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STOCHASTIC CONTROL OF HANDOFFS IN
CELLULAR NETWORKS

RAMIN REZAIIFAR, ARMAND M. MAKOWSKI * SRIKANTA KUMAR ¥

Abstract

A Dynamic Programming formulation is used to obtain an optimal strategy
for the handoff problem in cellular radio systems. The formulation includes the
modeling of the underlying randomness in received signal strengths as well as
the movements of the mobile. The cost function is designed such that there is
a cost associated with switching and a reward for improving the quality of the
call. The optimum decision is characterized by a threshold on the difference
between the measured power that the mobile receives from the base stations.
Also we study the problem of choosing the “best” fixed threshold that minimizes
the cost function. The performance of the optimal and suboptimal strategies
are compared.

1 Introduction

Wireless networks are experiencing rapid growth, a trend likely to continue in the
foreseeable future. In both micro and macro cellular networks a key issue for ef-
ficient operation is the problem of handoffs. A call on a portable/mobile leaving
one cell (radio coverage area) and entering a neighboring cell must be transferred
to the base station of this neighboring (new) cell. Each handoff involves a signal-
ing cost. Because of the statistical fluctuations in signal strength due to fading, a
call may get bounced back and forth between neighboring base stations before it is
either successfully handed off or forced to terminate as signal strength falls below
acceptable levels. An improperly designed handoff algorithm can result in an un-
acceptably high level of bouncing (resulting in high signaling costs) and/or a high
probability of forced termination. A closely related problem is that of location area
updating, wherein a portable/mobile, even though not active, must select and keep
reporting to a base station best suited for making and receiving calls. We argue that
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approaching the handoff problem in a stochastic control framework is most appro-
priate. We use a Markov decision process formulation, and derive optimal handoff
strategies via Dynamic Programming.

Typically, in a cellular mobile communication network (analog or digital), each
cell is assigned a separate set of channels (frequencies, carriers, or time slots). The
assigned set depends on the frequency planning strategy used for spatial reuse, and
maybe fixed or changing dynamically. A successful handoff entails not only the
availability of a channel in the new cell (to which the mobile enters) but also an
acceptable level of signal strength on the available channel.

To focus mainly on the handoff issue, we take a simple model of two adjacent cells
with one channel per cell, and analyze the optimal handoff when a single mobile with
an active call moves from one cell to the other. We assume that these channels are
always available, distinct, and that their statistical characteristics are independent.
Each of these channels are assumed to provide a two-way link between the respective
base and the mobile (and thus we do not distinguish between frequency or time
division duplex link to achieve this two-way communication). We analyze mobile
controlled handoff in the sense that the signal strength on each of these channels
is measured periodically at regular intervals at the mobile/portable. The signal
strength so measured is subject to both path loss and shadow fading. Handoft
decisions are made at these measurement instants. Multipath effects are ignored
here as the correlation time is typically much smaller than the measurement interval
for most cases of practical interest. Possible interference due to other calls being on
a co-channel (e.g., same frequency at another base) are also ignored. Nevertheless,
the results derived here form a basis for analyzing enriched models that include
such interference, availability of multiple channels, and base station controlled or
base-mobile negotiated handoffs.

Our model formulation includes modeling the movement of the mobile as well
as the underlying randomness, induced by the (spatially correlated) fading environ-
ment, in the signal strengths as observed at the measurement instants.

An optimal handoff strategy should reflect the optimal tradeoff between the call
quality (higher signal strength implies a higher a call quality) and the signaling
costs. If the handoffs could be accomplished without cost (no signaling costs), the
best strategy, trivially, is for the mobile to connect to the base (channel) with higher
signal strength at each instant. In the presence of non-zero signaling cost, the best
handoff strategy should reflect the optimum intertemporal tradeoff (during the life-
time of the call) between the total signaling costs and the quality or signal strength
achievable by the connection, instant to instant, relative to the alternative connec-
tion present. Accordingly, for purposes of optimization, we define a cost function
that entails a fixed signaling cost for each handoff, and a cost proportional to the
power gain foregone when a switch to the higher power is not undertaken. The spe-
cific cost function we define, while reflecting the necessary concerns, also simplifies
the numerical computations to obtain the threshold. However, the methodology is



applicable to other definitions of cost.

We show that the optimal handoff strategy is characterized by a threshold policy.
The threshold is defined over the signal strength difference observed on the chan-
nels. We then specialize the results to the case of (correlated) log normal fading, a
case of practical interest, and compare the performance of the optimum strategy to
the best constant threshold policy (hysteresis), often employed in current practice.
Conditions for which hysteresis policies do and do not perform well are analyzed.

Much of the previous research on handoffs is based on simulation studies, while
the theoretical studies have focused on analyzing the number of handoffs for a given
hysteresis strategy [3], [L0]. We believe this paper is the first attempt to address
handoffs in a control-theoretic framework, and that such an approach will lead to
good handoff algorithm design. We have recently become aware of one other study
[5] which uses stochastic Dynamic Programming to optimize resources for location
area updates; this is, however, a significantly different problem than the handoff
issue studied here.

The paper is organized as follows: In Section 2 we present a general Markov
decision theoretic framework for addressing the handoff issue. Section 3 introduces
the issues related to the movement of mobile and its dynamics. Section 4 discusses
the models being used in this work to characterize the stochastic behavior of the
received powers as well as some more general models that can be exploited in the
same fashion without a significant change in the proposed scheme. The cost function
is defined in Section 5 and the corresponding Dynamic Programming formulation
is presented in Section 6. The invariance properties of the Dynamic Programming
operator are studied in Section 7. These properties allow us to characterize the
structure of the optimal policy in Section 8. To asses the effectiveness of the dif-
ferent schemes, we consider the call quality and number of handoffs as two possible
measures and Section 9 studies the problem of computing these two quantities once
the handoff strategy is set. Finally Section 10 contains several numerical results and
comparison between different handoff schemes. Several proofs are relegated to the
Appendix. For lack of space, many of the proofs and technical details have been
omitted.

A few words on the notation used throughout: For any z in R?, we write |||
for its Euclidean norm. The symbol = stands for defining equality. For any pair of
random variables (X,Y), the notation X =, ¥ means that X and Y have the same
distribution. Moreover, [X | Y] refers to any random variable which is distributed
according to the conditional distribution of X given Y’; a similar notation is used
for [X | Y = y]. For any sequence of random variables {&, t =0,1,...}, we set
¢t = (€0,81,...,&) for the history of the sequence up to time ¢ = 0,1,.... The
indicator function of any set A is denoted by 1[A].



2 The Model

We now introduce a Markov decision process formulation for the handoff problem
faced by a mobile which receives signals from two distinct base stations, labeled base
stations zero and one, while moving within a given geographical area. At any given
time the mobile has to select the base station through which wireless communication
will be achieved. Control information is gathered at sampled epochs and decisions
are then taken at these instants. Therefore, under a reasonable assumption of uni-
form sampling rates, all dynamical processes of interest can be modeled as discrete
time processes along the time horizon £ =0, 1,.. ..

