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The classical principle of least action says that orbits of mechanical systems

extremize action; an important subclass are those orbits that minimize action. This

principle is utilized along with Aubry-Mather theory to construct regions of instabil-

ity for a certain three body problem, given by a Hamiltonian system of two degrees of

freedom. In principle, these methods can be applied to construct instability regions

for a variety of Hamiltonian systems with 2 degrees of freedom.

The Hamiltonian model considered in this thesis describes the dynamics of a

Sun-Jupiter-Comet system and under some simplifying assumptions, the existence

of instabilities for the orbit of the comet is shown. In particular it is shown that

a comet which starts close to an orbit in the shape of an ellipse of eccentricity

e = 0.66 (fig. 1) can increase in eccentricity to beyond e = 1. Furthermore, there

exist ejection orbits for the comet. Such orbits are initially well within the range

of our solar system. This might give an indication of why most objects rotating

around the Sun in our solar system have relatively low eccentricity.



Figure 1: Ellipse of eccentricity e = 0.66 (blue) surrounding the Sun-Jupiter system

Several new theoretical tools are introduced in this thesis as well. The most

notable is a checkable sufficient condition to verify that an exact area preserving

map is an exact area preserving twist map in a certain coordinate system. This

coordinate system is constructed by “spreading the cumulative twist” which arises

from the long term dynamics of system. Many of the results of the thesis are

‘computer assisted’ and utilize recent advances in rigorous numerical integration.

It is through the application of these advances in computing that it has become

possible to state deep results for realistic solar systems. This has been the dream of

many since humans first observed the stars so long ago.
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Pr = ṙ Radial velocity of the comet
ϕ Angular position of the comet in rotating coordinates
ψ is Angular position of the comet in non-rotating coordinates
u Eccentric Anomoly
` Mean Anomoly
·ν An Algebraically Deformed Delaunay Variable
ω Rotation Number
H(J0) Hill Region
Hout(J0) Outer Hill Region
S(J0) Energy surface
Sout(J0) Energy surface in the outer hill region
Σω Aubry Mather set with rotation number ω
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Chapter 1

Introduction

1.1 Statement of the Problem and the Main Results

This thesis analyzes the restricted circular planar three body problem (RCP3BP),

a three body problem consisting of two massive primaries, called the Sun and Jupiter,

and a massless comet. The Sun and Jupiter are assumed to perform uniform circular

motion about their center of mass (see fig. 1.1). The system is normalized to mass

one so the Sun has mass 1−µ and Jupiter mass µ. The system is further normalized

so that Jupiter rotates with period 2π, and the distance from the Sun to Jupiter

is constant and also normalized to one. The goal is to understand the behavior of

the massless comet whose position in polar coordinates is denoted (r, ψ). It is con-

venient to consider the system in a rotating frame of reference which rotates with

unit speed in the same direction as Jupiter. In this system, the Sun and Jupiter are

fixed points on the x-axis corresponding to ψ = 0. Let (r, ϕ) = (r, ψ− t) denote the

motion of the comet in the rotating frame of reference.

The RCP3BP has a conserved quantity known as the Jacobi constant.

J(r, ϕ, ṙ, ϕ̇) =
r2

2
+

µ

dJ
+

1− µ
dS
− ṙ2 + r2ϕ̇2

2
=: U(r, ϕ)− ṙ2 + r2ϕ̇2

2

1



Figure 1.1: The Sun-Jupiter-Comet system

where dJ and dS are distances to Jupiter and the Sun respectively.

dJ(r, ϕ) :=
(
r2 − 2(1− µ)r cos(ϕ) + (1− µ)2

) 1
2

dS(r, ϕ) :=
(
r2 + 2µr cos(ϕ) + µ2

) 1
2

(1.1)

Denote by

H(J0) := {(r, ϕ) : U ≥ J0}

a set of points on the plane of motion (configuration space). Points in this set are

called the Hill regions associated to the Jacobi constant J0. These regions are the

locations in the (r, ϕ) plane (shaded regions in fig. 1.2) where the comet is allowed

to move.

Figure 1.2: Hill Regions (Blue) for mu = 10−3 and J0 > 1.52

Fixing the Jacobi constant restricts dynamics to an invariant energy surface,

denoted

S(J0) := {(r, ϕ, ṙ, ϕ̇) : J(r, ϕ, ṙ, ϕ̇) = J0}

2



Most of these surfaces are smooth 3-dimensional manifolds. Denote byRCP3BP (µ, J0)

the RCP3BP with Sun-Jupiter mass ratio µ and dynamics restricted to the surface

S(J0).

It turns out that for µ ≤ 10−3 and J0 ≥ 1.52 the set H(J0) consists of three

disjoint connected components: a region around the Sun called the inner Hill region,

a region around Jupiter called the lunar Hill region, and noncompact region called

the outer Hill region. The boundary of these regions can be found by considering

the “zero velocity” curves which are on the boundary of the Hill regions [AKN]. In

this thesis, only orbits contained in the outer Hill region, denoted by Hout(J0), are

considered. For convenience, denote Sout(J0) = Hout(J0)∩S(J0) and when dynamics

in Sout(J0) is considered, this shall refer exclusively to the case when the outer Hill

region is disjoint from the other two.

Lemma 1.1.1. For an orbit (r, ψ)(t) in Hout(J0), if J0 ∈ [1.52, 2], then
J2

0

2
− 33µ ≤

r(t) for all t.

This lemma is proved in section A.2. As the position of Jupiter is at radius

1 − µ, this lemma implies for µ ≤ 10−3 and J0 ≥ 1.52 that the comet remains

bounded away from collisions with the Sun and Jupiter by a distance at least 8% of

the Sun-Jupiter distance.

For small µ and away from collisions, the RCP3BP is nearly integrable and can

be approximated with the Sun-Comet two body problem (2BP(SC)) corresponding

to µ = 0. Elliptic motions of a 2BP have two special points where the radial

velocity ṙ of the comet is zero. The perihelion is the closest point to the Sun1,

1To be pedantic, the perihelion is technically defined to be a point in the orbit when r ≤ J2
0
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denoted rperih, and the aphelion is the farthest point from the Sun, denoted rapoh.

Define the osculating (or instantaneous) eccentricity e(t) for the RCP3BP to be the

eccentricity of the comet in the unperturbed 2BP(SC) system with initial conditions

taken to be those of comet in the RCP3BP at time t.

Theorem 1.1.2. Consider the RCP3BP(µ, J0) with dynamics in Sout. There exists

a function e∗ = e∗(µ, J0) and there exist trajectories of a comet with initial eccen-

tricity e∗ = e∗(µ, J0) that increase in eccentricity to beyond one in a manner so that

the comet escapes the solar system to infinity. For example e∗(10−3, 1.8) ≤ 0.66.

Suppose T 2 ⊂ S(J0) is an invariant set of the RCP3BP(µ, J0) that is diffeo-

morphic to a 2-dimensional torus. Call T 2 rotational if it cannot be continuously

deformed inside S(J0) to a closed curve or a single point. When µ = 0 (i.e. when

there is no perturbation), the problem reduces to the 2BP(SC) system and every

such rotational 2-torus is defined by {e = e0 ≥ 0}. Bounded motions correspond

to e0 ∈ [0, 1). In general for e bounded away from 1 and µ sufficiently small, many

of these rotational 2-tori survive due to KAM [SM]. Celletti and Chierchia gave

a computer assisted proof using µ ≈ 10−3 and J0 ≈ 1.76 in the inner Hill region

to show that near e = 0.3 there is a rotational 2-torus T 2 separating S(J0) into a

compact “Below T 2” component and a noncompact “Above T 2” component [CC].

and ṙ = 0. It is not necessarily the closest point to the Sun. Rather it is when the comet is at the

closest point to the center of mass of the system. The Sun is within µ of the center of mass. It

turns out that in our Solar System, the radius of the Sun is approximately 0.00089 the Sun-Jupiter

distance, so we allow this slight abuse in terminology for small µ [NASA].
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Their proof may be adapted to the outer Hill region.2 The method presented in this

thesis is for the specific value of J0 = 1.8, however it works for any µ ≤ 10−3 and

J0 ≥ 1.52.3

Figure 1.3: Various eccentricity orbits of the 2BP in the configuration space and on

the cylinder T2 × I

Define a Region of Instability (RI) for the RCP3BP(µ, J0) as an open set in

S(J0) which has no rotational 2-dimensional tori inside.4 If there is a rotational

2-torus, then it separates S(J0) into an “above” and a “below” (see section 6.1 for

precise definitions). This provides a topological obstruction to instability. As a

matter of fact,

Theorem 1.1.3. In the setting of Theorem 1.1.2, the RCP3BP(µ, J0) has a region

of instability which contains the region {e ≥ e∗(µ, J0)}.
2Personal Communication
3Values

√
2 ≤ J0 ≤ 1.52 require substantial additional work as the lunar Hill region and outer

Hill region are no longer disjoint. For J0 near or less than
√

2 collisions with Jupiter are hard to

exclude.
4Birkhoff considered compact invariant regions of instability known as Birkhoff Regions of In-

stability. The motions considered for the RCP3BP are in a non-compact non-invariant RI and

special care is taken to handle issues of non-compactness and non-invariance.
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In 1922, Chazy gave a complete classification of the final motions of the spatial

3BP, i.e. a description of all possible states that a three body problem can approach

as time goes to infinity. It turns out that there are seven types of final motions (see

section 2.4 [AKN]). For the RCP3BP there are only four possible types of motion

that the comet can exhibit.

• H± (hyperbolic): r →∞, ṙ → c > 0 as t→ ±∞

• P± (parabolic): r →∞, ṙ → 0 as t→ ±∞

• B± (bounded): lim supt→±∞ r = RB <∞

• OS± (bounded): lim supt→±∞ r =∞, lim inft→±∞ r = ROS <∞

The RCP3BP has a full set of Chazy motions if H− ∩ H+, H± ∩ P∓, H± ∩ B∓,

H±∩OS∓, P+∩P−, P±∩B∓, P±∩OS∓, B+∩B−, B±∩OS∓, OS+∩OS− are all

nonempty intersections, i.e. if any possible past and future of the comet’s motion

can be realized by a trajectory in the RCP3BP. A corollary to Theorem 1.1.3 states

that this is possible for comets in the outer Hill region on an energy surface with

J0 ≥ 1.52. Additionally it possible to spend arbitrarily long amounts of time in

between approach of the final motions.

Corollary 1.1.4. There is a full set of Chazy instabilities in the region e ≥ e∗(µ, J0)

The primary tools for this result are Aubry-Mather theory and rigorous nu-

merical integration. It is not trivial to apply Aubry-Mather theory to the restricted

circular planar three body problem since the typical usage requires the RI to be an

invariant domain and invariance in not a given for the RCP3BP. It is important
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to stress that trajectories are not constructed by means of numerical integration.

After a mathematical framework is developed, a list of inequalities is derived. To

have an explicit value of e∗, a computer is used to verify the range of validity of the

inequalities, which are of two types: analytic and dynamic. Analytic inequalities

do not make use to integration of the equations of motion. Dynamical inequalities

do involve integration, but only over shorter periods of time. The software used

can handle both types of inequalities in a mathematically rigorous way (see section

E.1).

Relying on Mather’s variational method ([Ma2],[Xia1], [BK]), in a RI it shall

be shown that there is a full set of Chazy instabilities [AKN] (also see [Xia2]).

Historically the existence of ejection orbits and Chazy instabilities for RCP3BP was

established by Llibre and Simo [LS]. One can estimate their e∗(0.001, 1.8) ≈ 0.995,

however their motions belong to a horseshoe, while the ones presently considered

have a fairly different nature: the orbits considered here are local action minimizers

and shadow closely a collection of Aubry-Mather sets. The idea of constructing

Chazy instabilities originated in the famous paper by Sitnikov [Si] (see also [Mo3] for

conceptual and transparent exposition of Sitnikov’s work). Alekseyev constructed

oscillatory motions for the full spatial three body problem [Al].
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1.2 Roadmap to the Results

Recall that motions of the comet in rotating polar coordinates (r, ϕ) can be

viewed as the solutions to Hamilton’s equations with a Hamiltonian of the form

HPolar = H2BP (SC) + ∆H(r, ϕ) :=
P 2
r

2
+
P 2
ϕ

2r2
− Pϕ −

1

r
+ ∆H(µ; r, ϕ) (1.2)

where Pr and Pϕ are the momenta variables conjugate to r and ϕ respectively (see

e.g. [AKN]) and ∆H is the µ-small perturbation of the associated Sun-Comet two

body problem (2BP(SC)). This system arises by initially considering the planar 3BP

where the comet has mass m, and letting m→ 0. With the notations in (1.1), ∆H

can be written

∆H(µ; r, ϕ) :=
1

r
− µ

dJ
− 1− µ

dS
=
µ(µ− 1)(1 + 3 cos(2ϕ))

4r3
+O(

µ

r4
)

The proof starts with expressing equations of motion of RCP3BP in so called

Delaunay variables (formally defined in section 3.1). These are action angle variables

of the 2BP (SC) or, equivalently, of RCP3BP with µ = 0, and have two angular

variables ` and g in T, and two action variables 0 ≤ G ≤ L. There is a canonical

transformation

D : (`, L, g,G)→ (r, ϕ, Pr, Pϕ)

which converts Delaunay coordinates into symplectic polar coordinates. The image

consists of all bounded motions of the 2BP (SC). The map D is more fully described

in section 3.1.

It turns out that there is a good 2-dimensional Poincaré section P ⊂ S(J0) =

{H = −J0} of the dynamics of RCP3BP (µ, J0) in the outer Hill region. In other
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words, a Poincaré map Fµ : U → P is well-defined on an open set U ⊂ P homeo-

morphic to an annulus (see section 3.2, formula (3.5)). For µ = 0 there are natural

coordinates on P ' T × R+ 3 (`, L) with ` ∈ T and L ≥ 0. It turns out that for

µ = 0 and J0 > 1.52 quantities

L = L(e, J0) and e = e(L, J0) (1.3)

are monotone implicit functions of each other. On the energy surface S(J0) they

satisfy an implicit relation roughly given by J0 = 1/(2L2) + L
√

1− e2. Moreover,

L→∞ as e→ 1 and vise versa on Sout(J0). Below either the e or L-parametrization

of the vertical (i.e. action) coordinate shall be used. When µ = 0, the Poincaré map

Fµ has the form (compare with fig. 1.3)

F0 : (`, L)→ (`+ 2πL−3, L).

This map is clearly a twist map. (See [MF], [Ban], [Mo1] for discussion of twist

maps). For small µ, the corresponding Poincaré map Fµ is a small perturbation of

F0 only for e separated away from 1.

In order to prove all the results stated above it is sufficient to perform a detailed

analysis of Fµ. Analysis of Fµ naturally divides into the following stages.

Stage 1. Determine a twist region, denoted TwDel = {e−twist ≤ e ≤ e+
twist}

where Fµ is a twist map.

This is done by derivation of sufficient condition to check an infinitesimal

twist holds locally uniformly. This condition says that a function of certain first

and second partial derivatives of H has to be strictly negative. See section 3.2 for

details. The values e−twist and e+
twist are computed by numerical extremization of this
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function. It is important to notice that TwDel is not invariant, but is however

compact. Even though Fµ twists in TwDel, a priori there might be no invariant sets

in TwDel at all.

Stage 2. Show that for each n ≥ N0 and each rotation number ω ∈ [ 1
n+1

, 1
n
] ⊂ R

the corresponding Aubry-Mather set Σω (formally defined in 6.1) of Fµ has small

vertical L-deviations on the cylinder, i.e. Σω ⊂ {(`, L) : L−n < L < L+
n }. Using (1.3)

we have L−n = L−n (e−n , J0), L+
n = L+

n (e+
n , J0) for some e−n , e

+
n and Σω has osculating

eccentricity localized in [e−n , e
+
n ]. We call [L−n , L

+
n ] an L-localization interval.

This stage is accomplished using the ordering condition from Aubry-Mather

theory. For a solution with rotation number ω ∈ [ 1
n+1

, 1
n
], the ordering condition

says that after n iterates of the Poincare map Fµ, the angular component makes at

most one rotation around T 3 ` and after (n + 1) iterates it makes a at least one.

(See section 6.1 for formal definition.) Higher eccentricities have smaller rotation

numbers which physically corresponds to the fact that high eccentricity comets have

longer periods of revolution around the Sun. If the initial eccentricity is larger than

e+
n , then the trajectory rotates too slowly to have rotation number ω, and if the

initial eccentricity is smaller than e−n , then the trajectory rotates too quickly to

have rotation number ω.

A numerical scheme is developed to calculate [e−n , e
+
n ]. Once localization in-

tervals are known, rigorous numerical integration is used to construct a trajectories

which crosses the localization interval. This implies that the Aubry-Mather set in-

side the localization interval is not an invariant curve. Doing this for a range of
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localization intervals will open up a window of instability5.

Stage 3. Rule out invariant curves to show the existence of a region of insta-

bility {e∗ ≤ e ≤ emax} ⊂ TwDel.

The idea is the following. Suppose Σω is an invariant curve (an example of

an Aubry-Mather set) for the EAPT Fµ and denote by Σ̃ω a lift of Σω to S(J0).

We prove that D−1(Σ̃ω) consists of action minimizers of the RCP3BP Lagrangian in

polar coordinates. For ω relatively small, we show that action minimizers cannot

visit a certain `-strip on the cylinder A = T×R 3 (`, L). This implies that there are

no invariant curves for small ω or, equivalently, for highly eccentric motions. Section

2.1 outlines a heuristic method for destroying invariant curves in polar coordinates

and in section 2.2 the results are made rigorous.

By combining steps 1, 2 and 3 with Mather’s variational techniques (e.g. the

Mather Connecting Theorem 6.1.3), a proof of Theorem 1.1.2 may be obtained in

the case that e ≤ emax. It might not be surprising that the twist region TwDel is

compact. Action-angle (Delaunay) variables are designed to describe the compact

part of the dynamics and as motions approach unbounded (parabolic) motions,

usage of these coordinates becomes less and less reliable. For example, they are not

defined for Aubry-Mather sets Σ̃ω with very small rotation numbers ω. Thus, in

order to prove existence of ejection/capture orbits, the existence of a semi-infinite

RI (in the L direction) for the map Fµ must be established. This leads to analysis

of the non-compact part “above” TwDel, denoted Tw∞.

Stage 4. Construction of symplectic deformation of Delaunay variables so that

5In fact this provides an alternative approach to the method used in Stage 3.
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Fµ is a twist map for nearly parabolic motions.

This is done through analysis of the dynamics of the RCP3BP in symplectic

polar coordinates where the coordinate system is well-defined for all non-collision

motions. It turns out that arguments of Stage 3 apply to Aubry-Mather sets in Tw∞

(near the “top” boundary of TwDel) and exclude possibility of invariant curves of

any small rotation number. This shows that a region of instability which contains

{e ≥ e∗} is semi-infinite (in L).

The construction employed is of a fairly general nature and can be applied to

other Hamiltonian systems. Note however that for an EAP map to be twisting in

some symplectic coordinate system is far from granted. For example, pick an EAP

with two elliptic islands which twist in different directions; such a map has no such

symplectic coordinates. Stage 4 is broken up as follows.

Stage 4.1: Algebraic deformations of action-angle variables

Given a set of action-angle variables, there may be degeneracies which spoil

the reduction of dynamics to an EAPT. For example Delaunay coordinates are only

well defined for a compact region of the phase space and as e→ 1 motions tend to

unbounded ones and Delaunay coordinates degenerate.

A method to produce a set of action-angle variables where a Poincaré return

map is well defined shall be exhibited. The method amounts to an algebraic deforma-

tion of existing action-angle variables. For the RCP3BP, the deformed action-angle

variables are similar to Delaunay without the singularities arising for e ≈ 1 and

they allow for a representation of nearly parabolic motions. While the algebraically

deformed variables allow a return map to be defined, a priori it is not true that the
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map is twisting. For RCP3BP, it turns out that twisting fails in the algebraically

deformed Delaunay variables for exactly the same reason as for Delaunay variables.

Stage 4.2: A sufficient condition for twist

A sufficient condition for twisting is defined. The condition may be described

as the property that long term, i.e. after several iterates, the map Fµ is twisting.

Call this cumulative twist. In polar coordinates for RCP3BP, the condition says

transition times from the aphelion to the perihelion increase as the aphelion distance

increases. The plan is to use the long term information about cumulative twist to

create a coordinate system which has an EAPT map.

Stage 4.3: Construction of a dynamically defined direction field

A new direction field is built dynamically. The main idea is to ‘spread the

cumulative twist’ along trajectories which comes from the sufficient condition in

stage 4.2. This procedure works in a fairly general setting and is applicable to other

Hamiltonian systems.

Stage 4.4: Construction of dynamically deformed coordinates

The vector field in stage 4.3 is used to construct a dynamic deformation of

action-angle variables. The new coordinates are used to define a return map which

is an EAPT. Once the property of twist is known, Aubry-Mather theory may be

applied to the resulting twist map.
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1.2.1 Additional Results

In addition to the main result on the existence of ejection orbits, a result on

the speed of escape is outlined.

Theorem 1.2.1. Consider RCP3BP (µ, J0) with three disjoint Hill regions and

consider dynamics on Sout(J0). There exists functions e∗(µ, J0) and R(µ, J0, e0)

and there exist trajectories of a comet with initial eccentricity e0 > e∗(µ, J0) that

increase in eccentricity beyond one after R = R(µ, J0, e0) passages by the Sun-

Jupiter system. In other words, these orbits start with eccentricity e0 and get ejected

after R(µ, J0, e0) revolutions around the Sun. For example e∗(10−3, 1.8) ≤ 0.66 and

R(10−3, 1.8, 0.9) ≤ 30, i.e. the time of escape is less than 85500 revolutions of

Jupiter around the Sun.

1.2.2 Papers

The work found in this thesis is the focus of several papers. The contributions

of various papers are illustrated in figure 1.4.

Chapter 2 is contained in [GK1], as are parts of 3 and 6, as well as parts of

appendices A-E. Chapters 3 and 4 are contained in [GK2], as are parts of 6, as well

as parts of appendices A-E. Chapter 5 is contained in [GK3], as are parts of 3 and

6, as well as parts of appendices A-E. Chapter 7 is contained in [G1]. As this thesis

is the synthesis of several papers, there are likely some redundant redundancies. I

apologize for the inconvenience.

[GK1]-[GK3] complete Theorem 1.1.2 and Corollary 1.1.4. As of 3/14/2011,
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Figure 1.4: Roadmap of Results

[GK1] has been accepted to publication in the Duke Journal of Mathematics and

[GK2],[GK3] are awaiting submission. [G1] is reasonably independent of the other

papers, only utilizing some basic estimates found in their appendices.

Historically [GK3] (which becomes chapter 5) was done first (roughly complete

in late 2008), followed by [GK1] (fully complete in late 2010), then [GK2] (roughly

complete early 2011). [GK3] was partially based on the unpublished notes [KN].

Some of these ideas are also found in the manuscript [KN2], however that note

seems concerned with varying Jacobi constant J0 ≥ 2. A rough plan to produce

instabilities may be found in the unpublished notes of [KNP], though these note

includes neither the action comparison method, nor any mention of dynamically

deformed variables. The author would like to thank his academic advisor Vadim

Kaloshin, as well as Vadim’s past collaborators who previously touched on the work
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contained in this thesis and helped pave the way.

1.2.3 Organization of the Thesis

• Chapter 2 contains both the heuristics of the action comparison method and

the rigorous formulation in terms of interval arithmetic. It completes Stage 3.

• Chapter 3 contains a description of Delaunay variables and analysis of twist

in Delaunay variables. It contains the construction of a deformed coordinate

system. It completes Stages 1 and contains an abstract formulation of the

steps in Stage 4.

• Chapter 4 contains a proof that the abstract deformed coordinate system in

Chapter 3 can be applied to the RCP3BP. It completes Stage 4.

• Chapter 5 contains a formulation of localization intervals for Delaunay vari-

ables. It completes Stage 2.

• Chapter 6 completes the proof of the main theorem on the existence of insta-

bilities and contains a proof that all Chazy motions are realized.

• Chapter 7 contains additional work on estimating the speed of diffusion.

• Appendices A-E contain technical proofs and descriptions of the software.

The paper is organized in this fashion since results of Chapter 2 depend only

on the dynamics in polar coordinates. In chapter 3, several new coordinate systems

for the RCP3BP are introduced and it is assumed the reader is familiar with these
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coordinate systems (especially Delaunay variables) in all subsequent chapters. It is

also important to note that in many places some familiarity with interval arithmetic

is assumed. The first part of appendix E contains a quick review of what is needed.

Appendix F contains a quick review of some of the properties of the integrable

2BP(SC) which are used throughout this document.
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Chapter 2

The Action Comparison Method

“Nature is thrifty in all its actions.” - Maupertuis

2.1 Heuristics of the Action-Comparison Method

This section outlines a method for destroying invariant curves based on the

method of comparing actions. The core of this method is illustrated by initially

making several simplifying assumptions which are removed in later sections.

2.1.1 Action Minimization

The motions of the comet at position q = (r, ϕ) and velocity v also satisfy the

Euler-Lagrange equations with Lagrangian

L(r, ϕ, ṙ, ϕ̇) =
〈v, v〉

2
+

1

r
−∆H :=

ṙ2

2
+
r2(ϕ̇+ 1)2

2
+

1

r
−∆H(µ; r, ϕ) (2.1)

and locally minimize action.

Notice L maps R2×R2 → R and is a real analytic positive definite Lagrangian

away from Jupiter and the Sun, e.g. in Hout(J0). Let (q0, t0), (q1, t1) ∈ R2 × R.

Action along an absolutely continuous curve γ : [t0, t1]→ R2 is defined to be

A(γ) =

∫ t1

t0

L
(
γ(t), γ̇(t)

)
dt.
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Definition: A curve γ : [t0, t1]→ R2 is action-minimizing if

A(γ) = min
γ:[t0,t1]→R2:γ(t0)=q0,γ(t1)=q1

A(γ)

where minimum is taken over all absolutely continuous curves connecting q0 to q1.

A curve γ : R→ R2 is globally action-minimizing if it is action minimizing on every

time interval [t0, t1].

Lemma 2.1.1. If T 2 is a rotational 2-torus of RCP3BP, then every trajectory inside

of T 2 is globally action-minimizing.

This result is proved in section 6.2. However let us consider the utility of the

result now. The goal is to show that certain high eccentricity trajectories are not

globally action minimizing. If this is so, then these trajectories are not contained in

rotational 2-tori, and analysis of the location of these trajectories eliminates possible

rotational 2-tori. (Recall that rotational 2-tori are obstructions to diffusion.) The

main idea is that passing by Jupiter is cheaper at some times than at others. This

difference in action may be exploited to producing instabilities. Heuristics for this

are developed below and in a later section the method is made rigorous.

2.1.2 Solar Passages and Perihelion Angles

Consider a trajectory
(
r(t), ϕ(t)

)
∈ S(J0) ∩Hout(J0) such that

1. r(t1) = R for some time t1

2. the trajectory passes through a perihelion rperih = r(tperih) < J2
0 at some time

tperih > t1. Recall Pr = ṙ = 0 at the perihelion. (Physically the perihelion is
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the closest point to Sun.)

3. r(t2) = R for some time t2 > tperih

Call such a segment of trajectory
(
r(t), ϕ(t)

)
t∈[t1,t2]

an R–Solar passage (see

fig. 2.1). The perihelion angle, denoted ϕperih, is the angle the comet makes relative

to the position of Jupiter when the comet is at the perihelion. Let SP (J0, R) be the

set of all R–Solar passages.

Figure 2.1: An R–Solar passage

The following lemma guarantees existence of Solar passages.

Lemma 2.1.2. Consider RCP3BP(µ, J0) with µ ≤ 10−3 and J0 ≥ 1.52. Suppose

γ(t) = (r(t), ϕ(t)) ∈ Sout(J0) is a trajectory such that for some sufficiently long

interval of time it holds that e(t) ≥ e0 for some e0 ∈ (0, 1). Then there exists an

Rmax(e0) so that γ(t) has R–Solar passages for all rperih < R ≤ Rmax. Furthermore

J2
0

2
− 33µ ≤ rperih ≤ J2

0 .

A heuristic proof of this lemma is now presented for J0 = 1.8. Recall that

for the 2BP(SC), µ = 0 and ė(t) ≡ 0. For e ≥ 0.45 on Hout(1.8), trajectories are

ellipses with aphelion distance to the origin rapoh ≥ 5. This indicates that there are
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times t1 < t2 such that r(t1) = r(t2) = R ≤ rapoh(e), and hence ∃t∗ ∈ [t1, t2] such

that ṙ(t) < 0 (resp. > 0) for each t ∈ (t1, t
∗) (resp. (t∗, t2)). This implies that

r(t∗) is a minimum of r(t) on the interval [t1, t2]. Simple analysis of ∆H shows that

|∆H| ≤ 2.7µ
r3 for r ≥ 1.59 (see e.g. appendix A.1). This implies that ė(t) ' O(µ/r3)

which is small since µ = 10−3, so the shape of the orbit is almost unchanged and

hence the minimum, i.e. the perihelion, still exists under perturbation. Furthermore

since e0 ≈ e(t) holds for a sufficiently long time, there exists an Rmax ' rapoh(e0) so

that there are R–Solar passages for all rapoh < R ≤ Rmax. The lower bound on the

radius follows from properties of Hout(1.8) and is approached with nearly parabolic

motions while the upper bound follows from considering nearly circular motions of

the comet.

This argument is made rigorous in section 2.2 when a large class of 5–Solar

passages is exhaustively constructed with computer assistance and changes in e(t)

are rigorously estimated.

2.1.3 Bad Perihelion Angles

It turns out that certain R–Solar passages are not action minimizing and this

depends heavily on the perihelion angle during the passage.

Theorem 2.1.3. (Bad Angles Theorem) Consider RCP3BP(µ, J0) and restrict dy-

namics to Sout(J0). There is a function e∗(µ, J0) such that for all initial eccentricities

e0 > e∗(µ, J0), there exists an interval [ϕ−, ϕ+] with ϕ± = ϕ±
(
µ, J0, e0

)
such that if(

r(t), ϕ(t)
)
t∈[t1,t2]

is an R–Solar passage and perihelion angle ϕperih ∈ [ϕ−, ϕ+], then
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(
r(t), ϕ(t)

)
t∈[t1,t2]

is not action-minimizing.

A heuristic proof of the Bad Angles Theorem is presented later in this section

and a rigorous proof is presented in section 2.2. The fact that there is an e∗(µ, J0)

such that there are no rotational 2-tori crossing the region {e ≥ e∗(µ, J0)} may be

obtained by by combining Lemmas 2.1.2 and 2.1.1, and Theorem 2.1.3.

Proof of Theorem 1.1.3 : The proof is by contradiction. Suppose there

is a rotational 2-torus T 2 of RCP3BP(µ, J0). Consider the intersection of T 2 with

perihelion/aphelion surface {ṙ = 0}. In polar coordinates ϕ̇ < 0 so trajectories

intersect {ṙ = 0} transversally and thus {ṙ = 0}∩T 2 is diffeomorphic to a compact

one-dimensional manifold, i.e. the circle. This implies that for every perihelion angle

ϕperih = ϕ(tperih) there is a trajectory
(
r(t), ϕ(t)

)
inside T 2 with this perihelion

angle. By Lemma 2.1.2, there is an R–Solar passage
(
r(t), ϕ(t)

)
t∈[t1,t2]

with tperih ∈

[t1, t2] for this trajectory. By Theorem 2.1.3, this R–Solar passage is not action-

minimizing, which contradicts Lemma 2.1.1. Thus, there are no rotational 2-tori for

RCP3BP(µ, J0) crossing {e ≥ e∗(µ, J0)}.

2.1.4 Action Decomposition

For the duration of this section, assume µ = 10−3 and J0 = 1.8 for concrete-

ness. Suppose γ ∈ SP (1.8, R) is an R–Solar passage. Call a piece of trajectory of

the RCP3BP where the radius is monotonically increasing or decreasing from R1 to

R2 an (R1, R2) segment. γ can be decomposed into (fig. 2.2)

• γ− – a (R, 5) segment
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• γin – a 5–Solar passage

• γ+ – a (5, R) segment

Figure 2.2: Decomposition of γ into smaller arcs.

Remark: For r ≥ 5 and µ = 10−3 one can show that |∆H| ≤ 10−5 (see e.g. section

A.1). Call the region {r ≥ 5} the outside region since the comet is practically

outside the range of influence of Jupiter. Call the region {r ≤ 5} the kick region as

the comet’s orbital parameters are perturbed (or kicked) more in this region.

Denote the action on each of the segments of γ by A−out, Ain, and A+
out respec-

tively. Hence

A(γ) = A−out + Ain + A+
out.

2.1.5 Action Comparison in the Kick Region

It turns out that Ain has fairly sensitive dependence on the perihelion angle.

The difference in actions can be explained physically by considering two scenarios.

One possibility is that the comet is pulled along behind Jupiter, and gains velocity.

This is a so called gravity assist, and when the comet leaves the perihelion, it is
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flung further out than before. This case turns out to be action minimizing since

the comet is getting a free ride from Jupiter. The other possibility is exactly the

reverse. The comet is slowed down by Jupiter and is pulled more inward, as Jupiter

attempts to capture it. Note that Jupiter can never actually capture the comet as a

moon since the lunar Hill region around Jupiter is separated from the outer region

by our choice of Jacobi constant.

