
ABSTRACT

Title of dissertation: HYDROMAGNETIC TURBULENT

INSTABILITY IN LIQUID SODIUM

EXPERIMENTS

Daniel R. Sisan, Doctor of Philosophy, 2004

Dissertation directed by: Professor Daniel P. Lathrop
Department of Physics

This dissertation describes the observation of magnetically-induced instabil-

ities that occur from a preexisting hydrodynamically turbulent background. We

claim these instabilities are the first direct observation of the magneto-rotational

instability (MRI). An extensive body of theoretical and numerical research has es-

tablished the MRI is important in the theory of accretion disks: magnetic fields

destabilize otherwise stable astrophysical flows, causing turbulence and an increased

angular momentum transport needed for accretion. Our instabilities occur in liquid

sodium between differentially rotating concentric spheres (spherical Couette flow)

where an external field is applied parallel to the axis of rotation. Our experiments

are also the first known spherical Couette flow in an electrically conducting fluid,

and only the second experiment, in any fluid, at an aspect ratio of β = 2, the same



of the Earth’s core. We describe the development of a Hall probe array that mea-

sures the field at 30 points outside the sphere and is used to perform a spherical

harmonic decomposition (up to l = 4) of the induced field. We present measure-

ments taken with this array, along with measurements of torque needed to spin the

inner sphere and of the flow velocity using ultrasound doppler velocimetry. Our

experiment is consistent with prior theory, even though our instabilities occur in

the presence of preexisting hydrodynamic turbulence (the theory starts with an ini-

tially laminar flow). This result may be particularly relevant in light of an ongoing

debate on whether accretion disks are hydrodynamically unstable independent of

external fields. The most important contribution of our experiments, however, may

be in providing data with which to benchmark the many numerical and theoretical

studies of the MRI and the codes used to simulate the Earth’s core.
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Chapter 1

Introduction

Before declaring our topic’s importance and ubiquity in nature—a popular starting point in

scientific discourse—we follow a more pragmatic route and define our topic. In particular

we turn to the title, where two somewhat unconventional terms appear. First, “turbulent

instability” refers to an instability occurring from a preexisting turbulent background;

almost invariably in fluid dynamics instabilities occur instead from a laminar state and

cause any subsequent turbulence. Second, “hydromagnetic” refers to the interaction of an

electrically-conducting fluid with magnetic fields. We use this term in place of the more

common1 “MHD,” short for magnetohydrodynamic.

But as we avoid one acronym, we turn to another: the hydromagnetic state that

we focus on is the magneto-rotational instability, or the MRI. The MRI plays a central

role in theory of accretion disks, which are found around stars and black holes, and in

the centers of galaxies. We claim here to have the first direct observations of the MRI: in

liquid sodium flowing between concentric spheres with external fields applied parallel to

the axis of rotation. Flow between concentric spheres is usually called spherical Couette

flow, and as far as we know, we also report the first experimental study of hydromagnetic

flow in that geometry—and one of only a few in any simple geometry. We also present
1Though less common, “hydromagnetic” does predate “MHD” and was used by the pioneers Chan-

drasekhar and Connelly, among others.
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previously-published results from an experiment with co-rotating impellers (with no inner

sphere). Though not mentioned in the paper [91]—and the data are less conclusive—that

experiment likely shows the MRI as well.

Even without the astrophysical connection, our experiments are interesting from

an electromagnetic and fluid dynamics point of view. Depending on the applied mag-

netic field strength, states with a wide range of prominent features result—from relatively

simple azimuthally-precessing patterns, to irregularly-oscillating axisymmetric bands with

short-lived precessing structures, to beating patterns resulting from competing modes—

showcasing the dynamical richness hydromagnetic turbulence has to offer.

1.1 A brief history of the project

As is often the case in science, the initial motivation for pursuing this project was not what

ultimately made it most interesting. The current experiments sprung from the context of

homogenous dynamo experiments. Like the MRI, a homogenous dynamo is an instability

that occurs in electrically-conducting flows. In a dynamo, however, the initial growth

occurs only in the magnetic field and the field becomes self-sustaining.2 We [83], along

with several other groups [78, 77, 5], have been trying to produce a homogenous dynamo

in the laboratory using liquid metals, though unsuccessfully. The experimental apparatus

used in this dissertation was first used to attempt a mechanically-forced dynamo (as

opposed to a convectively-driven one), and still goes colloquially in the lab by the name

“Dynamo II.”

In these previous experiments, pulsed-decay measurements of small external mag-

netic fields probed how close the system was to a self-generating dynamo. We found
2A dynamo is a device that converts mechanical energy to electric energy. Homogenous means the

conductor in the dynamo is uniform and simply-connected—unlike, say, the wrapping of wire in a generator.
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a linear trend toward self-generation in the decay rate with magnetic Reynolds number

(non-dimensional rotation rate) but power limits were reached at a 1/3 of the way [83].

The magnetic Reynolds number is Rm ≡ UL/η, where U and L are typical velocity and

length scales, and η is the magnetic diffusivity; Rm quantifies the ratio of field advection to

diffusion, and must be greater than unity to produce a dynamo. Large Rm is not enough

however; flow geometry matters greatly. The flow in the original experiments [83] was

driven by counter-rotating impellers, as inspired by the numerical work of Dudley and

James [31]. Multiple geometric variations were subsequently tried to strengthen the trend

to self-generation [93, 66], but to no avail. Though the lack of a dynamo was disappoint-

ing, the trend was encouraging—enough that a much larger system (capable of larger Rm)

has been proposed and funded, and which should be online perhaps within a year.

Small external fields were used in these attempted dynamos so that Lorentz forces

did not alter the flow. A next step was to apply large fields to purposefully alter the flow.

In other words, the ratio of the Lorentz to inertial forces—the interaction parameter—is

made greater than unity. The interaction parameter is N = B2Lσ/ρµ0ηU , where B is the

magnetic field, U and L characteristic velocity and length scales, ρ the density, and σ the

electrical conductivity.

Had a dynamo developed, one of the more interesting results would have been the

subsequent saturation—at what value would the field stop growing? Lorentz forces would

necessarily be involved, as it is the only available mechanism for altering the flow to halt

the growth. By applying large external fields, we expected to find clues to the process,

even without a dynamo. What we found, and subsequently focused on, probably has

limited applicability to dynamo saturation but is interesting nonetheless: with co-rotating

impellers the magnetic field exhibited somewhat peculiar oscillations. We published the

3



results in a geophysical journal [91], parts of which are found in Chapter 5.

Similar dynamics had been found numerically in spherical Couette flow by Holler-

bach and Skinner [50], though at much lower Reynolds number. To better compare to

these results—and realizing that no numerical study could incorporate our complicated

impellers—we began to study spherical Couette flow. In the process we built an array

of Hall probes to decompose the field into spherical harmonics, developed an ultrasound

transducer to measure the velocity of sodium, and became aware of the work of Hantao

Ji [53] and Gunther Rüdiger [59] and their collaborators (and others) who were explor-

ing the possibility of studying the MRI in the lab. The result comprises the rest of this

dissertation.

On this note we should warn that interpreting our results as the MRI is still some-

what controversial. There are several alternative interpretations, the most likely coming

from the paper by Hollerbach and Skinner. We discuss these alternative explanations in

Chapter 5.

1.2 Relation to other experiments

What distinguishes our experiments is the combination of simple geometry, turbulence

(large Reynolds number), and large applied magnetic fields (near unity interaction pa-

rameter). Here we discuss other experiments having some of the same or similar features

to our own.

1.2.1 Non-magnetic spherical Couette experiments

Though we present the first hydromagnetic experiment in spherical Couette geometry,

many spherical Couette experiments have been performed in water. Nearly all of them

are with medium to narrow gap widths, however. The gap width in a spherical Couette
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geometry is specified by the aspect ratio β ≡ (a − b)/a, where a and b are the outer

and inner sphere radii respectively. In the literature β ≥ 0.25 is considered wide, so our

geometry, with aspect ratio β = 2, falls well into the wide gap category. In fact, there

is only one known experiment at our aspect ratio [56]—a somewhat surprising paucity

considering the geophysical motivation often ascribed to many spherical Couette studies

and that the Earth’s core has this aspect ratio.3 There is one other experiment at a

slightly larger aspect ratio (β = 2.29) [75]; all other known experiments are at smaller

gap widths. The number of spherical Couette experiments—at any aspect ratio—is quite

small, compared to, say, the number of cylindrical Couette experiments or plane shear flow

experiments—two other basic fluid experiments. In fact, spherical Couette has elements

of both these geometries, being like cylindrical Couette flow at the equator and like plane

flow at the poles.

In the spherical Couette experiments—as well as the other simple geometry hydro-

dynamic experiments—the focus is often on the symmetry-breaking bifurcations leading

from laminar flow to turbulence. Spherical Couette flow involves two types of symmetry:

reflection symmetry about the origin and rotational symmetry. Depending on the aspect

ratio, both types of symmetry breaking bifurcations occur. The types of states one finds

in these spherical Couette studies, which share basic features with other hydrodynamic in-

stabilities, are Taylor vortices (toroidal vortices wrapped around the azimuthal direction)

near the equator, travelling wavy Taylor vortices, spiral Taylor vortices, and travelling

spiral waves.
3We presume the geophysical motivation in those studies concerned not the Earth’s core but its atmo-

sphere, which does have a narrow gap geometry.
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Adding a dimension

By imposing an external field and allowing for Lorentz force interactions, we allow an-

other degree of freedom. Correspondingly we might expect richer dynamics. We explore

parameter ranges in these experiments where the applied fields are large enough to alter

the flow: near unity interaction parameter. This parameter range should be the most

interesting regime, as a competition exists between two dominant forces.

We find in our experiments here that the applied magnetic fields can cause many

of the bifurcations one sees at much lower Reynolds numbers, except that they take place

from a turbulent background. This is perhaps not surprising. The time-averaged turbulent

state has the same rotational and reflectional symmetries as the laminar flow, and the

applied field can break these symmetries—in fact must break the latter at high external

field. The instabilities we see in our experiment have qualities common to the instabilities

that generate the turbulence in the first place.

1.2.2 Dynamo experiments

As mentioned earlier, several groups including our own have been trying to produce ho-

mogenous dynamos in the laboratory. However, groups in Riga, Latvia [38, 37] and Karl-

sruhe, Germany [97] have actually produced liquid metal laboratory dynamos, though in

geometries that force helical flow using baffling and duct-work.

These liquid metal dynamos are substantial achievements, but their geophysical rel-

evance may be limited. First, in those experiments turbulence may not play an important

role in the magnetic field dynamics. For instance, the Karlsruhe dynamo is two-scale:

while the velocity field is small-scale and turbulent, the magnetic field is large scale and

apparently unaffected by the fluid turbulence. Second, in both the Riga and Karlsruhe ex-
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periments the magnetic field reaches equilibrium through mechanisms simpler than what

would operate in a less constrained dynamo. In the Karlsruhe experiment, the equilibrium

magnetic energy corresponds simply to the pressure head in excess of the critical value for

dynamo action. In a less constrained dynamo, the equilibrium magnetic energy would be

much harder to predict as Lorentz forces would alter the flow in a more complicated way.

Gailitis et al. [37] presented evidence of saturation in the Riga dynamo experiment that

appears more complicated than the saturation in the Karlsruhe experiment. However,

the saturated field value was small (8 G) for moderate magnetic Reynolds number, cor-

responding to an interaction parameter much less than one, far from the regime thought

present in the Earth.

We should point out that turbulence does appear important in the saturation of

the Riga (and possibly the Karlsruhe) experiment [34]. Dimensional analysis assuming

turbulence (i.e., neglecting viscosity) predicts a saturated interaction parameter that is

Pm−1/2 the corresponding laminar value; the turbulent prediction is close to the Riga

value.

We have not produced a self-generating dynamo like the experiments in Karlsruhe

and Riga, and our results have little direct relevance to dynamos, but we our closer to the

parameter range where the Earth’s dynamo is thought to operate. For a more extensive

discussion of the relation between dynamo theory and experiments see a review by Busse

[17].

1.2.3 Other hydromagnetic experiments

There are only a handful of other experiments using electrically-conducting fluids and ap-

plied fields in a simple geometry [27, 28, 29, 13]—all of them in cylindrical Taylor-Couette
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flow, and all but one performed by Donnelly and collaborators. These experiments focused

on the stabilization of centrifugal instabilities by external fields—quite opposite the MRI,

in which external fields turn a centrifugally stable flow unstable! Since these experiments

examined the onset of turbulence, these experiments were at Reynolds numbers much

lower than ours.

Many other experimental studies of magnetic fields on electrically-conducting flows

in other geometries (Rayleigh-Benard convection, duct flows, magnetically-driven flows,

flow around obstacles, etc.) have been performed [74, 16]. However, to our knowledge, no

experiments have been performed for high interaction parameter N , Rm = UL/η > 1.

1.3 Geophysical and astrophysical relevance

1.3.1 The role of the MRI

Accretion disks, from which stars and planets are thought to form, are disk-shaped rotating

clouds of gas. The gas particles are attracted gravitationally to a central, dense core and

are held in orbit by the balance of centrifugal forces. When gas particles in neighboring

orbits bump into each other, they transfer angular momentum. In orbital dynamics, if a

particle loses angular momentum from a deceleration in the azimuthal direction it drops

to a lower orbit. However, in a Keplerian disk, where the angular momentum increases

with radius (as r1/2), a lower orbit has a higher angular momentum. Since a closed system

preserves its angular momentum, these perturbed trajectories get restored. Conversely,

accelerated particles go to higher orbits and likewise return to their orbits. The flow is

stable.

The situation changes if there are stresses within the flow that sap angular mo-

mentum from the system. Angular momentum can be lost through viscosity—molecular
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friction that transfers kinetic energy into heat—which leads to gas particles falling inward:

accretion. Using the expected values of the microscopic viscosities, however, accretion

models predict accretion rates that are several orders of magnitude too small (see, e.g.,

[95]).

Turbulence—through the action of the so-called Reynolds stress—leads to angular

momentum loss too. Ultimately the resulting energy loss there is converted into heat

through viscosity too, but turbulent dissipation does not depend on the value of the vis-

cosity. By analogy to laminar flow, this extra dissipation is sometimes accounted for by a

larger effective turbulent viscosity. However, turbulent dissipation depends on the struc-

ture of the flow, and usually cannot be predicted by a single scalar parameter. Turbulent

viscosities are variously used in the literature nonetheless (e.g., [14]). To fix the problem

of too slow accretion, the same basic approach was incorporated into accretion models

by setting the amount of turbulence by a parameter—a proportionality constant relating

the turbulent stresses to the disk pressure. Models that parameterize turbulence in this

way are sometimes called alpha models—only because the constant of proportionality is

denoted by the symbol α. Two α- accretion models that have become standards in this

style are those of Shakura and Sunyaev [92] and Lynden-Bell and Pringle [71].

Work on accretion theory using α models continued for years, allowing a substantial

amount of progress [48]. There were two problems, however. First, the underlying physics

of the turbulent Reynolds stress was not understood. Second, and more importantly, it was

not known if having turbulence in accretion systems was even justified—even considering

that the Reynolds number of typical accretion disks is typically very large (Re ∼ 108), due

to their large (indeed astronomical) length scales. Laboratory flows are known to become

turbulent at Reynolds numbers orders of magnitude smaller (Re ∼ 103, depending on the
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particular flow), but the turbulence arises from centrifugal instabilities. Accretion disks,

however, are centrifugally stable, and so turbulence seemed unlikely to develop. The only

justification for using turbulent values for α was that accretion had to occur.

In 1991 the situation changed when Balbus and Hawley published a series of pa-

pers describing a linear instability arising in differential flows with weak magnetic fields

[9, 46, 10]. As long as ionization and magnetic fields were present in accretion disks—a

likely scenario—a means to generate the presupposed turbulence was found. The mag-

netic fields do more than just trigger turbulence, though. They are inexorably linked with

the continuing dynamics—Maxwell stresses (stresses from the Lorentz force) are just as

important as Reynolds stresses. For a while the instability was called the Balbus-Hawley

instability, but now it is typically called the magneto-rotational instability, or MRI. Ac-

tually the MRI was independently discovered by Velikhov [103] and Chandrasekhar [19],

but its astrophysical implications were not realized. Since 1991, Balbus and Hawley and

a number of other researchers have explored many aspects of the MRI, producing a sig-

nificant body of MRI literature [11]. Balbus and Hawley’s first 1991 paper, for instance,

has been cited over 600 times.

1.3.2 Experimental astrophysics

The studies in the magneto-rotational instability literature have been guided by astro-

nomical observation, but there have been no direct comparisons to controlled experiments.

Indeed, the term “experimental astronomy” when it is used usually refers to observation

astronomy—observing astrophysical objects themselves, through imaging, spectroscopy,

radiometry, etc. Here we provide the rare example of an astrophysical phenomena that

can be studied in the laboratory: an experiment by the usual physics definition.
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In fact, multiple papers have explored the possibility of observing the MRI in just

this way. One of these papers, by Ji, Goodman and Kageyama [53], calculates through

WKB methods a stability condition for a Taylor-Couette flow based on the local disper-

sion relation, which when adapted to our experiment produces qualitative and quantita-

tive agreement with our data. Goodman and Ji also perform the corresponding global

calculation and find that it differs little from the local analysis. A similar local analysis

in the same geometry has been performed by Noguchi et al. [76], and by Rüdiger and

collaborators [89, 90], and in a spherical geometry [59].

Because there are very few laboratory experiments in astrophysics, these experi-

ments are more noteworthy—but also more difficult to interpret. In geophysics, by con-

trast, where experiments are more common (e.g., [15, 97, 78, 83]), there is a shared liter-

ature that includes experiment, theory, and simulation (e.g., [24]).

Another possible difficulty in interpreting our experiment astrophysically will be

simply in identifying it as the MRI: our instability occurs from a hydrodynamically tur-

bulent background. This difficulty, however, may also be what proves most interesting.

The MRI has been considered important because it generates needed turbulence and an-

gular momentum transport for accretion to work. Here we will provide evidence the

MRI occurs—and that angular momentum transport increases—even in the presence of

preexisting hydrodynamic turbulence. This may broaden the relevance of the MRI to

astrophysical and geophysical flows that are not expected to be centrifugally stable.

Our results may be especially important in the face of recent challenges to the pre-

vailing view in the astrophysics community that Keplerian disks, in the absence of magnetic

fields, are hydrodynamically stable. Among the possible routes to hydrodynamical turbu-

lence are nonlinear instabilities and the so-called bypass concept [18], where linear growth
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occurs only if perturbations reach a certain finite amplitude. The former was examined

in particular by Balbus, Hawley, and Stone [11] and others [88], and they concluded that

none were likely in accretion disks, but more recent challenges have come about [70, 84].

Other possible processes leading to hydrodynamic turbulence in accretion disks are: a

linear (spectral) instability arising from stratification perpendicular to the disk, and baro-

clinic instabilities [60, 101] resulting from vertical dependence of the cylindrical rotation.

Even if these instabilities are present in accretion disks and produce purely hydrodynamic

turbulence, our results suggest that magnetic fields will have continued importance in

accretion disks.

If we’ve observed the MRI, we have what might be considered to some approximation

an experimental model of a galaxy or a young star. Of course the model has serious

limitations; those astrophysical flows have no boundaries that impose no-slip conditions

as ours do, for instance. Other astrophysically important processes, like radiation, have

no counterpart in our experiment either. Less seriously, the magnetic Prandtl number of

sodium is O(10−5) versus O(1) for most (though not all) accretion disks.

Our experiment’s differences with accretion disks, however, are similarities with the

Earth’s core. As we’ll see next, we have to a closer approximation a model of the Earth’s

core.

1.3.3 Similarity to Earth’s core

Our spherical Couette experiments have a similar geometry to the Earth’s core, where a

liquid iron outer core surrounds a solid inner core (solid because of the higher pressure).

We have chosen our inner sphere so that our system has the same radius ratio as the Earth,

0.3. Seismological evidence suggests the inner core is rotating faster than the outer core
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and mantle[94], just as our inner core rotates faster than the outer spherical vessel. The

causal link is opposite in the two cases, however: in our experiments the rotation is forced

and causes the induced field, whereas in the Earth the induced field is self-generated most

likely by a combination of thermal and compositional convection, which causes the super-

rotation. Nonetheless, the mechanical and electromagnetic couplings that occur in both

cases follow the same principles. One way these couplings become important in the Earth

is in variations of the Length of Day and in the orientation of Earth’s axis of rotation.

Both can result from a transfer of momentum from the fluid core to the mantle, directly

equivalent to our torque measurements. Furthermore, should our experiments one day

show dynamo action, our geometry, being like that of the Earth, would obviously be most

suitable for comparison to direct measurements of the Earth’s field and to geodynamo

simulation.

Two basic approaches in the study of planetary cores were to analytically find a

velocity field capable of producing a dynamo, and numerically to understand how the field

saturates. The first was achieved by multiple researchers starting in the 1960s [96, 73, 31];

the latter has been achieved to some extent starting in the last decade by self-consistent

numerical simulations [42, 61, 86, 30].

How does the MRI fit into the study of planetary cores? In fact its destabilizing effect

calls the underlying conceptual approach used in most analytical studies into question.

Small magnetic fields are not necessarily passive as assumed; they can drive turbulence,

altering both the statistical properties and the mean flow. In the numerical studies,

however, where the simulation is self-consistent, the MRI can probably be safely ignored,

though considering it might bridge the two fields of study. The main effect of the MRI

in the Earth’s core would be as a mechanism for the initial field growth, and might affect
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long-term features like the relative strengths of the toroidal to poloidal fields. The MRI

might also manifest itself in the dynamics of these simulations or in the Earth’s core, for

instance with slowly precessing flux lobes, as discussed in Chapter 5.

Research on the Earth’s core has to our knowledge not yet involved the MRI. Its

absence in geodynamo research is not surprising. Unlike accretion disks, in the Earth’s

core there was never a problem of missing angular momentum transport, and with or

without magnetic fields turbulence was never in question. Indeed turbulence is a contin-

uing problem. With analytical studies, turbulence is either ignored or approximated and

parameterized (e.g., the α-effect—which is distinct though not so fundamentally different

from the α parameterization in accretion theory). In numerical studies, weak turbulence

exists but realistic levels of turbulence cannot be fully resolved and so hyperdiffusivities

or artificially large Prandtl numbers are used.

Experiments, however, are well-suited for studying turbulence. Our experiments

reach parameter ranges inaccessible to numerical simulation, now or in the foreseeable

future. To see why, one needs to understand how turbulent fluid systems are simulated.

1.4 Simulations and the problem of turbulence

While many fields of science are limited by a lack of direct information (e.g., in geophysics,

basic information like the rotation rate of the Earth’s inner core has to be indirectly

inferred, leading to large uncertainty), the study of turbulence is in a way limited by too

much. The information of turbulence lies entirely in the Navier-Stokes equation, which

looks simple enough. But no algebraic turbulent solutions exist; instead, one can only

numerically solve the equation at points in space (grid points) for successive steps in time.

