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Path planning is an essential capability for autonomous mobile robot navigation. 

Taking inspiration from long-range navigation in animals, a neuromorphic system was 

designed to implement waypoint path planning on place cells that represent the 

navigation space as a cognitive graph of places by embedding the place-to-place 

connectivity in their synaptic interconnections. Hippocampal place cells, along with 

other spatially modulated neurons of the mammalian brain, like grid cells, head-

direction cells and boundary cells are believed to support navigation. Path planning 

using spike latency of place cells was demonstrated using custom-designed, multi-

neuron chips on examples and applied to a robotic arm control problem to show the 

extension of this system to other application domains. Based on the observation that 

varying the synaptic current integration in place cells affects the path selection by the 

planning system, two models of current integration were compared. By considering the 

overall path execution cost increase in response to an obstruction in the planned path 



  

execution, reduced spike latency response of a place cell to simultaneously converging 

spikes from multiple paths in the network was found to bias the path selection to paths 

offering more alternatives at various choice points. Application of the planning system 

to a navigation scenario was completed in software by using a place-cell based map-

creation method to generate a map prior to planning and co-opting a grid-cell based 

path execution system that interacts with the path planning system to enable a simulated 

agent to do goal-directed navigation.  
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Chapter 1: Introduction 

1.1 Motivation and Problem Statement 

Understanding the neural mechanisms underlying animal navigation over long 

distances based on spatial memory has the potential to help build better autonomous 

mobile robots as well as provide insight into how sequential planning could operate in 

any task domain.  Most extensively studied in rodents, the hippocampus and associated 

brain areas have been implicated in memory-based navigation tasks (e.g., mazes). Place 

cells, found in the mammalian hippocampus, are believed to be involved in the 

implementation of a neural map of space [1]. In this research, we present a spiking 

neuron model and a neuromorphic implementation for path planning inspired by place 

cells that use spike latency in the pathfinding process (see Fig. 1.1). 

 

 
Fig. 1.1. A hypothetical experiment is described, where a rat is deciding between 
multiple paths to the goal in a maze. The maze is mentally represented as a collection 
of places, where being at a place is signaled by the activation of a place cell in rat’s 
brain. If spreading waves of neuronal activity indicate a way to the goal, then the 
paths selected by the rat would depend upon the transmission of spikes between the 
neurons. Depending upon how neurons integrate the charges deposited by spikes, 
different paths may be selected for navigation. From [2]. 
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A neural map is different from our common understanding of a map, metrically 

accurate, at a fixed scale, and acting as a passive repository of information [3]. The 

neural map is not metrically accurate everywhere, represents only locations that are 

known, and is embedded in the interconnections of a neural network that can perform 

data and context-dependent computations. This map can be visualized by taking 

electrical recordings from place cells in rodents that are performing tasks in a testing 

arena and superimposing the time-averaged spiking activity of the place cells on an 

image of the testing arena. The place cells' receptive fields (a.k.a. place fields) are 

responsive to sensory and odometric information. The shape and size of the place fields 

are created based on the context and are not fixed [4]. Recordings made while an animal 

is asleep reveal that place cells become active in sequences that corresponds to a replay 

of the activity recorded during wakeful experience [5]. Additionally, when the animal 

is awake and its motion is interrupted, the sequences of place cells activity are 

suggestive of planning [6]. The place cells appear to operate as a dynamic interface to 

the spatial memory and can be used for probing the relationship between known places 

and thus memory-based path planning. 

Although long-range path planning based on conventional large-scale metrical 

maps can accomplish the task, a neuromorphic solution based on a neuromorphic 

spatial map would likely be a memory and energy efficient solution for doing this 

processing on-board in the long term [7], [8]. Place cell based planning has been tested 

using software simulations [8]–[11], robotic implementations [12], [13] and spiking 

neuron based path planning [7], [14] on neuromorphic VLSI. This research adds 
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decoding the spiking activity to find direction for path execution and how introduction 

of biologically-plausible synapse and neuron properties influence path planning. 

1.2 Dissertation Overview 

The dissertation is organized as follows. The second chapter provides the 

background for this research. Models for the representation of space, spatially-

modulated neurons of the brain and models for navigation are described. The third 

chapter describes the navigation system model. An overview of the navigation system 

and simulations for mapping, planning and path execution are presented. The fourth 

chapter covers design, operation and testing of the neuromorphic VLSI system. The 

system organization and the operation of multi-neuron chips are explained and 

characterization tests necessary for using the chips for path planning are reported. The 

fifth chapter explains how the neuromorphic VLSI system is used for path planning. In 

this, the operation of the temporal winner-take-all, common path planning examples 

and controlling a robotic arm example are discussed. The sixth chapter introduces 

synaptic-dependent spike-latency models, presents examples that use these models and 

provides a method to interpret the effect of the model choices on path planning. The 

seventh chapter provides a short summary, contributions of this research and possible 

improvements. In Appendix-A, the effect of fabrication mismatch on spike latency is 

analyzed. In Appendix-B, the effect of transistor size on subthreshold current for 

transistors with the same aspect ratio is presented. In Appendix-C, programming PFET 

floating gate voltage by tunneling and impact-ionized hot-electron injection is 

discussed for some test circuits and extracted model parameters for SPICE simulation 

of floating gate transistors are provided. 
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Chapter 2: Background 

2.1 Spatial Representation in Animal Navigation 

Animals use many strategies for navigation. For short range movement, 

actions such as doing a random search, following a beacon, keeping track of self-

position using dead reckoning and piloting with respect to the surrounding scene [15] 

are used. To carry out long-range navigation, however, an animal must possess a 

mental representation of different "places" and their spatial relationships. Exactly how 

this is represented in the brain is still a topic of debate. Possible theories (see Fig. 2.1) 

suggest place recognition-triggered responses, topological map or "survey map" like 

representations [16]. 
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2.2 Spatial Cells in Rodents 

Neurophysiological research on rodents in mazes suggests that place cells 

provide a neural substrate for a spatial map [1] (see Fig. 2.2). Experiments reveal that 

place fields represent recognized places in an allocentric reference frame. Interestingly, 

a place cell can represent multiple places in different contexts or environments. It 

should be noted that while much research has described how place cells respond to both 

(a)  

(b)  

(c)  
Fig. 2.1. Three different hypothetical spatial representations of a maze in a rat’s head 
for finding the cheese, based on [16]. (a) A fine-grained, memorized, behavior 
policy map leading the rat from any starting location to the cheese. Once the map is 
in place, the rat does not need to make decisions. Returning to the starting position 
would require a new map. (b) A memorized spatial relationship map does not 
prescribe actions, but just informs the rat how to move from place to place. To 
navigate, the rat must explore its memory and make decisions. (c) Here, the rat infers 
from memory the distance and direction to the cheese and determines in real-time 
how to navigate the obstacles. From [2]. 
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sensory cues and to odometric cues, the circuitry for producing these place fields is still 

poorly understood. Other types of cells (see Fig. 2.2) that are known to provide spatial 

information are head-direction cells, grid cells and boundary cells [17], found in the 

parasubiculum, entorhinal cortex and subiculum [18].  

 

 

 
Fig. 2.2. Showing the spatially dependent activity of different cells in the 
hippocampal formation and surrounding regions that represent space. From the top-
left going in clockwise direction: place cell, grid cell, head direction cell and 
boundary cell. Place cell activity represents the memory of specific locations. Grid 
cells have a triangular-grid activity pattern that appears to provide a metric 
representation of space. The head direction cell activity indicates when the animal’s 
head is pointed in a certain direction. Boundary cell [17] activity indicates when an 
animal is facing a boundary in a certain direction. Modified with permission from 
[18]. 
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2.3 Models for Spatial Navigation 

How animals associate actions to reach goals using place cells is currently 

believed to be based on reward or latent learning mechanisms [19]. Synaptic weights 

from place cells to motor neurons could be modified using a delayed reward activity 

such that, during navigation, the activity of place cells could activate the motor neurons 

to replicate previous actions that generated the correct movement towards a goal [20]. 

Alternatively, the spatial relationship between places could be learned using the 

synaptic connections between their corresponding place cells. The direction to the next 

intermediate place of movement could be found by a phenomenon akin to mental 

search. There are several ways in which this process could be modeled [10], [11], [21]. 

2.4 Prior Work in Neuromorphic VLSI 

Beyond software simulation, neuromorphic VLSI has been used to simulate the 

function of head direction cells, grid cells and place cells [22]–[24]. To build memory-

based navigation capability on-chip, these elements are beginning to be integrated to 

develop a model of map creation and use [53],[54]. In this research, it is assumed that 

the neural map is a topological map of recognizable places and that animals navigate 

by mentally “hopping” sequentially between places in the known map. The 

interconnected network of place cells can be depicted as a graph, where the nodes of 

the graph correspond to place cells and the relative positions of the nodes correspond 

to the relative positions of the places in the physical space where the place cells become 

active. Thus, neighboring place cells in the graph correspond to neighboring places in 

the physical space. We simply refer to this network as the “map” in this dissertation. 

Memories of places and the spatial relationships between places are stored when 
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animals explore an area for the first time. Also, the spatial relationship between a place 

and neighboring places is stored as a “sensory view” observed at the place. By recalling 

the sensory view at the present location and knowing the next place to navigate to in 

this view, the animal is able to direct itself to the next place in the path to the goal (i.e., 

waypoint). In the work presented here, the next step in the path is found by: 1) spreading 

activation in all directions through the network starting from the place cell representing 

the goal location, 2) by monitoring the network neighbors of the present-location place 

cell for the arriving wave of activation, and 3) identifying which neighbor activates 

first, representing the next closest place along the shortest path (in hops) to the goal 

(see also [25], [26]). This model uses time to integrate the number of steps to the goal 

along multiple paths simultaneously. Long-range navigation is typically broken into 

temporally distinct steps such as mapping, planning and execution of the plan. This 

research focuses on the planning portion of the problem. We will, however, discuss 

how the mapping and execution behaviors interact with planning because they are 

intimately coupled. We note that there are other models that propose that place cells 

represent the transition between places that are represented in the entorhinal cortex 

[13]. 
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Chapter 3: Neuro-Inspired Navigation System Model 

3.1 Introduction 

Navigation, the act of deciding where to go and the monitoring of this 

movement, is a critical survival skill. Although navigation can involve many different 

spatial scales and sensory systems, in this research, the focus is on path-planning based 

on spatial memory (i.e., internal representations of space) and occurs prior to each 

movement. 

In this chapter, prior modeling efforts towards designing hippocampally-

inspired navigation systems are discussed, followed by a description of our navigation 

system and computer simulations to explain the working of the entire system on an 

example maze. Navigation is treated as a process with three temporally distinct steps: 

mapping (prior experience), path planning (based on internal memory) and path 

execution (external motor actions). Simulations of the three processes are explained to 

provide a context for the neuromorphic path planning system that is presented in the 

next chapter. 

3.2 Prior Models 

Various approaches have been used to model a biologically plausible navigation 

system that can explain the role of place cells in navigation. Using odometry to 

represent inputs and using place cells as basis functions to represent space are popular 

choices [10], [11], [27]–[29]. There are examples of vision-based place cells 

representations as well [20], [30], [31]. Spatial learning examples have been 

demonstrated by showing generation of place fields in response to odometry and/or 



 

 

10 
 

visual inputs [20], [32]. Navigation learning examples have been demonstrated by 

creating interconnected network of place cells where the movement between the 

starting and ending locations is determined by the movement between the intermediate 

waypoints [11], [27], [30] or by associating an action with every place cell for a 

particular goal [29], [32], [33]. Some methods combine both approaches for navigation 

[9], [34]. While using an interconnected network of place cells, graph search or activity 

diffusion is used to determine the sequence of actions [10], [11], [21], [30]. In the other 

approach, also called the stimulus-response strategy, place cell activity is sufficient to 

drive the motor neurons activity [27], [29], [32]–[34]. In the surveyed literature, in 

models that use activity diffusion to explore the candidate paths, the activity is either 

initiated from the goal location place cell or from a neighbor of the present location 

place cell. When the activity is initiated from the goal location place cell, the 

neighboring neurons of the present location place cell are probed to select the next 

action [10]. When activity is initiated from a neighbor of the present location place cell, 

then the activity level at the goal location neuron is evaluated for different neighbor 

neurons or directions [21] before selection the action for movement. Path execution is 

generally carried out by generating a heading direction based on comparison of the 

stored odometry information [11], [27] or stored visual snapshots [30] or by executing 

actions associated with the current place [32]–[34]. Many models have been tested on 

mazes in simulations that were previously used in the wayfinding experiments [10], 

[29], [33], [35] and some have been implemented on robots as well [20], [30], [31]. 

Our approach follows the activity diffusion strategy, however, we make use of 

spike latency instead of firing rate. Instead of carrying out direction probing or using 
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directed activity gradients, we use the notion of top-down attention to simultaneously 

consider all directions possible at the current location. Other work that use a similar 

approach are [25], [26]. In [25], rate based neurons are used to represent place cells. 