Figure 2.3: Potential Capture (left) and Escape (right) (Motion of the system at

times t1 < t2 < t3 < t4

According to standard formulas [AKN], it turns out the eccentricity e =√
1− 2P 2

ϕ(J0 − Pϕ). Thus one can also parameterize the 3-dimensional energy sur-

face S(J0) with coordinates (r, ϕ, Pϕ). Denote by SP (J0, R, Pϕ) the set of allR–Solar

passages belonging to S(J0) that have initial angular momentum Pϕ. Define ϕperihmax

and ϕperihmin as the angles such that

Ain(Pϕ, ϕ
perih
max ) := max

γ∈SP (J0,R,Pϕ)
A(γin), Ain(Pϕ, ϕ

perih
min ) := min

γ∈SP (J0,R,Pϕ)
A(γin)

(2.2)

Remark: It turns out that ϕperihmin and ϕperihmin depend slightly on Pϕ. Ignore this for

now to keep the argument simple.
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Define the differences in action and angle to be:

∆Aminin := min
Pϕ

(
Ain(Pϕ, ϕ

perih
max )− Ain(Pϕ, ϕ

perih
min )

)
, ∆ϕ := ϕperihmax − ϕ

perih
min

(2.3)

To get a feel for these quantities, consider R = 26–Solar passages corresponding

to nearly parabolic motions (Pϕ ≈ J0). A computer can then compute ∆Aminin ≈

0.0163237 and ∆ϕ ≈ 1.076. A detailed algorithm for rigorously computing these

quantities is given in section 2.2. Plotted (fig. 2.4) is the perihelion angle ϕperih vs.

Figure 2.4: ϕperih vs. Ain for nearly parabolic motions

Ain the action for the particular set of 26–Solar passages corresponding to parabolic

motion in the kick region.

2.1.6 Heuristic Outside Region Action Comparison

Suppose there is a rotational 2-torus T 2. Then it has base T2 which can

be parametrized by (t, ϕ). Specifying a perihelion fixes a time tperih which leaves

one free variable, ϕperih. Hence it is possible to make an R–Solar passage with

any perihelion angle, including the bad angle ϕperihmax or some angle near it in the

interval of bad angles. Suppose γmax is a 26-Solar passage with perihelion angle
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ϕperihmax (or near it) and initial angular momentum Pϕ ≈ J0 (i.e. nearly parabolic

motion). A procedure to construct γtest, a new curve with smaller action than γmax,

i.e. A(γtest) < A(γmax) is now described. Doing this completes the proof of the

Bad Angles Theorem since a neighborhood of ϕperihmax may be used for the interval

of angles specified in the theorem. A contradiction to Lemma 2.1.1 can then be

obtained to rule out the existence of the rotational 2-torus which contains γmax.

For r ≥ 5, ∆H and its derivatives with respect to r and ϕ are quite small

(see Lemma 2.2.1), so it is not too bad to approximate the RCP3BP by the

2BP(SC) for the (R, 5) and (5, R) segments which are contained in the outside

region. Doing so allows makes it possible explicitly compute the action without

computer assistance. These approximations are made rigorous in section 2.2.

Heuristically, if the comet starts at R = 26 and has ϕperih = ϕperihmax , then

by modifying the velocity of the (26, 5) segment, the comet can slow down enough

so that Jupiter moves from a position where the action is maximized to a position

where action is minimized. The comet can then speed very slightly during the (5, 26)

segment to arrive at R = 26 at the same time as in the original case.

Note that it takes a finite amount of time ∆T for the angle of Jupiter relative

to the comet to change by ∆ϕ. In nonrotating coordinates Jupiter moves with unit

speed, and for r ≥ 5 the comet’s angle remains nearly constant since ψ̇ = Pϕ
r2 . (In

rotating coordinates, Jupiter is fixed and the comet is moving with almost unit

speed.) Hence ∆T ≈ ∆ϕ. By Kepler’s Second Law, for r ≥ 5 the comet moves

slower the further away it is from the Sun [AKN]. Denote the amount of time the

comet spends in the (26, 5) segment by Tout. To keep the argument simple, assume
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by symmetry, this also the time spent in the (5, 26) segment.

A very small change in velocity changes the amount of time to reach the

perihelion considerably. Let

λ± =
Tout

Tout ∓∆ϕ
≈ Tout
Tout ∓∆T

(2.4)

Recall γmax is a 26–Solar passage such that the perihelion angle is ϕperihmax so that

γinmax maximizes action over all 5–Solar passages. Consider a new curve γtest where

• the velocity of the (26, 5) segment is γ̇−test = λ− · γ̇−max

• γintest is a 5–Solar passage which minimizes action over all 5–Solar passages, i.e.

the perihelion angle of γtest is ϕperihmin .

• the velocity of the (5, 26) segment is γ̇+
test = λ+ · γ̇+

max

Claim: Suppose γ ∈ SP (1.8, 26) has initial angular momentum Pϕ ≈ J0 (i.e. it is

nearly parabolic) and has perihelion angle ϕperih ∈ [ϕperihmax −∆, ϕperihmax +∆] for ∆ small,

e.g. ∆ = 0.000025. Let γtest be constructed as above. Then A(γ)−A(γtest) > 0 and

γ is not a global action minimizer.

Now calculate the difference in actions between γmax and γtest, starting with

the action of the rescaled (26, 5) segment γ−test. The Hamiltonian of the 2BP(SC)

approximation for parabolic motion gives 〈v,v〉
2

= P 2
r

2
+

P 2
ϕ

2r2 = 1
r
, where v = γ̇max is
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the velocity of γmax.

A(γ−test) =

∫ t(26)·λ−

t(5)·λ−
(
λ2
− 〈v, v〉

2
+

1

r
)(
t

λ−
)dt

=

∫ t(26)

t(5)

λ− ·
(
λ2
−(

1

r(u)
) +

1

r(u)

)
du

=

∫ 26

5

λ3
− + λ−
rṙ

dr

=

∫ 26

5

λ3
− + λ−√

2r − 1.82
dr

Remarks: The second line comes from a linear change of variables and the last line

comes from solving H2BP (r, ϕ, ṙ, 1.8) = −1.8 for ṙ, as this corresponds to parabolic

motion on S(1.8) The limits of integration change since the comet must start and

end at the same place with respect to (r, ϕ) in the scaled and unscaled cases. By

symmetry from the 2BP(SC) approximation, the (5, R) segment γ+
test is the same

computation only using λ+. The unscaled trajectories γ+
max and γ−max use the same

computation, only using λ = 1.

Consider the following formulas relating time and radius for 2BP parabolic

motions.

Lemma 2.1.4. For parabolic motions in the 2BP,

r(t) =
1

2

(
3t+

√
J6

0 + 9t2
)2/3

+
J4

0

2
(

3t+
√
J6

0 + 9t2
)2/3

− J2
0

2

t(r) =
1

3

√
2r3 + 3J2

0 r
2 − J6

0

Proof: These can be derived from formulas in [AKN] section 2.1.
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Using the formulas in Lemma 2.1.4 yields Tout ≈ 60.918 and

λ− ≈ 0.9844 λ+ ≈ 1.0161

A(γ−max) ≈ 8.7657 A(γ+
max) ≈ 8.7657

A(γ−test) ≈ 8.4956 A(γ+
test) ≈ 9.0507.

Now compute the difference in action between the curves γmax and γtest:

A(γmax)− A(γtest) ≥ ∆Aminin +
(
A(γ−max)− A(γ−test)

)
+
(
A(γ+

max)− A(γ+
test)

)
≈ 0.000978235 > 0

Further analysis indicates that picking any other radius larger than R = 26 also

produces a strictly positive result. The reason is that spending more time in the

outside region increases Tout, which pushes the λ’s closer to 1, which makes the

differences in action on the (5, 26) and (26, 5) segments smaller, and hence increases

the difference in actions between γmax and γtest. Hence there are no rotational 2-tori

corresponding to R ≥ 26, i.e. e ≥ 0.88.

The next section is dedicated to making the action comparison method math-

ematically rigorous.

2.2 Rigorous Action Comparison

In this section mathematically rigorous estimates are developed to use in place

of the heuristics in section 2.1. It turns out that by modifying R–Solar passages

to incorporate elliptic motions, the value of e∗(0.001, 1.8) can be lowered down to

e∗ ≤ 0.66 at the cost of increasing complexity of the estimates. This section relies on
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the technical appendices and computer assisted methods for some of the estimates.

2.2.1 The Intervalization of the RCP3BP

The following formula nicely changes between time and radius.

∫ t1

t0

dt =

∫ r1

r0

dr

ṙ

Away from parabolic motions1, this integral can be rearranged into the form:

t1 − t0 =

∫ r1

r0

rdr√
2C(r+ − r)(r − r−)

(2.5)

r+ :=
1 +

√
1− 2CP 2

ϕ

2C
r− :=

P 2
ϕ

1 +
√

1− 2CP 2
ϕ

C := J0 − Pϕ + ∆H

In the case when µ = 0, the integral can be evaluated explicitly since ∆H = 0 and

Pϕ ≡ Pϕ(0). In the RCP3BP with µ > 0, there are no longer these luxuries as r+

and r− are no longer constant; rather they depend on time. However away from

parabolic motions in the outside region these quantities do not change much since the

perturbative effects of Jupiter are too faint to make much of a difference. Our goal

is to “intervalize” the problem, i.e. to use a computer to generate rigorous bounds

on the above terms and use interval arithmetic (appendix E.1.1) to manipulate the

bounds.

The first step to carrying out this procedure is to get precise estimates on the

perturbation terms. Some simple analysis shows

1Nearly parabolic motions are addressed in appendix D.2
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Lemma 2.2.1. For r ≥ 1.6 and µ = 10−3, |∆H| ≤ 2.7µ
r3 , |∂∆H

∂r
| ≤ 12.4µ

r4 , and

|∂∆H
∂ϕ
| ≤ 28.6µ

r3 .

While these bounds are adequate for exposition, they are not quite accurate

enough for our purposes. In appendix A.1 a function (|∆H|)+(r) is defined so that

for all ϕ ∈ T and r > 1 + µ it holds that (|∆H|)+(r) ≥ |∆H(r, ϕ)|. Functions

(|∂∆H
∂r
|)+(r) and (|∂∆H

∂ϕ
|)+(r) are defined similarly.

Very accurate estimates on how Pϕ changes dynamically with time (or radius)

are also required. Appendix B.1 contains the construction of a function ρ(r) such

that Pϕ(t) ∈ Pϕ(0) + [−ρ(r(t)), ρ(r(t))] for t the time between an aphelion and

the following perihelion. Using ρ(r) and some data from rigorous integration (sect.

2.2.7), one can prove the following lemma.

Lemma 2.2.2 (Bounds on change in angular momentum). Assume µ = 10−3,

J0 = 1.8, and Pϕ(t) ∈ [1.66, 1.81] (i.e. e(t) ∈ [0.48, 1.04]) for a sufficiently long time

interval. Then

1. When approaching a perihelion from the previous aphelion (or from infinity),

angular momentum does not change by more than 0.0216µ over the entire

outside region.

2. When approaching a perihelion from the previous aphelion (or from infinity),

angular momentum does not change by more than 4.449µ.

3. Angular momentum won’t change by more than 1.444µ after an R–Solar pas-

sage.
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Moreover by time reversal the same bounds hold when leaving the Sun, and are valid

until the next aphelion.

It is not hard to prove (see appendix B.1):

Lemma 2.2.3. For µ = 10−3 and J0 = 1.8, then ρ(r) ≤ 18.2µ
r3 for r ≥ 1.6. Moreover

ρ(r) ≤ 2.7µ
r3 for r ≥ 5.

This should not come as a great surprise since Pϕ(t)−Pϕ(0) =
∫ t

0
−∂∆H

∂ϕ
dt, so

angular momentum changes solely due to the perturbation term which is of order

O( µ
r3 ).

2.2.2 Elongated Solar Passages

In section 2.1.6, it was assumed that the (5, R) and (R, 5) segments of an

R–Solar passage were pieces of the 2BP(SC) corresponding to parabolic motion.

This is unnatural for low eccentricity orbits where the comet does not make large

R–Solar passages. It more accurate to use pieces of elliptic orbits. From formula

(2.4), observe that it is in our favor for the comet to spend as much time as possible

in the outside region since λ± → 1 as Tout → ∞. By Kepler’s Second Law, the

comet moves the slowest, and hence spends the most time near an aphelion [AKN].

When constructing the test curve γtest, this is exploited and instead of using (5, R)

and (R, 5) segments, pieces of elliptic trajectory which have aphelions are used.

Specifically start the comet at r = 5, advance to an aphelion r = R, and move back

to r = 5. Call this a (5, R, 5) segment. Now consider curves γ that decompose into

(see fig. 2.5)
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• γ− – a (5, R1, 5)-segment, defined for t1 ≤ t5

• γin – a 5–Solar passage, defined for t5 ≤ t′5

• γ+ – a (5, R2, 5)-segment, defined for t′5 ≤ t2

Call these curves elongated Solar passages. Such curves exist by an argument

similar to Lemma 2.1.2, under the additional assumption that e(t) ≤ 1− ε for some

ε > 0 for a sufficiently long time interval. This additional condition simply says

that in order to have a elongated Solar passage, the comet’s eccentricity must stay

strictly below e = 1 for a long time enough time to allow for the existence of the

two aphelions.

Figure 2.5: An example of a elongated Solar passage

2.2.3 Asymmetry in the Outside Region

The approximations on the RCP3BP made with parabolic 2BP(SC) motions

in 2.1.6 made use of the fact that the 2BP(SC) approximation of γ− and γ+ before

and after a 5–Solar passage were the same. This is not true in general (see fig.
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2.5). When the comet passes through the kick region, Jupiter changes the angular

momentum of the comet. This changes the orbit of the comet in the outside region.

In fact, this is the mechanism which allows capture and escape to occur. The change

in angular momentum after a 5–Solar passage means the aphelions before and after

the 5–Solar passage are different, i.e. in general R1 6= R2 in a elongated Solar

passage. This means that γ− and γ+ spend different amounts of time in the outside

region, and hence λ− and λ+ are not directly related.

Previously, the computation for the action comparison in the case of parabolic

motions in the outside region could be worked out by hand in a short amount of

time. The case of elliptic motions involves more complex integrals and it becomes

necessary to use a computer to estimate them. These estimates in the outside

region, as well as the rigorous numerical integration used in the kick region, work

by so called interval arithmetic (see appendix E.1). Since the numerical integrator

only works for efficiently shorter intervals of time (e.g. 5–Solar passages), then work

must be done to set up estimates in a way to minimize computer run-time. At the

same time, the estimates must efficiently capture the behavior in the outside region

which is done by less accurate by hand computations. Machinery shall be developed

to overcome both technical difficulties at once.

Consider a elongated Solar passage γ, and suppose the angular momentum

satisfies Pϕ(t) ∈ I− for all t ∈ [t1, t5], i.e. where γ− is defined. Let Pϕ(t5) denote the

angular momentum at the start of the 5–Solar passage γin, and suppose Pϕ(t5) ∈ I.

The size of the interval I is ultimately chosen to make the rigorous numerics work

efficiently on a computer. Suppose the angular momentum satisfies Pϕ(t) ∈ I+ for
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all t ∈ [t′5, t2], i.e. where γ+ is defined.

Given I, its possible to derive enclosures for I± using Lemma 2.2.2. For

example, in order to reach the interval I at time t5, initial conditions must be

contained in I + [−2ρ(5), 2ρ(5)] = I− since this accounts for a change in angular

momentum in the outside region. The bound of 2ρ(5) is because the comet passes

between r = 5 and the aphelion twice, once leaving the Sun, and once approaching.

Let (∆Pϕ)kick(I) denote the enclosure of possible changes in angular momen-

tum after passing through the kick region when entering with angular momentum

Pϕ ∈ I. (This quantity is rigorously estimated in a later subsection.) This means

that when leaving the kick region, Pϕ ∈ I + (∆Pϕ)kick(I). Then when the comet is

leaving the Sun and is in the outside region, Pϕ ∈ I+(∆Pϕ)kick(I)+2[−ρ(5), ρ(5)] =

I+. For (non-elongated) R-Solar passages, the factor of 2 can be removed.

2.2.4 Bounds on Time and Radius

All of equations (2.5) shall be estimated in detail. Suppose I = P ∗ϕ + [−w,w]

and |(∆Pϕ)kick(I)| ≤ M . Call [−w,w] the window around P ∗ϕ. It is an artifact of

the rigorous numerics. Use ()± to denote upper and lower bounds (see appendices

E.1 and A). Lower case letters denote values before the 5–Solar passage and upper

case letters denote values after the 5–Solar passage respectively. Let

c± := J0 − P ∗ϕ ±
(

2ρ(5) + w + (|∆H|)+(5)

)
C± := J0 − P ∗ϕ ±

(
2ρ(5) + w +M + (|∆H|)+(5)

)

Clearly the above quantities bound C = J0 − Pϕ + ∆H before and after
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a 5–Solar passage. (The formal definitions of (|∆H|)+(r) and ρ(r) are found in

appendices A.1 and B.1 respectively.)

The 2BP(SC) is an integrable system and specifying Jacobi constant J0 and

Pϕ specifies the shape of the ellipse of orbit. Let 2BP
(
r0, ϕ0; J0, Pϕ(0)

)
denote

the 2BP(SC) with initial conditions (r0, ϕ0), H2BP (SC) = −J0, and Pϕ = Pϕ(0).

Since µ = 10−3, then the RCP3BP(µ, J0) with the same initial conditions behaves

like 2BP
(
r0, ϕ0; J0, Pϕ(0)

)
if r0 is sufficiently large. For J0 = 1.8 and a given

(r0, ϕ0, P
∗
ϕ), consider the four special Sun-Comet two body problems with initial

conditions Pϕ(0) ≡ P ∗ϕ± (2ρ(5) +w), Pϕ(0) ≡ P ∗ϕ± (2ρ(5) +w+M). Call the 2BPs

with these angular momenta the extreme 2BPs with respect to P ∗ϕ. These shall be

used to approximate the RCP3BP far from the Sun.

Consider an elongated Solar passage γ of the RCP3BP with angular mo-

mentum Pϕ(t5) ∈ I = P ∗ϕ + [−w,w] at the start of a 5–Solar passage. Then for

t ∈ [t1, t5], γ has Pϕ(t) ∈ P ∗ϕ ± (2ρ(5) + w). This is to say that the angular mo-

mentum ns the RCP3BP is bounded in between that of the extreme 2BP’s with

Pϕ(0) ≡ P ∗ϕ ± (2ρ(5) + w) in the outside region. A similar statement can be made

about times t ∈ [t′5, t2].

Examination of formulas (2.5) indicates that by bounding Pϕ, a bound on the

time spent in the outside region may also be obtained. Moreover, once bounds on

time are obtained, these can be used to obtain bounds on the action in the outside

region. Hence in order to carry out the action comparison rigorously using the

elongated Solar passages for RCP3BP, it is suffices to carry it out using extreme

2BP approximations in the outside region. The values of action for RCP3BP are
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contained within the range of values obtained by performing the action comparison

using extreme 2BPs.

For small w it follows from Lemma 2.2.2 that the range of angular momenta

is not more than 3µ between the extreme 2BPs, so in the outside region away and

away from nearly parabolic motions (e.g. e < 0.96), there are not any qualitative

differences which arise from using the extreme 2BP approximations. For nearly

parabolic motions e > 0.96, a similar analysis holds if extreme 2BP approximations

are used for R–Solar passages. In practice, the window sizes w are selected large

enough to be amenable to the rigorous numerics, but not so large as to introduce

qualitatively different phenomenon.

In light of the integrals in appendix D, note that for the 2BP(SC), the time

from the aphelion to r = 5 is given by

Tout =
I1(r−, r+, 5, r+)√

2(J0 − Pϕ)

where r− and r+ are given in formula 2.5. For the RCP3BP, these quantities can be

estimated as

r±− :=
(P ∗ϕ ± 2ρ(5)± w)2

1 +
√

1− 2(c±)(P ∗ϕ ± 2ρ(5)± w)2

r±+ :=
1 +

√
1− 2(c∓)(P ∗ϕ ∓ 2ρ(5)∓ w)2

2(c∓)

R±− :=
(P ∗ϕ ± 2ρ(5)± w ±M)2

1 +
√

1− 2(C±)(P ∗ϕ ± 2ρ(5)± w)2

R±+ :=
1 +

√
1− 2(C∓)(P ∗ϕ ∓ 2ρ(5)∓ w ∓M)2

2(C∓)
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Remarks on Notation: All of these quantities are functions of P ∗ϕ, w, M , and

J0. The above notation is adopted for brevity. Note that lower bounds are denoted

()−, upper bounds are denoted ()+, and the subscripts ()± indicate different extreme

2BPs. Furthermore the when reading the expressions, adopt the convention that

x± = a ± b ± c means x± = a ± (b + c), i.e. specifying a sign choice on the left

hand sign specifies all choices on the right hand side. This notation avoids overuse

of parenthesis. Conceptually, one should think of such expressions as intervals. For

example to understand (P ∗ϕ ± 2ρ(5) ± w ±M), it is easier to think of it as some

bound on Pϕ(t) over some range of time.

For RCP3BP, let tout = t5 − t1 be the time γ− spends in the outside region,

i.e. the time spent from initial conditions until the start of 5–Solar passage. Let

Tout = t2 − t′5 be the time γ+ spends in the outside region, i.e. the time spent from

the end of 5–Solar passage until the final conditions. These times will be estimated

shortly.

Estimate on quantities in the action comparison can be obtained from the

estimates on Pϕ, ∆H, rperih, and rapoh. Define

b±out(k) :=
Ik(r

±
−, r

∓
+, 5, r

∓
+)√

2(c∓)
B±out(k) :=

Ik(R
±
−, R

∓
+, 5, R

∓
+)√

2(C∓)

where the Ik are integrals defined in appendix D. The signs of ()±± are chosen

so that they are all consistent with using a single extreme 2BP for each of the

4 possible bounds b±out, B
±
out. It follows that tout ∈ 2[b−out(1), b+

out(1)] and Tout ∈

2[B−out(1), B+
out(1)]. The factor of 2 comes from the fact the distance from r = 5 to

an aphelion is traversed twice in an elongated Solar passage. The other values of k
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are used later. In the case of an R-Solar passage, the factor of 2 can be removed.

2.2.5 λ estimates

If (r(t), ϕ(t), ṙ(t), ϕ̇(t)) is a solution to the Euler-Lagrange equations, then the

rescaled trajectory

(
r(
t

λ
), ϕ(

t

λ
), λṙ(

t

λ
), λϕ̇(

t

λ
)

)
=
(
rλ(t), ϕλ(t), ṙλ(t), ϕ̇λ(t)

)
is also a solution to the Euler-Lagrange equations. The equations of motion give

ϕ̇ =− 1 +
Pϕ
r2

ϕ̇λ =(−1 +
Pϕ
r2

)λ

Hence

ϕ(t) =ϕ(0)− t+

∫ t

0

Pϕ(s)

r(s)2
ds ϕλ(t) =ϕ(0)− λt+ λ

∫ t

0

Pϕ(s)

r(s)2
ds

Now compute the differences in angle over time and solve for λ to get

λ(t) = 1− ϕλ(t)− ϕ(t)

t−
∫ t

0

Pϕ(s)

r2(s)
ds

(2.6)

This formula is used for λ as opposed to formula (2.4) since it explicitly uses the

motion of the comet in the rotating frame whereas formula (2.4) made the approxi-

mation that the comet rotates with speed 2π (or equivalently does not rotate at all

in the fixed frame). This is not necessarily a big difference in the outside region,

but nonetheless must be justified. Formula (2.6) says how much of a rescaling λ is

needed if the difference ∆ϕ =
(
ϕλ(t)−ϕ(t)

)
of angles is specified from the rescaled

and original trajectories at time t. Note that when using formula (2.6), it is more

convenient to calculate the difference in angles at the start of the 5–Solar passage
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γin since then estimates of λ require only data about the outside region. Define the

angles ϕt5max(Pϕ) and ϕt5min(Pϕ) such that

Ain(Pϕ, ϕ
t5
max(Pϕ)) := max

γ
A(γin) Ain(Pϕ, ϕ

t5
min(Pϕ)) := min

γ
A(γin)

where the minimum and maximum are taken over all elongated Solar passages on

the energy surface S(J0) with angular momentum Pϕ(t5) = Pϕ at the start of 5–

Solar passage (compare to (2.2)). Define the difference in action and angle with

respect to an interval of initial conditions to be (compare to (2.3)):

∆Aminin (I) := min
Pϕ∈I

(
Ain(Pϕ, ϕ

t5
max(Pϕ))− Ain(Pϕ, ϕ

t5
min(Pϕ))

)
∆ϕt5(I) := ϕt5max(I)− ϕt5min(I)

As defined, ∆ϕt5(I) is an interval and methods to enclose it are developed shortly.

Using ∆ϕt5 is acceptable since this new difference in angles with the newly defined

minimal and maximal angles will flow into solutions with perihelion angles which

minimize or maximize action. Hence the Bad Angles Theorem still applies. The

test curve γtest is constructed as in section 2.1.6 by means of slowing down on γ−test,

making a cheaper 5-Solar passage on γintest, and speeding up on γ+
test.

Now estimate λ± using each of the extreme 2BPs listed in section 2.2.4. First

estimate

∫ t

0

Pϕ(s)

r2(s)
ds =

∫ r(t)

r(0)

dr

ṙr2
=

∫ r1

r0

Pϕdr√
2(J0 − Pϕ + ∆H)r(rapoh − r)(r − rperih)

which for motions away from e = 1 looks like the integral I−1 from appendix D
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multiplied by Pϕ. Let

d :=[(P ∗ϕ − 2ρ(5)− w) · b−out(−1), (P ∗ϕ + 2ρ(5) + w) · b+
out(−1)]

D :=[(P ∗ϕ − 2ρ(5)− w −M) ·B−out(−1), (P ∗ϕ + 2ρ(5) + w +M) ·B+
out(−1)]

Let λ± (I) denote the interval of scalings λ± needed for construct the test curves

γtest corresponding to γmax, an elongated Solar passage with perihelion angle ϕperihmax

and Pϕ(t5) ∈ I. Then let

λ±− (I) := 1− (∆ϕ(t5))(I)

2
(
[b−out(1), b+

out(1)]− d
) λ±+ (I) := 1 +

(∆ϕ(t5))(I)

2
(
[B−out(1), B+

out(1)]−D
)

The signs in λ±± come about by examining the action comparison in the kick region

and noting the angle corresponding to maximal action comes after the angle cor-

responding to the minimal action, i.e. it is less than π to the right of ϕperihmin , and

more than π to the left on the circle (see fig 2.4). A slower moving the comet has

λ− < 1 which has action in the kick region between the maximum action and the

minimum action Thinking of this another way, since ϕ̇ < 0, slowing down means

spending more time in the outside region, which means ϕ decreases. The factor of

2 in the denominator can be removed when considering R-Solar passages.
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2.2.6 Action Decomposition

Using H = −J0, it follows that for elliptic motions 〈v,v〉
2

= P 2
r

2
+

P 2
ϕ

2r2 = 1
r
−

∆H − J0 + Pϕ where v = γ̇max. The rescaled action for the elliptic case is

A(λ, t0, t1) =

∫ t1λ

t0λ

(
λ2 〈v, v〉

2
+

1

r
−∆H)(

t

λ
)dt

= λ

∫ t1

t0

(λ2(
1

r
−∆H − J0 + Pϕ) +

1

r
−∆H)(u)du

=

∫ t1

t0

λ3 + λ

r
dt+

∫ t1

t0

λ3(−J0 + Pϕ)dt+

∫ t1

t0

(λ3 + λ)(−∆H)dt.

Define

AP (λ, t0, t1) :=

∫ t1

t0

λ3 + λ

r
dt

AK(λ, t0, t1) :=

∫ t1

t0

λ3(−J0 + Pϕ)dt

A∆H(λ, t0, t1) :=

∫ t1

t0

(λ3 + λ)(−∆H)dt

so that A = AP + AK + A∆H . To do the action comparison one must to estimate

A(1, tout)− A(λ−, tout) + A(1, Tout)− A(λ+, Tout)

=AP (1, tout)− AP (λ−, tout) + AP (1, Tout)− AP (λ+, Tout)

+ AK(1, tout)− AK(λ−, tout) + AK(1, Tout)− AK(λ+, Tout)

+ A∆H(1, tout)− A∆H(λ−, tout) + A∆H(1, Tout)− A∆H(λ+, Tout)

To estimate each of these terms, the strategy is to get lower and upper bounds by

using the extreme 2BP’s.
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2.2.6.1 A∆H estimates

A∆H(1, tout)− A∆H(λ−, tout) + A∆H(1, Tout)− A∆H(λ+, Tout)

=

∫
tout

(2− λ3
− − λ−)(−∆H)dt+

∫
Tout

(2− λ3
+ − λ+)(−∆H)dt

∈ 2[b−out(1), b+
out(1)](2− [λ−−, λ

+
−]3 − [λ−−, λ

+
−]) · (|∆H|)+(5)[−1, 1]

+ 2[B−out(1), B+
out(1)](2− [λ−+, λ

+
+]3 − [λ−+, λ

+
+]) · (|∆H|)+(5)[−1, 1]

This term is small, usually of the order 10µ2, and no additional refinements need to

be made to this estimate.

2.2.6.2 AK estimates

Estimate

AK(1, tout)−AK(λ−, tout) + AK(1, Tout)− AK(λ+, Tout)

=

∫
tout

(
1− λ3

−
)

(−J0 + Pϕ)dt+

∫
Tout

(
1− λ3

+

)
(−J0 + Pϕ)dt

using the extreme 2BPs. To keep notation simple, let min(I−) = m−, max(I−) =

m+, min(I−) = M−, and max(I+) = M+.

∫
tout

(
1− λ3

−
)
(−J0 + Pϕ)dt+

∫
Tout

(
1− λ3

+

)
(−J0 + Pϕ)dt

⊂2[
(
b−out(1)

)
·
(
1− (λ−−)3

)
·
(
− J0 +m−

)
,
(
b+
out(1)

)
·
(
1− (λ+

−)3
)
·
(
− J0 +m+

)
]

+ 2[
(
B−out(1)

)
·
(
1− (λ+

+)3
)
·
(
− J0 +M−

)
,
(
B+
out(1)

)
·
(
1− (λ−+)3

)
·
(
− J0 +M+

)
]
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Note the logic of the interval bounds. For example b−out(1) is paired with λ−− and

m− since smaller angular momentum means a smaller aphelion, meaning less time

is spent in the outside region, i.e. a smaller tout, and less time in the outside region

means a worse λ value, i.e. farther from one, i.e. a smaller λ− < 1. The logic for

the other pairings is similar.

2.2.6.3 AP estimates

Now estimate

AP (1, tout)− AP (λ−, tout) + AP (1, Tout)− AP (λ+, Tout)

=

∫
tout

2− (λ3
− + λ−)

r
dt+

∫
Tout

2− (λ3
+ + λ+)

r
dt

using the extreme 2BPs. Note that these integrals look like I0 from appendix D

after appropriate change of variables. To keep notation simple, let min(I−) = m−,

max(I−) = m+, min(I−) = M−, and max(I+) = M+.

∫
tout

2− (λ3
− + λ−)

r
dt+

∫
Tout

2− (λ3
+ + λ+)

r
dt

⊂2[
(
b−out(0)

)
·
(
2− (λ−−)3 − λ−−

)
,
(
b+
out(0)

)
·
(
2− (λ+

−)3 − λ+
−
)
]

+ 2[
(
B+
out(0)

)
·
(
2− (λ−+)3 − λ−+

)
,
(
B−out(0)

)
·
(
2− (λ+

+)3 − λ+
+

)
]

Remark: The bounds for AP , AK , and A∆H are readily computable on a computer.

It is fairly easy to develop formulas to handle the action comparison for nearly

parabolic motions using standard R-Solar passages. After some initial setup, the

formulas from this section remain almost unchanged. See appendix D.2 for details.
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2.2.7 Rigorous Computation of Action in the Kick Region

In this subsection precise estimates on how action varies in the kick region are

developed for µ = 10−3 and J0 = 1.8. The CAPD package is programmed to rig-

orously integrate trajectories over 5–Solar passages and record ∆Aminin (I), ∆ϕt5(I),

(∆Pϕ)kick(I), and the time to cross the kick region.

Theorem 2.2.4. For RCP3BP(0.001, 1.8) and Pϕ ∈ [1.6875, 1.81], i.e. for e ∈

[0.6, 1.03],

∆Aminin ([1.6875, 1.81]) ≥ 15.9748µ

∆ϕt5([1.6875, 1.81]) ≤ 1.2495

|(∆Pϕ)kick([1.6875, 1.81])| ≤ 1.40093µ

Furthermore, for Pϕ ∈ [1.71, 1.81], the maximum time to cross the kick region is less

than 19.5256 time units, i.e. approximately 3 revolutions of Jupiter.

Proof: The CAPD package can be programmed to rigorously integrate tra-

jectories over a 5–Solar passage. This makes use of interval arithmetic to enclosure

numerical solutions of ODEs over short periods of time in rigorously verified ε-tubes.

It works by moving small boxes of initial conditions under the flow. By covering a

domain with many small boxes, CAPD can move the entire domain. See appendices

E.1 and E.2 for more details on CAPD and interval arithmetic.

Note that action can also be simultaneously solved for when computing the

solution to an ODE by noting that since action is the integral of the Lagrangian

(2.1) i.e. A(t) =
∫ t

0
L(s)ds, then Ȧ = L(t), and L(t) depends only on the polar
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variables at time t, which are known after one step of the integrator.