This description of course has a finite resolution, and to increase it one adds grid points
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and time steps, which means adding computations and more memory.

As a flow becomes more turbulent, its simulation requires more resolution: the

fluctuations become more irregular and occur over smaller lengths and shorter times, while

the largest scales remain important. One can’t just zoom in without losing important

information. The problem with turbulence is that the resolution requirements quickly

exceed the limits of modern computers.

We can quantify the resolution problem using the Reynolds number, Re. In fully

developed turbulence, the Reynolds number relates the smallest length scale, often called

the Kolmogorov length lk, to the largest length scale L (generally the size of the system):

lk = LRe−3/4. For a Reynolds number of Re = 5× 106—a typical value for experiments—

the ratio of length scales L/lk and thus the needed number of grid points for one dimension

is 105. In three dimensions, the grid points needed is the cube of this ratio: ∼ 1015.

Likewise, the smallest time scale, the Kolmogorov time τk, is related by the Reynolds

number to the longest time scale (the turnover time L/U): τk = Re−1/2L/U . To simulate

all the time dynamics at Re = 5× 106 (Ω/2π ≈ 50 Hz) for one second would then require

105 time steps. At each grid point the equations of motion are solved for three velocity

components (and for us also three magnetic field components), meaning at least three

operations per grid point. In total, that’s 3 × 1015 × 105 = 3 × 1020 calculations, and

as many data bytes! For perspective, if one could use all the computing power on the

National Science Foundation’s recently funded 20 Teraflop computer network, the full

simulation of one second of our experiment in a naive estimate would take about a year.

In practice, the time to simulate the experiment would be considerably longer as data

would have to be written and read from hard disks at rates much slower than processor

speeds. The maximum Reynolds number that can be simulated with fully resolved length
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and time scales is around Re = 103. By contrast, the Reynolds number of the Earth’s core,

which is typical of other astrophysical flows, is around 108. Experiments can get far closer

to this parameter range than any simulation can do—now or in the foreseeable future. A

turbulence experiment, in essence, is a very powerful (though specialized) supercomputer.

Computer simulations do, however, have significant advantages over experiments.

They can control every aspect of the simulation, for instance, and have complete knowl-

edge of the dynamics. Experiments on the other hand have uncertainties and noise, and

measurements are incomplete and often difficult. For instance, in our liquid sodium ex-

periments, because the flow is opaque we can only measure the velocity using ultrasound

doppler velocimetry, currently only along one line in the flow—and even that limited mea-

surement was very challenging, as we’ll see in Chapter 3. Furthermore, the Re = 103

limit on numerics can—to an acceptable approximation—be overcome. Numerical tech-

niques have been developed (like using hyperdiffusivities) that try to artificially suppress

turbulence while minimally affecting the essential dynamics. Also, in some situations sim-

plifying assumptions can be made. Other times an under-resolved model is simply good

enough.

1.4.1 Untangling the role of turbulence

Experiments deal readily with turbulence—indeed it’s nearly unavoidable—and they are

thus well-suited to untangle its role. One problem in which laboratory hydromagnetic

turbulence experiments could offer insight is a dynamo or MRI saturation mechanism.

In both, the magnetic field grows exponentially from the fluid motion, a result coming

simply from linear analysis. But the challenging and interesting problem is to determine

what turns the growth off—that is, what controls saturation. Turbulence almost certainly
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plays a significant role. In the MRI literature, the problem of saturation is to find the

magnetic energy as a function of the pressure, which, as formulated in an α model, is

a constant times the turbulent stresses. In the Earth’s core, small-scale currents, due

to small-scale turbulent velocity fluctuations, contribute to Joule heat production, even

if they do not contribute directly to the observable field. Joule heat production, which

obviously cannot exceed the power source driving the dynamo, places limitations on the

intensity of magnetic fields in the core.

Turbulence also has a dynamical effect on the Earth’s field, as evidenced by the

broad magnetic energy spectra at the core-mantle boundary. Satellite data imply that the

Earth’s field at the core-mantle boundary has significant contributions at least up to degree

l = 12 [52]. As the Earth’s mantle filters the field increasingly with higher l, the Earth’s

field may thus be even more broadband than we are able to infer from measurements at

the surface.

Evidence that turbulence is significant in dynamos is also found in experiments

[78, 83]. For instance, liquid metal experiments that should self-generate based on the

time-averaged velocities do not in practice [72]. The time-dependent turbulent fluctuations

apparently play a non-trivial (and, for at least some homogenous dynamos, detrimental)

role.

So while any turbulent experiment is a sort of computational study of the Navier-

Stokes equation (and induction equation, if the turbulence is hydromagnetic), ours has the

added value that it can, to some extent, model the Earth’s core and the magneto-rotational

instability. It can also help computational studies by providing an experimental turbulent

benchmark to calibrate to.
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1.4.2 Benchmark numerical codes

A major motivation for this experiment was to provide a testbed for numerical codes

that incorporate the Lorentz force. Experiments and numerical simulation, because of

turbulence, are excellent complements.

In particular, the spherical Couette system described in this dissertation is an ideal

benchmark for several reasons. First, the geometry is spherically symmetric and simple. In

many hydromagnetic turbulence experiments [78, 83, 91], the flow is generated by moving

impellers—complicated boundary conditions that are difficult to model. By contrast, the

spherical Couette flow is driven by a simple moving boundary. Indeed, several codes that

include Lorentz forces have already been developed in our geometry, for example those

of Glatzmaier and Roberts [42], Kuang and Bloxham [61], and others [30] (though minor

modification would be necessary to make the inner sphere rotate and the outer sphere

stationary). Second, oscillating velocities and magnetic fields present a dynamic signature

that is straightforward to compare. Trends, such as our torque measurements versus

rotation rate and applied field, could be compared as well. Furthermore, these dynamics

change with electrical boundary conditions, another dimension that can be benchmarked.

Lastly, since the complementary nature of experimental turbulence in simple geome-

tries is the same for any experiment in a simple geometry, we should note one difference:

the external fields suppress gradients in the direction of the field, which would lower the

needed resolution in that direction.
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Chapter 2

Theoretical background

2.1 Equations of motion

The equations of motion relevant to our system are the Navier-Stokes equation with the

added Lorentz force:

∂�u

∂t
+ (�u · �∇)�u = −1

ρ
�∇p + ν∇2�u +

1
ρµ0

(
�∇× �B

)
× �B (2.1)

and the induction equation:

∂ �B

∂t
= �∇×

(
�u × �B

)
+ η∇2 �B (2.2)

derived from the Maxwell equations and Ohm’s law for a moving conductor, where �u is the

velocity, p the pressure, �B the magnetic field, ν the kinematic viscosity, ρ the density, µ0

the magnetic permeability of free space, and η ≡ 1/µ0σ the magnetic diffusivity, composed

of the magnetic permeability and electrical conductivity.

In addition, in our operating conditions sodium is effectively incompressible:

�∇ · �u = 0. (2.3)

Incompressibility holds when local density variations ∆ρ are small compared to the globally-

averaged density ρ0. These local density variations are caused by local changes in either

pressure or temperature.
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Local changes in pressure ∆p lead to density fluctuations because of a fluid’s finite

compressibility β:

∆ρ/ρ0 = β∆p.

In a turbulent flow, these local pressure fluctuations balance the advective term and scale

as a typical velocity squared ∆p ∼ ρU2. The compressibility, in turn, is inversely related

to the square of the sound speed β ∼ 1/ρc2. Thus, the fractional change in density can

be expressed:

∆ρ

ρ0
∼ U2

c2

[100]. However, even at our highest rotation rates (Ω ∼ 100 Hz), the maximum speed

U ≈ 30 m/s is much smaller than the sound speed of sodium, c = 2500 m/s, giving a

maximum fractional change in local density of only O(10−4).

Local changes in temperature lead to density fluctuations because of thermal ex-

pansion. The linear thermal expansion coefficient for sodium is roughly 10−5K−1, corre-

sponding to a 0.5% change in density per 10◦C. In our system there are small temperature

variations (< ±5◦) in time due to imperfect temperature regulation, which might produce

local temperature gradients. At worst these temperature fluctuations would produce den-

sity fluctuations of order O(10−3). However, even that effect is unlikely as the time scale

of temperature changes is much longer than the turnover time for our system, L/U < 1 s.1

Boundary conditions

No-slip boundary conditions for the velocity apply at all surfaces.

The magnetic field boundary conditions can be deduced from the integral form of the
1We might wonder here about the thermal diffusive time scale, τD = L2/κ ≈ 5 min., based on the

thermal diffusivity κ = 0.68 cm2/s for our system. Advective stirring, however, is much more effective at

mixing temperature than diffusion.
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Maxwell equations. First, we apply
∮

�B · d�a = 0 on an infinitesimally-thin Gaussian box

sandwiching the interface, where d�a is an area element pointing normal to the surface.

Having infinitesimal area, the sides of the box intersected by the interface contribute

nothing to the integral, leaving the top and the bottom surfaces. We can shrink these top

and bottom surfaces until the field components along their normals are constant, leading

to

B1⊥ = B2⊥, (2.4)

the requirement that the magnetic field component perpendicular to the interface be con-

tinuous, where the subscripts 1 and 2 refer to the regions on either side of the interface.

Second, we apply
∮

�B/µ0 ·d�l = If,enc around a rectangular loop sandwiched infinites-

imally close to the interface, where d�l is a displacement element. Integration along the

infinitesimal loop segments perpendicular to the interface cancel because of Eqn. 2.4. The

magnetic field component parallel to the surface is discontinuous because of free surface

currents If,enc enclosed by the integration loop. With finite conductivities, however, the

surface currents are zero. Therefore,

1
µ1

�B1 ‖ =
1
µ2

�B2 ‖. (2.5)

The materials used in our experiments are non-ferromagnetic, so the magnetic permeabil-

ities are very nearly equal to the vacuum value, µ0. Thus, the parallel magnetic field

component �B‖ is continuous too. The solution for the magnetic field outside the sphere is

∇2 �B = 0.

2.2 Dimensionless parameters

The equations of motion are often cast in dimensionless form:

∂�u

∂t
+ (�u · �∇)�u = −�∇p + Re−1∇2�u + N R−1

m

(
�∇× �B

)
× �B, (2.6)
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∂ �B

∂t
= �∇×

(
�u × �B

)
+ R−1

m ∇2 �B (2.7)

where the the velocity �u has been scaled by the driving speed Ωb, time by the rotational

time scale Ω−1, length by the outer sphere radius a, and the magnetic field �B by the im-

posed field strength B0. Doing so introduces the dimensionless parameters the Reynolds

number Re, the magnetic Reynolds number Rm, and the interaction parameter N , which

are described below. The dimensionless form makes it easier to compare systems of differ-

ent scales—for instance a meter diameter sphere and a moon sized object like the Earth’s

core—in a meaningful way.

2.2.1 Interaction parameter

The state of the fluid flow, and thus the induced field, depends on a competition between

the inertial and Lorentz forces (the second and fifth terms in Eq. 2.1). The interaction

parameter quantifies this competition.

An expression for the interaction parameter can be found using dimensional analysis.

Using Ohm’s law �J = σ( �E + �u × �B) (where σ is the electrical conductivity, and �E the

electric field) and a scaling from Faraday’s law (Eind ∼ UindBind), the dimensional form

of the Lorentz force per unit mass (�F = �J × �B/ρ) scales as:

FLor ∼ σ

ρ
UindBextBind +

σ

ρ
UB2

ext (2.8)

where ρ is the density. The second term above dominates based on two empirical observa-

tions: first because the characteristic induced field velocity Uind = LΩind is always smaller

than the characteristic advective velocity U = ΩL (because the characteristic induced field

frequency is always smaller than the rotation rate), and because the induced magnetic field

is always at least 100 times smaller than the external magnetic field. The second term

divided by the scaling of the advective term in the Navier-Stokes equation U2/L gives the
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interaction parameter: N = B2
extL/ηρµ0u, where η ≡ 1/σµ0 is the magnetic diffusivity,

composed of the electrical conductivity and magnetic permeability. Using the outer sphere

radius a, and the maximum driving speed Ωb, gives

N =
B2

exta

ηρµ0Ωb
. (2.9)

2.2.2 Reynolds numbers

The only other independent, adjustable dimensionless parameter is the magnetic Reynolds

number, Rm ≡ UL/η. We define Rm using the sphere radius and driving speed

Rm ≡ Ωba/η. (2.10)

The magnetic Reynolds number quantifies the ratio of field advection (twisting, stretching,

etc.) to resistive diffusion.

The (hydrodynamic) Reynolds number, Re ≡ Ωba/ν, is related to the magnetic

Reynolds number by the ratio of kinematic viscosity to magnetic diffusivity. This ratio,

known as the magnetic Prandtl number Prm ≡ ν/η, is a property of the fluid. For sodium

at 120◦ C, this number is small (Prm = 8.3 × 10−6), meaning flows with Rm > 1 will be

highly turbulent (Re > 105).

2.2.3 Other dimensionless numbers

The radius ratio ε = rinner/router is a third, independent dimensionless parameter that is

adjustable but which remains fixed for our experiments. Our value, ε = 0.33, was chosen

to be close to the value for the Earth.

Other dimensionless numbers can be formed from the Reynolds numbers and in-

teraction parameter. One such number is the Lundquist number, S =
√

NRm , which is

commonly used to make the applied field dimensionless. Unlike the interaction parameter,

23



the Lundquist number,

S =
Ba

η
√

ρµ0
,

is linear in applied field. The Lunquist number is a type of Reynolds number where the

velocity scale is the Alfvén velocity, va = B/
√

ρµ0 —the group velocity of Alfvén waves.

Alfvén waves are transverse inertial waves that propagate in the direction of the magnetic

field, with magnetic tension providing the restoring force (see Sect. 2.3.1). The Lundquist

number is the ratio of the Alfvén period τA = L/vA to the resistive decay time τ = ρ/B2σ.

For S ∼ 1, system-size magnetic field oscillations within the sodium damp in about one

period; shorter wavelengths are damped more strongly.

2.3 The Lorentz force

The Lorentz force is �F = �J × �B. In our experiment we do not measure currents, so we

can more usefully rewrite it using Ampére’s law (Eqn. A.11) in terms of �B alone, as we

did in Eqn. 2.1:

�F =
1
µ0

(
�∇× �B

)
× �B.

It is useful to write the magnetic field as a sum of a constant applied field �Bext

and an induced field �b, where we assume (as seen in our experiments) that |�b | � | �B |.

Neglecting terms quadratic in |�b | and using �∇× �Bext = 0 the Lorentz force thus becomes:

�F =
1
µ0

(
�∇×�b

)
× �Bext. (2.11)

2.3.1 Magnetic tension and pressure

Using vector identity A.3, that the applied field �Bext is curl- and gradient- free, and that

magnetic fields are divergenceless, the Lorentz force (Eqn. 2.11) can be written:

�F =
1
µ0

[(
�Bext · �∇

)
�b − �∇

(
�Bext ·�b

)]
. (2.12)
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Parameter: Re Rm N S

Definition
UL

ν

UL

η

B2L

Uηρµ0

BL

η(µ0ρ)1/2

Range for experiment 1 × 105− 1-25 0-50 0-10
1 × 107

Estimate for Earth ∼ 108 ∼ 100 ∼ 105 − 107 ∼ 103 − 105

Estimate for Sun ∼ 102 − 1011 ∼ 102 − 104 ∼ 1 − 104 ∼ 10 − 104

Table 2.1: Relevant dimensionless parameters. Parameter estimates for the Earth use the

westward drift rate of field patterns (U ≈ 10−4 m/s) for the velocity and B = 5 G (radial

component at core-mantle boundary) to B = 500 G (estimated toroidal component) for

the magnetic field. Density, electrical conductivity, kinematic viscosity, and length scale

of the fluid core are taken from Ref. [85].
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The second term, being a gradient of a scalar, acts on the fluid in exactly the same way

as the pressure term −�∇p. It’s irrotational and thus does not enter into the vorticity

equation (see next section). This implies that it does not influence the system dynamics,

as closed flows can be described as a sum of vortices.

The first term in Eqn. 2.12 can be rewritten in terms of curvilinear coordinates:

(
�Bext · �∇

)
�b = B

∂b

∂s
êt − bB

R
ên.

Here b and B are magnitudes, êt and ên are unit vectors in the directions tangential and

normal to the external field, s is a streamwise coordinate, and R is the local radius of cur-

vature of the streamline. Thus, there are force components tangent to and perpendicular

to the flux tubes. It is as though the magnetic field lines are in tension. If a region of

conducting fluid moves across the field lines, the field lines will be swept along and the

resulting curvature will create a restoring force B2/µ0R on the fluid.

Two important points arise. First, in an incompressible fluid, an applied field will

suppress velocity gradients in the direction of the field. Second, we see the possibility for

propagating disturbances (Alfvén waves) in an electrically conducting fluid permeated by

magnetic fields, analogous to waves along a taut string. These Alfvén waves will be under-

damped (that is, the magnetic fields won’t decay too quickly) if the Lundquist number S

is greater than one.

The tension and pressure correspond to the two terms of the Maxwell electromag-

netic stress tensor:

Mij ≡ BiBj

µ0
− BiBj

2µ0
δij , (2.13)

where δij is the Kronecker delta function2. Taking the divergence of the Maxwell stress

2The electric field makes a negligible contribution to the stress because the flow velocity is much slower

than the speed of light.

26



tensor gives the Lorentz force. The Maxwell stress tensor is generally used in place of the

Lorentz force in the MRI literature.

2.4 Analogies with the induction and vorticity equations

The first term in the Lorentz force (Eqn. 2.12) can be rewritten using another vector

identity (A.4) to give:

�F =
1
µ0

[
�∇×

(
�b × �Bext

)
− �∇

(
�Bext ·�b

)]
. (2.14)

Now this first term looks like the first term in the induction equation, with �u replaced with

�b. This similarity will prove useful when we decompose the velocity and magnetic fields

into spherical harmonics. Velocity disturbance modes that interact with the applied field

(according to the induction equation) will produce a magnetic disturbance mode that, in

turn, interacts (through the Lorentz force) with the velocity disturbance, setting the stage

for instabilities to form.

If we take the curl of the momentum equation:

�∇×
(

∂�u

∂t
+ (�u · �∇)�u = Re−1∇2�u + N R−1

m

[
�∇×

(
�b × �Bext

)
− �∇

(
�Bext ·�b

)])

and define the vorticity �ω ≡ �∇× �v we obtain the vorticity equation:

∂�ω

∂t
= �∇× (�u × �ω) + Re−1∇2�ω + N R−1

m
�∇× �∇×

(
�b × �Bext

)
. (2.15)

The second term above was obtained through use of the identities A.1 and A.3.

The vorticity equation looks like the induction equation with the magnetic field �B

replaced by the vorticity �ω and with an additional Lorentz force source term. The analogy

is not perfect, as �ω depends functionally on �u in a way that �B does not.

Note that in taking the curl, the hydrodynamic pressure term −�∇p and the magnetic

pressure term �∇
(

�B ·�b
)
, being gradients of scalars, both vanish because of identity A.1.
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As noted earlier, their absence for the vorticity equation implies that neither can influence

the flow field.

A third analogy to hydromagnetic flow exists with viscoelastic (polymeric) fluids;

this connection has been analyzed recently by Ogilvie and Proctor [79]. As mentioned in

Sect. 2.3.1, magnetic fields act as lines of tension coupled to the fluid, provided the time

scale of the flow is faster than the diffusive time (i.e., Rm is greater than unity). Likewise,

polymers can also act as lines of elastic tension coupled to the fluid provided the time

scale of the flow is faster than the relaxation time of the polymer (i.e., a dimensionless

number analogous to the Reynolds number, the Deborah number, is larger than unity).

This analogy becomes exact in the limit of the magnetic Reynolds and Deborah numbers

going to infinity. Formally, the analogy is made using the Oldroyd-B stress tensor (a

widely used model for viscoelastic fluids) and the Maxwell electromagnetic stress tensor,

which we saw in the previous section.

As might be expected, and as shown by Ogilvie and Proctor, an instability in a poly-

meric flow exists that is directly analogous to the MRI in hydromagnetic flows. Though

not investigated here, analogous experiments to those in this dissertation, with a water-

polymer mixture replacing the sodium, might be an interesting avenue for future research.

2.5 Spherical harmonics

The equations of motion (Eqns. 2.1, 2.2) are far too complicated to solve for the velocity

or magnetic fields arithmetically, except in rare cases. So in a divide-and-conquer style

approach, often the fields are decomposed into orthogonal modes. In spherical geometries

these modes are the spherical harmonics, Y m
l . The Earth’s field is decomposed into

spherical harmonics, as are the fields in many numerical geodynamo models and other
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numerical simulations in spherical geometries. Motivated by the same reasons—and to

make it easier for numericists and geophysicists to compare with our data—we use the

spherical harmonics to decompose our induced field too. We’ll see how in Chapters 3.

Here we first provide some mathematical details.

The spherical harmonics are the angular parts of the solutions to Laplace’s equation

(∇2ψ = 0) in spherical polar coordinates [64]. (They work as a basis in our experiment

because there are no currents outside our vessel and the magnetic field satisfies Laplace’s

equation.) The spherical harmonics are related to the associated Legendre polynomials,

Pm
l :

Y m
l = Pm

l (cos θ) eimφ. (2.16)

Each harmonic has a “degree” l and “order” or “azimuthal wave number” m.

The spherical harmonics are scalars, whereas the velocity and magnetic fields are

vectors. Following the convention of Bullard and Gellman [7], we decompose the magnetic

and velocity fields using the toroidal modes:

Tr = 0, Tθ =
T (r, t)
r sin θ

∂Y m
l

∂φ
, Tφ =

−T (r, t)
r

∂Y m
l

∂θ
, (2.17)

which are each the curl of a radial vector, �Tm
l = �∇ × T (r, t)Y m

l (θ, φ)r̂, and the poloidal

modes:

Sr =
n(n + 1)

r2
S(r, t)Y m

l , Sθ =
1
r

∂S(r, t)
∂r

∂Y m
l

∂θ
, Sφ =

1
r sin θ

∂S(r, t)
∂r

∂Y m
l

∂φ
, (2.18)

which are each the curl of a �T -like vector, �Sm
l = �∇× �∇×S(r, t)Y m

l (θ, φ)r̂. We separate the

nonaxisymmetric modes into their real and imaginary parts—that is by their azimuthal

dependence, cos mφ or sinmφ, denoted by adding c or s after m. (When c or s is omitted,

the azimuthal dependence is not important there.) For clarity, v or b will be added after
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l to specify which field, velocity or magnetic, the mode represents. Putting this together

in an example: �S1c
2v is the l = 2 velocity mode with the azimuthal dependence cosφ.

The radial functions S(r, t) and T (r, t) above are in general different for each mode,

and fully specify the time dependence. For the special case where the fields satisfy

Laplace’s equation (such as outside our vessel), the radial modes correspond to T (r) = 0,

S(r) ∝ r−n.