2.1 The Underlying Randomness

We begin by describing the elements of the model which are unaffected by the
mobile’s control actions. This includes randomness in signal propagation and fading
as well as possible randomness in mobile’s movement. The mobile moves through a
region F of the plane IR?, which we assume composed of a finite number of points in
the plane. This is done in order to simplify the discussion, with the understanding
that most of the developments herein applies to the case of more general regions. The
mobile then travels through E according to a stochastic process {S, t = 0,1,...}
with S; denoting the position in E of the mobile at the beginning of the time
slot [t,t + 1). At time ¢, the strength of the received signal from base station <
is denoted by Pf, i = 0,1; it is measured in dB relative to a fixed transmitter
power. For notational convenience, we write P, = (P?,P}) and X; = (S, Pt).
The joint evolution of position and power levels {X;, t =0,1,.. .} is modeled as a
time-homogeneous Markov process with the following structure: First, we assume
that the position process {S, t = 0,1,...} is by itself a time-homogeneous Markov
process on E with one-step transition probability matrix @ = (Q(s;s)) such that

P[Sis1 = st41 | X = 2% = P[Sp41 =141 | St = 5¢]
= Q(st;3t+1)- (21)

Next, we postulate

P[Piy1 <p| X' =z, 541 = s441]
= P[Pi41 <p| Xt = 24, St41 = St41]
= G(p|stptSt+1), PE R? (2.2)

where G(- | s¢,pt, St+1) denotes the conditional probability distribution of P,y; given
that the mobile is in position s; and s;;1 at time ¢ and ¢ + 1, respectively, and
that power strengths at time ¢ were observed at levels p;. The assumption (2.2)
attempts to model the dependence between measured power levels as rather short-
term and short-range. Although not entirely accurate, it is nevertheless compatible



with modeling assumptions used in previous works [3], [4], [11], [10]; we shall return
to this point in Section 4. ‘

Finally, upon combining (2.1) and (2.2) , we see by a simple conditioning argu-
ment that

P[Si41 = se+1, P <p| X' = '
= E[1[Sts1 = st41] P[Pe1 <p | X5, 8] | X' = 2]
= E[1[Si41 = st11]G (P | St Piy Seq1) | XP = 1]
= G(p| se,pt; S141) PlSta1 = 8141 | Xt =]
= G(p| st,pt,5t41)Q(1; S¢41) (2.3)

and the process {Xt, t =0,1,...} is indeed a time-homogeneous Markov process on
E x R2.

The call initiated at time ¢ = 0 will last a random number T of time slots. We
adopt the traditional assumption that the duration of a call is adequately mod-
eled as an exponential random variable. In line with this standard assumption,
in our discrete-time setup we assume that the random variable T' is geometrically
distributed with

PT=t+1]=p(1-p), t=0,1,... (2.4)

for some 0 < p < 1. Alternatively, we may interpret p as the hangup probability,
so that the call can be terminated in every time slot with probability p, and this
independently of the duration of the ongoing call. The call duration T is assumed
independent of the sequence {X;, t =0,1,...} as well.

2.2 The Controlled System

Fix t = 0,1,.... At the beginning of the time slot [t,t+ 1), the mobile is in location
S, the power strengths from the base stations have been measured at levels P?
and P}, and a decision needs to be taken so as to which base station to use for
transmission during the time slot [t,t + 1). This action is selected on the basis of
available information in a way that we now proceed to define: Let U; denote the
{0, 1}-valued random variable which encodes the decision taken at time t, i.e., if
U, =i, i = 0,1, then base station 7 is being used during the time slot [t,t +1). For
reasons that will become apparent soon, we set I; = U;_1, so that I; denotes the
base station to which the mobile is attached during the time interval [t — 1,t); we
also define I as being arbitrary.

The information available to the decision-maker is described by the random
variables {H;, t = 0,1,...} which are defined recursively by

Hipy = (Hy, Uy, X1, L), t=0,1,... (2.5)

with Hy = (Xo,Io). To determine the successive decisions on the basis of this
information pattern, we introduce the following notion of a (control) policy: A



policy 7 is a collection of mappings {m;, ¢t = 0,1,...} where for each t = 0,1,...,
7, maps the range of H; into {0,1}, with the interpretation that the base station
m¢(hs) is used during the time slot [t,t + 1) if Hy = hy. The policy = is said to be
a Markov stationary if there exists a single mapping f : E X R? x{0,1} — {0,1}
such that m(hs) = f(z4,14;) with z; determined through h; = (h¢—1, Ug_1,Z¢,4). The
class of all control policies is denoted by P.

Fix a pair (z,7) in E x R?x{0,1}, and ¢ = 0,1,.... For each policy 7 in P,
we associate a probability measure Py ; with the following requirements: First, we
require

PriXo=1z,Ip =4 =1 (2.6)

Next, we impose

P i[St1 = st41, Prv1 <Py Ity1 = a1 | Hy, Uy
= 6(it31,Ut) PLi[St41 = 8441, P < p | Hy, Ui (2.7)
= 8(ity1,Ut)G(p | Si, Pr, 5641)Q(St; 5¢41)- (2.8)

In (2.7) we have used the equality I;41 = Uj, while (2.8) expresses the require-
ment that the underlying randomness of this model be governed by (2.3), and this
independently of the policy in use. Finally, we require

P7:(U: = 1| Hy] = 1[m(Hy) = 1). (2.9)

The model is fully specified if we further assume the random variable T' to be
independent of the random variables {X¢,U;, t = 0,1,...} under PJ;, and this for
each policy 7 in P.

Such specifications, and especially (2.8), amount to casting this controlled system
as a Markov decision process with “state” process {(X, It), t =0,1,...}. We refer
the reader to the monographs [1], [9] for additional material on Markov decision
processes.

The model we have introduced is fairly general and flexible enough to cover
many situations of practical interest. We briefly review some of the possibilities in
the next two sections.

3 The Mobile Dynamics

The prescription of the one-step transition matrix @ defines a directed graph where
the points in E act as vertices, and the edges are the pairs of points (s, s') such that
Q(s,s') > 0. Typically these edges can be mapped into the physical paths over which
the mobile’s dynamics is restricted, e.g., streets, walking paths and roads. Figures
1 and 2 provide the graphical representations of the two most common situations.
In Fig. 1 we displayed a linear motion which corresponds to traveling along a single
highway. Figure 2 is a fully two—dimensional situation which arises when the mobile
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Figure 1: A simple scenario for mobile movement. The dots represent the sampling
positions.

user is allowed to move about in a urban area; the edges then represent city blocks
or street portions.

This discrete—time model implicitly assumes that a time scale has been postu-
lated, and this in turn determines a (maximal) sampling rate, whereby a sample is
collected per time slot. However slower sampling rates can be modeled by simply
considering epochs Lt, t = 0,1,... for some positive integer L, e.g., the sampling
rate is now L times slower than the maximal rate. This leads to a model where the
original one-step transition matrix @ is replaced by the L-step transition matrix
QD).

Finally, the assumption that the region E be a discrete subset of IR? does not con-
stitute an essential restriction for the developments of this paper. Such a constraint
does however remove some of technical issues associated with the non—countability
of the state space of the Markov decision process. In some situations it might be
more appropriate to model E as an arbitrary region of IR?; in that case the one-step
transition mechanism is no longer described by the one-step transition matrix @,
but rather by a one-step transition kernel @ = (Q(s; ds')), i.e.,

P[Sis1 € B| X' =3' = P[Siy1 € B| S = s4]
= /BQ(st;dSt+1). (31)

This line of inquiry will not be pursued further in this paper due to lack of space.

