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public key cryptography and trusted devices to avoid shared secrets on servers. The current version

of FIDO, FIDO2, has become widespread and is directly integrated into popular systems such

as Windows Hello and Android OS. This thesis details two contributions to the advancement of
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to resolve security vulnerabilities in the Client To Authenticator Protocol Version 2 (CTAP2),

which is a component of FIDO2. It is formally demonstrated that this modification provides a

stronger security assumption than CTAP2. The second contribution is an outline of procedures

and resources for future researchers to carry out a study of the usability of FIDO2 authenticators

via a within-subjects experiment. In the study, subjects register an account on a custom web app

using both passwords and FIDO2 credentials. The web app collects metrics about user behavior

such as timing information for authentication sessions. Over the course of a week, subjects log in

to the same web app every day using both authentication methods. Subjects complete entrance

and exit surveys based on the System Usability Scale (SUS) according to their experiences. The

surveys and user metrics would then be analyzed to determine whether users perceive FIDO2 as

more usable than passwords.
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1 Introduction

1.1 The Problems with Passwords

According to the World Bank, the percentage of American Internet users has risen from 43%

of the United States’ population in 2000 to 87% in 2017 [1]. Growing alongside this expanded

Internet connectivity is a burgeoning market of online services such as social media, mobile banking,

and online retailers, many of which require users to store sensitive information about themselves

in order to facilitate payments, enable communication, and more. To protect this information

and prevent unwanted account intrusions, online services require users to authenticate themselves

before accessing personal data, typically using text-based passwords. Passwords have been the

predominant method of user authentication in computer systems since the 1960s, and security

experts have taken issue with them ever since [2, 3]. In an ideal world, an individual would use

a unique, difficult-to-crack password for each service that requires one, but the proliferation of

password usage motivates taking security-diminishing shortcuts for user convenience. Crucially,

the security of passwords in general suffers from users’ tendencies to create weak passwords and

reuse the same strings across multiple services.

The most secure passwords are long, random, and composed of a diverse set of characters [4].

Weak passwords, meanwhile, are short and feature predictable strings, including common dictionary

words, simple numerical sequences, and/or personal information such as dates and names [5]. Strong

passwords are often associated with difficulty of use, so users tend to opt for more convenient
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alternatives that sacrifice security, even when they are aware of good password habits [5]. The

public proclivity for choosing weaker passwords may be reinforced by their complacency—that is,

users believing that their accounts will simply not be compromised [5]. One is left with a web

environment in which roughly 32% of users, left to their own devices, employ passwords that are

easily compromised by standard cracking techniques [4]. This tendency for users to prefer easy-to-

remember but weak passwords over lengthier but stronger ones is an inherent flaw with the human

aspect of password authentication.

Even when users do create secure passwords, they frequently reuse the same string across mul-

tiple sites [6], motivated in part by an aversion to the recovery process should they forget their

account’s password. 63.9% of password users were found to be inconvenienced by the process of

forgetting and retrieving passwords, fueling desires to reuse passwords and mitigate any burden

on their memories [5]. In fact, roughly 19% of individuals reused nearly identical passwords on

multiple sites and 26% of individuals reused passwords for online financial services [7].

The danger of password reuse stems from the sharing of vulnerability. If a user registers several

accounts protected by the exact same string, a data breach affecting one online service can expose

associated sensitive information from all other services that are defended by the same hacked

password [7]. Any individual service may be able to enforce its own set of strict password criteria,

but it has no way to prevent reuse of that password elsewhere.

1.2 Criteria for Evaluating Authentication Schemes

Although many alternatives to passwords have been proposed, experts in authentication often

disagree on what factors are most important when developing a strong authentication scheme. Secu-

rity experts design systems that are robust but complicated to use. Biometric experts, meanwhile,

focus on performance metrics like false-positive/false-negative rates while ignoring implementation

concerns like hardware size and cost. These considerations are important within their respective

fields, but they divert attention from the greater perspective.

In order to create a viable replacement for passwords, one must consider the multifaceted uses
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of authentication. Bonneau et al. studied 35 popular password replacement schemes and compiled

a list of 25 properties that encompass the various benefits offered by each scheme [2]. These 25

properties are divided into three broad categories: usability, security, and deployability.

Usability versus security is a classic trade-off in the field of authentication. In general, solutions

that require less user interaction sacrifice elements of security, and more robust solutions demand

more interaction from users. The less heeded category, deployability, refers to factors such as

scalability, compatibility with existing systems, and ease of implementation. This third category

is crucial since the adoption of a scheme is contingent on its ability to integrate into present

infrastructure.

The properties that fit into the three overarching categories can be used to compare existing

authentication alternatives to passwords.

1.3 Existing Approaches for Replacing Passwords

Despite the aforementioned flaws, passwords remain ubiquitous on the Internet. How do the

existing alternatives compare?

To begin, developers have tried to tackle the problem of password memorability with password

managers that handle some or all of a user’s passwords by storing them in an encrypted format

on either the user’s machine or the cloud [8]. These managers take advantage of the benefits of

passwords while removing the issue of reuse by eliminating the need to remember a unique string for

each service. They also improve convenience by entering passwords on the behalf of users. However,

the tendency to lock the functionality of the manager behind a master password creates an all-or-

nothing scenario with the same risks as any individual password. Furthermore, password managers

suffer from availability issues: if one runs a local manager on their machine, then its services do

not work across devices; if one runs a cloud-based manager, then its services do not work without

a network connection. Finally, password managers place the burden of finding a security solution

on the user, rather than the service, which not only means that users may have to pay for the use

of a manager, but that services cannot enforce their use or any related standard.
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Federated identity management (FIM), allows users to sign in to multiple online services using

a single set of login credentials [9], achieved by creating federations of services built on mutual

trust. A subset of those in the federation, known as identity providers, provide authentication

information to other trusted services. When many applications are linked to a federation, users

are able to authenticate once to gain access to multiple services, which is known as single sign-on

(SSO) [9]. FIM systems that utilize passwords for their initial login create an all-or-nothing scenario

like with password managers. This time, however, the onus is on the services to provide, for better

or worse. Such systems rely on services exchanging user information with each other securely, which

may not always be the case.

Graphical passwords offer an alternative to text entirely by harnessing users’ ability to remember

images more easily than text, coming in three main flavors: recognition, recall, and cued-recall [10].

The variance and novelty of these schemes, however beneficial they might be for memory, may suffer

from an initial learning curve that harms usability of the systems that employ them [11].

In an attempt to shore up the weaknesses of individual authentication methods, there is multi-

factor authentication (MFA), a security paradigm that requires users to employ more than one

method to obtain access to a service. One of the most widespread forms of MFA is mobile-based

two-factor authentication (2FA), in which users are first required to supply their credentials (i.e.,

username and password) to an online service and then confirm their identity through a call or

text message that contains a one-time-use code [12]. Other common secondary factors include

security questions, hardware tokens, PINs, and biometrics [12]. Ultimately, MFA serves as an extra

inconvenience for all parties involved—some helpful, some harmful—in that it forces attackers to

contend with each additional factor added to the login process, developers to implement and secure

each additional channel, and users to log in to services using multiple steps.

1.4 Biometrics and FIDO2

Most notably absent from the previous discussion of alternatives to passwords are biomet-

rics—i.e., fingerprint reading, iris/retinal scanning, facial recognition, voice recognition, and the
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like. Usage of such physical characteristics shifts the authentication mode from knowledge to being,

from tokens of memory to the inherent physical qualities of an individual [13]. This bears with it

the significant advantage of having no human memory requirement. With no cognitive strain, there

is no following temptation to trade security for convenience and settle for something weaker. In

fact, there is no “something weaker:” one is either able to provide their fingerprint (or equivalent

reading), or they are not.

Biometric authentication has its own set of challenges that may limit its popularity. Concerning

accessibility, physical complications may prevent certain people from being able to produce the

verification needed. On the development side, biometrics are not as easy as passwords for services

to enable. For users, providing a biometric reading requires additional hardware that may not be

readily available. And as an extra inconvenience, biometrics cannot be shared like a password can,

making it difficult for one to authorize others to access their account, if desired.

Enter FIDO2, a passwordless authentication protocol for the Internet standardized by the World

Wide Web Consortium (W3C) into the Web Authentication API [14]. Fortunately, the growing

adoption of FIDO2 helps to address most of the issues associated with biometrics. If one biometric

reading is inaccessible to an individual, another type is probably accessible; FIDO2 supports a

multitude of authentication options, making such options possible. Being a standardized protocol

supported by most major Internet browsers and having various open implementations available

eases the burden on developers to implement biometric-accepting capabilities. The acceptance of

FIDO2 on major browsers also means that it is usable on mobile devices, and most modern mobile

devices have the requisite hardware for biometric readings, such as fingerprint scanners, cameras,

and microphones, already built-in, mitigating the hardware requirement’s cost on users.

1.5 Present Research

As evident from the summary of password alternatives, there is not a one-size-fits-all solution to

the issue of user authentication. However, we believe that the wider adoption of FIDO2, particularly

in conjunction with physical biometrics, would be a suitable replacement for traditional text-based
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passwords as a single-factor authentication method on the Internet. To verify the validity of this

belief, our research is two-fold: investigate the protocol’s theoretical security using formal analysis

tools, and conduct an experiment to observe the protocol’s usability.

A significant portion of our initial research’s motivation originates from The Quest to Replace

Passwords, published by Bonneau et al. in 2012. The researchers rated voice, iris, and fingerprint

biometrics as having poor deployability across the board, which is less true today due to widespread

mobile device ownership as well as the standardization and growing adoption of FIDO2. As such,

our present research seeks to advance the state of the FIDO2 protocol and assess the usability of

current FIDO2 implementations.
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2 Literature Review

2.1 Background

Authentication, in the context of this research, is best defined as a process that uses some method

of scrutiny in order to verify the identity of a user or entity [15]. For example, authentication may

come in the form of passport verification, passwords, or fingerprinting. Most authentication methods

can be categorized into three overarching categories: possession, knowledge, and characteristics;

passport verification, passwords, and fingerprinting are examples of possession, knowledge, and

characteristics respectively [16]. For this literature review, our reviewed authentication schemes

are first grouped into these three categories, then considered alongside each scheme’s strengths and

weaknesses.

In order to analyze the trade-offs of each scheme, the criteria listed by Bonneau et al.’s “The

Quest to Replace Passwords” are used [2]. These criteria, which characterize beneficial traits for

a secure and convenient authentication method, can be categorized into the three aforementioned

measures: usability, security, and deployability. Usability refers to how accessible and effortless an

authentication method can be. Some of the criteria for a highly usable authentication scheme are

being memorable (a user has to memorize a minimal amount of information to use this scheme) and

time-efficient (an authentication scheme takes mere moments to properly verify a user’s identity) [2].

Deployability refers to how easily an authentication method can be implemented on a larger scale.

For instance, a deployable authentication scheme may be server compatible, which means that the
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scheme integrates well with existing web server infrastructure for storing text-based passwords [2].

Finally, security describes how protected an authentication method is from intrusions by others.

Thus, a secure authentication scheme would be resilient against brute-force, physical and internal

observation, and phishing attacks [2]. These three categories of criteria are used in this literature

review to provide a defined method to analyze an authentication scheme’s benefits and drawbacks.

For the remainder of this review, we will explore research into many different authentication

schemes, ranging from the common password to voice recognition to graphical authentication. These

authentication schemes will be described and analyzed through the lens of Bonneau et al.’s criteria

to determine the scheme’s effectiveness.

2.2 Text-Based Passwords

The most widely used authentication method is the text-based password, a convenient combina-

tion of simplicity and inexpensive implementation. Its advantages were recognized even in ancient

times: the Roman military passed “watchwords” from man to man and from division to division on

a wooden tablet until every soldier was made aware of the word for the night [17]. It should be no

surprise, then, that approximately two millennia later, passwords found a place within computers

in the mid-1960s, when it was used by the Massachusetts Institute of Technology’s Compatible

Time-Sharing System as a means of protecting each of its users’ private files [3]. The advent of

the World Wide Web in the following decades, and in particular e-commerce sites, significantly

increased the general population’s usage of services that might require identity verification, with

those services turning to passwords as their primary means of authentication [18]. Now, as online

services have continued to expand and users find themselves with more passwords than ever, it is

apt to consider whether password authentication is secure and user-friendly enough to justify its

continued popularity.

The security of password authentication relies on the strength of individual passwords, where

“strong” or “good” passwords take a long time for attackers to guess and “weak” or “bad” passwords

take a short amount of time to crack. The time needed to guess passwords in a brute-force manner
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depends on the password’s length, the password’s variance from standard dictionary words, and

the size of the character sets used [19]. Using these properties as the basis for metrics, Ma et al.

propose the usage of the pair (D, L) to encapsulate password strength, with D being the Levenshtein

distance to the most similar dictionary word (i.e., the minimum number of single-character changes

one needs to produce the password from a dictionary word) and L being the password’s “effective

length” (i.e., the length that the password would be, accounting for its character set diversity, if

expressed only in digits). Ma et al. consider a password with D greater than or equal to three and

L greater than or equal to 14 to be acceptable in strength. To achieve this level of security, they

recommend making passwords “at least 8 characters long, with at least 3 special characters, plus

other alphanumeric characters.” The National Institute of Standards and Technology’s 2019 revision

to the 800-63B authentication guidelines concurs with this 8 character password minimum [20]. The

security of password authentication appears to be a question of whether users follow the rules for

creating strong passwords, such as the one proposed by Ma et al.

However, such rules are generally not followed by the public, as evident from Florencio and

Herley’s 2007 “Large Scale Study of Web Password Habits” [6]. After gathering password and URL

data through a client that approximately half a million people voluntarily downloaded alongside

Windows Live Toolbar, the researchers concluded that, though passwords play a significant role in

the average Web user’s life (having 25 password-requiring accounts and typing eight passwords per

day), users often fail to create secure passwords. There were about 24,000 passwords categorized

as “weak” of the approximate 150,000 total, and only about 7,200 “strong” ones. On top of these

figures, it was discovered that the average user shares 6.5 passwords across 3.9 websites, with weak

passwords tending to be reused more often than strong ones across more sites, compromising a

greater number of user accounts.