Properties of �S and �T

The vectors �Sm
l and �Tm

l are both divergenceless (as they must to compose magnetic and

incompressible velocity fields). �Sm
l and �Tm

l also form a basis, and are orthogonal when

integrated over the surface of a sphere:

∫ ∫
�T ′ · �Tdσ =

∫ ∫
�S′ · �Sdσ = 0

when �S �= �S′ and �T �= �T ′. This orthogonality is directly due to the orthogonality of the

scalar spherical harmonics, so here the functions are orthogonal if they differ only in their

radial dependence. Also, for all �S and all �T

∫ ∫
�S · �Tdσ = 0,

even if based on the same spherical harmonic. (Note that dσ ≡ r2sinθdθdφ used here

and throughout the chapter is a differential area element and is of course unrelated to the

electrical conductivity σ.)
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For non-orthogonal modes based on the same harmonic then:

∫ ∫
�T ′ · �Tdσ = NlT (r)T ′(r),∫ ∫
�S′ · �Sdσ = Nn

[
l(l + 1)S(r)S′(r)/r2 +

dS(r)
dr

dS′(r)
dr

]
,

where

Nl =
2πl(l + 1)

2l + 1
(l + m)!
(l − m)!

if m �= 0,

Nl =
4πl(l + 1)

2l + 1
if m = 0.

(2.19)

The �S’s and �T ’s are related to each other:

�∇× �T = �S′,

�∇× �∇× �T = �∇× �S′ = �T ∗,

�∇× �∇× �S = �S∗,




(2.20)

where �S′ is �S with T (r, t) in place of S(r, t), as we saw from their definitions, and further-

more, �T ∗ and �S∗ are �T and �S with S(r, t) and T (r, t) replaced by

T ∗(r, t) = −d2T

dr2
+

l(l + 1)
r2

T,

S∗(r, t) = −d2S

dr2
+

l(l + 1)
r2

S.


 (2.21)

Induction Equation

Again following the example of Bullard and Gellman, we can find an equation governing

each magnetic field mode. First, rewrite the induction equation by expanding the velocity

and magnetic fields in �S and �T . Then project these equations onto the “test” modes �S′
γ

and �T ′
γ , whose radial functions are unity for all r, and integrate over a sphere of radius r

to give (after using identity A.2 and Eqns. 2.20, 2.21):

r2 ∂Sγ

∂t
= r2 ∂2Sγ

∂r2
− γ(γ + 1)Sγ −

∫ ∫
�Sγ

′ · �∇×
(

�vβ × �Bα

)
sin θ dθ dφ,

r2 ∂Tγ

∂t
= r2 ∂2Tγ

∂r2
− γ(γ + 1)Tγ −

∫ ∫
�Tγ

′ · �∇×
(

�vβ × �Bα

)
sin θ dθ dφ.


 (2.22)
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where �vβ = �Sβ + �Tβ and �Bα = �Sα + �Tα, and Sγ and Tγ are the radial functions. When

γ stands alone (not as a suffix) it represents the mode order. The suffixes implicitly

contain l,m, and c or s. Furthermore, β always corresponds to the inducing velocity, α

the background field being acted on by the velocity, and γ the resulting induced field.

The integrals in Eqn. 2.22 can be made to depend on one of the following two

integrals:

Kαβγ =
∫ ∫

YαYβYγ sin θ dθ dφ,

Lαβγ =
∫ ∫

Yα

(
∂Yβ

∂θ

Yγ

∂φ
− ∂Yβ

∂φ

Yγ

∂θ

)
dθ dφ.




(2.23)

We can then rewrite the induction equation as:

∂Sγ

∂t
=

∂2Sγ

∂r2
− γ(γ + 1)

r2
Sγ − V

r2

∑
α,β

[(SαSβSγ) + (TαSβSγ) + (SαTβSγ)],

∂Tγ

∂t
=

∂2Tγ

∂r2
− γ(γ + 1)

r2
Tγ − V

r2

∑
α,β

[(SαSβTγ) + (TαSβTγ) + (TαTβTγ)

+(SαTβTγ)].




(2.24)

where (SαSβSγ), (TαSβTγ), and (SαTβTγ) depend on Kα,β,γ ; (TαSβSγ), (SαTβSγ), (SαSβTγ),

and (TαTβTγ) depend on Lα,β,γ ; and V is a constant. These terms are related to the Wigner

3-j symbols used in quantum mechanical systems having coupled angular momenta, and

they follow the same selection rules. We’ll present these selection rules in Sect. 2.5.1. A

sampling of these terms, taken from Bullard and Gellman [7], are shown below:

(SαSβSγ) = −Kαβγ

2Nγ

[
α(α + 1) {α(α + 1) − β(β + 1) − γ(γ + 1)}Sα

∂Sβ

∂r

+ β(β + 1){α(α + 1) − β(β + 1) + γ(γ + 1)}∂Sα

∂r
Sβ

]
,

(TαSβSγ) = −Lαβγ

Nγ
β(β + 1)TαSβ ,

(SαTβSγ) = −Lαβγ

Nγ
α(α + 1)SαTβ .

(2.25)

Each term in Eqn. 2.24 has a simple physical interpretation. The terms on the left

side are the rate of growth; the first two terms on the right side give diffusion. The remain-
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ing “field-generating” terms give the rate of growth from the magnetic field component

�Bα = �Sα + �Tα interacting with the velocity mode �vβ = �Sβ + �Tβ to produce �Bγ = �Sγ + �Tγ .

Momentum equation

We can perform a similar analysis with the momentum equation. Again we expand the

magnetic and velocity fields into poloidal modes. First we rewrite the advective term

(�u · �∇)�u using identity A.3 to get

�∇ (
u2
)
/2 − �u ×

(
�∇× �u

)
.

We use Eqn. 2.14 for the Lorentz force. To begin we have:

∂�u

∂t
+

�∇ (�u · �u)
2

−�u×
(

�∇× �u
)

= −�∇p+
∇2�u

Re
+

N

Rm

[
�∇×

(
�b × �Bext

)
− �∇

(
�b · �Bext

)]
(2.26)

As with the induction equation, we expand the velocity and magnetic fields in �S

and �T and then multiply by �S′
γ and �T ′

γ (modes with unity r dependence) and integrate

over a sphere of radius r to obtain:

∂�uγ

∂t
−
∫∫

�Sγ
′ · �u ×

(
�∇× �u

)
dσ =

∇2�uγ

Re
+

N

Rm

∫∫
�Sγ

′ · �∇×
(
�bβ × �Sα=1B

)
dσ (2.27)

The three terms that are gradients of a scalar vanish. To see this, consider integrating a

general divergenceless vector �S projected onto the gradient of a general scalar function ψ

over the surface of a sphere. After using identity A.5, we obtain:

∫∫
�∇ ·

(
ψ�S

)
dσ.

From the two-dimensional divergence theorem, this surface integral reduces to a line inte-

gral enclosing the area. Our area is closed, however, so the integration path collapases to

a point. Assuming ψ�S is well behaved, the integral vanishes.
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The last term in Eqn. 2.27, with the Lorentz force, is structurally identical to the

last term in the induction equation (Eqn. 2.22), and thus can also be made to depend

on the surface integrals Kα,β,γ and Lα,β,γ . Here the subscripts α, β, γ will have different

interpretations: bβ indicates the induced field mode that interacts with the applied field

(�Sα=1B) to produce velocity mode �uγ .

Without analogy to the induction equation, there is also the nonlinear advection

term, �u ×
(

�∇× �u
)
. To decompose it, we would need to introduce two more subscripts

in Eqn. 2.27, as the two occurrences of �u need not be the same mode, nor the inducing

velocity mode �uβ .

Boundary conditions

Earlier we showed the magnetic field must be continuous at all boundaries. Here we derive

explicit boundary conditions for the individual toroidal and poloidal modes.

At the outer wall, the perpendicular magnetic field is approximately continuous with

an exterior vacuum solution, as stainless steel has a conductivity that is 30 times lower

than sodium. The equation governing the external fields, because there are no currents,

is �∇ × �B = 0, implying that �B = �∇ψ. Since �∇ · �B = 0, ψ satisfies Laplace’s equation

(∇2ψ = 0), which has solutions

ψ =
∑
l,m

Cl,mr−(l+1)Pm
l (cos θ)eimφ,

(where we eliminated the solution that diverges as r → ∞). Therefore,

Bext,r =
∑
l,m

−(l + 1)Cl,mr−(l+2)Pm
l (cos θ)eimφ,

Bext,θ =
∑
l,m

Cl,mr−(l+2) d

dθ
Pm

l (cos θ)eimφ,

Bext,φ =
∑
l,m

Cl,mr−(l+2) im

sin θ
Pm

l (cos θ)eimφ.
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Matching with the coefficients for the solution just inside the sodium then yields

Tm
l = 0,

∂Sm
l

∂r
+
(

l

r

)
Sm

l = 0, at r = a. (2.28)

For the boundary condition at the inner sphere, if we assume (unlike our typical

case) the inner sphere is insulating, the analysis is similar. Except now the potential is

bounded at r = 0:

ψ =
∑
l,m

Cl,mrlPm
l (cos θ)eimφ.

After matching the field components inside and outside the inner sphere:

Tm
l = 0,

∂Sm
l

∂r
−
(

l + 1
r

)
Sm

l = 0 at r = b. (2.29)

If we take the inner sphere to be conducting, then we have to solve the coupled

equations for �B for r < ri, where the velocity is given by solid body rotation. Following

the example of Hollerbach and Skinner [50], and equivalent to what we did before (see

Sect. 2.2.1), we drop the time derivative in the induction equation by invoking the “low

Rm” limit (though by our definition Rm ∼ 1). In this limit, the induced field strength

times the characteristic induced field frequency is much smaller than the applied field

times the advective frequency; using our empirical relations for Ωb |�bind| we find this is

satisfied. Symbolically, |�bind|Ωb ∼ (.01B)(.1Ω) = O(10−3)BΩ � BΩ. Furthermore, for

solid body rotation: �∇× (�u × �Bext) = 0. So the induction equation reduces to ∇2�b = 0,

and the solutions can be written in terms of spherical harmonics, as above. The magnetic

field boundary condition at the inner sphere interface is then [49]:

λ
∂Tm

l

∂r
−
(

l + 1
r

)
Tm

l = 0, λ
∂Sm

l

∂r
−
(

l + 1
r

)
Sm

l = 0, (2.30)

where λ is the ratio of sodium’s to the inner sphere’s conductivities. At 120◦, the con-

ductivity of copper—the inner sphere material for most runs—is about five times greater

35



than sodium. The conductivity of stainless stainless steel, another inner sphere material

used, is about 30 times lower.

2.5.1 Selection Rules

By examining the properties of the integrals Kαβγ and Lαβγ (Eqn. 2.23), Bullard and

Gellman formulate the following spherical harmonic selection rules that describe which

of the field-generating terms in the induction equation, and the analogous terms in the

momentum equation for the Lorentz force, are nonzero. They become useful for us after

we decompose our field: we can talk qualitatively about which modes can and cannot

affect the dynamics, leaving only a few possibilities.

(1) (SαSβSγ), (SαTβTγ), (TαSβTγ), which depend on K, are zero unless (a) to (d) are

satisfied:

a) α + β + γ is even,

b) α, β and γ can form sides of a triangle (i.e., α ≤ β + γ, etc.),

c) one or more of the four expressions mα ± mβ ± mγ vanishes,

d) three of the harmonics have cos mφ or one has (m = 0 counts as a cosine).

(2) (SαTβSγ), (SαSβTγ), (TαSβSγ), (TαTβTγ) which depend on L, are zero unless (a) to

(e) are satisfied:

a) α + β + γ is odd,

b) α, β and γ can form sides of a triangle (i.e., α ≤ β + γ, etc.),

c) one or more of the four expressions mα ± mβ ± mγ vanishes,

d) two of the harmonics have cos mφ or one has (m = 0 counts as a cosine),

e) no two harmonics are identical.
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(3) (TαTβTγ) and (TαTβSγ) are always zero.

Note that the rules do not depend on the radial functions S(r, t) and T (r, t).

2.5.2 Qualitative analysis

Because the induced field is much smaller than the applied field, to first order all the

important modes should arise from an interaction with the applied field �S0
1B.

Our primary magnetic field instability is dominated by the mode �S1
1b. What ve-

locities can induce this magnetic field? In other words what modes �Sβv produce nonzero

terms of the form �S0
1B

�Sβv
�S1

1b and �S0
1B

�Tβv
�S1

1b from Eqn. 2.24?

For poloidal velocity fields �Sm
βv, rule (1)a requires β be even; (1)b requires β be 2 or

less; (1)c requires mβ be 1; and (1)d requires that the velocity and induced field modes be

both cos-type or both sin-type. �S1c,s
2v (where we choose c or s to be the same type as the

induced field) is the only mode that works. Likewise, the toroidal velocity modes that can

interact with �S0
1B to produce the same magnetic field are limited by rules (2)a-e. Here the

only allowable velocity is �T 1c,s
1v (where c or s is the opposite type as the induced field).

For the momentum equation, the analysis is identical; only the interpretation of

the modes changes. Thus the velocity modes that interact with the base magnetic field

through the induction equation to produce a magnetic field mode will be in turn created

by the interaction of that mode and the magnetic base state through the Lorentz force.

This situation is diagrammed for the primary instability in Fig. 2.1.

Two empirical observations lead us to conclude that �S1c,s
2v interacting with the exter-

nal field is the likely interaction producing the primary instability. First, our measurements

suggest the toroidal �T 0
2b field is � 10% the external field (a priori we might allow it to

be Rm times larger). Second, in the primary instability the �S1c,s
1b and �S1c,s

3b modes have
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identical dynamics (though the latter has a smaller amplitude). It appears both magnetic

modes are caused by the same velocity mode. We must rule out �T 1s,c
1v then—it cannot

interact with the external field to produce �S3c,s
1b .

2.6 Instabilities

An instability occurs when small perturbations from a steady state grow in time (as

opposed to decay). In our case, where there are two coupled equations, an instability

occurs when a velocity disturbance creates a magnetic disturbance (through the induction

equation) which in turn generates more of the velocity disturbance (through the Lorentz

force) in positive feedback. It seems only two modes with time varying coefficients are

needed to model the essential dynamics of the system. We explore the possibility of this

sort of truncated mode model next.

Before developing a model, we might first ask if an instability could form solely

through the induction equation, without the Lorentz force. Indeed, from the selection

rules above we find that some velocity modes—namely �S0
2v and �S2

2v—can induce the field

component �S1
1b back onto itself. An arbitrarily small �S1

1b field component could thus in

principle be amplified by a preexisting �S0
2v velocity mode to become a magnetic instability,

without necessarily producing a corresponding velocity disturbance (and thus we could

disregard the momentum equation).

Sadly, we must rule out this possibility. It describes a dynamo, which we have

not observed! The applied field is necessary to see our instabilities. Also, we empirically

observe velocity fluctuations (with ultrasound) when the induced magnetic field instability

is observed, further implicating the Lorentz force and the importance of the momentum

equation. Incidentally, �S0
2v is a mode we expect as part of our base velocity state. It

38



Figure 2.1: Diagram of all possible mode interactions involving the base magnetic field

modes, �S0
1B or �T 0

2B, and the magnetic field disturbance of the primary instability �S1
1b.

Connections exist between two modes if they interact, through the Lorentz force or the

induction equation, as determined by the selection rules. Three more interactions exist

above except with c replaced by s and vice versa. The velocity mode �T 0
1v (simple rotation)

converts c to s and gives rise to precessing velocity and magnetic field disturbances.

39



consists of outflow at the equator and return flow at each pole, and should be generated

by Ekman boundary layers at the inner sphere boundary.

Since we don’t see a dynamo, we expect the dominant interactions to involve the

applied field, which means we consider interactions coupled through the induction and

momentum equations.

2.6.1 A truncated mode model

We start with the empirical observation that the primary magnetic field instability is

dominated by �S1
1b. Our velocity measurements, being along one chord, cannot determine

the modal structure of the velocity disturbance. In Sect. 2.5.2, however, we argued that

this disturbance is �S1
2v. The background velocity state, neglecting turbulence, should be

a combination of �T 0
1v (simple rotation) and �S0

2v (outflow at the equator, return flow at

the poles). For the sake of a simple model, we’ll neglect �S0
2v, as it should be substantially

weaker than �T 0
1v.

3 The background magnetic field state is �S0
1B, with �S0

1B(r) =
√

π/3 r2 to

give a constant magnetic field vector of unity magnitude in ẑ, the rotation axis.

With these assumptions, the induction equation after projecting onto �S1′
1 and inte-

grating over a sphere of radius r (Eqn. 2.22) becomes:

Rmr2 ∂S1c,s
1b

∂t
= r2 ∂2S1c,s

1b

∂r2
− 2S1

1b − V
(
S1c,s

1b S1c,s
2v S0

1B + S1c,s
1b T 0

1vS
1s,c
1b

)
, (2.31)

Likewise, the momentum equation becomes:

∂S1
2v

∂t
−
∮

�T1v ×
(

�∇× �S1
2v

)
dσ +

∮
�S1

2v ×
(

�∇× �T1v

)
dσ

=
∇2S1

2v

Re
+

N

Rm

∮
�∇×

(
�S1

1b × �S1B

)
dσ

(2.32)

After integrating the terms above, we are left with two coupled PDEs in the radial func-

tions, which are also functions of time. Alternatively, we could assume functional forms
3From preliminary observations of a water-Kalliroscope spherical Couette experiment recently built in

the lab, this assumption of the background velocity state appears valid [21].
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for the radial functions, S1
1b(r) and S1

2v(r), and be left with two coupled ODEs.

Because we are looking for magnetically-induced instabilities, it is important that

the base velocity state �T 0
1v be centrifugally stable, else the base state might be unstable

for zero applied field. We chose T 0
1v(r) so that �u = sin θ at r = b, and φ̂ · �T 0

1v ∼ r−3/2 at

θ = 90◦, to match as closely as possible our experimentally determined profile.

We numerically solved these PDEs using Mathematica for given values of Rm

and S, and small initial values of S1
1b(r, 0) and S1

2v(r, 0). If after 100 turnover times the

solutions decayed and remained close to zero, we determined that that pair of Rm and

S were stable. If the solution grew exponentially, then the solution was unstable. In

this way we’ve explored the (S, Rm) plane and found, in qualitative agreement with our

observations, that the system is stable below some threshold Lundquist number Sc and

unstable above it. However, we were unable to produce a suppression of the instability

at large applied field. Furthermore, the critical Lundquist number was typically Sc ≈ 10,

which was larger than our experimental value of Sc ≈ 1.

It should be noted that T 0
1v(r) is a function of spherical radius, while our background

flow—even neglecting poloidal motions—likely has three qualitatively distinct flow regions

defined by s ≡ r sin θ: both above and below the sphere inside the tangent cylinder, and

outside the tangent cylinder. We might try modifying our base state; we leave this for

a future project. Kitchatinov and Rüdiger [59] performed a stability analysis using a

cylindrical base state in a spherical geometry, and using spherical harmonic perturbations.

They found stability diagrams that looked remarkably similar to the WKB diagrams of

Ji et al., which in turn share important features with our data. Kitchatinov and Rüdiger

used a magnetic Prandtl number of Pm = 1. We’ll review the WKB calculation shortly.
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2.6.2 Stability and Rayleigh criterion

In theoretical and numerical work, the magnetorotational instability is found to develop

from flows that are centrifugally stable. Keplerian flows (e.g., accretion disks), where the

MRI is important, are also centrifugally stable. A rotating flow is centrifugally stable if

fluid particles perturbed from their orbit return to their original trajectory. This condition

is met, as first shown by Rayleigh in 1917, if the specific angular momentum increases

outward with cylindrical radius s:

d(s2Ω(s))2

ds
> 0, (2.33)

where Ω(s) = vφ/s here is the azimuthal angular velocity profile (not to be confused with

Ω the inner sphere rotation rate). The angular momentum, s2Ω(s), is squared above so

that the criterion does not depend on the direction of rotation. This criterion only applies

to axisymmetric disturbances and inviscid flows. Including viscosity, flows unstable by

Rayleigh’s criterion could still be stable. Rayleigh stable flows are stable regardless of

viscosity.

In the MRI literature, rotation profiles are commonly characterized by the index

ζ ∼ 2 + d ln Ω(s)/d ln s. The Rayleigh criterion is satisfied when ζ > 0. For Keplerian

flows, ζ = 1/2. Profiles with 0 < ζ < 2 are predicted to be MRI-unstable, assuming a

laminar base state. Our time-averaged profiles are found to be in the range 0.4 < ζ < 0.6.

However, unlike the base states used in theoretical studies, our velocity base state has

boundary layers and poloidal motions. Still, as we will see later, our phase diagrams our

qualitatively, if not quantitatively, similar to the theoretically predicted phase diagrams

despite these differences.
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2.6.3 WKB Method

Another way to attempt a stability description of our system is through a WKB method.

Here we review a calculation performed by Ji, Goodman, and Kageyama [53] for a cylin-

drical geometry and adapt it to our system. Their method assumes axisymmetric per-

turbations proportional to exp(γt − ikss − ikzz), so that ks and kz are radial and axial

wavenumbers, and γ is the growth rate. In cylindrical coordinates, their base state is

�v0 = (0, Ωs, 0), �B0 = (0, 0, B), where Ω is a function of radius characterized by the index

ζ (same as in previous section).

From the linearized equations of motion, Ji et al. find the following dispersion rela-

tion:

[
(γ + νk) (γ + ηk) + (kzVA)2

]2 k2

k2
z

+ 2Ω2ζ
(
γ + ηk2

)2 + 2Ω2(ζ − 2)(kzVA)2 = 0.

Three relevant frequencies appear: a resistive frequency ω ≡ ηk2, a viscous frequency

ων ≡ νk2, and an Alfvénic frequency ωA ≡ | kzVA |, composed of the Alfvén velocity

VA ≡ B/
√

ρµ0. In terms of these frequencies:

[(
γ

ωη
+

ων

ωη

)(
γ

ωη
+ 1

)
+

ω2
A

ω2
η

]2
k2

k2
z

+ 2ζ
Ω2

ω2
η

(
γ

ωη
+ 1

)2

+ 2(ζ − 2)
Ω2

ω2
η

ω2
A

ω2
η

= 0.

Ji et al. define three relevant dimensionless numbers: Pm ≡ ων/ωη, S ≡ ωA/ωη, and

Rm ≡ Ω/ωη. In terms of these numbers and the normalized growth rate (γ/ωη → γ′):

[(
γ′ + Pm

) (
γ′ + 1

)
+ S2

]2 (1 + ε2) + 2ζR2
m(γ′ + 1)2 − 2(2 − ζ)R2

mS2 = 0, (2.34)

where a geometry factor ε = h/(s2 − s1), composed of the height and radius difference,

relates the wave numbers in the radial and axial direction, k = kz

√
1 + ε2.