For each 5-Solar passage, use initial conditions A(0) = 0, r = 5, Pϕ ∈

[1.6875, 1.81], ϕ ∈ T. Subdivide [1.6875, 1.81] into 4901 boxes of size 0.000025,

and subdivide [−π, π] into 12567 boxes of size 0.000025. Use the implicit definition

of Pr =

√
2
(
1.8− P 2

ϕ

2r2 + 2
r
−∆H(r, ϕ)

)
on the energy surface S(1.8).

Use CAPD with a 5th order Taylor Method and adaptive time-step sizes of

h ≤ 0.1 to rigorously integrate trajectories until they cross {r = 5} again. Record

the action before and after the box of trajectories crosses {r = 5}. Then make an

interval out of the lower and upper bounds on action while crossing. Since the box

is small, with the use of adaptive step size, the width of the action interval is small,

and it accurately measures action for the box of initial conditions being integrated

over the 5–Solar Passage. Do this for each trajectory with a fixed box of Pϕ’s, i.e.

for Pϕ(t5) ∈ P ∗ϕ + [−w,w] = I with w = 0.0000125 and P ∗ϕ = 1.6875 + 0.000025k,

k = 0, .., 4901. In this fashion the interval Pϕ ∈ [1.6875, 1.81] is covered. The

action difference for each k is bounded using the largest lower bound of all the

action intervals, and smallest upper bound. Actual differences could be larger. Also

recorded is the angle of the initial conditions which produces each extremal box, the

maximum change in angular momentum for each window of initial condition I, and

the exit times.

This gives the data in the statement of the theorem. In fact, this method

produces an extensive list of boxes and bounds, i.e. this method checks a large set

of inequalities used in the action comparison. For each Pϕ, there is a picture like

figure 2.4. The differences in action are plotted in figure 2.6.
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Figure 2.6: Lower bounds on ∆Aminin (Pϕ) vs. Pϕ

Figure 2.7: Upper bounds on the maximum time to cross the kick region

Remark: This setup is expensive and took 15 computers 2 weeks to complete

the comparison. Fortunately the integration of each box of initial conditions is inde-

pendent of the others and the problem naturally lends itself to parallel computation.

The programs and data for this procedure are available upon request (see appendix

E.2). Note that choice of parameters can effect bounds obtained and running time.

For the choice of parameters used in the theorem, the integration time needed to

cross the kick region is small, less than 19.5256 time units. For the µ = 0.001

and J0 ≥ 1.52, the CAPD integrator works well for the RCP3BP over short time

intervals, say for less than 50 time units. However more for lengthy integrations,

additional work is needed to validate the behavior of a solution. In appendix E.1.3

a method for long time integration is presented.

Using the above estimates for the outside region, as well as the rigorous in-
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tegration data for the kick region, a program was written to compare action. The

result is the estimate in the main theorem that e∗(0.001, 1.8) ≤ 0.66. The software

is general enough to handle other values of µ and J0. See appendix E.2.
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Chapter 3

Action-Angle Variables for the RCP3BP

3.1 An Algebraic Deformation of Action-Angle Variables

In this section, an algebraic deformation of action-angle variables is introduced.

The deformed coordinates shall ultimately make it possible to obtain action-angle

representations of trajectories with nearly parabolic motions, something Delaunay

variables has difficulty with. First let us introduce the class of systems considered

and offer a formulation of action-angle variables for this class. Consider an integrable

Cr Hamiltonian (r ≥ 3)

H0(q1, q2, p1, p2) =
p2

1

2
+ Veff(q1, p2)

with 2 degrees of freedom, where Veff is a Cr (r ≥ 3) function with a unique minimum

in the variable q1 for a fixed p2, and suppose the minimum is strictly negative. (If it

is not strictly negative, it suffices to add a constant to Veff to ensure this property).

The function Veff is typically known as the effective potential.

Suppose q∗1 = q∗1(p2) is the unique point minimum point of Veff, i.e. where

∂Veff

∂q1
(q∗1(p2), p2) = 0. Let Emin = Veff(q∗1(p2), p2) be the minimum value for Veff.

Fixing an energy surface H0 = E implicitly defines one of the variables, say p2.

Let SE = {(q1, p1) : H0(q1, q2, p1, p2) = E} be the level sets of the Hamiltonian

(see fig. 3.1). For E = Emin the curve SE is degenerate and consists of a single
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point. For sufficiently small E ≥ Emin, the set SE is compact and there exists points

q−1 (E) ≤ q∗1(p2(E)) ≤ q+
1 (E) where SE intersects the axis p1 = 0. Such points exist

since H0 is convex in p1. Denote the area under the curve SE by

A(E) =

∫ q+
1 (E)

q−1 (E)

√
2(E − Veff(q, p2))dq

Let L(E) = A(E)
2π

. This formula can be inverted to solve for E. Define the inversion

Figure 3.1: Level sets for the 2BP(SC) system in (r, Pr) variables

h so that h(L; p2) = E. By Arnold-Liouville, this to produces a generating function

S(q1, q2, L,G) = q2G+

∫ q1

q−1 (L,G)

√
2(h(L,G)− Veff(q,G))dq

and the generating function defines a symplectic change of coordinates from (q1, q2, p1, p2)

to action-angle coordinates (L, `,G, g). Call the change of coordinates Ψ. Notice

that Ψ is only well defined when the area A(E) is finite. If the effective poten-

tial is such that A(E) = ∞ for some E = E∞, then action-angle variables are

not well defined; namely L → ∞ in some spots near E = E∞. Suppose there ex-

ists such an E∞ < ∞. Then action-angle variables are only defined in the region

Ω0 =
⋃
E∈[Emin,E∞] SE.

Now if H = H0 + ∆H, where ∆H is a small perturbation of the integrable

Hamiltonian H0, then the generating function still converts to action-angle variables
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in the region Ω0. However, this region is not invariant under the Hamiltonian flow

and it is possible for solutions to enter into a region where action-angle coordinates

are not well defined. Later in this section, a method is developed to deform the

action-angle variables so that they are well defined for a region larger than Ω0.

3.1.1 Delaunay Variables

As a model for this type of system, consider the action-angle variables for

the 2BP which are classically known as Delaunay variables. These variables were

originally used to describe bounded motions( i.e. e ∈ [0, 1)) of the 2BP and hence

when applied to RCP3BP, Delaunay variables have singularities for motions near

e = 1, the so called nearly parabolic motions. However this is precisely the region

where the diffusion is expected. Note that in the rotating frame of coordinates,

the Hamiltonian has an additional term from the gyroscopic force. This causes

the degeneracies at e = 1 to appear when H2BP (SC) + Pϕ = 0, i.e when Pϕ =

−H2BP (SC) = J0 when dynamics is considered on the energy surface S(J0). A

derivation of Delaunay variables can be found in [GPS], [SS] (also see [AKN] and

[CC] for some nice exposition). In short, they arise by considering the generating

function

S(r, ϕ, L,G) = ϕG+

∫ r

rperih(L,G)

(√−1

L2
− G2

r2
+

2

r

)
dr

This gives the canonical transformation D(`, g, L,G) = (r, ϕ, Pr, Pϕ) from Delaunay

variables to symplectic polar variables where rperih = L2(1−
√

1− G2

L2 ) is the peri-

helion of the 2BP(SC) expressed in terms of L,G. The image of D is only defined
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for bounded motions of the 2BP(SC) with (`, g) ∈ T2 and 0 ≤ G ≤ L.

For the 2BP, L2 is the semi-major axis of the ellipse of the orbit, so by Kepler’s

Third Law, the period T = 2πL3. Upon examination of the generating function

observe G = Pϕ is angular momentum, or alternatively LG is the semi-minor axis of

the ellipse of the orbit. The variable ` ∈ T is the mean anomaly which is ` = π mod

2π at the aphelion, ` = 0 mod 2π at the perihelion, and in general (` − `0) = 2π
T
t.

The quantity (g + t) can be interpreted as the perihelion angle (in non-rotating

coordinates g itself plays this role). The radius r can be expressed in Delaunay

coordinates by r = L2(1 − e cos(u)) where the eccentricity e =
√

1− G2

L2 , and u,

called the mean anomaly, is given implicitly by the

u− e sin(u) = `. (3.1)

A more detailed description of Delaunay variables can be found in [AKN] or [CC].

Applying the canonical transformation D to the Hamiltonian for the 2BP(SC) in

rotating polar coordinates gives

H2BP (SC) ◦ D−1 = − 1

2L2
−G

Note that S satisfies det( ∂2S
∂(r,φ)∂(L,G)

) = L3

Pr
6= 0. Hence in general there exists

a canonical transformation from polar to Delaunay. It is provided by the above

generating function and is well defined inside of the homoclinic loop (see Figure

3.2). Hence where it is well defined, one gets Delaunay variables for RCP3BP using

the generating function S. This yields

HDel = HPolar ◦ D−1 = − 1

2L2
−G+ ∆H(L,G, `, g), (3.2)
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where the perturbation term is converted to Delaunay. As the “where it makes

sense” indicates, Delaunay variables are not defined for the RCP3BP for nearly

parabolic motions. More specifically Delaunay variables are not defined very close

to separatrices corresponding to nearly parabolic motions in RCP3BP. It is possible

that the perturbation can push a highly elliptic orbit into a hyperbolic orbit with e >

1 (in fact this is desired in Theorem 1.1.2). In Delaunay variables, this corresponds

to L→∞ and occurs near places where the separatrices leave the homoclinic loop

of the 2BP(SC) in which Delaunay variables are defined (see Figure 3.2).

Figure 3.2: Deviation of RCP3BP Separatrices (colored) from 2BP(SC) Homoclinic

loop (blue) in ( 1√
r
, Pr) variables

3.1.2 An Algebraic Deformation

To overcome the technical issue that action-angle variables are not well defined

near separatrices, an approach to enlarge the domain where action-angle variables

are well defined is sought. Geometrically the approach corresponds to encapsu-

lating the separatrices in a larger domain (see Figure 3.3). Mathematically, the

trick reduces to applying the Arnold-Liouville theorem with a different integrable

Hamiltonian on a nearby energy surface to produce a different domain where action-
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angle-variables are well defined. The energy should be chosen so that the size of

the new domain is large enough to capture behaviors of trajectories which are close

to the separatrices. To illustrate the trick for the RCP3BP, consider action-angle

variables for the Hamiltonian

Hν(r, Pr, Pϕ) :=
P 2
r

2
+

(Pϕ − ν)2

2r2
− 1

r
(3.3)

Action-angle variables are defined inside of bounded level sets corresponding to

Hν < 0. In fact for appropriate choice of ν, these sets contains a large enough part

of nearly parabolic motions for RCP3BP(µ, J0).

The parabolic separatrices for the RCP3BP, denoted by P+
µ (resp. P−µ ), are

defined to be the set of points (r, ϕ, Pr) such that (r, ϕ, Pr)(0) = (r0, ϕ0, 0), Pr(t) >

0 for all t > 0 (resp. Pr(t) < 0 for all t < 0 ), and limt→∞ Pr(t) = 0 (resp.

limt→−∞ Pr(t) = 0). In the case of 2BP(SC), then separatrices on the energy surface

Sout(J0) are given for all ϕ0 ∈ T by

(r, Pr)
± =

(
r,±

√
2

r
− J2

0

r2

)
(3.4)

A theorem of McGehee [McG] guarantees these objects exist and are one dimensional

C∞ smooth manifolds for all µ. In the case of µ small, more can be said.

Theorem 3.1.1. There exists ν = ν(µ, J0) such that the forward and backward

separatrices (r, Pr)
±(ϕ0) of RCP3BP(µ, J0) are contained inside the homoclinic loop

given by Hν(r, Pr, J0) = 0 for all ϕ0 ∈ T1. In particular, when J0 = 1.8 and

µ = 0.001, then ν ≤ 2.8µ.

Proof of this theorem is contains in appendix C.3. Theorem 3.1.1 encloses the

nearly parabolic solutions of the RCP3BP on the energy surface Sout(J0) inside of the
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Figure 3.3: Containment of RCP3BP separatrices inside the larger homoclinic loop

of Hν in ( 1√
r
, Pr) variables

homoclinic loop defined by Hν(r, Pr, J0) = 0. Make a canonical change of variables

to action-angle coordinates inside of this loop via the Arnold-Liouville theorem. Call

the map inducing the change of coordinates Dν : (Lν , Gν , `ν , gν) = (r, ϕ, Pr, Pϕ) and

call the coordinates Dν(Lν , Gν , `ν , gν) given by Dν algebraically deformed Delaunay

variables (ADDV). Note that Dν = D ◦ (Pϕ 7→ Pϕ − ν) so Dν is clearly a canonical

change of coordinates. Specifically dr ∧ dPr + dϕ ∧ dPϕ = dLν ∧ d`ν + dGν ∧ dgν .

Remark: It is important to note that no dynamics is being used from the

formal Hamiltonian Hν . It is only used to define the domain of definition Dν .

The new homoclinic loop defined by Hν(r, Pr, J0) = 0 inside of which ADDV

are well defined contains the homoclinic loop H2BP (SC)(r, Pr, J0) = −J0 (see formula

1.2 for definition of H2BP (SC)) in which the original Delaunay variables were defined

(see fig. 3.3). Because the new loop is larger, some solutions whose positions in polar

coordinates that could not be expressed in Delaunay now have representations in

ADDV. Note that ADDV also becomes undefined, however, it does so away from

the separatrices of HPolar on the energy surface Sout(J0).
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3.1.2.1 The relation between Delaunay and ADDV

One might wonder how Algebraically Deformed Delaunay Variables (AD-

DVs) are related to the usual Delaunay variables. By definition, the ADDVs

(Lν , Gν , `ν , gν) are the action-angle variables for the Hamiltonian Hν which are

‘close’ to those of the 2BP Hamiltonian. Indeed when ν = 0 they are the De-

launay variables. By construction one can see that immediately that Gν = G − ν.

From examination of the Hamiltonians, it can also be shown that 1
L2
ν

= 1
L2 +2ν. Ge-

ometrically, for a fixed energy, the lobes in ADDV have more area than the lobes in

Delaunay and the variables L,Lν measure the area of such lobes. This has the effect

that Lν is finite in regions where L has become infinity. The relations to convert from

symplectic polar to ADDV can be derived by noting D−1 ◦Dν = (Pϕ 7→ Pϕ−ν). For

example, r = L2
ν(1− eν cos(uν)), where uν− eν sin(uν) = `ν and eν =

√
1− G2

ν

L2
ν
. It is

not hard to show that eν ≤ e and the deformation can be thought of as ‘eccentricity

decreasing’ in some sense.

3.2 Twisting in Delaunay and Deformed Delaunay

Consider the Poincaré section P = {g = 0 mod 2π} ⊂ S(J0). Lemma A.3.2

shows that −1.025 ≤ ġ ≤ −0.9975 for J0 = 1.8 and µ ≤ 10−3, and hence P is well

defined. Consider the Poincaré return map F : Sout(J0)∩P 7→ Sout(J0)∩P defined

by

F = Fµ,J0 : (`0, L0) 7→ (`1, L1) =
(
`(tΓ, `0, L0), L(tP , `0, L0)

)
(3.5)
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where tP > 0 is the first return time to P . In this section, the return map F is

shown to be an exact area preserving twist (EAPT) map in Delaunay coordinates

for a region

L ∈ [L−twist(µ, J0), L+
twist(µ, J0)]. (See [Ban], [MF], [Mo1], [G], and [S] for exposition

on EAPT maps.) Numerically a computer can find [1.611, 15.94] ⊂ [L−twist, L
+
twist]

for µ = 10−3 and J0 = 1.8. This translates into [0.07, 0.994] ⊂ [e−twist, e
+
twist] and

gives the twist region TwDel. It turns out that similar methods can be used to find

the twist region in ADDV; this is discussed at the end of the section.

3.2.1 Twisting Conditions

Our goal is to develop an explicit condition which can be numerically checked

to verify twist. The energy reduction formulas found in the appendix C.2 make it

possible to write an autonomous Hamiltonian system as a time dependent Hamil-

tonian. Following the construction for 2 degrees of freedom, fix µ and J0 so that

H = −J0 (i.e. restrict dynamics to S(J0)) and write G = G(L, `, g, J0) implic-

itly in terms of the others variables. The construction in appendix C.2 produces a

time dependent Hamiltonian H̃J0(L, `, t̃) where t̃ = g is now the time variable. The

construction is well defined since ġ = −1 + ∂∆H
∂G

= −1 + O( µ
L6 ) < 0 for µ small.

Furthermore, from the construction, one can compute

∂

∂L
H̃J0(L, `, t̃) =

(∂H(L,`,g,G(L,`,g,J0))
∂L

)(∂H(L,`,g,G(L,`,g,J0))
∂G

)
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Now look at the second derivative with respect to L.

∂

∂L

(∂H̃J0(L, `, t̃)

∂L

)
=
∂

∂L

((∂H(L,`,g,G(L,`,g,J0))
∂L

)
(
∂H(L,`,g,G(L,`,g,J0))

∂G

))

=

(
∂H
∂G

) (
∂2H
∂L2 + ∂2H

∂L∂G
∂G
∂L

)
−
(
∂H
∂L

) (
∂2H
∂L∂G

+ ∂2H
∂G2

∂G
∂L

)
(∂H
∂G

)2

There is a ∂G
∂L

to be dealt with. From the Hamiltonian (3.2), G is implicitly defined

by

G = J0 −
1

2L2
+ ∆H(L, `, g,G(J0, L, `, g))

Differentiate this expression to obtain(
∂G

∂L

)
= L−3 +

(
∂∆H

∂L

)
+

(
∂∆H

∂G

)(
∂G

∂L

)
and solve to find

∂G

∂L
=
L−3 +

(
∂∆H
∂L

)
1−

(
∂∆H
∂G

)
One can now compute the partial derivatives of H (see e.g. section A.3) and plug

everything into the above expression for ∂
∂L

(∂H̃J0
(L,`,t̃)

∂L

)
. With the aid of a computer

it is possible to estimate this term, which is denoted the twist term. Let us examine

why this derivative is so important now.

3.2.2 Proof of the EAPT property for Fµ

Since Fµ arises as the Poincaré return map of an autonomous 2-degree of

freedom Hamiltonian, it is exact and area preserving. The twist condition for Fµ is

equivalent to ∂`1
∂L0

= ∂`(tP ,`0,L0)
∂L0

< 0 [Ban],[MF].

Claim: ∂
∂L

(∂H̃J0
(L,`,t̃)

∂L

)
is of constant sign in a domain Ω if and only if Fµ is

an exact area preserving twist map in Ω.
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Proof: Consider the equations of first variation:

d

dt̃

 ∂`
∂`0

∂`
∂L0

∂L
∂`0

∂L
∂L0

 =


∂2H̃J0

∂`∂L

∂2H̃J0

∂L2

−∂2H̃J0

∂`2
−∂2H̃J0

∂`∂L


 ∂`

∂`0
∂`
∂L0

∂L
∂`0

∂L
∂L0

 .

In particular, at time t̃ = 0 it holds that

d

dt̃

( ∂`
∂L0

)
|t̃=0 =

∂2H̃J0

∂L2

∣∣
t̃=0

Hence the sign of
∂2H̃J0

∂L2 |t̃=0 determines whether ∂`
∂L0

is decreasing or increasing near

t̃ = 0. But ∂`
∂L0
|t̃=0 = 0 so the sign of

∂2H̃J0

∂L2 determines the sign of ∂`
∂L0

∣∣
t̃=0

in a

neighborhood of t̃ = 0, i.e. it determines twist for the flow over a small increment of

time. So if sign
(∂2H̃J0

∂L2

)
is constant for all t̃ ∈ [0, 2π], `0 ∈ T, and L0 in some interval,

then the map Fµ is twisting in that region.

In the case µ = 0, then the twist term satisfies ∂`1
∂L0

= − 3
L4

0
· 2π < 0. Then for

µ > 0 it is natural to require ∂`1
∂L0

= − 3
L4

0
· 2π + O(µ) < 0 for twist in RCP3BP.1 It

is possible for large L0 that the O(µ) perturbation terms overwhelm the − 3
L4

0
and

change the sign of twist term. This is why twisting can fail.

Lemma 3.2.1. In Delaunay variables for RCP3BP(0.001, 1.8), the map Fµ is twist-

ing for e−twist(0.001, 1.8) ≤ 0.07 ≤ e ≤ 0.994 ≤ e+
twist(0.001, 1.8).

Proof: A computer can be programmed to compute the partial derivative

symbolically, then evaluate the twist term and verify it remains of constant sign

for L ∈ [1.611, 15.94]. Converting this into a statement about eccentricity gives the

1Calculation of the twist term indicates this sign should be positive, however one must account

for the fact that under the time rescaling in the energy reduction t̃ = g ≈ −t.
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claimed bounds. The computer may also be used to obtain specific examples outside

the twist interval where the map fails to twist correctly.

Remark: The above argument shows that the time-ε map for some small ε of

the flow is twist map. By demonstrating that this holds at every instant of time t

(i.e. for every value of g ∈ T) in the region [e−twist, e
+
twist] one concludes that Fµ is an

EAPT. In section 3.3, a method is developed to prove that in certain coordinates,

there is a map F which is an EAPT for ε = 2π. Furthermore the map is twisting in

a certain domain which includes points with e > 1.

3.2.3 Twisting in ADDV

Denote by Fν = Fνµ(J0) an EAP map arising from RCP3BP(µ, J0) in ADDV

coordinates on the section {gν = 0 mod 2π}. It is possible to derive an expression

to check for twisting in ADDV. This is done in exactly the same manner as above.

A similar lemma holds.

Lemma 3.2.2. In ADDV for RCP3BP(0.001, 1.8) let ν = 2.8µ. Then the map Fνµ

is twisting for 0 ≤ e ≤ 0.984 and is not twisting for some values corresponding to

e > 0.984.

While it is true that Fν is defined for nearly parabolic motions, without the

property of twist, it is useless for the purposes of applying Aubry-Mather theory.

This is remedied in the next section.
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3.3 The Method of Spreading Cumulative Twist

This section studies a time-periodic Hamiltonian H(`, L, t) and its convexity

with respect to L. Presence of such convexity implies that the natural time 2π-

map Poincaré map F : (`, L) → (`′, L′) is twisting. Twisting enable one to apply

Aubry-Mather theory.

Sufficient conditions shall be stated on H for existence of a time-periodic

canonical change of coordinates Ψ such that H ◦ Ψ(`, L, t) is convex in L. For the

RCP3BP, these conditions essentially reduce to ∂T
∂rapoh

> 0, i.e. increasing the aphe-

lion radius increases the period of revolution. For the duration of this section, work

shall be conducted in a general setting as there are likely further applications of the

result of this section to other time periodic Hamiltonian systems. Comments consid-

ering applicability to RCP3BP are scattered throughout and the actual application

to the RCP3BP is carried out in section 4.2.

One can also work out the construction below for exact area-preserving maps,

i.e. for the discrete time. Notice that existence of twisting coordinate system is not

granted. For example, pick an EAP map with two elliptic islands which twist in

different directions; such a map has no such symplectic coordinates.

Consider a Cr Hamiltonian H(`, L, s) periodic in ` and s with period 2π and

well defined in a region U ⊂ A×T = T×R×T with r ≥ 3. Let Φt(`, L, s) be the flow

of H. In particular, the time–component of π3 ◦ Φs satisfies π3 ◦ Φt(`, L, s) = s+ t.

This implies that the equations of variation of H(`, L, s) preserve 2-dimensional
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subspaces tangent to the cylinder component. Namely,

dΦt : T(`,L,s)A→ TΦt(`,L,s)A.

Thus, the tangent space to the cylinder A at (`, L, s) is mapped into the tangent

space to A at Φt(`, L, s). Denote the restriction of dΦt to T(`,L,s)A by dΦ∗t . It can

also be defined using the following commutative diagram. Let π : T(`,L,t)(A× T)→

T(`,L,t)A be the natural projection. Then

T(·,·,s)(A× T)
dΦt−→ T(·,·,t+s)(A× T)

↓ π ↓ π

T(·,·,s)A
dΦ∗t−→ T(·,·,t+s)A.

Here we study evolution of the tangent space to the cylinder T(·,·,·)A naturally em-

bedded into the ambient tangent space T(·,·,s)(A× T).

A time-periodic Hamiltonian H(`, L, t) can arise from an autonomous two

degree of freedom Hamiltonian H. When one restricts H to an energy surface and

reduces order (see e.g [A] sect. 45), it leads to a time-periodic Hamiltonian. For

example this can be done to the Hamiltonians from section 3.1.

Fix a section Σ, e.g. {` = 0 mod 2π}, and define the return times of (0, L, t) ∈

Σ to be

T+(L, t) = min{t∗ > t such that `t∗ = 0}

T−(L, t) = max{t∗ < t such that `t∗ = 0}

Definition 3.3.1. Let W be the set of (`, L, t) ∈ T× R+ × T such that

1. the return time to the section Σ is finite: T±(L, t) <∞ for any (0, L, t) ∈ Σ.
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2. every point inside (`, L, t) ∈ W arises by flowing from a point in the section

Σ: ∃t± such that `t± = 0 mod 2π for t− ≤ t ≤ t+

3. the angle of twisting is uniformly bounded away by π
2

for all time between

T−(L, t) and T+(L, t). More exactly, there exists κ > 0 such that for any

(0, L, s) ∈ W,

dΦ∗t (0, L, s)(0, 1) · (0, 1) ≥ κ ‖dΦ∗t (0, L, s)(0, 1)‖ for any 0 ≤ t ≤ T+(L, s)

dΦ∗−t(0, L, s)(0, 1) · (0, 1) ≥ κ ‖dΦ∗−t(0, L, s)(0, 1)‖ for any 0 ≤ t ≤ T−(L, s).

4. moving in the action L direction on the section Σ ∩ W decreases the return

time T : ∂T±
∂L

(Lt± , t±)|L=Lt±
< 0.

Notice that the region W can be non–invariant and non–compact2. The first

2 conditions are nothing more than an abstract definition of a non–invariant region

to be investigated. For the RCP3BP it corresponds to “inside parabolic” initial

conditions (see Appendix 4.2). The third condition prohibits the dynamics from

twisting a vertical vector by more than π
2
. The fourth condition is the “sufficient

condition” needed to ensure twist. It says that there is cumulative twist.

Theorem 3.3.2. Suppose W, defined above, is non-empty for the flow of a Cr (r ≥

3) Hamiltonian H(`, L, s) periodic in ` and s with period 2π and well defined on W.

Then there is a Cr−1 smooth periodic family {Ψs}s∈T of canonical coordinate changes

Ψ : (`, L; s)→ (`dyns , Ldyns ; s) such that ∀s ∈ T the composition H ◦Ψ−1(`dyns , Ldyns ; s)

is convex with respect to Ldyns in Ψ(W); specifically ∂2

Ldyns Ldyns
(H ◦Ψ−1)|Ψ(W) > 0.

2In the case W is known to be compact, the first two conditions can be replaced with that

condition that angular ` component moves with positive velocity: ˙̀ = ∂LH > 0.
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On one side having a possibly non–invariant regionW gives more flexibility for

applications of Aubry–Mather theory, on the other side this causes more concerns

in proving existence of Aubry-Mather sets. Usually Aubry-Mather theory is done

inside of an invariant region. The issue of non-invariance is handled for the RCP3BP

in section 6.2.

Up to non-invariance conditions (1–2) and no overtwisting (3), Theorem 3.3.2

says that

If there is a cumulative twist, then after a canonical coordinate change there

is a twist.

Consider a Cr−2 (r ≥ 3) smooth direction field in TA × T, i.e. a family of

directions v(`,L,s) ∈ T(`,L,s)A with (`, L, s) ∈ W which is Cr−2 smooth in (`, L, s).

Since dΦ∗t preserves the tangent spaces to the cylinder TWA, both dΦ∗t (`, L, s)v(`,L,s)

and vΦt(`,L,s) belong to the 2-dimensional space with induced orientation. Therefore,

the sign of the wedge product is well defined. Define the function

δ(`, L, s) := lim
t→0

dΦ∗t (`, L, s)v(`,L,s) ∧ vΦt(`,L,s)

t
.

Definition 3.3.3. A vector field is called twisted (or a twisting direction field) if

the sign of δ(`, L, s) is constant and nonzero ∀(`, L, s) ∈ W.

Geometrically twist means a vector makes an angle with its image under the

flow of the equations of variation. δ(`, L, s) measures the rate of twisting at the

point (`, L, s). Notice that for convex Hamiltonians, the vertical direction field

v(`,L,s) ≡ (0, 1) is twisted. For example, for the 2BP(SC) we have δ(`, L, s) = − 3
L4 .

The failure of twist for the RCP3BP geometrically indicates that there are spots
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where the vertical vector is pointing in the incorrect direction. See figure 3.4.

The proof of Theorem 3.3.2 consists of two steps. The first step is to construct

Γ, a twisting direction field. This is done by via “spreading twist” to produce a

direction field along a single orbit. This construction extends smoothly to the whole

setW . The second step is to use the direction field Γ to construct a smooth canonical

coordinate change. This is accomplished by straightening the direction field Γ.

Figure 3.4: A twisted direction field (left) and the failure of twist (right) at the

point x and its forward images

Lemma 3.3.4. There exists a Cr−2 smooth twisting direction field Γ on TWA.

Proof: First, let us show how to spread twist along a single trajectory and

construct a twisting direction field.

Consider a trajectory with initial conditions (0, L0, t0) ∈ Σ ∩ W . Let pt :=

Φt(0, L0, t0) be a parametrization of points along the trajectory. Such a parameter-

ization exists by conditions (1) and (2). By condition (1), T = T+(L0, t0) < +∞.

Define the tangent vectors v∗0 := (0, 1) ∈ T(0,L0,t0)A and v∗T := (0, 1) ∈ T(`T ,LT ,t0+T )A.

Construction shall now begin on a Cr−2 smooth family {vt}0≤t≤T where vt’s are

non-vanishing tangent vectors at pt’s. Suppose w : [0, 1] → [0, 1] is a Cr−2 smooth

monotone strictly increasing function with w(0) = 0, w(1) = 1, w(k)(0) = w(k)(1) = 0
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for any 1 ≤ k ≤ r − 2. Suppose λ : [0, 1] → R+ is a C∞ function such that

λ|[0,1/3] ≡ 1/T+(L0, t0) and λ|[2/3,1] ≡ 1/T−(L0, t0). Define for 0 ≤ α ≤ 1

vαT := λ(α)

((
1− w(α)

)
dΦ∗αT

(
v∗0
)

+ w(α) dΦ∗−(1−α)T

(
v∗T
))
. (3.6)

Notice the vector field {vt}0≤t≤T has non-vanishing vertical component due to no

over twisting condition (3).

To see smoothness of the direction field along an orbit away from Σ, note that

dΦ∗ and T = T (L0, t0) are Cr−2–smooth by smooth dependence in initial conditions.

Since w, λ are at least Cr−2 smooth, then dependence on α is Cr−2-smooth and hence

{vt}t∈[0,T ] is a Cr−2-smooth family along the trajectory away from Σ. At the section

Σ, note that v0 and vT are parallel to (0, 1) so the direction field is continuous.

To prove Cr−2 smoothness on Σ recall that λ′(α) ≡ 0 for α ∈ [0, 1/3]∪ [2/3, 1]

and for these α’s consider

∂

∂α

(
vαT
)

= λ(α)

(
dΦ∗αT

(
v0

)
· (−w′(α)) +

(
1− α

) ∂
∂α

(
dΦ∗αT

(
v0

))
· T

+ dΦ∗−(1−α)T

(
vT
)
· w′(α) + w(α)

∂

∂α

(
dΦ∗−(1−α)T

(
vT
))
· T
)
.

C1 smoothness on Σ follows provided ∂
∂t
vt|Σ match for t > 0 and t < 0 at

every point in Σ ∩W . The above procedure views every point on Σ ∩W as either

(0, L0, t0) or as the image ΦT ′(0, L
′
0, t
′
0) of a different point (0, L′0, t

′
0) ∈ Σ ∩ W ,

where T ′ = T+(0, L′0, t
′
0). Thus, C1 smoothness of {vt}t∈[0,T ] follows since the above

formula implies(
∂

∂α

(
vαT
))
|α=0 =

∂

∂t

(
dΦ∗t

(
v0

))
|t=0 and

(
∂

∂α

(
vαT
))
|α=1 =

∂

∂t

(
dΦ∗t

(
vT
))
|t=0.

Similarly one can prove smoothness of higher order.
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It turns out that on the section Σ the vector field {vt}t∈[0,T ] is not twisting. To

rectify this problem, introduce the following modification. Fix ε� T , and suppose

u : R → R is a Cr−2 smooth function such that u(±ε) = u(0) = 0, u′(0) > 0,

u(k)(±ε) = 0 for any 1 ≤ k ≤ r − 2, u is nonzero everywhere else inside of (−ε, ε),

and u is identically zero outside of (−ε, ε). Consider the following perturbation of

{vt}t∈[0,T ]. Let

v′t =
(
1− u(t)

)
vt + u(t)v⊥t

where v⊥t denotes a unit vector orthogonal to vt so that vt ∧ v⊥t > 0. Clearly the

new direction field {v′t} is a smooth perturbation of {vt} since u is smooth and v⊥t

is smooth since vt is smooth.