Password reuse is a particularly concerning byproduct of the popularity of passwords. Beyond

just increasing the chances that the repeated password is discovered by an attacker, having the same

password across multiple accounts means that users’ best-protected accounts are just as insecure as

their least-protected ones. This weakness opens up an avenue for hackers to infiltrate secure systems

by exploiting password reuse in less secure systems [18]. It is no wonder where the motivation to
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reuse passwords comes from—as mentioned in Florencio and Herley’s account, the average user

needed to enter eight passwords over the course of a day in 2007 [6], a number predicted to only

increase with time [21]. It was thought that most users are only capable of effectively using four

to five passwords [18] and that the amount of passwords that users have to remember necessitates

reuse. More recent research suggests that these poor security habits may not be the result of

humans’ incapable memories, but rather their perceptions of their memories as incapable [21].

Regardless of the cause, people are not utilizing strong, unique passwords for all of the accounts

that today’s Web-saturated society demands, leading to the pervasiveness of weak passwords that

trade account security for user convenience.

2.3 Text-Based Password Creation Advice

One area of particular interest to researchers is determining how the advice that users receive

when creating their passwords affects the security of their generated passwords. To study this,

Yan et al. examined three sets of password creation instructions: no advice, advice to choose

randomly generated passwords, and advice to choose passphrase/mnemonic passwords [4]. Each

set of instructions was assigned to a different group of college students who used this advice to

guide their password creation. Through their experiment, Yan et al. found that passwords based

on mnemonic phrases are more secure than random passwords and that mnemonic phrases are easier

to remember than naively selected passwords. This study’s findings provide a potential solution

for creating passwords that are strong and easy to remember while also being more secure through

the use of mnemonic phrases as passwords. However, online services do not have a reliable way to

compel users to follow such advice or to protect against new attacks that are evolving to target

new forms of password creation.

Another potential method for improving password security is making an easy-to-remember pass-

word that is comparably secure to a password with random letters. To accomplish this, Abadi et

al. discuss the three-way trade-off between user memory, security, and access time, as well as

how to increase security while decreasing memory burdens in their research paper [22]. Most au-

15



thentication systems are made more secure by adding a randomly generated string to the end of

the user-selected password to increase its strength, also known as a salt. By adding the salt, the

password immediately becomes more secure as the password’s length is increased. Also, when this

salt is added before the password is hashed, the password becomes even harder for an attacker

to guess as a single character can change the entire hash value assigned to the password. This

salting method results in great security and fast access time, but it is still only as secure as the

randomness and length of the password used by the user. Another drawback is that, regardless of

how secure this process appears, the authentication system might not store the value of the salt in

a secure location, resulting in little to no improvement over authentication systems that do not use

a salt. To combat these issues, Abadi et al. propose appending randomly generated supplemental

characters to ensure that all passwords are at least 20 characters, but then discard this supplement

to make the client’s computer brute force its way through the possible character combinations when

a user logs in. This technique will improve security and decrease user memory requirements but

significantly increase access time, leading to user dissatisfaction. Considering this downside, it is

unlikely that commercial organizations would adopt this password padding technique, but it may

be used by groups that value security over usability.

2.4 Password Managers

Another potential solution to the password memorability problem is password managers, which

allow users to secure their accounts with strong text passwords while minimizing the amount of

information that the user needs to remember. Password managers accomplish this by generating

strong, randomized passwords for each online service. Although different managers have varying

password storage methods, almost all of them lock the manager behind a master password that

can be used to access all of a user’s credentials [23]. This authentication system makes password

managers convenient for users because they only have to remember a single password. Modern

password managers autofill the passwords whenever the user requests them, further increasing

convenience.
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There are two main types of password managers: local and cloud-based. Local password man-

agers store user passwords in an encrypted database file on the user’s machine. Despite the added

layer of security from the encryption, Zhao et. al. demonstrated that many of these local pass-

word managers are still insecure. This was accomplished by highlighting how the encrypted data

is often stored without using strong key derivation functions [8]. On the other hand, cloud-based

password managers store user passwords on remote servers. These managers commonly come in

the form of a paid service, such as LastPass, Dashlane, or 1Password. These services are beneficial

because they can take advantage of (k,n) thresholding schemes that allow data to be secured by

multiple vendors. For example, k = n = 15 means that even if 14 of the vendors storing informa-

tion about your passwords are hacked, the attackers know nothing about your data until they hack

all 15 [24]. Browser-based Password Managers (BPMs) are another widely used form of password

managers; they save users’ passwords to the browser and automatically fill in users’ credentials on

login pages [8]. BPMs rose in popularity in response to the domination of text-based passwords as

the most popular form of online user authentication. Nowadays, all five of the most popular Web

browsers provide password managers as a built-in feature. Password managers have been effec-

tively deployed and only have a few variables that affect its accessibility. Local password managers

require that the user has access to the device they are stored on and cloud password managers

require connection to all of the servers storing the passwords. Local password managers are limited

because they do not allow the user access to their passwords from multiple devices. On the other

hand, cloud-based password managers require a connection to all of the servers used to store the

passwords.

While password managers help improve the process of password creation and storage, they still

have factors that limit their viability. One of the biggest issues that they face is garnering a user

base. Users decide not to use password managers for a variety of reasons. One common reason users

cite is that they do not believe they will be a target of an attack, so a service that creates strong

passwords for them would be useless [5]. Also, individuals may choose to manage their passwords

themselves rather than using an internet-based service, which usually translates to them writing

their passwords on a sheet of paper and storing it somewhere. For example, in a recent survey of
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information technology professionals, 40% reported writing down their important business network

passwords on paper [5]. If users believe that their method of creating and storing passwords is

already sufficient, they would also think that a password manager performs redundant, unnecessary

work. Although this false sense of user security is a hurdle for all authentication methods, it may

affect the implementation of password managers the most.

Online password managers are more secure than the methods the average individual would use

for password creation and storage. Strong passwords that are randomly generated and difficult to

remember have an increased chance of being written down and password managers eliminate that

need [5]. While a written password can be stored in a safe location, doing so does not eliminate

the risk of password mismanagement. Password managers can create extremely secure passwords

for other sites, but a “master password” is often needed to access the manager itself. This master

password can greatly diminish the overall security of password managers. If the user needs to

remember the master password, they may end up mismanaging the master password, putting their

other passwords at a higher risk of being stolen. Additionally, cracking a user’s master password for

their manager would grant a hacker access to all of a user’s passwords, as opposed to just cracking

the password for a single service. The all-or-nothing nature of a password manager breach may

cause general users to doubt their security and feel uncomfortable using one.

In a study conducted by Tam et al, they investigated the motives behind password selection,

whether users knew what constituted good password-management behavior, and whether their

behavior varied based on the type of account [5]. The ultimate goal of the study was to determine

what online services can do to encourage users to adopt good password-management practices.

The researchers began their study by inviting a group of university students to answer a series of

questions regarding password management behaviors and tracking their responses. Additionally,

the researchers collected data from a group of 140 separate Internet users on how time-frames

affected their password creation and selection. At the end of the study, the researchers found that

individuals understood the difference between good and bad password management behaviors and

the potential consequences of bad management techniques. The researchers found that the fear

of forgetting passwords contributes to users using weak passwords and that 36.4% of participants
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were willing to sacrifice security for convenience [5]. This supports the concept of people not using

password managers because of the additional time it would take to log in. In addition, the fear of

forgetting passwords shown in the study also supports why users may opt to not use a password

manager, as the fear of forgetting the master password could be a major deterrent. However, the

researchers found that participants were willing to sacrifice convenience for security if they only

had to remember one password, so these participants would likely benefit from using a password

manager. Their data also supported the idea that password management behavior depends on

the account for which the password is used, such as a bank account versus a social media account.

Typically, participants used stronger passwords for accounts that had more immediate consequences

if breached. Even though there are still debates regarding the psychology of password management,

studies like that conducted by Tam et al. may explain why password managers are more appealing

to some individuals than others. Additionally, the patterns identified in the study, such as the high

user desire for convenience, may highlight why other authentication methods are gaining popularity.

2.5 Federated Identity Management

Federated Identity Management (FIM) is an authentication scheme that enables users to log in

to many different online services using a trusted set of identity providers (IdPs). These IdPs are

responsible for storing user information and transmitting a user’s authentication status to other

websites that trust these IdPs [9]. Although FIM systems typically rely on text-based passwords

to authenticate users, they avoid some of the flaws associated with conventional passwords. Most

notably, FIM frees users from having to remember separate passwords for many websites [2]. One

early implementation of FIM is Microsoft Passport. When signing into a website that implements

Microsoft Passport, a user is directed to a Passport page where they input a username/password to

log in [9]. Before returning to the Passport participating site, the user is given the option to share

their email, full name, and/or all other personal information (e.g., date of birth, country, ZIP code)

during that Passport session. For the duration of that session (i.e., before the user logs out), the user

does not have to re-enter their login credentials or enter any of the information they opted to share
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when visiting other Passport-participating sites [9]. Passport’s ability to provide users entry into

multiple websites while only logging in once is known as single sign-on (SSO). Although Microsoft

Passport integrated well with other Microsoft products such as Hotmail and MSN, it suffered from

a few critical flaws. Primarily, Microsoft was not a trusted authority for authenticating users for

more consequential web services such as online banking or retail [9]. Another significant flaw was

that Passport did not give precise control over which user attributes are shared with which sites,

which posed a privacy threat to users.

A more modern FIM approach is Shibboleth, which provides a more convenient user experience

for login with better control over what user information is shared with which participating service

providers (SPs). Shibboleth also simplifies the process of forming arbitrary federations between

SPs and IdPs and provides a better mechanism for allowing users to choose their desired IdP, as

opposed to Microsoft’s more centralized system. To further ensure user privacy, IdPs in Shibboleth

only provide SPs in a federation with a random identifier for the user instead of their actual login

credentials, helping to anonymize user accounts [9]. Most critically, Shibboleth protects user privacy

by forcing service providers to request specific attributes from the IdP, which must be authorized by

the user [9]. Explicit control over user attributes is one of Shibboleth’s biggest strengths. Shibboleth

is commonly employed in login systems for higher education [25].

More recently, FIM has seen mass adoption through the OAuth protocol. OAuth 1.0 was

originally released in 2010 to create a standard mechanism for users to grant online services access

to their accounts on separate domains and was later improved upon with OAuth 2.0 in 2012 [26].

Prior to OAuth, allowing Facebook to suggest friends based on a user’s Gmail contacts, or some

similar action, required users to provide their Google login credentials to Facebook [26]. This poses

security risks by providing Facebook with unrestricted account access. To improve user privacy,

OAuth instead uses access tokens to facilitate authentication. Say that service A and service B

both correctly implement OAuth. If a user decides to interact with service A through service B,

service B would first redirect the user to service A’s login page, where the user can specify exactly

which permissions to grant service B [26]. Afterward, service B receives an access token, which

can be sent alongside any request to service A to perform an authorized action on behalf of the
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user [26]. Although OAuth has a multitude of use cases, it is often used to implement SSO. OAuth

is not without flaws: notably, if a service fails to follow proper security protocols in order to secure

the redirect endpoints, it could leave its users vulnerable to an attack [26]. OAuth also suffers

if a service is unable to convey the extent of the permissions that a user is granting a separate

service through their authorization interface. One key finding of Sun and Beznosov is that the

access tokens that grant a service permission to obtain and modify user data were often vulnerable

to being stolen [27]. After examining 96 SPs that connect to Facebook’s OAuth endpoint, Sun and

Beznosov found that only 21% use a method of encrypting web requests called Secure Socket Layer

(SSL) when issuing authentication request and that 91% could have their access tokens stolen if

there was a single cross-site scripting (XSS) vulnerability on any page on their site [27].

Overall, FIM systems facilitate SSO and reduce the total amount of login information that users

have to remember, but still come with a myriad of flaws. Notably, they require sites to exchange

information between each other, and many sites fail to implement even the most basic security

measures such as SSL during these data exchanges [28]. Another concern is centralization; if an

IdP has a vulnerability that allows an attacker to steal login credentials for users, the attacker

could gain entry to all sites that the user logs into using that IdP [28]. Because FIM often involves

redirecting users to the IdP in order to log in, FIM systems are vulnerable to phishing attacks

wherein a hacker is able to redirect the user to a malicious login page instead of the legitimate

IdP [2]. Despite these flaws, FIM is still a widely used authentication scheme that alleviates the

issue of credential reuse by enabling SSO.

2.6 Graphical Passwords

Graphical passwords are a family of authentication schemes that rely on a user’s ability to

recognize, remember and recreate images. Graphical passwords have been the subject of academic

study since 1996 [11]. Early graphical passwords required a user to touch predetermined areas on

an image in a certain order [29]. However, different graphical schemes have been developed in recent

years. Today, graphical passwords are commonly used on personal computers and online services
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including online banking [30].

There are three main categories of graphical passwords: recognition, recall, and cued-recall-

based schemes [11]. Recognition schemes require the user to identify images they have seen before.

Recall schemes require the user to remember an image without aid such as requiring the user to

draw an image purely from memory. Cued-recall schemes share characteristics of the two strategies

above, requiring the user to remember details of their graphical password but with the aid of visual

cues. An example of a cued-recall scheme is requiring the user to click certain points on a given

image.

In “PassPoints: Design and longitudinal evaluation of a graphical password system,” Wieden-

beck et al. introduced a cued-recall graphical password, PassPoints [11]. In the PassPoints scheme,

a user creates their password by selecting an ordered sequence of points on an image of their choos-

ing. A user logs in by simply clicking the correct points, within a certain tolerance, in the correct

order. This study found that creating and remembering their graphical password was similar in ease

and speed when compared to text-based passwords, but slower and more difficult when learning

and entering the password. This study highlights the inherent difficulty of introducing a new au-

thentication scheme to users as they are most likely highly experienced with traditional passwords

and new to alternative schemes such as graphical passwords.

Picture Passdoodle, a cued-recall graphical password, allows a graphical password to be created

via free-form drawing over a background image. The user-created drawing may consist of multiple

strokes. A user logs in by recreating their drawing so that their strokes are within a set tolerance

of the original drawing and drawn in the same order. Schwab et al. analyzed the security of this

scheme by having users create, learn, and use their own Picture Passdoodles [10]. Users stated that

Picture Passdoodles were faster, easier, and more secure than traditional passwords, despite having

to learn how the service worked. This is in contrast to the findings for PassPoints described above.

Specifically, this study found that incorporating a background image made the graphical passwords

easier to create and remember.

Graphical passwords are a promising alternative to traditional text-based passwords, but they

have their own strengths and weaknesses. The most prominent strength of graphical passwords is
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their memorability. Images are easier to remember than text over extended periods of time [11],

meaning that graphical passwords are generally easier to remember than text-based passwords. One

of the largest security threats plaguing conventional passwords is simply that many users use weak

passwords that are easy to remember, sacrificing security for the sake of recalling their passwords

easily. Since graphical passwords utilize images, it is easier for users to construct and remember

more secure passwords.