Ji et al. show that the necessary and sufficient condition for stability is that the
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dispersion relation remain positive at γ′ = 0:

(Pm + S2)2(1 + ε2) + 2ζR2
m − 2(2 − ζ)R2

mS2 ≥ 0. (2.35)

Their dimensionless numbers depend on both k and the ratio kz/kr, so linking

them to our experimental parameters requires some assumptions. In the remainder of

this paragraph, we denote their dimensionless parameters with primes to distinguish them

from ours. First, we take the maximum fluid rotation rate in the dispersion relation Ω′ to

be the empirically-derived fluid rotation just outside our inner boundary layer Ω/3, where

Ω is the inner sphere rotation rate. If we take ka = 1 and assume that k is entirely in

the ẑ direction (ε = 0), then the dimensionless numbers in the dispersion relation agree

with our parameters exactly.4 If we take ka = 2, then S′ → 2S, R′
m → 4Rm and we get a

new stability relation for an instability with a wave number that is twice as large. Both

stability curves are shown in Fig. 2.2. Our secondary instabilities have larger wavenumbers

than the primary instability, so we might expect our experimental stability phase diagram

to share qualitative features to the shapes shown. For instance, at a given Ω the system

is stable at zero fields, turns unstable at a finite applied field if Ω not too small, turns

unstable to higher wavenumber modes at larger applied field, and then becomes stable

again at large applied field. In Chapter 4 we’ll see these very features, and that there is

also some quantitative agreement.

Note that this WKB analysis assumed axisymmetric perturbations. In our ex-

periment, the instabilities are nonaxisymmetric. This difference can be understood by

contrasting the different symmetries of the base states. In the cylindrical case, the base

state is unchanged by an axial translation. Such situations generically show instabilites
4Actually, P ′

m has no k dependence and agrees no matter the assumptions. Incidentally, the stability

is least sensitive is changes in Pm because, at O(10−5) as it is for us, it becomes negligible in Eqn. 2.35.
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to axially periodic patterns, and are known to do so for the MRI [58, 76]. Our base

state, occuring in a spherical geometry, lacks that axial symmetry, but has approximate

rotational and reflectional symmetry. In these situations, instabilities generically involve

rotating non-axisymmetric patterns—that is, Hopf bifurcations [62].

2.6.4 Bifurcation theory

A bifurcation, in dynamical system theory, is a qualitative change in a system’s dynamics

that occurs when a control parameter is increased past a critical value. Bifurcations occur

in a diverse range of systems, and a considerable amount of theory has been developed to

analyze them [81, 98, 41]. We review some of this theory here, in the process connecting

our experiment to other systems and ultimately explaining some important features of our

data.

Consider a two dimensional phase space governed by two real, first order differential

equations:

x′ = f(x, y, β),

y′ = g(x, y, β),
(2.36)

where x and y are phase variables, x′ and y′ their time derivatives, and β a control

parameter. If we linearize this system around a fixed point �X∗ = (x∗, y∗), defined by

�X∗ ≡ �X ′ = 0, we can characterize the solution near �X∗ by the eigenvalues of the Jacobian

matrix at �X∗:

J =




∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y




	X∗

.

J depends on β and consists of only real numbers (as opposed to functions), and thus the

eigenvalues depend on β and are either both real or complex conjugates. In either case

the real parts of the eigenvalues determine the stability near the fixed point: stable if both
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Figure 2.2: WKB stability diagram adapted from Ji et al. using ka = 1 (black) and ka = 2

(red). Both curves are for ε = 0. We use our empirically-determined value of ζ = 0.5.

Our definitions of S and Rm are used (see Table 2.1).

46



are negative, and unstable otherwise.

Suppose we have a stable fixed point that turns unstable as β increases past βc.

If at βc the eigenvalues are complex conjugates σ = ε(β) ± iω(β), then the instability is

called a Hopf bifurcation. The time dynamics of a Hopf bifurcation are oscillatory. Below

βc, orbits spiral back toward the fixed point, and above the orbits spiral outward (see

Fig. 2.3).

However, as the orbits get farther from X∗, the original linear approximation breaks

down, and nonlinear terms need to be considered. Taking the next lowest term in the

Taylor series expansion (making a series of suitable coordinate transformations [41]), the

essential two dimensional dynamics can be cast in a generic normal form :

r′ = (β − βc)αr − ar3

θ′ = ω(βc) + (β − βc)γ + br2,

(2.37)

where r and θ are polar coordinates, a and b are constant coefficients, and α ≡ ∂ε

∂β
|β=βc

and γ ≡ ∂ω

∂β
|β=βc . Since the r′ equation in Eqn. 2.37 separates from θ we see that there

are periodic circular orbits with r = const. (obtained from r′ = 0). For a �= 0 and γ �= 0

these solutions occur at

r = ±
√

(−γ/a)(β − βc).

The frequency θ′ near the bifurcation in general depends linearly on the control parameter

and linearly on the amplitude squared, but need not change at all (if γ and b are zero). Near

the bifurcation, the growth rate depends linearly on the control parameter, ε = α(β−βc).

Depending on the sign of a, the Hopf bifurcation is called either “supercritical”

(a > 0) where the nonlinearity is saturating, or “subcritical” (a < 0) where the nonlinearity

is further destabilizing. The normal form bifurcations for these two classes are diagrammed
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Figure 2.3: Illustration of a supercritical Hopf bifurcation below (a) and above (b) the

critical value of the control parameter. The solid line in (b) represents the limit cycle

occurring at a fixed value of r.
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in Fig. 2.4. Subcritical bifurcations often lead to other bifurcations, as shown in Fig. 2.4b,

leading to possible hysteresis.

For our system the control parameter is either the applied field or rotation rate,

depending on the particular experiment (usually the former), and the relevant dynamical

variables are the Gauss coefficients for the magnetic field. A Hopf bifurcation can occur in

a system with any dimension greater than two, but the essential dynamics can be studied

near (X∗, βc) by restricting attention to an appropriate two-dimensional subspace of the

phase space [81]. For the primary instability, for instance, we would choose as a subspace

the Gauss coefficients g1c
1 , g1s

1 .

The bifurcation diagrams for real experiments often deviate from the normal forms

(Fig. 2.4) because of “imperfections”—in our case, background turbulence or asymmetries

in the system geometry. These deviations are accounted for by adding an imperfection

parameter h to the normal form,

r′ = (β − βc)αr − ar3 + h

θ′ = ω(βc) + (β − βc)γ + br2,

which adds an asymmetry to the bifurcation diagram (Fig. 2.5), and breaks the bifurcation

diagram into two pieces. We’ll see in Chapter 4 that our data can be modelled reasonable

well by a model of this sort.

2.6.5 Secondary instabilities

As seen in Fig. 2.2, the primary instability is suppressed for large field values. However,

other modes can become unstable and might be expected to dominate at larger S. These

transitions would likely be further Hopf bifurcations.

Figure 2.3 shows the possible velocity disturbances that can interact with the applied

field to produce the observed dominant non-axisymmetric instabilities, as determined by
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Figure 2.4: Normal forms of Hopf bifurcation diagrams for a) supercritical bifurcation and

b) subcritical bifurcation. Solid (dashed) lines indicate stable (unstable) solutions. Each

branch gives the amplitude r of the limit cycle; the solution also rotates in the θ direction

(not shown). Stable branches from another bifurcation have been suggestively added in

b), as unstable subcritical branches often lead to other stable bifurcation branches. The

arrows show how hysteresis could arise.
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Figure 2.5: Imperfect form of a Hopf bifurcation. Shown for comparison is the perfect

form, where h = 0.

51



the selection rules.

The applied field will tend to suppress velocity gradients in the ẑ direction, and so

we might expect the velocity field disturbance to change to one with a smaller z- gradient.

Note that the �S1
2b mode, which occurs at a higher applied field than the primary instability,

in fact results from a poloidal velocity mode (�S1
1v) having a smaller z-gradient (compared

to �S1
2v for the primary instability). For this instability, however, we can not rule out the

toroidal velocity disturbance mode using the empirical arguments we used to rule out the

toroidal disturbance mode for the primary instability.

2.7 Torque

In these experiments, there are two types of torque exerted on the inner sphere: Lorentz

and viscous. Both tend to oppose the sphere’s rotation. Together these torques times

the rotation rate must cancel the total dissipation (Ohmic plus viscous) throughout the

system. The Lorentz torque is not the torque caused by the applied field; the applied field

affects both the Lorentz and viscous torques.

2.7.1 Lorentz torque

The Lorentz force exerts a Lorentz torque ΓLor on the inner sphere:

�ΓLor =
1
µ0

∫∫∫ b

r=0
�x ×

(
�J × �B

)
dV. (2.38)

In our experiment, the only torque that does work is along ẑ (since the shaft is constrained

to rotate in that direction only), so we restrict ourselves to that component, and drop the

vector arrow:

ΓLor =
1
µ0

∫∫∫ b

r=0
r sin θ(JθBr − JrBθ) dV, (2.39)

where again the integral is throughout the inner sphere only.
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Figure 2.6: Diagram of all possible mode interactions involving �S0
1B or �T 0

2b and the observed

secondary magnetic field disturbances, in the order they are seen as the applied field is

increased. Connections exist between two modes if they interact, through the Lorentz

force or the induction equation, as determined by the selection rules.
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By recognizing that the Lorentz force is the divergence of the Maxwell stress tensor

and then applying the divergence theorem, this volume integral can be expressed as [87]:

ΓLor =
b3

µ0

∫∫
r=b

BrBφ sin2 θ dθdφ, (2.40)

Comparing to 2.13, we can see this expression is indeed the rφ- component of the Maxwell

stress tensor integrated over the surface of the sphere. We now have the Lorentz torque

expressed in terms of the magnetic field only. In our experiment, we have limited knowl-

edge about the azimuthal field at the inner sphere boundary; from measurements of the

torque and poloidal field, this expression might allow us to estimate Bφ.

Note that the Lorentz torque does not occur for an insulating inner sphere, since

currents do not flow through it, making Eqn. 2.39 zero (or equivalently, since the azimuthal

field at the inner sphere boundary is zero, making Eqn. 2.40 zero).

The solid analogue of spherical Couette

Bullard [6] studied the solid analogue of our experiment—replacing the liquid sodium by

a solid spherical shell. We review his result briefly here because it serves to isolate the

Lorentz torque from more complicated fluid effects. As in our experiments, his system

also has a solid conducting spherical rotor and a constant applied field parallel to its axis

of rotation. In his calculation, the spherical shell has the same conductivity as the outer

shell. The torque, which can be solved for analytically, is:

Γ =
8π

75
B2

extb
5σΩ(1 − b5/a5) =

4
15µ0

BextBφ(max.)b3

∼ ΩB2
ext

(2.41)

where Bφ(max.) is the maximum value of the azimuthal field in the system, which in this

case occurs at r = b and θ = π/4, 3π/4. The azimuthal field Bφ is generated from Bext

54



by differential rotation, dvφ/dr. Here differential rotation is entirely localized at the inner

sphere boundary, concentrating Bφ for maximum torque (see Eqn. 2.28).

When the outer shell is a conducting fluid, as in our experiment, the differential

rotation gradients are smaller, as the azimuthal velocity becomes zero only at the outer

sphere boundary. Thus Bφ(max) in our experiment is smaller, and correspondingly, the

Lorentz torque should be smaller than above. The first equality in Eqn. 2.41 should give

upper limit on the Lorentz torque in our experiment. Note that in this problem, the torque

needed to spin the sphere times the rotation rate must cancel the Ohmic dissipation. There

is no viscous dissipation nor viscous torque.

Fluid effects

Two major differences between our fluid experiment and the solid analogue are that the

fluid can generate currents (which the solid outer shell obviously cannot) and that the

Lorentz force can modify the fluid flow. Both can impact viscous and Ohmic dissipation,

and thus the torque. Note that the Lorentz torque expression (Eqn. 2.39) only includes

currents that enter the inner sphere; however, the fluid can create currents that need not

enter the inner sphere—in fact will not in the case when the inner sphere is an insulator.

The Ohmic dissipation is due to induced currents throughout the system. Some

fraction of the total torque, what we’ll call ΓJ , supplies the energy of this loss:

POhm = ΓOhmΩ =
1
σρ

∫∫∫
J2 dV.

ΓOhm is not necessarily ΓLor, nor is it the Lorentz torque integrated throughout the entire

system. The latter, in fact, is zero in the small-Rm limit. Consider Eqn. 2.38 after using

identity A.9:

ΓLor,sys =
∫∫∫ a

r=0
ẑ ·
[(

�x · �B
)

�J −
(
�x · �J

)
�B
]
dV.
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Invoking the small-Rm approximation, the first term is zero, since Ohm’s law becomes

�J = �u× �Bext, which implies �J · �Bext = 0 = ẑ · �J , leaving, after using identity A.5 and that

�J is divergenceless:

ΓLor =
−B

2

∫∫∫ a

r=0

�∇ · (x2
⊥ �J)dV.

From the divergence theorem, this integral is zero, because at the outer sphere �J · d�σ is

zero. Thus for ΓJ to not exactly cancel ΓLor there must be nonzero Lorentz torques in

the directions perpendicular to ẑ that couple viscously to the inner sphere to produce a

torque in the direction of rotation.

The Ohmic dissipation in the solid analogue increased as B2
ext. With a fluid outer

shell it changes in a more complicated way as the Lorentz force modifies the fluid flow. We

saw in Sect. 2.3.1 that the Lorentz force suppresses gradients in the direction of the field

and leaves the other directions unaffected, thus increasing the ratio of length scales parallel

and perpendicular to the applied field l‖/l⊥. This ratio affects the Ohmic dissipation, as

we’ll now show.

First take the curl of Ohm’s law:

�∇× �J = σ

(
∂ �B

∂t
+ ( �Bext · �∇)�u

)
, (2.42)

where Faraday’s law has been substituted for the first term and identity A.4 has been used

on the second. Proceeding as before, we neglect the Faraday term because the induced

field is much smaller than the applied field and the characteristic induced field frequency

is much smaller than the advective frequency, bindΩb � BextΩ. By dimensional analysis,

Eqn. 2.42 leads to:

J ∼ σBext

(
l⊥
l‖

)
U.
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Substituting into the expression for Ohmic dissipation then gives

POhm = ΓOhmΩ ∼ σB2

(
l⊥
l‖

)2

U2. (2.43)

Thus the torque needed to cancel Ohmic dissipation has the same scaling with applied

field and rotation rate as the solid analogue except that it is modified by the ratio of

length scales in the flow.

Davidson [26] and Moreau [74], from considering decaying turbulence, argue that

the flow will evolve diffusively in time toward

N

(
l⊥
l‖

)2

∼ 1, (2.44)

on the time scale τ = (σB2/ρ)−1, called the magnetic damping time. That is, the applied

field causes the length scale ratio l‖/l⊥ to grow to N1/2 as (t/τ)1/2. However, if τ is large

compared to Ω, i.e., if N � 1, then l‖/l⊥ will remain of order unity (assuming an isotropic

initial condition).

Thus, for a fixed rotation rate, we might anticipate two regimes of electromagnetic

coupling. For small N , the torque will scale as Γ ∼ B2
ext, and for large N become indepen-

dent of applied field. The transition should occur somewhere near N = 1 and will happen

over some finite range of N .

However, though we see changes in the torque curves near N = 1, we don’t see

the torque becoming independent of applied field. There are at least two possibilities

why. First, the instability could change the development of length scale separation from

the decaying turbulence prediction (Eqn. 2.44). Second, the dissipation in the boundary

layers could become significant at large field. The Ohmic dissipation in the boundary layer

near the poles is given by Eqn. 2.43, where l‖ now is the thickness of the boundary layer

and l⊥ is approximately b. The effect of this dissipation on the torque will be weighted by
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the volume fraction of the boundary layer to the bulk—approximately l‖/l⊥. Thus, the

torque due to Ohmic dissipation in the boundary layer scales as

ΓOhm,BL ∼ σB2

(
l⊥
l‖

)
U.

As we’ll see shortly, the boundary layer perpendicular to the applied field thins because

of the Lorentz force. Also, the viscous dissipation could be affected by the Lorentz force.

We look at viscous effects next.

2.7.2 Viscous torque

The viscous torque is due to the wall shear stress �τw at the inner sphere boundary:

Γmech = ẑ ·
∫∫

r=b
�x × �τ dσ.

In general, the wall shear stress is �τw ≡ ρν| ∂

∂r

uφ

r
|r=a φ̂. In our experiments, where at the

smallest rotation rates Re ∼ 105, the wall shear stress should be described by a standard

turbulent mechanical drag law:

�τ = ρCD|�u|�u,

where �u is the fluid velocity outside the boundary layer, and CD is the empirically-derived

dimensionless drag coefficient. This law gives for the viscous torque

Γmech =
∫∫

r=b
r sin θ(ρCDr2 sin2 θ Ω2) dσ

=
3π2

4
ρCDΩ2b5.

(2.45)

That is, assuming fully developed turbulence and no external fields the torque should

increase quadratically with the rotation rate.

However, CD is not necessarily constant in practice, even at Re ∼ 106 [65]. A model,

developed by Grossmann and Lohse, accounts for this discrepancy from a Kolmogorov

turbulent prediction by splitting the torque into a bulk contribution, where Kolmogorov
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theory holds, and a laminar boundary layer contribution where the drag coefficient depends

weakly on Reynolds number, CD ∼ Re−1/2. That is:

G = c1Re3/2 + c2Re2, (2.46)

where G = Γ/2ρν2L is the dimensionless torque, and c1 and c2 are constants to be

determined by experiments. However, the confounding errors from the seals and packing

ultimately prevent us from applying this model usefully, and we revert to assuming a

G ∼ Γ ∼ Ω2 dependence.

Applied fields can affect viscous coupling

The mechanical torque expression (Eqn. 2.45) does not include effects of the applied

field, however, which will modify the boundary layers and thus the mechanical coupling.

(Boundary layers modified by applied fields perpendicular to the boundary are called

Hartmann layers, after Hartmann who first observed this effect in duct flow.) The thickness

of a Hartmann layer δHa is the length scale where viscous forces cancel the Lorentz force,

δHa = (ρν/σB2
⊥)1/2 = (ReN)−1/2L, (2.47)

where B⊥ is the magnetic field component perpendicular to the boundary.

The effects of applied fields on the boundary layers will only be noticeable if the Hart-

mann layers are comparable or smaller in length than the viscous and Ekman boundary

layers. For the first, the balance of the advective term and the viscous force,
(

�∇ · �u
)

�u ∼

ν∇2�u, gives:

δ ∼ (νL/u)1/2 ∼ Re−1/2L. (2.48)

For the second, the balance of Coriolis and viscous forces, 2�Ω × �u ∼ ν∇2�u, gives:

δEk ∼ (ν/2Ω)1/2 ∼ 0.2Re−1/2L. (2.49)
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Though our outer vessel is non-rotating, Coriolis forces are nonetheless relevant. For

instance in the reference frames of the fluid near both poles of the inner sphere—which

are tied to the sphere because of the no-slip boundary conditions—a Coriolis force is felt

that drives flow away from the equator. This effect is known as Ekman pumping; in our

system it drives a weak secondary �S0
2v flow.

From the above estimates, in particular Eqns. 2.49 and 2.47, we might estimate

for our system that Hartmann layer effects will only become important when N � 25.

However, in turbulent flows (e.g., the ocean) the Ekman layer is often found from mea-

surements to be thicker than expected (from an analysis like the above) [82]. There is no

known general theory that predicts the thickness of these Ekman layers from system to

system, so here we can only mention that Hartmann layers may become important before

N ≈ 25. When they do become important, we might expect the torque to increase with an

increasing applied field according to a Grossmann-Lohse type model [102], where viscous

as well as Ohmic dissipation in both the boundary layers and bulk is considered.

2.7.3 Putting it all together

The total torque exerted on the inner sphere will be a combination of viscous and Lorentz

torques, and their sum times the rotation rate will cancel the total (viscous and Ohmic)

dissipation:

Γtotal ∼ U2

l⊥
+

σ

ρ

(
l⊥
l‖

)2

UB2, (2.50)

where the terms on the right represent the torque from the viscous and Ohmic dissipation

respectively. Above, the dissipation in the boundary layers, which depend differently from

dissipation in the bulk, has been assumed to be negligible.

In experiments where B is ramped up while Ω is fixed, the above relation together
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with an assumption for the length scale separation (Eqn. 2.44) predicts the torque will: (i)

be roughly constant while N � 1, (ii) increase quadratically in B while N is less than 1

but moderate, and (iii) then become independent of B for N � 1, transitioning between

(ii) and (iii) in an unknown way at N ∼ 1. Prediction iii is never observed, however. At

large field, either the length scale separation assumption (which did consider instabilities)

does not hold or dissipation in the boundaries becomes important. Lastly, a sudden change

in the length scale ratio—which might happen when an instability suddenly turns on or

off—might incur sudden changes in torque. Such length scale changes are reflected in the

data.
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Chapter 3

Measurement techniques and experimental detail

3.1 Magnetic field measurements

3.1.1 The Hall array

We developed an array of Hall probes (the “Hall array”) to measure and decompose the

induced field into spherical harmonics—the �S’s from Chapter 2. (The �T ’s are confined

inside the sphere and can’t be measured from outside.) The design, construction, and

analysis of measurements taken from this array form the heart of this dissertation.

A single Hall probe measures the magnetic field at one position and in one direction.

As its name suggests, this probe uses the Hall effect1: charge carriers moving through a

piece of semiconductor are deflected by a magnetic field perpendicular to their velocity,

producing a voltage difference (the Hall voltage) proportional to the current and magnetic

field. The Hall voltage is typically very small, so each probe needs an amplifier. The

Hall voltage is also proportional to the number of charge carriers, which in turn depends

strongly on temperature. Thus, probes either need to be kept at a constant temperature,

or be compensated for temperature. Also, each probe needs a constant current source.
1The Hall effect—and by association the Hall probe, Hall voltage, and (now) Hall array—is named after

E.H. Hall, who discovered it in 1879. Despite the special name, it’s a straightforward effect of the Lorentz

force.
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The probes we chose to use in the array—Honeywell SS94A1F (see Fig. 3.1)—have

these electronics built-in. Though not having optimal noise characteristics, being self-

contained they are the most convenient. We were also already familiar with these probes,

having used them in several other experiments, and they are relatively inexpensive.

The measurement range of the probes is ± 100 G, meaning the probes have to be

aligned perpendicular to the applied field—that is, in the cylindrical r or cylindrical θ

directions. Axisymmetric poloidal modes (which we want to measure) have no component

in the latter, however, so we aligned the probes radially. In this alignment the probes

measure components of both spherical r and spherical θ. The induced field is never larger

than 20 G, so the only problem with saturation would be due to misalignment (from either

the probes or the field coils). There are probes with higher ranges available (even in the

same Honeywell line), but by using those, the freedom of choosing alignment would be

offset by a higher noise floor and a lower resolution.

The more probes we have in the array, the better we can describe the field. The

maximum number of probes in the array design was limited by our analog-to-digital ac-

quisition card, which has 32 inputs. One input is used to measure the applied field and

another to measure the torque, leaving 30 channels to be used in the array.