To prove twist, compute dΦ∗t (`, L, s)v
′
(`,L,s) ∧ v′Φt(`,L,s) =

dΦ∗t (`, L, s)
((

1− u(s)
)
v(`,L,s) + u(s)v⊥(`,L,s)

)
∧
((

1− u(t+ s)
)
vΦt(`,L,s) + u(t+ s)v⊥Φt(`,L,s)

)
=
(
1− u(s)

)(
1− u(s+ t)

)
dΦ∗t (`, L, s)v(`,L,s) ∧ vΦt(`,L,s)

+ u(s)
(
1− u(t+ s)

)
dΦ∗t (`, L, s)v

⊥
(`,L,s) ∧ vΦt(`,L,s)

+
(
1− u(s)

)
u(t+ s)dΦ∗t (`, L, s)v(`,L,s) ∧ v⊥Φt(`,L,s)

+ u(s)u(t+ s)dΦ∗t (`, L, s)v
⊥
(`,L,s) ∧ v

⊥
Φt(`,L,s)

,

then divide the above quantities by t and take the limit as t → 0 to compute the

function δ for {v′t}. Denote this quantity by δv′ and the twist term for {vt}t∈[0,T ] as

δv. Notice that dΦ∗t (`, L, s)v
⊥
(`,L,s) ∧ v⊥Φt(`,L,s) and dΦ∗t (`, L, s)v(`,L,s) ∧ vΦt(`,L,s) are the
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same. This produces

δv′(`, L, s) =
(
1− u(s)

)2
δv(`, L, s) + u(s)2δv(`, L, s)

+

(
lim
t→0

u(s)
(
1− u(t+ s)

)
−
(
1− u(s)

)
u(t+ s)

t

)
v⊥(`,L,s) ∧ v(`,L,s)

=

((
1− u(s)

)2
+ u(s)2

)
δv(`, L, s) + u′(s).

Notice that condition (4) implies that dΦ∗Tv0 ∧ vT > 0. Moreover, for any

0 < α < 1 we have dΦ∗αTv0∧dΦ∗−(1−α)TvT > 0 uniformly in α, because dΦ∗−(1−α)T is an

orientation preserving, non-degenerate diffeomorphism. Replace v by λ(α) dΦ∗αTv0,

v⊥ by λ(α) dΦ∗−(1−α)TvT , t by αT , and u by w in the calculation above. Then

δv(ΦαT (0, L, s)) = w′(α)λ2(α) dΦ∗αTv0 ∧ dΦ∗−(1−α)TvT .

Note that on the section Σ it holds that u′(0) > 0 by choice of u, so {v′t} is

twisting on Σ. Furthermore, since the vector field {vt} is twisting away from Σ, i.e.

δv(`, L, s) > 0 off of Σ, then it is possible to choose u on the compact interval [−ε, ε]

so that δv′(`, L, s) is strictly positive.

Hence {v′t}t∈[0,T ] is a twisting vector field along the trajectory pt. Note that vt,

and as a result v′t, are not continuous across Σ. While the length of vt experiences

jump, the direction does not. Indeed, size λ is identically constant on each side of Σ

separately. The magnitude of λ is selected to match time derivatives on both sides

so the vector field defines a smooth direction field across Σ. Note the construction

of the vector field for a single trajectory pt extends smoothly to all of W ; use this

to induce the direction field that is Γ.
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3.3.1 Dynamically Deformed Variables

In this section, a new canonical coordinate system is created which respects the

property of twist. The new variables are denoted (Ldyn, `dyn); call them dynamically

deformed variables. One way to think of dynamically deformed variables is to think

that at each point in the flow, the coordinate system is dynamically changed to one

in which the twist property holds infinitesimally. The new action direction arises

from a straightening of the direction field Γ. Stated as a lemma:

Lemma 3.3.5. Suppose Γ is the smooth direction field as constructed in Lemma

3.3.4. Then there exists a Cr−2-smooth time-periodic family of symplectic maps

Ψs : (`, L, s)→ (`dyn, Ldyn, s) which straightens the direction field Γ.

Proof: Note that the direction field Γ is defined only on W . Moreover,

the angle with the horizontal component is strictly positive (see formula (3.6) and

comments below it). Γ can be extended smoothly to whole cylinder in the following

manner. Let Uε be an ε neighborhood, ε > 0 of the set W . On Uε ∩ ∂W , leave the

direction field Γ as defined on ∂W . On A − U intε , define the direction field Γ to be

the vertical direction field which is identically (0, 1) everywhere. On Uε −W define

the vector field Γ to be a smooth interpolation between vectors on the boundaries,

i.e. smoothly interpolate between Γ|∂W and (0, 1).

Suppose C0 = {(L∗, `)|` ∈ T} is a horizontal circle which intersects the section

Σ at height L∗. Consider the images of C0 after integration along Γ for time t,

where unit velocity is used along Γ. Denote the images Ct. Clearly the Ct are

diffeomorphic to circles. Additionally, since Γ|W = (0, 1), then for all L0 there
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exists t0 such that Ct0 ∩ W = L0. Hence one can introduce the parameterization

y(L0) = Ct0 . Furthermore condition (3) and formula (3.6) imply that {y(L0)}L0≥L∗

is a foliation of the annulus [L∗,∞]× T and that curves y(L0) always intersect the

direction field Γ transversally. Define

Ldyn(L0) := the area between y(L0) and C0.

Since there is already a symplectic form d` ∧ dL on the cylinder, formally the dual

angular variable `dyn can be defined so that

d` ∧ dL = d`dyn ∧ dLdyn.

This is well defined since vectors in Γ always make a nonzero angle with the curves

y(L0).

Figure 3.5: Γ(left) and its straightening (right) under canonical change of coordi-

nates

To see this geometrically, consider curves y(L0) and y(L0+ε) with ε sufficiently

small. At the point (`, L, s) ∈ y(L0), the direction field Γ defines a unique direction

v = v(`,L,s) pointing from the circle y(L0) to the circle y(L0 + ε). Suppose w is a

vector of length ε tangent to y(L0) at the point (`, L, s). Then since Γ makes a

nonzero angle with y(L0) it holds that v ∧ w = O(ε2) is a nonzero area element.
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At the point (`, L, s), straighten the direction field Γ so that the vector v is

pointing vertically, i.e. think of v as the a new action direction, denoted Ldyn, and

think of the `dyn direction as being specified by straightening the vector w to point

horizontally. The length of the vector in the `dyn direction can be scaled to preserve

the area v∧w up to order O(ε2). As ε→ 0, this produces a smooth area form which

induces a smooth canonical change of coordinates Ψs : (`, L, s)→ (`dyn, Ldyn, s).

By construction, the dynamically defined coordinate system (`dyn, Ldyn, s) has

the property of twist along trajectories of H. Hence convexity of H in dynamically

deformed variables follows.
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Chapter 4

A Sufficient Condition for Twist in the RCP3BP

4.1 Twisting in Polar Coordinates

In section 3.2 it is argued that in terms of the motions of the comet, twisting

says high eccentricity comets revolve around the sun more slowly than their low

eccentricity counterparts. In this section, this idea is rephrased in a rigorous fashion

to give a meaning to twisting in polar coordinates. This done by noting that on a

fixed energy surface when the comet is at the aphelion, increasing eccentricity corre-

sponds to increasing the semi–major axis of the ellipse of motion. By Kepler’s Laws,

increasing the semi-major axis corresponds to increasing the period of revolution.

Let us make this rigorous now.

Definition: For a given set of initial conditions (r, ϕ, Pr, Pϕ)(0) = (r0, ϕ0, 0, Pϕ0),

with r0 > J2
0 such that the comet is at the aphelion, consider the motion of the comet

starting at the aphelion and moving towards the perihelion. Define T (r0, ϕ0, Pϕ0)

be the smallest positive time such that Pr
(
T (r0, ϕ0, Pϕ0)

)
= 0, i.e. the time to the

next perihelion. Call T the one-half period of the comet. A formulation of twist in

polar coordinates is given in the following theorem.

Theorem 4.1.1. There exists an R > J2
0 such that for all r ≥ R, the quantity

∂T
∂r0
|r0=r > 0. In particular, this holds for µ = 10−3, Jacobi constant J0 = 1.8, and

R = 15 (corresponding to e > 0.8).
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Figure 4.1: The Effect of Increasing r0

Let us offer a heuristic proof of this result now. In the two body problem,

Kepler’s Third Law states that the one-half period T = πa
3
2 where the semi-major

axis a = rapoh−rperih
2

≈ rapoh

2
for large eccentricities. Taking initial conditions to be

r0 = rapoh > J2
0 , then a ≈ 1

2
r0. Computing ∂T

∂r0
= 3

4
πa1/2 > 0 says that increasing

the semi-major axis, i.e. increasing rapoh, increases the half period of the comet. To

prove this result for the RCP3BP, one must justify these approximations, as well as

carefully account for the effects of the perturbation term.

Proof of Theorem 4.1.1 : Formally compute ∂T
∂r0

.

∂

∂r0

(
Pr
(
T (r0, ϕ0, Pϕ0), (r0, ϕ0, Pϕ0)

))
= Ṗr(T ) · ∂T

∂r0

+
∂Pr
∂r0

(T ) = 0

Solving for ∂T
∂r0

yields

∂T

∂r0

= −
∂Pr
∂r0

(T )

Ṗr(T )
. (4.1)

One must show for nearly parabolic comets that Ṗr(T ) > 0 so that equation (4.1)

is well defined.

Lemma 4.1.2. There exists an e0 = e0(µ, J0) such that if e(t) ≥ e0 for t ∈ [0, T ]

then Ṗr(T ) > 0 (where T is the half period). In particular e0(0.001, 1.8) ≤ 0.13.
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Proof of Lemma: Examining the equations of motion, note that

Ṗr =
P 2
ϕ

r3
− 1

r2
− ∂∆H

∂r

and ∂∆H
∂r

= O( µ
r4 ). Furthermore |∂∆H

∂r
| ≤ (|∂∆H

∂r
|)+ (see A.1).

Now Ṗr is increasing as a function of Pϕ so it suffices to have a lower bound

on Pϕ to bound Ṗr. Recall that e =
√

1− 2P 2
ϕ(J0 − Pϕ) (this follows from formulas

in [AKN]) so that on a fixed energy surface e is a monotone increasing function of

Pϕ. Hence requiring e(t) ≥ e0 for t ∈ [0, T ] is equivalent to requiring Pϕ(t) ≥ P ∗ϕ(e0)

for some P ∗ϕ(e0) implicitly defined.

Then it suffices to consider the lower bound Ṗr ≥
(P ∗ϕ(e0))2

r3 − 1
r2 − (|∂∆H

∂r
|)+ =:

f(e0, r, µ). For µ small, f(e0, r, µ) is a decreasing function of r in the outer Hill

region, hence it suffices to show f(e0, r
∗, µ) > 0 for some r∗ ≥ rperih (only behavior

near t = T , i.e. near the perihelion, is of concern). From [AKN], for the 2BP(SC),

rperih = 1−e0
2(J0−P ∗ϕ(e0))

and this quantity is decreasing as a function of e0. Thus it

suffices to use r∗ = 1−e0
2(J0−P ∗ϕ(e0))

since e(t) ≥ e0 so r∗ ≥ rperih.

When µ = 0, for any e0 > 0 one can verify if r < P 2
ϕ, then Ṗr > 0; in particular

Ṗr(T ) > 0 at time T when the comet is at the perihelion. By the intermediate value

theorem, for any (µ, J0) with µ sufficiently small there is some e0(µ, J0) for which

Ṗr(T ) > 0.

For (µ, J0) = (0.001, 1.8), then e ∈ [0.13, 1] implies Pϕ ∈ [1.61, 1.8] and rperih ≤

2.31103. Using the explicit formula for (|∂∆H
∂r
|)+ from appendix A.1 then yields

Ṗr(T ) > 0.0225404.

To complete the proof of Theorem 4.1.1 it remains to show that ∂Pr
∂r0

(T ) < 0.
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Lemma 4.1.3. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for

the flow are at the aphelion. If
(
∂r
∂r0
, ∂ϕ
∂r0
, ∂Pr
∂r0

)
(0) = (1, 0, 0) and the remaining initial

condition satisfies (B.2). Then ∂Pr
∂r0

(T ) < 0 where T is the first positive time there

is a perihelion.

Remark: Condition (B.2) gives a way to constrain the initial conditions to the

tangent space of S(J0). In general initial conditions to the equations of variations for

this system are in R4, however since dynamics are restricted to S(J0), then tangent

space dynamics must also be restricted.

Proof of Lemma: Note that

∂Pr
∂r0

=

(
∂Pr
∂Pϕ

)(
∂Pϕ
∂Pϕ0

)(
∂Pϕ0

∂r0

)
We know from the claim in Theorem B.2.1 that

(
∂Pϕ
∂Pϕ0

)
(T ) > 0. (This is

expected since for the 2BP(SC),
(
∂Pϕ
∂Pϕ0

)
(T ) ≡ 1.

Constraining dynamics to the energy surface S(J0) implicitly defines Pr =

Pr(J0, r, ϕ, Pϕ). The relation is given by

Pr(J0, r, ϕ, Pϕ) = ±
√
−2J0 + 2Pϕ −

P 2
ϕ

r2
+

2

r
− 2∆H(r, ϕ) (4.2)

Differentiate this formula (for Pr ≤ 0) to obtain

∂Pr
∂Pϕ

=
1− Pϕ

r2

Pr
< 0

since the denominator is positive for r ≥ 1.5 and Pϕ ≤ 1.81 and Pr ≤ 0 for t ∈ [0, T ].

On the energy surface S(J0) we can solve to find

Pϕ = r2 −
√

2r − 2J0r2 − P 2
r r

2 + r4 − 2r2∆H(r, ϕ)
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When t = 0, then Pr = 0, r = r+ (the aphelion radius) and the expression simplifies.

Compute the derivative of the simplified expression to find:

∂Pϕ0

∂r0

=
−1 + 2r+(J0 − Pϕ + ∆H) + r2

+
∂∆H
∂r

r2
+ − Pϕ

. (4.3)

For r large, the denominator is positive. This certainly holds at the aphelion. Note

that formally, the aphelion satisfies

r+ =
1 +

√
1− P 2

ϕ(J0 − Pϕ + ∆H)

2(J0 − Pϕ + ∆H)

Hence at the aphelion, the numerator of (4.3) simplifies to become√
1− P 2

ϕ(J0 − Pϕ + ∆H) + r2
+
∂∆H
∂r

. It not hard to show that for J0 = 1.8, r ≥ 1.5,

and Pϕ ≥ 1.7, the first term in this expression is at least 0.64 and second term is

larger than −0.007. Hence the numerator, and (4.3) are positive. It follows that

∂Pr
∂r0

(T ) < 0

4.2 Application of Theorem 3.3.2 to the RCP3BP

This section shows that Theorem 3.3.2 can be applied to the RCP3BP(10−3, 1.8).

Let H(`ν , Lν , t) be the energy-reduced Hamiltonian of the RCP3BP in algebraically

deformed Delaunay variables. (See [A] sect. 45 for a refresher on how to do en-

ergy reductions in our settings.) In the context of the RCP3BP, the existence of a

coordinate system with concavity, i.e ∂2

Ldyns Ldyns
(H ◦ Ψ−1)|Ψ(W) < 0 is highly desired

since then Aubry-Mather theory may be applied. In the case of the 2BP(SC), the

convexity requirement boils down to the statement that ∂LLH = − 3
L4 .

Start the application of Theorem 3.3.2 by fixing a section Σ = {`ν = π

mod 2π}, i.e. the aphelion surface. The main result of section 4.1 says ∂T
∂r0

> 0
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where T is the half period of comet and r0 is an aphelion radius. This condition can

be reformulated to say ∂T
∂Lν(0)

> 0 by noting that

∂T

∂Lν(0)
=
∂T

∂r0

∂r0

∂Lν(0)
where

∂r0

∂Lν(0)
=

2r0

Lν(0)
+

Gν(0)2

Lν(0)eν(0)
> 0.

The second identity follows from formulas for converting polar to Delaunay at the

aphelion. Hence condition (4) of Definition 3.3.1 is satisfied1.

4.2.1 Domain of Definition for RCP3BP

Let us construct a domain of relevant solutions for the RCP3BP where condi-

tion (2) of definition 3.3.1 is satisfied. When using algebraically deformed Delaunay

variables (see chapter 3), the domain of definition was enlarged, increasing the num-

ber of solutions which have representations in action-angle variables. However not

all of the points inside the homoclinic loop generated from Hν are of interest. For

example some of the points outside of the separatrices make one passage by the Sun-

Jupiter system then escape the Solar System. By the way ADDV are defined, it is

possible for solutions near the separatrix to flow out of the homoclinic loop where

the coordinate system is not well defined. This is because the area inside of the

homoclinic loop for Hν is not an invariant set for the flow induced the Hamiltonian

for the RCP3BP.

Definition 4.2.1. An initial condition is inside parabolic if the following three con-

ditions all hold (fig. 4.2):

• If ṙ > 0, then ∃t > 0 such that ṙ = 0, i.e. there is an aphelion in the future.

1Note that due to negative convexity, the sign of the derivative is reversed
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• If ṙ < 0, then ∃t < 0 such that ṙ = 0, i.e. there is a perihelion in the past.

• For some finite times t− < 0 < t+ it holds that |ψ(t+)− ψ(t−)| = 4π.

Figure 4.2: A trajectory with inside parabolic initial conditions

Denote the class of inside parabolic initial conditions for Jacobi constant J0

by IP (J0). Notice that hyperbolic or parabolic orbits satisfy |ψ(t+)− ψ(t−)| < 2π.

If an orbit of RCP3BP goes to directed infinity in the past and in the future makes

one loop around the sun before going to directed infinity, then |ψ(t+)− ψ(t−)| can

be close to 2π.

Inside parabolic curves are considered since their representations in algebraically

deformed Delaunay variables have the action variable Lν finite for at least one revo-

lution around the sun. Unfortunately, not all of IP (J0) is contained inside the new

homoclinic loop since it is still possible for a separatrix to leave the new homoclinic

loop. These points are ignored as they have too high eccentricity to matter. The ini-

tial conditions that matter to the proof of Theorem 1.1.2 are those inside parabolic

motions which are inside of the homoclinic loop for Hν (see fig. 4.3). Let

Ω(J0, µ) = IP (J0) ∩ {Pϕ ≤ J0, ϕ ∈ S1, rperihν ≤ r, |Pr| ≤
√

2

r
− (Pϕ − ν)2

r2
}
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where rperihν is the smallest perihelion radius allowed in the deformed homoclinic

loop. This is implicitly defined by 0 = Hν(r
perih
ν , 0, J0). (See equation (3.3) for

definition of Hν and Theorem 3.1.1 for how to find ν in terms of µ.)

Figure 4.3: Domain of Definition in ( 1√
r
, ṙ variables

Take W := Ω(J0, µ) ∩ {e ≥ 0.46} so the aphelion’s radii are at least rapoh = 5

(this is needed because chapter 2 results must ultimately be applied). Condition

(2) of Definition 3.3.1 follows by construction since points in W are in the class of

inside parabolic motions (see section 4.2.1). Conditions (1) and (3) of Definition

3.3.1 must still be verified for trajectories in W .

4.2.2 Verification of condition (1)

To show condition (1) of Definition 3.3.1, note that for every inside parabolic

orbit starting at a perihelion, there is an aphelion for some 0 < t∗. Let (`∗ν , L
∗
ν , t
∗) be

such an aphelion point. Let Pϕ(t) be angular momentum along the orbit. Lemma

2.2.2 says that

|Pϕ(t)− Pϕ(0)| ≤ 4.5µ for 0 ≤ t ≤ t∗
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and by the relations in section 3.1.2.1 this implies that Lν(T )−Lν(0) is finite (since

2ν > 4.5µ), where T is the return time to the section Σ = {`ν = π mod 2π}.

Moreover the bound is uniform in any compact region {Lν ≤ const}. This implies

that return time T is finite and condition (1) holds.

4.2.3 Bounds on angle of twist in the RCP3BP

In this section, condition (3) of Definition 3.3.1 is verified. Suppose H =

H(Lν , `ν , s) is the reduced RCP3BP Hamiltonian where s = gν is the rescaled time

and Gν is an implicit function of J0 and the other algebraically deformed Delaunay

variables. Recall that the angle of twist η(t) = η(t;Lν(0), 0, s) from the vertical is

given by the formula

tan(η(t)) =

( ∂`ν(t)
∂Lν(0)

)( ∂Lν(t)
∂Lν(0)

) (4.4)

where the initial conditions are taken to be (0, Lν(0), s) ∈ Σ = {`ν = π mod 2π}.

(See [MF] for abstract statement about angle of twist.)

Lemma 4.2.2. Consider RCP3BP(10−3, 1.8). For all (0, Lν(0), s) ∈ Σ = {`ν = π

mod 2π} for 0 ≤ t ≤ T (Lν(0), s) the angle of twist η(t) ∈ [−κ, κ] for some κ < π
2

where T is the return time to Σ.

For the 2BP(SC), it not hard to show why the angle of twist from the vertical

is uniformly bounded away from π
2
. Note that the angle η of twist from the vertical

in Delaunay variables can be explicitly computed for the 2BP(SC). It is given by

tan(η) =

(
∂`
∂L0

)
(t)(

∂L
∂L0

)
(t)

= − 3t

L4
0
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Hence η = arctan(− 3t
L4

0
) and this function is decreasing as a function of t for t ≥ 0.

Recall the period of the 2BP(SC) is T = 2πL3. For t ∈ [0, T ] it follows that the

minimum is angle is arctan(− 6π
L0

). For L0 ≥ 1.86 (i.e. when rapoh > 5 on S(1.8))

it follows that 0 ≥ η(t) ≥ −1.47244 > −π
2
. The case for t ≤ 0 is symmetric in the

2BP(SC).

Proof of Lemma 4.2.2: Examination of formula (4.4) reveals that the angle

of twist rotates by more than an angle of π
2

from the vertical if at some point in the

flow | tan η| = ∞. This happens if and only if the numerator becomes infinite or

the denominator becomes zero. Hence it suffices to have a uniform lower bound on

∂Lν
∂Lν(0)

and a uniform upper bound on ∂`ν
∂Lν(0)

over one full period for all trajectories

considered.

Note that condition (3) requires bounds in both forward and backward time

for an individual trajectory. By condition (2) every point on the section Σ has a

pre–image and an image of Σ and bounding the angle of twist uniformly for all

trajectories forward in time is enough to also bound the angle of twist uniformly for

trajectories in reverse time. Hence it suffices to generate uniform bounds over all

trajectories which are approaching the sun from an aphelion in forward time.

The method of proof is to convert from algebraically deformed Delaunay vari-

ables into polar, then use bounds on equations in polar coordinates. Bounds are

computed with the assistance of a computer in the kick region, and with some

by-hand calculations in the outside region.

It is easier to make calculations using G = Pϕ since this variable can be

computed using polar coordinates. For a fixed energy surface S(J0), the variable
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Lν = Lν(J0, `ν , Gν , s) ≈ 1√
2(J0−Gν)

can be implicitly defined. It follows that the

formula for angle of twist can be rewritten as(
∂`ν

∂Lν(0)

)(
∂Lν
∂Lν(0)

) =

(
∂`ν

∂Gν(0)

)(∂Gν(0)
∂Lν(0)

)(
∂Lν
∂Gν

)(
∂Gν
∂Gν(0)

)(∂Gν(0)
∂Lν(0)

) =

(
∂`ν

∂Gν(0)

)(
∂Gν
∂Gν(0)

)(
∂Lν
∂Gν

) =

(
∂`ν
∂G(0)

)( ∂G(0)
∂Gν(0)

)(
∂Lν
∂Gν

)(
∂Gν
∂G

)(
∂G
∂G(0)

)( ∂G(0)
∂Gν(0)

)
=

∂`ν
∂G(0)(

∂G
∂G(0)

)(
∂Gν
∂G

)(
∂Lν
∂Gν

) =

(
∂`ν

∂Gν(0)

)(∂Gν(0)
∂G(0)

)(
∂Gν
∂Lν

)(
∂G
∂G(0)

)(
∂Gν
∂G

) (4.5)

Since Gν = G − ν, then ∂Gν
∂G

= ∂Gν(0)
∂G(0)

= 1. By Lemma A.3.4, |
(
∂Gν
∂Lν

)
| ≤

0.350529. By Theorem B.2.1,
( ∂G(t)
∂G(0)

)
∈ [0.12, 1.79]. (These lemmas arose through

detailed analysis of perturbation terms and so are relegated to the technical ap-

pendices. For the 2BP(SC),
(
∂G
∂L

)
= L−3 and

(
∂G
∂G0

)
= 1. ) It follows that the

denominator does not goto zero.

It remains to analyze the numerator. First note that since inside parabolic

motions have well defined algebraically deformed Delaunay variables, then along a

trajectory the equations of variation are also well defined. Working over the class of

inside parabolic motions guarantees finite return times to an aphelion (see e.g. the

previous section where condition (1) was shown). Since the segment of trajectory is

finite, then there is a uniform bound on
(

∂`ν
∂G(0)

)
over the entire revolution. It follows

that the angle of twist cannot become π
2

by the numerator going to infinity.

It remains to show that the supremum of the angle of twist over the set W is

uniformly bounded away from π
2
. The rest of the chapter is devoted to this task. It

suffices to prove:

Claim: |
(

∂`ν
∂Gν(0)

)(
∂Gν
∂Lν

)
| ≤ C < ∞ for all points with initial conditions in

W ∩ Σ.

The proof of this claim involves heavy analysis of perturbation terms and is
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found in appendix C.4.

Since there is uniform upper bound on the numerator of (4.5) and a uniform

lower bound on the denominator over all inside parabolic motions, then it follows

that there is a uniform bound away from π
2
.
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Chapter 5

Localization of Aubry-Mather Sets

5.1 Indicators of non-integrability

In this section, heuristic techniques to measure how much the RCP3BP differs

from the integrable 2BP(SC) system are developed. The dynamics far away from

the sun is nearly integrable since the influence of Jupiter is negligible. It is only

close to the sun that the perturbation term grows enough to qualitatively effect the

dynamics.

When µ = 10−3 for r ≥ 5, one can show that |∆H| ≤ 10−5 (see e.g. section

A). For any mass ratio µ, define rkick = rkick(µ) to be the minimal radius so that

∀r > rkick it holds that |∆H| ≤ µ
100

. Hence rkick(10−3) = 5. Recall that the region

{r > rkick} is denoted as the outside region and the region {r ≤ rkick} is denoted as

the kick region.

Consider eccentricities which are known to be in the twist region TwDel. (See

e.g. section 3.2. ) Let T be the fundamental period of the comet, i.e. the time it

takes the comet to make one complete revolution around the Sun-Jupiter system.

By Kepler’s Third Law, a solution with initial condition L0 has T ≈ 2πL3
0.

Definition: For some ∆L > 0 we say L(t) satisfies the (L0,∆L) - Containment

Assumption on [0, T ] if ∀t ∈ [0, T ], L(t) ∈ [L0 − ∆L,L0 + ∆L]. Call the interval

I(L0,∆L) = [L0 −∆L,L0 + ∆L] the containment interval.
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Define the following quantities to measure non-integrability of the system.

δL(L0, `0) =|L
(
tP (L0, `0)

)
− L0| δ`(L0, `0) =`

(
tP (L0, `0)

)
− `0

where tP ≈ −2π is first return time to the section P = {g = 0 mod 2π}.

5.1.1 Heuristic Estimates for ∆L, δL and an a priori bound for ∆L

One can do some non-rigorous numerics to get rough estimates by fixing L0

and looking at solutions over the fundamental period T ≈ 2πL3
0. The estimates

below are worked out using µ = 10−3 and J0 = 1.8 to get a feel for the quantities

involved. Non-rigorous numerics for 161/3 ≤ L0 ≤ 301/3 (i.e. 0.72 ≤ e ≤ 0.83)

indicate that

δL ≈ 0.015 ∆L ≈ 0.03

The numerics also indicate that the bulk of the change in L occurs in the kick region.

(Jupiter has kicked the comet.) In the outside region, δL ≈ 0.001. This makes sense

since ∆H = O( µ
r3 ) so their should be less influence of Jupiter far away from the

Sun-Jupiter system.

Using the 2BP(SC) as an approximation for motion of the comet, it takes

approximately 18.7527 ≈ 6π ≈ 3 iterates of F to cross the kick region. Hence, the

most L can increase during one fundamental period is about 3·0.015+(n−3)·0.001,

where n ≈ L−3
0 is the total number of iterates needed to complete one revolution

around the sun. For the range of values considered, this gives an upper bound on

∆L ≈ 0.07. Later an iterative scheme is developed to approximate ∆L and obtain

consecutively better upper bounds for containment intervals.
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One might wonder if an a priori bound for ∆L always exists. Note that

L = L(J0, G, `, g) =
1√

2(J0 −G+ ∆H)

is an implicit function of the other Delaunay variables on the energy surface S(J0).

Then to obtain a bound for L over one fundamental period, it suffices to have bounds

for G and ∆H. Bounds for ∆H are obtained in appendix A. Additionally in Lemma

2.2.2 estimates change in angular momentum Pϕ = G over a period. This lemma can

be used obtain finite bounds for containment intervals of solutions with eccentricities

e ≤ 0.96. Above this value, it may be possible for the perturbation term to perturb

an comet elliptic comet into a parabolic or hyperbolic orbit with e ≥ 1 over the

course of one fundamental period. This would correspond to L→∞ at some point

in the orbit. Degeneracies for nearly parabolic motions in the Delaunay coordinate

system limit the effectiveness of our methods.

The alternate coordinate systems discussed in chapter 3 do not suffer degenera-

cies for nearly parabolic motions. In both of algebraically deformed and dynamically

deformed Delaunay variables, it is possible to obtain finite bounds on containment

intervals since as e→ 1, the corresponding action variables remain bounded. Hence

in what follows, there are no additional theoretical difficulties in carrying out the

below constructions in Algebraically Defined Delaunay Variables or Dynamically

Deformed Delaunay Variables, however the actual numerics may become more com-

plicated. In order to get a feeling for the numerics, we focus on Delaunay variables

and remain in a region away from nearly parabolic motions.

For low eccentricities, the bound on angular momentum in Lemma 2.2.2 gives
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us reasonable bounds ∆L, e.g. ∆L = 1 works for solutions with e ≤ 0.9. However

these rough bounds are typically far from optimal. Let us pursue an algorithm to

produce much more accurate bounds.

5.1.2 Separation of Dynamics in Delaunay Variables

In this subsection a scheme to separate the dynamics into nearly integrable

and non–integrable dynamics in Delaunay variables is developed. Ultimately the

kick and outside regions shall be expressed in Delaunay.

Observe that r = L2(1 − ecos(u)) ≈ J2
0 +u2L2

2
. Fixing r and J0 allows one to

estimate the product uL. Let

K(r, J0) :=
√

2r − J2
0 .

Then on Sout(J0) when r ≤ rkick, |uL| . K(rkick, J0). Note that K(5, 1.8) = 2.6.

Figure 5.1: The kick interval in the (u, L) plane

Fix J0 and rkick and consider the graph of the equation u · L = K(rkick, J0)

on the uL plane. The graph consists of two hyperbolas. Suppose I(L0,∆L) is a
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containment interval for L0. Call [−K(rkick,J0)
L0−∆L

, K(rkick,J0)
L0−∆L

] ⊂ T 3 u the kick interval.

Geometrically the kick interval is the largest interval in u between the hyperbolas

contained inside the containment interval on the uL plane (see fig. 5.1), and physi-

cally it corresponds to the place in the orbit where the comet has radius r . rkick.

Let N be the number of iterates to cross the kick interval. Observe in figure

5.1 that the kick interval gets smaller for large L0 values. Hence we expect an upper

bound on N for L0 sufficiently large. In fact this is the case.

Lemma 5.1.1. For µ = 10−3, J0 = 1.8, and 17
1
3 ≤ L ≤ 8 (i.e. for 0.7415 ≤ e ≤

0.9747), it takes at most 3 iterates to cross the kick interval.

Proof: First precise bounds on the radius are established when solution is

in the kick interval. Then rigorous numerical integration is used to estimate the

time to cross the kick interval in polar coordinates. This data is then combined to

estimate the number of iterates needed to cross the kick interval.

In appendix A, it is estimated that ∆H ∈ [−0.00063, 0.00063] for r ≥ 1.61

and µ = 0.001. The lower bound of 1.61 on radius is also found in that appendix.

Since solutions are on S(J0), then G = J0 − 1
2L2 + ∆H(r, ϕ). Since e =

√
1− G2

L2

by definition, then bounds on ∆H and on L can be translated to bounds on e. In

particular 17
1
3 ≤ L ≤ 8 implies 0.7415 ≤ e ≤ 0.9747.

Let u± = ±K(rkick,J0)
L

. Recall rkick(10−3) = 5. Let r± = L2(1 − e cos(u±)).

Then using the bounds on eccentricity, if 17
1
3 ≤ L ≤ 8, then 4 ≤ r± ≤ 4.9. Hence

to determine the time to cross the kick interval it suffices to examine all trajectories

on S(1.8) with 0.7415 ≤ e ≤ 0.9747 which start at the r = 5 and measure the time
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it takes these trajectories to cross r = 5 again.

Heuristic estimates of the time to cross the kick region can be found by ap-

proximating the RCP3BP with the 2BP(SC). See for example formula (2.5). These

rough heuristics yield a maximum crossing time of 19.4861. The proof of Theo-

rem 2.2.4 gives a method to bound the time for trajectories to go from r = 5 to

r = 5. The method arises from rigorous numerical integration of the equations of

motion. The computer finds the crossing time to be at most 18.2934 for the class of

trajectories considered in the statement of the lemma.

To compute the number of iterates needed, estimates on return times to the

section {g = 0 mod 2π} are needed. In Lemma A.3.2 it is established that 1.025 ≥

|ġ| ≥ 0.9975. Hence it takes at most 18.2934
2π0.9975

≤ 3 iterates of F to cross the kick

interval for the class of trajectories considered in the statement of the lemma.