Although graphical passwords can be as secure as traditional passwords, they have unique

security concerns. In particular, graphical passwords are vulnerable to certain types of attacks

due to their visual nature, such as shoulder surfing and smudge attacks [10]. Shoulder surfing is a

method of attack where the attacker simply observes a user input their password and is then able

to mimic the user’s password. Graphical passwords are especially vulnerable to this type of attack

as they have a necessary screen presence, unlike text-based passwords. Smudge attacks, meanwhile,

are possible on touchscreen devices where attackers utilize smudges on a screen to learn a screen’s

common pressure points, thus leaking authentication information.

2.7 Physical Biometrics

2.7.1 Fingerprints

Fingerprint recognition is a classic biometric that is based on a centuries-old forensic science

concept [31]. The probability that two fingerprints are alike is approximately 1.9 × 10−15 [32].

This fact, combined with the general availability of one’s fingerprints, has made this metric popular

in consumer devices. The contemporary method of fingerprint scanning involves a three-piece

structure. The first is a sensor that converts scanned fingerprint images into electrical signals;

then, that data is then passed to the second piece, an interfacing chip that converts the data into

a standardized format; and finally, the processed data sent to a standardized I/O interface [33].

These scanners have become a mainstay in biometric authentication and can be found in most

contemporary mobile phones.
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An important measure in fingerprint authentication schemes is fingerprint image quality. Fin-

gerprint image quality is defined as a predictor of a matcher’s performance [34]. The idea is that a

fingerprint matching algorithm has a higher chance of correctly identifying matches or nonmatches

when the scanned fingerprint image is of a higher quality. This metric allows systems to reduce

matching errors and to determine when a rescan is required. Researchers from Michigan State pro-

posed two indices for quantifying fingerprint image quality [35]. The first index extracts a quality

score ranging from 0 to 1 by performing analysis on the energy concentration of the image as a

whole. The second index generates a quality score by taking the weighted average of the quality of

square image partitions. These two indices are evaluated on their ability to predict the performance

of image enhancement, feature detection, and image matching. The global index outperformed the

local index in predicting image enhancement, and the two performed comparably in the other

two experiments. In the end, these two indices were shown as effective methods of quantifying a

matching algorithm’s performance.

Another important concern of any biometric scheme is secure storage. An attacker should not

be able to recreate a biometric entry based on its representation in long-term storage. Tan and Lee

proposed a fingerprint authentication system that encrypts fingerprint features using ring learning

with errors (ring-LWE) [36]. A key feature of this scheme is that ring-LWE is an asymmetric

algorithm with no known polynomial solution for quantum computers. In other words, ring-LWE

has the potential to be “quantum-safe,” unlike many popular encryption algorithms [37]. The

scheme uses a remote server to store encrypted versions of fingerprint features. When a user

requests access to a local device, called a Request-To-Authenticate (RTA), their fingerprint features

are extracted on the local machine and encrypted using the ring-LWE public key. The encrypted

features are then sent off to the remote server and decrypted using the server’s private key. The

server then decrypts the stored version of the features and compares the two copies. The server

sends back an Accept-To-Authenticate (ATA) if the features match, otherwise it sends a rejection

message. The researchers ran experiments in a controlled operating environment that demonstrated

a reasonably fast time-to-authenticate of approximately 75ms. The fact that the private decryption

key is stored on the same machine as the registered copies of fingerprint features is somewhat
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concerning, however it is difficult to avoid this configuration and there are methods of mitigating

harm if either the key or the encrypted entries are stolen. Regardless, this implementation is

preferable because it allows public-key cryptography to be used for biometric authentication.

The major benefits of fingerprint recognition as a means of authentication are its maturity and

the fact that it makes sense to use one’s fingers for authentication since most devices that require

authentication, namely mobile phones and computers, are already manipulated using one’s hands.

Therefore, using a fingerprint scanner is simple and direct in most applications of this scheme. This

is directly related to one major downside of this scheme, which is its accessibility. Not all users have

the requisite ability and dexterity to manipulate smaller fingerprint scanners, like those found on

mobile phones. The second major disadvantage of fingerprint recognition is its reliance on hardware

since not all devices have fingerprint scanners. The last major drawback of fingerprint scanning

is that fingerprint sensors are susceptible to forgery attacks. In [38], Putte and Keuning describe

how an attacker can use a fingerprint lifted off of a glass or fingerprint scanner to create a dummy

silicone stamp that mimics a genuine fingerprint. This dummy fingerprint was accepted on the first

or second try by many varieties of optical and solid-state fingerprint sensors [38]. In summary, the

maturity of fingerprint biometric authentication makes it a helpful resource, however, several key

flaws have prevented its universal adoption.

2.7.2 RFID Implants

Radio Frequency Identification (RFID) is an inexpensive technology that allows for contactless

user identification and authentication. This technology has become very popular in the past few

decades, as evidenced by its widespread use in building keycards and its appearance in larger

applications such as the “EZ-Pass” toll booth system [39]. Furthermore, this technology has made

its way into end-user authentication schemes. The basic design of a contemporary RFID system

has two main components, an RFID tag, which is like a barcode, and an RFID reader, which is

like a barcode scanner. RFID tags are small chips that can typically store 2kb of data. These tags

receive requests from an RFID reader and are capable of responding to these requests using only the

energy from the request signal itself, or ambient heat. This allows RFID tags to operate virtually
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indefinitely. An RFID tag can easily be implemented into a hardware token authentication scheme,

but a more recent scheme, RFID implants, has taken this usage one step further. The concept is to

introduce RFID tags into the human body and to incorporate these tokens in a pseudo-biometric

scheme.

An example of a publicly available RFID implant is the VeriChip microchip implant [40]. This

scheme was specifically designed for patient identification in the medical industry. The implant

features an FDA-approved tissue-bonding cap that holds the cap in place within the upper arm.

The purpose of this product was the identification of patients, specifically “at-risk” individuals like

those with Alzheimer’s or diseases associated with memory loss. Since this implementation was

only used for identification, the chips only held a 16-digit ID. What is notable about this product

is that there have been no reported health complications associated with this product in the over

15 years since its release. Therefore, this implementation provides a promising case study for the

physical aspects of implant technology.

Approved access is a major concern associated with this authentication scheme. Since RFID

tags have minimal computational ability, it is difficult to prevent malicious actors from reading

sensitive data. In many cases, attackers are able to read RFID data without victims even knowing

that the theft occurred. Feldhofer et. al. proposed a symmetric challenge-response protocol for

RFID tags that would overcome this risk [41]. The protocol makes use of the Advanced Encryption

Standard (AES). This is advantageous since the algorithm has been demonstrated to be reliably

secure. This study also demonstrates that a small tag could be implemented with the hardware

required to complete AES computations. In all, this strategy is promising since the longevity of

the security on RFID implants is a major concern. A major advantage of RFID implants is that

they can provide a manufacturable, secure biometric. Cryptographic primitives can be built into

their hardware, ensuring that they withstand common attack vectors. A major hurdle that this

scheme faces is low social acceptance [42]. According to a 2002 study, 78.2% of respondents would

be unwilling to put an RFID chip in their bodies. Another major concern is longevity, as it can be

very costly and potentially harmful to remove an RFID implant. Therefore, it is very important

that the methods used in the chip are secure and that the chip itself is not likely to degrade. In
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summary, this scheme is a promising form of manufacturable biometrics that still requires further

development before it can become a feasible replacement for passwords.

2.7.3 Retinal Scans

Developed in the 1980s, retinal scans operate on the assumption that blood vessel patterns in the

eye are unique to individuals, which may be thus used reliably for identification. Typically, retinal

scanning implementations involve the use of a sophisticated infrared (IR) light emitter and sensor

to identify blood vessel patterns in the eye. The emitters use IR light to illuminate and generate

a high-resolution image of the retina, and software then performs analysis on the retinal image to

find characteristic patterns. In practice, retinal scanning is reserved for highly confidential military

situations where passcodes or other forms of biometrics may be insufficient. Most established retinal

scanning procedures require users to stare at a lens, during which time the infrared emitter and

sensor take a 360-degree circular scan of the retina and establish any characteristic patterns. Once

patterns are established, they are digitized into a 96-byte template and stored in memory to be

used for verification later. In general, the advantages of retinal scanning include reliability and

robustness [43].

Retina scanning schemes, if used in the right situations, are very difficult to exploit or fool. The

retina itself is located deep into the human eye, making any alterations to retinal patterns extremely

unlikely. Additionally, the template matching algorithms used by retinal scanning software are very

unlikely to produce false-positives. However, retinal scanners are very expensive and are typically

used only when security is of paramount importance (i.e., in classified or confidential environments).

Therefore, retinal scanning is too situational and expensive to adopt on a commercial scale. In

the consumer market, other means of biometrics such as fingerprints provide much cheaper prices

and only a slightly smaller degree of security, rendering the market demand for retinal scanning

technology very low [43].
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2.8 Behavioral Biometrics

2.8.1 Keystroke Dynamics

Keystroke dynamics is an authentication scheme where computers store the unique patterns

and habits of a user’s typing rhythm to determine whether a user’s access is allowed or not. By

examining the latencies between keystrokes, keystroke durations, and the force and placement of

fingers on keys, computers can create a user’s profile for identification [44]. As opposed to many

other biometrics, keystroke dynamics do not reflect a user’s personal attributes (such as fingerprint,

facial, or other personal data of a user), ensuring the confidentiality of its users’ identities. This

concept, although it has been around since as early as 1980, has seen little usage in security at any

time [44].

Researchers from Georgia Tech constructed an intelligent keyboard (IKB), aiming to construct

a keyboard that supported keystroke dynamic authentication in conjunction with a password. By

including vertically stacked, transparent film materials on each key, their program measured a user’s

finger pressure and location of their fingers on each key for every keystroke. In addition, they were

able to create a keyboard with negligible keystroke lag (compared to a modern keyboard) that

classified keys into groups based on button size and mapped pressure on groups of keys against

time for each user, creating graphs (profiles) for users when calibrating the keyboard by typing

the desired password multiple times. A profile of a user contained the password for the computer

system along with a plethora of keystroke data. This data included mappings of finger pressure

against time, typing speed, and pause lengths between individual keystrokes, among other various

data sets. Profiles for each participant in the study were unique and their system was able to pick

out the correct user among multiple “imposters” (people who input the password impersonating a

user’s typing pattern) and grant that user computer access. As a result, they were able to boast

an extraordinarily low Equal Error Rate (EER) of 1.34% [35]. Although their implementation does

not meet the standards of modern-day security, the IKB had promising data for being one of the

first security-based intelligent keyboards.
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Monrose and Rubin examined a keystroke dynamics implementation developed by Joyce and

Gupta, which achieved a correct identification rate of 87.18% (63 subjects) using a weighted prob-

abilistic classifier [44, 45], . Joyce and Gupta chose to identify users based on their habits while

typing text freely (i.e., free-text). However, identification rates could be further increased by plac-

ing restrictions on the authentication text. For example, the computer could prompt the user to

type a preset password, phrase, or sentence, which would allow the computer to analyze the user’s

keystrokes in a more standardized fashion.

Using keystroke dynamics as an authentication scheme is a promising way to increase the se-

curity of our systems. Compared to many other biometric schemes, keystroke dynamics is not

intrusive, especially for computer access, since users will be typing at the computer regardless of

the authentication type. Keystroke dynamics is far from being a secure authentication scheme for

widespread usage, but it does have places where its application is valuable. For example, keystroke

dynamics could be an effective way to secure a master server containing sensitive user information.

Since there is usually no outside access to the server and the only entry point is via console login, if

a user’s keystrokes in conjunction with their username and password match their claimed identity,

access can be granted with confidence [44].

2.8.2 Voice Recognition

Voice and aural (audio-based) devices such as Amazon’s Alexa and Google Home are common

in modern-day homes. These devices have significant security issues, such as the existence of a voice

hack, in which a computer-generated “voice” is used. The voice is unintelligible by the human ear,

but voice-operated systems pick up on it with significant accuracy [46]. However, voice recognition

security systems are seldom used for reasons such as a user’s voice changing over time during the

day or during their lifetime [47].

Voice-recognition algorithms have different strategies within their implementation and devel-

opment, but Muda et al. divide one of their systems into a training phase followed by a testing

phase [48]. During the training phase, multiple samples of each subject’s voice are taken, and a

template model is built by the system. Afterward, subjects may input their voice again to ensure
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it matches with a given template model, and the algorithm makes a decision on whether the sub-

ject is recognized or not. The use of Mel frequency cepstral coefficients (MFCCs) is within most

implementations of voice recognition software, including the implementation by Muda et al. [48].

When building a template for a user, mathematical operations are performed on the raw voice input

data to obtain usable and comparable data for future inputs. Their process uses the dynamic time

warping algorithm [48], which measures the similarity between two time series which may vary in

time and/or speed by warping data and a comparison.

With the increasing popularity and practical use of machine learning and deep learning, speech

recognition is becoming more practical and powerful [49]. The study claims that voice recognition

will experience increasing usage within the banking industry and various web applications. There

are multiple factors that need to be taken into account for voice recognition software. When used

on a busy street, a user’s voice may overlap with another’s voice, whereas if a user wishes to be

recognized from another room, their voice may be muffled and distorted. The ability to filter out

noise and highlight a user’s voice is key and plays an important role in the success of a working

program. Obtaining the training samples needed to cover all the cases may be difficult. Boles and

Rad used a support vector machine, which is a machine learning system that classifies input data,

to overcome these issues to a degree [49]. In a study done by Ahmad et al., researchers noted

that with their implementation, in order to minimize false-positives below 5% (their ideal), their

false rejection rate rose to 75% [50]. These data show that voice-recognition security systems are

promising, but additional research must be done in order for the programs to be more reliable.

However, voice-recognition is not without its fair share of faults and potential security issues.

As stated earlier, a person’s voice may change throughout the day, potentially posing problems

with how strict the security system may be. In addition, voices can be altered voluntarily, where

impersonators are able to spoof systems [47]. Multiple voice-altering software programs have already

been developed that can disguise a user’s voice. As of now, a plethora of constraints is necessary for

users when calibrating the security system and when attempting to gain recognition. For example,

users must not attempt to distort their voice, voice data must be saved (posing a potential for a

data leak), and that linguistic content must include words known by the system (not necessary but
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increases accuracy massively) [47]. The same research document notes that as research progresses,

fewer of these constraints may be necessary, leading to a more reliable, satisfactory performance

for security systems. However, their paper concludes with a statement that claims that there is no

process that distinguishes individuals with absolute certainty from voice.