4 Power Distribution Models

The conditional distribution G(- | ss,pt, St+1) appearing in (2.2) is the component
of the model that is hardest to specify. We devote the present section to the de-
velopment of a class of models which we shall often consider when carrying out
calculations and simulations. These models can be viewed as a dynamic version of
a static model which has been widely used to capture shadowing effects [3], [4], [11].
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Figure 2: A mobile moving in an urban area. The dots represent the sampling
positions.

4.1 A Static Model

We begin with a two—dimensional version of the simple correlation model discussed
in [3]: Let {Wi(r),r € R?} denote a family of jointly Gaussian random variables
2

with zero mean and variance o2, i = 0,1, with correlation structure of the form

E[Wi(r)Wi(r')] = o? exp(—8r —'||), rr' €R? (4.1)

for constants 3 > 0 and ¢? > 0. The two families {W°(r),r € R?} and {Wl(r),r €
IR?} are assumed independent.

Let b; denote the location of base station i, 1 = 0,1. In location s, the strength
Pi(s) of the signal produced by the base station i is then given by

PY(s) = A; — B;log(||s — b)) + Wi(s —b;), s€R2. (4.2)

The constant A; reflects the transmitter power and is a function of transmission
frequency and height of the antennas, while B;, with typical values in the range
of 30-40 dB, models the path loss [4]. We shall find it convenient to write u(s) =

(o(s), p1(s)) where
pi(s) = A; — Bilog(|ls — bif}), s€R?, i=0,1. (4.3)



4.2 A Simple Dynamic Model

The model (4.1)—(4.2) is a spatial one which specifies the distribution of power levels
solely as a function of position, and does not seem to fit naturally into the framework
of Section 2. As we seek to develop a dynamic model which is compatible with that
spatial model, we first consider the following line of reasoning: We shall assume that
the shadowing effects are essentially static, i.e., do not vary much over the duration
of a call, and are described by the static random fields {Pi(r),r € R?},i=0,1-
these can be thought as being generated at the beginning of time ¢ = 0. It then
seems reasonable to argue that the power levels at time ¢ are those given by these
static random fields evaluated at the position occupied by the mobile at time ¢. In
other words, the power levels {Pti, t =0,1,...} can be obtained by “composing”
the static random fields {Pi(r),r € R?}, i = 0,1 with the mobile’s motion, namely

P{=Pi(S) = p(S) + W{, t=0,1,... (44)
where we have set
Wi=WYS;—b), i=0,1,1t=0,1,... (4.5)

It is also natural to assume that the random field {(P°(r),P'(r)),r € R?}, or
equivalently {(W°(r), Wi(r)),r € R?}, is independent of the mobile’s trajectory
{St, t= 0,1,. . }

Under the foregoing assumptions, we would like to check whether the conditional
distribution of P11 given (X?, St41) indeed satisfies (2.2). The detailed calculations
are available in [8] where the following results are established: The random variables
PY,; and P}, are also conditionally independent given (X%, St41), and for i = 0, 1,
the random variable Pf, , is conditionally Gaussian given (X!, S11), with

[Py | PY S ~ N (Hi(StH) + 88y, i+1) : (4.6)

The exact expressions for the conditional “mean” §i,; and variance i, are not
essential for the discussion, but rather that these quantities depend on the entire past
history (P, St+1). Therefore, the conditional distribution of Py given (X ¢ Sii1)
depends in general on the entire past (X t Si+1), rather than on the most recent
history (X;, St41) as required by (2.2). Hence, the suggested model (4.4)-(4.5) does
not display the requisite Markov property, and cannot be used wholesale for our
purposes as we might have hoped.

Undeterred by this state of affairs, we argue that the probabilistic evolution
of power levels typically exhibits only short-term memory [4], [11], and that the
conditional distribution of P;;1 given (X t S;+1) can be replaced by that of Py
given (X, St4+1) without incurring any loss of statistical significance. With this in
mind, we now set out to compute the latter with the hopes of getting clues as to
which kind of models are “compatible” with the static model of [4],[11], while still
retaining the desired Markov feature. The calculations are carried out in Appendix
Al



Proposition 4.1 Under the foregoing assumptions, the following facts hold:

1. The random variables W2, | and W}, are conditionally independent given
(Wi, St, St41) where we have set Wy = (W2, W}).

2. For i = 0,1, the random variable Wtiﬂ is conditionally Gaussian given
(Wt,St,St+1); with

Wiy | We, Se, Sert] =st Wiy | WP, S, Seqa]
~ N(’YZ+1,F§+1)~ v (4-7)

The conditional mean ! 11 and variance r 41 are given by

Yis1 = Wi exp(—B7H|Se — Sitall) (4.8)
and
b1 = 02 [1 - exp(=28711S; = Seall)] - (4.9)
Using the fact that
[Py | X, St41] =st p(St41) + [Wear | W, Sty Seqa] (4.10)

we conclude that the random variables P2, and P}, are conditionally independent
given (X¢, St41), and for ¢ = 0, 1, the random variable P}, , is conditionally Gaussian
given (Xt, St+1), with

[Pti+1 | Xty Sp4a] ~ N (:u‘i(S?H‘l) + 7§+1,F§+1) . (4.11)

4.3 A General Class of Gaussian Models

Motivated by the discussion of the previous section, we propose the following class
of dynamic models for power levels: We posit that power levels have the general

form ‘ .
P} =pi(S))+W¢, i=0,1,t=0,1,... (4.12)

where for each ¢ = 0,1,..., the random variables W2, and W, are condition-
ally independent given (W?*, S**!1), and for ¢ = 0,1, the random variable W{,, is
conditionally Gaussian given (W?, St*1), ie.,

Wiy | WS ~ N (v, Th) £=0,1,... (4.13)

However, taking the position that temporal variations have short-term memory,
we require that the conditional mean v}, ; and variance I'{ ; depend only on the
variables W}, S; and Si{1, and have the general form

vii1 = 9i(Wh Si, Si+1) and  Thyy = Gi(St; Se41) (4.14)

10



for a choice of mappings g; : R xE? - R and G; : E? - R,. In fact, taking our
cue from (4.8)-(4.9), we shall further constrain g; and G; to have the special form

gi(w,s) =wr(||s—-§|), weR, s €E (4.15)

and

Gi(s,s') = o?T(ls=$'l), s, €E (4.16)
for mappings 7 : Ry > Rand ' : Ry — Ry. In keeping with the underlying
assumptions of our discussion, we require

r@©) =1, [(0)=e>0 and T(d)11(d— o). (4.17)

The choice r(d) = exp(—B~'d) and I'(d) = 1 — er(d)? represents a special case
suggested by (4.8)—(4.9).