Decomposing the field consists of finding the Gauss coefficients2 for the modes.

The number of coefficients scales with the maximum order l of the spherical harmonics

according to:

# of coefficients = l(l + 2) (3.1)

To have sufficient information, we need to have at least as many measurements as coef-
2After the mathematician Carl Friedrich Gauss, who first developed the least squares technique. He

used it to fit the Earth’s field to spherical harmonics. He was also the first to measure magnetic field in

absolute units: what we now call the Gauss (1 Gauss = 10−4 T).
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Figure 3.1: Schematic of a Honeywell SS94A1F Hall probe used in the Hall array. The

chip includes an amplifier, a constant current source, and a temperature compensation

circuit. Its measurement range is ±100 G.
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ficients. It is better to have all the modes of a given order—and also better to have an

overdetermined problem—so our 30 probes constrains us to lmax = 4, having 24 coeffi-

cients.

3.1.2 Decomposing the measured field: Least squares

We need to find the 24 Gauss coefficients that best fit the 30 magnetic field measurements.

The least squares technique finds this best fit by minimizing the squared difference,

or error, of the measured field Bmeas(xp) and the decomposed model field Bmodel(xp) =

∑
c

gcfc(xp) at probe position xp = (r, θ, φ), summed over all probes:

∑
probes

B2
err =

∑
probes

[Bmeas(xp) − Bmodel(xp)]
2

=
∑

probes

[
Bmeas(xp)2 − 2Bmodel(xp)Bmeas(xp) + Bmodel(xp)2

]
:

(3.2)

The fc’s are the basis functions to which we are trying to fit—in our case the poloidal

spherical harmonic modes (see Sect. 2.5). In our experiments, the probes are aligned in

the cylindrical r direction, so we take as our basis the cylindrical r component of the �S′s:

fn(r, θ, φ) = (sin θr̂ + cos θθ̂) · �Sm
l (3.3)

where the radial functions are S(r) = Ar−n. The constant A is chosen to yield the Schmidt

normalization—the standard for publishing Gauss coefficient values for the Earth. The

explicit forms for the f ’s are given in the appendix. The f ’s have only one index whereas

the �Sm
l s have two (l and m) plus c and s; we chose f1, f2, f3, f4, etc. to correspond

to �S0
1 , �S1c

1 , �S1s
1 , �S0

2 , etc. Note that, though we are fitting to spherical harmonics in only

the cylindrical r direction, the best-fit coefficients give us the best-fit field in all three

directions.

The summed squared error, being positive definite and quadratic in each coefficient,
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will have a zero second derivative at only one point, its minimum. Thus, the best least

square fit satisfies

∂
(∑

probes B2
err

)
∂gc

= 0 =


 ∑

probes

(−2Bmeas(xp)fc(xp) + 2Bmodelfc(xp)


 ,

for all coefficients gc.

Substituting for Bmodel with Eqn. 3.1 we obtain, in matrix form, the following system

of equations:

�Bf = M�g (3.4)

where

�Bf =




∑
probes

Bmeas(xp)f1(xp)

∑
probes

Bmeas(xp)f2(xp)

...

∑
probes

Bmeas(xp)f24(xp)




, �g =




g1

g2

...

g24




, (3.5)

and

M =




∑
probes

f1(xp)f1(xp)
∑

probes

f1(xp)f2(xp) . . .
∑

probes

f1(xp)f24(xp)

∑
probes

f2(xp)f1(xp)
∑

probes

f2(xp)f2(xp) . . .
∑

probes

f2(xp)f24(xp)

...
...

. . .

∑
probes

f24(xp)f1(xp)
∑

probes

f24(xp)f2(xp) . . .
∑

probes

f24(xp)f24(xp)




(3.6)

However, to find the coefficients we need to invert this equation:

�g = M−1 �Bf. (3.7)

This inversion is possible of course only if M is invertible. Moreover, to make the inversion

sufficiently insensitive to error the ratio of its smallest to largest eigenvalues needs to be
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sufficiently close to one. This ratio is called the condition number, and it quantifies how

sensitive the inversion is to errors in measurement and probe location. The matrix M

depends only on the spatial locations of the probes xp.

In the final implementation, the above procedure was programmed in C. The inverse

matrix M−1 was found using Mathematica and was read from a file.

3.1.3 Array configuration design

The problem was to find a configuration of 30 probe positions that gives an acceptable

condition number. Qualitatively, we might expect the configuration to be evenly spaced

around the sphere—or at the least not highly-clumped together. It is analogous to fitting

a line over a range of an independent variable: an even distribution of measurements over

the extrapolating range produces a better fit than clumped measurements. The difference

here is that the independent variable is not a single parameter space, but the space spanned

by the spherical harmonics.

The first design constraint, as mentioned above, was that the probes be aligned in

the cylindrical radial direction. Another constraint was that the configuration be easily

assembled and disassembled, since the sphere is periodically disassembled. The procedure

therefore has to be repeatable: the probe positions have to be the same from run to run.

We also want the probes as close to the sphere as possible to increase the signal-to-noise

ratio. However, the sphere reaches 120◦ C—and the heaters even higher temperatures—

while the probes are only rated for 100◦ C, meaning we should keep the array some

distance from the sphere. Also, two extra shaft ports (shown in Fig. 3.2, but used only in

experiments not reported here), along with (somewhat haphazardly) protruding electric

cartridge heaters and copper hexane-filled cooling lines limit where the rings can go, and
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where they can get to. The final and most obvious constraint is that the arrangement be

(hopefully easily) buildable.

The first design stage was to determine condition numbers, using Mathematica,

for a variety of probe configurations. A number of basic design shapes were considered,

including pole-to-equator arcs, equatorial half-arcs, rings, and, for comparison, randomly

distributed probes. The number of rings, arcs, etc. were varied, along with their size,

distance from the sphere, and number and spacing of probes on each. Most configu-

rations, including many of the random distributions, produced poor condition numbers

(< O(10−5))—some very poor condition numbers (< O(10−12)).

After much trial-and-error exploring, four latitudinal rings—two near the equator

on opposite sides, and one near each pole, with probes spaced evenly on each ring—was

determined to be the most promising configuration. That this design shape works well is

perhaps not surprising, as qualitatively it does cover the outer sphere evenly. Furthermore,

rings could be easily machined to high precision using a mill and a rotating table, and

precisely positioned outside the sphere. Even with this basic design shape, however, the

condition number ranged widely. The condition number was improved by having slightly

more probes on the rings near the equator, and for the probes on these equatorial rings

to be offset by an azimuthal angle with respect to each other, to increase the azimuthal

coverage there3. Further trial-and-error exploration of ring diameters and distances from

the equator, subject to the constraints above, determined the final design (see Fig. 3.2).

The final condition number was 0.05. The probe positions are listed in Appendix B.2.

The chosen material for the rings is a high-temperature phenolic—cotton fiber em-

bedded in epoxy. Besides being temperature-resistant, it is also electrically insulating, so
3The condition number was insensitive to the azimuthal offset of the rings near the poles relative to

the other rings.
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Figure 3.2: The Hall array shown as it is positioned in the experimental apparatus. The

rings attach to three non-magnetic stainless steel threaded rods by support arms that bolt

to each ring. The rods are held in place by two three-armed supports that clamp to the

shaft housing. The rings are 3/8′′ thick, and have an inner-outer radius difference of 1/2′′.
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the probes are not magnetically shielded. It is also durable and (relatively) easily machin-

able. The probes were fixed to the rings with superglue. This glue, however, is brittle and

becomes unstable at high temperatures, and a few probes came off in the course of the

runs. These probes were reattached using RTV.

We machined the rings using a mill and a rotating table, allowing the ring diameters

and centers to be within ±0.001 in (±0.0254 mm) the design specification. The azimuthal

angles of each probe could be placed to within about 0.5◦. We also machined two three-

armed holders, which clamped to the shaft housing and held three 1/2′′ stainless steel

threaded rods at a radius slightly bigger than the biggest ring’s radius. Each ring had

three removable arms that attached each ring to the three rods. The rings are fixed in

place along the rods with nuts.

An error estimate

The condition number gives a measure of how good a configuration is, but is only so

useful. The condition number of the final configuration, for example, is 0.05, which seems

possibly acceptable, but is it good enough? There are two sources of error that can be

amplified by an imperfect probe distribution: errors in probe positions, and noise. We get

an estimate of the errors in the system with the following technique. Take a coefficient

vector �gn with 1 as the n-th component and the rest zeroes (e.g., �g3 = (0, 0, 1, 0...0)T ) and

multiply by Mtrue, constructed with the actual probe positions, to produce �Bfn:

�Bfn = Mtrue�gn.

The true probe positions will differ from the expected positions (where we think the probes

are). Next add random noise to �Bfn to simulate electronic and magnetic noise from the

probes. Finally, obtain the simulated measured coefficients with the inverse matrix using
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the expected probe positions, M−1
exp, by multiplying it and ( �Bfn+ noise). Note that further

problems could occur if the perturbed (actual) matrix has a worse condition number than

Mexp.

Figure 3.3 shows the result of this technique using the chosen probe locations. We

estimated that the error in the probe positions would be primarily due to errors in sep-

aration distance from the equator zerr, since the rings must be repositioned in z every

time the system is disassembled. Spacer bars that also located the center were machined

to make this process consistent. There would also be some error because the rings are

out of center xerr and yerr, either from slight bowing in the rods or misplacement of the

holes locating the holders. We took |zerr| = 1 mm, and |xerr| = |yerr| = 0.5 mm. For the

noise, we estimated Bnoise = 0.05 G, from a time series without rotation or applied field.

Different trials, where the sign of the error for each ring was randomly chosen to be in the

positive or negative directions, produced qualitatively similar results. Doubling the error

roughly doubled both the number of noticeable spurious coefficients and their magnitude

of error.

3.1.4 Reconstructing the induced field

Once the coefficients were found, a best-fit induced field could be reconstructed for all

points outside the sphere. Shown in Fig. 3.5 is the cylindrical radial component of several

modes on the surface of a sphere, using an equal area projection (see Fig. 3.4). By summing

weighted averages of frames like these for each sample time, movies of the radial induced

field can be made. Several snapshots of such movies appear in Chapter 4.
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Figure 3.3: Simulated effect of Hall probe noise and probe positioning error. A pure

input—the projection of one mode (having unity amplitude) onto the Hall probes—was

subjected to noise and then inverted back to coefficient space using an inverse of a matrix

constructed from “expected,” but erroneous, probe positions. This output is shown for the

first eight coefficients; the remaining 16 are qualitatively similar. No spurious coefficients

were greater than 0.25. Here, zerr = +1 mm, and xerr = yerr = +0.5 mm.
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Figure 3.4: Equal area projection used to display radial component of induced field at

the surface of a sphere. The angles θ, φ, θ′, φ ′ are all in spherical polar coordinates. To

perform the projection start with the projection on top—φ, θ plotted as though Cartesian

coordinates. Then transform to φ ′, θ ′, as shown, plotting φ ′, θ ′ (again) as Cartesian

coordinates.
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Figure 3.5: Cylindrical radial component of several coefficients on the surface of a sphere,

in a equal area projection. Color represents intensity: red (positive), blue (negative),

green (null).
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3.1.5 Toroidal fields

Induced fields, which necessarily originate inside the sphere, must have a nonzero radial

component to be seen outside the sphere. Therefore the array will only measure poloidal

field components and to observe toroidal fields we need to place a probe inside the sodium.

For a couple runs, we placed a hollow 1/2” stainless steel sheath inside the sodium with

a Hall probe inside. The sheath enters the outer sphere through the same port as the

ultrasound measurements, reaching close to the tangent cylinder, a few inches away from

the equator. This sheath of course perturbs the flow—both globally and especially near

where we’re measuring.

3.2 Motor torque

The motor drives, by monitoring the electrical power used by the motors, report the

torque needed to spin the shaft at the specified rotation rate. The power P is simply

the torque Γ times shaft angular velocity Ω. Our drives report torque as a percentage of

the nominal maximum torque, defined as Γnom.max = PmaxΩnom., where, for our motors,

Pmax = 7.5kW and Ωnom. = 2π × 60.

Because the motors and the outer vessel are fixed in the laboratory frame, the

torque is equivalent to the angular momentum transport in the system. It depends on the

electromagnetic and mechanical coupling between the inner sphere and the sodium, and

the sodium and the outer wall, as described in Chapter 2.

However, the torque reported will necessarily include friction from a combination of

the shaft seals, the graphite packing, and the bearings. (The seals prevent sodium from

leaking out the shaft; the packing keeps the seal in place and the shaft aligned and damps

vibrations; the bearing align the shaft.) The friction is roughly constant with rotation
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rate so its effect will be less important at higher rotation rates, where electromagnetic

and hydromechanical torques dominate. The friction can change in time, however. For

instance, if the shaft reaches a mechanical resonance and vibrates, the bearing can be

strained and bearing will rotate less freely. Also, the packing can reorient or change

shape, and the seals or bearing can get bits of leaked sodium or metal powder (from the

shaft) stuck in them. Again, these changes are more likely to be noticed at lower rotation

rates. These changes are also more likely to occur after the rotation rate is changed. In

the runs, we waited after changing the rotation rate for the torque to settle. Also, when

sodium leaks past the seals it eventually reacts and produces oxide, which creates different

friction from day-to-day (until the sphere is disassembled, when the seals and packing get

changed).

In short, care has to be taken in comparing torques from different runs, and in

interpreting features in torque curves.

3.3 Ultrasound velocimetry

3.3.1 Basic principle

By reflecting sound from impurities (bits of sodium oxide, etc.) that travel with the flow

the velocity component in the transmission direction can be determined as a function

of depth [99]. Pulses of ultrasound are emitted into the fluid and then the echoes are

recorded. The time delay between the pulse and each echo determines the depth of a

particle. The velocity of each particle is determined by tracking particles. One profile is

constructed using 32 pulses.
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3.3.2 The transducer

The heart of the transducer is a piezo-electric crystal. The crystal changes its shape with

an applied electric field, and conversely, produces electric fields when its shape changes.

Thus sound (shape-altering vibrations) can be converted into an electric signal and vice

versa.

There are two main difficulties in adapting an ultrasound transducer for use in

sodium. First is temperature. Sodium experiments operate around 100◦C, which is close

to or above the Curie temperature of many piezo-electric materials. The Curie tem-

perature is the temperature above which the material loses its piezo-properties, directly

analogous to the Curie temperature of ferromagnetic materials (above which the domains

are lost). Piezo-crystals with high Curie temperatures are available commercially. The

second difficulty—a far greater challenge—is coupling the transducer acoustically to the

sodium. The front of most commercial ultrasound transducer is made of an organic epoxy

that would be eaten by sodium. Also problematic, many of the materials that are inert to

sodium do not wet sodium. Wetting of the transducer by the fluid is necessary to transmit

sound into the sodium.

The ultrasound transmission is also controlled by the acoustical impedances of the

crystal, housing, and fluid. The acoustical impedance, analogous to the index of refraction

in optics, is related to the material sound speed c and compressibility γ: Z = 1/cγ.

Equivalently the impedance can be expressed in terms of the density Z = ρc. In general

the transmission will be best if the intermediate material (the housing) has an acoustical

impedance intermediate between the crystal and the fluid. To maximize transmission,

the intermediate housing material should be an integer quarter-wave length, so that wave

reflecting off the front and then back of the intermediate material constructively interfere
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with waves that pass directly through.

The crystal we used has a resonate frequency of 4 MHz—the operating frequency

of our processing unit4. The transducer housing was made of polytetrafluoroethylene

(PTFE), commonly known by its trademark, Teflon. This housing material was chosen

because it is electrically insulating (so as not to short the electrical connections on the

crystal), capable of resisting high temperatures, inert to sodium, and having a similar

acoustical impedance to sodium (to minimize mismatch losses). PTFE wets poorly to

sodium however. We discovered that a thin layer of RTV (a silicone rubber adhesive) to

the front surface wets sodium and allows coupling from the transducer to the sodium.

In the process of designing the transducer, we learned a lot about what doesn’t work.

The original hope was that sodium would wet the PTFE directly. Though claims of poor

sodium-PTFE wetting have been made in the literature [32], it was not clear this was ever

tested. Sodium is used to etch PTFE surfaces, through a self-arresting reaction—that

is, sodium reacts with the first monolayer of PTFE and then stops. The hope was that

this reaction would produce wetting, though it didn’t. A thin black layer was apparent

on the surface of the PTFE in spots after contacting sodium. Other materials that we

tried, which wetted poorly were: copper, brass, stainless steel, aluminum, and gold-plated

aluminum. Borosilicate glass (Pyrex) seemed to wet well, but it was difficult to construct

a transducer housing with it. Some trials were performed with a thin Pyrex disk glued to

the front of the PTFE housing, but the transmission was worse than with RTV only.

The wetting experiments, which sometimes overlapped with the magnetic field mea-

surements, consisted of immersing the front of the transducer in sodium. We determined

that a material wet sodium if (1) a layer of sodium was left on the surface after removing
4Graciously on indefinite loan to us by Yasushi Takeda.
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the transducer, and (2) the transducer received echoes. Condition (1) was only neces-

sary and not sufficient, as sometimes materials that appeared to wet did not transmit

ultrasound. It did allow us to rule out some materials.

Besides having a good acoustical coupling to the sodium, there has to be particles

in the flow to reflect sound. For good scattering, the diameters of these particles need to

be of the order of the wavelength, which for 4 MHz ultrasound in sodium (c=2500 m/s)

is λ = 625µm. Of course if the particles are too big, they won’t trace the flow well.

The concentration of particles needs to be large enough so that, on average, there is a

particle at each depth along the measurements chord, but not so large that all the sound

is scattered before reaching the maximum depth.

We tried adding glass tracer particles, but it turned out that the bits of oxide,

dirt, bugs (!), etc. that occur inevitably in our sodium are adequate scatters. In fact,

it seems there were too many of them—in many trials, velocities past some depth could

not be measured. This problem could also be due to impartial wetting, since the overall

sensitivity would then be lower. The way we solved the problem, however, suggests the

problem was too many scatterers. As shown in Fig. 3.6, by tilting the storage tank at an

angle, so that denser particles will slide down toward the bottom corner and away from

the intake tube, the sodium transferred to the sphere should be cleaner. With this cleaner

sodium, we could measure velocities at larger depths than we could by transferring with

the tank placed flat.

3.3.3 Transducer placement

We wanted to measure both radial and azimuthal velocities near the equator (where the

biggest induced fields were), but had only one transducer. Therefore, we placed the
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Figure 3.6: Hypothesized picture for why tilting the storage tank before transferring

sodium produced better ultrasound measurements. Presumably the better ultrasound is

due to a smaller (and closer to optimal) amount of impurity particles entering the sphere.
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Figure 3.7: The location of the ultrasound measurements, which were along one chord.

The angle θ′(x) is used to calculate the cylindrical radial and azimuthal components.
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transducer to point above the rotation axis as shown in Fig. 3.7.

3.3.4 Reconstructing the flow using symmetries

The ultrasound probe measures velocities along a chord offset from the central axis of

rotation. Thus the measured velocity, vm(x), includes both azimuthal and cylindrical

radial velocities. The time-averaged toriodal and radial velocity profiles can be separated

by decomposing the profile along a chord into its symmetric and anti-symmetric parts.

The even part gives the azimuthal velocity, ve = vφ cos θ′(x), and the odd part gives the

cylindrical radial velocity vo = vr sin θ′(x). θ′(x) is the angle between r0 (the shortest line

connecting the rotation axis to the chord) and the line connecting the rotation axis to the

chord position x, as shown in Fig. 3.7. We can express the two trigonometric relations as:

cos θ′(x) = ro/
√

r2
o + (x − L/2)2,

sin θ′(x) =
√

r2
o + (x − L/2)2,

where L = 29 cm is the chord length. The rotation axis along x is at L/2.

3.4 The experiments

The liquid sodium is contained in a 31.2 cm hollow sphere of 304 (nonmagnetic) stainless

steel. We studied flows driven by: (1) co-rotating impellers, and (2) a rotating inner sphere.

In (1) the impellers were titanium and had 12.7 cm diameters. They were of opposite

helicity and entered the sphere from either pole (see Fig. 3.8). In (2), three different 10 cm

dia. spheres were used: solid copper, a hollow copper shell of thickness ≈ 3 mm, and a

stainless steel shell. The shafts in all experiments were made of nonmagnetic stainless

steel and were 2.54 cm dia. each was belt-driven by a 7.5 kW electric motor.
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Two coils in near-Helmholtz configuration supply the external field concentric to the

axis of impeller rotation. The applied field varies approximately 10% from the center of

the sphere to the outer edge, decreasing away from the center along the axis of rotation,

and increasing in the other two perpendicular directions. A Hall probe just outside the

sphere next to one shaft measured the field in the direction parallel to the applied field.

For the impellers runs, three somewhat crude Hall arrays—different from the Hall

array described in Sect. 3.1—were used: a 15 cm dia. ring (6 probes) encircling one pole

azimuthally, a pole-to-pole arc (8 probes), and an equatorial arc (7 probes) all of which

measure fields perpendicular to the applied field (see Fig. 3.8). The equatorial array was

augmented by two single Hall probes, one of which was offset slightly from the equator.

Table 3.1 shows relevant experimental parameters for our system. More detail re-

garding the experimental apparatus can be found in Peffley et al. [83].

We perform experiments both with baffles and with smooth walls. The baffles are

thin stainless steel plates that run from pole to equator in each hemisphere. They extend

5% of the sphere diameter. These baffles increase the ratio of poloidal to toroidal flow,

as originally motivated by Dudley and James’s study [31] of simple velocity fields in a

spherical geometry and their ability to self-generate. We found in Peffley et al. [83] that a

trend toward self-generation using pulse decay measurement was only possible with these

baffles in place. In this experiment, the baffles’ role is to create topographic variation at

the vessel wall, analogous to topographic variation at the Earth’s core-mantle boundary.

Experimental runs were performed using the following procedure. The impellers

were spun at a fixed rotation rate, and the field was incrementally increased through its

full range. The maximum field obtainable was 2 × 103 G. However, the magnets heated

throughout the day and thus lowered the maximum obtainable field value. For each field
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value, data were taken for several seconds (typically sixteen seconds).

3.4.1 Contribution of author

The author took the lead in most aspects of running the experiments, including cleaning,

maintaining, deciding which measurements to make, and analyzing the data. The author

also designed and built the Hall array (with some machining assistance) and developed

the least squares software. For the experiments presented in Chapter 4, the author worked

together with Nicolás Mujica. The two also worked together in the wetting experiments

that ultimately allowed the ultrasound transducer to transmit in sodium. Applying the

WKB analysis of Ji, Goodman, and Kageyama was first performed by Bill Dorland but

reproduced independently by the author. The simple model in the truncated model in

Chapter 2 was the idea of Dan Lathrop, and was implemented in various carnations by

him and others, including the author.
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Figure 3.8: Impeller flow experimental apparatus, showing the spherical vessel, Hall

probes, the coils that supply the external field, and the impellers driving the flow. The

Hall arrays in these runs are cruder than the array used in spherical Couette experiments.
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Symbol Description Value

b Impeller radius 6.35 cm

b Inner sphere radius 5 cm

a Vessel radius 15.6 cm

η Sodium magnetic diffusivity 830 cm2/s

ν Sodium kinematic viscosity 7.39 × 10−3 cm2/s

ρ Sodium density 0.927 g/cm3

Table 3.1: Important dimensional parameters for the experiment and sodium at 120◦C.