Let us use the kick interval to separate the dynamics into nearly integrable and

non-integrable pieces. Let (`′, L′) = Fµ(`, L). Let u, u′ be the eccentric anomalies

which arise by solving Kepler’s equation (3.1). Define the Delaunay kick region and

Delaunay outside region in the (`, L)–plane as follows:

Rkick(L0,∆L) ={(`, L) : L ∈ I(L0,∆L), |uL| ≤ K(rkick, J0) or |u′L′| ≤ K(rkick, J0)}

Rout(L0,∆L) =I(L0,∆L)× T−Rkick(L0,∆L),

(5.1)

where I(L0,∆L) = [L0 − ∆L,L0 + ∆L] is some confidence interval. Note that it

takes 3 iterates of Fµ to cross Rkick by Lemma 5.1.1.
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5.1.3 Refinement of the Delaunay Kick and Outside Regions

In this subsection, a procedure to iteratively refine a containment interval’s

width ∆L = ∆Li is given. These refinements can be used to more accurately

determine the Delaunay kick and outside regions. The algorithm requires ∆L = ∆L0

as some known bound, obtained for example from estimates in section 5.1.1. Given

a ∆Li, it is possible to measure the errors from integrability in the Delaunay kick

and outside regions by defining

δLkick
(L0,∆Li)

= sup
(L,`)∈Rikick(L0,∆Li)

δL(L, `), δLout
(L0,∆Li)

= sup
(L,`)∈Riout(L0,∆Li)

δL(L, `),

δ`kick,min
(L0,∆Li)

= inf
(L,`)∈Rikick(L0,∆Li)

δ`(L, `), δ`out,min
(L0,∆Li)

= inf
(L,`)∈Riout(L0,∆Li)

δ`(L, `),

δ`kick,max
(L0,∆Li)

= sup
(L,`)∈Rikick(L0,∆Li)

δ`(L, `), δ`out,max
(L0,∆Li)

= sup
(L,`)∈Riout(L0,∆Li)

δ`(L, `).

(5.2)

Let n = dL3
0e. Then the fundamental period T ≈ 2πn. Use the above estimates

to inductively define

∆Li+1 = NδLkick
(L0,∆Li)

+ (n−N) · δLout
(L0,∆Li)

(5.3)

where N is the number of iterates to cross the kick region. To start the algorithm,

the following condition is required to hold:

∆L1 ≤ ∆L0.

This bound is satisfied if the estimates in section 5.1.1 based off of Lemma 2.2.2

are used. Indeed these give worse case bounds. The heuristic estimates found in

section 5.1.1 can also be used to obtain a reasonable value of ∆L0. For example

when µ = 10−3 and J0 = 1.8, the bound ∆L0 = 0.1 > 0.07 may be used to start the
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algorithm for 161/3 ≤ L ≤ 301/3. For these parameters, Lemma 5.1.1 tells us N = 3

as well. If ∆L1 is not smaller than ∆L0, the initial guess of ∆L0 was poor, and a

larger initial value must be selected.

Let us examine the potential convergence of the sequence {∆Li}i≥0 by exam-

ining how changing ∆Li effects ∆Li+1. Note that decreasing ∆Li reduces the size

of the kick region Rkick since fewer solutions are included when taking the supre-

mums in the definitions of the δLkick and δLout values. Fewer solutions are included

because the thickness of the regions in the L direction has decreased (see equation

(5.1) and figure 5.1 ), even though the boundary between the kick and outside region

remains the same. Similarly picking a larger ∆Li increases the size of the kick region

Rkick. From this observation, it follows from the inductive definition that {∆Li} is

decreasing sequence.

There is a certain degree of flexibility here. Indeed, if there is some error

in the bounds (say from a computer approximation) with ∆Liapprox ≈ ∆Li and

∆Liapprox ≤ ∆Li−1, then the sequence still convergences. Care must be taken when

using a computer since mathematically values at the tail end of the sequence {∆Li}

converge, but on a computer rounding errors from floating point arithmetic may

spoil convergence when |∆Li−∆Li+1| becomes smaller than machine-ε. In practice

it suffices to iterate until |∆Li − ∆Li+1| is within some specified tolerance larger

than machine precision.
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Figure 5.2: The idea behind localization intervals on the (L, `) cylinder

5.2 Localization Intervals

The goal of this section is to construct intervals in the L direction which

contain all solutions of a given rotation number. An explicit numerical algorithm is

developed to efficiently compute these intervals. The estimates on non-integrability

from the previous section along with the ordering condition from Aubry-Mather

theory are used to produce the explicit bounds required for algorithm.

Definition: For a specified rotation symbol1 ω ∈ [ 1
n+1

+, 1
n
−], call the interval

Ln ⊂ R 3 L a localization interval for ω if the Aubry-Mather set Σω ∈ Ln × T.

The next theorem gives the existence of finite localization intervals in the twist

region TwDel where the map Fµ is twisting in Delaunay variables. The key to the

proof establishing that for a specified a rotation number ω, it is possible to start so

1It turns out there are three rotation symbols ordered as p
q− < p

q < p
q+ associated to the

rational number p
q . An irrational rotation symbol is the same as the irrational rotation number.

See section 6.2 for more details.
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high up on the cylinder that solutions rotates too slowly have the rotation number

ω. See figure 5.2. The method of proof leads to a numerical algorithm to compute

localization intervals. We remark that the proof also holds for the deformed action-

angle coordinate systems used in 3 and gives finite localization intervals in the region

Tw∞.

Theorem 5.2.1 (Localization Intervals). Fix mass ratio µ, Jacobi constant J0, and

rotation symbol ω ∈ [ 1
n+1

+, 1
n
−]. Suppose An < ω−

1
3 and ∆L are nonnegative real

numbers such that the (An,∆L) containment assumption is satisfied for all solutions

with initial conditions L0 = An. Suppose Bn > ω−
1
3 and ∆L′ are nonnegative real

numbers such that the (Bn,∆L
′) containment assumption is satisfied for all solutions

with initial conditions L0 = Bn. Further suppose that

Nδ`kick,min(An,∆L) + (n−N)δ`out,min(An,∆L) ≥ 2π (5.4)

Nδ`kick,max(Bn,∆L′)
+ (n+ 1−N)δ`out,max(Bn,∆L′)

≤ 2π (5.5)

holds, where N is the number of iterates needed to cross the Delaunay kick region.

Then [An, Bn] is an ω-localization interval. Moreover An, Bn <∞.

Proof: Suppose a solution with initial condition L0 = An satisfies the (An,∆L)

containment assumption. By the assumptions on An < ω−
1
3 ≤ (n + 1)

1
3 and ∆L,

then L0, ...Ln ∈ [An −∆L,An + ∆L]. We seek to violate the following condition:

`n − `0 < 2π (5.6)

which says that after one fundamental period T ≈ 2πA3
n, the variable ` should

have changed by at most 2π. This is what it means to have ω ≤ 1
n
−. The above
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inequality is an instance of an ordering condition found in Aubry-Mather theory.

See section 6.2 for a more general statement about ordering conditions. Note that

since ω < 1
n
− that periodic orbits of period n are not considered, which is why there

is a strict inequality in (5.6).

Violation of the ordering condition (5.6) means solutions rotate too fast to

have rotation symbol less than 1
n
−. Let us examine when this occurs. Recall that

L̇ = −∂`∆H,

˙̀ = L−3 + ∂L∆H.

A worst case scenario is ‘overspeeding’ where the Li’s increase with maximum pos-

sible speed, which causes the `-velocity to decrease, and the trajectory to slow down

in the `-direction. Now define the sequence L+
i by

L+
0 = An

L+
i = An + iδLkick

(An,∆Li)
i = 1, 2, . . . , N

L+
i = An +NδLkick

(An,∆Li)
+ (i−N)δLout,max

(An,∆Li)
i = N, . . . , n

Since the comet visits the kick interval at most N times during one fundamental

period, and the most L can increase in one iterate is δLkick
(An,∆L) in the Delaunay kick

region and δLout
(An,∆L) in the Delaunay outside region, then the L+

i ’s are the fastest

increasing sequence which satisfies then (An,∆L)-containment assumption. Let us
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estimate the amount of rotation in ` this sequence exhibits by calculating

`n − `0 =
n−1∑
i=0

`i+1 − `i

≥
∑
kick

(`i+1 − `i) +
∑
outside

(`i+1 − `i)

≥ Nδ`kick,min(An,∆L) + (n−N)δ`out,min(An,∆L)

where the last line follows from the fact that it takes at most N iterates to cross

the kick region. By choice of An, specifically property (5.4), the sequence {L+
i }

violates the ordering condition (5.6). The value of An is low enough on the cylinder

that trajectories must make more than one full turn after n iterates. Hence an

Aubry-Mather set with ω < 1
n
− must have L at least An.

To prove the upper bound of the localization interval, a similar argument can

be made. Suppose a solution with initial condition L0 = Bn satisfies the (Bn,∆L
′)

containment assumption. By the assumptions on Bn > ω−
1
3 ≥ n3 and ∆L′, then

L0, ...Ln+1 ∈ [Bn −∆L′, Bn + ∆L′]. We seek to violate the following condition

`n+1 − `0 > 2π. (5.7)

which says that after one fundamental period T ≈ 2πB3
n, the variable ` should have

changed by at least 2π. This is what is means to have ω ≥ 1
n+1

+. Again note that

(5.7) is a strict equality since the case of a periodic orbit of period n+ 1 is ruled out

by choice of rotation symbols.

A worst case scenario in this case is ‘underspeeding’ where the Li’s decrease

with maximum possible speed, which causes the `-velocity to increase, and the

trajectory to speed down in the `-direction.
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Consider the sequence

L−0 = Bn

L−i = Bn − iδLkick
(Bn,∆L′)

i = 1, 2, . . . , N

L−i = Bn −NδLkick
(Bn,∆L′)

− (i−N)δLout
(Bn,∆L′)

i = N, . . . , n+ 1.

By construction, this is the fastest decreasing sequence of L’s which satisfy the

(Bn,∆L
′) containment assumption. Let us estimate the amount of rotation in ` this

sequence exhibits by calculating

`n+1 − `0 =
n∑
i=0

`i+1 − `i

≤
∑
kicks

(`i+1 − `i) +
∑
outer

(`i+1 − `i)

≤ Nδ`kick,max(Bn,∆L′)
+ (n+ 1−N)δ`out,max(Bn,∆L′)

where the last line follows from the fact that it takes at most N iterates to cross the

kick region. By choice of Bn, specifically property (5.5), the sequence {L−i } violates

the ordering condition (5.7). The value of Bn is high enough on the cylinder that

trajectories must make less than one full turn after n+ 1 iterates. Hence an Aubry-

Mather set with ω > 1
n+1

+ must have L at most Bn.

Remark: The interval [An, Bn] in the Localization Intervals Theorem is not

necessarily optimal, i.e. it is possible that there is a localization interval [Ãn, B̃n] ⊂

[An, Bn]. Ideally one selects the largest An and the smallest Bn which satisfies the

hypothesis of the Theorem. Even then, the theorem gives only a sufficient condition,

not necessary condition for the interval to be a localization interval, i.e. it is still

possible there is a smaller localization interval.
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5.2.1 A Numerical Algorithm to Compute Localization Intervals

The Localization Interval Theorem is designed for ease of computation. Con-

sider the following algorithm.

1. Suppose L ∈ [Lx, Ly]. Divide up the (`, L) space T × [Lx, Ly] into a large

number of small rectangular boxes. Fix N,M large positive integers. Let

ai = i2π
N

, bj = j Ly−Lx
M

. Consider boxes of the form Ri,j = [ai, ai+1]× [bj, bj+1].

Use COSY-JERI, a rigorous integrator (described in the appendix E.1) to

rigorously transport a box of initial conditions Ri,j for one iterate of F . COSY-

JERI can be used to compute the quantities δL and δ` for each box. In fact,

it produces upper and lower bounds for each of these quantities which are

rigorous and which account for rounding error from the computer. Store all

this information.2

2. Input a rotation number ω and machine precision ε. Let I = 0 and J = 0.

3. Input ∆L0, an estimate on the size of containment intervals for L ∈ [Lx, Ly].

This estimate can be generated using the heuristics found in section 5.1.1.

4. Find largest k and smallest k′ so that interval ∆LI ⊂ [bk, bk′ ].

5. Compute extremized terms in formulas (5.2) using the associated containment

interval I(bJ ,∆L
I). This is quick and requires only the stored data from step

2Step 1 is done independently of the other steps. All the rigorous numerical integration is

contained in step 1. Any other algorithm to produce the desired bounds may be used. Mathematica

can produce accurate (but non-rigorous) estimates of the quantities in this step.
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1. Adopt the convention that if the curve uL = K(rkick, J0) passes through a

box, then record the values associated to the box as being in both the outside

and kick regions.

6. Use the iterative formula (5.3) to find ∆LI+1. If ∆LI > ∆LI+1, then a bad

initial guess was made in step 3 for ∆L0, or the numbers N,M are too small.

Go back to step 1, and use a larger N and M or go back to step 3 and use

a larger ∆L0. Otherwise, ∆LI+1 ≤ ∆LI . If |∆LI+1 − ∆LI | > 2ε, then let

I := I + 1 and goto step 4. Otherwise goto step 7.

7. Use the data from step 1 to check the hypothesis in the Localization Intervals

Theorem. If bJ satisfies one of the conditions (5.4), output true. Otherwise

output false. Record this information. Let I := 0 and J := J + 1. If J = M ,

then end. Otherwise goto back to step 3.

For a fixed ω, the algorithm assigns a ‘true’ or ‘false’ to each integer j ∈

[0,M − 1]. True if the ordering conditions are violated holds for some bJ , and

false if the hypothesis of the theorem do not hold. The intervals bJ where the

ordering conditions holds contain the localization intervals by construction since the

complement is where ordering fails. This gives an approximation for the localization

intervals. Specifically, the localization interval [An, Bn] ⊂ [bJ , b
′
J ] where bJ is the

smallest b value for which the algorithm returns true and b′J is the largest b value

for which the algorithm returns true. Note that the size of the boxes in L direction

(controlled by M) limits our accuracy for the size of the localization intervals. Using

larger M increases accuracy, but at the cost of increasing computation time.
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5.2.2 Numerical Results for Localization Intervals

The numerical algorithm in section 5.2.1 may be applied to the case µ = 10−3

and J0 = 1.8. Divide up L ∈ [Lx, Ly] = [2.35, 3.4375] into M = 261 intervals of size

1
240

. Divide up ` ∈ [0, 2π] into N = 1024 intervals of size 2π
1024

. Note the L values are

inside of the twist region TwDel (see section 3.2). Apply the numerical algorithm

from section 5.2.1 to approximate the localization intervals. These computations are

very lengthy and can take many hours of computer time (19,440,062s = 225 days) to

complete. See details on the method of integration in chapter E. Our calculations

find the following localization intervals.

n = 14 : L ∈ [2.408333333333333, 2.466666666666667]

n = 15 : L ∈ [2.462500000000000, 2.520833333333333]

n = 16 : L ∈ [2.516666666666667, 2.575000000000000]

n = 17 : L ∈ [2.570833333333333, 2.620833333333334]

n = 18 : L ∈ [2.616666666666667, 2.670833333333333]

n = 19 : L ∈ [2.666666666666667, 2.716666666666667]

n = 20 : L ∈ [2.712500000000000, 2.762500000000000]

n = 21 : L ∈ [2.758333333333333, 2.804166666666667]

n = 22 : L ∈ [2.800000000000000, 2.845833333333333]

n = 23 : L ∈ [2.841666666666667, 2.887500000000000]
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n = 24 : L ∈ [2.883333333333333, 2.925000000000000]

n = 25 : L ∈ [2.920833333333333, 2.962500000000000]

n = 26 : L ∈ [2.958333333333333, 3.004166666666667]

n = 27 : L ∈ [2.995833333333334, 3.037500000000000]

n = 28 : L ∈ [3.033333333333334, 3.075000000000000]

n = 29 : L ∈ [3.070833333333333, 3.108333333333333]

n = 30 : L ∈ [3.104166666666667, 3.141666666666667]

5.3 Crossings

Corollary 5.3.1 (Crossings). Suppose ω ∈ [ 1
n+1

+, 1
n
−], and [bJ , bJ ′ ] is the approx-

imate localization interval computed with the numerical algorithm in section 5.2.1,

and whose existence is guaranteed by the Localization Intervals Theorem. Suppose

there is a trajectory {(Li, `i)} of F such that L0 < bJ and there is an N ∈ Z such

that LN > bJ ′. Then the Aubry-Mather set Σω is not an invariant curve.

Proof: If for some ω ∈ [ 1
n+1

, 1
n
] the corresponding Aubry-Mather set Σω is an

invariant curve, then by the Localization Interval Theorem, it is contained inside of

[bk, bk′ ]×T. This implies there is no trajectory which starts below the curve Σω and

passes above it. Below and above are well defined notions because Σω is a Lipschitz

graph over T (see [MF]). This is a contradiction for ω ∈ [ 1
n+1

+, 1
n
−].

To find crossings, it suffices to convert the L localization intervals into G

localization intervals by G = 1.8− 1
2L2 + ∆H. Bounds on ∆H are known, |∆H| ≤
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0.00063 (see appendix A), and with them its possible obtain appropriate enclosures.

Once in terms of G = Pϕ, it suffices to use polar coordinates to find a trajectory

which crosses the G localization interval. This is done since integration in polar

is much quicker due to the fact that the equations of motion are much simpler

than those in Delaunay. Below is the data for the crossing solutions. ‘IC’ the

initial condition in polar with coordinates (r, ϕ, Pr, Pϕ). T is the time to cross the

localization interval. The range of L values the trajectory assumes is given.

• n = 18, T = 1500

IC: (11.882750717370106, 3.866366342271249,−0.024625597427182747, 1.7267051815071077)

L Range: [2.604, 2.683]

• n = 19, T = 1500

IC: (5.01, 6.283185307179586,−0.3715957930145508, 1.72898)

L Range: [2.648, 2.747]

• n = 20, T = 1500

IC: (5, 3.436116964863836,−0.3773091819709596, 1.73111)

L Range: [2.690, 2.783]

• n = 21, T = 2000

IC: (4.263811806062144, 5.233883200329416,−0.4224129822178366, 1.7377381471786353)

L Range: [2.719, 2.835]

• n = 22, T = 1541

IC: (9.359317378038725, 3.957177159072638, 0.2197328531636448, 1.7344673150647805)

L Range: [2.757, 2.881]
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• n = 23, T = 1584

IC: (14.039965526307196, 3.5135666542693986, 0.0023316149314888592, 1.736425237043458)

L Range: [2.795, 2.947]

• n = 24, T = 2472

IC: (11.812906753494273, 1.257110055261819, 0.1499017007611752, 1.7373980380662546)

L Range: [2.819, 2.973]

• n = 25, T = 2005

IC: (9.221213881804852, 2.0075139824889248, 0.24400191401211596, 1.739107823003018)

L Range: [2.859, 3.024]

• n = 26, T = 1793

IC: (6.9285220034089114, 5.047263708867263,−0.32897852787229304, 1.7413678940444803)

L Range: [2.903, 3.058]

• n = 27 AND n = 28, T = 2118

IC: (6.427536659398464, 3.383038880595336,−0.3511117427396554, 1.7428168698946467)

L Range: [2.944, 3.100]

Remark: All digits of accuracy are needed due to extreme sensitivity on

initial conditions.

Each of these initial conditions is integrated using the COSY-JERI integrator

as described in appendix E. Typical run time might be about a week to verify a

solution. However a nonrigorous numerical integrator can easily compute such a

solution quickly. In fact this is how these solutions were found; Mathematica was

programmed to integrate a large number of solutions and check for crossings. Note
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as well that in some cases the crossing trajectories are well above and below the

known localization interval bounds. This is because when working with rigorous

numerics the integrator must account for noise in the form of rounding errors and

as a consequence, an extra buffer is needed to ensure the crossing is verified.

Figure 5.3: n = 28 crossing - Pϕ vs. time

Remark: Note in figure 5.3 that one can clearly see the ‘kicks’ when the

comet comes close to the sun. They are large jumps which separate flat regions to

form a type of bizarre staircase. Also note how the function is flat most of the time.

The flatness is a visual indication that the problem is nearly integrable far from

the sun since the perturbation term is small away from the sun and hence angular

momentum remains nearly constant.

In light of the numerical data above,

Theorem 5.3.2. For RCP3BP(0.001, 1.8) there are no invariant curves with ro-

tation number between 1
28

and 1
18

. Hence there are no invariant curves between

0.748 ≤ e ≤ 0.826.

Proof: If there was an invariant curve of rotation number ω ∈ [ 1
28
, 1

18
],
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then it would be contained in some localization interval. But there are trajectories

which cross localization intervals for all Aubry-Mather sets of the specified rotation

number. Contradiction. Hence there are no invariant curves.
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Chapter 6

Applicability of Aubry-Mather Theory to the RCP3BP

6.1 A quick review of Aubry-Mather theory

Call a compact invariant region C is bounded by two rotationally invariant

curves C− and C+ such that there are no rotationally invariant curves in between

C− and C+ a Birkhoff Region of Instability (BRI). In such BRIs, Birkhoff showed

the existence of orbits coming arbitrarily close to C− and C+ (see [MF]). A much

stronger result given by Mather in [Ma2] which allows one to specify neighborhoods

of certain invariant sets which the orbit must pass through. Before stating this

result, a quick overview of basic facts of Aubry-Mather theory shall be given. This

review is primarily drawn from [Ban], [MF], [G], [Mo1], [S], and [BK].

Suppose F : T× R→ T× R is a Cr (r ≥ 1) map. Let F̃ : R× R→ R be the

lift of F to the universal cover. Let π denote the canonical projection of R onto T.

Call an F exact area preserving twist map (EAPT) if and only if

• F is area preserving: | det(dF )| = 1.

• F is exact: if for any non-contractible curve γ the oriented area between γ and

its image F (γ) is zero.

• F is twist: if for F̃ = (F̃θ, F̃I) the sign (∂IF̃θ) is constant and nonzero. This

implies that the image of a vertical line in the cylinder is tilted in one direction
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relative to the vertical direction.

Consider the bi-infinite sequence {F̃ i(θ̃0, Ĩ0) = (θ̃i, Ĩi)} of images. It turns out

that every EAPT can be described by a generating function h : R × R → R. This

can be described via the generating function by

Ĩk = −∂1h(θ̃k, θ̃k+1) Ĩk+1 = ∂2h(θ̃k, θ̃k+1)

The definition of h is extended to segments by

h(θ̃0, θ̃1, ...θ̃n) =
n−1∑
i=0

h(θ̃i, θ̃i+1)

Definition: A segment (θ̃0, θ̃1, ...θ̃n) is minimizing if for any other segment

(θ̃′0, θ̃
′
1, ...θ̃

′
n) with θ̃0 = θ̃′0 and θ̃n = θ̃′n, then

h(θ0, θ1, ...θn) < h(θ′0, θ
′
1, ...θ

′
n)

A sequence {θ̃i} is minimal if every finite segment in the sequence is minimal. Min-

imal sequences are action minimizing. More specifically, the generating function

h(θ0, θ1) gives the minimal action to move between θ0 and θ1 in one iterate of F̃ .

Notice that

∂2h(θk−1, θk) + ∂1h(θk, θk+1) = 0 for all k ∈ Z

is a discrete version of the Euler-Lagrange equations. Let S̃t(h) denote the set of all

orbits which satisfy the discrete (EL) equations. Call such orbits stationary orbits.

Stationary orbits are extremizers. Let Σ̃(h) ⊂ S̃t(h) denote the set of all action

minimizing orbits and note that Σ̃(h) ⊂ S̃t(h) and this implies π(Σ̃(h)) = Σ(h) ⊂

St(h) = π(S̃t(h)).
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For a stationary configuration Θ = {θ̃k} call the piecewise linear graph con-

necting (k, θ̃k) with (k + 1, θ̃k+1) for each k ∈ Z the Aubry graph. Suppose for a

stationary configuration Θ = {θ̃k} the limit

ω = ω(Θ) = lim
k→∞

θ̃k
k

exists. Call ω the rotation number of Θ. Geometrically ω is the average slope of the

Aubry graph of Θ.

Theorem 6.1.1 (Aubry,Mather). Every minimal configuration has a rotation num-

ber. Conversely, for every ω ∈ R there is a minimal configuration with rotation

number ω.

Let Σω = {Θ ∈ Σ(h)|ω(Θ) = ω} be the set of all minimal configurations of

rotation number ω. This set is called an Aubry-Mather set of rotation number ω.

Some additional information about Aubry-Mather sets with rational rotation

numbers is required to understand parts of this thesis. Pick a rational rotation

number ω = p
q
. Let Σper

p/q be the set of action minimizing periodic points of period q

and rotation number p/q. Two periodic points θ− and θ+ are adjacent elements of

Σper
p/q if θ̃− and θ̃+ have no other elements of Σ̃per

p/q between them ([Ban]). For adjacent

periodic points θ− and θ+ in Σper
p/q let

Σ+
p/q(θ

−, θ+) ={θ ∈ Σp/q : θ is α (resp. ω)–asymptotic to θ− (resp. θ+)}

Σ−p/q(θ
−, θ+) ={θ ∈ Σp/q : θ is α (resp. ω)–asymptotic to θ+ (resp. θ−)}

Σ±p/q =
⋃

θ− adjacent to θ+ in Σper
p/q

Σ±p/q(θ
−, θ+)
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Theorem 6.1.2 (Structure theorem: Rational case ω = p/q ∈ Q). The Aubry-

Mather set Σp/q is a disjoint union of Σper
p/q, Σ+

p/q, and Σ−p/q. Moreover, Σper
p/q is

always non-empty and if Σper
p/q is not a curve, then Σ−p/q and Σ+

p/q are non-empty too.

In order to distinguish such invariant sets, follow Mather (see e.g. [MF] §13)

and introduce rotation symbols ω∗. If Θ has an irrational rotation number ω, then

its rotation symbol is ω∗ = ω. In the rational case we have three options:

1. If Θ ∈ Σ−p/q, then its rotation symbol is p/q−.

2. If Θ ∈ Σper
p/q, then its rotation symbol is p/q.

3. If Θ ∈ Σ+
p/q, then its rotation symbol is p/q+.

There is an ordering on the set of rotation symbols given by ω∗ < ω̄∗ iff either

underlying numbers satisfy ω < ω̄ or ω = ω̄ = p/q and p/q− < p/q < p/q+.

It turns out that minimizers satisfy the following ordering condition:

Ordering condition: If Θ = {θ̃k} is a minimal configuration for rotation

symbol ω∗ ≤ p/q, then θ̃k+q ≤ θ̃k + p for all k ∈ Z.

Using a sophisticated variational problem with constraints Mather [Ma2] proved

the following theorem about existence of connecting orbits:

Theorem 6.1.3 (Mather Connecting Theorem). Suppose ω1 < α1, α2 < ω2 and

suppose there are no rotationally invariant curves with rotation number ω ∈ (ω1, ω2)

in a BRI. Then there is a trajectory in the phase space whose α-limit set lies in the

Aubry-Mather set Σα1 and whose ω-limit sets lies in Σα2. Moreover, for a sequence

of rotation numbers {αi}i∈Z, αi ∈ (ω1, ω2) and a sequence of positive numbers {εi},
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there exists an orbit in the phase space {pj} and an increasing bi-infinite sequence

of integers j(i) such that the dist(Σαi , pj(i)) < εi for all i ∈ Z. [Ma2]

Presently there are simplifications of this proof in [Be], [BK],and [Xia1]. Un-

fortunately the region we consider for our analysis of the RCP3BP is not invariant

as trajectories can leak out of TwDel to higher eccentricities. However it turns out

that the hypothesis of a BRI in Mather Connecting Theorem can be relaxed slightly

without affecting the conclusion. We shall do so using the EAPT Fdyn and the do-

main TwDel ∪W . The key is to specify the location of local and global minimizers,

which is done using the methods in chapter 5.

6.2 The Applicability of Aubry-Mather Theory to the RCP3BP

In chapter 3, is was shown that the map F is an EAPT on a certain domain,

and hence it is possible to apply the results of Aubry-Mather theory in this domain.

Recall that the map Fµ is defined as follows. Starting with the RCP3BP in De-

launay coordinates, the dynamics is restricted to the 3 dimensional energy surface

S(J0). The restricted dynamics has a naturally defined Poincaré map Fµ : {g = 0

mod 2π} → {g = 0 mod 2π}. Recall that the action comparison is formulated

in polar coordinates, and the comparison performed with the Lagrangian dual to

the polar Hamiltonian which has two degrees of freedom. Not only have coordinate

systems changed, but the dimension has been reduced.

Unfortunately and somewhat surprisingly, the Hamiltonian of RCP3BP in

polar is convex, while in Delaunay coordinates it has a concave component (in L)
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and a degeneracy (in G). Thus, to connect polar and Delaunay dynamics requires

additional care. In this section, the connection between the polar Lagrangian and

the map Fµ is justified. The following lemma is needed to bridge the gap between

the two different types of dynamics.

Lemma 6.2.1. Suppose Fµ has a rotational curve1 T 1 ⊂ TwDel. Then there is an

action minimizing rotational 2-torus T 2 for the flow of the Hamiltonian HPolar.

See [Be2] for a much more general and powerful statement regarding the per-

sistence of action minimizing sets under canonical coordinate change.

The plan for this section is following. A proof of Lemma 6.2.1 established

by connecting the dynamics of three dynamical systems, namely the systems with

HPolar, HDel, and Fµ. Once in place, the lemma allows one to apply the action

comparison method in polar coordinates to rule out the existence of rotational curves

for the map Fµ. (Recall that rotational curves are obstructions to diffusion.) Next

work shall commence to apply the Mather Connecting Theorem to the map Fµ in

the region of instability. Special care must be taken since the instability region is

not invariant. The Mather Connecting Theorem provides existence of connecting

orbits for the map Fµ and instabilities for the map Fµ are mirrored by motions of

the comet in polar coordinates.

1Rotational curves are invariant curves which are not homotopically equivalent to single points.
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6.2.1 Proof of Lemma 6.2.1

1: Rotating Polar Coordinates: H = HPolar(r, ϕ, Pr, Pϕ)

⇑

2: Delaunay Coordinates: H = HDel(`, L, g,G)

m

3: Reduced Energy Coordinates: F = Fµ(`, L)

First let us formulate the three systems described in the diagram above. Equa-

tion (1.2) formulates the RCP3BP in rotating polar coordinates with a Hamiltonian

HPolar. Given HPolar, the Delaunay Map D from section 3.1 can be applied to

convert from polar to Delaunay variables away from parabolic motions. The Hamil-

tonian becomes HDel given by Equation (3.2). It is not necessarily clear that HDel

convex or that action minimizers will exist. Consider the energy reduction procedure

described in appendix C.2 applied to the Hamiltonian HDel. Call the energy reduced

Hamiltonian H̃J0 . By construction, orbits of H̃J0 and orbits of HDel are equivalent

on the energy surface S(J0) when G is written implicitly in terms of energy and the

other Delaunay variables. H̃J0 is the time-periodic Hamiltonian with 1.5 degrees of

freedom used in section 3.2, and by the results of that section the Poincaré map Fµ

formulated from H̃J0 is an EAPT on a certain domain.
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Lemma 6.2.2. There are no rotational curves for the map Fµ if and only if there

are no rotational 2-tori for the flow of the Hamiltonian HDel.

Proof: This claim follows from the general results on Poincaré Maps.

From the claim it suffices to show that a rotational 2-tori for the flow of the

Hamiltonian HDel maps under D to an action minimizing rotational 2-tori for the

flow of the Hamiltonian HPolar. Action minimizing in this context means action

minimizing with respect to the Lagrangian L which is Legendre transform of the

polar Hamiltonian HPolar.

To go between 1 and 2, some additional machinery is required. A priori when

making a canonical change of coordinates, the image D(T 2) of a rotational 2-torus

T 2 in Delaunay is not necessarily a graph over the base anymore. All that can be

said is that D(T 2) is an invariant object under the flow since the change of variables

D is a smooth diffeomorphism away from parabolic motions. Hence it must be

shown that D(T 2) is rotational and that it is action minimizing.

Lemma 6.2.3. Suppose T 2 is a rotational 2-torus for the flow of the Hamiltonian

HDel. Then D(T 2) is a rotational 2-torus for the flow of the Hamiltonian HPolar.

Proof: Suppose T 2 is a rotational 2-torus for the flow of the Hamiltonian

HDel and D(T 2) is its image. It must be shown that the Pr and Pϕ components of

D(T 2) are graphs over the base (r, ϕ). Since dynamics is restricted to the energy

surface H = −J0 in both coordinate systems, then it holds that

Pϕ = Pϕ(r, ϕ, Pr; J0) = r2 −
√
r4 + 2r − r2(P 2

r + 2J0 + 2∆H(r, ϕ))
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Hence if Pr is a graph over the base (r, ϕ), i.e. Pr = Pr(r, ϕ), then it follows that

Pϕ is also a graph over the base.

A careful analysis of the map D indicates

r = L2(1− e cos(u)) Pr =
Le sin(u)

r

ϕ = g + 2 arctan(

√
1 + e

1− e
tan(

u

2
)) Pϕ = G

` = u− e sin(u) e =

√
1− G2

L2

For constant L and G (e.g. in the 2BP(SC)), then (r, Pr) is a function of the

variable u only. It turns out that Pr is a double graph over r in an “onion”(see fig.