Under these assumptions, the random variables P, and Pl | are condition-
ally independent given (X%, S;41), and for ¢ = 0,1, the random variable P}, are
conditionally Gaussian given (X?, S;11), ie.,

[Py | X8 8] ~ N (pi(See1) +visn Thn) 1=0,1,£=0,1,... (4.18)
The additional assumptions (4.15)—(4.16) imply

pi(Sia1) ¥ = Hi(Ser1) + Wtilr(“St — Sep1ll)
= pi(Ses1) + (PF — pi(S))r (1St — Sexll)- (4.19)

5 Cost Function

In order to formulate the handoff problem as a stochastic optimization problem, we
need to define a cost structure which quantifies the cost associated with operating
the system under any policy in P. Of course there is no unique way of doing so,
and as the optimum handoff policy clearly depends on it, we guide our selection
by requesting that the corresponding optimal policy displays “good” properties in
terms of implementability.

Here, we first select a cost-per-stage c: R? x{0,1} x {0,1} = IR, and for every
initial condition (z,i), we define the total cost function

T-—1
J.,r(.’l,‘,’i) = E;:r,i [Z C(Pt,It, Ut)] , mwEP. (51)

t=0

The problem of interest is then that of finding a policy 7* in P such that

T (z,1) < Ju(z,), (2,3) € E x R? x{0,1} (5.2)

11



for every other policy 7 in P. Such a policy 7*, when it exists, is called the optimal
(handoff) policy. We shall shortly present conditions under which the total cost
(5.1) is well defined and finite.

To settle on a reasonable cost-per-stage ¢, we argue as follows: Each time the
mobile unit chooses a new base station, a database in the switching center is up-
dated to keep track of the mobile’s location. Because frequent and unnecessary
switches between base stations can be wasteful of system resources, the cost func-
tion must be chosen so as to create a trade off between the two possible decisions,
namely switching and not switching. One particular cost-per-stage function with
this property associates a cost C with switching from one base station to the other,
and penalizes the action of not switching by a cost proportional to the difference
in signal strength between the alternative base station and the current one. For
example, if the mobile unit is connected to base 0 and the strength of the signal
from the other base, namely base 1, is higher by p' — p%, then we assign the cost
p! — p® for not switching to base station 1. The opportunity cost p! — p? encourages
the mobile unit to switch to the better base station, whereas the fixed switching
cost C creates a trade off. The corresponding cost-per-stage function, c, is given by

. [ f i#u
c(z,i,u) = { (=1)¢(pt - p%) if i=wu,z=(s, ®°p")) 53

and it is used in (5.2) for the remainder of the discussion.

A few remarks are in order before discussing the optimization problem (5.1)-
(5.3): First of all, throughout the remainder of this paper, we assume that power
level distributions are described by one of the Gaussian models discussed in Section
4.3 under the additional constraints (4.15)—(4.17). For technical reasons that will
become apparent shortly, we require that the mapping r : Ry — IR entering (4.15)

satisfies the condition
0<r(d <1, d=>0. (6.4)

The important special case 7(d) = exp(—8~'d) does satisfy this condition.
Fixt=0,1,.... Upon writing

Zy =Pl - P, (5.5)
we readily see from the conditional independence that
[Zi41 | XY, Spg1) ~ N (0541, ©141)- (5.6)
The conditional mean and variance are given by
Ou1 = (07 + 0)L(ISe — Seall) (5.7)

and
9t+1 = O!tZt + ,Bt, (58)

12



where we have set
o = (|8t — St4ll) (5.9)

and
B = p1(Se+1) — po(Ses1) — (#1(St) — po(St)) o (5.10)

The conditional distribution of the difference Z;,1 given the entire history (X*, Sy+1)
is thus determined solely by (Z;, S, St+1), and throughout we denote this conditional
distribution by F(- | s¢, 2t, St41)-

Next, for any Gaussian random variable £, we have

E(l{—nll= \/—2;—2 (5.11)

if &€ =5 N'(11,02). Therefore, we find that

Eoill Zis1l | X4 Ser1] < Bl Zers — 1] | XF, Sev] + 6o

‘H 2@;_'—1 + |at”Zt| + |ﬁti (5.12)

< AZ|+B (5.13)

IA

where the positive constants are given by

A= sup |r(lls—sl) | (5.14)
s,8'€E
and
2(02 + 0?
B =129 | gsup | s (s) — pols) | - (5.15)
™ s€E

In deriving the expression for B we have made use of the constraint (5.4), and of
the fact that 0 < T'(d) < 1 for all d > 0. Note also that (5.4) implies 0 < A<

It is now a simple matter to conclude by induction that for each (z,7) in E X
R? x{0, 1}, we have

Atz + 4B i A<

A+ (t+D)B  if A=1 (5.16)

EqillZ:)] < {

where z = p* — p° is determined through (z,i) = ((s,p),i). Under the enforced
independence assumption on the random variable T', we have

o0}
|Jx(z,9)] < Eg,il: 1T > t]|e(Pe, It, Ul
=0

= iEg,i[l[T > t)le( P, I, Un))
t=0
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o0

= S PLT > B, lle(Pr, I, Un)]
t=0
ox0

= Y (1-p)'EFlle(Py, I, Up)]
t=0

< Y (1 -p)(C+ Eeill Zel)) (5.17)

t=0

Because A(1 — p) < 1, it is plain from (5.16)—(5.17) that for each policy m in P,
the cost function J;(z,4) is well defined and finite. A more careful look at these
arguments also shows that

oo

Tn(z,6) = Eq; | (1= p)'e(Xe, I, U) | - (5.18)
t=0

6 Dynamic Programming Formulation

As an immediate consequence of (5.18) the total cost problem (5.1)-(5.3) can be
recast as an infinite horizon discounted cost problem with discount factor 1 — p.
The standard machinery of Dynamic Programming therefore applies and leads to
a simple characterization of the optimal policy. In the interest of brevity, we gloss
over various technical issues associated with the non—countability of the natural
state space E x IR? x{0, 1} for this MDP; details are available in {8].

The central object of our analysis is the value function associated with (5.18),
and the equation it satisfies: For each (z,7) in E x R? x{0,1}, we define the value

function by
V(z,1) = inf Jr(z,1), (6.1)
wEP

and for notational convenience, we set
V(e =Y, Q) /R V()G | 2,8), z=(sp).  (62)
The Dynamic Programming equation for the problem at hand is simply

V(z,1)
= miny=o,1 {c(z,i,u) + (1 - PV (ew}, (z,9)€SxR*x{0,1} . (63)

or equivalently,

V(z,i)
=min{C+ (1 -p)V(z,i@1),(-1)'(p' —p°) + (1~ PV(z,)}  (64)
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where @ denotes modulo two addition. Moreover, the optimal policy 7* is a Markov
stationary policy which selects to switch in state (z,1) if and only if

C+(1-p)V(zi®l) < (1) —p°) + 1 —-p)V(z,9). (6.5)

The key observation behind many of the developments in discounted Dynamic
Programming lies in the fact that the Dynamic Programming equation (6.3) can
be interpreted as the fixed point for a nonlinear operator defined on an appropriate
Banach space of functions. To make this more precise, we fix p in (0, 1) and select
a constant K such that

p

where B is the constant given by (5.15). For any mapping ¢ : E X R? x{0,1} = R,
we set

| p(z,9) |

APy (6.7)
where the supremum is taken over all pairs (z,4) in E X RR?2 x{0,1}. Let F denote
the collection of all Borel measurable mappings ¢ : E x R? x{0,1} — R for which
llgll < co. It is well known that (6.7) defines a norm on F, which makes F into a
Banach space. That F constitutes indeed the natural function space for our problem
should be apparent from the fact that for each policy 7 in P the cost function Jx
is an element of F, and so is the value function V. These conclusions are easy
consequences of the bounds (5.16).