The meaning of b depends on the experiment, spherical Couette or impeller-driven, being

performed.

Figure 3.9: Spherical Couette experimental apparatus, showing the spherical vessel, the

coils that supply the external field, and the rotating inner sphere that drives the flow.
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Chapter 4

Spherical Couette Results

4.1 Evidence for the MRI

Though the rich dynamics exhibited by these experiments are interesting in their own

right, they are most notable for their resulting from the magneto-rotational instability

(MRI). We begin, therefore, with the evidence that the MRI is in fact what we observe.

4.1.1 Magnetically-induced instabilities

Our primary observation, consistent with what is known about the MRI, is that above

some threshold external magnetic field Bc, oscillations are spontaneously excited in the

coupled magnetic and velocity fields. Compare, for instance, the two induced field time

series in Fig. 4.1, taken at the same rotation rate but below and above Bc. Below Bc

(Fig. 4.1a), the induced field is featureless and turbulent, while above (Fig. 4.1b) it consists

of a precessing m = 1 pattern. Ultrasound Doppler velocimetry measurements show that

the oscillations are coupled to the velocity, as seen in Figs. 4.2 and 4.4. We refer to the

onset and saturation of these oscillations as our primary instability.

Note in Fig. 4.1 how the �S1
1b coefficients have identical time dependence to the �S1

3b

coefficients. From the selection rules in Chapter 2, both modes are allowed from the

postulated �S1
2v velocity disturbance interacting with the applied field. From now on we
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take modes with the same m and same parity with respect to reflection about the origin

to be part of the same mode, denoted by Om for odd and Em for even modes. The m = 0

(axisymmetric) modes often vary independently from their same parity counterpart, so we

sometimes specify the l value there.

Also consistent with the MRI—indeed, key to its astrophysical importance—is that

at the instability onset the torque needed to spin the inner sphere increases, as increased

amounts of angular momentum are carried from the inner sphere to the fixed outer sphere.

Figure 4.3 shows the torque increase along with the variances for all the modes for a fixed

rotation rate as the applied field is increased. The increase in the torque occurs at the

same external field as the increase in the O1 variance.

In addition to turning on at a finite applied field (for systems with finite diffusivity)

the MRI is also known to turn off at high fields. This feature is seen in Fig. 4.3 also, where,

for instance, the O1 variance crashes at Bext ≈ 1000 G. When one mode disappears, other

modes come to dominate. Figure 4.5 shows time series of the Gauss coefficients for these

secondary instabilities, which occur at larger applied field.

Which mode dominates depends on both the applied field (Lunquist number S) and

rotation rate (magnetic Reynolds number Rm). By independently varying the rotation

rate and external field, we have navigated the (S, Rm) parameter plane and determined the

regions where different modes dominate (Fig. 4.6). Rough conversions from dimensionless

numbers to real units:

B(G) = S × 200, Ω/2π(Hz) = Rm × 2.
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Figure 4.1: Time series of Gauss coefficients before and after the primary instability.

For the same rotation rate, Ω/2π = 20Hz, at (a) Bext = 93 G, the magnetic field is

largely broadband and turbulent with fluctuations of amplitude < 0.1% Bext while at (b)

Bext = 388 G, the magnetic field is characterized by larger (∼ 1% Bext), regular �S1
1b,3b

fluctuations. The cos and sin components are out of phase by 90◦, indicating that the

m = 1 pattern is precessing.
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Figure 4.2: Time series of the O1 coefficients and the velocity at a point in the sphere. The

red and green curves represent the cos- and sin- coefficients. The velocity and magnetic

fields have the same frequency, showing the dual nature of the instability.
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Figure 4.3: Excess torque and variance of the induced field Gauss coefficients for a fixed

rotation rate Ω/2π = 30Hz as the applied field is varied. The variance quantifies the

fluctuation about the mean: σ2
b = 〈(b − 〈b〉)2〉, where 〈.〉 denotes time averages.
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Figure 4.4: Velocity variance increases with the induced field variance and torque. The

velocity in a) was taken at a depth of 15 cm (near the tangent cylinder), at Ω/2π = 30 Hz.

The velocity fluctuations at this depth decrease before the induced field fluctuations. b)

shows the same data as in Fig. 4.3, which was also at Ω/2π = 30 Hz.
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Figure 4.5: Time series of Gauss coefficients for two secondary instabilities. For the

same rotation rate as Fig. 4.1, Ω/2π = 20Hz, at (a) Bext = 881 G, the dynamics are

characterized by largely-aperiodic fluctuations in the �S0
2b coefficient, and at (b) Bext =

1430 G, by regular fluctuations in �S1
2b.
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Figure 4.6: Phase diagram of saturated states. Regions are defined by the mode with the

largest variance (see Fig. 4.3). Some secondary instabilities show hysteresis; these data are

for increasing Lunquist number S, for fixed magnetic Reynolds number Rm. The lowest

magnetic Reynolds number Rm and Lundquist number S for these states (�) is obtained by

extrapolation, as described in Fig. 4.9. Also shown are theoretical stability boundaries for

the longest wavelength (red) and second longest wavelength (blue) instabilities, calculated

from the local MRI dispersion relation (see Chapter 2). Also shown for some regions

are representative cylindrical radial component of induced field at one time reconstructed

from Gauss coefficients. Color indicates intensity: red (positive), green (null value), blue

(negative).
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4.1.2 Base state has the right average properties

For the MRI to occur, the flow has to have a rotation rate profile that decreases with

cylindrical radius. For the flow to be centrifugally stable, the angular momentum profile

must not decrease with cylindrical radius. Both conditions are contained in the require-

ment: 0 < ζ ∼ 2 + ∂ log Ω/∂ log r < 2. As seen in Fig. 4.7, this condition is met in our

experiments, as ζ ∼ 0.4−0.6, except in thin boundary layers (see Sect. 4.2.1 for discussion

of error). Thus our flow has a profile quite close to a Keplerian profile, where ζ = 0.5.

On this note, there is a major departure between our base state and the base state

of theoretical and numerical studies: ours is turbulent. Indeed, the MRI is important as-

trophysically precisely because it provides the turbulence that would be otherwise missing,

and without which the accretion models would not work.

This discrepancy is double-edged. While the turbulence in the base state makes

identifying the dynamics in our experiment with the MRI less straightforward, it also

makes our results potentially more interesting. They provide strong evidence that the

MRI—and the associated increase in angular momentum transport—occurs in the presence

of preexisting hydrodynamic turbulence.

Other features in our experiment that differ from theoretical studies are the induced

toroidal field and poloidal motions in the base state.

4.2 More detailed results

From here on, we provide more detail to the results above. Some of the results, however,

only lead to more questions. We begin with a discussion of errors.
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Figure 4.7: Zero field angular momentum and angular velocity profiles from ultrasound

velocimetry measurements. The mean angular momentum density (a) shows that except

for thin boundary layers the system is stable to centrifugal instabilities. The rotation curve

(b) decreases with cylindrical radial difference from the center, a necessary condition for

the base state to be unstable to the MRI. A Ω ∼ r−3/2 Keplerian profile is shown for

comparison. The inset shows the index ζ, with the Keplerian value ζ = 0.5 indicated

by a dashed line. These measurements were made for an inner sphere rotation rate of

Ω/2π = 30 Hz.
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4.2.1 Errors

The errors in the Gauss coefficient amplitudes are estimated to be less than 10%. This

estimate comes from comparing standard deviations at the same rotation rate for runs

before and after the sphere and array were rebuilt. As mentioned in Sect. 3.1.3, the

largest errors in Gauss coefficients come from the probes being in different locations than

the probe locations in the matrix M. The variation in placement from rebuild to rebuild

gives an estimate of this error. This is likely an overestimate as there are dynamical

differences from run to run as well (that is, two consecutive runs without rebuilding are

not identical).

The error estimate in the torque data is also around 10%, but is more difficult

to asses due to the confounding friction losses in the seals, packing, and bearings. The

estimate is for the higher rotation rates and becomes worse at lower rotation rate. An

indication of the torque error in Fig. 4.3 is given by the fluctuations before the instability

onset.

In the velocity data, the number of ultrasound pulses per profile (32) gives a statis-

tical basis to assess error; however, the largest source of error comes from decomposing the

profiles into azimuthal and radial parts, which is more difficult to quantify. In particular,

the largest error in the azimuthal velocity-based profiles occurs near the outer wall, where

the measured velocity component is almost entirely in the radial direction. The sharp de-

viations in the angular momentum and ζ profiles (Fig. 4.7a and inset) near r = 15 cm are

likely due to this. Other errors in the profiles are related to the signal quality deteriorating

with depth along the chord. The asymmetry of the velocity with respect to the center,

which can be seen in the velocity space-time diagrams (Fig. 4.24, described below), is due

to this.
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4.2.2 Defining regime boundaries

The amplitude, or standard deviation, of the instability—if it is a Hopf bifurcation—should

increase as the square root of the applied field past critical
√

B − Bc. However, because

of background turbulence (and possibly geometric imperfections), this transition is made

imperfect. As we saw in Chapter 2, away from transition the effect of imperfections should

disappear and the amplitude should converge to the “perfect”
√

B − Bc dependence. We

define the critical magnetic field for the primary instability as the applied field where this

perfect trend reaches zero variance, as shown in Fig. 4.8. The fitting range should be

neither too close to transition (where imperfections dominate) nor too far from transition

(where Hopf bifurcation predictions break down). This procedure works best at high

rotation rates, where the induced field is stronger and the rise occurs over a wider range

of applied fields. Note how this definition produces a Bc that looks too high—that is,

noticeable oscillations occur for Bext < Bc. The procedure does provide a quantitative

definition for onset, however. Furthermore, using this choice of Bc the data can be fit

reasonably well using an imperfect bifurcation model (Fig. 4.8b), as in Chapt. 2.

We had a minimum obtainable rotation rate set by the motors and motor drives

that was higher than the rotation rate below which no instabilities would be found. We

nonetheless determined this minimum rotation rate by extrapolation, as shown for the O1

state in Fig. 4.9. The slope s from the σ2 vs. Bext plots (Fig. 4.8) is found to increase as

Ω3, as reflected in Fig. 4.9a. This dependence is consistent with the induced field energy

(∼ variance) being a fixed fraction of the viscous dissipation (∼ Ω3 for a turbulent flow) for

a given fluid-field state; that is, the variance curves nondimensionalized by the interaction

parameter and scaled by Ω3/2 collapse to a single curve (see Chapter 5). The critical

external field value is found to increase linearly with rotation rate (Fig. 4.9). This finding

98



Figure 4.8: Defining Bc for the primary instability, for Ω/2π = 50Hz. (a) Extrapolating

the linear fit over the range shown to zero variance defines the critical external field value

where onset occurs. In (b) the standard deviation (i.e., instability amplitude) is used in

place of variance. Also shown is the best fit to an imperfect Hopf bifurcation, found from

solving 0 = sB−B3 +h, where s = 1.6 is the slope from (a) and h was varied to minimize

the error.
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is in contrast to the local WKB analysis of Ji et al. [53], where Bc was independent of

Rm.

Hysteresis

As mentioned earlier, some secondary instabilities show hysteresis. We always define the

regimes by increasing the field for fixed rotation rate. Figure 4.10 shows the variances

when the field is ramped down: the secondary instabilities occur at different external field

values. In a coming section, we’ll also see that hysteresis occurs when the field is held

constant and the frequency increased.

4.2.3 Precession

Here we demonstrate more clearly to what extent precession occurs. Above Bc, the modes

grow and reach a fairly clean limit cycle (Fig. 4.11b), the radius of which is approximately

the expected value:
√

2 times the standard deviation σ. At fields significantly greater than

Bc, though still within the O1 regime, the phase portrait (Fig. 4.11c) deviates from the

limit cycle. In this subregime, a time series of the coefficients (not shown) shows substantial

modulation of the O1 coefficients; the frequency of modulation is incommensurate1 with

the primary precession frequency. The modulation begins where the standard deviation

deviates from the
√

B − Bc trend. Apparently here is where higher order nonlinearities

(than included in the normal form) control the saturation.

Just below Bc, the phase portrait (Fig. 4.11a) is consistent with a slowly decaying

mode that is periodically excited by the turbulence. We might model the amplitude using

the bifurcation normal form (Eqn. 2.37), with a negative growth rate and h replaced by
1Modulation by an incommensure frequency is called quasi-periodicity and occurs, among other places,

in a supercritical regime of hydrodynamic Taylor-Couette flow.
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Figure 4.9: Extrapolation to find the bottom of the O1 region in the stability diagram

(Fig. 4.6). (a) The slope s from Fig. 4.8a increases as Ω3. Extrapolating the linear trend

of s1/3 vs. Ω to zero slope gives Ω/2π = 1.33 Hz, below which the instability presumably

doesn’t exist. (b) The critical applied field increases linearly with Ω. Extrapolating the

linear trend to s = 1.33 Hz gives a critical applied field value of 70 G at the lowest rotation

rate where the instability occurs.
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Figure 4.10: Mode variances showing hysteresis. At Ω/2π = 7.5Hz, the applied field was

ramped up (solid curves) and then ramped back down (dashed curves), showing that past

the primary instability, the transition to states depends on the path taken. Color indicates

the mode.
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a random variable, perhaps having a stretched exponential distribution that is typical of

velocity gradients. Though not shown, we tried such a model and found loose qualita-

tive similarity to the time series of the O1 mode energy (Fig. 4.12). In that figure, the

O1 amplitude is modulated by the background turbulence in all regimes, but to varying

degrees.

Precession below onset

Surprisingly, in some runs, near zero external field the dynamics are better represented

by Fig. 4.11b—modulated m = 1 precession. One would of course expect no precession

below onset. The standard deviation below Bc in these runs increases linearly (though

weakly) from zero applied field and then noses over before increasing sharply at onset.

The effect is small enough to not be noticed when the variance is plotted (Fig. 4.3), but

in the time series it is plainly evident. A frequency peak can be seen in the ultrasound

measurements too for no applied field, but only near the tangent cylinder. The frequency

peak gets suppressed at larger field and then reappears at onset—and at all depths.

The runs where the zero field precession appears have two qualities that are different

from the others: the sphere is slightly off-center, and the shaft does not continue past the

end of the sphere, as it does in Fig. 3.9. The sphere was off-center in these earlier runs

because the shaft was too long; the fix was to move the sphere down from the end of the

shaft, exposing more shaft into the flow. One run was performed with the sphere off center

but with the current shaft configuration. The precession was markedly decreased there,

but still more evident than with the sphere at the end of the shaft. Another difference

is that with the sphere in the middle of the shaft, a hexagonal brass nut was exposed

at the end of the shaft. With the sphere at the end, the nut was recessed in a circular
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Figure 4.11: Phase diagrams of g1
1 coefficients, at Ω/2π = 30Hz. (a) Below critical Bext =

84 G, orbits spiral in toward and out from the fixed point at (0,0); in (b) Bext = 417 G,

the applied field is above critical and the orbit is nearly circular, indicating precession;

in (c) Bext = 606 G, substantially past critical (though still in O1) the orbit is more

complicated, deviating from the limit cycle in (b). The units are standard deviations.
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Figure 4.12: Magnetic energy density time series of the O1 mode for three values of external

field. The states are the same as in Fig. 4.1a (black), Fig. 4.1b (red), and Fig. 4.5a, which

were at the rotation rate Ω/2π = 20Hz. The sine and cosine parts were squared and added

together. The fluctuations result from the underlying turbulence.
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indentation on the sphere. The precession is presumably related to these differences, but

its cause remains a mystery.

Mode precession rates

Figure 4.13 shows the power spectra for the various induced field modes versus applied

field for a fixed rotation rate of Ω/2π = 30 Hz. There, over the range of applied field only

three different modes have the largest variance: O1, E0, and E1. Some other modes have

pronounced peaks—for instance the E3 spectra has a peak near f = 5 Hz at high field,

and the O2 spectra at high field has a peak at f = 2.5 Hz. Both are m multiples of the

main E1 peak.

The highest power spectra peaks for the E1, O2, and E2 spectra (Fig. 4.13)are

shown in Fig. 4.14. Not seen in the previous figure (because it was outside the frequency

range shown) is a peak of the E2 mode occurring at large field. Curiously, the frequency

of this peak is not an integer multiple of the O1 frequency, is uncharacteristically large

compared to other frequencies seen in our system, and is highly modulated, as seen in the

inset.

Also notice that in a narrow band of field around Bext = 1000—the E0 regime in the

phase diagram (see Figs. 4.11, 4.1)—all the frequencies change considerably. This change

is evident in Fig. 4.13 as well. The peaks correspond to highly modulated precession,

though the modulation is more irregular than in the inset of Fig. 4.14. The modulation

in those time series occurs on a time scale close to the m = 0 oscillations. In a movie of

the reconstructed induced field taken from the E0 regime, this modulated precession is

quite striking—for brief periods, a streak of m = 2 vortices at the equator whiz across the

screen and then disappear. The frame for the E0 mode in Fig. 4.11 is taken from such a

106



segment of the time series. The m = 0 modes are one of the more interesting states in our

system. We will return to them later.

4.2.4 Axisymmetric induced fields

Modes with azimuthal wave number m = 0 will not precess, and thus they typically do

not have significant variances (with the exception of E0). The axisymmetric modes do

have average values that change with rotation rate and applied field, however. Figure 4.15

shows the average values of the axisymmetric coefficients for a fixed rotation rate, as the

applied field is increased. These values are prone to offset errors as discussed in Sect. 4.2.1,

but the structural features are reliable. Note that when the O1 instability crashes the

axisymmetric l = 2 and l = 4 components increase sharply and then at slightly larger

external field decrease, and that the l = 3 component decreases.

4.2.5 Hysteresis revisited: frequency ramps

As mentioned above, the state of the system will depend on what path it was reached.

We already showed the difference between increasing the field versus decreasing. Here we

examine a run where the field is held constant and the frequency increased (Fig. 4.16).

We draw attention to the points A and B in the figure.

At point A the torque increases sharply as the O1 amplitude increases, just like the

instability onset for the external field ramps. But at point B the O1 amplitude increases

again—an even larger increase—yet the torque is unaffected. Both average values for

the axisymmetric modes change sharply at A and B as well. Furthermore, though the

changes in the modes at A are in the same direction as B, the amplitude of change are not

in proportion. The changes at A and B are clearly somehow connected, but the causal

relation is not obvious!
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Figure 4.13: Power spectra of nonaxisymmetric induced field modes versus applied field at

Ω/2π = 30Hz. Each horizontal line in the figure is an induced field power spectrum, where

color indicates intensity, from highest to lowest: red, green, blue. The scale is logarithmic.

The m = 0 spectra are not shown because they are largely featureless—even the E0 mode,

which over a range of external field is the mode with the largest variance.
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Figure 4.14: Power spectra peak frequencies versus applied field for Ω/2π = 30 Hz. The

inset shows a time series of the E2 and O1 modes at Bext = 1750 G: both modes are

precessing, but the E2 mode is highly modulated. The O1 frequency (not shown) is the

same as E1.
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Figure 4.15: Time-averaged coefficients of axisymmetric states versus applied field for

Ω/2π = 50. Even for no flow, the coefficients have nonzero averages because the external

field is not exactly perpendicular to the array; here we subtract an extrapolated trend for

each coefficient fit from the range 0-100 G.
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One might also wonder why at A the O1 primary instability increases in amplitude

though it is already the dominant mode. This feature, however, is more readily explained.

Consider a typical standard deviation curve at fixed rotation rate and ramped field (e.g.,

Fig. 4.3). After the O1 instability turns on, the amplitude rises as a Hopf bifurcation

√
B − Bc, but then deviates from this trend as the oscillations become modulated. This

point of deviation occurs at larger fields for larger rotation rate. So the increase in O1

amplitude we see here is presumably where the system crosses from modulated oscillations

into a pure Hopf region. It seems another sort of crossover happens again at point B.

Point B happens to correspond to a decrease in precession frequency, such as in

Fig. 4.17. There, however, the external field was smaller and the transition to slower

precession occurs at a lower rotation rate than in Fig. 4.16.2 Not shown in Fig. 4.17 is the

E0 standard deviation, which peaks at Ω/2π ≈ 25 Hz, near where it occurs on the phase

diagram (defined as before); at only one point is the E0 standard deviation larger than

O1, and only by ∼ 1 G.

4.2.6 Toroidal field

As mentioned earlier, probes outside the sphere can only measure the poloidal component

of the magnetic field. We placed a hollow cylindrical sleeve housing a Hall probe into the

sodium to measure the toroidal field near the tangent cylinder, a few inches away from

the equator.

Figure 4.18 shows the average toroidal field in the sleeve and its standard deviation

for Ω/2π = 30, as the applied field is ramped. For small values of applied field, the Lorentz

force is presumably too small to alter the flow. The average toroidal field linearly becomes

more negative as the applied field is increased. Over this range, it seems a differential
2The peaks are better defined there too, which is why we chose a different external field for that figure.
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Figure 4.16: Torque, mode standard deviation (for m �= 0), and mode average value (for

m = 0) versus rotation rate for Bext = 1000 G. At the starting rotation rate (14 Hz), all

values have been artificially set to zero. The field was turned on and then the motors.

The field decreases approximately 50 G over the ramp due to coil heating.
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Figure 4.17: Power spectra peak frequency versus rotation rate at Bext = 700 G for the

O1 mode. The inset shows the full power spectra as a function of external field. There is

a range of applied field where two incommensurate frequencies appear with comparable

amplitude.
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rotation profile converts a fraction of the external field into toroidal field. Note that at

the instability onset (Bext = 200 G), the trend becomes slightly more negative. Near

Bext = 500 the trend stops altogether and then reverses, only to turn sharply back toward

(though still less negative than) the trend at Bext = 1000 G. Again, curious things happen

at the E0 regime where the primary instability crashes. Past ∼ 1100 G, the toroidal field

is roughly independent of applied field.

From the slope of the linear region in Fig. 4.18, the toroidal field in our sleeve is

approximately 1/20 the applied field. From dimensional analysis, we would expect the

ratio of induced toroidal field to applied field to be of order Rm. At a rotation rate of

Ω/2π = 30, the magnetic Reynolds number is Rm = 15, so we find our observed toroidal

field is 300 times smaller than this prediction. This finding lends further justification to

the small-Rm approximation we use in several places in Chapter 2.