6.1). This is because fixing r fixes u, which in turn fixes Pr up to sign. Rotation

inside the “onion” corresponds to rotation in the ` direction, the “layer” of the onion

corresponds to the L direction. The G and Pϕ directions are the same, and rotation

in the g direction corresponds to rotation in the ϕ direction. In this case, being

rotational in Delaunay translates to being rotational in polar, with the caveat that

the Pr may be a double graph.

Figure 6.1: Integrable Torus Blue in (φ, Pϕ,
1√
r
, Pr) coordinates

The case when L,G are non-constant is not that much worse. We seek to

show the double graph property for Pr, i.e. we seek to show that D(T 2)∩ {Pr ≥ 0}
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and D(T 2) ∩ {Pr ≤ 0} are graphs. Suppose not. Then there two points on D(T 2)

which have the same (r, ϕ) coordinates, but have two different Pr coordinates, P 1
r >

P 2
r > 0. But when ṙ = Pr > 0, then r is a monotone strictly increasing function.

Furthermore ϕ̇ < 0, so ϕ is a monotone strictly decreasing. Since D(T 2) is invariant

under the flow, there cannot be two distinct points (r, ϕ, P 1
r ) and (r, ϕ, P 2

r ) with

P 1
r 6= P 2

r since this would contradict the monotonicity of r or ϕ. Hence the image

of D(T 2) is rotational.

The reason the rotational (graph) property is desired is the following lemma.

Lemma 6.2.4. (McDuff/Salamon [MS]) Suppose H : Ω × Rn → R where Ω ⊂ Rn

is a Hamiltonian which satisfies the Legendre condition ∂2H
∂p2 > 0. Moreover, assume

for every q ∈ Ω the map Rn → Rn given by p 7→ ∂pH(q, p) has a global inverse so

the inverse Legendre transformation gives rise to a Lagrangian L : Ω×Rn → R. Let

S : Ω → R be a solution of the Hamilton-Jacobi equation H(q, ∂qS) = E. Suppose

γ : [t0, t1] → Ω is invariant under the flow of H with γ̇ = ∂pH
(
q, ∂qS(p)

)
, and

suppose ξ : [t0, t1]→ Ω is any absolutely continuous function such that ξ(t0) = γ(t0)

and ξ(t1) = γ(t1). Then γ is action minimizing. Specifically,

∫ t1

t0

L(γ, γ̇)dt ≤
∫ t1

t0

L(ξ, ξ̇)dt

To complete the proof of Lemma 6.2.1, appeal to Lemma 2.1.1 which states

that rotational 2-tori in polar are action minimizers. This turns out to be a corollary

of Lemma 6.2.4.

Proof of Lemma 2.1.1: The polar Hamiltonian for RCP3BP satisfies the

requirements of Lemma 6.2.4; namely it is convex. See Lemma C.1.1. However one
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must be a bit careful in its application. Lemma 6.2.4 requires that if an invariant

curve γ is contained inside of an invariant torus T 2, then T 2 is a graph over the base.

In polar, Pr = Pr(r, ϕ) and Pϕ = Pϕ(r, ϕ) are graphs over (r, ϕ) on the invariant

torus. In Lemma 6.2.3 a small ambiguity arose from the fact that ±Pr(r, ϕ) could

both be on an invariant torus (for example an invariant curve could pass through

an aphelion or perihelion which causes the sign of Pr to change). It is true that

T 2 ∩ {Pr ≥ 0} and T 2 ∩ {Pr ≤ 0} are graphs over (r, ϕ). To apply Lemma 6.2.4 for

an invariant curve γ, note that it suffices to decompose γ into pieces where Pr ≥ 0

and Pr ≤ 0, and apply Lemma 6.2.4 to the respective pieces.

This completes the proof of Lemma 6.2.1.

Remark: The conclusion of Lemma 6.2.1 also holds using the dynamically

deformed coordinate system for the map Fdyn in the domain W where the map

is known to be twisting. Now instead of passing from polar to Delaunay, consider

passing from polar to algebraically deformed Delaunay variables (ADDV), then from

ADDV to dynamically deformed Delaunay variables (DDDV) (see 3). The formulas

for passing from Polar to ADDV in Lemma 6.2.3 remain identical except for the

addition of a subscript ν on all Delaunay variables. Hence arguments involving

the graph property go through unchanged. To see that the image in ADDV of

an rotational graph which originated in DDDV is rotational note that the curve

straightening which produces DDDV from ADDV always rotates vectors by strictly

than less π
2

so the direction of the flow (i.e. the ` direction) remains the same and

is never interchanged with the action (i.e. L direction).
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6.2.2 Connecting Orbits

In this subsection the hypothesis of the Mather Connecting Theorem (Theorem

6.1.3) are relaxed slightly which allows for analysis of dynamics of the RCP3BP

as described by the map Fµ, or alternatively Fdyn for nearly parabolic motions.

For maps, the twist regions are free of invariant curves by results of chapter 2

and Lemma 6.2.1, however neither domain is invariant. The key to relaxing the

invariance hypothesis of the Mather Connecting Theorem is to specify the location

the minimizing, i.e. Aubry Mather sets. This is the aim of the next several lemmas.

Lemma 6.2.5. For any c > 0 there is a c-neighborhood N(ω, c) of the Aubry Mather

set Σω for ω > 0 which has well defined action-angle (ADDV) coordinates.

Remark: Recall that by construction algebraically deformed Delaunay vari-

ables (ADDV) are defined for nearly parabolic motions. The results of section

4.2 may be used to produce dynamically deformed Delaunay variables on a set W

which contains a large subset of nearly parabolic motions. Using these dynamically

deformed variables, the dynamics may be reduced to that of an EAPT map Fdyn de-

fined in a semi-infinite domain. Hence it suffices to show that action-angle variables

are well defined in ADDV.

Proof of Lemma 6.2.5: After passing through a perihelion, a solution either

has an aphelion in its future, or it does not. If it does not have an aphelion in the

future, the comet must exit parabolically or hyperbolically. Solutions which exit

the Solar System hyperbolically do not have well defined rotation numbers since

they must eventually leave the neighborhood of the separatrices where algebraically
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deformed Delaunay variables (ADDV) are defined. Parabolic solutions have rotation

number ω = 0 since they correspond to separatrices which are converging to the fixed

point at infinity in ( 1√
r
, Pr) variables (see fig. 3.2).

The separatrices are contained in the domain of definition of ADDV by con-

struction (see fig 4.3). Furthermore, all other trajectories in the domain of definition

contain an aphelion in their futures and trajectories remain inside the domain of

definition until that aphelion is reached. Hence these solutions have well defined

algebraically deformed variables.

Solutions with aphelions stay some bounded distance way from the separatrices

and the boundary of the domain of definition. When expressed in ADDV, then

these points in the domain of definition have a finite Lν value (recall Lν → ∞ at

the boundary of the domain of definition). See figures 4.3 and 3.3. But then Aubry-

Mather sets which contain these types of solutions must have rotation numbers

ω > 0. Since Lν is bounded, then we can take as large of a neighborhood in the Lν

direction as desired around the Aubry-Mather set Σω for ω > 0.

Lemma 6.2.6. Let ωmax = sup{ω : Σω ⊂ TwDel ∪ Tw∞} be the maximal rotation

number for Aubry-Mather sets which are contained in the twist region TwDel∪Tw∞.

There is a continuous function c(ω) > 0 such that for all ω ∈ (0, ωmax), there is a

c(ω)–neighborhood N(ω, c) of Σω contained in TwDel ∪ Tw∞.

Proof: This follows from results in chapter 5 on localization of Aubry-Mather

sets.
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Consider the collection of neighborhoods for ω, ω′ ∈ (0, ωmax):

N(ω, ω′, c) :=
⋃

ρ∈(ω,ω′)

N(ρ, c).

Lemma 6.2.7. There exists c > 0 such that an orbit of Fdyn connecting Σω and

Σω′ belongs N(ω, ω′, c).

The lemma follows from careful study of Mather’s original proofs. [Xia1]

contains a simpler approach to these results. Simply follow Xia’s exposition and

note that almost connecting orbits stay in a 2c neighborhood of Σω and Σω′ . Such

a c is guaranteed to exist by Lemma 6.2.5 and the Mather Connecting Theorem

may be applied in the non-invariant region N(ω, ω′, c). The main theorem on the

Figure 6.2: Neighborhoods of Aubry-Mather Sets in the (`, L) cylinder

existence of instabilities for the RCP3BP may now be proved.

Proof of Theorem 1.1.2: To get a diffusing orbit in polar coordinates, the

Mather Connecting Theorem is used to provide the existence of an orbit of Fdyn

with specified properties.
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Smaller rotation numbers correspond to slower rotation around the base T in

the ` direction, but this is to say that smaller rotation numbers correspond to higher

eccentricities. To start ‘at the bottom’ of the region of instability, choose rotation

numbers {ωi}i<0 corresponding to eccentricities near e = e∗(µ, J0)� 1 and pick the

{εi}i<0 to come arbitrarily close to the desired rotation numbers. In negative time

the trajectory given by the Mather Connecting Theorem shall limit to a bounded

Aubry-Mather set of positive rotation number.

To diffuse upwards, select a finite sequence of ωi’s sufficiently close and by

Lemma 6.2.7, connecting orbits remain in a neighborhood N(ω, ω′, c) of the Aubry-

Mather sets for some c.

We claim there exists a ω∗ such that solutions in a neighborhood of Σω∗ escape

to infinity after a final passage by the Sun-Jupiter system. Provided such an ω∗

exists, select the ωi’s in Mather’s Connecting theorem to approach this ω∗ in order to

escape. Note that Lemma 6.2.7 holds for almost connecting orbits between ω = ω∗

and ω = 0. Simply pick neighborhoods for ω, ω′ → 0 with c → 0. Hence the

trajectory can always remain in the neighborhood of minimizers. It remains to

show that ω∗ exists.

Consider solutions that have e(t) < 1 for t ≤ 0, but eventually leave the

homoclinic loop where action-angle variables are well defined (see fig. 3.3.) Escape

is possible if e(t) ≥ 1 for all sufficiently large t. In order to produce such solutions,

note that if a comet is exiting the solar system, then at some point, it must make

a last passage by the Sun-Jupiter system. During this passage, Jupiter perturbs

the eccentricity by some quantity ∆e. If the comet has initial eccentricity eexit
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sufficiently close to one before a close passage, and after this passage e = eexit+∆e >

1 is large enough, then the comet exits the solar system hyperbolically.

To verify this magnitude of jump is possible, the jump in eccentricity is phrased

in terms of a jump in angular momentum. Then the results in section B.1 apply.

It turns out that to exit after a passage by the Sun on Sout(1.8) then Pϕ > 1.8 +

0.04µ when r = 5. When passing by the Sun-Jupiter system, the jump in angular

momentum can be as large as µ (this follows from the rigorous numerics in Theorem

2.2.4). It follows that ∆e can be as large as 0.07µ for nearly parabolic motions.

Hence for eexit = 1 − 0.07µ escape is possible after a single passage by the Sun-

Jupiter system.

Since eexit < 1, then a solutions with eexit have a finite Lν value, denoted

Lexitν , since Lν = Lν(J0, e). Since Lexitν <∞ there is an Aubry-Mather set Σω∗ with

rotation number ω∗ > 0 and a neighborhood N(ω∗, c) ⊂ [Lexitν ,∞].

Remark: While elements of the proof explicitly used constants derived from

J0 = 1.8 and µ = 10−3, the software used is robust enough to handle other constants.

See chapter E.

One could visualize the Aubry-Mather sets as the remainders of tori after a

perturbation has been filled them with infinitely many small holes. To envision a

diffusing orbit, first imagine unrolling the cylinder on the real plane. A diffusing

orbit will be one which “climbs a set of stairs”, i.e. increases in the holes of the

Aubry-Mather set, and then follows the remnants of a torus of higher rotation

number for a while. The largest increase (“taking a step”) occurs primarily at times

when the comet is at the perihelion. See figure 6.3.
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Figure 6.3: A Diffusing Orbit (` vs. e)

6.2.3 Proof of Chazy Motions

Proof of Corollary 1.1.4: Realization of Chazy Motions is an easily con-

sequence of the application of Mather’s variational methods. It suffices to describe

how to get the desired behavior in one direction, since achieving different behav-

iors in forward and backward time is obtained by concatenation of two one-sided

sequences of rotation numbers.

In order to achieve bounded motions, pick diffusing orbits to limit to an Aubry-

Mather set Σω with ω > ω∗ > 0 where ω∗ is defined in the proof of Theorem 1.1.2.

More specifically pick sequences ωi → ω and εi → 0 in Mather’s Connecting Theo-

rem. For example, ω could correspond to the rotation number for some rotationally

invariant curve of low eccentricity, say a KAM curve.

In order to get unbounded hyperbolic motions, use the method described in

the proof of Theorem 1.1.2. Namely, approach the rotation number ω∗ before a

perihelion, and after a perihelion, a neighborhood of these solutions is carried to

infinity hyperbolically.

Since U = N(ω∗, c(ω∗)) ∩ {Pr = 0} contains solutions with |ṙ| → c > 0 as

t → ∞, then in some larger neighborhood Û there are points which escapes with

|ṙ| → 0, i.e. parabolically, by smooth dependence on initial conditions. In the
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unperturbed case F0 has a fixed point at infinity and the homoclinic loop at infinity

corresponding to parabolic motion. In the perturbed case µ > 0, the separatrices no

longer overlap, and some of points on the separatrices have eccentricities less than

one. While the separatrices themselves have rotation number ω = 0, they lay in the

neighborhood of Σω∗ at the perihelion. To limit to parabolic motions, it is possible

to pick a finite sequence of ωi → ω∗ and εi sufficiently small solutions to constrain

solutions into a neighborhood where escape is possible. Then select as the tail of

the sequence rotation numbers ωi → 0 and εi → 0. The diffusing trajectory then

must have a parabolic tail.

To get oscillatory orbits, pick a sequence of rotation numbers ωi with a subse-

quence ωik → 0 and every other term in the sequence bounded away from rotation

number ω = 0. Pick the εi so that the neighborhood of ωik is so small that the

neighborhood never intersects the separatrices when leaving the sun. Since the time

between an aphelion and perihelion is finite, this is possible. Physically this con-

strains the comet to always have an aphelion and turn around to make another pass

by the Sun-Jupiter system.
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Chapter 7

Estimating the Speed of Diffusion

7.1 Introduction

The strategy for bounding diffusion time is to produce an orbit which escapes

the Solar System after a minimal number of revolutions around the Sun. Phys-

ically, this orbit corresponds to a comet getting a nearly maximal gravity assist

from Jupiter after each passage by the Sun-Jupiter system. Mathematically, ‘cheap’

channels are constructed near action minimizing Aubry-Mather sets which the comet

follows for long periods of time far from the Sun. The results of chapter 2 say that

Aubry-Mather sets in a certain domain are not invariant curves. In this domain,

when the comet is close to the Sun, it is possible to jump through the holes in the

Aubry-Mather sets increase eccentricity (see e.g. figure 6.3). The magnitude of the

jumps dictates the speed of diffusion. In an abstract sense, it is known that the

size of the jump is O(µ). To make obtain concrete numbers, a computer is used to

estimate the magnitude of the jumps. This makes it possible to obtain the specific

numbers used in Theorem 1.2.1.

Plan of the Proof of Theorem 1.2.1:

1. Lagrangian Formulation. The RCP3BP is formulated in terms of La-

grangian formalism using rotating polar variables. This was originally intro-

duced in section 2.1. Instead of the usual action, the Maupertuis formulation
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of action is used. This constrains minimizers to be on the fixed energy surface

Sout(J0). Section 7.2 discusses this further.

2. Variational Problem with Constraints. Constrained minimizers are in-

troduced in section 7.3. An abstract variational problem with constraints is

defined, whose solution (known as constrained minimizer) is a diffusing orbit.

In section 7.4, a variational problem for the RCP3BP is formulated where

constraints are on the angular variable ϕ. Explicit construction of constraints

is the focus of next several steps.

3. Action Comparison. The action comparison method in 2 is modified to

construct the constraints that the comets must pass through during a passage

by the Sun-Jupiter system to be action minimizing. The modification is nec-

essary to show the presence of interior minima. The heuristics of the action

comparison are introduced in section 7.5.

4. Jumps in Eccentricity. Analytic work far away from the Sun and computer

assisted work near the Sun are used to analyze how much eccentricity changes

when the comet makes a passage by the Sun-Jupiter system. This is introduced

in section 7.6.

5. Construction of Diffusing Orbits. The constraints are explicitly con-

structed so that pseudo-trajectories which passes through the constrains in-

crease in eccentricity in a nearly maximal way. In a neighborhood of the

pseudo-trajectory there is a diffusing trajectory. Explicitly counting the num-
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ber of passages by the Sun-Jupiter system completes the proof. This is intro-

duced in section 7.7.

6. Alternative Approach In section 7.8 an alternative method of construct-

ing diffusing orbits which does not utilize variational techniques is introduced.

This method is primarily numerical in nature and may be useful for applica-

tions.

Remark 1: the numerical results of this chapter still need verification via interval

arithmetic. Good heuristics have been developed, however the actual numerical

values are subject to change. Essentially the analog of section 2.2 needs to be

completed using the modified action comparison developed in section 7.5. Work has

begun on this, however it is not at a sufficiently developed level that it warrants

inclusion the present work.

Remark 2: The proof of Theorem 1.1.2 in no way depends on the results of

this chapter. In fact Theorem 1.2.1 provides alternative verification of 1.1.2 in the

domain where the variational problem has the solution and there is a diffusing orbit.

7.2 Lagrangian Formulation

This section formulates the problem in terms of Lagrangian formalism. Recall

that when minimizing the action functional (see e.g section 2.1.1), the start and end

positions in the configuration space are fixed as is the time to move between the

start and end points. A priori energy of the minimizer cannot be specified. But to

construct diffusing orbits on an energy surface, this is precisely what is required.
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This is remedied by using the Maupertuis formulation of minimizers which makes

it possible to a priori specify the energy of minimizers.

Notice the RCP3BP Lagrangian given by (2.1) can be decomposed as L =

L2 + L1 + L0 where Li are homogeneous of degree i with respect to velocity.

L0 =
r2

2
+

1

r
−∆H(r, ϕ) L1 = ϕ̇r2 L2 =

ṙ2

2
+
ϕ̇2r2

2

Let q0, q1 ∈ R2 3 (r, ϕ) and consider absolutely continuous curves γ : [t0, t1] → R2

with γ(ti) = qi. Define the Maupertuis functional to be

Mh(γ) :=

∫ t1

t0

(2
√

(L0 + h)L2 + L1)
(
γ(t), γ̇(t)

)
dt

Remark: Since the integrand is homogeneous, it does not matter what (t1 − t0) is

and hence Mh(γ) is independent of parameterization of γ.

It was noted by Rick Moeckel that minimizers of Mh do exist for the RCP3BP

(see [Moe] sect. 2). Moeckel’s Theorem applies to the case of the RCP3BP in

rotating polar coordinates in a compact subset of the outer Hill region away from

the boundary. This theorem applies to the present construction since only finite

length curves contained between two passages of the Sun are constructed. These

curves have a finite maximal radius from the Sun, so it suffices to use Moeckel’s

Theorem in a compact region which is contains the class curves which shall be

constructed.

It turns out that minimizers to Mh are on the energy surface H = h. An

absolutely continuous curve γ is on the energy surface H = h ifH(γ, γ̇) = h wherever

the derivative is defined. Denote such curves by γh. Define the Maupertuis action
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between q0 and q1 to be

Mh(q0, q1) := inf
γh
Mh(γh)

Direct calculation shows that H = L2 − L0 = h, hence on the energy surface

H = h,

2
√
L2(L0 + h) + L1 = 2(L0 + h) + L1 = L+ h. (7.1)

As a consequence of the above identity, Kozlov provides the following theorem about

minimizers (see [AKN] section 4):

Theorem 7.2.1 (Kovlov). Suppose γh : [t0, t1] → R2 is a smooth curve on the

energy surface H = h that does not intersect the boundary of the Hill regions. Then

γh is a solution to the Euler-Lagrange equations if and only if γh is a critical point

of Mh.

As a consequence of Theorem 7.2.1, Lemma 2.1.1, and formula 7.1, trajectories

inside of the rotational tori are minimizers for the Maupertuis action. Hence when

constructing diffusing orbits, one may remain in a neighborhood of a rotational torus

to reduce the Maupertuis action. Far away from the Sun, this is easy as rotational

tori are flat; they look like the rotational tori from the integrable 2BP(SC).

7.3 Constrained Minimizers

This section explores the idea of constraining minimizers for the Maupertuis

action. This idea appears to have originated in a paper by Bangert where he con-

siders Aubry Mather Theory on geodesic flows of T2 in order to obtain minimizers

with specified dynamical properties [Ban]. By imposing constraints on the choice of
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curves to minimize over, the property of global action minimization is lost. However

it is still possible to construct curves which are local minimizers, and hence satisfy

the Euler-Lagrange equations (i.e. are solutions to our Hamiltonian) by Theorem

7.2.1. It is these trajectories which can exhibit diffusion if the constraints are care-

fully chosen.

Let

Mh(q0, q1, ..., qn) :=
n−1∑
i=0

Mh(qi, qi+1)

(note the analog to the generating function h found in section 6.1). For I =

{Ii}1≤i≤n−1 a collection compact intervals with nonempty interiors, let

Mh(q0, qn; I) := min
ai∈Ii

Mh(q0, ..., qn) (7.2)

Definition 7.3.1. A trajectory γ with endpoints q0, qn passing through the points

qi ∈ Ii for all i that minimizes Mh(q0, .., qn) is known as a constrained minimizer.

The intervals Ii are known as constraints.

Curves which pass through the constraints are not necessarily trajectories.

This is because passage through a constraint may require a curve to pass through

bad region that increases the Maupertuis action. Since Mh(q0, q1, ..., qn) smoothly

depends on the ai’s, then if a curve γ passes through an expensive point qi for some

1 ≤ i ≤ n−1, then a nearby curve γ̃ which passes through q̃i can reduce the value of

Mh(q0, ..., qn). Since each Ii is compact, Mh(q0, ..., qn) has a minimum value, and the

curve that achieves the minimum satisfies the Euler-Lagrange equations by Theorem

7.2.1 and hence is realized as a trajectory to the Hamiltonian system. This idea is

formally stated in the following lemma (motivated by the notations in [Xia1]):
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Lemma 7.3.2. For I = {Ii}1≤i≤n a collection compact intervals with nonempty

interiors, if ∀i,

Mh(...qi−1, b, qi+1) > min
qi∈Ii

Mh(...qi−1, qi, qi+1) for b ∈ ∂Ii

then the constrained minimizer passes through the interior of Ii.

Proof: It is always possible to find a∗ ∈ Ii with

Mh(...qi−1, a
∗, qi+1) = minqi∈IiMh(...qi−1, qi, qi+1) since Ii is a compact interval with

nonempty interior and Mh(...qi−1, qi, qi+1) smoothly depends on qi since only fi-

nite length pieces of trajectory are considered. (Simply consider all possible fi-

nite length curves connecting qi−1 to qi+1 passing through Ii on H = h.) Since

Mh(...qi−1, b, qi+1) > Mh(...qi−1, a
∗, qi+1) then this implies the constrained minimizer

is on the interior of Ii (see fig. 7.1).

Figure 7.1: More expensive curves touch the boundary and cheaper ones pass on

the interior (picture in configuration space)

It is not obvious that Lemma 7.3.2 can be applied in practice as there may not

necessarily be a curve on the energy surface which passes through all the constraints.

For example the constraints could be arranged so that a trajectory passing between
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them would have to travel far too fast to remain on the energy surface H = h. To

apply the Lemma in practice, the constraints I must be carefully constructed in

way so that trajectories passing through the boundaries of the constraints maxi-

mize Maupertuis action. This is idea is presented in section 7.5. Furthermore, the

constraints should be arranged in a way that constrained minimizers correspond to

trajectories which are increasing in eccentricity. This is carried out in section 7.7.

It is worth mentioning John Mather uses constrained minimizers in his proof of

the ‘Mather Connecting Theorem’ [Ma2]. Mather’s original proof is rather difficult

to read and in [Xia1], Xia and introduces a more natural notion of constrained

minimizer. Specifically the proof makes use of so called joint barrier functions

whose minimizers connect Aubry Mather sets of two different, but nearby rotation

numbers. Mather’s proof produces a connecting orbit only for rotation numbers

of Aubry-Mather sets which are ‘sufficiently close’, but due to the general nature

of the problem he considers, no quantitative bounds are given. The full strength

of Mather’s result is not needed for Theorem 1.2.1. However specific about the

RCP3BP is required to gain enough information to make ‘sufficiently close’ precise.

This allows a result to be proved which is in a spirit of Mather’s original work.

7.4 A Variational Problem with Constraints

A variational problem is defined in this section whose solution to is a con-

strained minimizer which diffuses in a controlled way. Recall that the Hamiltonian

for the RCP3BP has two degrees of freedom (see 1.2). The configuration space of is
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(r, ϕ) ∈ R2. It is important to emphasize for that the RCP3BP in a rotating frame,

the variable ϕ measures the relative position of comet with respect to Jupiter.

Fix

• an energy surface Sout(J0), i.e. fix H = −J0,

• a section Π = {r = R} where R >
3J2

0

2
, which is diffeomorphic to T 3 ϕ

• a positive integer N ,

• a collection of compact intervals I = {Ii}0≤i≤N−1 with nonempty interiors

With these quantities fixed, the variational problem (7.2) reduces to finding

constrained minimizers γ−J0 on the energy surface S(J0) that achieve the minimum

M−J0(ϕ0, ϕN ; I) := min
ϕi∈Ii

M−J0

(
(R,ϕ0), (R,ϕ1)...(R,ϕN)

)
(7.3)

Since the Hamiltonian is 2 degrees of freedom, specifying J0 fixes one variable

(say Pr) and specifying passage through the section Π twice fixes another two vari-

ables (say (r, ϕ)). This leaves the fourth variable (say Pϕ) free. Indeed changing

Pϕ effects how long orbits spend in the outside region (i.e. as Pϕ → J0 then time

way from Sun goes to ∞), and this effects what happens when the comet returns

to the Sun. Changing Pϕ slightly for orbits with eccentricities close to one gives

Jupiter sufficient time to rotate so that on the next passage by the Sun, the comet

is passing the section Π at a different angle with respect to Jupiter. This effects the

possible constraints that the comet could pass through. Then placing constraints

on ϕ which the comet must pass through controls behavior in the region far from

the Sun.
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The next several sections are dedicated to construction of the constraints I

so when Lemma 7.3.2 is applied, the constrained minimizers are trajectories which

increase in eccentricity. The goal is to construct a diffusing orbit which starts close

to a rotational torus and then proceeds to quickly exit the Solar system.

7.5 An Action Comparison

The idea of this method is similar to that of chapter 2 where differences in

action from passing by the Sun-Jupiter system are exploited. In this section, things

are arranged so that the comet to passes by in a cheap valley in a neighborhood of

the trajectory with minimal Maupertuis action. The angles which mark the tops

of mountains that carve out the valley must be explicitly specified. The goal is

to prove that when a comet passes through 3 consecutive sections Π, then during

the second passage through Π, it must pass through the interior of a constraint to

minimize the Maupertuis functional. Lemma 7.3.2 then applies. This procedure is

now formalized.

7.5.1 Solar Passages and Action Decompositions

Recall the concept of R–Solar passage from section 2.1.2. An analogous object

may be defined where the comet starts and ends at radius R, but in between passes

through an aphelion r(t∗) = rapoh > J2
0 . Recall that mathematically ṙ = 0 at the

aphelion, and physically it is the farthest point to Sun.) Call such a segment an

outer R–Solar passage.
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Suppose γ is an elongated Solar passage. Then γ decomposes into (see fig.

2.5)

• γ− – an outer R–Solar passage, defined for t0 ≤ t1

• γin – a R–Solar passage, defined for t1 ≤ t2

• γ+ – an outer R–Solar passage, defined for t2 ≤ t3

Denote the decompose the Maupertuis action on each of the segments by M−
out, Min,

and M+
out respectively. Then

Mh(γ) = M−
out(γ) +Min(γ) +M+

out(γ).

7.5.2 Bad Angles

Define a section angle, denoted ϕΠ, to be the angle the comet makes relative

to the position of Jupiter when the comet is at the section Π = {r = R}. For a fixed

angular momenta Pϕ it turns out that Min sensitively depends on section angle and

in fact has 4 extreme points - two maxima and two minima (see figure 7.2). This

fact is not proved rigorously; instead criteria to locate the extrema are formalized

and a computer is used to find their approximate locations. The formalism involves

interval arithmetic and is postponed to another document.

Let Min(Pϕ, ϕ) = Min(γ) where γ is a R–Solar passage on S(J0) with initial

conditions (R,ϕ, Pϕ).

Claim: Min(Pϕ, ϕ) is a smooth curve over ϕ ∈ T.
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Proof: The Lagrangian and hence Min(γ) smoothly depend on initial condi-

tions.

FixR >
3J2

0

2
and Pϕ. Define ϕΠ

max = ϕΠ
max(J0, R, Pϕ) and ϕΠ

min = ϕΠ
min(J0, R, Pϕ)

as the angles such that

Min(Pϕ, ϕ
Π
max) := max

γ∈SP (J0,R,Pϕ)
M(γin), Min(Pϕ, ϕ

Π
min) := min

γ∈SP (J0,R,Pϕ)
M(γin)

These angles exist by compactness of T since fixing (R, J0, Pϕ) leaves only ϕ ∈ T

free. A priori, it is not obvious these angles are unique. A computer may be used

to approximate these angles and later establish this fact. It is more difficult to

prove the existence of local minima and maxima which are different from global

minima and maxima since compactness and continuity cannot be to prove them

into existence. For now, assume the two other extrema are known and they are

ordered so that

ϕΠ
min ≤ ϕΠ

loc,min ≤ ϕΠ
loc,max ≤ ϕΠ

max

Call the angles ϕΠ
loc,max, ϕ

Π
max bad angles since they locally maximize the Maupertuis

action.

7.5.3 Action Comparison

Let ϕΠ
bad be a bad angle, either ϕΠ

loc,max(Pϕ) or ϕΠ
max(Pϕ). Define

∆M bad
in (Pϕ) := Min(Pϕ, ϕ

Π
bad(Pϕ))−Min(Pϕ, ϕ

Π
min(Pϕ))

∆ϕΠ(Pϕ) := ϕΠ
bad(Pϕ)− ϕΠ

min(Pϕ).
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Figure 7.2: ϕΠ vs. Min for J0 = 1.8, R = 5, Pϕ = 1.8

Information about the location of the bad angles is used to define the con-

straints. Initially a family of constraints {I(Pϕ)} is considered, then use additional

numerics are used to pick a subset with the property that trajectories which pass

through them have eccentricity increasing nearly maximally.

Definition 7.5.1. A constraint I = I(Pϕ) is an interval of angles

I(Pϕ) = [ϕΠ
max(Pϕ), ϕΠ

loc,max(Pϕ)] with ϕΠ
min(Pϕ) ∈ I(Pϕ).

The idea of the comparison in the outside region is the same as that of sec-

tion 2.1.6. Suppose γmax is an elongated Solar passage with section angle ϕΠ
bad.

A procedure to construct γtest, a new curve with smaller Maupertuis action, i.e.

M(γtest) < M(γmax), is described.

Heuristically, if the comet is in a sufficiently elliptic orbit and passes near a

bad (i.e. expensive) angle, then by modifying the velocity of the first outer R–Solar

passage γ−, the comet can slow down enough so that Jupiter moves from a position

where the Maupertuis action is maximized to a position where the Maupertuis action

is minimized in γin. The comet can then speed very slightly during the second outer
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R–Solar passage γ+ to arrive at the back at the endpoint.

Note that it takes a finite amount of time ∆T for the angle of Jupiter relative

to the comet to change by ∆ϕΠ. In non-rotating coordinates Jupiter moves with unit

speed, and for r ≥ R ≥ 5 the comet’s angle remains nearly constant since ψ̇ = Pϕ
r2 .

(In rotating coordinates, Jupiter is fixed and the comet is moving with almost unit

speed.) Hence ∆T ≈ ∆ϕΠ. By Kepler’s Second Law, for r ≥ R the comet moves

slower the further away it is from the Sun [AKN]. Denote the amount of time the

comet spends in the first outer R–Solar passage, γ−max, by Tout ≈ π

2
√

2(J0−Pϕ)
3
2

. To

keep the argument simple, assume by symmetry, this also the time spent in the γ+
max

segment.

A very small change in velocity changes the amount of time to reach the section

Π considerably. Let

λ± :=
Tout

Tout ∓∆ϕΠ
bad

≈ Tout
Tout ∓∆T

(Pϕ)λ± := J0 − (J0 − Pϕ)λ
2
3
±

Recall γmax is an elongated Solar passage such that the section angle is ϕΠ
bad and

γinmax maximizes action over all R–Solar passages. Consider a new curve γtest which

consists of

• an outer R–Solar passage on the energy surface H = −J0 with angular mo-

mentum (Pϕ)λ− . This trajectory moves slightly slower than γ−max.

• γintest is a R–Solar passage which minimizes Maupertuis action over all R–Solar

passages, i.e. the section angle of γtest is ϕΠ
min.
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• an outer R–Solar passage on the energy surface H = −J0 with angular mo-

mentum (Pϕ)λ+ . This trajectory moves slightly faster than γ+
max.

Remark: This is slightly different class of test curves than constructed in section

2.1.6. The reason for the difference is that in chapter 2, the classical action com-

parison requires the start and end times to remain unchanged. In this chapter, the

Maupertuis action is used and this requires that the curve γ remains on the energy

surface Sout(J0).