This causes activity spreading from the goal to decay exponentially over the neural 

network limiting the maximum range between the goal and present location. In [26], 

spiking neurons are used, but instead of using spike latency, phase of spiking frequency 

is used. The place cells are stimulated externally and the goal place cell is stimulated 

with a stronger input. This creates a slight shift in the phase of periodically firing 

neurons in the network starting from the goal location place cell. Using a difference in 

phase of firing in the place cells neighboring to the present location place cell, the 

direction of movement is determined. It is noted here that the neuromorphic VLSI 

system uses spiking neurons, but in the simulation firing rate based neurons have been 

used.  

3.3 System Overview 

In this research, mapping, path planning, and path execution processes are 

carried out in sequence, i.e. they do not operate simultaneously. Mapping is carried out 

while the agent is exploring the maze. After exploration is complete, the agent can 

revisit a previously memorized location by completing multiple cycles of path planning 

and path execution until the goal is reached.  

It is assumed that mapping and planning are two distinct steps. It has been 

observed in rodent electrophysiology experiments that when an animal, moving about 

in a maze or an arena, switches its behavior from moving to waiting or vice versa, the 

hippocampal place cell activities transition from one type of activity to another [18]. 
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We assume that while the animal is moving, it creates a spatial representation of the 

environment and when it comes to a stop, it can plan its next movement. When the 

animal explores, different place cells in its hippocampus fire at various locations in the 

environment and the activity response of place cells to these locations are learned 

during the exploration. In the periods while the animal is stationary, there is large 

irregular activity in the hippocampus that are called sharp-wave ripples. During these 

events, time-compressed sequences of activities have been observed [36] and it is 

believed that some of these activities could represent planning [6]. Although these 

sequences are interpreted in the context of forward planning starting from the present 

location, there is evidence for “remote” replay of activities as well [37]. We note that 

this description also implies that switching between mapping and planning occurs from 

time to time, but in this work, mapping is completed first and then planning is carried 

out.  

Place cells exhibit many other properties that have not been incorporated in this 

work. For example, place cell spikes exhibit phase precession [38] with respect to the 

theta rhythm in the local field potential. Place cells also exhibit sequential activities 

during sleep [5], [39]. Many of these sequences are replays of recent activity recorded 

during a waking experience and there is a study reporting Brownian diffusion-like 

activity in place cells [40] that are believed to support memory consolidation. Although 

these processes could interact or affect the map formation and planning processes, these 

are not included in this research.  
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3.4 Map Formation 

To explore how a map is created, a MATLAB® simulation of both an agent 

and its environment was created. An example of a maze exploration along with agent 

visit frequency of different locations in the maze is provided in Fig. 3.1. The agent 

explores the maze using an obstacle avoidance algorithm [41] based on a simulated 

sonar sensor.  
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Maps can be created on the first exposure to the environment (first foray), 

however, multiple opportunities to explore will enrich the map connectivity and more 

fully discover how places are interconnected. The agent has a population of place cells 

that initially do not represent any place in the maze. If an agent encounters a new place, 

a new place cell is selected from a reserve population to represent it. As the agent 

explores, if there is very low activity in the place cell population (i.e., maximum 

 

           
Fig. 3.1. Top:  Example maze exploration using a simple obstacle avoidance 
mechanism [41]. Bottom: Number of visits at different locations inside the maze. 
Bins with visits greater than 5 are black in color. Bins with no visits are white in 
color. 
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activation is below a threshold level), then a place cell that has not been recently active 

is recruited from the population. Specifically, when the maximum activity falls below 

a certain threshold (𝜗), a new place cell that has the maximum activity is selected. 

Equations (3.1)-(3.3) represent the place cell “recruitment” process. When a place cell 

is recruited, its 𝑡  that is initially infinite is assigned the time of recruitment and the 

place cell is associated with the coordinates of the agent. Additionally, it is not used 

immediately to represent another place in the same environment. Using a parameter, 𝜌 

that decays with time, the recruited place cell is made less likely to be selected again. 

The parameter values are provided in Table 3.1.  

 

If 𝐻 𝑟 𝑡 𝜗 0
∈

 (3.1) 

Where H() is the Heaviside step function and P represents the population 
of place cells. 

 

Then  𝑝 𝑡  𝑎𝑟𝑔max
∈

𝑟 𝑡 𝜌𝐻 𝑡 𝑡  (3.2) 

 𝑥 , 𝑦 𝑥 𝑡 , 𝑦 𝑡  (3.3) 

 

The receptive fields of the place cells (a.k.a., “place fields”) are modeled as 

Gaussian functions responsive to the position of the agent at the time of recruitment. 

Although these receptive fields could be created using sensory information (vision or 

sonar echo patterns) and/or a grid cell-based neural model of odometry, for the 

Table 3.1. Parameter values for place cell recruitment and map formation 
 

parameter value units 

ϑ 0.5 Hz 

ρ 2 Hz 
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purposes of demonstrating the path planning chip, we have chosen to model the place 

fields simply by using internal simulation coordinates. If using sensory and odometric 

inputs, the method of growing cell structures [42] could be used to create the map. The 

actual function used in the simulation to model the place cell activity function is a 

hyperbolic tangent of a Gaussian function and the mean is the location, where the place 

cell was recruited. Equations (3.4) and (3.5) represent the place cell activity. Their 

parameter values are provided in Table 3.2. 

 

𝑟 𝑡 1 tanh 𝛼 𝑒𝑥𝑝 𝜃  (3.4) 

𝑑 𝑡 𝑥 𝑡 𝑥 𝑦 𝑡 𝑦  (3.5) 

 

pi is the ith place cell and 𝑟 𝑡  represents the firing rate activity. (𝑥 𝑡 , 𝑦 𝑡 , 

𝜑 𝑡 ) are the state coordinates of the agent. xb and yb represent its position in the maze 

and φb represents its orientation with respect to fixed axes. (𝑥 , 𝑦 ) was used to 

model the place cell receptive field. 𝛼 , 𝜃  shape place cell activity function and 𝜎  

controls the width of the place field. It is of interest to note that these neurons are many 

steps away from the sensory or motor stimuli, but in our simulations their values 

represent the instantaneous location of the simulated agent. Prediction using motor 

information could support this assumption [43]. 
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As the agent moves through the arena, different groups of place cells become 

active as the agent passes through their overlapping receptive fields. Synaptic links are 

created between place cells when they are co-active. Through this process, a graph of 

linked places is created to represent the agent’s understanding of the maze (see Fig. 3.2 

and 3.3).  

Table 3.2. Parameter values for place cells 
 

parameter value 

αp 10 

θp 0.8 

σp 60 
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Fig. 3.2. During maze exploration, place cells are linked to create a map. The agent 
starts exploring the maze at the bottom. A snapshot of the place cell population is 
shown on the left. Square colors represent different states: white: cells not 
representing locations in the map, grey: cells already representing locations in the 
map, and black: freshly recruited place cells. The dots in the maze represent 
obstacles and there are two main sections in the maze separated by an arc-shaped 
wall.  The agent is initially oriented towards the section on the right and is guided 
by an obstacle avoidance algorithm with a default to move straight-ahead. As the 
agent explores, place cells from its reserve population are recruited to represent 
places that are not recognized from memory. The receptive field centers of place 
cells receptive field are indicated on the maze by a circle, the location of the animal 
when the place cell was recruited. When the agent returns to the vicinity of a place 
it has visited before, its corresponding place cell reactivates and no new place cells 
are recruited. From [2]. 

 
Fig. 3.3. Showing the map formation process. As the agent continues exploring the 
maze, more place cells are recruited to represent new places and links are formed 
between the place cells that represent the possibility of passage between the two 
places. The thick blue lines indicate previously formed links and the thin red line 
indicates the formation of a new link. The figure on the right indicates the final 
network of place cells that was created for the maze. From [2]. 
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There are many options for the decision to create a synaptic link between place 

cells, however, in this model of map creation, a link is meant to represent traversability 

and in most cases this is bidirectional even if it was not directly experienced. As a 

result, co-active place cells can sometimes be inappropriately linked even when no 

traversable path exists (e.g., when an agent activates place cells on either side of an 

obstacle.) It should be noted that this bidirectional synaptic link represents the memory 

of expected traversability and not the specific experience that led to this memory.  In 

addition, the link will need to contain more information for the agent to move from 

place to place. 

An example of the map and motor actions that allow movement between places 

are shown in Fig. 3.4. In the map, the nodes represent places and edges represent 

traversable paths. The edge density for every node is determined by the environment 

that is mapped. It is believed that animals create and maintain separate maps for distinct 

environments [44]. There are computational studies [45], [46] that provide a 

mechanism to store multiple maps in the same neural network map. However, for 

simplicity, only one environment map is used in this simulation.  
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It is also possible that other places were visited, but their corresponding place 

cells were not linked, for example, when a new passage is found. As a result of this 

implementation, new links to previously visited place cells are made earlier than new 

links to new place cells (see Fig. 3.5). The place cell association with 2-D coordinates 

are assumed to be stable. 

    

    
Fig. 3.4. Top-Left: Place fields of the place cells recruited during the mapping 
simulation. Top-Right: Place cell to place cell links are indicated by a black bin at 
place cell index coordinates. Bottom-Left: Map showing place cell to place cell 
connectivity. Bottom-Right: A whisker plot was generated by plotting the response 
of motor neurons to grid cell activities corresponding to connected place cells in the 
cognitive graph. 
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3.5 Path Planning 

Once the map is acquired, the agent can perform a search to go to a memorized 

target. This process is similar to the breadth-first search algorithm and it is used to find 

the sequence of waypoints to reach the target. The process is called spreading activation 

 

 
Fig. 3.5 The top panel shows place-cell-to-place-cell link formation during the first 
trial in a 1-D passage. The dots at the top represent the time of place-to-place link 
formation. The bottom panel shows place-cell-to-place-cell link formation in a 
subsequent trial, where the place cells have been recruited, but no links were 
previously created. Such a scenario can take place where walls between adjoining 
places were removed after place representations were learned. The dots at the top 
represent place-to-place link formation time. The linking time is earlier in the 
scenario when place fields already exist.  
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and this mechanism is an attractive choice for modeling the search process. An example 

of a typical spreading activation mechanism is shown in the Fig. 3.6. 

In the neural network, a short stimulation of the target neuron, similar to [11] 

activates it and causes a controllable spread of activity across the network. Equations 

(3.6)-(3.8) are the neuron model equations used. 

 

𝐼 𝐼 𝛼 𝑡𝑎𝑛ℎ ∑ 𝑤 𝑟 𝛽 𝐼  (3.6) 

𝑟 1 tanh 𝛼 𝑠 𝜃  (3.7) 

𝛾 1 𝐼 𝑟  (3.8) 

 

 𝐼  is a lumped current injected into all neurons and models the background 

current. 𝐼  is a stimulus current provided to ith neuron. It is used to provide stimulation 

to the target place cell and inhibition to the place cell near a threat. 𝑠  represents the 

synaptic charge in the neuron. The synaptic charge is also provided by recurrent 

connections from other neurons in the network. The neuron has an adaptation current 

𝐼 that acts as the refractory period and makes the neuron repolarized after a short span 

of activity. 𝜏  and 𝜏  are time constants of the neuron and the adaptation current. 𝛼  

controls the contribution of other place cell activities to the firing of a place cell, 𝛽  

controls the strength of Calcium adaptation current and 𝛾  is one of the parameters that 

controls the delay in adaptation. 𝛼 , 𝜃  are same as in equation (3.4). In an actual neural 

circuit, the interneurons play an important role in ensuring that the activity is controlled, 

however, in this simulation, we do not model these. The parameter values used in the 

equations are provided in Table 3.3. 
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For selecting an action, it is important to know where the agent is presently at 

and what actions are possible at the present location. Every place cell in the network 

has a set of direction neurons corresponding to its neighboring place cells in the map. 

Each direction neuron receives an input from the corresponding neighboring place cell 

and sends an output to a local inhibitory neuron that sends an inhibitory input back to 

all direction neurons associated with the place cell, forming a winner-take-all (WTA) 

network. When the goal-location place cell on the map is stimulated, it causes the 

activity to spread over the network.  At the present location place cell, the direction 

neuron that receives the earliest activity becomes active and by activating the local 

inhibitory neuron inhibits the other direction neurons. We assume that there is a 

mechanism to attend to only the direction neurons corresponding to the present location 

place cell and by observing the activity of the direction neurons, the next waypoint to 

move to is known. This is shown in Fig. 3.7. 

Table 3.3. Parameter values for spreading activation in the map network 
 

parameter  value 

τp  3.33 

τCa  2 

αr  1.5 

βr  3 

γr  0.9 

Ibias  0.2 
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Fig. 3.6. Top panel: Time zero for spreading activation through a network, where 
the activity starts from the node (representing a place cell) with the red filled circle. 
The size of the red circle represents the activity level of the place cells. Bottom panel 
shows the population activity after a few time steps. The activity of the starting node 
drops and the activity wave spreads through the network. The dashed circle 
represents a winner-take-all with the direction neurons and the node inside of it 
represents the present location place cell.  
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Fig. 3.7. Top panel shows spreading activation through a network. The size of the 
filled red circles represents the activity level of the place cells. In the bottom panel, 
activation of the direction neuron is shown. The dashed circle represents a winner-
take-all with the direction neurons and the node inside of it represents the present 
location place cell. Here the direction neuron on the right-side, corresponding to the 
activity wave coming from the right is activated. 
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3.6 Path Execution 

While the “winning” direction neuron indicates the next place cell along the 

path on the graph, the actual direction of movement from one place field to the next 

place field in the physical space is also required. A way to accomplish this is provided 

in [47] (also see [48] for variants of this approach and [49] for practical 

implementation) where activity patterns of two populations of grid cells are compared 

to move between two locations. 