2.8.3 Gait Analysis

Gait-based authentication uses a person’s walking style to identify them and can be separated

into three major categories: machine vision, ground sensors, and wearable sensors. Most current

gait analysis schemes use some form of computer vision to extract patterns, such as long steps,

stature, and maximum distance between legs from a person’s walking style. Those patterns can

then be matched up against a person’s gait profile template to authenticate that individual. Gait

analysis is currently more of a proof of concept than an actual form of authentication, as human

gait recognition is dependent upon a multitude of factors such as walking surface, angle of view,

shoe type, and objects carried. Because of this, gait analysis lacks the robustness of many other

systems such as fingerprint scanners and retina scanning to be used at scale [51].

2.9 Multi-Factor Authentication

Multi-factor Authentication (MFA) is a form of authentication that requires more than one factor

(a way to authenticate a user’s identity) in order to authenticate a user’s identity and gain access

to the system. There are three main types of factors which can be used to authenticate an identity:

Knowledge Factor, something that the user would know such as a password, Ownership Factor,

something the user would have such as a phone, and Biometric Factor, something inherent to the

user such as fingerprint or behavior. The purpose of MFA is to provide the user with greater security

than provided by Single Factor Authentication and to protect computing devices and critical services

from unauthorized access by requiring more than one method of authentication [12]. MFA could

be any combination of more than one way of authenticating an identity, but in most practices,

it is a combination of the multiple types of factors [12]. MFA is not just useful for identifying
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users for online services and providing security for the users’ respective accounts. Ometov et al.

break the applications of MFA into three groups: governmental applications, forensic applications,

and commercial applications [12]. MFA for governmental applications can be best viewed with

the requirements to obtain photo identification from either a state government or the Federal

Government. In order to obtain a state identification for the first time, an identity document such

as a birth certificate or any other document that has the patron’s full name on the document

in addition to a social security card, and proof of residency are required. These different types

of documents are needed for the first time in order to provide a cross-check to make sure that

the person filing for the identification is actually the person in question. They are only required to

obtain a new identification because, after the first authentication, the holder has been authenticated.

Similar documents are required in order to obtain a federal photo ID. To obtain these ID cards,

the state or federal government utilizes multiple forms of information to authenticate the identity

of the person or persons applying for an identification card. In criminal investigations, MFA can

be used, for example, to identify an alleged perpetrator or a corpse [12]. Concerning this project,

we are more concerned with the commercial applications of MFA as there has not only been an

increase in diverse risks in online environments but also an increase in the diversity of authentication

methods [16].

ATMs are an example of a commercial application of MFA. To properly use an ATM, the user

needs both their bank card and PIN to access the desired account [12]. This is an example of MFA

as the bank card is something that is owned and the PIN is something that is known. As an added

layer of authentication, biometric authentication methods have been added to ATMs [52]. The

inclusion of biometric authentication means that all three categories are utilized to authenticate

the identity of the person using the ATM. Biometrics can be used to greatly improve identity proving

through pairing with the other two factors and thus making it more difficult for an imposter to be

authenticated as the actual user [12]. According to Sunehra in “Fingerprint Based Biometric ATM

Authentication System,” the fingerprint scanner system could be augmented by adding a Global

System for Mobile Communication module which could then contact the proper authorities when

the fingerprint does not match with the bank card and PIN [52].
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The combination of something a user knows, has, or is, gives MFA its strength, as it is more

difficult for an imposter to spoof the authentication system due to the different requirements for

authentication. Despite the added security to the entire authentication system, MFA still faces

security and authentication challenges inherent in each authentication scheme due to exploitable

weaknesses. For example, the security of the known factor only lasts for as long as no malicious

entities know the known factor, such as the user’s password or PIN, as one of the modes of authen-

tication is no longer secure. A common application of the possession factor is the communication of

an authentication code through another communication channel such as a text or email [53]. How-

ever, this method is only secure if the user’s mobile phone is neither lost nor stolen and malicious

entities do not have access to the user’s email account as otherwise this particular factor can be

spoofed [53]. In order to authenticate with a biometric, a digital system requires a variety of com-

ponents vulnerable to attacks at several different levels [12]. In order to prevent security breaches,

only the proper user should be able to access the biometric and have his or her data processed. The

digital system needs to be designed in a specific way to prevent imposters from being able to analyze

either the physical system or the electronic patterns within it in order to prevent these entities from

spoofing the system [12]. In addition, the digital system needs to protect the user’s data from being

stolen while it is in transit from the sensor to the processing/storage unit [12]. Furthermore, the

digital system for a biometric should be able to handle a decent load, as the system is not feasible

if it cannot handle the necessary throughput [12].

Although MFA is generally perceived as a secure authentication scheme, it ultimately suffers

in its usability. In an ideal world, multiple authentication factors would not be necessary to fully

protect an account, as the layered steps to log in are often inconvenient to users. Thus, despite

acknowledging the security strengths of MFA, it is preferable to pursue a single-factor authentication

method.
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2.10 Literature Review Conclusions

Considering all of the existing research into alternative authentication schemes, it was surprising

to find that very few recently-published papers explore how biometric authentication could be im-

plemented on the Web. While a system for Web-based biometric authentication has been proposed

and researched starting in the late 1990s, passwords still dominate online authentication [54]. Since

the 1990s, the prevalence of biometric authentication has increased in tandem with the rising num-

ber of smartphones, which now commonly feature biometric sensors for on-device authentication.

For example, Apple iPhones allow users to authorize purchases on iTunes, perform transactions

using Apple Pay, and even sign into apps using Touch or FaceID [55]. Even though these examples

rely on biometrics for authentication, the biometric is only used to authenticate on the device and

the biometric template is not transmitted to the service provider. This configuration requires that a

user’s device is already trusted by the particular service before that user can log in using their bio-

metric. In 2015, the Fast IDentity Online Alliance (FIDO), put forward a technical specification for

a similar system, which relies on biometric sensors on trusted devices to authenticate users [14,56].
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3 TECTAP: Securing FIDO With

Trusted Execution Environments

3.1 Abstract

FIDO2 is a passwordless authentication protocol for the web that leverages public key cryp-

tography and trusted devices to avoid shared secrets on servers. It was recently standardized by

the World Wide Web Consortium (W3C) into the Web Authentication API. The API integrates

with many popular authenticators such as Windows Hello, YubiKey, and Apple TouchID/FaceID.

In this paper, we summarize recent efforts to formally analyze FIDO2’s security using symbolic

and computational models. After exploring these findings, we present a formal specification of a

modification to the FIDO protocol called TECTAP that leverages Trusted Executions Environment

(TEE) technology to resolve security vulnerabilities associated with the current FIDO2 protocol.

3.2 Introduction

The FIDO protocol promises to “move the world beyond passwords” by providing users with

a secure authentication method that generates unique credentials for each website that a user

visits [57]. However, it is important to ask the question: does FIDO reach its stated security

goals? There have been many attempts to formally analyze the security claims of FIDO1 and
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FIDO2 in recent literature, which have uncovered numerous attacks on the protocol [58] [59] [60]

[61]. Modifications made in the second version of the protocol (FIDO2) resolve some of these

vulnerabilities [59]. However, as shown in [60], there are still vulnerabilities in FIDO2. Namely,

the Client to Authenticator Protocol Version 2 (CTAP2) is vulnerable to a MitM attack because it

uses unauthenticated Diffie Hellman to establish a shared symmetric key between a client and an

authenticator [60].

To address this vulnerability, Barbosa et al. propose a replacement for CTAP2, called the

Strong Pin-based Access Control for (sPACA) protocol [60]. sPACA replaces unauthenticated

Diffie-Hellman in CTAP2 with a Password Authenticated Key Exchange (PAKE) to prevent MitM

attacks. They prove that the sPACA protocol is Strongly Unforgeable (SUF) under the Bellare-

Rogaway model, i.e., it is not vulnerable to MitM attacks [60]. sPACA represents a significant

advancement in the security of the CTAP2 protocol. One problem that sPACA does not address is

the requirement for users to enter a memorized PIN code into the client every time an authenticator

connects to a new client [60]. Both CTAP2 and sPACA require users to resupply their PIN to the

client for each session because (potentially compromised) clients have no way of maintaining a

trusted state.

Therefore, one can further improve the security and usability of FIDO2 by introducing an-

other protocol that uses PAKE with the requirement of a user-memorized PIN. To remove this

requirement, we propose to use a Trusted Execution Environment (TEE) for executing a small

portion of the client code. This approach was inspired by Fidelius, which is a technology that

secures website forms on devices with compromised browsers and operating systems [62]. TEEs

are tamper-resistant environments for executing code that provide isolation, privacy, and remote

attestation capabilities [63]. TEEs rely on specialized hardware and software to protect against

digital and physical attacks against program memory [63]. Furthermore, TEEs allow processes to

store private, incorruptible state through a process called sealing, which our protocol uses to store

a shared symmetric key for communication between a client and an authenticator. We call this

new protocol Trusted Execution CTAP (TECTAP). Under the Bellare-Rogaway model, we

will prove that TECTAP has SUF if sPACA has SUF.
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3.3 Background

3.3.1 FIDO Overview

FIDO2 is composed of two distinct parts: the Web Authentication (WebAuthn) protocol and

the Client to Authenticator Protocol (CTAP) [57]. WebAuthn is a challenge/response protocol

for authenticating a user to a web server, often referred to as a relying party. The user interacts

with a trusted authenticator (e.g., a fingerprint reader) and a potentially untrustworthy client

(e.g., a web browser) to communicate with the website on their behalf [60]. When a user registers

for a web service using FIDO2, their authenticator generates a scoped private/public key pair

that is only valid for that service. The key will be used in all future authentication sessions to

verify the identity of the user and their authenticator. Below, we describe a simplified view of

a WebAuthn authentication session between a user Alice and the website https://example.com

using a biometric authenticator:

1. Alice requests to log in to https://example.com.

2. https://example.com sends Alice a random challenge.

3. Alice signs the challenge using her trusted authenticator. The authenticator uses an embedded

private attestation key and a scoped public key for that service to sign the message.

4. Alice sends back her response.

5. https://example.com verifies Alice’s response using the public key credential that they have

on file for that particular authenticator.

6. Alice is granted access to the web service.

CTAP is a local protocol for ensuring that the client can only access the authenticator when

given explicit authorization from the user [64]. The user grants authorization by gesturing to the

authenticator. For example, the user could press a button on a hardware 2FA token or scan a

fingerprint biometric. CTAP establishes a secure communication channel from the client to the

user’s trusted authenticator as follows:

1. Authenticator Setup: First, the user embeds a PIN inside of their authenticator. For

37



Figure 3.1: Graphical overview of the FIDO2 protocol

example, the user could register a new thumbprint on their fingerprint authenticator.

2. Binding Phase: Next, the user needs to give their authenticator permission to “trust” the

given client. To do so, the user re-enters their PIN, which allows the client to “bind” to the

authenticator. The client and authenticator both derive their own “bound” state during this

interaction, which can be used in future interactions.

3. Access Channel Phase: Using its bound state, the client can securely communicate with

the authenticator over a one-way channel. The other direction is not necessarily secure.

Typically, the client will send some authorized message derived from its bound state, and the

authenticator verifies that message with its own bound state.

3.3.2 FIDO1 Proven Security Claims

Preliminary formal models have demonstrated that the FIDO protocol satisfies many important

security and privacy guarantees but still suffers from possible attacks. For example, a Man in the

Middle (MitM) attack against the now outdated FIDO1.X protocol was discovered by Pereira et.

al. [58] using an applied pi-calculus model and the ProVerif proof-checking tool.
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The attack described in [58] targeted an optional step in the FIDO1.X specification for verifying

that a relying party’s appID (i.e., URL) matched the origin of the party requesting a user’s cre-

dentials. If this check was disabled, a malicious phishing website could request user credentials for

legitimate services. These requests would be treated as coming from the genuine service, and the

malicious website could forward the user’s credentials to the genuine service and log in on behalf

of the user [58]. This vulnerability was patched in FIDO2 by requiring a user verification step [59].

Another attack, described in [65], targets the transaction confirmation feature of the FIDO UAF

protocol. This feature prompts a user to confirm information about a transaction by opening a

display. The protocol does not ensure that this display is secure, meaning that an attacker can

display falsified transaction information to the user and create illegitimate transactions. Zhang et

al. proposed a modification to the FIDO UAF protocol in which a secure display is created by

utilizing ARM TrustZone, security functionality found on most modern mobile devices [65]. This

modification adds a digital signature of the transaction content which is verified in the trusted

execution environment created by TrustZone, resolving the vulnerability concern [65].

Four more attacks against FIDO UAF were uncovered in [61] using a symbolic model for the

protocol developed using ProVerif. Their first attack was a “rebinding attack,” in which an attacker

sits in the middle of a registration session and waits for the user to receive a challenge from the

relying party. If there is a malicious client, authenticator, or authenticator middleware module

installed on the user’s device, it could be used to forward the registration challenge remotely to

the attacker. Then, the attacker could register on the user’s behalf, and the relying party would

link the attacker’s authenticator to the user’s identity [61]. The researchers found implementation

vulnerabilities that enabled this attack against the China Mobile Pay and Jingdong Finance mobile

apps, which had 214,424,508 and 1,043,164,617 downloads respectively as of October 2020 [61].

They responsibly disclosed these vulnerabilities to the China National Vulnerability Database of

Information Security, which resulted in the following vulnerability ID: CNNVD-202005-1219. The

other three attacks discovered in [61] require malware to be installed on the user’s device (e.g., a

malicious client or authenticator middleware module).
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3.3.3 FIDO2 Proven Security Claims

A more up-to-date analysis of FIDO2’s WebAuthn protocol by Guirat and Halpin [66] proved

that it was resistant to phishing and man-in-the-middle attacks, again using ProVerif. However, the

same researchers also showed that WebAuthn fails to satisfy its privacy goal of unlinkability between

user credentials across different online services. Barbosa et al. [60] further verified the security

of WebAuthn using the more robust Bellare Rogoway model, which captures the computational

security of FIDO2. More concretely, WebAuthn is secure if the hash function used in the protocol

is collision-resistant and the signature scheme used by the webserver and the authenticator to verify

the other’s identity is unforgeable.

Barbosa et al. were the first to analyze the security of CTAP2. To measure its security, they

defined the syntax for Pin-based Access Control for Authenticators (PACA) protocols. A

PACA protocol is considered unforgeable (UF) if probabilistic polynomial-time (PPT) adversaries

are unable to generate fresh authenticated messages [60]. In their model, Barbosa et al. give

adversaries the power to modify messages in transit, compromise any client that the authenticator

is not currently bound to and read the binding state, and corrupt users that have not set up their

authenticator to reveal their secret PINs.