Motivated by the form of the Dynamic Programming equation (6.3), we pose the
following definitions: For every mapping ¢ in F, we associate R—valued mappings
T and Typ, u = 0,1 defined on E x R? x{0,1} by setting

Zs EEQ / (P 7pa )dG(p | z 3) = (S,p). (68)

lell =

and
(Tuip) (,9) = c(p,i,u) + (1 — p)(T)(z,u) (6.9)

for (z,i) in E x R? x{0,1}. These definitions are well posed under the enforced
model assumptions as we now show; the proof is given in Appendix A.2.

Proposition 6.1 Under the model assumptions, the following holds:
1. For every mapping @ in F, the function Tcp given by (6.8) defines an element
of F, with _
[Tl < (1+ KB)llell. (6.10)

2. For every mapping ¢ in F, the function Ty given by (6.9) defines an element
of F;
3. The operator T, : F = F, u=0,1, is a strict contraction, i.e.,

1 Tue — Tu@'| < Ll — &'ll, @, €F (6.11)
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for some constant 0 < L < 1 given by
L=(1-p)(1+KB) (6.12)
Next, we introduce the operator T': F — F by setting

(To)(z,t) = unzl%)lyll(Tucp)(iL‘,’i), (z,7) € E x R? x{0,1} (6.13)

for every ¢ in F. This operator permits a rewriting of the Dynamic Programming
equation as V = TV, so that V is identified as a fixed point for the operator T'.
In order to take advantage of this fact, we need several properties of T', which are
standard [1], [9], [13], and which are summarized below for easy reference:

Proposition 6.2 Under the model assumptions, the following holds:

1. The operator T : F — F is a strict contraction with contraction constant L
given by (6.12);

2. The value function V (which is an element of F) is the only solution of the

fized point equation
p=Tp, peF; (6.14)

3. Moreover, for every element ¢ in F, the recursive scheme
Po = ¥, Pr+1 = Tk, k=0,1,... (615)
always converges to the value function V in the sense that limg ||ox — V|| = 0, where

limy, i (z,1) = V(z,1) for all (z,i) in E X R? x{0,1}.

7 Invariance Properties of the Operator T

Key properties of Dynamic Programming operator T’ are now discussed. First, an
element ¢ in F is said to belong to F* if there exists a mapping ¢* : EXRR x {0,1} —
IR, such that

o(z,4) = ¢*(s,p* —p%14), (z,i) € Ex R?*x{0,1} (7.1)
with the understanding that (z,¢) = (s,p, ).

Lemma 7.1 For every element ¢ of F*, ’f(p, Ty, u=0,1, and ¢ are all elements
of F*.

Proof: If ¢ is an element of F*, then T is also an element of F* by virtue of (5.7)-
(5.10). Because the cost-per-stage c clearly belongs to F*, so do Ty, u = 0,1, and
so ultimately does Tp. ®

The mappings ¢ and ¢* entering the definition (7.1) are in many—to—one cor-
respondence with each other. It is therefore natural to adopt the convention that

16



F* also denotes the class of Borel functions ¢ : E x R x{0,1} — R such that the
mapping (z,i) = ¢(s,p* —p°,4) is an element of F. The definition (6.7) reduces to

(s, 2,4)|
loll = sups,.i PR € F* (7.2)

and also yields a norm on F* , which turns it into a Banach space.

With this interpretation, the operators T Ty, u = 0,1, and T can now be viewed
as acting on F*, rather than on F, provided some obvious changes are made: For
every ¢ in F* and every (s,2,1) in E x R x{0, 1}, we set

(Tp)(s,2,1) ZseEQ / o(s', 2, i)dF (2 | s,2,5'), (7.3)
(Tu(p)(s’zai) = c(z,i,u) + (1 - p)(fcp)(s,z,u) (74)

and
(T)(s,2,4) = min (Tup)(s, 2,1)- (7.5)

Both Propositions 6.1 and 6.2 hold true in this modified context.

Next, we say that a mapping ¢ : E X Rx{0,1} — R is an element of C if it
belongs to F and if for each s in E and i = 0,1, the mapping z — o(s,z,1) is
continuous on IR. The key fact of interest here is that C is invariant under T; a
proof is available in [8]. In fact, a little more can be said:

Lemma 7.2 For every element ¢ of C, T(p, Ty, u = 0,1, and T'p are all elements
of C.

Finally we conclude with a property which proves crucial in establishing the
structure of the optimal policy. For every element ¢ of F*, we set

(A)(s,2) = p(s,2,1) —p(s,2,0), s€E,z€R. (7.6)

The element ¢ of F* is said to belong to D if for each s in E, the mapping z —
(Ag)(s, z) is non-increasing on R. The proof of the next lemma is given in Appendix
A3.

Lemma 7.3 If ¢ is an element of CND, then so are f’cp and Typ.

8 On the Structure of the Optimal Policy

In this section we develop various results which provide insights into the structure
of the optimal policy.

Lemma 8.1 The value function V is an element of F*.
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Proof: We consider the recursive scheme (6.15) with zero initial condition, i..,
o = 0. Because the initial condition @g = 0 is in F*, the iterates {¢x, kK =0,1,.. .}
are all in F* by Lemma 7.1, and so does V by virtue of Claim 3 of Proposition 6.2.
]

The next result addresses the smoothness of the value function, a fact we shall
need for technical reasons later in this section.

Lemma 8.2 The value function V belongs to C.

Proof: Again we consider the recursive scheme (6.15) with zero initial condition,
ie., ¢y = 0. Because the initial condition ¢y = 0 is an element of C, the iterates
{¢k, k=0,1,...} are all in C by Lemma 7.2. On the other hand, by virtue of Claim
3 of Proposition 6.2 we readily see for each R > 0 that

lok (s, 2,1) — V (s, z,1)|
1+ K|z

and the convergence limy, @k(s,2,i) = V(s,2,1) is uniform (in z) on compact sets.
The continuity of the iterates {pk, k =0,1,...} now implies that of V. =

Lemma 8.3 The value function V and TV are elements of CND.

limgsupy,|<r =0, s€E, =01 (8.1)

Proof: We have already shown in Lemma 8.2 that V belongs to C, hence TV also
belongs to C by Lemma 7.2. Next we again consider the recursive scheme (6.15)
with zero initial condition, i.e., ¢y = 0. Because the initial condition o = 0 is an
element of C N D, we conclude by Lemma 7.3 that the iterates {¢g, k£ = 0,1,.. Ny
and {T(pk, k=0,1,...} areallinCND.

By virtue of Claim 3 of Proposition 6.2 we have lim(Agpy)(s, 2) = (AV)(s, 2)
for all (s,z) in E x R, and V inherits membership in C N D from the iterates
{or, k =0,1,...}. A similar argument holds for TV as it can be shown [8] that
limg(ABE)(s,2) = (AV)(s,2) for all (s,2) in E x R; details are omitted in the
interest of brevity. ®

We are ready to discuss the structure of the optimal policy. A handoff policy 7
is said to be a threshold policy with threshold functions 7; : E =+ R, =0, 1, if it is
a Markov stationary policy such that

7*(s,2,0) =1 iff z>7(s), (8.2)

and
7*(s,2,1) =0 iff 2z < 7(s) (8.3)

for every (s,z) in E x R.