The activity pattern of the first grid cell population provides the present location 

and the second grid cell population acts as a memory to previously visited places. This 

model is easily incorporated in the mapping process. During the mapping step, when a 

place cell is recruited to represent a place, grid cell activity pattern at that moment is 

stored. During execution, the grid cell activity pattern that is associated with the 

remembered place is recalled and compared with the present grid-cell activity pattern 

to compute the direction for movement (see Fig. 3.8).  

An example is shown in Figs. 3.9 and 3.10 to explain path execution. In this 

example, the waypoint location is at the origin. The agent is at some distance from the 

waypoint. Due to inaccuracy in landing at the center of the place field, it is assumed 

that the agent could be located anywhere along a horizonal line and based on the 

response of the motor neurons to the grid cell activities, the agent will move towards 

the waypoint located at the origin. The direction computed to the waypoint is indicated 

using the direction vectors in Fig. 3.9. The error in the direction estimates is also shown. 

The actual path taken by the agent starting from any location along the horizonal line 

to the waypoint is shown in Fig. 3.10. Also, the error distance from the center of the 
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place field is shown. The movement is terminated when the maximum activity of the 

motor neurons drops below a threshold value. 

 

In the mapping step, the grid cell activity pattern is stored in the synaptic 

weights from direction neurons to the population of grid cells, such that when the 

direction neuron is selected later by the WTA, its activation recreates the grid cells 

 

 
Fig. 3.8 The top figure shows the association between grid cell activity pattern and 
direction neurons that happens during place cell recruitment while the agent 
explores the environment to create a spatial map. The bottom figure shows path 
execution, where the waypoint memory is reactivated by the direction neuron that 
fires after the path planning cycle completes. By comparing the activity patterns of 
the two grid cell populations, it is possible to determine the movement direction to 
the waypoint. Based on [50]. NOTE: Solid gray indicates active neuron. 
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activity pattern. By computing the physical direction to the next place cell, the agent 

moves to the next waypoint in the plan. This is shown in Fig. 3.11. 

 

 

 
 
Fig. 3.9. In the top panel, finding the direction to the waypoint using grid cell 
population activity is depicted. The agent moves from the origin towards a location 
lying along a horizontal line (parallel to the x-axis). Nine different paths are shown. 
Once the agent reaches the location, the direction to the origin is computed using 
the grid cell activities at that location and the origin. In the bottom panel, the 
absolute decoding error is presented for different end locations of the agent. 



 

 

29 
 

 

 

 
Fig. 3.10. The top panel shows paths that the agent takes back to the origin from 
different locations. Nine different paths are shown. The agent moves from the origin 
towards a location lying on a horizontal line and returns to the origin. The return 
path is shown in blue. The bottom panel shows the distance between the origin and 
the agent at the end of movement. The agent moves at a constant speed towards the 
origin. The movement angle is decoded based on the activities of the grid cell 
populations at the present location and the origin. The agent stops when the motor 
neuron activity falls below a threshold level.  
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Although many different mechanisms could be utilized to accomplish the 

movement at this step (including a more sensory view approach), we have used this 

grid cell memory approach in this work. 

3.7 Summary 

In this chapter, previous modeling efforts towards hippocampally-inspired 

navigation systems were discussed, followed by a description of our system and a 

complete navigation simulation. The focus of this research was path planning, but to 

provide an example of the application of this model to navigation, the mapping and 

path execution steps were performed with a computer simulation. A spatial map was 

created by ensuring that every visited location had sufficient place cell activity. For 

 
Fig. 3.11. Snapshot during the path execution process. The grey line segments 
represent the path just taken. The black line segment represents the path currently 
being executed. The whisker plot represents the possible directions the agent is 
using to move towards the goal. Not shown is the spreading-activation path planning 
process. The memorized and present-location grid-cells activity patterns that are 
compared to determine the direction for movement. These are based on [47]. The 
planning and execution cycle is repeated until the agent reaches the goal. 
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long-range navigation, it is necessary to store the spatial relationship between adjacent 

places and this was accomplished by synaptically linking place cells when the agent 

crosses the corresponding overlap of the place fields. For path execution, it is necessary 

to store information of how to move between two locations. This was accomplished 

using grid cell activity and a system that can compare the activity of two different grid 

cell populations and generate a direction that allows movement between the locations. 

Path planning was carried out by using a wave of activity spreading across the neurons. 

Each place cell had a WTA circuit that indicates the direction of the earliest arriving 

activity to the place cell. Path execution was carried out using a neural network (based 

on [47]) that can generate the direction of movement between the present location and 

a memorized waypoint by comparing their corresponding grid cell activities.  
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Chapter 4: Neuromorphic VLSI System 

4.1 Introduction 

Neuromorphic VLSI provides a low-power solution to implementing neural 

algorithms. Recently, there has been a growing interest in the use of spiking-neuron 

based systems for robotics applications [51], [52], targeting either small platforms [7] 

or for testing biologically-plausible neural networks [53], [54]. Currently, the popular 

approach is to use computers or graphics processors, however, in the long-term, 

implementing neuromorphic VLSI solutions to biologically-realistic, neuron-based 

systems would be more power and area-efficient.  

In this chapter, the custom-designed, multi-neuron chip that was used in the 

path planning system is described and the operation of the synapse and neuron circuits 

is explained. The path planning system architecture with spiking neurons is presented 

here. It is based on the model discussed in the previous chapter, but the spiking neuron 

implementation of that system is presented here. Then, the system-level connection 

incorporating a microcontroller for interfacing with the multi-neuron chips is 

described. Results from characterization tests relevant to the use of these chips for path 

planning are also presented here.  

4.2 Multi-Neuron Chip 

The multi-neuron chip was fabricated using a commercially-available silicon 

foundry service in 0.5-µm technology with double polysilicon and triple metal layers. 

Each multi-neuron chip has sixteen integrate-and-fire neurons on it (see Fig. 4.1). The 

integrate-and-fire neuron circuit is similar to [55]. There are eleven individually-
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addressable synapses per neuron (eight excitatory and three inhibitory) and one global 

inhibitory synapse that is used to inhibit all neurons simultaneously.  There is a fully-

arbitered AER encoder [56] on the chip that transmits neuron addresses for outgoing 

spikes. The standby power for a single chip is less than 1 nW and the operating power 

consumed by the 4 chips along with external biasing circuits is 7.5 mW. The newer 

version of the chip (also shown in Fig. 4.1) has thirty-two neurons and each neuron has 

fifteen individually-addressable synapses (nine excitatory and six inhibitory) and one 

global inhibitory synapse. The refractory period parameter on this chip has a longer 

range. 

 

4.3 Synapse Circuit 

The excitatory and inhibitory synapses are implemented with identical core 

circuits (shown in Fig. 4.2 (a)). The inhibitory synapse output is directly fed to the 

 
Fig. 4.1. Photomicrographs of multi-neuron chips. The first chip (left) has sixteen 
integrate-and-fire neurons in it. Each neuron has twelve synapses. There are eight 
excitatory, three inhibitory and one global inhibitory synapse. The second chip 
(right) has 32 integrate-and-fire neurons in it. Each neuron has sixteen synapses. 
There are nine excitatory, six inhibitory and one global inhibitory synapse. The area 
of both the chips is 2.25 mm2. First figure taken from [2]. 
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neuron circuit to draw current out of the postsynaptic cell, whereas the excitatory 

synapse output is fed to a current mirror that reverses the current direction and injects 

current into the postsynaptic cell. The global inhibitory synapse circuit (shown in Fig. 

4.2 (b)) is identical to the synapse circuit, but the transistor that selects the neuron to 

be inhibited is removed. Whenever the global inhibitory synapse is selected, it sends 

inhibitory currents into the entire neuron population. 

The synaptic circuit is based on the Reset-and-Discharge synapse [57]. Every 

time the synapse receives a spike, it generates a current with a square pulse. If another 

spike is received after the first spike, then the spike pulse gets extended by a width 

equal to the delay between the input spikes. The node with the capacitor (the “pulse 

timer”) gets reset with each incoming spike to the initial voltage. The output current of 

the transistor is controlled by using another transistor that is biased in the subthreshold 

region. 

A polyI-polyII capacitor of 90 fF is used to generate a time constant of greater 

than 10 ms. The voltage that controls the timer length is called VDUR and the voltage 

that controls the output current is called VSYNP. 
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4.4 Neuron Circuit 

The neuron circuit is shown in Fig. 4.3. A key feature of the path planning 

mechanism is the time delay between a spike arriving at a neuron and when the neuron 

fires a spike. To obtain well-controlled integration times and smaller jitter, an integrate-

and-fire neuron model was used. A source-follower stage was added to the membrane 

(a)  
 

(b)  
 
Fig. 4.2. Showing the synapse circuits. (a) Transistors M1 and M2 are used to select 
the neuron and synapse pair. M3, biased in the subthreshold provides current to 
recover the voltage on the capacitor. State of M4 controls the current width and M5 
controls the current level. (b) Showing global inhibitory synapse, transistor M1 is 
removed so that a spike sent to global inhibitory synapse affects all neurons on the 
chip. Top figure taken from [2]. 
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voltage to effectively increase the spiking threshold to get longer integration times 

without increased currents in the threshold inverter (M6 and M7). Transistors M1 and 

M2 collect the current from excitatory synapses and reverse the current direction. The 

inhibitory currents are directly fed into the node VMEM. Transistors M3 provides the 

leak current that is set by VLEAK. Transistors M4-M7 provide the threshold for the 

neuron. VSF is set to get a longer integration time before the neuron spikes. VTH is used 

to adjust the firing threshold. Transistors M8-M11 are a part of the axon hillock circuit 

(spike generator). The neuron sends out a request-to-send logic-level signal (REQ) to 

the address-event communications system (described in more detail below) on chip. 

On receiving an acknowledge signal (ACK) from the arbiter, the membrane potential 

is set to VRESET and the transistor goes into a refractory period that can be adjusted by 

using VREFR.  
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4.5 Architecture of the Planning System 

For path planning, spreading-activation is implemented as the propagation of a 

spike-wave emanating away from the goal-location neuron and eventually reaching the 

present-location neuron. The spreading-activation planning process and the neural 

architecture used to implement it are described using a small example in Fig. 4.4. To 

determine the “shortest path” through the map from the goal to the present-location 

place cell, the network must determine the direction (within the graph) of the first 

arriving spike (a.k.a., “temporal winner-take-all”, see [58], [59], [41]).  This will be 

 
Fig. 4.3. Integrate-and-fire neuron circuit, where VTH, VREFR and VRESET represent 
the firing threshold, the refractory period setting and the neuron reset potential. 
VLEAK is used to adjust the leakage current and VSF is used to adjust the current 
integration time. The width and length for all transistors are 3 µm. From [2]. 
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done by the addition of “direction neurons” associated with each link to a neighboring 

place cell. Each direction neuron also receives a synapse from the neighboring place 

cell and the direction neurons, in turn, send a synapse to a local inhibitory neuron that 

sends inhibitory synapses back to them. The direction neurons and the local inhibitory 

neuron form a temporal winner-take-all (WTA) network local to each place cell. The 

planning process is started by exciting the place cell that represents the goal location. 

When the goal location place cell fires, spikes spread from node to node throughout the 

whole network. As activity spreads through the network, the direction neurons and their 

respective local inhibitory neurons fire, implementing the WTA at each node. For each 

place cell, the direction neuron that fires represents the next place cell the agent should 

move to along the shortest path. Although the entirety of the shortest path can be found 

by following the winning direction cells from the present-location to the goal-location 

place cell, in this research, only the next movement is needed. By only attending to the 

direction neurons local to the present-location cell, only the next move is determined. 

After the agent has moved to the next place along the shortest path, attention is shifted 

to the direction cells at the new present-location place cell and a new path planning 

cycle is initiated. Repeating this process, the agent will travel from place to place along 

the shortest path to the goal. 

Instead of creating a temporal WTA circuit at every place cell, the whole 

temporal WTA network could be replaced by a single temporal WTA that is 

dynamically configured at the present-location place cell before every planning step. 

By using the WTA only at the present location place cell, the number of directions 

neurons used overall is reduced. 
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4.6 System Connections 

The neuromorphic VLSI system (see Fig. 4.5) consists of four custom multi-

neuron chips and one dsPIC® microcontroller (Microchip®). The multi-neuron chips 

communicate with the microcontroller using the Address Event Representation (AER) 

protocol [56] that transmits the unique address of each neuron at the time of a spike. 