Claim: Suppose γmax is an elongated Solar passage which has initial angular

momentum Pϕ ≥ 1.74 on the energy surface Sout(1.8) and has section angle

ϕΠ ∈ [ϕΠ
bad −∆, ϕΠ

bad + ∆] for ∆ small, e.g. ∆ = 0.000025. Let γtest be constructed

as above. Then M(γmax)−M(γtest) > 0 and γmax is not a global action minimizer

for the Maupertuis action.

Proof: Computer Assisted. CAPD is used to rigorously integrate a class

of 5–Solar passages and compute the Maupertuis action for each passage. The

test trajectories can be constructed as described and Mathematica can be used to

perform the action comparison in the outside region.

Remark: The last part of the proof which uses Mathematica is currently

non-rigorous. The results in the outside region must be ‘intervalized’ as in section

2.2.

Note that the Maupertuis action difference in polar coordinates can be decom-
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posed as

∆M(γ) = M−
out(γ) +Min(γ) +M+

out(γ)− inf
γ̃

(
M−

out(γ̃) +Min(γ̃) +M+
out(γ̃)

)
≥
(
M−

out(γ)− inf
γ̃
M−

out(γ̃)
)

+
(
Min(γ)− inf

γ̃
Min(γ̃)

)
+
(
M+

out(γ)− inf
γ̃
M+

out(γ̃)
)

≥
(
M−

out(γ)−M−
out(γtest)

)
+
(
Min(γ)−Min(γtest)

)
+
(
M+

out(γ)−M+
out(γtest)

)
where γtest is constructed as above. The comparison method makes a lower

bound on the Maupertuis action difference. By proving the lower bound is strictly

positive, the possibility that γ is on a rotational torus (see theorem 7.2.1) or more

abstractly on some Aubry-Mather set is ruled out. The action comparison method

can be interpreted to say that if γ is an elongated Solar passage with section angle

ϕΠ ∈ ∂I, then ∆M(γrperih,ϕΠ , I) > 0. It follows from Lemma 7.3.2 that constrained

minimizers must then pass on the interior of the constraint, i.e. they won’t ever

pass through bad angles.

7.6 Jumps in Eccentricity

In the last section, a continuum of constraints was generated. In this section, a

specific subset is selected. The desired subset is one which increases the eccentricity

of trajectories that pass through it nearly maximally. To find this subset, good

estimates on the magnitude of jumps in eccentricity are required.

While it is conceptually easy to think of a jump in terms of eccentricity, as

a matter of practice it is more convenient to measure a jump in terms of angular

momentum. On the energy surface Sout(J0), eccentricity is monotonically increasing
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as a function of Pϕ. Hence it suffices to estimate the jump in angular momentum.

This data may be obtained from Lemma 2.2.2.

7.6.1 Behavior close to the Sun

This subsection studies how angular momentum can change after an R-Solar

passage. Some computer assistance is required since the perturbation terms are

difficult to estimate by hand in the kick region.

If {0 = ϕ0, ϕ1, ..., ϕn = 2π} is a partition of T with ϕi+1−ϕi = 2π
2M

for some M

large (e.g. M > 6), then it is possible to compute the change in angular momentum

over an R-Solar passage with ϕ ∈ [ϕi, ϕi+1] for a given initial angular momentum

Pϕ. Let

∆Pϕ(i, Pϕ) := min
ϕ∈[ϕi,ϕi+1]

(
Pϕ(T, ϕ)− Pϕ(0)

)
where Pϕ(0) is the angular momentum at the start of the R–Solar Passage and

Pϕ(T, ϕ) is the angular momentum at the end of the R–Solar passage on S(J0)

starting with an initial angle ϕ. Hence a mapping (i, Pϕ) 7→ ∆Pϕ(i, Pϕ) is obtained

which measures the difference in angular momentum before and after an R–Solar

passage.

Remark: The ‘min’ is taken in the definition of the difference to ensure that

the actual difference is strictly larger when using rigorous numerics. It is important

to take M large since as M increases the numbers then become more accurate.

If I(Pϕ) 6= T is a constraint, then for a sufficiently fine partition there exist
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integers j ≤ k such that

k⋃
i=j

[ϕi, ϕi+1] ⊂ I(Pϕ) ⊂
k+1⋃
i=j−1

[ϕi, ϕi+1]

Let

∆P+
ϕ (I(Pϕ)) := max

j≤i≤k
∆Pϕ(i, Pϕ)

The angular momentum can increase by at least ∆P+
ϕ when passing through the

interior of the constraint (the choice of j, k ensures passage on the interior). Let i∗

be such that ∆Pϕ(I(Pϕ)) = ∆P+
ϕ (i∗, Pϕ). Call the interval [ϕi∗ , ϕi∗+1] ⊂ int(I(Pϕ))

the interval the interval of maximal increase.

Lemma 7.6.1. For µ = 10−3, J0 = 1.8, e ≥ 0.9 (i.e. Pϕ ≥ 1.77), and R = 5 then

∆P+
ϕ (I(Pϕ)) ≥ 1.1µ.

Proof: A computer is programmed to calculate the above quantities.

Remark: Phrased in terms of rotation numbers, this produces a quantitative

bound on the size of gaps in rotation number a solution can jump between in the

Mather Connecting Theorem. Specifically, it is possible to jump between neighbor-

hoods of Aubry Mather sets with differences in rotation number between 0.10µ and

0.82µ after making a 5-Solar Passage. Since this quantity is bounded from below

by a positive constant, then it is possible to make a finite number of Solar passages

then escape the Solar System.
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7.6.2 Behavior Far from the Sun

Lemma 2.2.2 gives explicit bounds on the change in angular momentum far

from the Sun. This can be parlayed into information about when it is possi-

ble to exit the Solar system. Specifically in order to escape the Solar-System in

RCP3BP(0.001, 1.8) after a 5–Solar Passage, it is sufficient for a comet to have

P exit
ϕ := 1.8+0.0215298µ (also see proof of Theorem 1.1.2 in section 6.2.2). Leaving

with this angular momentum ensures the small perturbations in the outside region

do not push the comet back into an elliptic orbit.

7.7 Construction of a Diffusing Orbit

Recall that

ϕ̇ = −1 +
Pϕ
r2

so

ϕ(T )− ϕ(0) = −T +

∫ T

0

Pϕ
r2
dt ≈ −T.

where T is the return time to the section Π, i.e. the period of revolution for the

comet. To connect this quantity to angular momentum, we note that

T ≈ π
√

2(J0 − Pϕ)
3
2

.

Then for Pϕ close to J0, the period is large and only a very small change in angular

momentum is needed to make a change in the period of more than 2π. Put another

way, it is easier to diffuse when the comet is already of high eccentricity. See section

7.8 for another way to exploit this phenomenon.
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Suppose a comet on Sout(1.8) has initial angular momentum P 0
ϕ = 1.77. The

above results on change in angular momentum can be used to iteratively compute

P j
ϕ = P j−1

ϕ + ∆P+
ϕ (I(P j

ϕ))

starting the iteration with P 0
ϕ. Let N be the smallest positive integer when PN

ϕ ≥

P exit
ϕ . The sequence of angular momenta P j

ϕ has a corresponding sequence of con-

straints {I(P j
ϕ)} through which the comet must pass in order to achieve maximal

increase in angular momentum.

Lemma 7.7.1. For Sout(1.8), µ = 0.001, and P 0
ϕ = 1.77 then k = 29.

Proof: Computer assisted1.

Remark: Work is being conducted to improve this bound to the k ≈ 80 and

decrease P 0
ϕ ≈ 1.7. This would explicitly establish an escaping orbit which starts

around e = 0.66.

With the construction of the constraints complete, proof of Theorem 1.1.2

follows from Lemma 7.3.2, and the fact is takes N = 29 + 1 constraints (passage

through a constraint occurs once per revolution around the sun). By construction of

the constraints, a comet which passages through the interior makes a nearly maximal

increase increase after a revolution, hence the constrained minimizer is a diffusing

orbit which escapes in nearly minimal time.

1Rigorous numerics still pending
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7.8 Using gravity assists to construct diffusing orbits

This section outlines a procedure to produce diffusing orbits which does not

depend on variational methods. It is a straightforward numerical algorithm.

Start by noting that since the Hamiltonian H = H(r, ϕ, Pr, Pϕ) is two degrees

of freedom, then fixing an energy surface Sout(J0) implicitly defines one of the vari-

ables. Take this variable to be Pr = Pr(J0, R, ϕ, Pϕ), which is given by formula 4.2.

Define Tin(ϕ, Pϕ) to be the time it takes a trajectory to make an R-Solar passage.

Define Tout(ϕ, Pϕ) to be the time it takes a trajectory to make an outer R-Solar

passage.

Suppose Φt(r, ϕ, Pr, Pϕ) is the flow for the RCP3BP. On a fixed energy surface,

introduce the following shorthand notation. Let

Φin(ϕ, Pϕ) =(ϕ, Pϕ)|ΦTin (R,ϕ,Pr(J0,R,ϕ,Pϕ),Pϕ)

Φout(ϕ, Pϕ) =(ϕ, Pϕ)|ΦTout (R,ϕ,Pr(J0,R,ϕ,Pϕ),Pϕ)

Hence Φin and Φout are maps of T×R to itself. The map Φin is easily analyzable

by a computer; just integration over short segments of trajectory. The map Φout

behaves almost exactly like a return map for the 2BP(SC).

Lemma 7.8.1. Φout(ϕ, Pϕ) ∈ T × [Pϕ − 2ρ(R), Pϕ + 2ρ(R)] where ρ(R) is defined

in section B.1. (For µ = 0.001,J0 = 1.8 and R = 5, then ρ(5) = 0.0215298µ.)

Proof: The is a rephrasing of Lemma 2.2.2.

Lemma 7.8.2. |Pϕ|Φin(ϕ(0),Pϕ(0)) − Pϕ(0)| . µ.

143



Proof: This is a subset of what is proved in Theorem 2.2.4. The data that is

produced in the proof of the theorem can give an explicit upper bound.

Lemma 7.8.3. Suppose [P−ϕ , P
+
ϕ ] is an interval of angular momenta with thickness

P+
ϕ −P−ϕ ≥ C(µ, J0, P

−
ϕ )µ. There exists a function C = C(µ, J0, Pϕ) ≈ J0−Pϕ with

C(µ, J0, Pϕ)→ 0 as Pϕ → J0 so that [0, 2π] ⊂ ϕ|Φout(ϕ,[P−ϕ ,P+
ϕ ]).

Proof: Tout ≈ π
√

2(J0−Pϕ)
3
2

and as Pϕ → J0, then small changes in angular

momentum make large changes in period. Since ϕ ≈ −t, then for a sufficiently

large interval of angular momenta, the image spans the unit circle. A computer can

explicitly find the function C to measure the size of the interval of initial conditions

needed.

The first lemma says angular momentum doesn’t change much far from the

Sun. The second lemma says near the Sun, angular momentum can jump by size µ.

The third lemma is the key. It says that Jupiter acts as a scatterer and spreads out

a small interval of initial conditions. Armed with these lemmas one can construct

diffusing orbits.

The algorithm involves iterative evaluation of Φin and Φout on graphs of

angular momentum over the circle. If G = {(ϕ, Pϕ(ϕ))|ϕ ∈ R}, then define

π(G) = {(ϕ0, infϕ=ϕ0 mod 2π Pϕ(ϕ))|ϕ0 ∈ T} to be the lower projection of G back

onto the base, i.e. if one point on T has two points above it, take the lower one.

Consider the following algorithm to construct diffusing orbits.

1. Select P 0
ϕ and set G0 = {(ϕ, P 0

ϕ)|ϕ ∈ T} where P 0
ϕ is sufficiently large. Let

i = 0.
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2. Compute Gi+1 = Φin(Gi). Compute the angle ϕmax such that

Pϕ|Φin(ϕmax,Pϕ(ϕmax)) > Pϕ|Φin(ϕ,Pϕ(ϕ))

for angles ϕ 6= ϕmax. I.e. the angle ϕmax makes the largest jump in angular

momentum.

3. Select an interval Ii such that ϕmax ∈ Ii and forGIi = {(ϕ, Pϕ(ϕ)) ∈ Gi|ϕ ∈ Ii}

it holds that [0, 2π] ⊂ ϕ|Φout◦Φin(GIi )
. By the second lemma, there is a large

jump in angular momentum, and by the third lemma, for sufficiently large

initial angular momenta, the gap in angular momenta is large enough to get

that the image spans the whole circle T.

4. Compute Gi+1 = π(Φout ◦ Φin(GIi)). If Tout = +∞, terminate the algorithm

as this corresponds to cometary escape. Otherwise let i := i + 1 and go back

to step 2.

Iteration of the algorithm terminates when an angular momentum satisfying the exit

condition is located. The algorithm allows one to zero in on an escaping trajectory.

Each interval Ii ∈ T contains initial conditions for a trajectory which makes one

maximal jump. For i > 0, these intervals have pullbacks under the flow back to

the initial conditions. Let Ĩi be the pullback of the ith interval under (Φout ◦ Φin)i,

i.e. a pullback to the initial conditions. By the third lemma, this is nonempty and

contained inside of I0. Let

Λ = I0 ∩ Ĩ1 ∩ ... ∩ ∩Ĩk
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where the Ik the interval generated when the algorithm terminates. Then all

initial conditions in Λ are escaping orbits.

Physically this numerical procedure simply selects initial conditions so that

the comet gets nearly maximal gravity assists after each passage by the Sun.

Application: For those readers who are concerned with industrial applica-

tions of this work, consider the following. Replace ‘comet’ with ‘space craft’. This

algorithm gives a quick way to construct diffusing orbits, which is to say it gives an

efficient way to produce trajectories of space craft which use no fuel but nonetheless

travel great distances. Of course the actual Solar System contains more planets than

just Jupiter (a likely motivation for space exploration in the first place) so it is left

to the reader to work out the details in a multi-planet scenario.
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Appendix A

Estimates on Perturbation Terms

A.1 Estimates on ∆H and Polar Derivatives

Tight estimates on the perturbation term ∆H and its derivatives are needed

in order to get good numerics. The Taylor series expansion of ∆H in 1
r

yields

∆H(r, ϕ;µ) =
∞∑
i=1

(−1)i
µ(1− µ)

(
µi − (µ− 1)i

)
ri+2

Pi+1(cos(ϕ))

where Pi is the ith Legendre Polynomial, and is given by the recursive formula

(i+ 1)Pi+1(x) = (2i+ 1)xPi(x)− iPi−1(x).

(See formula 1.1.) Expansions of Newtonian potentials were one of the reasons

Legendre considered these polynomials. In fact

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x)tn

For x ∈ (1, 1), |Pi(x)| < 1 and |Pi(±1)| = 1. From this, one concludes that the series

expansion for ∆H converges provided µ is small and r > 1+µ, e.g. when the comet

is in the outside region. One can also show that |P ′i (x)| ≤ i(i+1)
2

for x ∈ [−1, 1]. See

e.g. [R] for formulas and derivation of Legendre Polynomials.

Bounding the Legendre Polynomials produce bounds on the perturbation terms
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which are independent of ϕ. Do this to define

max
ϕ
|∆H(r, ϕ;µ)| ≤ (|∆H|)+(r) max

ϕ
|∂ϕ∆H(r, ϕ;µ)| ≤ (|∂∆H

∂ϕ
|)+(r)

max
ϕ
|∂r∆H(r, ϕ;µ)| ≤ (|∂∆H

∂r
|)+(r) max

ϕ
|∂2
rϕ∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂r∂ϕ
|)+

max
ϕ
|∂2
ϕϕ∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂ϕ2
|)+ max

ϕ
|∂2
rr∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂r2
|)+

(|∆H|)+(r) :=
µ(1− µ)

r(r − 1 + µ)(r + µ)
= O(

µ

r3
)

(|∂∆H
∂ϕ
|)+(r) :=

µ(1− µ)r
(
1 + 3r(r − 1) + µ(6r − 3) + 3µ2

)
(r − 1 + µ)3(r + µ)3

= O(
µ

r3
)

(|∂∆H
∂r
|)+(r) := − 1

r2
+

µ

(r − 1 + µ)2
+

1− µ
(r + µ)2

= O(
µ

r4
)

(|∂
2∆H
∂r∂ϕ

|)+ := µ(1− µ)
(

3(1− µ)
(r − 1 + µ)4

+
2

(r − 1 + µ)3
+

3µ
(µ+ r)4

− 2
(µ+ r)3

)
= O(

µ

r4
)

(|∂
2∆H
∂ϕ2

|)+ := 3µ(1− µ)
(

(1− µ)3

(r − 1 + µ)5
+

µ3

(µ+ r)5

)
= O(

µ

r5
)

(|∂
2∆H
∂r2

|)+ := − 2
r3

+
2µ

(r − 1 + µ)3
+

2(1− µ)
(µ+ r)3

= O(
µ

r5
)

Remark: All of these estimates are independent of the Jacobi constant. For r ≥ 1.5

and µ = 0.001, even more explicit estimates can be made.

max
ϕ
|∆H(r, ϕ;µ)| ≤ 3µ

r3
max
ϕ
|∂ϕ∆H(r, ϕ;µ)| ≤ 39µ

r3

max
ϕ
|∂r∆H(r, ϕ;µ)| ≤ 15µ

r4
max
ϕ
|∂2
rϕ∆H(r, ϕ;µ)| ≤ 319µ

r4

max
ϕ
|∂2
ϕϕ∆H(r, ϕ;µ)| ≤ 719µ

r5
max
ϕ
|∂2
rr∆H(r, ϕ;µ)| ≤ 108µ

r5

A.2 Bounds on the Perihelion

Consider the case µ = 10−3 and J0 = 1.8. It is useful to have some initial

bounds on angular momentum and minimal radius. The 2BP(SC) for elliptic and

parabolic motions are known to have minimum perihelion radius rperih ≥ J2
0

2
.
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One can easily prove for a fixed angle ϕ, that the radius of the perihelion is

decreasing as a function of Pϕ. It suffices to examine perihelions at the ϕ-critical

points of ∆H. The critical points are at ϕ = 0, π and cos(ϕ) = 1−2µ
2r

. Since ∆H

is algebraic in r at those critical points, a CAS can solve and find the minimum

perihelion radius for elliptic and parabolic motions. This is how Lemma 1.1.1 is

proved. Doing so for J0 = 1.8, µ = 10−3, and Pϕ ≤ 1.81 yields the rperih ≥

1.61839 ≥ 1.82

2
− 2µ. Doing this for all eccentricities and Jacobi constants with

J0 ∈ [1.52, 2] yields rperih ≥ 1.82

2
− 33µ.

The class of solutions that need to be analyze for the proof of Theorem 1.1.2

has Pϕ ≤ 1.81, i.e. e ≤ 1.0324. Computing the minimum perihelion radius for this

class yields

rperih ≥ 1.61048 = rperihmin |∆H| ≤0.629509µ

A.3 Estimates on terms involving Delaunay

This subsection collects estimates involving perturbation terms and Delaunay

variables. Estimates throughout this section use µ = 10−3 and the above estimates

on perturbation terms in polar. Additionally it is assumed that J0 = 1.8 and G ∈

[1.67, 1.81]. For these parameters, one can show that eccentricity e ∈ [0.52, 1.04]. In

the above subsection it is established that for these parameters, r ≥ 1.6.

Remark: Some estimates are carried out in Delaunay and others in alge-

braically deformed Delaunay (ADDV). If an estimate is done using Delaunay, it is

not hard to convert it to ADDV by simply attaching subscript ν’s to all Delaunay
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variables. From the definition of ADDV and since ν = 2.8µ is small, then it is not

hard to show that Gν ∈ [1.67−ν, 1.81−ν] and eν ∈ [0.5, 1.03]. Furthermore if e ≤ 1,

then eν ≤ 0.998 < 1.

Lemma A.3.1. If J0 = 1.8, µ = 10−3, and G ∈ [1.67, 1.81], then |∂∆H
∂Lν
| ≤ 0.105512.

Furthermore |∂∆H
∂Lν
| ≤ 433µ

r3 for r > 1.6.

Proof:

∂∆H

∂Lν
=
(∂∆H

∂r

)( ∂r
∂Lν

)
+
(∂∆H

∂ϕ

)( ∂ϕ
∂Lν

)
Use the quantities in the above subsection to produce upper bounds on the

derivatives of the perturbation terms. Use of a computer algebra system1 yields

∂r

∂Lν
=
G2
νr + 2e2

νr
2 −G4

ν

Lνe2
νr

∂ϕ

∂Lν
= −Gν(G

2
ν + r) sin(uν)

r2eν

For µ = 0.001, J0 = 1.8, and G ∈ [1.67, 1.81], then Gν = G− 2.8µ ≤ 1.81 and

eν ∈ [0.5, 1.03]. Furthermore, Lν ≥ 1.6 everywhere on the energy surface. Hence

| ∂r
∂Lν
| =|G

2
νr + 2e2

νr
2 −G4

ν

Lνe2
νr

| ≤ 1.812r + 2 · 1.032r2 + 1.814

1.6 · 0.52r

| ∂ϕ
∂Lν
| =| − Gν(G

2
ν + r) sin(uν)

r2eν
| ≤ 1.81(1.812 + r)

r20.5
.

Note the upper bounds are at most O(r). Hence

|∂∆H

∂Lν
| ≤ (|∂∆H

∂r
|)+|
( ∂r
∂Lν

)
|+ (|∂∆H

∂ϕ
|)+|
( ∂ϕ
∂Lν

)
| = O(

µ

r3
)

Using a computer algebra system, it is not hard to show the upper bound is

in fact strictly decreasing in r and the upper bound of r > 1.6 yields that |∂∆H
∂Lν
| ≤

1Actually the computer algebra system is used to generate these quantities in Delaunay vari-

ables. Since Dν = D ◦ (Pϕ 7→ Pϕ − ν), then as algebraic expressions they are the same as in

Delaunay. However the variables themselves have different values.
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0.105512. Additionally the CAS can explicitly show the upper bound is less than

433µ
r3 for r ≥ 1.6

Lemma A.3.2. Fix µ = 10−3 and J0 = 1.8. Then |∂∆H
∂G
| ≤ 0.025 and hence

ġ = −1 + ∂∆H
∂G

< 0.

Proof: Let us begin by computing.

∂∆H

∂G
=
∂∆H

∂r

∂r

∂G
+
∂∆H

∂ϕ

∂ϕ

∂G
.

Its possible to bound |∂∆H
∂r
| and |∂∆H

∂ϕ
| with (|∂∆H

∂r
|)+ and (|∂∆H

∂ϕ
|)+ respectively.

Using that r ≥ rperihmin = 1.61048, one finds |∂∆H
∂r
| ≤ 1.81101µ and |∂∆H

∂ϕ
| ≤ 6.65233µ.

One can compute (via a CAS)

∂r

∂G
=
G(G2 − r)

re2

∂ϕ

∂G
=
L(G+ r) sin(u)

r2e

∂r
∂G

has critical points at u = 0, π (recall r = L2(1 − e cos(u)). Evaluation at

the critical points gives the bound | ∂r
∂G
| ≤ G

e
. Using e ∈ [0.5, 1.1] and G ∈ [1.6, 1.82]

gives us | ∂r
∂G
| ∈ [1.45455, 3.64].

The story for ∂ϕ
∂G

is a bit more complicated. One can compute the critical

points in u and find two critical points u1 and u2 (these are found with a computer

algebra system). u2 is a complex root for e < 1 and for e > 1, ∂ϕ
∂G
|u=u2 is complex.

Hence u2 can be disregarded. It turn out that ∂ϕ
∂G
|u=u1 = f(e)

G
where f(e) is a function

of e only. For e ∈ [0.5, 1.1], then f(e) ∈ [2.03336, 4.11667]. Using G ∈ [1.6, 1.82]

yields | ∂ϕ
∂G
| ∈ [1.11723, 2.57292].

Hence |∂∆H
∂G
| ≤ 1.81101µ · 3.64 + 6.65233µ · 2.57292 = 0.023708 < 0.025

Corollary A.3.3. If J0 = 1.8, µ = 10−3, and G ∈ [1.67, 1.81] then |∂∆H
∂Gν
| ≤ 0.025.
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Proof: In the above Lemma, we showed |∂∆H
∂G
| ≤ 0.025. This bound still holds

since ∂∆H
∂Gν

= ∂∆H
∂G

∂G
∂Gν

= ∂∆H
∂G

and ∂Gν
∂G

= 1 since Gν = G− ν.

Lemma A.3.4. If J0 = 1.8, µ = 10−3, and G ∈ [1.66, 1.81], then ( ∂Lν
∂Gν

) ≥ 2.85283.

For the 2BP(SC), L = (2J0 − 2G)−
1
2 , so ( ∂L

∂G
) = 2(2J0 − 2G)−

3
2 ≥ 6.74937 for

J0 = 1.8 and G ≥ 1.66.

Proof of Lemma A.3.4: Write the RCP3BP Hamiltonian in ADDV and use

Lν as implicit function of the other variables.

(J0 + ν) =
1

2
(
Lν(J0, `ν , Gν , gν)

)2 +Gν + ∆H

(
Lν
(
J0, `ν , Gν , gν

)
, `ν , Gν , gν

)
.

Take the derivative and solve for ∂Lν
∂Gν

to get

∂Lν
∂Gν

=
1− ∂∆H

∂Gν

L−3
ν + ∂∆H

∂Lν

(A.1)

From Lemmas A.3.1 and A.3.3 and the fact that Lν ≥ 1.6, it follows that

(
∂Lν
∂Gν

)−1 ≤ L−3
ν + 0.0802431

1− 0.025
≤ 0.350529

Hence the claim follows.

Lemma A.3.5. For µ = 0.001, r > 1.5, G ∈ [1.6, 1.81],

|
(
∂2∆H

∂`∂G

)
| ≤ 21

r7/2(1− e)3/2
+

35|Pr|
r5/2(1− e)5/2

Proof: Starting with

(
∂∆H

∂`

)
=

(
∂∆H

∂r

)(
∂r

∂`

)
+

(
∂∆H

∂ϕ

)(
∂ϕ

∂`

)
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compute(
∂2∆H

∂`∂G

)
=

(
∂∆H

∂r

)(
∂2r

∂`∂G

)
+

(
∂r

∂`

)(
∂2∆H

∂r2

∂r

∂G
+
∂2∆H

∂r∂ϕ

∂ϕ

∂G

)
+(

∂∆H

∂ϕ

)(
∂2ϕ

∂`∂G

)
+

(
∂ϕ

∂`

)(
∂2∆H

∂r∂ϕ

∂r

∂G
+
∂2∆H

∂ϕ2

∂ϕ

∂G

)
.

Now each term shall be estimated. It is helpful to know the following con-

versions between polar and Delaunay. These formulas were found with the aid of a

computer in some cases.

r = L2 (1− e cos(u)) Pr =
Le sin(u)

r

∂r

∂G
=
G(G2 − r)

re2

∂ϕ

∂G
=

(G2 + r)Pr
re2

∂r

∂`
= L3Pr

∂ϕ

∂`
= −GL

3

r2

∂2r

∂`∂G
=

(e2 − 1)GL5Pr
e2r2

∂2ϕ

∂`
= −L(2G4L2 + e2L2r2 +G2(4r2 − 6L2r))

e2r4

For each term, only an upper bound in absolute value is sought. In general

it is desirable to have as large a power of r in the denominator as possible, and as

small a power of (1− e) in the denominator as possible.

|
(
∂∆H

∂r

)(
∂2r

∂`∂G

)
| ≤ 15µ

r4

(1− e2)GL5Pr
e2r2

≤ 1.81L5Pr
0.52r6

≤ 14Pr
(1− e)5/2r7/2

|
(
∂r

∂`

)(
∂2∆H

∂r2

)(
∂r

∂G

)
| ≤ L3Pr ≤

108µ

r5

Gr +G3

re2
≤ 108µL3(1.81r + 1.813)Pr

r60.52

≤ 2.5L3Pr
r5

≤ 2.5Pr
r7/2(1− e)3/2

|
(
∂r

∂`

)(
∂2∆H

∂r∂ϕ

)(
∂ϕ

∂G

)
| ≤ L3Pr

319µ

r4

(G2 + r)Pr
re2

≤ 319µL3(1.812 + r)Pr
0.52r5

≤ 4.1L3Pr
r4

≤ 4.1Pr
r5/2(1− e)3/2
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|
(
∂ϕ

∂`

)(
∂2∆H

∂r∂ϕ

)(
∂r

∂G

)
| ≤ GL3

r2

319µ

r4

G(G2 + r)

re2
≤ 1.81L3319µ1.81(1.812 + r)

0.52r7

≤ 14L3

r6
≤ 14

r9/2(1− e)3/2

|
(
∂ϕ

∂`

)(
∂2∆H

∂ϕ2

)(
∂ϕ

∂G

)
| ≤ GL3

r2
≤ 719µ

r5

(G2 + r)Pr
re2

≤ 1.81L3Pr(1.812 + r)719µ

r80.52

≤ 17L3Pr
r7

≤ 17Pr
r11/2(1− e)3/2

|
(
∂∆H

∂ϕ

)(
∂2ϕ

∂`∂G

)
| ≤ 39µ

r3

L(2G4L2 + e2L2r2 +G2(4r2 + 6L2r))

e2r4

≤ 39µL(2 · 1.814L2 + 1.012L2r2 + 1.812(4r2 + 6L2r))

0.52r7

≤ 4L3

r7
+

4L3

r6
+

3L

r5
+
L3

r5

≤ 4

r11/2(1− e)3/2
+

4

r9/2(1− e)3/2
+

3

r9/2(1− e)1/2
+

1

r7/2(1− e)3/2

Adding all the terms with Pr’s we find

14Pr
(1− e)5/2r7/2

+
2.5Pr

r7/2(1− e)3/2
+

17Pr
r11/2(1− e)3/2

+
4.1Pr

r5/2(1− e)3/2

≤ 17 + 17r2 + 5r3 + 1.01(17 + 3r2 + 5r3)

r11/2(1− e)5/2
≤ 35Pr
r5/2(1− e)5/2

Adding all the terms without Pr’s we find

4

r11/2(1− e)3/2
+

4

r9/2(1− e)3/2
+

3

r9/2(1− e)1/2
+

1

r7/2(1− e)3/2
+

14

r9/2(1− e)3/2

≤ 4 + 27r + r2

r11/2(1− e)3/2
≤ 21

r7/2(1− e)3/2
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Appendix B

Estimates involving nearly integrable quantities

B.1 Estimates on change in Angular Momentum

In this appendix, Lemma 2.2.2 on the change in angular momentum is proved.

Recall that

Ṗϕ = −∂∆H

∂ϕ

Hence

∆Pϕ(t0, t1) = Pϕ(t1)− Pϕ(t0) =

∫ t1

t0

−∂∆H

∂ϕ
dt

Now

d

dt

(
∆H(r(t), ϕ(t))

)
=

(
∂∆H

∂r
(t)

)
ṙ(t) +

(
∂∆H

∂ϕ
(t)

)
ϕ̇(t)

and hence

∂∆H

∂ϕ
(t) =

1

ϕ̇(t)

(∂∆H

∂r
(t)ṙ(t)− d

dt
(∆H(t))

)
Plugging in and using a change of variables gives

∆Pϕ(t0, t1) =

∫ t1

t0

− 1

ϕ̇(t)

(∂∆H

∂r
(t)ṙ(t)− d

dt
∆H(t)

)
dt

=

∫ t1

t0

1

ϕ̇(t)
(
d

dt
∆H(t))dt−

∫ r(t1)

r(t0)

1

ϕ̇(t(r))

(∂∆H

∂r

)(
r, ϕ(t(r))

)
dr

Let r0 = r(t0) and r1 = r(t1). Suppose the comet is approaching the perihelion from

the preceding aphelion, or from infinity. Then r1 ≤ r0. As t increases, r decreases,

and the estimate should account for more uncertainty in the value of Pϕ given that
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the perturbation term grows larger in magnitude closer to the Sun.

|∆Pϕ(t0, t1)| ≤ 1

minr∈[r0,r1] |ϕ̇(r)|

(
|
∫ t1

t0

d

dt
∆H(t)dt|+

∫ r0

r1

|∂∆H

∂r
|dr
)

Note that

min
r∈[r0,r1]

|ϕ̇(r)| ≥ min
r∈[r0,r1]

(1− Pϕ
r2

) ≥ 1− maxPϕ
r2

1

Hence

|∆Pϕ(t0, t1)| ≤ 1

1− maxPϕ
r2
1

(|∆H(t1)−∆H(t0)|+
∫ r0

r1

|∂∆H

∂r
|dr)

≤ 1

1− maxPϕ
r2
1

(
(|∆H|)+(r0) + (|∆H|)+(r1) +

∫ r0

r1

(|∂∆H

∂r
|)+dr

)
Claim:

(
(|∆H|)+(r0)+(|∆H|)+(r1)+

∫ r0
r1

(|∂∆H
∂r
|)+dr

)
is nondecreasing as a function

of r0 for r0 ≥ r1 ≥ 1 + µ.

Proof: Differentiate with respect to r0 and note the derivative is identically

zero.