The researchers proceed to define strong unforgeability (SUF), which is a stronger security

notion than UF security. It captures PACA protocols that are unforgeable even when adversaries

are also able to compromise clients without a secure communication channel to the authenticator.

They also define weaker security assumptions: UF-t and SUF-t, which capture attackers that

cannot conduct (MitM) attacks during the binding phase of the PACA [60]. In terms of strength,

we know that SUF > SUF-t
?
> UF > UF-t. That is (a) SUF is stronger than SUF-t, (b) SUF-t and

UF are incomparable, (c) SUF is stronger than UF, and (d) UF is stronger than UF-t.

A key finding of Barbosa et al. is that the current definition of CTAP2 is only secure under UF-t,

the weakest security assumption [60]. This weakness arises from the use of unauthenticated Diffie-

Hellman during the binding phase of the protocol, which opens up CTAP2 to MitM attacks. To

combat this vulnerability, Barbosa et al. describe the strong PACA (sPACA) protocol that replaces
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Diffie-Hellman with a Password Authenticated Key Exchange (PAKE). In their report, Barbosa et

al. demonstrated the unforgeability of sPACA and the composed security of Web Authentication

with sPACA.

3.3.4 PACA Protocol

In order to analyze the security of CTAP2, we rely on Barbosa et al.’s syntax for PACA protocols

[60]. Because TECTAP is modeled as a PACA protocol and derives its hardness assumptions from

PACA syntax, we describe [60]’s work in considerable detail.

A PACA protocol has three parties: a user, a client, and an authenticator. The authenticator

has two types of storage: static and volatile. The static storage holds onto a private key and a

public retries counter, which is used to limit the number of failed attacks. The volatile storage

stores the power-up state and the binding state. The client may also have its own volatile binding

state.

Clients and authenticators communicate in the PACA protocols using a suite of five functions:

• Reboot: Resets the volatile storage of the authenticator and client. Reboot() should be

executed before running any other protocol in the PACA suite.

• Setup: The user enters a PIN in the client, and the authenticator supplies its volatile storage

state. On success, the authenticator establishes its static storage and the user confirms to

the client that the protocol was successful. It is assumed that Setup() is performed over a

secure channel since there are no authentication parameters established beforehand.

• Bind: Establishes a communication channel between the authenticator and the client. The

authenticator supplies its power-up and static states and the user inputs a PIN through

the client. Upon success, the binding states and session identifiers are set in the client and

authenticator’s volatile storage. Regardless of success, the authenticator increments its retry

count.

• Authorize: Allows the client to send an authorized command M to run on the authenticator.

The client also needs to send its binding state (for verification purposes). The output is an
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authorized command (M, t).

• Validate: Verifies an authorized command. Takes in an authorized command (M, t), a user

decision/gesture (input into the authenticator), and the authenticator’s binding state.

The security model for PACAs includes an adversary that can:

• Passively observe honest executions of Setup(), Bind(), Authorize(), and Validate()

• Perform active attacks against an authenticator. This allows the adversary to learn a PIN

by corrupting an authenticator. In stronger security definitions, the attacker is also able to

perform active attacks against client oracles.

• In some security definitions, the adversary can perform active attacks against a client by

revealing their binding state or by launching a MiTM attack during the Bind() protocol.

Within the PACA protocol, Unforgeability (UF) is the probability that an authenticator

oracle accepts an authorized command (M, t) from an adversary given that the user did not au-

thorize the command, or the authorized command was not output by one of the authenticator’s

valid partners. Unforgeability is negligible with the PACA protocol, meaning the probability is

equivalent to or less than guessing an arbitrary PIN from the set of all PINs. It must also be the

case that the PIN used for the authenticator was not corrupted before the authorized command

was accepted. Here, corrupted means that the adversary is given the PIN used to set up the au-

thenticator, and that pin is marked as corrupted. The client must also not be compromised after

the latest reboot and before the command was authorized. Here, compromise is a function that

the adversary can call which returns the client’s binding state for a given authenticator and marks

the client as compromised. UF security protects against attacks in which the adversary steals an

authenticator and attempts to forge authorized messages on the user’s behalf without corrupting

the PIN or compromising any of the authenticator’s bound clients. UF-t is the same as UF with

the added restriction that the attacker is unable to perform active attacks against clients, such as

MitM attacks.

Strong Unforgeability (SUF) is unforgeability with further restrictions. One is that the

authenticator that validates the authorized command must be the unique valid partner of the client
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that sent the command. This means that even if an attacker can compromise other access channels,

they cannot compromise the access channel in question. The other added restriction is that the

attacker can corrupt the user’s PIN immediately after the bind phase, meaning the access channels

have forward secrecy (i.e., remain secure even if the authenticator’s secret PIN is later revealed).

SUF-t is the same as SUF, except that the attacker is unable to perform active attacks against

clients.

Schemes that feature UF-t or SUF-t can benefit from a user confirmation stage during the bind

phase, which will help prevent online dictionary attacks. This added requirement will be a minimal

burden for users who already have to type in a PIN for the bind phase and will entirely eliminate

the possibility of online attacks against unstolen authenticators.

3.3.5 sPACA Protocol

The Strong Pin-Based Access Control for Authenticators (sPACA) protocol was developed by

Barbosa et al. in [60] as an alternative to the CTAP2 protocol. As mentioned earlier, CTAP2

is insecure because it uses unauthenticated Diffie-Hellman during the bind phase of the protocol.

This design choice leaves CTAP2 vulnerable to a MitM attack in which an adversary initiates

binding with a client and then impersonates a token by sending Elliptic-Curve Diffie-Hellman Key

Generation (ECKG) parameters to the client. As a response, the client will reveal part of the

authenticator’s secret binding state to the adversary [60].

Replacing unauthenticated Diffie-Hellman with an authenticated key exchange method is advan-

tageous for numerous reasons. Firstly, unauthenticated Diffie-Hellman key exchange is vulnerable

to MitM attacks in which an adversary intercepts communication destined for an uncompromised

client. Another benefit of authenticated protocols is the ability to create independent keys [60]. The

sPACA protocol introduces a PAKE to replace unauthenticated Diffie-Hellman. The password used

to generate a shared random session token is a PIN that is stored in the authenticator during the

setup phase of the protocol and subsequently entered by the user into a client during the binding

phase of the protocol. The involvement of a PIN enables the use of an authenticated key exchange

protocol; however, it also introduces usability concerns and additional attack surfaces.
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The sPACA protocol introduces two additional user gestures: a one-time gesture to register

a PIN and the gesture of entering a PIN upon client-authenticator binding. These actions have

the potential to negatively impact the usability of the overall FIDO2 protocol since they increase

the number of required user interactions, and the purpose of these interactions may be unclear to

many users. Furthermore, the use of a PIN or password re-introduces concerns associated with

password misuse. One of the key benefits of FIDO2 is the ability to use biometrics for single-factor

authentication, which eliminates vulnerabilities specific to passwords such as password reuse and

dictionary-based passwords. Therefore, the introduction of a PIN in sPACA, although confined to

a local scope, diminishes some of the advantages of the FIDO2 protocol.

3.3.6 TEEs

Trusted Execution Environments (TEEs) are a popular subject of current research, and many

hardware manufacturers use the term in marketing materials for their products [63]. TEEs typically

use a combination of specialized hardware and low-level software to create an isolated execution

environment with certain security guarantees. The isolated partitions used by TEEs adhere to

certain properties which in turn provide the specific security guarantees of a TEE. Based on the

survey of the state-of-the-art conducted by Sabt et. al., the most important of these properties are

data separation, sanitization, control of information flow, and fault isolation [63]. Data separation

refers to the property that data in one partition can not be read or written to by another partition.

Sanitization is the property that the use of shared resources can not leak information out of a

partition. Control of information flow refers to the property that the transfer of data in and out

of a partition can only result from explicit functionality. This property is typically achieved using

primitives known as OCALLs and ECALLs [62]. Fault isolation refers to the property that a security

breach of one partition can not be used to compromise another partition. These four properties

in tandem allow a TEE architecture to create a tamper-resistant execution platform for a Trusted

Code Base (TCB) [63].

The work conducted on TEEs in this thesis uses Intel Software Guard Extensions (SGX) which

are a set of extensions to Intel processors that enable trusted computing capabilities on Intel proces-
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sors. In order to achieve the necessary TEE security properties, SGX reserves a region of memory

for the Enclave Page Cache (EPC) [11]. This region of memory contains fixed-sized pages that are

allocated to TEE partitions known as enclaves. SGX uses a structure called the Enclave Page Cache

Map (EPCM) to keep track of the assignment of EPC pages to unique isolated enclaves. These en-

claves are identified by the memory address of their SGX Enclave Control Structure (SECS) which

is a data structure responsible for storing all per-enclave metadata. This memory architecture

provides expandable, virtualized memory regions to code executing with an enclave. SGX allows

for the provisioning of specialized Thread Control Structures (TCSs) which enable the concurrent

execution of enclave code on multiple logical processors.

3.3.7 PAKE Protocol

Password Authenticated Key Exchange (PAKE), originally described by [67], is an interactive

key exchange protocol where the client authenticates themselves to a server over an insecure channel

using a short, memorized password. At the end of a successful PAKE execution, the server and

client establish a shared key. If PAKE fails, the server and client learn no information other than

that the client’s password differed from the server’s expected value [ThomasWu]. For practical use

cases, PAKE keeps the client’s password secret to outside eavesdroppers. Earlier key exchange pro-

tocols were prone to attacks, such as man-in-the-middle attacks, since they were not authenticated.

PAKE’s authentication of the client is what distinguishes it from other key exchanges.

One of the earliest instances of PAKE is the Secure Remote Password (SRP) protocol, discussed

in [68] from 1997. SRP is an Asymmetric Key Exchange (AKE), while the previously discussed

PAKE implementation by [67] is an Encrypted Key Exchange (EKE) [68]. EKE protocols allow two

parties to determine a shared key via one party sending the other party an encrypted temporary

public key [68]. AKE protocols do not use encryption. Instead, each party applies a one-way

function to a secret and share the result of that function, called a verifier [68]. Since SRP does not

require any protocol flows to be encrypted, there is no reliance on an encryption algorithm [68].

SRP requires only the client to keep a secret and compute its verifier, which the server then uses to

authenticate the client [68]. It is important to note that this means the password is never seen by
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the server. The lack of encryption and password sharing means AKE is a simpler version of PAKE

than EKE. SRP’s specific implementation of AKE is perhaps one of the most broadly used, due to

its adoption by Apple and OpenSSL.

A far more recent instance of PAKE is AuCpace, discussed in [69] from 2019. This protocol

is designed specifically for the Industrial Internet of Things (IIoT), referring to devices used in

industrial applications that are interconnected. [69] argues that IIoT requires a PAKE protocol

of its own, due to its unique qualities, such as requiring far more security certificates and having

access to fewer computational resources. AuCpace provides a usable implementation in “AuC-

Pace2551,” designed to resolve issues that arise with other protocols in IIoT settings [69]. In

particular, AuCpace strives for server-side and memory efficiency, minimizing the cost of a single

client interacting with multiple servers [69].

3.4 Methods

3.4.1 Formal Specification

This section provides a formal specification of a modification of FIDO2 which introduces a new

CTAP protocol called TECTAP and a reformulation of WebAuthn to accommodate the additional

party required for TECTAP. Central to TECTAP is a new party known as the Trusted Client (TC),

which is a portion of the Client code that runs in a TEE. The TC is responsible for establishing a

secure channel with the Authenticator and exposing a limited interface through which an untrusted

client can forward attestation challenges. Using the trust assumptions provided by TEE models,

this new protocol design produces a system that is more secure and usable than sPACA and CTAP2

by removing the attack surface associated with a user-memorized PIN.

TECTAP consists of the same four phases used by sPACA: Reboot(), Setup(), Bind(), and

Verify(). Throughout these phases, there are two categories of storage structures that persist data.

The first is volatile storage, denoted A.vs and TC.vs for the volatile storage of the Authenticator

and TC respectively. Data stored in these structures persists from phase to phase, however, it
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is reset when the execution of either party ceases (i.e., when the Authenticator calls Reboot).

The second storage category is long-term storage, denoted A.lts and TC.lts for the Authenticator

and TC respectively. This data persists from phase to phase and to subsequent instances of the

Authenticator and TC. The Authenticator and TC must be the only entities that have access to their

respective long-term storage structures—otherwise, adversaries could trivially forge authenticated

messages. This property is achieved by the Authenticator since it is assumed to be incorruptible

and therefore it can safely read and write to any long-term storage device included in its hardware.

The TEE satisfies this property if it supports confidential memory sealing.

The Authenticator and the TC both store a shared key sk in the long-term storage fields A.lts.sk

and TC.lts.sk, which is the result of ECDH during the setup phase. Additionally, the authenticator

stores a public pinRetries counter in the long-term storage field A.lts.pinRetries. The retries counter

is decremented after every unsuccessful Bind() session between an authenticator and a TC. When

the retries counter reaches zero, the authenticator becomes locked and its shared key must be re-

initialized with a new call to Setup(). This counter is used to limit brute-force attacks against the

authenticator.

The Authenticator and the TC store a shared bound session key (bsk) in the voltage storage

fields A.vs.bsk and TC.vs.bsk respectively. The bsk is scoped to a single Bind() session and is

generated using a PAKE that uses the sk from long-term storage as a password. The bound session

key is not strictly necessary since the long-term storage of Authenticators and TCs will never be

accessible to attackers under our trust model. However, these keys are included in our protocol

to conform to the threat model proposed in [60], which allows adversaries to compromise access

channels between Authenticators and Clients. The use of per-session keys gives TECTAP the same

forward secrecy guarantees as sPACA.

One related distinction between the Bind() phases of sPACA and TECTAP is that authen-

ticators in sPACA support multiple Bind() sessions (one for each bound client) while TECTAP

authenticators only bind to a single Trusted Client at once. TECTAP makes this restriction because

the secret message exchanged during the Setup() phase is only known by the TC that generates it

and the Authenticator. Without some scheme to share these secrets between TCs, PAKE would fail
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during the Bind() phase for all TCs without the correct sk. Therefore, if such functionality is de-

sired, it is necessary to implement a scheme to notify a bound TC that its key has been deprecated.