 
Fig. 4.4. The neural architecture is introduced using an example map with 4 
locations and 5 paths. There are four place cells labeled 1-4. In the left panel, every 
place cell has direction neurons that correspond to inputs the place cell receives 
from other place cells. The connection details for place cell 3 are provided below. 
Place cells 2 and 4 make synaptic connections with place cell 3. They also send 
synaptic connections to direction neurons 2’ and 4’ respectively. A local inhibitory 
neuron, labeled 3”, receives excitatory inputs from the direction neurons 2’ and 4’ 
and sends inhibitory synapses back to them forming a temporal WTA. So, if place 
cell 2 spikes, it would also send spikes to the direction neurons (2’) of place cells 1, 
3 and 4. In the temporal WTA of place cell 3, the local inhibitory neuron (3”) would 
receive a spike from the direction neuron 2’, fire a spike and inhibit the other 
direction neuron (4’) from firing. In the right panel, the dotted circle is only around 
place cell 3 indicating that the agent is located at the place represented by place cell 
3. As in the left panel, the inhibitory neuron receives inputs from direction neurons 
2’ and 4’. The WTA connections are reconfigured after the agent moves to the place 
corresponding to place cell 4. So, the WTA receives inputs from place cells 1, 2 and 
3. From [2]. 
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The communication between the microcontroller and a desktop PC uses a serial 

communications protocol. The map, which is generated from the MATLAB® 

simulation, is programmed on the dsPIC using the MPLAB® software suite provided 

by Microchip Technology Inc. In this test configuration, the planning is initiated from 

the computer and the results are stored on the microcontroller and read out after each 

run is complete. 

 

 
(a) 

 
(b) 

Fig. 4.5. Neuromorphic VLSI system diagram. (a) Four custom multi-neuron chips 
are connected to a dsPIC® microcontroller. The microcontroller handles routing 
between the chips using the AER protocol. The network (or map) is stored on the 
microcontroller. A computer is used to configure the network, start a planning run 
and read out neuron spikes. The spikes generated are recorded on the 
microcontroller and read out after the run has completed. (b) Picture of the PCB. 
Two neuron chips are mounted on the bottom of the board. Figure (a) from [2]. 
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4.7 Fabrication Mismatch 

The neuron and synapse parameters are chosen such that a single incoming 

spike will make the postsynaptic neuron fire after a fixed delay. For fixed delay settings 

(using synapse-neuron pairs from three chips), we plotted a distribution of spike 

latencies (384 synapse-neuron pairs, see Fig. 4.6 (a)). The deviation due to fabrication 

mismatch is roughly 17.7 % of the mean spike latency value. To maintain consistency 

in the propagation delay for each link in the graph, a subset of the available synapses 

with more consistent propagation delays were selected for each neuron. There are 

different types of neurons in the network: place cells, direction neurons and a local 

inhibitory neuron. The spike latencies associated with the different neuron types are 

shown in Fig. 4.6 (b). The relationships between delay settings are important for the 

planning algorithm to work. Parameter values for the delay settings are provided in 

Table 4.1. Out of the four multi-neuron chips, one is configured to carry direction 

neurons. The remaining chips could be configured to carry place cells and local 

inhibitory neurons, because there are two sets of excitatory synapses with independent 

bias pins to select their parameters. 

For implementing the planning graph on the chip, the map generated by the 

mapping process is constructed taking into consideration the spike latency data. 

Enough number of neurons that have the minimum variation around a given spike 

latency are selected for planning. After the external voltage parameters are fixed to set 

the mean delay for the synapse-neuron latency, a sweep is performed for different 

latency settings, while looking for the synapses that meet the criteria. After enough 
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number of synapses are found, the neurons are picked for representing the cognitive 

graph. 

 

 
(a) 

 
(b) 

Fig. 4.6. Selecting the neurons for planning. (a) Distribution of neuron spike 
latencies for different delay settings, showing the relationship between mean spike 
latency and variation across the chips. The deviation is roughly 17.7% of the mean 
value and is due to device mismatch. (b) Histogram of measured spike latency 
setting for place cells, direction neurons and local inhibitory neurons taken from a 
single chip, i.e. 8x16 synapse-neuron pairs, where all neurons are configured as 
place cells, direction neurons or local inhibitory neurons. This is a combined plot of 
their latencies. Place cells selected for path planning are marked in the figure with 
an asterisk. From [2]. 
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4.8 Spike Jitter 

Jitter (standard deviation of the spike latency) was estimated by repeatedly 

stimulating a neuron and measuring the spike latency, providing sufficient time 

between spikes, to ensure that the neuron was well out of its refractory period. The 

neurons were of different types – place cells, direction neurons and local inhibitory 

neurons. Data was collected from 16 neurons of each type using the first excitatory 

synapse for stimulation. The jitter values are based on 100 spike latency measurements. 

The data is shown in Fig. 4.7, where the standard deviation is plotted against the mean 

spike latency. It can be observed that the jitter value is proportional to the mean spike 

latency. Jitter divided by mean spike latency is similar among neurons. After this 

normalization step, the average is computed. The jitter was found to be 0.075% of the 

mean spike latency.  

Table 4.1. Bias voltages for the multi-neuron chip. From [2]. 

 PINS Voltage (V) 

Shared Neuron Parameters  
VTH 0.61  

VRESET 4.80  
VREFR 4.41  
VSF 3.50  

VLEAK 4.35 

Synapse Parameters for Place Cell 
Excitatory synapse VSYNP 4.26  

VDUR 4.36 

Synapse Parameters for Direction Neuron 
Excitatory synapse VSYNP 4.21  

VDUR 4.36 

Global inhibitory 
synapse 

VSYNP 4.18 

 VDUR† 4.36 

Synapse Parameters for Local Inhibitory Neuron 

Excitatory synapse VSYNP 4.13  
VDUR 4.31 

VDD = 5 V 
†VDUR for excitatory synapse and global inhibitory synapse is a common pin. 
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4.9 Summary 

In this chapter, the operation of the neuromorphic VLSI chip circuits was 

explained. The path planning system architecture and the system implementation was 

described. There are three types of neurons used in the neural model, but all are 

implemented using the same synapse and neuron circuits, but with different parameter 

settings. The topological graph connectivity was stored on the microcontroller and the 

neuron-to-neuron link latency was assumed to be constant. Given fabrication mismatch 

that introduces latency variability, synapses of each place cell that elicit a spike within 

a certain spike latency margin were selected. This step was carried out after observing 

the distribution of spike latencies for different delay settings. Spike jitter was also 

evaluated to test its impact on the operation. Since the jitter was found to be small, it 

was not considered for further analysis. The impact of fabrication mismatch is 

discussed further in Appendix-A.   

 
Fig. 4.7. Showing spike jitter for neurons versus their spike latencies. Jitter is 
proportional to the mean spike latency. So, smaller currents have more jitter. From 
[2]. 
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Chapter 5: Path Planning by Spike Propagation 

5.1 Introduction 

A topological representation allows an agent to exhibit flexible behavior when 

faced with an obstacle, i.e. find an alternate path if it exists in its memory. Such a 

behavior depends on finding a path to a location, which is not in its line of sight or 

directly accessible. This capability can be modeled by path planning, which is the 

process of determining a trajectory between the present location and the goal. In this 

research, we use the term path planning to refer to waypoint path-planning that 

simplifies the problem of trajectory determination by finding the sequence of 

intermediate waypoints between the present location and the goal, reducing it to a 

symbolic problem. This simplification assumes that there is additional information 

associated with the waypoints, so that the direction of movement can be computed from 

it. 

Path planning can be accomplished by using graph search algorithms if the 

navigation space can be represented as a graph [60]. Graph based algorithms include 

Dijkstra’s algorithm, A*, D* [61]. Methods based on Dynamic Programming have also 

been used to find least cost paths and in robotics, wavefront planning and potential 

field-based methods are popular [62].  

Neuromorphic systems provide a low-power platform for implementation of 

neural-network based algorithms. Neural-network models for path planning include 

both firing-rate (analog) [25], [63], [64] and spike-latency [11], [65] based signal 

representations, but recent hardware-based implementations [11], [14], [66] have 
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focused on using propagating wavefronts of spikes for planning. The implementation 

in this research is in line with the aforementioned work. In addition, we assume that 

the map is not a dense representation of the environment. From Chapter 3, we recall 

that we assume that animals represent the space in the form of a cognitive graph and 

the links joining the graph nodes are of equal weight. In such a system, the spike latency 

between any two synaptically-connected neurons is kept the same. Additionally, a 

temporal winner-take-all network is used to determine the direction for movement. The 

temporal winner-take-all consists of direction neurons that receive inputs from place 

cells and a local inhibitory neuron. 

5.2 Operation of the Temporal WTA Circuit 

The temporal WTA is dynamically associated with the present-location place 

cell and is configured such that the first direction neuron to fire will produce feedback 

inhibition to prevent any of the other direction neurons to fire. Since each direction 

neuron is associated with a direction of travel (to its associated neighboring place field), 

the direction neuron that successfully fires will determine the direction of movement 

to the next waypoint. The operation of the temporal WTA network is shown in Fig. 5.1 

using a simple example. The graph used is shown inset. Place cells and their spikes 

(black dots) are numbered identically. The goal-location is associated with place cell 0 

and the agent is located at the place represented by place cell 4. The local inhibitory 

neuron receives inputs from direction neurons 1’, 2’ and 3’, corresponding to place 

cells 1, 2 and 3. The dotted circle around place cell 4 is used in the figure to indicate 

the implementation of the temporal WTA at the present-location place cell. The local 
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inhibitory neuron is labeled as 4”. As the agent’s position changes, a new WTA circuit 

is reconfigured to operate at the “present location” of the agent.  

Path planning begins with the stimulation of place cell 0 (i.e., goal). After a 

delay, place cell 0 fires, sending spikes to place cells 1, 2 and 3. After another delay, 

neurons 1, 2 and 3 send spikes to place cell 4 and the direction neurons 1’, 2’ and 3’ 

(associated with the temporal WTA at place cell 4). Without the local inhibitory neuron, 

all the direction neurons would fire, as shown in grey. With the local inhibitory neuron 

present, however, the first direction neuron to spike (1’ in this case), triggers a quick, 

strong, feedback inhibition preventing all other direction neurons from firing. Through 

this mechanism, only one “action” is chosen to move from the present-location to the 

next place along the shortest path.  Although the paths in the graph are identical in 

theory, the spike latencies of these three equivalent paths are slightly different due to 

fabrication mismatch of the transistors in the circuit, producing a random (but fixed) 

bias associated with each place cell-direction neuron link.  The decision of exactly 

which neuron circuits are connected to each other occurs during the mapping process 

and could, in theory, be chosen with these biases in mind.  In practice, however, a small 

random variability can be desirable to break symmetry and facilitate decision making. 
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5.3 Selecting the Shortest Path 

Rats can select the shortest path from multiple paths in a maze after training 

[67]. This has been replicated in a computational model [35] based on a topological 

representation of the maze. To demonstrate this, a three-path maze was created with 

unequal path lengths and the place fields were uniformly distributed, so, the number of 

place cells that represent a path is proportional to the path length and this was tested on 

our neuromorphic VLSI system.  

 
Fig. 5.1. Operation of the WTA network used for picking the next movement 
direction for the agent. The goal is at place cell 0 and the agent is at place cell 4, 
demarcated by a dotted circle in the inset graph. The decoding network consists of 
direction neurons and a local inhibitory neuron (not shown in the inset graph). The 
spikes of the direction neurons and the local inhibitory neuron are labeled 1’, 2’, 3’ 
and 4”. Which direction neuron fires depends upon spike latency of the direction 
neurons. When the local inhibitory neuron is not operating, all the direction neurons 
spike. When the local inhibitory neuron is operating, only the direction for the 
movement is picked, i.e. 1’ spikes, but 2’ and 3’ get inhibited. Here 1’, 2’ and 3’ 
provide equivalent directions. From [2]. 
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Selection of the shortest path from a selection of multiple paths of different 

lengths is demonstrated in Fig. 5.2. In this example, the goal is again associated with 

place cell 0 and the agent is at a place represented by place cell D.  In the temporal 

WTA network, the local inhibitory neuron receives inputs from direction neurons C’, 

8’ and B’. Planning begins with the stimulation of place cell 0. Place cell 0 spikes and 

stimulates place cells 1, 2 and 3. These further stimulate 4, 5 and 6. When the wave of 

spike activity reaches 7, 8 and 9, the direction neuron 8’ is stimulated. When 8’ fires, 

it causes the local inhibitory neuron D" to fire, preventing neurons C’ and B’ from 

firing. Because neuron 8’ fired, the agent will move to the location represented by place 

cell 8. After a successful movement, place cell 8 becomes the new present-location 

place cell.  A new cycle of planning is initiated, and the agent moves to the next 

waypoint (i.e. place 5). The planning cycles stop when the agent finally reaches the 

place represented by place cell 0.  
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5.4 Selecting the Nearest of Multiple Goals 

The same system that solves the task of selecting the shortest path to a single 

goal can be used to select the path to the closest of multiple goals. A system with 

spiking neurons can be used to solve such a problem if all the place cells that represent 

goal locations are stimulated at the same time (for examples, see [11], [68]). A simple 

example is described below, where the agent must pick the closer goal out of the two 

goals located on its sides.  