Proposition 8.1 Under the model assumptions, the optimal handoff policy = is a
threshold policy with threshold functions 7} : E = R, i = 0,1, which are uniquely
determined through the equations

C+ (=11 —p)(AV)(s,2) = (-1)’2, s€E, i=0,L (8.4)
In fact, 77(s) < 15(s) for all s in E.
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Proof: Fix (s,z,i) in ExIR x{0,1}. We begin by rewriting the Dynamic Program-
ming equation (6.4) in the form "

V(s,z,1)
= min{c + 1 =p)TV)(s,2,i ®1),(=1)iz+ (1 - p)(TV)(s,z,i)} . (85)

The optimal policy 7* is the Markov stationary policy which selects to switch in
state (s, z,1) if and only if

C+ (1= p)(TV)(s,2,i®1) < (=1)'2+ (1 — p)(TV)(s,2,1), (8.6)
or equivalently, if and only if
C+(1—p)(~=1)(ATV)(s,2) < (-1)z. (8.7)

By Lemma 8.3, z — ATV(s, z) is monotone non-increasing and continuous. Hence,
for i = 0 (resp. & = 1) the left hand side of the inequality (8.7) is continuous
and monotone non-increasing (resp. non-decreasing), while its right hand side is
continuous and strictly increasing (resp. decreasing). It is now a simple matter to
conclude that the switching sets Bi(s) = {z € R: C + (1 - p) (1) (ATV)(s,2) <
(=1)iz}, i = 0,1 are non-empty closed and connected sets which are disjoint (owing
to the condition C > 0). In fact, Bo(s) = [rg(s),00) with 7§(s) = inf Bo(s), and
Bi(s) = (—o0, 7¥(s)] with 7(s) = sup Bi(s), and the optimal policy is of threshold
type. Because By(s) and Bi(s) are disjoint sets, we see that T¥(s) < 13(s), and the
defining equalities (8.4) are simple consequences of (8.7) and of continuity properties

mentioned earlier. W

For the special case
r(d) =0, d>0 (8.8)

some additional properties can be derived for the optimal threshold functions 7,
i = 0,1. When r(d) = exp (—B87'd), this corresponds to 3 = 0. We first show
that the optimal thresholds in a given position are related to each other in a simple
manner.

Corollary 8.1 Under the condition (8.8), the optimal threshold functions TS, 0=
0,1, satisfy the relation

15(s) =2C +17(s), s€E. (8.9)

Proof: Under condition (8.8), the conditional distribution F(:|s,z,s") does not
depend on z, hence (TV)(s, z,%) is independent of z for each s in E and 7 = 0, 1.
Therefore, with a slight abuse of notation, the defining equalities (8.4) reduce to

75(s) = (=1)'C + (1 — p)(ATV)(s), i=0,1, (8.10)

K2
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and the conclusion follows by direct inspection. =

Next, we consider the case when the mobile travels along a straight line con-
necting the two base stations, and this in a unidirectional manner: For sake of
concreteness we take E = {(0,0),(1,0),...,(V,0)} for some integer IV, and assume
that for all § = 0,1,..., N, Q((0,k);(0,5)) =1j =k+1] for k=0,1,...,N -1
and Q((0,N);(0,7)) = 1[j = NJ]. We refer the reader to [8] for a proof of the
monotonicity of the optimal thresholds:

Corollary 8.2 Under the condition (8.8), the optimal threshold functions M E—
R, i = 0,1, are each monotone non—increasing, i.e., 77 ((k +1) < 7f(k) for all
k=01,...,N—1.

9 Average Quality of Call and Expected Number of
Handoffs

Once the a handoff policy (be it optimal or not) has been selected, it is of interest
to compute the expected value of the quality of the call and the expected number of
handoffs that the mobile experiences while the optimal policy is in effect. These two
quantities constitute good measures of the effectiveness of a handoff policy. Other
criteria include the expected delay in handoff which has been studied by Vijayan
and Holtzman [10].

We define the call quality function C; of the policy 7 to be the the mean value
of the strength of the received signal form the active base stations under the policy
7 during the call session, namely

T-1
Qr(z,1) = B ; [Z LP} +(1- It)PtO] . (z,9) € ExR?*x{0,1}. (9.1)
t=0

On the other hand, the expected number of handoffs under the policy 7 is defined
by

T-1
Sr(z,i) = Ex,; {Z 1[U; # It]] (z,i) € E X R2 x{0,1}. (9.2)
t=0
An argument similar to that leading to (5.18) yields the alternate expressions
o -.
Cr(z,i) = Ez; [Z(l —p)'(LP + (1~ It)PtO)] (9.3)
t=0
and
o)
Sn(e,i) = B, [Zu - p)1[U; # It]] (9.4)
t=0

so that both C, and S, can be written as discounted cost functions.
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For any Markov stationary policy «, and in particular for any threshold policy,
this fact can be exploited for numerical purposes by interpreting C; and S as fixed
points for suitably defined contractions. More precisely, to evaluate the expected
quality of call, for each Markov stationary policy 7, we consider an operator Ky :
F — F of the form

(wa)(xai) = (Kw(w,i)(P)(m,i)a pE F (95)

for every (z,i) in E x IR? x{0, 1}, where for each u = 0,1, the operator K : ¥ — F
is defined by . N

(Kup)(@,3) =p" + (1 —p)(To)(z,u), ¢€F. (9.6)
As in Proposition 6.1, the operators, K,, u = 0,1, are contractions on F, and so
is K. It follows from the Markov property that the call quality function Cy is the
unique fixed point of K, and can be evaluated through the recursion

@Yo = 0, Pr+1 = BpPk, k= 0,1,.“ (9.7)

by invoking the appropriate version of Claim 3 of Proposition 6.2. To compute the
expected number of switches, we use instead the operator K : F — F which is of
the form

(Kro)(z,4) = (K3(s2,00)(5:2:0), 9 €F" (9-8)
for every (s, z,4) in E x R? x{0, 1}, where for each u = 0, 1, the operator K7, : 7* —
JF* is defined by

(Kip)(s,2,9) = Lu # il + (1 - p)(T9) (s, 2,u), ¢ €F". (9.9)

This time, the operators K, u = 0,1, are contractions on F*, and so is K;. The
unique fixed point of K is Sy, and is obtained through the recursion

0o =0, ppr1=Krpp, k=0,1,... (9.10)

™

by invoking the appropriate version of Claim 3 of Proposition 6.2.

We close this section with the behavior of the optimum cost as a function of
the switching cost C. Let V (x,4,C) stands for the value function V(z,1) defined by
(6.1) when the switching cost has value C:

Proposition 9.1 For each (z,1) in E x R? x{0,1}, the value function V(z,4,C)
is a concave and nondecreasing function of the switching cost C.