One such scheme would be a publicly requestable TC counter that is stored on the Authenticator

which increments every time that a new TC is set up on that Authenticator. A TC can request

this counter and observe if they will have to re-run Setup() to generate a new secret with the

Authenticator. The sPACA analog of this process would be configuring a new user with a different

user PIN, which is designed to be an infrequent occurrence. Functionally, this modification does

not modify the capabilities of authenticators to bind to clients, it just means that Setup() calls are

required every time an authenticator binds to a new TC. It is important to note that this protocol

still supports multiple Clients, since any client can use the trusted ECALL interface exposed by

the TC.

Another important distinction between TECTAP and sPACA is the additional need to consider

Client/Trusted Client revocation. In the sPACA protocol, a Client is not capable of binding to

an Authenticator without additional information, namely a PIN, that is provided by the User.

Therefore, sPACA Clients are not capable of binding to an Authenticator by themselves. However,

TECTAP Trusted Clients are capable of performing Bind() without external information. So,

Users are no longer capable of preventing a Client from binding to an Authenticator by refusing to

enter their PIN. In TECTAP, a User is still capable of revoking Trusted Client access by perfomring

Setup() on a new Trusted Client. Since the Authenticator can only be bound to a singular Trusted

Client, once the User performs Setup() for the new Trusted Client, the previously Setup() Trusted

Client will no longer be able to perform a PAKE with the Authenticator and will therefore not be

able to bind to the Authenticator. That is, the User is able to revoke the access of a Trusted Client

by setting up any new Trusted Client.

Memory accesses to volatile and static storage are distinguished using the following notation.

Solid left arrows (←) denote storing data from volatile storage into a volatile storage location.

Double left arrows (⇐) denote storing data from long-term storage into a volatile storage location.

Dotted left arrows (L99) denote storing data from volatile storage into a long-term storage location.

Further, we let PINS denote the set of all valid pin codes. For CTAP2, PINS is the set of all
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4 - 63 byte UTF-8 strings [64]. Also, let a left arrow with a dollar sign on top (
$←−) denote the

assignment of a uniformly random element from a set.

TECTAP uses several cryptographic primitives throughout its operation, which are also de-

scribed in [60]. ECKGG,G() is the key-generation function for the NIST P-256 elliptic curve Diffie-

Hellman protocol. Here, G is a point on an elliptic curve that is a generator for G, a cyclic group

with prime cardinality |G|. H denotes the SHA-256 hash function and H’ denotes the SHA-256 hash

function truncated to the first λ = 128 bits. CBC0 represents the AES-256-CBC encryption scheme

with an IV of 0. Finally, HMAC’ denotes the HMAC-SHA-256 message authentication code scheme

with output truncated to λ = 128 bits.
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Authenticator A Trusted Client TC

Reboot:

(a, aG)
$←− ECKGG,G()

A.vs.kp← (a, aG)
A.vs.bsk ← ε
A.vs.bindRetries ← 3

Setup:
pin

$←− PINS
bG

←−−−−−−− (b, bG)
$←− ECKGG,G()

(a, aG)
$←− A.vs.kp

aG
−−−−−−−→

K ←H(abG.x) K ←H(baG.x)

pin←CBC0.D(K, cp)
cp←−−−−−−− cp ←CBC0.E(K, pin)

if pin ̸∈ PINS: halts
A.lts.sk L99 H’(pin) ok−−−−−−−→ TC.lts.sk L99 H’(pin)

Bind:
pinRetries⇐ A.lts.pinRetries
if pinRetries = 0: blocks access
sk ⇐ A.lts.sk sk ⇐ TC.lts.sk
A.lts.pinRetries L99 pinRetries− 1
if PAKE outputs bsk ∈ {0, 1}κ: if PAKE outputs bsk ∈ {0, 1}κ:

A.vs.bsk ← bskA TC.vs.bsk ← bsk
A.vs.bindRetries ← 3
A.lts.pinRetries L99 8

otherwise:
A.vs.bindRetries ← A.vs.bindRetries −1
(if A.vs.bindRetries = 0: tests user presence)

PAKE
(
sk
)

−−−−−−−⇀↽−−−−−−−

Validate: Authorize:
bsk ← A.vs.bsk bsk ← TC.vs.bsk

reject if t ̸= HMAC’(bsk,M)
M, t

←−−−−−−−− t← HMAC’(bsk,M)
collects user decision d
accept if d = 1 uv = 1−−−−−−−−→

Figure 3.2: TECTAP Protocol Activity Diagram, adapted from Barbosa et al. [60]

Similarly, several modifications must be made to the WebAuthn protocol since no secure chan-

nel exists between the Authenticator and Client. Instead, a channel is established between the

Authenticator and Trusted Client during Bind, and a Client can initiate trusted behavior that
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sends communications over this secure channel using ECALLs. Specifically we define two ECALLs,

answer rchallenge and answer achallenge which are used to send the parameters of a server

challenge to the Authenticator for attestation. The ECALLs both return the resulting Authentica-

tor signature to the Client. There are multiple ways to implement ECALL return functionality. One

was is to expose a memory region that is write-only for the Trusted Client Enclave and read-only

for the Client.

Apart from the use of ECALLs to communicate with the Authenticator, the rest of WebAuthnTE

involves the same transmissions and calculations as standard WebAuthn. Therefore, WebAuthnTE

relies on two main cryptographic primitives. A cryptographic hash function H and public-private

signature scheme Sig. Sig consists of three functions, the first of which is Sig.Kg() which generates

a public key pk and a private signature key sk. The next function is Sig.Sign(sk,msg) which signs a

message using the private key sk. Finally, the last function is Sig.Ver(pk, signature) which verifies

that signature was signed with the private key associated with the public key pk.

Similar to WebAuthn, WebAuthnTE requires three parameters to the protocol. The first two are

akt and vkT . akT is the private signing key of the Authenticator and vkT is the public verification

key of the Authenticator that is shared with the Server. The next parameter is idS which is the

identity of the server that is inputted into the client. Typically, this is a URL. Furthermore, the

Server must also be aware of the idS . That is, the server must knows the specific URL used to

access its FIDO functionality.
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Figure 3.3: WebAuthnTE Protocol Activity Diagram, adapted from Barbosa et al. [60]
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3.4.2 Example Implementation

To demonstrate the feasibility of TECTAP, an example system was constructed using a simple

authenticator and an Intel(R) SGX enabled machine. The authenticator used is a Raspberry Pi

Zero W “USB dongle,” which is a microcontroller running the authenticator portion of TECTAP.

The Client and Trusted client are executables running on a Debian 11.2 desktop with an Intel(R)

Core(TM) i7-7700 CPU. The Trusted Client code was written using the SGX Linux SDK. Since

WebAuthnTE is a more complex protocol that involves foreign server code and interactions with

graphical clients like web browsers, its implementation is a future project.

Figure 3.4: Diagram of hardware setup for the TECTAP example implementation

The authenticator portion of the implementation is a single executable written in C++. The

executable can be run in one of two modes which are setup mode and bind mode, for the two

phases of TECTAP. Both modes utilize the C socket framework to start a TCP server that waits

for connections from clients. Upon receiving a connection, the authenticator will execute the phase

of the TECTAP protocol corresponding to the mode in which it is running. The structure of the

trusted client portion of the code is more complex since the SGX SDK requires an untrusted code

segment to properly initialize and spawn a new instance of the trusted client enclave. Furthermore,

certain portions of the enclave code such as accessing socket I/O resources requires the use of

OCALLs since SGX enclaves can only run user mode code. Therefore, the trusted client consists
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of three code bases, one trusted code base and two untrusted code bases, one which is used to

initialize the trusted client enclave and another which contains the OCALLs used by the trusted

client enclave. The trusted code base exposes two ECALLs to the untrusted enclave initialization

code that interacts with the enclave. These two ECALLs are setup() and bind() for the two

phases of the TECTAP protocol.

The implementation uses the OpenSSL library to provide all cryptographic primitive function-

ality. The ECDH key exchange that occurs in Setup() is handled by the OpenSSL Envelope(EVP)

public key infrastructure. The public-private key pairs are generated using the NIST P-521 curve.

The hash function used in Setup() is implemented by calling the SHA256 function. Finally, af-

ter a shared secret is established AES256 CBC mode is used to encrypt all traffic between the

authenticator and trusted client.

3.5 Results

3.5.1 Trust Model

In order for TECTAP to achieve SUF, there are additional trust assumptions that must be made

about TEEs and interactions with TEEs. First, the Trusted Code Base (TCB) that is loaded into

a trusted enclave must be an accurate implementation of TECTAP. Next, it is assumed that the

TEE will faithfully execute this code. Furthermore, assumptions are made based on the security

properties of a TEE in Sabt et. al, namely, data separation, sanitization, control of information

flow, and fault isolation [63]. Finally, it is assumed that the data sealed by a TEE enclave is only

accessible by future instances of an enclave that resume code execution in the exact state in which

the enclave initially exited.

3.5.2 Proof of Security

The following is a proof that the security of our protocol reduces to the security of sPACA which

was shown to be SUF in Barbosa et. al. [60]
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Theorem 1. TECTAP is Strongly Unforgeable (SUF) if sPACA is SUF.

Proof. First, note that the TECTAP and sPACA protocols are nearly identical, except that:

1. The client C in sPACA is replaced by a trusted client TC in TECTAP. The TC executes

in a Trusted Execution Environment (TEE), which guarantees data separation, sanitization,

control of information flow, fault isolation, and data sealing.

2. sPACA uses a secret pin code pinU ∈ PINS, which is input by the user during each execution

of Setup() and Bind(). TECTAP replaces pinU with a uniformly random pin ∈ PINS

that is generated by the trusted client in Setup(). The hash of the random pin is retrieved

from long-term storage by the authenticator and client during each execution of Bind().

3. TECTAP only allows a single bound client at once (denoted by a single bound session key

bsk), whereas sPACA allows for multiple bound clients (denoted by the separate bind states

bsC,j).

Other features of the TECTAP protocol, such as the communication traces between (trusted) clients

and authenticators or the behavior of the oracle functions, are identical to those of sPACA.

Since sPACA is assumed to be SUF secure, any efficient adversary that forges authenticated

messages (M, t) against TECTAP must exploit one of the 3 differences above to make TECTAP

SUF insecure. Thus, we must show that each of the protocol differences results in, at most, a

negligible advantage for a probabilistic polynomial-time adversary A.

1. Since trusted clients have strictly stronger trust assumptions than sPACA clients, any adver-

sary that relies on special properties of trusted clients to forge authenticated messages could

use the same strategy against ordinary clients. Thus, running clients in TEEs alone does not

impact SUF security.

2. In TECTAP, pinU is replaced by a uniformly random pin ∈ $←− PINS. The hash of this ran-

dom pin H′(pin) is saved to the long-term storage of the authenticator A and the trusted client

TC as A.lts.sk and TC.lts.sk, respectively. Clearly, if A can extract sk ⇐ TC.lts.sk from the
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TEE without calling the Compromise oracle against TC, then it can forge an authenticated

message. To do so, A simply executes PAKE(sk) with an authenticator to obtain a bound

session key bsk. Then, A can generate valid authenticated messages (M,HMAC′(bsk,M)).

However, our trust model guarantees that any long-term or volatile storage inside the TC

is confidential during execution (data separation) and inaccessible by other process after TC

finishes execution (data sealing). Without gaining access to TC.lts.sk, the adversary has no

more advantage than an efficient adversary against sPACA.

3. Allowing fewer bound clients at once can only serve to increase (or maintain) the security

of TECTAP relative to sPACA. If A against TECTAP could forge authenticated messages

against a single bound client TC, that same adversary could be used to forge authenticated

messages against any bound sPACA client.

Since none of TECTAP’s modifications to sPACA produce a non-negligible advantage for A, TEC-

TAP is SUF if SPACA is SUF.

3.6 Conclusion

The modification to the FIDO2 protocol proposed in this paper is a successful improvement to

the security and usability of the protocol. Specifically, it resolves a MitM attack in which malicious

software running on a corrupted OS can impersonate the actions of a valid user. Furthermore,

previous attempts to resolve this vulnerability re-introduce password-like schemes which decrease

the overall usability of FIDO. Therefore, our concept of using trusted computing to remove this

added burden is a novel advancement of the FIDO2 protocol. Additionally, we developed a sample

implementation of our proposed extension which demonstrates the feasibility of future TECTAP

implementations.

Moving forward, there are several possible avenues that could lead to the widespread adoption of

TECTAP. The first is the resolution of the security flaws associated with current TEE technology.
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The trust model is largely based on the guarantees of the Intel SGX architecture, and our TECTAP

implementation uses SGX enclaves to run Trusted Client code. However, numerous publications

have demonstrated that SGX has a multitude of unaddressed software and hardware vulnerabilities

[70]. Intel has demonstrated that they are actively working to resolve these vulnerabilities [70];

hopefully, this emerging technology will mature to the point where applications like TECTAP

can securely take advantage of guarantees the technology provides. Another potential method of

expanding the usage of TECTAP is the creation of a Trusted Client platform that exposes an

abstract API for varying TEE implementations. This would allow developers to design Trusted

Clients for devices such as smartphones and non-Intel computers with limited friction. As TEE

technology improves and support of TEE computing is added to more consumer devices, TECTAP

could potentially become a standard local protocol for future versions of FIDO.
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4 FIDO Usability Experiment

4.1 Introduction

When it comes to authentication schemes, it is not enough to just develop a system that is secure.

An authentication method will only have value if it is actually being used by clients, meaning it

also needs to be accessible and easily navigable for its users. In an effort to measure the usability

of the FIDO2 protocol, we designed an experiment to record user experiences with a FIDO-based

web app that we developed, with the goal being to assess how “usable” FIDO is as a single-factor

authentication method. Evaluation is primarily guided by the System Usability Scale (SUS), which

is a widely accepted tool used to measure a system’s usability [71]. Additionally, we collect timing

information about credential registration and authentication time and ask participants some open-

ended questions.

