate; i.e., the perturbations will tend to lie in the space3The subscripts \s" and \f", which stand for slow and fast, have the following origin. It iseasy to see that P i = 1yT +XsBisY Ts +XfBifY Tf :Since the eigenvalues of Bs are near one, Bis approaches zero more slowly that the ith power ofBf , whose eigenvalues are smaller. Consequently the decomposition (4.2) exhibits two transientbehaviors: a fast transient associated with Bf and a slow transient associated with Bs. Thisbehavior was noted by Simon and Ando.



Gaussian Elimination and Markov Chains 9spanned by the rows of Y Ts . However, it can be shown that the row space of Y Tsis essentially the same as the row space of0B@ ŷT1 0 00 ŷT2 00 0 ŷT3 1CA :Consequently, the components of ~yT will tend to lie, as they should, along thedirections of the vector ŷTi ; however, their relative proportions, which correspondto the coupling coe�cients, will change. Thus, it is the coupling coe�cients thatare sensitive to changes in P , a fact which agrees with our comments on theaggregation algorithm.5. The GTH AlgorithmThe analysis of the preceding section shows that unless we know the elementsof the Eij to high relative accuracy, the steady-state vector of the chain will beill-determined. In situations where the Eij must be determined empirically, thisaccuracy may be di�cult to achieve, since their elements correspond to eventsthat occur only infrequently. On the other hand, in parameter studies, where thebehavior of a system is being modeled by a Markov chain, the Eij can be takenas fully accurate. Thus it is reasonable to pose the following problem: How do wecompute the steady-state vector of a ncd chain when the Eij are known to highaccuracy?The obvious answer is to use the aggregation algorithm. However, this answerbegs the question; for the coupling matrix C is itself nearly completely decompos-able and hence ill-conditioned. For example, suppose thatC =  0:9999 0:1499e�30:2499e�3 0:9998 ! :Note that to four decimal digits, C is a correctly rounded stochastic matrix.However, I �C = 10�3  0:1000 �0:1499�0:2499 0:2000 ! (5:1)has the positive eigenvector y = (0:4968 0:5032);



10 Gaussian Elimination and Markov Chainswhereas the corresponding eigenvector of the exactly stochastic matrixCtrue =  0:9998501 0:1499e�30:2499e�3 0:9997501 ! :is ytrue = (0:5000 0:5000):Thus the aggregation algorithm will produce coupling coe�cients that are inac-curate in the third �gure.Looking carefully at this example, we see that the problem lies with the diag-onal elements of I � C, which are inaccurate. However, since the rows of I � Cmust sum to zero, we can restore the accuracy by replacing I � C with10�3  0:1499 �0:1499�0:2499 0:2499 ! :In the general aggregation algorithm, this amounts to computing the couplingmatrix in the formI �C = 0B@ �12 + �13 ��12 ��13��21 �21 + �23 ��23��31 ��32 �31 + �32 1CA :This procedure of adjusting the diagonals restores the �gures that could not berepresented in the diagonals of the original matrix C.The idea of diagonal adjustment can be applied to Gaussian elimination. Forexample, the trailing 2 � 2 principal submatrix of (4.1) should have zero columnsums. Since it does not, we force them to be by replacing the diagonals with thesum of the o� diagonals, to get the matrixQ = 0B@ +0:75287 �0:75283 �0:00003+0:0 +0:000039999 �0:000039999+0:0 �0:000039999 +0:000039999 1CA ;which gives the right answer.In general, after k steps of Gaussian elimination applied to QT, the matrixassumes the form  U (k)11 U (k)120 U (k)22 ! ;



Gaussian Elimination and Markov Chains 11where U (k)11 is of order k. Since the row sums of U (k)22 are known to be zero,instead of using Gaussian elimination to compute its diagonal elements, we usethe alternative formulau(k)jj = � i=nXi=k+1i6=j uij; j = k + 1; : : : ; n: (5:2)This, in essence, is the algorithm of Grassmann, Taksar, and Heyman [6] men-tioned in the introduction. There are three points to be made about it.In the �rst place, it is easy to implement and not very expensive. The sums(5.2) can be accumulated as the o�-diagonal elements are generated during theelimination, which increases the work done in the inner loop by a single addition.4Second, the numerical properties of the algorithm are not well understood. Apossible justi�cation is that the method never subtracts and hence cancellationcannot cause it to fail. Unfortunately, this line of reasoning, when formalized, isessentially the analysis of Hotelling mentioned in the introduction, and it leadsto the same pessimistic conclusions. With G. Zhang, I have given a rounding-error analysis of a closely related algorithm [15]; however, the original algorithmremains unanalyzed. Nontheless, I believe that the GTH algorithm is stable andshould be used routinely in the direct solution of Markov chains.Third, the above discussion is a little unfair to Gaussian elimination, whichis frequently asked to do the impossible: solve a problem that is not in the com-puter. The matrix (5.1) is a case in point. Owing to initial rounding errors, it isonly approximately singular and Gaussian elimination will do a very good job ofcomputing an approximate null vector. The fact that this vector is not what wewant cannot be blamed on Gaussian elimination, which has no way of knowing itis dealing with a Markov chain. In this light, the GTH algorithm is seen to be anaugmentation of Gaussian elimination that does know.5References[1] P.-J. Courtois. Decomposability. Academic Press, New York, 1977.4This assumes that the exterior product form of Gaussian elimination is used. If inner-product forms of the kind associated with the names of Crout and Doolittle are used, thealgorithm is a little more complicated, though the amount of extra work stays the same.5Some of the examples appearing in the literature purporting to show that Gaussian elimi-nation fails are of the same nature: the damage is done in the initial rounding of problem.
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