Proof: Fix (z,i) in E x R?x{0,1}, and let = be an arbitrary policy in P. If
Jx(z,i,C) denotes the total cost when the switching cost has value C, then direct
inspection of (5.18) shows that J, (z,i, C) = Ag(x,1)+CSx(z,1), with Sz(z,1) given
by (9.4) and
oo
Ar(z,9) =B, |31 - p)'1[U: = L(-1)V (P} - B)|. (9.11)
t=0
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Table 1: NOMINAL PARAMETERS USED FOR NUMERICAL RESULTS

B o p|lc B Distance between bases
30| 5dB [ 0.2]|6|200m 2Km

Therefore, the mapping C — J:(z,%,C) is affine and monotone nondecreasing
(since By (z,i) > 0). The announced conclusion is now immediate from the fact
V(z,i,C) = infrep Jx(z,1,C), as we recall that the infimum of affine (resp. mono-
tone non-decreasing) functions yields a concave (resp. monotone non-decreasing)
function. =

10 Numerical Results

In this section we exploit the structure of the proposed handoff strategy in order to
obtain the optimum solution for a couple of scenarios which are described below.
The discussion is carried out for the special case

r(d) = exp(—F"'d) (10.1)

and
I'(d) = 1 —r(d)?, (10.2)

for all d > 0 with 0% = 0% = o2.

Scenario 1. We first look at the simple case where the mobile travels on a
line connecting the two bases. In Section 8, when 8 = 0, we pointed out that the
thresholds are non-increasing functions of the position; Figure 3 confirms this fact.
The displayed monotonicity of the thresholds corroborates the intuitive belief that
were the current base station be base 0, the threshold should be lowered as the
mobile gets closer to base station 1, in order to make it easier to switch from base
0 to base 1.

Although information about the distance of the mobile from the base stations
is usually not too difficult to obtain [11], it is also possible to find the best fixed
threshold (which does not vary with distance). This can be found with the help of
a numerical optimization algorithm which seeks the minimum of the cost viewed as
a function of fixed thresholds (thus defined on IR?). Figure 4 depicts the cost versus
the fixed thresholds H; and Hy. The flat surface at the bottom of this figure is the
optimum cost. We used a simple steepest descent method to find the minimum of the
function. The sub-optimal thresholds are shown in Fig. 3 together with the optimal
ones for comparison purposes. The parameters used for this numerical results are
given in Table 1.

Scenario 2. Next we consider a more realistic situation of a mobile traveling
in a two-dimensional plane as shown in Fig. 5. We also add the possibility that
at some point the road divides into two different paths, with the traffic pattern
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Figure 3: The optimal and sub-optimal thresholds (linear 1-dim motion)

being such that %70 of the mobiles take one path and the rest take the other one.
In this case a three-dimensional figure helps to present the optimal thresholds for
each location. For each sampling position there are two thresholds r;, ¢ =0,1.
The mobile path and the thresholds are shown in Fig. 6. As was the case for the
simple one-dimensional mobile movement, in this scenario the thresholds are lower
for the points that are closer to base 1. The optimal and sub-optimal thresholds
for the two—dimensional motion are shown in Fig. 7 which is basically another way
of presenting the thresholds depicted in Fig. 6. Here however the jump in the
threshold function might be misleading. The occurrence of the jump results from
the fork-shape of the mobile path, and the jump which occurs at location 12 reflects
the fact that there is a significant difference in the distances of location 12 and 13
to base 1 (see Fig. 5).

Clearly, the solution of the optimization problem described here does depend
on the structure of the cost function itself, as well as on the choice of the various
parameters that enter the cost function. One of the important parameters is the
switching cost C, and in what follows we present two methods to pick a reasonable
value for this parameter. Note that in the cost function presented in (5.3) the
switching cost is being compared with the improvement in the signal strength in
dB. We must therefore decide how expensive is the switching action in terms of
the amount of improvement that can be achieved by switching to the better base
station. Alternatively, the call quality can be computed for different values of C' and
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Figure 4: Cost function versus the value of fixed thresholds (linear 1-dim motion).

based on the desired value of the average call quality, the appropriate switching cost
can be obtained. In Fig. 8 we have displayed the call quality versus switching cost;
for the purpose of normalization, we set A; = 0 so that the constant A; must be
added to the numerical values for the average call quality to obtain the true value.
As expected, the call quality degrades as the switching becomes more expensive
because it makes the switching action more sluggish. Figure 9 illustrates the effect
of changing the various parameters in the problem on the optimal thresholds. It
reveals that the optimal solution is very insensitive to the value of the variance o?
or of the hangup rate p, whereas it is quite sensitive to the correlation factor B.
Finally, we assess the effectiveness of the proposed method by comparing differ-
ent aspects of three handoff strategies, namely, the optimal policy, the best fixed
(sub-optimal) threshold policy, and a non-optimal threshold policy with thresholds
equal to the value of 0. The results in Table 2 show that the optimal strategy
achieves a better call quality while making fewer switches than the other two strate-
gies. Even the suboptimal strategy shows an improvement over the non-optimal
method in both call quality and expected number of switches. In interpreting the
expected number of switches we note that (1 — p) acts as a discount factor, so those
switches being made at a later time have less weight than those which occur closer to
t = 0. It is also worth emphasizing that the optimization scheme creates a balance
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Figure 5: A fork-shape path. At the position 5 mobile chooses one of the paths with
a pre-specified probability.

between call quality and number of switches; otherwise we could improve call quality
by choosing a very small threshold which obviously has the effect of increasing the
number of switches.

11 Conclusions

The problem of handoff in a cellular environment has been cast as a Markov decision
problem. We then exploit the well-developed machinery of Dynamic Programming
to derive the structure of the optimal handoff policy, and this under an interesting
range of model assumptions. The optimal policy is obtained by minimizing a cost
function that creates a balance between two conflicting measures, i.e., the number
of switches between cell sites, and quality of the call.

The optimal strategy is shown to be of the threshold type, a fact which greatly
facilitates its implementation. Through numerical computation we demonstrated
that the optimal policy outperforms the conventional non-optimal handoff policy
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Figure 6: Mobile path together with the optimum thresholds.

in both the number of switches between the cell sites and the quality of the call.
The proposed design methodology for handoff policies is also applicable for indoor
wireless communication as well as for personal communication systems (PCS); in
these situations the size of the cells are much smaller (microcells and picocells) and
the use of a sensible handoff policy is even more crucial.

Several extensions of the model studied here will prove useful. The optimal hand-
off strategy depends on the mobility model. In practice, different mobiles /portables
may have different patterns of movement, thus requiring different mobility models,
whereas a common handoff strategy may be desired for the system. This aggregation

Table 2: CALL QUALITY, VALUE OF C0osT FUNCTION, AND NO. OF SWITCHES

Value of Avg. call quality | Expected no.
cost function of switches
Variable threshold -19.01 -442.80 0.28
Best fixed threshold -18.58 -443.60 0.34
o-threshold policy -17.49 -444.15 0.63
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Figure 7: Optimum thresholds for each location in mobile path.

problem is a topic for further research.