Selection of the nearest goal, when multiple goals are present is demonstrated 

in Fig. 5.3. There are two goals in the example, and these are associated with place cells 

 
Fig. 5.2. Selection of the shortest path among multiple paths. The goal is represented 
by place cell 0 and the present location of the agent is represented by place cell D. 
The direction neurons are C’, 8’ and B’. The local inhibitory neuron is D”. 
Stimulation of the goal place cell causes spikes to spread through the network, 
stimulating 1-3, 4-6, 7-9 place cells in succession. Activation of place cell 8 causes 
direction neuron 8’ to spike and activation of D” causes inhibition of other direction 
neurons, C’ and B’. This is the first step in the plan. The action is to go to place cell 
8, which lies on the shortest path. From [2]. 
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1 and 7. The agent is at a location represented by place cell 5. In the temporal WTA 

network, the local inhibitory neuron receives inputs from direction neurons 4’ and 6’. 

Planning begins with the stimulation of both place cells 1 and 7. In this case, there are 

two “waves” propagating outward from both place cells. When the wave from the right 

reaches place cell 6, the direction neuron 6’ is stimulated to fire, which stimulates the 

WTA inhibitory cell 5" that inhibits neuron 4’. Selecting the direction represented by 

place cell 6 is on the path to the closer goal. The planning stops, when the agent reaches 

the goal represented by place cell 7. Therefore, the agent is able to select the path to 

the closer goal. 

 

 
Fig. 5.3. Selection of the nearest goal among multiple goals. There are multiple 
goals. The goals are represented by place cells 1 and 7. The present location of the 
agent is represented by place cell 5. The direction neurons are 4’ and 6’. The local 
inhibitory neuron is 5”. Stimulation of the goal place cells causes spikes to spread 
through the network, stimulating 2 and 6. Activation of place cell 6 causes direction 
neuron 6’ to spike and activation of 5” causes inhibition of other direction neuron 
4’. This is the first step in the plan. The action is to go to place cell 6, which lies on 
the path to the closer goal. From [2]. 
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5.5 Demonstration with a Robotic Arm 

Multi-joint robotic-arm control in presence of obstacles is a popular motion 

planning problem in robotics [62]. We can apply the path planning formalism to finding 

sequences of arm movements that lead from a starting configuration to a goal 

configuration. This can be done if the place cells represent a state vector of joint angles 

and paths represent sequences of poses. Following is an example that was used to test 

the planning system on such a task. In this, we use a robotic arm where the arm tip is 

moved to different goal locations amidst obstacles (Fig. 5.4). Four obstacles are placed 

radially. In this problem, the arm can take multiple paths to reach the same goal, 

especially when no straight unobstructed path exists between the current place and the 

goal. 

A graph is constructed by placing waypoints to distinguish between different 

routes. Each waypoint represents a joint configuration (i.e. a set of four joint angles) of 

the arm and thus a specific point in 2-D space for the tip.  Moving the arm (shown in 

Fig. 5.4) is carried out by repeatedly stimulating the goal node and taking action based 

on the node selected by the winner-take-all. For this problem, the nodes in the graph 

are defined by joint angles, so moving from node to node is accomplished by simply 

by updating the joint angle.  
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The waypoints were closely spaced to control the trajectory enough to avoid 

colliding with any obstacles. We note that in this problem these waypoints were hand-

selected. Like the navigation problem, the graph represents previously acquired 

knowledge and path planning only operates on this stored knowledge. 

 
Fig. 5.4. System description and path planning on a 4-joint robot arm. The graph of 
allowed joint configurations is stored on the microcontroller, which also handles the 
communication between four neuron chips. Two chips are used to represent the map, 
one chip is used for the winner-take-all neurons and one chip carries the global 
inhibitory neuron. A path is found by propagating spikes from node C (goal) to node 
F (starting location). Winner-take-all neurons monitoring the current location node 
indicate the next movement. Following each arm movement, the planning is 
repeated until the goal is reached. The arm movement is carried out by using four 
servos that are controlled by a Micro Maestro 6-Channel USB Servo Controller from 
Pololu® that is connected to the PC. From [69]. 
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5.6 Summary 

In this chapter, the operation of the neuromorphic system for solving the path 

planning problem was explained by describing its operation on two example problems: 

selecting paths with the fewest number of hops and choosing the nearest goal from 

multiple goals. The operation of temporal winner-take-all circuit, which is a part of the 

system, was described to explain the selection of the next action and to highlight the 

issue of mismatch related difference in spike latencies on equivalent paths. To 

demonstrate the operation of the system on a path planning problem in another task-

domain, a multi-joint robotic-arm control problem was described. 

 
Fig. 5.5. An example of planning on a robotic arm configuration graph (shown in 
Fig. 5.4), showing a plan to move from state F to state C (goal 1). The direction 
neurons (9’ to C’) describe the action plan at a glance and the global inhibitory 
neuron labeling (F” to 8”) shows the current place. The solid triangles at the top and 
in between the plots show when the action is carried out. Modified from [69]. 
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Chapter 6: Effect of Synaptic-Dependent Spike-Latency 

6.1 Introduction 

The response of a biological neuron to incoming spikes depends on various 

factors like the shape and structure of the neuron, type and distribution of ion channels 

on its membrane and neurotransmitters released at its synapses. Analyzing how such 

properties affect the computation performed at the network level is essential to 

understanding their role in the overall computation.  

In Chapter 3, a model for the path finding process inspired by the hippocampal 

place cells found in the rodent brain was presented. The assumption was that a 

representation of the environment is captured in the rodent brain in the form of a 

cognitive graph and that spikes initiated at the goal location place cell spreading 

through the network enable parallel exploration of paths in the mental representation 

of the space. Spikes traveling over the network arriving at the present location place 

cell accumulate latency, and based on the shortest latency, the action to move towards 

the desired goal is selected. If the response of the neurons in this network to the spikes 

arriving at their synapses is varied based on a property of the neuron, such as the 

number of synaptic connections, then the accumulated latency could change and thus 

affect the action that is selected. In this chapter, the effect of synaptic-dependent spike-

latency is presented. 

The total time for a neuron to generate a spike (observed at its axon terminals) 

when the neuron is stimulated by multiple incoming spikes, depends on the synaptic 

response, the manner in which the membrane potential rises in response to the synaptic 
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current and on the axonal delay. In the model described in this chapter, the focus is on 

the membrane voltage response to the incoming spikes. In the previous chapter, in the 

place cell model used, the total synaptic current to the neuron remains fixed and thus a 

change in the number and timing of spikes does not alter the neuron spike latency. In 

this chapter, a more biologically-plausible model is adopted, in which the spike latency 

drops with the increase in the number of spikes. 

In the previous chapter, the response of the network of place cells viewed as a 

path planning system can be interpreted as finding the path with the shortest number of 

hops in a graph. For the model in which the spike latency is dependent on the number 

of synaptic connections that receive a spike before the place cell fires, the response is 

different. To analyze this, a method is introduced, and examples are provided that help 

in interpreting the response. Finally, a complete path planning example is provided on 

a graph created from mapping simulation described in Chapter 3. 

6.2 Current Saturation and Current Summation Models 

In this system, the shortest path is determined based on shortest propagation 

time from goal-location to present-location in the graph. If the propagation time from 

node to node is constant and if linked places represented by the place cells are separated 

by a fixed distance, the shortest distance path can be found. It should be noted, however, 

that the shortest physical path may not always be the goal of path planning.  Other 

possibilities include: shortest time, lowest “risk”, shortest description length, etc. In 

this work, we will focus on how spike latency (or link propagation time) can be affected 

by properties of the graph arising out of the biologically-inspired implementation. This 

is referred to as synaptic-dependent spike latency. Due to the charging time of the 



 

 

57 
 

membrane capacitance, biological neurons respond faster with stronger excitation. In 

this model, when spikes propagating along different paths in the map arrive at a node 

at the same time, the postsynaptic latency is reduced. To highlight this important 

property, two neuron models (see Fig. 6.1) are introduced. Recall that the synapses in 

this model generate a square pulse-shaped current. The first model is called the current 

saturation model, where no matter how many spikes a neuron receives, its input current 

saturates at a fixed value. In this case, its spiking latency does not change with the 

number of spikes. The second model is called the current summation model, where all 

the synaptic currents generated by the synapses are added and the spike latency depends 

on the number of inputs. A larger number of spikes within a given time window 

produces a shorter spiking latency (shown in Fig. 6.2). 

In the examples presented in the previous chapter, the spike latency was 

expected to be constant, making this path planning scheme similar to the wavefront 

algorithm [62]. In a typical biological neuron, however, converging input spikes that 

arrive synchronously will produce shorter latency responses. Two examples are 

described that highlight the effects of this fact. 
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Fig. 6.1. Explains how spike latency in a biological neuron is dependent on the 
number of incoming spikes. The current “saturation” model limits the maximum 
current that flows into the neuron membrane capacitance. The current “summation” 
model adds the currents that flow into the neuron membrane capacitance. As a 
result, a neuron with current saturation model fires a spike with a fixed latency 
irrespective of the number of received spikes and a neuron with current summation 
model fires a spike with reduced latency that depends on time and number of spikes 
arriving in a fixed window. From [2]. 
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6.3 Selecting Path with More Redundancy 

The first example is a network with multiple equivalent paths. Fig. 6.3 (a) 

depicts the graph. The goal is associated with place cell 1 and the agent is located at a 

place represented by place cell 6. In the temporal WTA network, the local inhibitory 

neuron receives inputs from direction neurons 4’ and 5’. The planning begins with the 

stimulation of place cell 1. The spiking activity travels to place cells 2 and 3, followed 

by place cells 4 and 5 and then finally place cell 6. All three paths are equivalent in 

length, but place cell 4 only receives a spike from place cell 2, whereas place cell 5 

receives spikes from place cells 2 and 3. Therefore, if the synaptic current saturation 

model is used, the spike latency of 4 and 5 would be similar (shown in Fig. 6.3 (b)) and 

the agent could choose either path (i.e., place cell 4 or 5). In the current summation 

 
Fig. 6.2. Summation of synaptic currents results in a shorter spike latency. Showing 
the response from 32 neurons to multiple input spikes arriving at the same time. 
From [2]. 
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model, however, the spike latency of place cell 5 is shorter because it receives spikes 

from both 2 and 3 (shown in Fig 6.3 (c)) and thus direction neuron 5’ fires earlier and 

the local inhibitory neuron 6" inhibits neuron 4’. Over the following planning steps, the 

agent moves from place 6 to 5; from 5 it could select 2 or 3 (3 is selected in this 

example) and finally reach the goal.  

The advantage in selecting the route through place 5 is that it provides more 

alternatives to the goal than place 4. If one of the paths after place 5 were to experience 

a blockage, the agent could pick the other without an increase in the overall path length. 

Paths 6421 and 6531 have the same path length. The availability of more 

alternatives at place 5, however, has an impact on the average path length when there 

is an obstruction. This idea is evaluated in the following manner. Two scenarios are 

compared. First, all the possible paths that could be selected by the path planning 

process are found. In this particular example, planning using the current saturation 

model would yield 3 equivalent paths and the current summation model would yield 

only 2 paths. One path is selected by the agent for execution and the agent moves from 

the starting location to the goal location. An average path length is computed by 

averaging all the path lengths from each of the paths that could be selected by the agent. 

In the second scenario, one obstruction is placed on any one of the links in the selected 

path before the agent starts executing the plan. When the agent encounters the 

obstruction, it must replan, given the new map, and then complete the execution to 

reach the goal. This process is repeated for all possible obstructions on a path and for 

all the paths that each planning process could yield. The average path length is once 

again computed by averaging the path lengths of all the paths taken by the agent. The 
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average path length for the current summation model comes out to be smaller than the 

current saturation model. This is depicted in Fig. 6.4. This could be interpreted as 

selecting a path with more redundancy. 



 

 

62 
 

 

 
(a) 

  
(b) 

 
(c) 

Fig. 6.3. An example demonstrating how current summation property influences the 
path selection for execution in a graph with multiple equivalent solutions. In (a), the 
goal is represented by place cell 1 and the current location of the agent is represented 
by place cell 6. In first step of the plan, the direction neurons are 4’ and 5’ (local 
inhibitory neuron is not shown in the figure). (b) and (c) depict path planning in 
current saturation and summation models respectively. Stimulation of the goal place 
cell, 1, causes place cells 2 and 3 to fire, followed by place cells 4 and 5. In (c), 
since 5 receives spikes from 2 and 3, it fires earlier than 4. Direction neuron 5’ fires 
and 6” inhibits 4’. The inset figures in (b) and (c) depict the operation of the temporal 
WTA and the selection of the path for execution. In (b), the path selected is 
6421 and in (c), the path selected is 6531. Going to place cell 5 is 
better from the perspective of redundancy. From [2]. 
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6.4 Selecting a Longer, but Risk-Averse Path 

The second example considers a network with one short path and multiple 

longer paths, but these longer paths offer more alternatives (Fig. 6.5). The goal is 

associated with place cell 1 and the agent is located at a place represented by place cell 

B. Planning starts with the stimulation of place cell 1. For the synaptic current 

saturation model, the direction neuron 8’ spikes earlier and hence direction neuron C’ 

gets inhibited. The agent selects the shortest path B821 (shown in Fig. 6.5 (b)). 