Figure 4.19 is similar to Fig. 4.18 except the field is fixed (Bext = 300 G) while the

rotation rate is ramped. For an applied field of Bext = 300 G, the average toroidal field

strength increases linearly with rotation rate. Throughout the ramp the regime is O1. The

slope of the time-averaged induced toroidal field for Bext = 300 G is −0.65 G/Hz. From

this slope, we obtain an empirical relation for the toroidal field in terms of the magnetic

Reynolds number:

Btor/Bext = 4.3 × 10−3Rm. (4.1)

4.3 Torque

With no field, the torque is quadratic in Ω, as seen in Fig. 4.20. For the run in this figure,

we went to much higher rotation rates than any other run (though unfortunately we took

no magnetic field data). These high rotation rates produce better torque measurements
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Figure 4.18: Toroidal induced field versus applied field for Ω/2π = 30 Hz. Up to Bext =

500 G, the time-averaged toroidal field increases approximately linearly with applied field.

After the instability onset (Bext = 200 G), the average toroidal field trend becomes slightly

more negative, as can be seen by comparing the green and blue lines.
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Figure 4.19: Toroidal induced field versus inner sphere rotation rate with an applied field

of B=300 G. At all points the system was in the O1 regime.
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because the friction from the packing and seals is a smaller percentage of the total torque.

The quadratic torque increase seen with no field seen here is consistent with the standard

turbulent drag model in Chapter 2 (Eqn. 2.45). Computing a skin friction coefficient CD

we find that it is of the order typical for when the boundary layers are turbulent [40]. The

torque measurements are not precise enough to distinguish between a quadratic model

and a model with logarithmic corrections due to laminar boundary layers.

We test the torque prediction at the end Chapter 2. In Fig. 4.3 we saw for Ω/2π =

30 Hz the torque increasing sharply as the primary instability turns on, decrease slightly

when it crashes, and increasing in between. In Fig. 4.21 we look at at a higher rotation

rate—the highest rotation rate where we ramped the magnetic field—where the effects of

the seals will be a smaller fraction of the total torque. The prediction (Eqn. 2.50) holds at

small fields: the torque increases as ∼ B2
ext and then deviates from this trend near N = 1.

However, the torque scaling thereafter is not independent of applied field as predicted.

For a range of external field past N = 1, as seen in Fig. 4.21, the torque scales as ∼ Bext.

This feature remains to be explained. The likely discrepancy is that the ratio of length

scales l‖/l⊥ does not increase as N1/2, the result from decaying turbulence (Eqn. 2.44).

The torque does appear affected by the ratio of length scales: when the primary instability

crashes (near Bext = 1500 G) and the length scale perpendicular to the external field l⊥

decreases (as no relatively large m = 1 vortices exist), the torque decreases.

Why, however, is there no sharp increase in torque at onset, as there was for Ω/2π =

30 Hz? It could be that at larger rotation rates the smooth quadratic torque increase with

applied field comes to dominate over the torque increase due to the changing length scale

(see second term in Eqn. 2.50). We have only limited quantitative measure of the changing

length scale ratio (through the ultrasound measurement) and no quantitative prediction
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of how the length scale ratio affects the torque relative to basic electromagnetic coupling.

Further confounding matters, the torque curves for other runs at the same rotation rate

look somewhat different in detail from Fig. 4.21.

4.3.1 Velocity measurements

We measure the velocity along a chord, as shown in Fig. 3.7. By time averaging the

profile we can extract the radial and azimuthal components, from the anti-symmetric

and symmetric components respectively, as described in Sect. 3.1.4. Figure 4.22 shows

the angular velocity and angular momentum profiles as a function of cylindrical radius.

We see that as the external field is increased the fluid close to the inner sphere becomes

increasingly coupled to the inner sphere rotation rate.

Figure 4.24 shows space-time diagrams of the ultrasound data for Ω/2π = 2.5 Hz.

The direction is along the chord of measurement; decomposing the velocity into vs and

vφ is only possible for average profiles. At Bext = 41 G (Fig. 4.24b), notice that the flow

seems to organize even before the primary instability. Also notice in Figs. 4.24c-f how the

oscillations gradually become focused on the boundary of the tangent cylinder.

4.3.2 Transition states: axisymmetric oscillations

When the system transitions between the primary instability and the first secondary

instability—the “m = 0 state” in Fig. 4.6—more complicated dynamics result. Unlike

the other saturated states, which have periodic magnetic and velocity fields, the dynamics

in this state seem to flip aperiocially between two distinct states. The characteristic time

of this flippling is much longer than the period of the other saturated states, as in Fig. 4.25.

The torque time series is correlated (or anti-correlated) with all the axisymmetric modes,

as seen more clearly in Fig. 4.26.
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Figure 4.20: Torque versus rotation rate with no applied field, with quadratic and linear

fits. Without applied fields the torque increases as the rotation rate squared, consistent

with a standard turbulent drag model. The equation for the quadratic fit is shown.

Assuming the non-quadratic parts are due to frictions from the seal and packing, the drag

coefficient is CD = 2.4 × 10−3.
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Figure 4.21: Torque versus applied field at Ω/2π = 50 Hz. Quadratic (red) and linear

(green) fits are shown. The torque changes scaling near N = 1.
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Figure 4.22: Velocity profiles for Ω/2π = 30 Hz, for three values of applied field. a) shows

the angular velocity and b) the angular momentum.
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Figure 4.23: Profiles of the index ζ ∼ 2 + d lnΩ(s)/d lns for Ω/2π = 30 Hz, for five values

of applied field. As the applied field increases, the ζ profiles make more frequent excursions

below ζ = 0, the threshold for centrifugal stability.
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Figure 4.24: Space-time diagrams of ultrasound data. The horizontal axis is distance

along the chord in Fig. 3.7, and color represents velocity component in the same direction.

The cylinder tangent to the inner sphere is between x = 10 and 20 cm.
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Are these axisymmetric induced field fluctuations causally related to the torque

oscillations? The Lorentz torque at the inner sphere interface (Eqn. 2.40) provides a pos-

sible causal mechanism. The fluctuating axisymmetric poloidal modes cause a fluctuating

torque through the (presumably) fixed toroidal field, which should be �T 0
2B. However, only

the odd axisymmetric poloidal modes can couple with this mode; the l = 2 and l = 4

integrals vanish. Perhaps there is another toroidal mode? �T 0
3b is the only toroidal mode

that could couple to both l = 2 and l = 4 poloidal magnetic modes. To first order in

the external field, �T 0
3b could only be produced by �S0

3v or �T 0
2v. The latter would amount to

super- and (possibly) counter- rotating jets near the tangent cylinder.

Estimating Bφ from torque oscillations

We might try to estimate the size of the toroidal field for the state shown in Fig. 4.25 from

the relative magnitudes of the torque fluctuations in time (∆Γ ∼ 1 N-m, see Fig. 4.25) and

the l = 3 axisymmetric fluctuations at the inner sphere boundary. To estimate the latter,

we require a radial dependence S0
3b(r) for the poloidal mode inside the sodium, for which

we have no a priori estimate. As an upper estimate, we take the vacuum dependence r−5,

which produces a field (a/b)5 ∼ 200 times larger than the field fluctuations at the outer

sphere ∆b ∼ 1 G (see Fig. 4.25)—what we might take for a lower estimate. In between

these estimates would be an estimate assuming the magnetic field is well mixed within the

sodium, Bp ∼ r−2. With this last estimate, Eqn. 2.40 gives:

Bφ ∼ ∆Γµ0

2π(b/a)3(a/b)2∆b
∼ 50.

This estimate is close to the measurements of Bφ that we make with an immersed probe

(Sect. 4.2.6).

124



Figure 4.25: Time series of torque and coefficients of axisymmetric modes for a “transi-

tional” state. The torque is correlated with the Gauss coefficients of axisymmetric modes

(see Fig. 4.26), allowing us to make an estimate for the toroidal field. The rotation rate

is Ω/2π = 40 Hz.
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Figure 4.26: Cross-correlation function between torque and m = 0 coefficients, for Ω/2π =

40 Hz. The l = 3 state is strongly correlated, while the l = 2, l = 4 states are strongly

anti-correlated. No strong correlations exists between the torque and any other observed

Gauss coefficients. Furthermore, at other parameter values the torque is only very weakly

correlated (C < 0.25) with all the Gauss coefficients.
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4.4 Other boundary conditions

In addition to a solid copper inner sphere, we performed experiments with a hollow copper

spherical shell and a (hollow) stainless steel sphere. For the hollow copper sphere, the

magnetic field boundary conditions at the inner sphere interface are the same, but currents

cannot flow through the sphere. For the stainless steel sphere, the boundary conditions

are essentially insulating, having a conductivity 30 times lower than sodium.

One effect of having an insulating inner sphere is that the Lorentz torque is elim-

inated. The viscous torque alone must balance Ohmic and viscous dissipation. As seen

in Fig. 4.28, the torque for the stainless steel sphere increases with applied field (and

thus so must the dissipation). Presumably the increasing viscous torque is from thinning

Hartmann layers, but a more complicated viscous coupling could be at work.

We should also not rule out the Lorentz torque just yet, as stainless steel, having a

conductivity only 30 times lower than copper, is certainly not a perfect insulator. Might

the torque increase in Fig. 4.28 be accounted for by the finite conductivity of stainless

steel? Comparison to the hollow copper sphere, which has the same shell geometry as

the stainless steel sphere, makes this unlikely. The Lorentz torque is proportional to the

toroidal field, which in turn should be proportional to the conductivity, but the difference

in torque is only a factor of two or so, not a factor of 30. Nonetheless it might be worthwhile

to redo the experiments using a better insulator, like PTFE.

The insulating inner sphere experiments isolate the fluid effects from the processes in

Bullard’s solid analogue (see Chapter 2), which are present in the solid copper inner sphere

runs. Of course with a conducting inner sphere the additional currents giving rise to the

Lorentz torque affect the fluid. The conducting inner sphere case cannot be understood

by adding the Lorentz torque and Ohmic dissipation of Bullard’s solid analogue to the
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insulating inner sphere case!

For instance, the different spheres produce quite different induced field dynamics,

as shown by the standard deviation (Fig. 4.27). There barely is a primary instability

with either hollow sphere. Also, as labelled in Fig. 4.27 the azimuthal wave numbers at

large field are different for the stainless steel sphere (m = 2) than for both copper spheres

(m = 1) at this rotation rate. Incidentally, the state for N > 1 was also m = 2 with

co-rotating impellers. We turn to this geometry in the next chapter.

128



Figure 4.27: Standard deviation of induced field as a function of applied field (made

dimensionless using the interaction parameter) for Ω/2π = 40 Hz, for three types of inner

sphere. Magnetic field measurements were made (before the Hall array in Chapter 3 was

built) at one point outside the sphere near the equator. The same measurements for the

solid copper sphere are presented for comparison. The azimuthal wave number, found

from correlations in a crude array, are shown.
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Figure 4.28: Torque as a function of applied field (made dimensionless using the interaction

parameter) for Ω/2π = 40 Hz, for three types of inner sphere. Curiously, the torque for

the hollow sphere case increases abruptly at large field.
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Chapter 5

Discussion

5.1 Co-rotating impellers results

This section describes the results of an experiment where co-rotating impellers replace

the inner sphere. These experiments predate the Hall array and the ultrasound, so the

measurements are limited. The results have already been published [91], hereafter called

Paper I. We present some of the results and discussion here, and later relate them to the

present findings.

Because we didn’t have the Hall array for these experiments, we couldn’t define

regimes by the mode with the largest variance, as we do for the spherical Couette exper-

iments. Instead we chose regimes based on a combination of the induced field standard

deviation (Fig. 5.1) and the induced field power spectra frequency (Fig. 5.2), as summa-

rized in Table 5.1.

Several things changed with this different forcing. First, with co-rotating impellers,

the precession frequency was higher, and changed differently with applied field, as seen in

Fig. 5.3. Also seen there, the m = 2 mode occurs at lower interaction parameter. On that

note, all the states—to the extent we can compare them to the spherical Couette results

with the Hall array—occurred at different parameter values. There were only two regimes

that can be compared directly: an m = 1 state with an l = 2 poloidal correlation, and an
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m = 2 state that had an l = 3 poloidal correlation (see Fig. 5.5).

The cross-correlations allow us to determine the spherical harmonic. The cross-

correlation is defined as: C(x) = 〈A(t)B(t)〉/
√〈

A(t)2〉〈B(t)2〉 where A(t) and B(t) are

magnetic field time series with time averages subtracted, from Hall probes separated by an

angle x; brackets indicate time averages. In the three arrays in Paper I, cross correlations

were computed relative to one probe, giving correlation as a function of angular separation.

In the poloidal array the probe nearest one pole was chosen as a reference, since that

permitted the largest angular separation. In the array encircling a pole, the reference

probe was chosen arbitrarily (the results are independent of reference).

Though not mentioned in Paper I, we can conclude that Regime I* was, in terms

of spherical harmonics, an l = 1, m = 1 mode. The cross-correlation produces an l = 2

correlation (not l = 1) because the probes are aligned in the cylindrical (as opposed

to spherical) r direction. We can see this in Fig. 3.5, which shows the cylindrical r

component of the l = 1, m = 1 mode on the surface of the outer sphere. Likewise, the

l = 3, m = 2 correlation in regime IV corresponds to the l = 3, m = 2 spherical harmonic.

That the l of the correlation and the spherical harmonic is the same here is somewhat

coincidental. We would expect the number of nodes (the correlation l number in the

spherical r direction) to be the spherical harmonic order l minus m—which here would be

5. The cylindrical r component has more nodes than the spherical r component, however,

so the two correspond.

In regime III the state was m = 2 but had an ambiguous poloidal correlation. This

state was likely a combination of states. With the current Hall array we would be able to

determine its structure; redoing the experiment with the Hall array might be of interest

for a future experiment.
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Note that the collapse in Fig. 5.6 is consistent with the extrapolation used in Fig. 4.9,

where we took the slope s of σ2 vs. Bext for the primary instability to increase as s ∼ Ω3.

In both of these scalings, the power in the induced field (∼ σ2) at a given interaction

parameter is a fixed fraction of the viscous dissipation.

5.1.1 The effect of baffles

With co-rotating impellers, we performed experiments with baffles on the inside of the

outer sphere—a variation we never attempted with spherical Couette flow. With or with-

out baffles the overall dynamics are quite similar. Note, for example, the similarity in the

two cases in Figs. 5.2, 5.4, 5.1.

However, there are four main effects produced by the baffles. Most significant is

how the torque changes with applied field for a fixed rotation rate (Fig. 5.7). With baffles

the torque decreases with applied field, and without baffles the torque increases. The

magnitude of the corresponding changes are different too: torque decrease with baffles is

larger than the increase without. Second, the baffles suppress the m = 1 oscillations that

emerge in the intermediate range of interaction parameter. It appears this state is sensitive

to the boundaries. Third, the range of N values for regime III is increased, beginning at

smaller N and ending at larger N (see Table 5.1). Thus the baffles apparently suppress

the formation (or precession) of the instability, and better lock the precession rate to half

the impeller rotation rate. The latter effect is evident in Fig. 5.4, where the induced field

frequency peak is one half for large interaction parameter with baffles but only approaches

one half without.
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Figure 5.1: Induced field standard deviation vs. applied field at one point outside the

sphere (a) with smooth walls and (b) with baffles. The measuring location was at the

equator in the radial direction. The regime boundaries defined in Paper I are shown. For

both (a) and (b) Rm = 7.5 (Ω/2π = 10 Hz)
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Figure 5.2: Induced field power spectra. Applied field increases up the page, where each

horizontal line is a power spectrum of the induced field for smooth walls (a) and with baffles

(b). Color indicates logarithmic intensity, from highest to lowest: red-yellow-green-blue.

The impeller rotation rate is 10 Hz (Rem = 7.5).
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Figure 5.3: Dimensionless precession frequency from cross-correlations (�),and frequency

peak from induced field power spectra scaled by m (�), vs. interaction parameter.

The precession frequency was obtained by first maximizing the cross-correlation func-

tion C(τ, φ) for probes separated by φ on the equatorial array. The precession angular

velocity is a linear fit to the angular separation φ vs. optimum time lag, τmax(φ). These

measurements were taken at Rm = 7.5 (Ω/2π = 10 Hz) with smooth walls.
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Figure 5.4: The most intense frequency in regimes I*, III and IV for impeller rotation

rates: 5 Hz, Rem = 3.8 (◦); 7.5 Hz, Rem = 5.6 (�); 10 Hz, Rem = 7.5 (�); 12.5 Hz,

Rem = 9.4 (�); 15 Hz, Rem = 11.3 (×); and 22.5 Hz, Rem = 18.75 (+). The frequency

and applied field have been made dimensionless using the rotation rate and the interaction

parameter. N1/2 is used instead of N here (and elsewhere) because the former is linear

in B. In regime III, we have followed the 0.2 < 2πf/Ω < 0.5 peak and not the peak

2πf/Ω < 0.1.
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Figure 5.5: Correlations of induced field. The cross correlation as a function of poloidal

angle for regime I* (a) and regime IV (b), and as a function of azimuthal angle at the

equator for regime I* (c) and regime IV (d), and as a function of azimuthal angle near

one pole in regime IV (e). These measurements were taken at Rem = 7.5 (Ω/2π = 10 Hz)

with smooth walls. In (c), the probe at 103◦ is offset from the equator, which explains the

deviation from the m = 1 trend.
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Figure 5.6: Dimensionless standard deviation of the induced field as a function of the

applied field (a) with smooth walls and (b) with baffles for the magnetic Reynolds numbers:

3.8 (◦), 7.5 (�), 15 (�), and 18.75 (�). The data are made dimensionless using the

interaction parameter and a characteristic magnetic field, Bc ≡
√

ρµoab3Ω3/η.
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Figure 5.7: Torque as a function of applied field (made dimensionless using the interac-

tion parameter) for Ω/2π = 40 Hz, for co-rotating impellers, and for with baffles (see

Sect. 5.1.1) inside the outer sphere and without.
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Range Range
Regime (smooth wall) (baffles) Beginning boundary Character

I 0 < N < .3 0 < N < .3 �B passive vector

I* .3 < N < .6 increasing slope of σ m = 1 oscillations
(see Fig. 5.1a)

II .6 < N < 2 .3 < N < 3 first peak of σ turb. suppression
(see Fig. 5.1)

III 2 < N < 9 3 < N < 7 start of induced field m = 2 oscillations,
freq. peak (see Fig. 5.2) f depends on Bext

IV N > 9 N > 7 start of freq. locking m = 2 oscillations,
(see Fig. 5.2) f indep. of Bext

Table 5.1: The five regimes.
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Finally, the baffles increase the magnitude of induced field oscillations in regime I.

As seen in Figs. 5.1, 5.6, the slope of σ versus Bext is steeper with baffles. The baffles either

make a more turbulent flow (assuming Brms ∼ urms), or makes the flow more efficiently

generate induced fields (i.e., Rm is effectively made larger for a given rotation rate). This

effect of the baffles disappears at higher interaction parameter.

5.2 Alternative explanations to the MRI

As mentioned in the introduction, interpreting our results as the MRI is still somewhat

controversial. The most likely alternative is the instability of Hollerbach and Skinner [50].

Their instability, though magnetically-induced, is essentially the hydrodynamic Kelvin-

Helmholtz instability, where a thin shear layer rolls up into a series of vortices. The shear

layer forms at the cylinder aligned with the rotation and tangent to the inner sphere; it

is caused by the magnetic tension coupling the fluid inside the cylinder to the rotating

inner sphere, and the fluid outside the cylinder to the stationary outer walls. The applied

field is necessary for instability, but the instability would presumably proceed the same

if one could somehow impose the flow configuration without applied fields. The MRI by

contrast has no purely hydrodynamic analogue.

There are several important similarities between our measurements and the dynam-

ics of Hollerbach and Skinner’s study, but also several important differences. The most

problematic difference is that Hollerbach and Skinner’s study is at Reynolds numbers that

are three orders of magnitude smaller, yet they see instabilities at applied field strengths

comparable to our own. The picture of magnetic tension overcoming inertia (quantified

by the Reynolds number) would lead us to expect the onset external field to be corre-

spondingly larger.

142



Other possible (though less plausible) explanations include dynamo action and

Alfvén wave resonances. The former is ruled out because the oscillations disappear when

the external field is turned off. The latter we consider next.

5.2.1 Alfvén waves?

The Alfvén wave explanation seems most plausible in the co-rotating impeller section,

where as seen in Figs. 5.2, 5.4 the power spectra frequency increases nearly linearly with

external field, particularly with baffles. A standing Alfvèn wave resonance frequency

would also increase linearly with applied field. However, there are at least four problems

with an Alfvèn wave origin for these oscillations. First, the frequency range is too low.

The Alfvén velocity, vA = B/
√

µ0ρ, at 1000 G for our experiment is 2.8 m/s. The

resulting resonance for a box of length 2a, the sphere diameter, is thus 9.9 Hz—too large

a frequency for the observed oscillations at 1000 G for the Rm explored in any of our

experiments. Second, the induced field frequencies in regime III increase with rotation

rate, as evidenced by the collapses in Fig. 5.4. No obvious fluid motion would modify

an Alfvén wave resonance in this way. Third, the (extrapolated) zero field induced field

frequency in our experiment is non-zero. Lastly, in Fig. 5.2a the frequency increase in

regime III deviates more significantly from a linear trend, and there is an even lower

frequency peak (∼ 0.1Ω) that changes slowly (and nonlinearly) with applied field.

5.2.2 The MRI smoking gun?

What would it take to more convincingly show we have the MRI? One key MRI signature

[80, 46] that could in principle be found in our experiments are local correlations between

the radial and toroidal field components. In particular, the correlations must give a
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positive value for the Maxwell stress, Mrφ ∼ −BrBφ, to correspond with outward radial

angular momentum transport.

The radial magnetic field fluctuations are caused by radial velocity gradients that

stretch the imposed field, so measuring the local velocity would add additional support

to an MRI interpretation. In accretion disks, this radial flow is explained by a magnetic

spring force that couples nearby orbits. Consider two nearby orbits, where by Kepler’s laws

the inner orbit rotates faster. The magnetic spring coupling pulls the inner orbit back,

lowering its angular momentum, and pulls the outer orbit forward, raising its angular

momentum. In a Keplerian disk, angular momentum increases outward, so the inner orbit

spirals further in and the outer spirals out. The spring force increases and the instability

takes off.

We have not made measurements that could find the above correlations, but they

could be made. The easier measurement —correlated velocity and magnetic field or cor-

related magnetic fields—would be the latter. A 2-D Hall probe that measures two per-

pendicular components of the magnetic field at the same location are readily purchased

and could replace the 1-D probe used to measure the toroidal field. Ultrasound velocity

measurements near that location could also be made, but two new ports would have be

made on the spherical vessel so that the ultrasound only measures the radial velocity near

the point where the toroidal field is measured. Also, the velocity measurement would of

course be a centimeter or so away from the magnetic measurement, which is inside an

enclosed cylinder. The purely magnetic correlations on the other hand could be measured

at the same location.
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5.2.3 Is a Kelvin-Helmholtz instability inconsistent with the MRI?