Additionally, it would be useful to extend the results of this paper to situations
with multiple channels per base station and with more than two bases, and to
incorporate the possible non-availability of channels. Work is in progress.
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Figure 9: Effect of changing parameters on the optimum threshold.
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A Appendix

A.1 Proof of Proposition 4.1

The setup is that of Sections 4.1 and 4.2. We seek to characterize the conditional
distribution of Wiq = (W2, Wi ) given (Xi, St41)- To do so, fix wy = (w?, w})
in R?, and sy, 5441 in E. We readily see from the definitions that

[(Wis1 | Wi = we, St = st, Sta1 = St41]
W (8t+1 — bo)

=st
st41 — b1

| Wi = wy, St = 8¢, St41 = St+l]
S¢+1 — bo

Wi )
O(s = 0

Estﬂ - blg | St = st, Se41 = St41, g/ﬂ( ¢ — bo) i ]

( )

( )

_ W
Tt W (s¢ — b1) = w}
[ wo
wi

=st L
_ [WO(st1 — bo) | WO(st — bo) = w{]
| W (sear — br) | WH(se — by) = wy]

s¢41— b1

(A.1)

In this last step, the random variables [WO(s;11 — bo) | WO(s¢ — bo) = w?] and
[Wl(ste1 — b1) | W(sy — b1) = wi] are taken to be independent by virtue of the
independence of the collections of random variables {W*(r), r € R?}, i = 0,1. This
proves Claim 1.

Because the random variables {Wi(r), r € ]RQ} i = 0,1, are jointly Gaussian,
it is well known [7] that the random variables [W*(st41 — b;) | Wi(s; — b;) = wi] are
also Gaussian with mean ¢}, and variance Ciq, ie,

[Wi(se1 — bi) | Wi(se — bs) = wf) ~ N (chy1, Cipa)- (A.2)

The mean ¢}, ; is the conditional expectation of Wi(ssp1—b;) given Wi(sy—b;) = w},
and is given by

ci = EWH(ser1 —b)Wi(se — b)) E[|W(s; — b;)|*] ™ w}
= exp (=87 st — seal) wh (A.3)

Finally, the variance C}; is also the (unconditional) variance
Ci1 = E[[W*(st41 — b;) —exp (—ﬂ‘lllst - 3t+1”) - W(se — bi) ] (A4)

and Claim 2 is readily established using (A.4) and the enforced independence. ™
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A.2 Proof of Proposition 6.1

Fix an element ¢ in F. For every (z,%) in E x R? x{0,1} and every s’ in E, we
have

[ 167 014G | ") (A.5)
= lell [0+ KIp" = p°DdG0 | 2,5 (A.6)
= el [ 1+ KIZDAF(E! | 5,' =", 5) (A7)
< Jlell(1 + K(Alp" - p°| + B)) (A8)

Combining (6.8) and (A.8), we find
1+ K(A|z| + B) } ol
1+ K|z|
with the supremum being achieved at z = 0, and Claim 1, including (6.10), follows.
Claim 2 is an immediate consequence of Claim 1 once we note that the cost—
per-stage c given by (5.3) is indeed an element of F.

To establish Claim 3, we fix v = 0,1 and (x,%) in E x R? x{0,1}, and then
consider two elements ¢ and ¢’ in F. Obviously,

(Tu) (@) — (Tug)(@:9)|
(1 = DT (@) ~ (') ()|
< (1-0) T Qo) [ ol ) = ¢l wldG ! | 2,5). (410

s'eR

ITel < sup{ (A.9)
z€ER

But for each s’ in E, we have
[l ) = @& wldG () | 2, )
R
< llo-ll [0 +Kp" ~p°DdG0 |2,9)

= lp=¢/Il [ 1+ KIZDF(E | 59" =5
< Jlp - @II(L+ K (Alp* - p°| + B)). (A1)

Combining (A.10) and (A.11) yields

(Tup)(@,6) — (Tug)(z,3)| = (1 = p)llo — @' l(1 + K (Alp' —p°| + B))  (A.12)
so that (6.11) holds with constant L given by
_ 1+ K(A|z| + B)
L= f‘éﬁ{(l e } . (A.13)

This supremum is achieved at z = 0 by virtue of the fact that A < 1, and is therefore
given by the expression (6.12) for L. The choice of K implies0 <L <1. =
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A.3 Proof of Lemma 7.3

We begin with a technical result on non-increasing functions:

Lemma A.1 Let h : R — R be a continuous function which is non-increasing.
For each C > 0, the function Hc : R — R defined by

He(z) =min{C,—z + h(2)} —min{z,C + h(2)}, z€R (A.14)
is also continuous and non—increasing.

Proof: The continuity of H¢ is obvious. To show that Hc is also non—increasing,
we note by direct inspection that

He(z) = —z+4min{C + z,h(2)} — C —min{z — C, h(z)}
-z+C if z+4C < h(2)
= —22+h(z) if z—C<h(z)<z+C
—z—-C if h(z)<z-0C.

Next we define the sets AT and A~ as:
At ={z€eR:2+C < h(z)}

and
A" ={z€R:h(z) <z-C}

Using the continuity and non-increasingness of h, we see that these two sets are
non—empty, closed and connected subsets which are disjoint. Hence we necessarily
have AT = (—oo,a*] and A~ = [a~,00) with at < a~ (because C > 0). To avoid
ambiguities, we take a* = sup AT and ¢~ = inf A™. It is then also plain that the
set {z € R:2z— C < h(2) < z+ C} coincides with the interval (at,a™).

To conclude, we note that Hc is obviously non-increasing on each of the intervals
At, (a*,a”) and A~, thus on the entire real line by continuity. =

Take ¢ in C N'D. We first prove that T belongs to CN'D. By Lemma 7.2 we
already know that Ty is an element of C. Next, for each s in E, by (7.3) we have

(AT)(s,2) = ZS’EEQ(S; s') /R2 Ap(s',2)dF(?' | 5,2,5") z€eR. (A.15)

Hence, the mapping z — AT (s, z) is seen to be non—increasing once we note from
(5.7)-(5.10) that F(- | s, z, s') is the distribution of the random variable az+B+V0U
with o, 8,0 depending only on s and s', with & > 0 and U ~ N(0, 1).
Next we prove that T belongs to C N D, For every (s, z,i) in E X R? x{0,1},
we have
Tp(s, 2,1)

= min {c(z,i,u) +(1- p)(Tcp(s,z,u)}

u=0,1

= min{C + (1= p)(T)(s, 2,1 @ 1), (~1)'z + (1 = p)(Tp)(5,2)}
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Hence, specializing for i = 0,1, we get
To(s, 2,1)
= min{C+(1 - p)(T)(s,2,0), —z + (1 = p)(Tp)(s,2,1)}
= (1-p)(F)(s,%0) +min {C, 2z + (1 = p)(ATp)(5,2)}  (A16)
and
Tp(s,z,0)
= min{C+ (1= p)(Tp)(s,2,1), 2 + (1= p)(T)(5,2,0)}
= (1-p)(Tp)(5,2,0) +min {C+ (1~ P)(AT@)(s,2), 2} . (A1T)
Subtracting (A.17) from (A.16) gives,

(ATp)(s,2) = min{C, —z+(1- p)(ATgo)(s,z)} -
min {C’ + (1 = p)(AT)(s, 2), z} . (A.18)

By the first part of the proof, the mapping z — (AT)(s, z) is continuous and non—
increasing, and so is z — (ATy)(s,z) by a straightforward application of Lemma
Al =
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