Due to time constraints, we were unable to actually carry out this experiment; however, we

describe our background research, justifications, and methodology here anyway to serve as both

a proof-of-concept and guideline for future study. Any gathered results could then be used to

reasonably conclude if FIDO2 would be a usable single-factor authentication system and compare

it to text-based passwords.
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4.2 Background

The usability of the FIDO protocol has become a topic of recent research interest. Many early

studies focused on the use of hardware tokens through the FIDO protocol [72,73]. Using hardware

tokens as authenticators for the treatment group is a sensible choice because tokens allow partici-

pants to sign in to their account from any device with an accessible USB port. Across many studies,

the majority of subjects found hardware tokens to be more secure than passwords [72,73]. However,

results on usability are mixed. In the study conducted by Ciolino et al., subjects in a laboratory

environment were asked to sign up for a web service using FIDO U2F authentication. Each par-

ticipant was randomly assigned to one of four hardware authenticators: a YubiKey security key, a

SecureClick security key, an ePASS security key, and SMS One Time Passcodes (OTPs). Although

all but one of the authenticators achieved an average SUS score that is considered “acceptable,”

only SMS OTPs received “acceptable” SUS scores from all fifteen participants [73]. It is important

to note that Ciolino et al. studied FIDO U2F, which is an earlier version of FIDO that relied

on two-factor authentication. This meant that subjects in their experiment had to remember an

account password on top of using their security key.

With the introduction of FIDO2, usability studies of passwordless authentication became more

popular. For example, Lyastani et al. found that participants preferred YubiKey security keys in

a passwordless setting over traditional text-based passwords [72]. In a laboratory setting with 94

participants split into YubiKey and password groups, participants in the YubiKey group reported

an average SUS score of 81.74 (A grade) compared to 71.77 (C grade) in the password group

[72,74]. Users in the YubiKey group recognized not only the increased security but also the reduced

cognitive effort with using a hardware device instead of a memorized password. Despite these

usability improvements, many participants were hesitant to switch their accounts to FIDO2. Chiefly,

participants were worried about the loss or theft of hardware tokens [72]. After all, losing a hardware

token requires users to reset their credentials for every online account. With a forgotten password,

the damage is limited to a single account. In the end, 35% of the YubiKey treatment group said

that they would be willing to transition all of their online accounts to FIDO2 1FA [72].
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Apart from hardware tokens, mobile phones are also a popular authenticator choice for FIDO

usability studies. One of the earliest usability studies into FIDO2 was conducted by Oogami et

al., who investigated the registration and authentication process using Android fingerprint-based

authenticators on the web [75]. Oogami et al. found that Android’s unintuitive interface for

registering a WebAuthn credential caused 70% of participants to try scanning their fingerprint on

their phone screen instead of their device’s onboard fingerprint reader [75]. Despite this design flaw,

60% of subjects said that they would be willing to switch to using a fingerprint sensor for their

account. Unfortunately, the small sample size (n = 10) and the lack of a control group limits the

study’s generalizability.

Another FIDO usability study that used smartphones is that conducted by Owens, where users

tested a mobile app called Neo that allowed users to use their phones as roaming FIDO authenti-

cators [76]. A roaming authenticator is one that connects to any device that a user wants to sign

in on and conducts the CTAP2 protocol remotely. Due to limitations with the CTAP2 protocol,

Neo is unable to directly interface with the CTAP2 and requires a custom browser extension to

connect to the target device [76]. Neo’s median setup time was 16 minutes and 40.1 seconds, which

caused 55% of the participants in the Neo treatment group to drop out of the study before com-

pletion, as compared to only 9% in the password treatment [76]. Neo also performed worse than

passwords in authentication success rates (87% vs. 97%) and average authentication time (20.9

seconds vs. 8.1 seconds) [76]. These results demonstrate FIDO’s lack of built-in support for less

traditional authenticators (e.g., ones that rely on HTTP requests). Currently, the only supported

transport bindings for CTAP2 are Universal Serial Bus (USB), Near Field Communication (NFC),

and Bluetooth Smart/Bluetooth Low Energy (BLE) [64].

Because FIDO has two separate phases (registration and authentication), two-part designs are

common among FIDO usability studies [73, 76]. The first part of the study consists of a guided

setup phase where subjects create accounts with a FIDO credential, and the second part involves

signing into a FIDO web application multiple times over an extended period of study. Due to many

subjects’ unfamiliarity with FIDO, researchers will often provide an introduction to FIDO during

the setup phase [72, 76]. However, some researchers give no introduction to FIDO and observe
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how users register with outside influence [75]. The second phase of these usability studies captures

how user attitudes towards an authentication method change as they become accustomed to FIDO.

Although it might seem that opinions on usability would not change significantly over time, this is

not always the case. For example, in the study conducted by Owens, the SUS score for the FIDO

treatment group improved from 66.6 (C grade) in the entrance survey to 81.3 (A grade) in the exit

survey. We also opted to use a two-phase approach in our study in order to capture how sentiments

towards passwords and FIDO change as users become more familiar with our web app.

Many of the recent FIDO usability studies use a between-subjects design with separate control

and focus groups [72, 76]. Instead, our study employs a within-subjects design in which each

participant uses both password and FIDO authentication. This approach allows us to directly

compare the SUS scores and authentication times for both authentication methods, as Ciolino et

al. do [73]. If we separated the control and focus groups, we could only compare usability data

points in aggregate instead of on a per-subject basis. To prevent preferences based on treatment

order [77], we chose to vary which authentication method each participant uses first. Half of the

participants registered a biometric credential before a password, while the other half registered a

password before a biometric credential.

4.3 Methodology

Surveys are an effective way to identify trends across responses across a population. The SUS

is an example of a survey that has been shown to accurately measure the concept of usability [78].

One disadvantage of this approach compared with direct interviews is the potential for participants

to interpret the questions asked on the SUS differently since an interviewer would not be present

to clarify misunderstandings. However, we ultimately selected the SUS to gather results due to

its wide acceptance as a reliable way to measure a system’s usability [71]. In addition to the SUS

scores, we will be collecting other statistics such as total login time and the number of failed login

attempts using each authentication method.

If this study was conducted, we would predict that users would rate authentication with a
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FIDO2-compatible fingerprint scanner as more usable than a standard text-based password. Addi-

tionally, we would expect the authentication time for users to be quicker when using FIDO2 with

a fingerprint scanner in comparison to logging in with a text-based password. Finally, we expect

that fewer failed login attempts when using FIDO2 compared to a traditional password.

Once all the data is collected, the analysis plan will involve comparing the FIDO2 results to the

text-based password results. To begin, we will compare the SUS score from the first appointment

to the SUS score after the second appointment for each of the participants for both authentication

methods. The change in SUS scores between the two appointments will be calculated for each

participant in the study, then the average change in SUS scores will be calculated for both FIDO2

with a fingerprint scanner and for text-based passwords. This analysis will capture the difference

between the users’ initial impressions of each scheme and their impressions after a week of daily

use. The timing data will be analyzed in a similar fashion. The login times for the two methods

will be tracked for all users across the duration of the study. Upon completion, any clear outliers of

data, such as a user who displays clear inactivity, will be removed from the data. The login times

for each method will be graphed and analyzed in an attempt to identify any patterns regarding the

login times for each method as the users progressed throughout the study. The rate of unsuccessful

login attempts will be analyzed in the same manner. However, any unsuccessful attempts to login

will not likely be deemed as “outliers” because of the research team’s inability to distinguish login

attempts that do not submit data to the server (e.g., failed fingerprint scans).

4.3.1 Subject Selection

With each passing day, the number of people accessing the Internet seems to increase. Today,

93% of American adults use the Internet in some capacity [79]; globally, it is over half of the

population [80]. In the years between 2010 and 2016, there was an average of 640,0000 first-

time Internet users each day [80]. Although the subject matter of our experiment is universally

applicable, we assumed the average American adult would be a suitable subject given that most

American adults have access to the Internet in some capacity and that the United States is the

country with the third-most Internet users [80]. Due to our location on a college campus, however,
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recruiting would target enrolled students at the University of Maryland as a convenient sample

population. Therefore, the overall design of our study operates under the assumption that it

would be advertised and conducted at a university. While the subsequent sections will explain how

our study was specifically planned, the general ideas can be replicated by another research team.

Participation in the study was intended to be open to the entire student population, with the only

constraint being that they needed access to a device with a fingerprint scanner. Additionally, it

would be necessary for these students to have experience in effectively using said scanner. To recruit

participants, we suggest primarily utilizing the Internet. Potential places we suggest advertising

include Canvas, Reddit, and various honors college listservs.

We aimed to recruit 50 participants for reasons rooted in the relatively recent history of system

usability studies. The purpose of such studies is to uncover usability issues that may not have been

obvious in the design and development of a particular system. Jakob Nielsen and Thomas Landauer

showed in 1993 that the number of usability problems found in a study with n users is given by:

N(1− (1− L)n)

where N is the total number of existing usability problems in the design being evaluated and L is

the proportion of those problems discovered by a single user [81]. If we are interested in the fraction

of total problems discovered rather than the number discovered itself, the formula simplifies to:

N(1− (1− L)n)/N = 1− (1− L)n

This is where the often-claimed ”five users is sufficient for a usability study” comes from. Nielsen

and Landauer computed L to typically be 0.31, a value averaged across many projects. From the

formula:

1− (1− 0.31)5 = 0.84

That is, five study participants is enough to discover approximately 84% of usability issues; in-

creasing n to 6 would yield about 89%, an improvement of only 5%. Nielsen argues that the costs
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for such diminishing returns past the initial five users are not worth it, and thus n should stop

there [82].

However, in 2020, there were approximately 4.54 billion active Internet users worldwide [83],

and if the average person had 100 passwords during that same year [84], that is about 454 billion

online accounts in need of authentication to access. In the hypothetical world where FIDO2 receives

universal adoption, then a usability problem in the protocol that affects even 1% of the population

would be experienced by a staggering 4.54 billion accounts. As such, maximizing the chance of

discovering usability issues is a high-priority concern.

If we use Nielsen and Landauer’s value of 0.31 for L, then our study having 50 participants

would reveal 99.9999991% of usability problems. It is for this reason that, despite five participants

being reasonable for our study, we sought to maximize participation within the limits of our budget

at 50.

4.3.2 Procedures

In order to make an appointment to participate in the study, potential participants would be

asked to confirm their eligibility and schedule a time through a Google Form. Eligible participants

would select a 30-minute appointment block to register their credentials on our FIDO test app and

complete an initial survey. They would choose from an initial appointment day from a three-day

window, Monday-Wednesday. The participant would need to also schedule a return appointment

for the same day during the following week; however, it would not need to be the same time window.

We expect this process of scheduling the two appointments and to fill out the eligibility form to take

less than 10 minutes to complete. The study would be conducted at AV Williams in the Systems

Engineering and Integration Laboratory (SEIL).

On the day of the first appointment, the participant would need to arrive with their device of

choice with a fingerprint scanner. When the participant arrives at their appointment, they will

be greeted by a member and given a brief explanation of what they should expect. After this

explanation, the participant will be handed a physical copy of the consent form to review and

to sign before the registration process begins. Filling out the consent form includes a section for
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listing their UID, which will be required for payment. Following signed consent, a team member

will assist with the registration process. Each participant will be registering an account to the Team

Pass app, at https://teampassexperiment.com/login. The registration process has the participant

registering two sets of credentials: one set will be generated using the fingerprint scanner and the

other will be a standard text-based password. Prior to registering, all participants will be randomly

assigned into Group A or Group B. Group A will first register with passwords, then FIDO. Group

B will register with FIDO, then passwords. Both sets of credentials will be tied to an anonymized

email, which will be created by Team PASS. The text-based password will have to be at least

eight characters long. During this process we will be tracking registration time for each method.

Once a participant has registered, they will attempt to authenticate themselves using both sets of

credentials. The authentication time or “login time” will be tracked by the app for each method.

The first appointment is concluded with the participant filling out survey questions by hand based

on their first impressions. The participant will then receive their first $10 payment through Terrapin

Express, a reminder sheet, and a photocopy of their consent form. Before they leave, they will be

asked to fill out the portion of the reminder sheet that asks them to write down the password they

used. This is meant to help avoid situations where the participant forgets their password and is

unable to login using it during the study. Since the appointments are for 30 minute blocks, the

expected time commitment to complete the first appointment is 30 minutes. They will be verbally

reminded to not to have their password “remembered” by the device they are using, and it is also

included in the reminder sheet they will receive.

In the week leading up to the participants’ second appointment, they will log onto the app

daily using their biometrics and using the text password. The participant will use their biometric

to login using FIDO, and they will use their text-password to login without FIDO. The order of

which method is used does not matter, but the participant will need to logout in-between logging

in using the biometric and the text-based password. Logging in using both methods should take

the participants approximately 2 minutes to complete each day. Each day that a participant

logs in using both methods, they will earn $1 of credit, which will be distributed at the second

appointment. For example, if a participant conducts their first appointment on Monday, they can
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potentially earn $1 each day from Tuesday till Sunday, for a total of $6 earned from successfully

logging in. Participants will only be compensated for the days they login successfully using both

methods, and if they arrive at their second appointment and complete the questionnaire.

Figure 4.1: Table showing tasks and compensation for each day of the experiment

On the day of the second appointment, the participant will once again need to arrive with their

own device with a fingerprint scanner. On arrival, we will simulate the account recovery process

by having the participant register a new set of credentials. This will include registering a new

set of biometric credentials and a new text-password. Once again, the registration time for both

methods will be tracked. This appointment will be concluded with the participant filling out the

survey for a second time based on their experience with logging in to the app for a week as well

as the account recovery process. The participant will then receive their second payment through

terrapin express equal to $4 plus any credit accumulated by logging in during the week leading up

to the final day. Since the second appointments are also for 30 minute blocks, the expected time

commitment to complete the second appointment is 30 minutes. The survey questions are listed in

the questionnaire in the appendix. Our questionnaire includes:

• 10 questions from the System Usability Scale about FIDO2 authentication

• 10 questions from the System Usability Scale about password authentication

• 4 short answer questions comparing FIDO2 and passwords

The System Usability Scale (SUS) is a tool for evaluating usability that asks respondents to

rank 10 different statements on a 5-point Likert scale (1 = strongly disagree with this statement,

5 = strongly agree with this statement). We will interpret and normalize all responses to the SUS
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questions according to the SUS scoring procedure. We will use the resulting scores to compare the

perceived usability of FIDO authentication to password authentication.

The short-answer responses will not be numerically scored. They will be used as qualitative

metrics to determine authentication preferences in addition to identifying aspects of FIDO usability

that can be improved.

On the first day of the study, participants will only be asked to complete the first 20 ques-

tions—that is, all of the SUS questions. On the last day, they will be asked to complete all 24

questions, meaning that they will answer the SUS questions a second time and respond to the short

answer prompts.