For the synaptic current summation model, due to multiple convergences of links at 

place cells 9, A and C, the direction neuron C’ fires earlier and direction neuron 8’ gets 

inhibited. In this case, the agent could pick paths BCA51 or BCA61 

or BCA71 (shown in Fig. 6.5 (c)). The choice of current saturation or current 

summation models can, therefore, result in the selection of paths of different path 

 
Fig. 6.4 Showing a comparison between current saturation and current summation 
models using average path length for the 6-node graph in Fig. 6.3. For the no 
obstruction run, the average path length is same for both the models. For the second 
run, with a single obstruction, the current summation model has a lower average 
path length. From [70]. 
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lengths. Specifically, planning using the current saturation model selects a path with 

shorter path length, but picking the longer path is better if there are obstructions.  

Like the previous example, in the first scenario, there are no obstructions. The 

path selected using the current saturation model has a lower average path length than 

the current summation model. In the second scenario, however, after averaging over all 

possible paths and single obstruction failures, planning using the current summation 

model yields a shorter average path length. Thus, even though the path length is longer 

when the current summation model is used, if there is an obstruction, then on an 

average, choosing the longer path is better. The results are shown in Fig. 6.6. 

Therefore, if two paths with equal lengths are considered, then the current 

summation model would pick a path with places that have more alternatives. In some 

specific cases, where there are multiple convergences in the path, the current 

summation model can pick a path with a longer length.  
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(a) 

   
(b) 

  
(c) 

Fig. 6.5. Effect of multiple convergences in a graph. In (a), the goal is represented 
by place cell 1 and the current location of the agent is represented by place cell B. 
In first step of the plan, the directions neurons are 8’ and C’ (local inhibitory neuron 
is not shown in the figure). (b) is current saturation model response. Stimulation of 
place cell 1 causes place cells 2-7 to spike, followed by 8, 9, and A. Place cell 8 
causes 8’ to spike and C’ is inhibited. Therefore, the path B821 is selected 
for execution, depicted in the inset figure showing spikes in the temporal WTA. (c) 
is current summation model response. Due to convergences at 9, A and C, C spikes 
earlier than 8 causing C’ to spike and 8’ is inhibited. The path BCA71 is 
selected for execution. From [2]. 
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6.5 Planning on Simulated Agent Generated Graph 

To demonstrate a larger, complete, planning example, a graph was generated 

using the mapping algorithm described in Chapter 3. A simulated agent explores a maze 

using an obstacle avoidance algorithm and builds a place cell-based representation of 

the maze (see Fig. 3.2 for the mapping simulation). In this example, the goal is 

associated with place cell 21 and the agent is located at a place represented by place 

cell 1. Each step of planning starts with stimulation of place cell 21 and the spiking 

activity spreads through the network (shown in Fig. 6.7). In this example, there are 

three equivalent paths with the shortest length. These are path 11415 … 21, path 

1 2345… 21 and path 123423 … 21. Fig. 6.8 (a) depicts planning 

using the current saturation model. Ideally, any equivalent path could get selected. In 

 
Fig. 6.6. Comparison between the current saturation and current summation models 
using average path length for the 12-node graph in Fig. 6.5. For the no-obstruction 
run, the current saturation model has a lower average path length. For the second 
run, with a single obstruction, the current summation model has a lower average 
path length. From [70]. 
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this example, however, circuit mismatch biases the selection towards the path 

11415 … 21. The activity wave from the “choice” on the left side of the maze 

arrives first and thus direction neuron 14’ fires first and inhibits direction neuron 2’. 

The agent moves to the location represented by place cell 14 and in the following 

planning steps, it keeps moving along the left-hand path until it reaches the goal 

represented by place cell 21. Fig 6.8 (b) depicts planning using the current summation 

model. In this case, only the right-hand “choice” can be selected due to convergence at 

place cell 4. In this particular example, the path 123423 … 21 is selected. The 

direction neuron 2’ fires first and inhibits 14’ and the agent moves to the location 

represented by place cell 2. When the agent is at the location represented by place cell 

4, the WTA picks direction neuron 23’ and thus the agent moves to the place 

represented by place cell 23 and continues on to the goal. In this example, between a 

simple path and a path rich in choices, the current summation model favors the one 

with more alternatives.  



 

 

68 
 

 

The results of the analysis to compare the effect of the current saturation and 

current summation models are shown in Fig. 6.9. In the first run with no obstructions 

along the path, the average path length is 8. In the second run with a single obstruction 

anywhere along the selected path the average path length approximately increases to 

12 for both the models. The planning process using the current summation model, 

however, has a lower average path length than the current saturation model. Like 

previous examples, the agent picks the path with more redundancy. 

 
Fig. 6.7 Showing the graph that was generated from the mapping simulation (in Fig. 
3.2-3.3). The goal is represented by place cell 21. There are two choices from the 
starting location that is represented by place cell 1. One of the choices is a straight 
path to the goal (on the left). The other choice (on the right) offers multiple ways to 
the goal. From [2]. 
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(a) 

 
(b) 

Fig. 6.8 A complete planning example on a graph generated from the mapping 
simulation. The neuron addresses are shown on the y-axis. The addresses for the 
place cells are arranged in two parts. Each part corresponds to one of the two choices 
in graph shown in Fig. 6.7. In each part, the addresses are arranged according to the 
sequence of firing. L” represents the local inhibitory neuron. (a) Planning using the 
current saturation model shows the selection of the path which corresponds to 
picking the path that leads straight to the goal and (b) Planning using the current 
summation model shows the selection of the path which corresponds to picking the 
path that has more alternatives. The inverted solid triangles between spike raster 
plots represent path execution. From [2]. 
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6.6 Summary 

In this chapter, the effect of synaptic-dependent spike-latency on path planning 

was analyzed. Path planning on a network of place cells using the current saturation 

model of the place cell was compared with the current summation model. Path planning 

with the current saturation model yields paths that have the fewest number of hops, 

whereas the results of path planning with the current summation model were interpreted 

as offering more redundancy in case of blockage. To make this evaluation, a method 

was introduced in which the total cost of travel after path execution was compared 

before and after the introduction of an obstruction along the planned path. In response 

to an obstruction, the path planner must replan and this typically increases the cost of 

travel. By comparing the cost of travel in the presence of an obstruction, the solutions 

 
Fig. 6.9. Comparison between the current saturation and current summation models 
using average path length on a graph (in Fig. 6.7) generated by a simulated agent 
exploring a maze. For the no-obstruction run, both the models have the same 
average path length of 8. For the run with a single obstruction, the current 
summation model has a lower average path length. From [2]. 
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of the path planning systems were evaluated in a potential scenario of meeting with an 

obstruction. The risk-aversive choice could be made more adaptive if there is a 

mechanism that slows down the neurons that have fewer synaptic connections, thus 

biasing the selection of the paths towards those with more alternatives.  
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Chapter 7: Conclusion 

7.1 Summary 

The aim of this research was to explore how place cells can fit into a spatial 

memory system and how the spreading activation mechanism for path planning in 

memory can be implemented in such a biologically-plausible system. Key to this 

exploration was desire to demonstrate a neuromorphic VLSI circuit implementation of 

a spatial memory and long-range memory-based planning in hardware that could be 

used with other echolocation-based robotics research projects in the laboratory. The 

motivation for doing this was to build a system with high speed and flexible response. 

The understanding was that place cells provide a place representation system that works 

with the lower level sensorimotor responses and uses less memory during pathfinding 

to previously visited locations. This does not guarantee optimal choices, but provides 

a fast response. By taking the neuromorphic approach, we could build more efficient 

circuits in the long-term. 

Among the possible mental representations of the environment that could 

support long-range navigation, we selected a topological representation, because 

animals lack precise sensors for creating large global and metrically accurate 

representations like those available on modern robots. Since hippocampal place cells 

are believed to support the place memory system, we modeled an interconnected 

network of place cells as a cognitive graph, where being or imagining to be in a certain 

place in the environment is signaled by the activity of a corresponding place cell and 

the links in the graph are represented by reciprocal connections between the place cells. 
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Typically, the problem of navigation can be broken into subproblems like 

mapping, planning and path execution. The emphasis in this research was laid on the 

planning subproblem. We designed multi-neuron chips with synapse and neuron 

models suitable for the implementation of a spike-based, spreading activation, path 

planning system. In this system, the planning process was carried out through parallel 

search of multiple paths using a spreading wave of activation that is initiated by 

stimulating the goal location place cell and by selecting the path that has the shortest 

spike latency using a temporal winner-take-all that observes the spiking activity 

arriving at the current location place cell. This system was used to demonstrate 

planning in a different planning task like controlling a multi-segment robotic arm. 

Since neurons spike with a shorter latency, when driven with a stronger 

stimulus, there was reason to believe that this would affect the response of the path 

planning process. So, two models were introduced that could be used to discriminate 

this effect. These synaptic-dependent spike-latency models were current saturation and 

current summation models. The response of the first model is to saturate the spike 

latency irrespective of the number of spikes. The response of the second model is to 

fire with a shorter spike latency, when more spikes are received at the same time. It 

was shown that the response is different for both the models. Additionally, it was seen 

that the path selected by the current summation model could be interpreted as selecting 

paths with more redundancy. If there was a single path obstruction in the planned path, 

then this choice would lead to a shorter overall path after re-planning and this choice 

was interpreted as a risk-averse response.  
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For the sake of completion, a system level simulation was carried out that 

consisted of three temporally distinct steps of mapping, planning and path execution. 

In the mapping step, a cognitive graph representation of the environment was created 

and at the same time, a grid-cell based activity pattern was associated with each place 

for which a place cell was recruited. In the path execution step, current and memorized 

grid cell activity were used to generate a direction for movement between the current 

location and the memorized waypoint. For this, a decoder was used, which was 

designed by another researcher [47] and incorporated into our system. 

7.2 Contribution 

In this research, the problem of spatial navigation was attacked from the 

neuromorphic perspective. Earlier work from this laboratory emphasized the creation 

of a neuromorphic head direction cell system, grid cell system and grid-cell-based place 

cell system. This work extended prior research that was about creating the 

representation of the environment to navigating in the environment. More recent work 

in the neuromorphic based navigation systems includes [53], [54], [71], [66]. There are 

specific examples [7], [14] in neuromorphic VLSI that provide solutions to the path 

planning problem. Their focus was primarily in exploring a new analog processing chip 

system and a large-scale digital neuron chip system respectively for the path planning 

problem. Our focus was to limit the assumptions to those that were more biologically 

plausible. We assumed that the underlying representation of the environment is not 

dense and metric, although a similar assumption could be made in their system as well. 

Additionally, their method of selecting the path for navigation was done external to the 

multi-neuron chip, whereas that step was incorporated into the network in this work. 
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We also investigated how a neuron’s response to increased stimulus would affect the 

path that is selected by the planning process. 

7.3 Future Work 

An issue with the original architecture is that for the system to work, every place 

for which there is a corresponding place cell, there should be multiple direction neurons 

that correspond to the neighbors of the place cell and there should be specific 

connectivity between these direction neurons and the local inhibitory neuron 

corresponding to the place. Additionally, this connectivity has to form while the animal 

is learning the spatial layout of the environment. Instead, it is possible to conceive an 

intracellular mechanism that causes a buildup of a chemical substance in place cells 

that are active while the animal is exploring the place and as soon as it wishes to go to 

a memorized location, the goal location place cell stimulation causes spikes to spread 

through the network and the neurons in which the chemical substance had built up 

causes a different response, for example, a bursting response, to the oncoming wave of 

activity. This would essentially create a temporal winner-take-all in the cells 

representing the neighborhood of the present location without requiring the specific 

connectivity between the direction neurons and local inhibitory neuron. 

An issue with synaptic-dependent spike-latency based planning method is that 

it is not possible to control the path selection among paths with different number of 

alternatives to variable degree. For example, if one interprets selecting a path with more 

alternatives as risk-aversiveness, then it is not possible to control the degree of risk-

aversiveness. An intracellular mechanism that could achieve this effect could make use 

of the prior planning activity to identify the neurons with multiple synaptic connections 
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and separate them from those with fewer connections by accumulation of a chemical 

substance, whenever the place cell is stimulated during planning. This substance would 

have a short-term effect on the spike latency by maintaining the spike latency of 

neurons with greater amount of the chemical substance and slow down the neurons 

with smaller amount of the chemical substance. If the increment in the chemical 

substance is controlled, then it is possible to control the degree of difference in spike 

latency among the paths with different alternatives. This would achieve the desired 

effect of controlling the overall spike latencies among paths with different number of 

alternatives. 
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Appendix-A: Effect of Fabrication Mismatch on Path Selection 

Spike latency variability across neurons in the multi-neuron chip is determined 

by the extent of transistor mismatch. An estimate of the impact of this variability on 

selecting the correct path is made by comparing the probability of selecting the correct 

path over another path that is just one hop longer. If there are multiple paths with the 

same number of hops, then this variability helps in breaking the tie. Fig. A.1 (a) 

describes a method for making this comparison. Two paths that just differ by single 

hop are compared based on their total spike latency. The probability of selecting the 

shorter path is computed and the trend for the increasing number of hops in the correct 

path is plotted. It is assumed that spike latency for each neuron in the path is normally 

distributed (observed in Fig. 4.6) and is from the same distribution. The probability 

distribution of total spike latency for a chain of such neurons can be found by adding 

the spike latency random variables (for an N-hop path, the effective mean is N times 

the mean and the effective variance is N times the variance). The standard deviation in 

spike latency observed is 17.7% of the mean spike latency. If place cells were selected 

from the chips at random and the total spike latency of each path was compared, then 

the probability of selecting the correct path can be found by adding the probability for 

all cases when the total spike latency of the longer path is longer than the shorter, 

correct path. In Fig. A.1 (b), for a confidence level of 95%, if the spike latency 

variability of the population changes from 20% to 5%, the number of hops (N) that can 

be reliably discriminated would change from 4 up to 73. If the variability is further 

reduced, then the range of selecting the correct path could be extended even more. On 
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our chips, the variability was fixed close to 10% and for the confidence level of 95%, 

this translates to paths with 17 hops.  