The differences between the MRI and Hollerbach and Skinner’s Kelvin-Helmholtz-like

instability are difficult to pin down. For instance, the above correlations are not, to our

understanding, inconsistent with the instability of Hollerbach and Skinner. Also, the

torque needed to spin the inner sphere—a measure of angular momentum transport—in

their simulations increases at the instability onset, another hallmark of the MRI. Finally, it

is known that Kelvin-Helmholtz instabilities can “parasitize” the MRI [43]. In simulations,

after the MRI starts a secondary instability grows on a similar time scale. Our experiment

and Hollerbach and Skinner’s study could thus have both the MRI and a Kelvin-Helmholtz

instability.

5.3 Base state turbulence

The base state turbulence in our experiment makes the interpretation of our results as

the MRI less straightforward, leading some to call our measurements “dirty.” Though

not clearing the controversy surrounding Hollerbach and Skinner’s results, starting with

a laminar base state would shorten the connection of our results to theoretical work. We

could potentially do this by rotating the outer sphere to maintain centrifugal stability.

Turbulence might still be generated through hydrodynamic nonlinear or finite amplitude

instabilities, however, so the plausibility of such an experiment is in question. The current

apparatus is incapable of being spun, but future experiments in an apparatus currently

used in a rotating convection experiments may be possible.
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5.4 Dissipation and heating

Though not measured quantitatively, it was noted that when the external field was turned

off after a ramp up to the maximum field the temperature dropped noticeably, as much

as a degree in a 20 second span. The torque times the rotation rate equals the dissipation

(minus the negligible induced field magnetic energy). This dissipation energy is converted

to heat, and the dissipation could thus be measured thermally. Brito et al. [16] measure

the temperature increase in a vortex of gallium with an external field and compare the

deduced Ohmic dissipation with the dissipation deduced from torque measurements and

find the deduced dissipation from the torque to consistently be three times higher than

the temperature measurement. Their temperature measurement was at one location in

the flow, and so the difference could be caused by poor thermal mixing. They offer no

explanation for the difference. It might be interesting to measure the dissipation thermally

in our experiment to see if a similar effect is seen.

5.5 Application to the Earth and Sun

We leave off with one of the more speculative parts of the dissertation. Though we put this

section with the impeller-driven chapter, the same arguments apply to our more recent

spherical Couette results as well. These connections would also be a way in which the MRI

applies to the Earth and Sun. In the former, if the MRI is applicable it could be either

when the Earth was formed (which would have happened in an accretion disk surrounding

the Sun) or is a continuing effect that is coupled to the dynamo.
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5.5.1 Core-mantle coupling

Core-mantle coupling—exchange of angular momentum between the core and the mantle—

is thought is to be responsible for variations in the Length of Day, and in the orientation

of Earth’s axis of rotation. The degree of coupling is also an important parameter in

many dynamo models [85]. Coupling can occur topographically, viscously, or electromag-

netically. These processes are often considered separately (e.g., [55, 1]). However, our

results show that Lorentz forces and topography need to be considered together, at least

in our parameter regime. Indeed, the magnetic field can either enhance or weaken angular

momentum transfer (≈ 50% over the range of interaction parameter in our experiment)

to the outer case depending on the topography of the vessel walls (see Fig. 5.7). In our

experiment the angular momentum transfer, with baffles and without, seems to converge

at higher interaction parameter. This suggests that magnetic effects come to dominate

and “wash out” pure topographic coupling when the interaction parameter is greater than

about N = 5. The estimated values of interaction parameter in the Earth are much larger

than in our experiment; thus, the Earth operates either in regime IV or in some higher

regime of Lorentz force domination.

5.5.2 Moving flux lobes

Maps of the radial component of the magnetic field for 1715-1980 at the surface of the Earth

indicate structure having similarities to our data. In that interval, the radial component

of the Earth’s field shows a fixed pattern of four flux concentrations (lobes) placed anti-

symmetrically about the equator[45]. Similar to regimes III and IV in our experiment,

these lobes are placed anti-symmetrically about the equator. Paleomagnetic evidence,

which samples the Earth’s field on longer time intervals, suggests that these lobes do
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drift, though more slowly than the characteristic westward drift velocity [23, 35]. Are

these lobes a precessing instability?

In our experiment, magnetic structures also drift slowly compared to the character-

istic velocity (i.e., the impeller rotation rate). The relatively slowly moving flux pattern

in the Earth is commonly thought to be an effect of heat flux inhomogeneities at the

core-mantle boundary [45]. However, our experiment, having no such inhomogeneities,

suggests this motion could be a more robust dynamical feature. One might guess that

global rotation or the different forcing of the flow in the Earth would frustrate the in-

stabilities seen in our experiment. Future experiments may determine how robust these

instabilities are.

5.5.3 Boundary layers

Though the interaction parameter for the Earth is very large (N ∼ 105), there is a length

scale for which the flow in the Earth’s core has the same interaction parameter as our

experiments. This is approximately 10−5 the radius of the core, or about 30 m. One obvi-

ous location where the dynamics at this scale could affect geomagnetic observables are the

core-mantle and inner core boundary layers. The boundary layers (thermal and Ekman)

act as valves for both heat and momentum flux through the outer core. Our observations

of the effects of Lorentz forces and roughness (baffles) on momentum transport may apply

to these boundary layers. In addition to the effects on angular momentum transport dis-

cussed above, there should be Lorentz force effects on heat flux and core cooling. It has

been argued that the turbulent momentum and heat fluxes are slaved together (by use

of the Reynolds analogy, i.e., a unity turbulent Prandtl number)[57]. Using this concept

and our observations of torque dependence one might expect that the heat flux from the
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rough core-mantle boundary is reduced when the dynamo first turns on. This might act

as one saturation mechanism for the geodynamo.

On this note, we recognize that our experiment is not an ideal geophysical model.

One obvious shortcoming, as previously mentioned, is that our sphere is non-rotating—

the fluid only rotates due to the co-rotating impellers or rotating inner sphere. We are

thus not in a low Rossby number regime as the Earth and most astrophysical objects are.

Furthermore, a system driven by impellers or an inner sphere is simpler than a system

driven by convection, such as the Earth. The experimental compromises in this experiment

were necessary, however, due to the difficulty and safety concerns in performing these

types of experiments. With this system, rotating our sphere would cause safety problems

associated with decoupling the system from an overflow reservoir. Also, without impellers

we would be unable to reach the magnetic Reynolds numbers reached in this experiment

(without a much larger device), as convection causes weaker fluid velocities. Experiments

with a new 60 cm dia. rotating convection apparatus are underway that may illuminate

the effects of these simplifications.

The parameter ranges for the Sun come closer to overlapping with our experiment,

though there are significant differences (e.g, the sun is plasma, and has a stratified struc-

ture). Unfortunately, uncertainties in diffusivity, field strength, and the relevant length

scale yield a large range for estimates of the interaction parameter for the Sun 1 < N < 104

[36, 44, 73, 22, 39]. The Rossby number of the Sun is Ro ∼ 10−1, four orders of magni-

tude larger than in the Earth. It’s possible that the relatively stronger effect of advection

relative to rotation in the Sun partially explains why the Sun has more periodic dynamics

than the Earth.
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Chapter 6

Conclusions

We present the first laboratory realization of the magneto-rotational instability (MRI).

Though the MRI is well understood, our observations establish that it exists—and that

angular transport increases—in the presence of preexisting hydrodynamic turbulence. Our

results connect to a local, WKB stability analysis performed in a cylindrical geometry de-

rived by Ji et al. [53]. By adapting their use of the Lunquist number S and the magnetic

Reynolds number Rm to our experiment, we make quantitative comparison to our exper-

iment, which agree remarkably closely, considering: (1) their system was cylindrical, (2)

their modes were axisymmetric, and (3) the most unstable modes had wavelengths longer

than our system. They predict that modes with higher wave number will become unstable

at higher external fields than lower wavenumber modes, a quality that was seen in our

experiments.

We also present the first experimental study of a hydromagnetic spherical Couette

flow, and only the second in any fluid at our aspect ratio β = 2, the same as the Earth’s

core. The instabilities found here share basic qualitative features of the instabilities that

lead to turbulence at lower Reynolds number; ours, however, occur from a turbulent

background. We show that the primary magnetically-induced instability is a supercritical

Hopf bifurcation, and that secondary instabilities, occurring at higher external field, show
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hysteresis, suggesting subcritical bifurcations.

We show that the nature of the magnetically-induced instabilities and the corre-

sponding torque depend significantly on the electrical boundary conditions of the inner

sphere. The torque increase with external field at a fixed rotation rate is approximately

5 times larger with a solid copper sphere than with a stainless steel shell, and 2-3 times

larger than a thin copper shell.

We adapt Bullard and Gellman’s spherical harmonic vector functions and their

associated selection rules to our system, which allow us to rule out which velocity modes

are not playing a role in our system’s dynamics, leaving only a handful of possible modes.

For the primary O1 instability, we determine that the velocity disturbance is �S1
2v.

We formulate a picture for how Lorentz forces and fluid motion couple to produce

energy dissipation—and we relate this to the torque required to keep the inner sphere

rotating. Subsequent predictions—in particular a torque increasing quadratically with ex-

ternal field at low interaction parameter—are seen in the torque measurements. At larger

fields, adapting an Ohmic dissipation argument from decaying turbulence, the torque is

predicted to be independent of applied field, though this only occurred for impeller-driven

flows. We propose an explanation for why the torque increases at our instability onset—

that large scale m = 1 vortices increase the action of the Lorentz force on the bulk fluid.

The corresponding suppression of this instability decreases the dissipation, as seen in the

data.

The design and construction of a Hall array is described that allows spherical har-

monic decomposition of the induced field. While conceptually and technologically straight-

forward, these measurements are the first of their kind in a laboratory liquid metal flow.

They also allow us to construct movies of the induced field on the outer sphere surface at
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an arbitrary number of points (though of course constrained by the l = 4 resolution of the

model), which helps visualize the dynamics.

We describe a new and simpler method to obtain ultrasound measurements in liquid

sodium. In the course of constructing the ultrasound transducer, we learned about the

wetting of sodium with various materials, which would have effect an effect on any liquid

sodium boundary, including its electrical boundary conditions.

Finally, we interpret with respect to the present findings a previously published

experiment [91] using co-rotating impellers instead of a rotating inner sphere. This ex-

periment likely showed the MRI, as it also showed a sharp increase in non-axisymmetric

fluctuations as the external field was increased and their subsequent suppression as the

external field was increased further. Many measurements were lacking, however, includ-

ing the Hall array and ultrasound measurements. Also, the complicated geometry of the

impellers limit its interpretation and the likelihood of it being successfully modelled.

6.1 Future work and unanswered questions

The most interesting future work would be to numerically model the spherical Couette

flow. There are a number of possibilities in this direction. As mentioned in Chapter 2, our

simple truncated mode model could be refined further. Also, a global stability analysis

in a spherical geometry, comparable to the analysis of Goodman and Ji in a cylindrical

geometry, would be valuable. Ultimately we’d like a see a full 3-D simulation that can

be as turbulent as possible. Hollerbach, who with Skinner simulate spherical Couette

flow with applied fields up to Reynolds numbers of only Re = 2000, thought Reynolds

numbers up to Re = 104 would now be possible [51]. Comparing the results of different

codes—e.g., that of Glatzmaier and Roberts, or Kuang and Bloxham—would be very
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interesting. Having experimental data in hand—with clear dynamical signatures—should

be an excellent way to test the various approaches. Our understanding is that several

groups have already begun to model our experiment [67].

Several relatively simple but useful modifications could be made to the current setup.

The simplest might be to move the transducer to point in the cylindrical radial direction.

This way the radial profile could be obtained at each time step (though of course the

azimuthal information would be lost). In the current position, only the time-averaged

radial profile can be obtained. Also, it would be interesting to place the transducer at a

pole pointing toward the inner sphere, which would give us information about the velocity

modes’ poloidal structure and the ratio of poloidal to toroidal flow. This ratio appears in

dynamo simulations, and whether or not a dynamo exists can depend sensitively on its

value. A more involved and expensive modification would be to use multiple transducers.

With just two transducers one could measure both the azimuthal and radial directions at

one point (the intersection of the chords) for each time sample. With more transducers, it

would be possible to decompose the velocity into modes using a least squares technique.

Using multiple transducers would require a new ultrasound system capable of multiplexing

(or multiple units).

It might also be useful to perform more experiments with the other inner spheres

and the co-rotating impellers. We only have ultrasound data and Gauss coefficient mea-

surements for the solid copper inner sphere. With the stainless steel sphere, for instance, it

was not clear if an instability developed at low field with only one Hall probe measurement;

the Hall array, being able to sensitively extract modal structure from noise, could likely

make this determination. Likewise, in the co-rotating impeller experiments, in regime III

the poloidal structure was ambiguous, but could likely be determined with the new Hall
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array. Ultrasound measurements with the impellers could also be interesting. Compared

to the inner sphere, the impellers should drive a more significant flow in the cylindrical

radial direction, which would presumably destroy the tangent-cylinder shear layer needed

for Hollerbach’s Kelvin-Helmholtz style interpretation (and might be seen with ultrasound

measurements).

More interesting might be new experiments using different inner sphere radii. Spher-

ical Couette flow in water is known to have quite different dynamics depending on the

radius ratio, and the same is likely true for our system.

Finally, in the current apparatus it would be interesting to do more runs with

baffles—both on the inner and outer spheres. As in [91], these baffles would simulate

topographic coupling in the Earth’s core. It would also be interesting to test the Lohse-

Grossman theory—which makes predictions on the relative role of viscous boundary layer

to bulk dissipation and its dependence on roughness—and apply it to the Hartmann layer.

In particular, might Ohmic dissipation be dominated by dissipation in the boundary layer

over some range of external field? Improving the precision of the torque measurements

could also determine the relative effects of dissipation in the boundary layers and the bulk.

The most interesting experiment of all to try, not involving the current vessel, might

be to switch the sense of rotation: rotate the outer vessel while keeping the inner station-

ary. The main difference would be that the Ekman pumping would occur in the opposite

sense—inflow at the inner sphere equator and outflow at the poles. The sign of the induc-

tion equation interaction would switch, allowing the possibility for a dynamo—or the MRI

and a dynamo! A 60 cm rotating sodium convection experiment, currently just starting to

produce data, might be modified to try this experiment. The larger size may also allow a

larger value of magnetic Reynolds number. Of course, the rotating convection data should

154



be interesting too. Finally, a third experiment—a 3 meter sodium experiment!—will be

coming online in not-too-distant future, allowing even bigger magnetic Reynolds numbers.

With this to look forward to, it’s an exciting time indeed for hydromagnetic turbulence

experiments.
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Appendix A

A.1 Vector Identities

From the front cover of Jackson [54] come the following vector identities.

�∇× �∇ψ = 0 (A.1)

�∇×
(

�∇× �a
)

= �∇
(

�∇ · �a
)
−∇2�a (A.2)

�∇
(
�a ·�b

)
=
(
�a · �∇

)
�b +

(
�b · �∇

)
�a + �a ×

(
�∇×�b

)
+�b ×

(
�∇× �a

)
(A.3)

�∇×
(
�a ×�b

)
= �a

(
�∇ ·�b

)
−�b

(
�∇ · �a

)
+
(
�b · �∇

)
�a −

(
�a · �∇

)
�b (A.4)

�∇ · (ψ�a) = �a · �∇ψ + ψ�∇ · �a (A.5)

�∇ ·
(
�a ×�b

)
= �b ·

(
�∇× �a

)
− �a ·

(
�∇×�b

)
(A.6)

�∇ ·
(

�∇× �a
)

= 0 (A.7)

�∇× (ψ�a) = �∇ψ × �a + ψ�∇× �a (A.8)

�a ×
(
�b × �c

)
= (�a · �c)�b −

(
�a ·�b

)
�c (A.9)

A.2 Basic electromagnetics

Maxwell’s equations relevant to hydromagnetics:

�∇ · �B = 0 (A.10)

�∇× �B = µ0
�J (A.11)
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�∇ · �E = ρ/ε0 (A.12)

�∇× �E = −∂ �B

∂t
(A.13)

In Maxwell’s equations, an additional term, the displacement current (c−2 ∂ �E

∂t
), appears

in Eqn. A.11 but is not included because it only becomes appreciable when velocities

approach the speed of light.

Equation A.11 is often referred to as “Ampére’s law.” Equation A.13 is often referred

to as “Faraday’s law.”

Ohm’s law for a moving conductor:

�J = σ
(

�E + �u × �B
)

(A.14)
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Table A.1 give the positions of the probes in the array.

A.3 Least squares basis functions, in C format

Below are the explicit forms for the basis functions fc used in the least squares analysis. As

mentioned in Chapter 3, these functions are the cylindrical r components of the poloidal

modes �Sm
l , with radial functions Sl(r) = Ar−l. The constant A is chosen to give the

Schmidt normalization. This form for the radial functions gives fields whose potentials

are solutions to Laplace’s equation. The f ’s and �S’s are paired as follows: (f1 : �S0
1),

(f2 : �S1c
1 ), (f3 : �S1s

1 ), (f4 : �S0
2), etc.

float f1 (float r, float th, float ph){

return 3*cosf(th)*sinf(th)/powf(r,3.);}

float f2 (float r,float th, float ph){

return (-2+3*powf(cosf(th),2))*fabs(sinf(th))/sinf(th)*cosf(ph)/powf(r,3.);}

float f3 (float r,float th, float ph){

return (-2+3*powf(cosf(th),2))*fabs(sinf(th))/sinf(th)*sinf(ph)/powf(r,3.);}

float f4 (float r,float th, float ph){

return .75*(3+5*cosf(2*th))*sinf(th)/powf(r,4.); }

float f5 (float r,float th, float ph){

return sqrt(3)*(-4+5*powf(cosf(th),2))*cosf(th)*fabs(sinf(th))/

sinf(th)*cosf(ph)/powf(r,4.);}

float f6 (float r,float th, float ph){

return sqrt(3)*(-4+5*powf(cosf(th),2))*cosf(th)*fabs(sinf(th))/

sinf(th)*sinf(ph)/powf(r,4.);}

float f7 (float r,float th, float ph){

return .5*sqrt(3)*(3-5*powf(cosf(th),2))*sinf(th)*cosf(2*ph)/

powf(r,4.);}

float f8 (float r,float th, float ph){

return sqrt(3)*(3-5*powf(cosf(th),2))*sinf(th)*cosf(ph)*sinf(ph)/

powf(r,4.); }

float f9 (float r,float th, float ph){

return 5./16.*(2*sinf(2.*th)+7*sinf(4.*th))/powf(r,5.);}

float f10 (float r,float th, float ph){

return sqrt(3/2.)*(-3+35*cosf(4.*th))*cosf(th)*cosf(ph)*

fabs(sinf(th))/sinf(th)/16./powf(r,5.);}

float f11(float r,float th, float ph){

return sqrt(3./2)*(-3+35*cosf(4.*th))*cosf(th)*sinf(ph)*

fabs(sinf(th))/sinf(th)/16./powf(r,5.); }

float f12 (float r,float th, float ph){

return .5*sqrt(15)*cosf(th)*(5-7*powf(cosf(th),2))*

sinf(th)*cosf(2*ph)/powf(r,5);}

float f13 (float r,float th, float ph){

return sqrt(15)*cosf(th)*(5-7*powf(cosf(th),2))*sinf(th)*

cosf(ph)*sinf(ph)/powf(r,5); }

float f14 (float r,float th, float ph){

return sqrt(5./2.)*(-1+7*cosf(2*th))*cosf(3*ph)*sinf(th)*

fabs(sinf(th))/4./powf(r,5);}
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float f15 (float r,float th, float ph){

return sqrt(5./2.)*(-1+7*cosf(2*th))*sinf(3*ph)*sinf(th)*

fabs(sinf(th))/4./powf(r,5);}

float f16 (float r,float th, float ph) {

return 15*(2*sinf(th) + 7*(sinf(3*th) + 3*sinf(5*th)))/

128/powf(r,6);}

float f17 (float r,float th, float ph){

return sqrt(5./2.)*(-6*cosf(th)+7*cosf(3*th)+63*cosf(5*th))*

cosf(ph)*fabs(sinf(th))/ sinf(th)/32./powf(r,6);}

float f18 (float r,float th, float ph) {

return sqrt(5./2.)*(-6*cosf(th)+7*cosf(3*th)+63*cosf(5*th))*

sinf(ph)*fabs(sinf(th))/sinf(th)/32./powf(r,6);}

float f19 (float r,float th, float ph) {

return -sqrt(5)*(5+28*cosf(2*th)+63*cosf(4*th))*cosf(2*ph)*

sinf(th)/32/powf(r,6);}

float f20 (float r,float th, float ph) {

return -sqrt(5)*(5+28*cosf(2*th)+63*cosf(4*th))*sinf(2*ph)*

sinf(th)/32/powf(r,6);}

float f21 (float r,float th, float ph) {

return 1.5*sqrt(35./2.)*cosf(th)*(-2+3*powf(cosf(th),2))*

cosf(3*ph)*fabs(sinf(th))*sinf(th)/powf(r,6);}

float f22 (float r,float th, float ph) {

return 1.5*sqrt(35./2.)*cosf(th)*(-2+3*powf(cosf(th),2))*

sinf(3*ph)*fabs(sinf(th))*sinf(th)/powf(r,6);}

float f23 (float r,float th, float ph) {

return -sqrt(35)*(-1+9*cosf(2*th))*cosf(4*ph)*

powf(sinf(th),3)/16/powf(r,6);}

float f24 (float r,float th, float ph) {

return -sqrt(35)*(-1+9*cosf(2*th))*sinf(4*ph)*

powf(sinf(th),3)/16/powf(r,6);}
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Ring r/a θ φ Ring r/a θ φ

Ring 1 1.333 0.6109 0.4613 Ring 3 1.383 1.702 0.2793

1.333 0.6109 1.35886 1.383 1.702 1.06465

1.333 0.6109 2.25646 1.383 1.702 1.85005

1.333 0.6109 3.1540 1.383 1.702 2.6354

1.333 0.6109 4.0517 1.383 1.702 3.4208

1.333 0.6109 4.949 1.383 1.702 4.2062

1.333 0.6109 5.84685 1.383 1.702 4.9916

Ring 2 1.397 1.3788 0.67195 1.383 1.702 5.7770

1.397 1.3788 1.45735 Ring 4 1.4 2.44346 0.65275

1.397 1.3788 2.2427 1.4 2.4435 1.55035

1.397 1.3788 3.0281 1.4 2.4435 2.4480

1.397 1.3788 3.8135 1.4 2.4435 3.34555

1.397 1.3788 4.59894 1.4 2.4435 4.24314

1.397 1.3788 5.38434 1.4 2.4435 5.14074

1.397 1.3788 6.1697 1.4 2.4435 6.03834

Table A.1: Probe positions of the array. The radius column is a fraction of the vessel

radius. The angles are in radians. In the matrix M (from Chapter 3), the rings are

ordered: Ring 1, Ring 4, Ring 2, Ring 3.
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