4.3.3 Risks

There is minimal risk associated with participating in this study. To mitigate the risk of exposing

user passwords, we use end-to-end encryption (HTTPS) for all communication between participants

and our web server. We also use salting/hashing, which is a common security practice to prevent

attackers from recovering passwords in the unlikely event of a data breach. As an extra precaution,

we would clear our database of all entries at the end of the study period. Since FIDO2 only

stores biometric credentials locally on user devices, there is minimal risk of exposing any sensitive

biometric through our web app. Additionally, since we would be using unique anonymized emails

for each participant, no identifiable email would be stored in the database, so in the event of a data

breach, none of the participants’ information is at risk. We would ask participants to not reuse any

existing text-based passwords that they are currently using. This would be done to minimize the

risks of potential breaches to users’ other accounts in the unlikely event that participants’ passwords

are leaked.

4.3.4 Benefits

There are no direct explicit benefits in participating in this study. However, participants may

gain an improved understanding of password security and better password managing practices, as
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well as introduction to rising alternatives on the Web such as FIDO2. Additionally, the information

gathered in this study can assist in the development of usability in the authentication field.

4.3.5 Confidentiality

All participants would fill out a physical consent form on the first day of the study period when

they initially arrive. We would then make a photocopy of the completed consent form and provide

each participant with a copy upon conclusion of the first appointment. By having the participants

sign the consent form, we would be collecting the first and last name of all participants. The

biometric data used to login with FIDO would not be collected by the researchers. Once a photocopy

is made of each, the original would be kept in a locked drawer in the principal investigator’s office

until three years after the conclusion of the study. Then, the consent forms would be shredded

and discarded. The university ID that the participant provides would not be stored anywhere else

but the physical from itself. Therefore, the data regarding the student’s UID would be destroyed

at the same time the consent form is destroyed. Because we are generating anonymized emails for

each participant, each participant’s actual email would not be stored in the app’s database. Data

regarding registration times and survey responses from both appointments would be stored securely

using the team’s Google drive database. The Principal Investigator as well as all co-investigators

would have access to the data stored on the Google drive database.

4.3.6 Web App Architecture

The experiment can be conducted through a custom web application that participants would

access remotely using their personal devices such as computers, mobile phones, tablets, etc. The

web app is split into frontend and backend services hosted on a remote server. The web app’s

architecture is described in the following outline:

• Backend:

– Flask: a lightweight web framework for creating Web Server Gateway Interface (WSGI)

apps [85]
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– webauthn: a Python library for Web Authentication relying parties created by Duo

Labs [86]

• Frontend:

– Bootstrap: a responsive frontend framework used to style our website [87]

– Jinja: Flask’s HTML templating language [88]

– Web Authentication API: a JavaScript API for accessing FIDO2 commands through

a web browser [59]

• Infrastructure:

– MariaDB: an open-source relational database [89]

– Caddy: an easily-configurable web server with automatic HTTPS [90]

– Gunicorn: a production-quality HTTP server for the WSGI protocol [91]

– Docker Compose: a containerization tool used to orchestrate our different services [92]

The app is open source and the code can be found on GitHub: https://github.com/team-pass/

FIDO-login.

The frontend of the web app features a login page, a registration page, and a user profile page.

Figure 4.2: Screenshot of the web app’s login page.
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On the login page, users can sign in to the application by entering their email address and a

password or FIDO2 credential. The user can click a toggle icon to switch between passwords and

FIDO2 as their preferred authentication method.

Figure 4.3: Screenshot of the web app’s registration page.

Similarly, the registration page allows users to register a new account with a password or a

FIDO2-compatible authenticator using the same toggle icon. If the user wanted to register a new

account with a FIDO2-compatible authenticator, then they would enter the email associated with

the account and use their device to authenticate themselves. Otherwise, the user must choose a

password that is at least eight characters long (to meet NIST standards) and enter it twice to

confirm their selection.
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Figure 4.4: Screenshot of the web app’s profile page.

After logging in, the user can see their profile page, which displays key information for partici-

pants such as the cumulative monetary credit the user has earned by completing their daily login

tasks and a list of daily tasks to complete. From the profile page, the user can also add another

authentication method to use with their account (either a password or FIDO2 biometric depending

on which one they have not employed yet, or neither if both are already registered), log out, or

delete their account entirely.

Since the usability study expects that participants will check into the web app each day, the

list of daily tasks exists as a reminder to users to log out and re-authenticate themselves using

the method they did not use to initially log in. Of course, this relies on the user having both a

password and a biometric associated with their account. If they are missing one, the “Remaining

Daily Tasks” will instead remind them to register the absent credential. Once a user has logged in

using both authentication methods in a single day, the list will simply display “Completed all daily

tasks!” and the total earned credit displayed will be increased by a fixed, predetermined amount.

On top of this basic functionality, the website collects various usage statistics for participants.
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The site records a timestamp whenever a user loads the website, focuses on a text box, clicks the

“authenticator toggle” button, or submits a form. We would use this timing information to analyze

how long it takes users to authenticate and register using passwords and biometric scanners. In

addition, all interaction data gathered is tracked by a session, which is a level of storage indirection

that allows us to associate a set of page interactions with a user even if that user switches browsers

or operates within a private browsing mode. Furthermore, we have metrics to attribute failed login

attempts to a specific user and identify the login success rate for both authentication methods.

4.4 Conclusion

Having been unable to conduct our usability experiment, we cannot draw upon any data to

discuss results. We have offered in its stead complete plans for the study that we hope can be carried

out by an interested party in the future. In particular, we reviewed several similar studies, sought

to justify a target participant count of 50, detailed the procedures for what the experimenters and

participants would be doing on each day of the week-long plan, and developed an open source web

application expressly for this study. The app offers both password and FIDO2 registration/login

capabilities, internally tracks the time that users spend interacting with certain page elements,

reminds users of daily login tasks with a simple list on their profile page, and records day-to-day

completion of tasks to inform the user of their cumulative earned compensation credit. We believe

the combination of our descriptions and publicly available code on GitHub to be broadly sufficient

to reproduce the requisites of the experiment.

Naturally, the next step is to actually carry out the study that we designed. A future experiment

group can do so by following a logistical plan similar to our own. Begin by offering an initial

appointment date for participants to meet in person, receive a briefing, register password and FIDO

credentials on accounts created on our test application, and take a survey of initial perceptions.

After some length of time where study participants log in independently each day using both

authentication methods, invite them back for a concluding appointment in which they are debriefed

and surveyed again. The results from the internal timing data collected by our web application and
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the participant responses to the SUS can then be derived quantitatively.

We would also like to acknowledge some of the limitations of this usability experiment. For one,

study participants only interact with our custom web app, not any other FIDO2-enabled system,

which limits the extent to which we can generalize user perceptions. For another, although our

app functions with any type of FIDO2-compatible authenticator, we restrict participant eligibility

to those who own and are comfortable using a device with a fingerprint scanner. While this

ensures that we do not compare password usability with another knowledge-based authentication

scheme such as a PIN, it causes the experiment to lose the characteristic freedom of authentication

method choice that FIDO2 offers. Furthermore, had we conducted the study ourselves, many of the

participants would have been young university students for convenience, which would have limited

the generalizability of our results. The Internet, and therefore online authentication, is used by

people of all ages and education levels, so an ideal experiment would include participants that are

representative of that diverse population.
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5 Equity Impact Report

5.1 FIDO Makes Secure Authentication Possible for All

With the rise in popularity of mobile devices and the services offered through them, the “digital

divide”—the gap between those who have access to online services and those who do not— has not

been shrinking [93]. In order to combat inequity among underserved populations, Sultan recom-

mends creating a training which covers “key cybersecurity terms and concepts . . . cyber-hygiene

and best practices. . . [and] downloading, installing, and use of anti-virus and malware software” [93].

There are commercially available products such as password managers and antivirus software that

help address the second and third items of Sultan’s proposed training to promote “cyber-hygiene”

and safety in downloading things from the Internet, respectively. However, by virtue of having an

associated cost, low income users are unlikely to purchase these services as they are not necessary

for Internet access. This puts such users at greater risk than those who are more willing and able to

spend money on self-protective measures. Wider acceptance of FIDO on the web provides a way to

universally improve the security of systems and users at no necessary cost to the users, mitigating

this inequality between income groups.

FIDO promises security as a default by allowing users to define a digital identity by the most

secure means available to them. In traditional single-factor password schemes, individuals asso-

ciate their unique identity with a username and password combination. As previously discussed,

passwords suffer from usability issues and promote unsafe authentication practices, intentionally or
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not. Solutions such as password managers can be used to move the root of trust from the memory

of a user to an arbitrary factor such as a biometric. However, such software can be costly and is

subject to the drawbacks previously outlined in our literature review. Once again, FIDO offers a

no-cost solution that allows individuals to select the most secure and usable authentication factor

available to them.

It is also important to consider that individuals interact with technology uniquely. Some dif-

ferences in user behavior are the result of personal preferences, while others are dictated by the

physical capabilities of a user. For example, some individuals lack the dexterity to manipulate a

fingerprint sensor. Contemporary smartphones are hosts to entire sensor suites, with biometric sen-

sors being included in nearly 80% of all smartphones sold annually [94,95] and fingerprint scanners

being among the most common, but it is still important in such a case to give individuals who

wish to take advantage of biometric authentication the option to utilize a different biometric sup-

ported by their device such as face or voice recognition. Fortunately, facial recognition technology

is increasingly common as well, as it exists as Face ID on Apple products, and comes standard on

nearly all iPhones since 2018 and as Facial Recognition on Android products, with simpler versions

of contemporary facial recognition appearing as early as 2011 [96, 97]. As these systems become

more robust, popular, and usable, it will become even easier to authenticate one’s identity into

their device and thereby easier to use and integrate FIDO into existing systems. In particular,

authentication platforms like FIDO allow remote servers to support all such authenticators without

implementing specific functionality for each biometric. Consequently, FIDO allows users to authen-

ticate using the factor that is best suited to their preferences and ability and has the potential to

impact the majority of online users.

5.2 Privacy as a Product

Privacy and other non-security threats to individuals are growing as society becomes more

dependent on digital technologies. Many sites, including the majority of popular social media

networks, collect user data which is often sold in advertising products. These sites collect this data
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by linking activities to a unique user identity. This identity is established when a user logs in to

a website using their username and password. The site verifies that the individual requesting to

make actions is the entity associated with the provided username by verifying that the password

provided is correct. In this scheme, the remote service is responsible for both the validation of

the user gesture and the authentication of that user to a service. FIDO separates the process of

validation and authentication. In the FIDO protocol, validation is a local process that occurs on the

trusted device owned by the user. The user permits this trusted device to perform authentication

only after the successful validation of a user gesture. This trust is achieved using the public-private

key pair that is stored on the authenticator and used to answer challenges in the WebAuthn protocol.

Local validation is significant since, in traditional authentication schemes, the digital identity of a

user is completely controlled by a remote website. In this system, a user’s identity is established

and then controlled by each service. FIDO, through local verification, removes the ownership and

control of a user’s identity from the services and transfers it fully to the user. In a reality where

service providers often share the data they collect with other corporations and sell recorded user

actions as a product, FIDO offers a significant shift in agency since many sites that would otherwise

have control over one’s digital identity that are not using that identity in the best interest of the

user can no longer freely use it as they wish.
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6 Appendices

6.1 FIDO Usability Study Questionnaire

FIDO Authentication

Please answer the following questions on a 1-5 scale (1 = strongly disagree, 5 = strongly agree):

1. I think that I would like to use FIDO authentication frequently.

2. I found FIDO authentication unnecessarily complex.

3. I thought FIDO authentication was easy to use.

4. I think that I would need the support of a technical person to be able to use FIDO authenti-

cation.

5. I found the various functions in the FIDO authentication scheme to be well integrated.

6. I thought there was too much inconsistency in the FIDO authentication scheme.

7. I would imagine that most people would learn to use FIDO authentication very quickly.

8. I found FIDO authentication very cumbersome to use.

9. I felt very confident using FIDO authentication.

10. I needed to learn a lot of things before I could get going with FIDO authentication.
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Password Authentication

Please answer the following questions on a 1-5 scale (1 = strongly disagree, 5 = strongly agree):

1. I think that I would like to use password authentication frequently.

2. I found password authentication unnecessarily complex.

3. I thought password authentication was easy to use.

4. I think that I would need the support of a technical person to be able to use password

authentication.

5. I found the various functions in the password authentication scheme to be well integrated.

6. I thought there was too much inconsistency in the password authentication scheme.

7. I would imagine that most people would learn to use password authentication very quickly.

8. I found password authentication very cumbersome to use.

9. I felt very confident using password authentication.

10. I needed to learn a lot of things before I could get going with password authentication.

Short Answer Questions

The following questions will only be administered during the second appointment with partici-

pants

Please answer the following questions in a few sentences:

1. Would you prefer to use text-based passwords or FIDO authentication in the future? Why?

2. Would you be willing to trust a website whose only authentication method is with FIDO?

Why?

3. What did you like about using FIDO authentication?

4. What did you not like about using FIDO authentication?
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6.2 Strengths & Weaknesses of Top Authentication Alter-

natives

Scheme Fingerprint Recognition Voice Recognition Graphical Passwords

Accuracy
+ Widely used to justify biometric

quality indices [35]

- Requires a wide variety of training
data (whispering vs. yelling,
background noise vs. silence, one
speaker vs. multiple speakers, close
vs. far) [49]

- Recall-based implementations suffer
from initially low false-negative
rates but improve with user
acclimation [98]

- Sensitive to changes in
acceptability tolerance [98]

- Accuracy is reduced by including
stroke order as a factor [98]

Attack Vul-
nerabilities - Physical fingerprint spoofing

attacks [38]

- Human mimicry [99]

- Hidden voice/obfuscated
commands [46]

- Susceptible to being overheard in
phrase-specific implementations

- Shoulder surfing [100]

- Smudge attacks [101]

- Hot-spot exploitation (predicting
likely user passwords using a given
background image) [102]

Usability
Problems

- Individuals with low dexterity
could have trouble using a
fingerprint scanner

- A cut/wound to the finger can lock
you out

- Concerns over theft of biometric
data

- Non-negligible false-negative
rates [46]

- Speaker recognition requires a large
amount of training to ensure
accuracy [46]

- Immaturity of graphical passwords
means that there is a lack of
research in public trust of the
scheme

- More accessible to certain
demographics than others [10,11]

Cost - Requires a fingerprint sensor and
fingerprint recognition software

- Requires a microphone and voice
recognition software

- Requires more memory and data
storage than passwords [103]

Advantages
Over

Passwords

+ Mature

+ Appropriate since most devices
are operated using one’s fingers

+ Cheap

+ Fingerprints are suitably unique

+ Voice is unique to each user, but
different users can have the same
password [49]

+ More convenient than traditional
passwords [11]

+ Easier to learn [11]

+ More efficient and easier for
human memory [103]
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