 

 
(a) 

 
(b) 

Fig. A.1. Showing the effect of variability in place cell spike latency on reliably 
selecting the correct path. (a) shows how variability in spike latency affects correct 
path selection. Here variability is defined as the ratio of the standard deviation in 
spike latency and the mean spike latency. (b) shows the trend in selecting the correct 
path as the number of hops in the path increase. With a confidence level of 95%, 
having 20% variability in spike latency only permits selecting paths of length 4 
correctly. When the variability is reduced, the numbers of hops up to which correct 
selection can be made increases. From [2]. 
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Appendix-B: Effect of Transistor Size on Subthreshold Current 

In a MOS current mirror, if the input and output transistors have the same width 

by length ratio, the currents are expected to be the same. For different channel sizes, 

the currents are different due to lateral diffusion effect under the transistor gate. The 

difference between the currents is much greater if one of the devices is smaller than a 

certain limit, especially in the subthreshold region of operation. This effect can be 

observed in simulation of an NMOS transistor model for a commercially available 0.5 

µm fabrication process. To verify this effect on silicon, we fabricated a chip with 36 

NMOS transistors with 6 different channel widths and lengths. A comparison was made 

between the drain currents for unity width-by-length ratio as a function of channel 

width in the subthreshold region of operation. The difference observed in the simulation 

was also observed on chip. We think that this is caused by the small channel effect. We 

plotted current ratios using fixed channel width ratios and also using fixed channel 

length ratios. We observed that in the subthreshold region of operation, the current 

ratios using channel length ratios are closer to the expected value as compared to 

channel width ratios. 

B.1 Background 

We ran a simulation using BSIM3v3.1 NMOS transistor model (provided by 

MOSIS for a 0.5 µm fabrication process). We applied VGS = 0.5 V and VDS = 1V to the 

transistor and swept the channel width for unity width-by-length ratio. We plotted the 

current as a function of channel width (shown in Fig. B.1). 
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We observed that there was around two orders of magnitude difference between 

the currents of the largest and the smallest size transistors. We suspected the reason to 

be small channel effect and therefore we plotted the threshold voltage for the transistor 

as a function of transistor size. This is shown in Fig. B.2, where the threshold voltage 

is large for narrow channels (~850mV) and it drops to ~600 mV for large channel 

widths. On the other hand, the threshold voltage does not change very strongly with the 

change in channel length.  

 
Fig. B.1. Showing NMOS transistor drain current as a function of channel width for 
unity width by length ratio. VGS = 0.5 V and VDS = 1 V. λ = 0.35 µm and it is varied 
in the set {5, 10, 20, 40, 80, 160}. We expect the current to be equal for the same 
width by length ratio, however, there seems to be two orders of difference in the 
magnitude.  
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The threshold voltage for a MOS transistor is defined by comparing the charge 

carrier population density underneath the gate with the doping concentration of the 

semiconductor substrate. This voltage separates the operation of the device into two 

regions, subthreshold and above-threshold. The numerical value of this threshold 

voltage is computed by using a MOS capacitor with the same size and assuming an 

 
(a) 

 
(b) 

Fig. B.2. Showing the variation in threshold voltage with transistor channel width 
and channel length. (a) For channel width of 5 λ, the threshold voltage is ~850 mV 
and for channel width greater than 20 λ, the threshold voltage is under 650 mV. In 
the subthrehsold region of operation, this difference in threshold voltage would 
create a large difference in the drain current. (b) For channel lengths of 10 λ and 
below, the threshold voltage decreases. However, for longer lengths, the threshold 
voltage nearly remains the same. Therefore, the subthreshold current per unit length 
would not vary much with the channel length.  
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infinite parallel plate capacitor model. For channels smaller than a certain size, this 

assumption is not accurate and certain correction terms are added to account for the 

deviations. This is shown in equation B.1 (from [72]). 

 (B.1) 
The terms in I represents the long channel threshold voltage. The terms in II 

represent the correction made to the threshold voltage to incorporate the lateral and 

vertical doping difference in the substrate (this doping profile is a common practice in 

scaling down transistors). The terms in III represent the narrow channel effect. The first 

term captures the threshold variation with channel width, whereas the second term is 

added to handle narrow channel effect in short channels. The terms in IV represent the 

short channel effect and DIBL effect. We found the first term in III to account for most 

of the threshold variation and that is discussed in detail below. 
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One of the correction terms applied to the threshold voltage calculation 

considers the fringe electric fields that stretch from the ends of the gate along the 

channel width as depicted in the Fig. B.3. The fringe electric fields that extend outwards 

from the gate create additional charges in the semiconductor substrate and typically a 

cylindrical approximation is used to model the additional charges [73]. It is assumed 

that the cylindrical extensions are as wide as the depletion depth. In this approach, the 

ideal depletion charges contribution to the threshold voltage is multiplied by a factor 

that is estimated by taking a ratio of the total charges for the corrected case and the 

ideal case. The charges underneath the gate are computed by multiplying the volume 

charge density with the volume W*L*dB, where W and L are width and length of the 

transistor channel and dB is the depletion depth. For a channel with quarter-cylindrical 

extensions, the new volume is W*L*dB+0.5*π*L*dB
2. Therefore, the ratio of the new 

estimate over the ideal estimate is 1+0.5* π *dB/W. The additional term 0.5 *π *dB/W 

 
Fig. B.3. A simplified model for a MOS capacitor with fringe fields at the sides of 
the channel width. To reuse the formula for computing the threshold voltage, a 
voltage shift in the threshold voltage is introduced. This shift is calculated by 
dividing the additional charges by the gate oxide capacitance. The additional charges 
under the gate are two quarter-cylinders of charges on either side of the original 
charges under the gate. Taken from [73]. 



 

 

84 
 

multiplied by QB/Cox gives the shift in threshold voltage, where QB stands for bulk 

charge density and Cox is the oxide capacitance per unit area. Since QB is q*NA*dB, this 

expression becomes 0.5 *π *q*NA*dB
2/(Cox*W). Here NA is the acceptor doping 

density. Replacing dB
2 by 2*esi*φ/(q*NA), where φ is the inversion surface potential 

and esi is the permittivity of silicon, one gets (esi/eox)*π* tox *φ /W. In the first term in 

III in equation 1, this is given as K3*(tox/(W+W0)) *φ, where K3 and W0 are empirically 

derived parameters. There is an additional parameter K30 that is added to K3 and it is 

dependent on the body potential. By replacing the values form the parameter file (K3 = 

22.8, W0 = 0.0101 µm, tox = 14 nm and surface potential) in the equation, around 200 

mV of voltage shift is observed in a 5λ-width transistor, which matches the trend 

observed in the threshold voltage simulation (Fig. B.2). This effect is explained in the 

following way. For a given charge concentration under the gate, there is more total 

charge overall below the oxide and therefore there would be greater charge on the gate. 

A greater charge on the gate for the same oxide capacitance would require a higher 

voltage and hence a higher threshold. 

To verify this, simulations were carried out on PSPICE using the following 

model files - the original model file, the model file without lateral diffusion correction, 

i.e. Weff = Wdrawn (or W) and Leff = Ldrawn (or L), the model file without lateral diffusion 

correction and without fringe field effect, i.e. K3 = 0 and K3b = 0. For the above-

threshold and the subthreshold operations, transistor currents were plotted against the 

change in width for unity width by length ratio in simulations. The results from the 

PSPICE simulation are shown in Fig. B.4 and Fig. B.5 for above-threshold and 

subthreshold region of operation. 
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The fringe fields have a strong effect on the subthreshold region of operation 

for small size transistors and it is difficult to predict that only based on the reduction in 

the channel widths and lengths caused by lateral diffusion [74]. In the case of above-

threshold operation, the effect is visible, but not as strong as the subthreshold operation. 

 
Fig. B.4. PSPICE simulation of the drain current of a MOS transistor in above-
threshold region of operation, plotted against different sizes for three different 
models. The gate of the transistor is at 2.5V. The drain of the transistor is at 1 V. 
The effect of lateral diffusion is smaller than the removal of fringe fields in the 
model. The fringe field effect is removed by setting K3 and K3b = 0. 
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B.2 Measurement Setup 

The chip consists of 36 devices with different channel widths and lengths. Using 

this chip, drain currents for unity width by length ratios were probed and current ratios 

for channel length and channel width ratios were calculated. Fig. B.6 shows the image 

of the layout and the chip photomicrograph. 

 
Fig. B.5. PSPICE simulation of the drain current of a MOS transistor in subthreshold 
region of operation, plotted against different sizes for three different models. The 
gate of the transistor is at 0.5V. The drain of the transistor is at 1 V. The effect of 
lateral diffusion is small. Removal of the fringe field effect (by setting K3 and K3b = 
0) makes the curve flatter. The peak in the current at the beginning is because of 
short channel effect. For shorter channels, one gets a smaller threshold voltage. This 
short channel effect is noticeable for channel lengths under 10 λ. 
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These chips were fabricated and packaged through MOSIS provided foundry 

and packaging services. A scheme of the DIP is given in Fig. B.7. 

 

This chip was mounted on a breadboard, which was shielded in an aluminum 

box. Programmable voltage sources were used to provide the voltage to the gate and 

 
Fig. B.6. Showing the layout of the chip. The numbers on the bond pads show signal 
names. There are 6 sets of devices. Each set has a fixed width and the length changes 
from 5 λ to 160 λ (doubling). The widths across the sets vary from 5 λ to 160 λ 
(doubling). All the devices have a common source and bulk connection. The drains 
for each set are connected to pads {2-7}, {8-13}, {14,16-20}, {21-26}, {27-32} and 
{33-34,36,38-40}. The gate is provided on pad 1. The source is provided on pad 37. 
VDD and VSS are provided on pads 15 and 35. Only gate and source have ESD 
protection. 

 
Fig. B.7. Showing orientation of the chip inside the package and package with pin 
number range. The first 3 sets of transistors are accessible on the left side of the 
package and the next 3 sets of transistors are accessible on the right side of the 
package. 
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drain of the transistors and an electrometer was used to measure the current between 

the drain and the programmable voltage source supplying the drain voltage. The cables 

to the box were shielded using low noise coaxial cables. The electrometer input is a 

triaxial cable, with the outermost conductor connected to the earth and the box shield. 

The VDD, VSS were provided using an external power source set to 5 V. A 10 µF 

capacitor was used as a bulk capacitor for the voltage source supplying VDD. 

Snapshots of the connections and the measurement setup are given in figures Fig. B.8. 
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Two measurements were made. The first measurement was made for the above-

threshold region for which 2.5 V was provided at the gate and 1 V was provided at the 

 
Fig. B.8. Showing the connections in the setup. The gate of the transistor is supplied 
with 0.5 and 2.5 V depending upon subthreshold and above-threshold operation. The 
drain voltage is set to 1 V. Between the drain voltage and the drain of the transistor, 
the electrometer leads are connected. VDD is provided by a voltage source set to 5 
V. The VDD drives the guard ring and the ESD diodes on the chip. The chip is 
mounted on a breadboard pasted to the aluminum box that is put at the same 
potential as the electrometer earth. The bodies of the programmable voltage sources 
and the power supply are connected. VDD and VSS are provided from the left side. 
The gate voltage is provided from the top. The drain voltage is provided from the 
right side. The electrometer input is provided from the bottom. The shield for the 
aluminum box is separate from that of the voltage supplies. 
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drain. The second measurement was made for the subthreshold region for which 0.5 V 

was provided at the gate and 1 V was provided at the drain. NOTE: In this report, data 

from only one chip is reported. 

B.3 Results 

The first set of results (Fig. B.9-B.10) shows that the difference between the 

maximum and the minimum current for unity width-by-length ratio is much greater in 

the subthreshold region of operation compared to the above-threshold region of 

operation. 

The second set of results (Fig. B.11-B.13) shows that creating current ratios 

using transistor channel length or width ratios are suitable for above-threshold region 

of operation. For subthreshold region of operation, however, it is better to use channel 

length ratios. 
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B.3.1 Drain current vs Channel Width for Unity Width-by-Length Ratio 

 

(a) 

(b) 
Fig. B.9. Showing drain current vs channel width or length for unity width-by-length 
ratio for above-threshold region of operation. (a) drain current vs channel width. (b) 
drain current vs channel width, semilog plot. The maximum is more than the 
minimum current by 62%, almost 1.6 times (from experimental values).  
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In the above-threshold region of operation, the maximum current is more than 

the minimum current by 1.6 times, whereas in the subthreshold region of operation, it 

is 150 times. Therefore, this effect is more pronounced in the subthreshold region of 

operation.  

  

(a) 

(b) 
Fig. B.10. Showing drain current vs channel width (or length) for unity width-by-
length ratio for subthreshold region of operation. (a) drain current vs channel width. 
(b) drain current vs channel width, semilog plot. The maximum current is 150 times 
greater than the minimum current (from experimental values) 
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B.3.2 Setting a Current Ratio of 2 Using Length or Width Sizing 

 

  

(a)  

(b) 
Fig. B.11. Current ratios for above-threshold operation. (a) Showing the ratio of 
drain currents for a fixed channel length ratio = 1/2. (b) Showing the ratio of drain 
currents for a fixed channel width ratio = 2. 
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(a)  

(b) 
Fig. B.12. Current ratios for subthreshold operation. (a) Showing the ratio of drain 
currents for a fixed channel length ratio = 1/2. (b) Showing the ratio of drain currents 
for a fixed channel width ratio = 2. 
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For the above-threshold region of operation, the current ratios computed from 

the simulation and experiment match well. Moreover, the spread of the experimental 

data is small. For the subthreshold region of operation, the current ratios computed 

from the experiment data using length ratios show a downward trend (compared to the 

simulation showing an upward trend) and have a large spread. For smaller channel 

length ratios for different widths, the spread gets larger. However, overall their values 

are close to the expected current ratio of 2. In comparison, the current ratios computed 

from the experiment data using width ratios show the same trend as the simulation and 

the spread is smaller, except in the case of the shortest widths ratio for different channel 

lengths, where the spread is much larger than the simulation data. However, overall 

their values are much higher than the expected current ratio of 2. So, for creating current 

ratios in subthreshold region of operation using the width by length ratio scaling, using 

channel length ratios seems to be better.  

 

Fig. B.13. Showing the ratio of drain currents for a fixed channel width ratio for 
subthreshold operation (same as Fig. B.12 (b)) using expanded y-axis. NOTE: 
experiment data for I(W=10)/I(W=5) is not visible. 
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B.3.3 Drain-Source Current vs Channel Length and Width 

 

  

(a)  

(b) 
Fig. B.14. Showing drain current vs channel length plots for above-threshold 
operation taken from simulation and experiment data. (a) drain current vs channel 
length. (b) drain current vs channel length, loglog plot.  
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(a)  

(b) 
Fig. B.15. Showing drain current vs channel width plots for above-threshold 
operation taken from simulation and experiment data. (a)  drain current vs channel 
width. (b) drain current vs channel width, loglog plot.  
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(a)  

(b) 
Fig. B.16. Showing drain current vs channel length plots for subthreshold operation 
taken from simulation and experiment data. (a) drain current vs channel length. (b) 
drain current vs channel length, loglog plot.  
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(a) 

 

(b) 
Fig. B.17. Showing drain current vs channel width plots for subthreshold operation 
taken from simulation and experiment data. (a) drain current vs channel width. (b) 
drain current vs channel width, loglog plot. 
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Appendix-C: Characterization of Floating Gate PMOS 

Transistor Injection and Tunneling Currents 

C.1 Background 

The aim of these experiments was to test topologies that could be used in 

learning circuits. Different circuits were designed to test injection and tunneling. The 

photomicrograph of the chip is shown in Fig. C.1. Four test structures from the chip are 

presented here: three topologies to test injection and one topology to test tunneling. 

Additionally, parameter fitting was done on the collected data to create a simulation 

model for SPICE based on [78]. 

 

C.2 Injection Experiments 

C.2.1 Using NFET at the Drain of the Floating Gate Transistor 

In this technology, injection is observed at source-drain voltage levels lower 

than VDD, so it was possible to trigger injection by connecting the drain of the floating 

gate transistor to ground by pulling down the drain terminal of the transistor using an 

 
Fig. C.1. Photomicrograph of the chip with floating gate transistor test structures. 
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NFET. The topology is shown in Fig. C.2 and it was inspired by [75] that uses a similar 

test structure, but in a differential topology. 

 

 
To capture the injection trend, different VINJBIAS voltages were set to control the 

current through the floating gate transistor. In this circuit, the floating gate transistor 

(M1) voltage was initialized to the same value by adjusting the VCNTL voltage. These 

experiments were run in a succession and then VCNTL was used to raise the value of the 

floating node. Injection was done by sending a pulse train for a fixed time on the NFET 

transistor gate. A pulse train of 6 ms period with a 50% duty cycle was used. Injection 

data was recorded after every 1 minute. For lower VINJBIAS levels, the source current is 

greater, therefore the injection rate is higher. The injection current increases 

exponentially as the floating gate voltage decreases. This is shown in Fig. C.3.  

 
Fig. C.2. Test structure inspired by [75]. VCNTL is used to set the voltage of the 
floating note. The floating gate transistor (M1) current is set by fixing the M2 bias 
voltage, VINJBIAS. Injection is achieved by dropping the drain voltage of transistor 
M1 low using an NFET switch. 
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C.2.2 Using a Charge Pump at the Drain of the Floating Gate Transistor 

The benefit of using this circuit over the previous one was that the drain voltage 

of the transistor M1 could be made much lower than 0 V. This is based on [76] and it 

offers more headroom for injection and it can handle lower floating gate voltages. A 

drawback is that the current causes the negative going pulse to charge back up and 

reduces the effective time for injection. 

 
Fig. C.3. Drop in floating gate voltage for four different source current settings 
(VINJBIAS = 3.8, 4.0, 4.2 and 4.4 V). A pulse train of 9 ms with 33% duty cycle is 
applied for 1 minute to M5 transistor. The injection rate increases with rising source 
current. NOTE: For the VINJBIAS = 4.4 V setting, the initial voltage on the floating 
node was lower. 
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To capture the injection trend, different VINJBIAS voltages were set to control the 

current through the floating gate transistor. In this circuit, increasing current through 

the transistor not only increases the injection rate, but it also reduces the effective pulse 

width. Up to certain limit in time for a fixed pulse-width, as the current increases, the 

pulse area drops linearly. Beyond that limit, the pulse area drops faster than the increase 

in the current. This would limit the injection charge added per pulse. This is shown in 

Fig. C.5.  

 
Fig. C.4. Test structure based on [76]. VCNTL is used to set the voltage of the floating 
note. The floating gate transistor (M1) current is set by fixing the M2 bias voltage, 
VINJBIAS. Injection is achieved by dropping the drain voltage of transistor M1 low 
using a charge pump with diode D1 and capacitor C3. VQINJ pulse is used to control 
injection time. C2 is the tunneling capacitor. Capacitor C4 and diode D2 are used to 
raise the tunneling voltage.  
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C.2.3 Using Feedback to Control Terminal Voltages of the Floating Gate Transistor 

Injection current has a nonlinear dependence on the terminal voltages of the 

floating gate transistor. So, in theory, it is possible to regulate the terminal voltages to 

fix the injection current. This topology was based on [77], where this idea was explored. 

 
Fig. C.5. Drop in floating gate voltage for two different settings. VDD = 5.0 V. An 
injection pulse of 18 µs is applied to VQINJ. Two bias current settings are selected 
(VINJBIAS = 4.0 V and 4.2 V). The injection rate increases with rising source current, 
however, in this circuit, it also reduces the effective pulse width.  
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By toggling the voltage at the gate of transistor M3 in Fig. C.6, top figure, it is 

possible to do injection when the transistor M3 is off and stop injection when the 

transistor M3 is on. So, the source voltage of the floating gate transistor can be either 

regulated to the set voltage or it could be set by the floating node charge. Fig. C.7 is a 

snapshot of this experiment showing injection. 

 
 

 
Fig. C.6. Test structure based on [77]. In the top figure, to maintain a constant rate 
of injection, the current through floating gate transistor M1 is kept constant and the 
drain source voltage across its terminal is fixed by fixing VSOURCE. NOTE: IOUT is 
connected to ground. In the bottom figure, the feedback amplifier used to regulate 
the floating node voltage through the coupling capacitor C1. C2 is the tunneling 
capacitor. Capacitor C3 and diode D1 are used to raise the tunneling voltage.  
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To determine the injection rates for difference source current settings, different 

VINJBIAS voltages were set to control the current through the floating gate transistor. 

The source voltage was fixed using feedback: VSOURCE was set to 5 V and the drain 

voltage, IOUT node was set to 0 V. The supply voltage VINJVDD was set to 6 V. The bias 

currents and injection rates are reported in Table C.1 and the drop in the floating gate 

voltage over time is shown in Fig. C.8.  

 

 
Fig. C.7. Shows the voltage difference on the floating node (read through a voltage 
buffer) after 34 pulses 3 ms wide are applied to the gate. VSD = 5 V, VINJVDD = 6 V, 
VINJBIAS = 5 V. 

Table C.1. Injection rates for different currents 
VINJBIAS 

(V) 
IBIAS (nA)  Injection rate (µV/ms) 

5.0  351  8.4 

5.1  64.6  2.7 

5.2  6.14  0.4 

VCNTL_SW 

VFG 
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C.2 Tunneling Experiment 

A simple floating gate transistor was designed with a high voltage pad on the 

chip to use it for tunneling experiments. 

 

 
Fig. C.8. Drop in floating gate voltage for three different settings. VSD = 5 V, 
VINJVDD = 6 V and VINBIAS is varied. A set of 10 pulses was applied 7 times. Each 
pulse has 3 ms pulse width.  

 
Fig. C.9. This test structure was meant to extract the model parameters for tunneling 
and injection experiments. VCNTL is used to set the voltage of the floating note. 
Tunneling is achieved in this test circuit by toggling VTUNN directly between 0 and 
tunneling voltage. 
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In Fig. C.10, a tunneling experiment is shown, where VTUNN was toggled 

between 0-13 V and then 0-14 V. The initial voltage was adjusted to start with the same 

effective oxide voltage. For this experiment, VINJVDD and IOUT were both set to VDD = 

5 V.  

 

C.4 Parameter Fitting for Injection and Tunneling 

The models are based on [78]. The data was collected from two different test 

structures. Additionally, the models were reused in the simulation to verify if the 

floating gate voltage matched the static tunneling and injection response. Curve fitting 

was done on MATLAB ® using the nlinfit() function (part of statistics and machine 

learning toolbox) and the figures are shown in Fig. C.11. The simulation testbench and 

responses are shown in Fig. C.12 and Fig. C.13. For reference, the parameter values 

 
Fig. C.10. Rise in floating gate voltage recorded after every 30 seconds. Each 30 
second, a set of 5,000 pulses are sent. This is a 6 ms pulse train with 50% duty cycle. 
The tunneling experiment is started almost at the same effective oxide voltage 
difference, so the curves for tunneling voltage of 13 V and 14 V look identical and 
shifted. 
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were compared to those published in [78]. The parameter values are given in Table C.2 

and C.3. 

 

 

 
Fig. C.11. Top figure shows curve fitting on injection data, for VSD = 5.00 V and 
5.25 V. The injection current is plotted against the floating gate voltage. Bottom 
figure shows curve fitting on tunneling data for VTUNN = 12. The relationship is 
plotted between tunneling current and oxide voltage. NOTE: The band pattern is 
due to noise and quantization error in the measurement close to the floating gate 
voltage saturation. Taking the derivative around the saturated value creates this 
pattern. 

VSD = 5.25 

VSD = 5.00 
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Fig. C.12. Showing injection simulation. Top figure is a testbench, where a PFET is 
connected between VDD and 0 V. The subcircuit G1 converts the current measured 
at the source and the three terminal voltages of the transistor M1 to injection current. 
Bottom figure shows static injection, where the floating gate voltage and the source-
drain current are shown. The floating gate node is initialized to 4.1 V. 
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Fig. C.13. Showing tunneling simulation. Top figure is a testbench, where a PFET 
M1 drain, source and bulk terminals are connected to ground. The subcircuit G2 
converts the voltage across the tunnel oxide capacitor to tunneling current that is 
connected in parallel to the capacitor. Figure at the bottom shows floating gate 
voltage increasing due to tunneling current. The floating gate voltage is initialized 
to 0 V. 
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C.5 Conclusion 

Four circuits were designed and tested for investigating their use in learning 

circuits. Floating gate transistors were programmed using tunneling and injection. The 

data collected from the tunneling and injection experiments were used to find the 

parameters for SPICE models of tunneling and injection currents that could be used in 

the simulation of floating gate transistor-based learning circuits.  

  

Table C.2. Comparison of injection current parameters 
  0.35 µm technology 

(from [78]) 
0.5 µm technology (this 
work) 

Pre‐exponent  1.3E‐5 A  0.74E‐6 A 

Gate‐drain factor  ‐155.75 V2  ‐322.40 V2 

Gate‐drain constant  0.702 V  1.22 V 

Source‐drain factor  1 V‐1  1.51 V‐1 

Table C.3. Comparison of tunneling current parameters 
  0.35 µm technology 

(from [78]) 
0.5 µm technology (this 
work) 

Pre‐exponent  9.35E8 A/µm2  79.76 A/1.44 µm2 

Oxide voltage factor  368.04 V  445.88 V 
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