Since (|∆H|)+ is decreasing as a function of r and limr0→∞(|∆H|)+(r0) = 0,

from this claim it follows that

|∆Pϕ(t0, t1)| ≤ ρ(r(t1)) = ρ(r1) :=
1

1− M
r2
1

(
(|∆H|)+(r1) +

∫ ∞
r1

(|∂∆H

∂r
|)+dr

)
(B.1)

2µ(1− µ)r

(r2 −M)(r − 1 + µ)(r + µ)

provided that the radius is decreasing from t0 to t1. Using M = (maxPϕ) =

1.81 to evaluate ρ(5) gives an upper bound on the change of Pϕ over the whole

outside region. Note that this argument can be made symmetric by considering

change from the final conditions and reversing time. Hence, when approaching the

perihelion from the preceding aphelion or from infinity, (1) angular momentum does
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not change by more than ρ(5) ≈ 0.0215298µ over the entire outside region, (2)

angular momentum does not change by more than ρ(rperihmin ) ≈ 4.44885µ, and (3)

angular momentum does not change by more than 2ρ(5) + 2ρ(rperihmin ) ≈ 8.94077µ

during an R–Solar passage. Note that the construction allows for any type of R–

Solar passage, elliptic, parabolic, or hyperbolic, provided that Pϕ ≤ 1.81 during the

passage.

If one only cares about change in angular momentum after an R–Solar passage,

then (3) is not an optimal bound. CAPD is used to perform rigorous integration over

all 5–Solar passages with Pϕ ∈ [1.68753, 1.81]. It finds |∆Pϕ| ≤ 1.4µ (see Theorem

2.2.4). Thus a more tight estimate on total change in angular momentum after an

R–Solar passage is 1.4µ+ 2 · 0.0215298µ < 1.444µ.

This justifies the initial choice of Pϕ ≤ 1.81 in the analysis, since if the comets

starts with Pϕ(0) = 1.8 (i.e. e = 1) and approaches the Sun to make an R–Solar

passage, then the most angular momentum could ever be is Pϕ = 1.80894077 < 1.81.

Comets with angular momentum slightly above Pϕ = J0, i.e. slightly above e = 1

after a 5-Solar passage escape the solar system.

Remark: J0 = 1.8 and µ = 10−3 are implicitly used to generate the estimate

on change in angular momentum since these constants are used in estimates on ρ,

(|∆H|)+, and (|∂∆H
∂r
|)+. The dependency on J0 is not so strong; it was only used

describe the domain of nearly parabolic motions, namely to give (maxPϕ) ≤ 1.81.

The software to estimate this quantity can be adapted to other µ and J0.
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B.2 An Analysis of the Variational Equations for the RCP3BP

This section analyzes the equations of first variation for the RCP3BP. Consider

the following time dependent matrix A(t) which depends on the flow of the RCP3BP

at time t:

A(t) =



0 0 1 0

−2Pϕ
r3 0 0 1

r2

−3P 2
ϕ

r4 + 2
r3 − ∂2∆H

∂r2 −∂2∆H
∂r∂ϕ

0 2Pϕ
r3

−∂2∆H
∂r∂ϕ

−∂2∆H
∂ϕ2 0 0


Let

X(t) =



∂r
∂r0

∂r
∂ϕ0

∂r
∂Pr0

∂r
∂Pϕ0

∂ϕ
∂r0

∂ϕ
∂ϕ0

∂ϕ
∂Pr0

∂ϕ
∂Pϕ0

∂Pr
∂r0

∂Pr
∂ϕ0

∂Pr
∂Pr0

∂Pr
∂Pϕ0

∂Pϕ
∂r0

∂Pϕ
∂ϕ0

∂Pϕ
∂Pr0

∂Pϕ
∂Pϕ0


.

Then the equations of variation are given by a time-dependent linear ODE:

Ẋ = A(t)X (B.2)

The equations of variation tell how a vector v = (v1, v2, v3, v4) is transported

under the flow in the tangent space. Since all work is restricted on to the energy

surface S(J0), tangent vectors must be restricted to be tangent to the energy surface.

Differentiating H(r, ϕ, Pr, Pϕ) = −J0, it is not hard to see that vectors must satisfy

the constraint:

(∂H
∂r

)
v1 +

(∂H
∂ϕ

)
v2 +

( ∂H
∂Pr

)
v3 +

( ∂H
∂Pϕ

)
v4 = 0

Using this constraint on the initial conditions, a reduced linear system involving

158



only 3 of the 4 variables in each column of X can be solved. Additionally knowledge

of solutions involving 3 of the column vectors may be used to obtain solutions to the

fourth. It shall be made clear in context which variable is being implicitly defined.

In all cases, call the equations of variation with the flow on S(J0) and tangent vectors

satisfying (B.2) the reduced equations of variation. It is not hard to show if an initial

tangent vector satisfies (B.2), then it satisfies (B.2) for all time under the full flow.

Hence when convenient, the full system shall be used with the understanding the

the initial conditions are taken tangent to the energy surface.

Theorem B.2.1. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions

for the flow of the are at the aphelion. If
(

∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

, ∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1) and the

remaining initial condition satisfies (B.2) then

1. |
(
∂Pϕ
∂Pϕ0

)
(t)− 1| ≤ 0.000268671 for t ∈ [0, t5] where t5 is the first positive time

such that r(t5) = 5.

2.
(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.12, 1.79] for t ∈ [0, T ] where T is the first positive time that

the comet is at the perihelion.

Note that for r large A(t) ≈ (0), the system is expected to behave roughly like

X(t) = X(0). Hence Theorem B.2.1 says that far enough from the sun, the varia-

tional equations don’t vary too much. Indeed in the outside region, the variational

equations behave very much like those of the 2BP(SC). See [Beu] for a presentation

of closed form solutions to the equations of first variation for the 2BP.

The theorem is broken down into a series of lemmas. First a series of rough

estimates is established in the outside region where the perturbation term is small.
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These estimates may be done by hand. These rough estimates are then used to

produce refined estimates of the behavior in the outside region. This shall yield the

first claim of theorem. The second claim is proved with the assistance of a computer

since the perturbation terms have a much stronger influence in the kick region and

by hand estimates are insufficient to obtain good estimates.

Lemma B.2.2. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for

the flow are at the aphelion. If
(

∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

, ∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1) and the remaining

initial condition satisfies (B.2), then

|
(

∂r

∂Pϕ0

,
∂ϕ

∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
(t)− (0, 0, 1)| ≤ 1.31926

for t ∈ [0, t5] where t5 is the first positive time such that r(t5) = 5, and where the

norm considered is the p = 1 norm.

Proof of Lemma B.2.2: First the 2-degree-of-freedom Hamiltonian for the

RCP3BP in polar is reduced to a 1.5-degree-of-freedom time periodic system. Then

analysis of the corresponding reduced equations of variation is conducted.

Use the energy reduction procedure found for example in e.g [A], sect. 45 to

define a time-rescaled Hamiltonian

HJ0 = −J0 + Pr

whereH given by (1.2) is the Hamiltonian for RCP3BP in rotating polar coordinates.

Examining the equations of motion,

∂HJ0

∂Pr
= 1

∂HJ0

∂Pϕ
=

∂H
∂Pϕ

Pr

∂HJ0

∂r
=

∂H
∂r

Pr

∂HJ0

∂ϕ
=

∂H
∂ϕ

Pr
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notice that flows of H on S(J0) = {H = −J0} and flows on HJ0 are the same

up to rescaling of time, except at aphelion/perihelion points where Pr = ṙ is zero.

Furthermore Pr = Pr(J0, r, ϕ, Pϕ) is explicitly given by (4.2) on S(J0). The time

rescaling for HJ0 is given by r(t) 7→ t. Notice that this map is monotonic except at

aphelions/perihelions and this is why the rescaling is not defined at those points.

Consider the equations of variations for the rescaled system. Let

v =
(

∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

, ∂Pr
∂Pϕ0

, ∂Pϕ
∂Pϕ0

)
(0). Notice that Pr is given implicitly by (4.2), v3 = ∂Pr

∂Pϕ0

is given implicitly by (B.2), and r serves as the time variable. Hence it suffices to

consider only the 2× 2 system

(
d

dr

) ∂ϕ
∂Pϕ0

∂Pϕ
∂Pϕ0

 =
1

Pr

 0 1
r2

−∂2∆H
∂ϕ2 0


 ∂ϕ

∂Pϕ0

∂Pϕ
∂Pϕ0

 (B.3)

Let Ã(r) denote the reduced coefficient matrix above, and let x =
(

∂ϕ
∂Pϕ0

, ∂Pϕ
∂Pϕ0

)
.

Suppose r1 ≤ r0 and Pr = Pr(J0, r, ϕ, Pϕ) is nonzero for r ∈ (r1, r0). It follows

from the standard theory of linear ODEs that for r ∈ [r1, r0], the solutions to the

reduced variational equations are of the form

x(r) = x(r0) +

∫ r

r0

Ã(s)x(s)ds.

Rewrite this as

x(r)− x(r0) =

∫ r

r0

Ã(s)x(r0)ds+

∫ r

r0

Ã(s)
(
x(s)− x(r0)

)
ds.

Letting | · | denote the p-norm for p = 1,

|x(r)− x(r0)| ≤
∫ r0

r1

|Ã(s)x(r0)|ds+

∫ r0

r

|Ã(s)||x(s)− x(r0)|ds.
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The first term on the right is independent of r (since the upper bound∫ r0
r1
|Ã(s)x(r0)|ds ≥

∫ r0
r
|Ã(s)x(r0)|ds was used), hence Gronwall’s Inequality can be

applied to obtain

|x(r)− x(r0)| ≤ |x(r0)| ·
∫ r0

r1

|Ã(s)|ds · exp

(∫ r0

r1

|Ã(s)|ds
)
.

Hence to obtain a concrete estimation, it suffices to estimate
∫ r0
r1
|Ã(s)|ds. This

is done in Lemma B.2.5 (proved below) which provides a function a(r1) to uniformly

bound
∫ r0
r1
|Ã(s)|ds over all Pϕ ∈ [1.7, 1.81]. The estimates from the lemma yield

Claim:
∫ r0
r1
|Ã(s)|ds ≤ a(5) = 0.673031

See Lemma B.2.5 for an explicit form of a(r1). The claim is believable since

far from the Sun, the terms in the matrix Ã goto zero at a rate of at most O( 1
r2 )

so integration with respect to r should produce a convergent quantity. The claim

yields

|x(r)− x(r0)| ≤ 1.31926|x(r0)|

The following lemma establishes claim (1) of Theorem B.2.1.

Lemma B.2.3. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for

the flow are at the aphelion. If
(

∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

, ∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1) and the remaining

initial condition satisfies (B.2), then

|
(
∂Pϕ
∂Pϕ0

)
(t)− 1| ≤ 0.268671µ

for t ∈ [0, t5] where t5 is the first positive time such that r(t5) = 5.
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It should be noted that in the 2BP(SC),
(
∂Pϕ
∂Pϕ0

)
(t) ≡ 1 for all t. Hence the

above lemma is in some sense a measure of non–integrability in the outside region in

a similar vein to Lemma 2.2.2 which estimates the change in Pϕ in the outside region

to be at most 0.0215298µ. The order of magnitude larger change in the equations of

variation is to be expected since these equations are more sensitive to instabilities

than the original equations of motion.

Proof of Lemma B.2.3: Use the same reductions as in Lemma B.2.2. The

equations of motion for
(
∂Pϕ
∂Pϕ0

)
(t) are(

d

dr

)(
∂Pϕ
∂Pϕ0

)
= −P−1

r

(
∂2∆H

∂ϕ2

)(
∂ϕ

∂Pϕ0

)
Lemma B.2.2 gives |

(
∂ϕ
∂Pϕ0

)
| ≤ 1.31926. Using the bound a2(r1) from Lemma

B.2.5,

|
(
∂Pϕ
∂Pϕ0

)
− 1| ≤

∫ r0

r1

|P−1
r

(
∂2∆H

∂ϕ2

)
1.31926|dr ≤ a2(5) · 1.31926 = 0.000268671

Having generated bounds in the outside region for equations of variation, com-

puter assistance is used to obtain bounds in the kick region where the perturbation

terms are larger and the above analysis is insufficient to produce useful bounds. The

next lemma establishes claim (2) in the theorem.

Lemma B.2.4. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for

the flow are at the aphelion and furthermore suppose
(

∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

, ∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1)

and the remaining initial condition satisfies (B.2). Then(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.12, 1.79]
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where t ∈ [t5, T ] where t5 is the first positive time such that r(t5) = 5 and T first

positive time there is a perihelion.

Proof: Let (v1, v2, v4) =
(

∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

, ∂Pϕ
∂Pϕ0

)
(t5). Lemmas B.2.2 and B.2.3

say that v2 ∈ [−1.31927, 1.31927] and v4 ∈ 1 + [−0.000268671, 0.000268671]; by

assumption v1 = 0. Use (B.2) to solve for the remaining initial condition v3 as an

interval. To do this, use r = 5, ϕ ∈ [0, 2π], Pϕ ∈ Pϕ(0) + [−ρ(5), ρ(5)] and Pr

implicitly defined by (4.2). This produces a vector of intervals v := (v1, v2, v3, v4)

which contain the solution in the tangent space at the time t = t5.

Use the CAPD rigorous numerical integrator to integrate the flow of the

RCP3BP and its associated variational equations. CAPD can transport intervals

of initial conditions. See appendix E.1. Use it to transport the interval vector v in

the tangent space from r = 5 to the perihelion for all initial conditions in the base

space. To do this use a 5th order intervalized Taylor Method with step size ∆t = 0.1

with initial conditions ϕ direction divided into box sizes of 0.1 and initial conditions

in the Pϕ direction divided into box sizes of 0.0001. CAPD flows the box of initial

conditions until all points inside it has passed through the perihelion. It records(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.12, 1.79].

Remark: The bound produced is not nearly optimal. Non-rigorous numerics

indicate that
(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.95, 1.05].

The technical estimates found in the above lemmas are now justified

Lemma B.2.5. For µ = 10−3, J0 = 1.8, Pϕ ∈ [1.7, 1.81], r1 ≥ 5, r0 an aphelion

radius (possibly infinite), and trajectory monotonically decreasing from r0 to r1, then
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there exists a function a(r1) so that
∫ r0
r1
|Ã(s)|ds ≤ a(r1).

Proof of Lemma B.2.5: In section 2.2 the idea of extreme 2BPs was intro-

duced. By considering the most angular momentum could change in the RCP3BP

over the whole outside region r > 5 for a specific set of initial conditions, two body

problems were constructed whose behaviors enclosed (in the sense of interval arith-

metic) that of the RCP3BP which spawned it. See e.g, Lemma 2.2.2 which estimates

change in angular momentum for a single trajectory.

The machinery of extreme 2BPs is used now. Unlike section 2.2, careful esti-

mates are not needed for each trajectory; instead uniform upper bounds are needed

on quantities for an entire class of trajectories on S(1.8) with Pϕ ∈ [1.7, 1.81].

It suffices to compute uniform upper bounds on all 2BP trajectories with Pϕ ∈

[1.7− ρ(5), 1.81 + ρ(5)].

Notice that every entry in the matrix Ã is of the form f(r,ϕ,Pϕ)

Pr
for some function

f where r enters with a power of at most −2. In appendix D, a method of evaluating

such integrals in closed form is established. The fact that there is a closed form

means that a computer algebra system can obtain rigorous upper bounds on the

integrals; no numerical integration is required. Define the following quantities:

a1(r1) = max
(

sup
Pϕ∈[1.7,1.8]

lim
x→r+

I−1(r−, r+, r1, x)√
2(1.8− Pϕ)

, sup
Pϕ∈[1.8,1.81]

lim
x→∞

Ihyp−1 (r−, N,M, x, r1)
)

a2(r1) = 2µmax
(

sup
Pϕ∈[1.7,1.8]

lim
x→r+

I−3(r−, r+, r1, x)√
2(1.8− Pϕ)

, sup
Pϕ∈[1.8,1.81]

lim
x→∞

Ihyp−3 (r−, N,M, x, r1)
)

where r+, r−, N,M are given in section D; r± are formulas for the aphelion and

perihelion of a 2BP. The bounds ai are easily computable with a computer algebra

system.
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It follows from section A.1 for r ≥ 5 that |∂2∆H
∂ϕ2 | ≤ 2µ

r4 . Hence

∫ r0

r1

| 1

r2Pr
|dr ≤ a1(r1)

∫ r0

r1

|P−1
r

∂2∆H

∂ϕ2
|dr ≤ a2(r1)

Since the p = 1 norm is used to bound the matrix A, then the corresponding

norm induced on the matrix is taking maximum of the absolute value of the sum of

columns. Hence the function a(r1) = max
(
a1(r1), a2(r1)

)
.
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Appendix C

Miscellaneous Technical Proofs

This chapter is a collection of miscellaneous technical proofs which either in-

volve heavy perturbation term estimates, heavy computer assistance, or in one way

or another did not fit into the general exposition of the numbered chapters.

C.1 Polar Convexity

Lemma C.1.1. Let H = HPolar be the Hamiltonian associated to RCP3BP given

by formula (1.2). Then H and exp(H) are convex.

Proof: Explicit computation reveals for q = (r, ϕ), p = (Pr, Pϕ) that

Det(∂ppH) =
1

r2
> 0

Tr(∂ppH) = 1 +
1

r2
> 0

Hence ∂ppH is positive definite and the claim follows.

C.2 Energy Reduction

This section outlines a method to produce a time periodic Hamiltonian with

(n − 1) degrees of freedom from an autonomous Hamiltonian with n degrees of

freedom with trajectories restricted to an energy surface. This method can be found

in [A] sect. 45 (see also [BK]).
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SupposeH = H(I1, ..., In, θ1, ..., θn) is a Hamiltonian with solutions 2π-periodic

in the θ1, ..., θn variables and suppose ∂H
∂In
6= 0. Consider the Hamiltonian H ′ defined

by

dH ′ =
n∑
i

(
∂H
∂Ii

)(
∂H
∂In

)dIi +

(
∂H
∂θi

)(
∂H
∂In

)dθi
Then trajectories of H and H ′ are identical up to rescaling of time by t̃ = θn(t).

Fix an energy surface H = E. This implicitly fixes one of the variables, say In =

In(I1, ..., In−1, θ1, ...θn). Consider the Hamiltonian

H̃(I1, ..., In−1, θ1, ...θn) =

H ′
(
I1, ..., In−1, θ1, ...θn, In(I1, ..., In−1, θ1, ...θn)

)
− In(I1, ..., In−1, θ1, ...θn)

Then ∂H̃
∂In

= 0 and for i < n, ∂H̃
∂Ii

=

(
∂H
∂Ii

)(
∂H
∂In

) . Hence H̃ does not depend on In. Think

of H̃ as a time-periodic Hamiltonian with time t̃ = θn.

C.3 Proof of Theorem 3.1.1

Using the bounds in appendices A.1 and B.1, Theorem 3.1.1 is proved.

Proof of Theorem 3.1.1:

Recall that constraining dynamics to the energy surface S(J0) implicitly de-

fines Pr = Pr(J0, r, ϕ, Pϕ). The relation is given by (4.2). It is desirable to bound this

expression independently of ϕ. Furthermore for µ > 0, Pϕ is no longer identically

constant and it is desirable to bound this quantity independently of fluctuations in

Pϕ.

Suppose P+
µ is a forward separatrix for RCP3BP(µ, J0). (The proof in the

backward case is analogous.) Then P+
µ has a parameterization (r, ϕ, Pr, Pϕ)(t) for
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t > 0. The goal is bound the Pr component. By definition of parabolic escape,

Pr(t) → 0 as t → ∞. It follows from (4.2) that Pϕ(t) → J0 as t → ∞. It then

follows from the definition of ρ in section B.1 that Pϕ(t) ≤ J0 + ρ(r(t)) for t ≥ 0.

An upper bound for Pr in formula (4.2) is

|Pr(J0, r, ϕ, Pϕ)| ≤
√
−2J0 + 2(J0 + ρ(r))− (J0 + ρ(r))2

r2
+

2

r
+ 2(|∆H|)+(r)

This follows from extremizing ∆H using the bounds in section A.1, and the fact

that as a function Pr(J0, r, ϕ, Pϕ) is increasing in the variable Pϕ in the outer Hill

region, so it suffices to replace Pϕ by J0 + ρ(r) to obtain an upper bound.

Claim: There exists ν > 0 such that for r > 1 + µ,√
2ρ(r)− (J0 + ρ(r))2

r2
+

2

r
+ 2(|∆H|)+(r) ≤

√
2

r
− (J0 − ν)2

r2
.

Proof of Claim: The expressions ρ(r) and (|∆H|)+(r) are O( µ
r3 ) (see ap-

pendix A and bound (B.1)). Since ρ(r) ≥ 0, then replacing − (J0+ρ(r))2

r2 by − (J0−c)2

r2

for some c > 0 has the effect of increasing the terms under the radical by a factor of

O( 1
r2 ) which dominates the O( µ

r3 ) terms 2ρ(r) + 2(|∆H|)+. Hence there exists some

smallest positive c, which is denoted ν for which the claimed the bound holds.

Lemma 1.1.1 says the radius of perihelion is bounded from below by r =

J2
0

2
− 8µ. Due to monotonicity,

ν = J0 −
√(

J0 + ρ(r)
)2 − 2r2

(
(|∆H|)+(r) + ρ(r)

)
|
r=

J2
0
2
−8µ

.

Note that right hand side of the inequality in the claim also arises by solving

the equation Hν(r, Pr, J0) = 0 for Pr, where Hν is defined in (3.3). This quantity,
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also given in (3.4), parameterizes the homoclinic loop for Hν . Hence the separatrices

for RCP3BP(µ, J0) are contained inside of this loop.

To be explicit, use the parameters µ = 0.001 and J0 = 1.8. If Pr is radial

velocity of a separatrix parameterized by (r, ϕ, Pϕ)(t) on Sout(1.8), one can prove

|Pr(1.8, r, ϕ, Pϕ)(t)| ≤
√
−2 · 1.8 + 2 · Pϕ −

P 2
ϕ

r2
+

2

r
− 2∆H(r, ϕ)

≤
√

2

r
− (1.8− 2.8µ)2

r2

Hence the RCP3BP(10−3, 1.8) separatrices are enclosed inside the homoclinic loop

for Hν with ν ≤ 2.8µ.

C.4 Analysis of some twisting terms

Claim: |
(

∂`ν
∂Gν(0)

)(
∂Gν
∂Lν

)
| ≤ C < ∞ for all points with initial conditions in

W ∩ Σ.

First see section 4.2.3 to put this claim into context.

Proof of Claim: First notice that

∂`ν(t)

∂Gν(0)
=

∫ t

0

˙∂`ν
∂Gν(0)

ds =

∫ t

0

˙∂`ν
∂Gν

∂Gν

∂Gν(0)
ds

Since finite bounds on ∂Gν
∂Gν(0)

= ∂G
∂G0
∈ [0.12, 1.79] are known over a full period

by Theorem B.2.1, then it suffices to come up with bounds on
∫ t

0
˙∂`ν

∂Gν
ds.

From the equations of motion,

˙̀
ν = L−3

ν + ∂`ν∆H(Lν , `ν , Gν , gν)
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Notice on S(J0) that Lν = Lν(J0, Gν , `ν , gν) = 1√
2(J0+ν−Gν+∆H)

, so

˙̀
ν = (2(J0 + ν −Gν + ∆H))3/2 + ∂`ν∆H

˙∂`ν
∂Gν

= −3(2(J0 + ν −Gν + ∆H))1/2 + ∂`νGν∆H

It follows that

∂`ν
∂Gν

(t) =

∫ t

0

(
− 3(2(J0 + ν −Gν + ∆H))1/2 + ∂`νGν∆H

)
ds

Each term in the integral shall be analyzed separately.

C.4.1 Analysis of the 2BP Part

The goal of this subsection is to obtain bounds on
(
∂Gν
∂Lν

) ∫ t
0
−3(2(J0 + ν −

Gν + ∆H))1/2dt for t ∈ [0, T ] where T is the time to perihelion and where initial

conditions are started at the aphelion. This is the dominant term in the numerator

of (4.5). For the 2BP,
(
∂G
∂L

) ∫ T
0
−3(2(J0 − G))1/2dt = −6πL−1. For the RCP3BP

analysis, bounds on ∆H as well as the bounds on the change of G = Pϕ over the

flow need to be included.

Notice that

Pr = Pr(J0, r, ϕ,G) =
1

r

√
2(J0 −G+ ∆H)(r − r−)(r+ − r)

where r± = r±(J0, r, ϕ,G) are the aphelion and perihelion respectively. Then∫ T

0

(2(J0 +ν−Gν+∆H))1/2dt =

∫ T

0

rPrdt√
(r − r−)(r+ − r)

=

∫ r+

r−

rdr√
(r − r−)(r+ − r)

where Pr = Pr(J0 + ν, r, ϕ,Gν) and r± = r±(J0 + ν, r, ϕ,Gν). Notice this is of the

form I1 as in appendix D. Computing the integral I1(r−, r+, r−, r+) yields∫ T

0

(2(J0 + ν −Gν + ∆H))1/2dt =
π

2
(r+ + r−)
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Note that for the RCP3BP, r± are difficult to compute exactly since the time

to reach the aphelion/perihelion is a dynamical quantity that depends on the flow.

However in light of the implicit formulas (2.5) for r±,

(r− + r+)(J0, r, ϕ, Pϕ) =

√
1− 2P 2

ϕ(J0 − Pϕ + ∆H)

2J0 − 2Pϕ + 2∆H

These quantities are easy to bound by bounding Gν = G − ν over the half-period.

The quantity ν is known from Theorem 3.1.1 and formula (B.1) for the function

ρ(r) tells us how to bound G over the half-period; namely |Gν(t)−Gν(0)| ≤ ρ(r(t))

for time t ∈ [0, T ]. Then (r− + r+) is bounded by√
1− 2(Gν(0)− ρ(1.6))2(J0 + ν − (Gν(0)− ρ(1.6)) + (|∆H|)+(1.6))

2J0 + ν − 2Gν(0) + 2ρ(1.6) + 2(|∆H|)+(1.6)
≤
(
r− + r+

)
≤√

1− 2(Gν(0) + ρ(1.6))2(J0 + ν − (Gν(0) + ρ(1.6))− (|∆H|)+(1.6))

2J0 + ν − 2Gν(0)− 2ρ(1.6)− 2(|∆H|)+(1.6)

It is not hard to show that the numerators of the upper and lower bounds are

bounded. In fact for J0 = 1.8, µ = 0.001, ν = 2.8µ, Pϕ ∈ [1.66, 1.81], and r ≥ 1.6,

the numerator is contained in the interval [0.239131, 1.04326].

Notice from formula (A.1) that

∂Gν

∂Lν
=
L−3
ν + ∂∆H

∂Lν

1− ∂∆H
∂Gν

From Lemma A.3.3 shows that 1− ∂∆H
∂Gν
∈ [1− 0.025, 1 + 0.025]. Hence it suffices to

obtain finite bounds for L−3
ν + ∂∆H

∂Lν
.

Notice that on S(1.8),

(2(1.8 + ν −Gν(0)− ρ(1.6)− (|∆H|)+(1.6)))3/2 ≤ L−3
ν = (2(1.8 + ν −Gν + ∆H))3/2

≤ (2(1.8 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)))3/2
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From Lemma A.3.1,

|∂∆H

∂Lν
| ≤ 433µ

r3
≤ 433µ

L6
ν(1− eν)3

Now on S(J0),

eν =
√

1− (Gν)2(J0 + ν −Gν)

Hence for J0 = 1.8, µ = 0.001, ν = 2.8µ,G ≤ 1.8 + 2µ then eν = 0.997391 < 1.

(For values of G > 1.8 + 2µ comets do not have aphelions. This is because if

angular momentum decreased maximally, it would still remain above 1.8 after a full

revolution when starting above 1.8 + 2µ. This is equivalent to saying e(t) ≥ 1 for

all time. See Lemma 2.2.2.) Hence it is possible to get a uniform upper bound on

(1− eν)−3 for inside parabolic motions. Then

433µ

(1− eν)3
(2(J0 −Gν(0)−ρ(1.6)− (|∆H|)+(1.6)))3 ≤ |∂∆H

∂Lν
|

≤ 433µ

(1− eν)3
(2(J0 −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)))3

It follows that for J0 = 1.8, µ = 0.001, G ∈ [1.7, 1.81], r ≥ 1.6,

|
∫ T

0

(2(J0 + ν −Gν + ∆H))1/2dt · ∂Gν

∂Lν
|

≤ C1
(2(J0 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)))3/2

2J0 + 2ν − 2Gν(0)− 2ρ(1.6)− 2(|∆H|)+(1.6)

≤ C2(2(J0 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)))1/2

<∞

where C1, C2 <∞ are constants. Note the upper bound looks like a O(L−1
ν ) which
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has found in the 2BP(SC) computation. This uses that

|1.8 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)

1.8 + ν −Gν(0)− ρ(1.6)− (|∆H|)+(1.6)
| <∞

since for inside parabolic motions, J0 + ν −Gν(0)− ρ(1.6)− (|∆H|)+(1.6) > 0.5µ.

C.4.2 Analysis of the perturbation term

In this subsection the term
(
∂Gν
∂Lν

) ∫ t
0

(
∂`νGν∆H

)
ds is analyzed. For the 2BP,

this term is zero, and in general is O( µ
L3
ν
) small, so it should not contribute much to

upper bound.

It follows1 from Lemma A.3.5, that for µ = 0.001, r > 1.5, G ∈ [1.7, 1.81],

|
(
∂2∆H

∂`∂G

)
| ≤ 21

r7/2(1− eν)3/2
+

35|Pr|
r5/2(1− eν)5/2

Now

∫ T

0

|
(
∂2∆H

∂`∂G

)
|dt ≤

∫ T

0

21

r7/2(1− eν)3/2
+

35|Pr|
r5/2(1− eν)5/2

dt

≤
∫ r+

r−

21

Prr3(1− eν)3/2
+

35

r2(1− eν)5/2
dr

The second term in the integral is easy to evaluate in closed form and is clearly

bounded.

Now

∫ r+

r−

1

Prr3
dr =

∫ r+

r−

1

r2
√

2(J0 − Pϕ + ∆H)(r − r−)(r+ − r)
dr

1Lemma A.3.5 is stated in terms of Delaunay, however exactly the same bounds hold for ADDV.

Simply put a ν on all the Delauany terms in the estimates.
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This is of form I−2 from appendix D. It not hard to show that for r± ≥ 1.6 that

I−2(r−, r+, r−, r+) =
π(r− + r+)

2(r− · r+)3/2
≤ 1.3

It follows that for inside parabolic motions,

∫ T

0

|
(
∂2∆H

∂`∂G

)
| ≤ 21 · 0.77

(1− eν)3/2

√
2
(
J0 + ν −Gν − ρ(1.6)− (|∆H|)+(1.6)

)+
35 · 1.6

(1− eν)5/2

Now when multiplied by the upper bound for ∂Gν
∂Lν

, the result is of at most

C(2
(
J0 + ν −Gν − ρ(1.6)− (|∆H|)+(1.6)

)
)5/2 (for some C) which is bounded.

This completes the proof of the claim since both the dominant and perturba-

tion term are bounded from above. Hence,

|∂`ν
∂G

∂Gν

∂Lν
| < C <∞
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Appendix D

Table of Integrals

D.1 Integrals for Elliptic 2BPs

Let us investigate some properties of the following commonly occurring inte-

grals. At various times one encounters integrals of the form

∫ t1

t0

rk(t)dt =

∫ r1

r0

rk

ṙ
dr

Away from e = 1, this can be rewritten

F (J0, r0, r1, Pϕ, k) =

∫ r1

r0

rk+1dr√
2(J0 − Pϕ + ∆H)(r+ − r)(r − r−)

Suppose it is possible to bound (J0−Pϕ + ∆H) as well as r± independently of time

(see e.g. chapters A and B), where r± are the aphelion and perihelion radii as given

in formula (2.5). Then to evaluate the integral (D.1) it suffices to know how to

evaluate

I(a, b, c, d, k) :=

∫ d

c

rkdr√
(b− r)(r − a)

where in all cases, a, b, c, d ≥ 0 and a ≤ c ≤ r ≤ d ≤ b. Specific forms are known for

some k. For convenience functions are defined as Ik(a, b, x) and

Ik(a, b, c, d) := Ik(a, b, d)− Ik(a, b, c).
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I−3(a, b, x) :=

(√ab(b− x)(x− a)(2ab+ 3x(a+ b)) + (3a2 + 2ab+ 3b2)x2
√

(b− x)(x− a) arctan(
√
b(x−a)√
a(b−x)

)

4(ab)
5
2x2
√

(b− x)(x− a)

)

I−2(a, b, x) :=
(√ab(b− x)(x− a) + (a+ b)x

√
(b− x)(x− a) arctan(

√
b(x−a)√
a(b−x)

)

(ab)
3
2x
√

(b− x)(x− a)

)

I−1(a, b, x) :=
(arctan( x(a+b)−2ab

2
√
ab(b−x)(x−a)

)
√
ab

)
I0(a, b, x) :=

(
arcsin(

2x− b− a
b− a

)
)

I1(a, b, x) :=
(
a+ b

2
arcsin(

2x− a− b
b− a

)− b− a
2

√
1−

(
2x− a− b
b− a

)2)

D.2 Integrals for Hyperbolic 2BPs

Using elongated Solar passages to model behavior of the comet is only effective

provided the comet is sufficiently elliptic, i.e. eccentricity is sufficiently far from

one. In the case e ≈ 1, R–Solar passages are used as defined in section 2.1. However

to perform the action comparison, rigorous justification of behavior in the outside

region is still needed. The method of using extreme 2BPs as in section 2.2 can be

applied, however when computing extreme 2BPs it is possible that one or more have

hyperbolic behavior. In this case formulas (2.5) are no longer valid. The hyperbolic

analog is

∫ r1

r0

rkdr

ṙ
=

∫ r1

r0

rk+1dr√(
(1 +

√
1− 2P 2

ϕ(J0 − Pϕ −∆H)− 2(J0 − Pϕ −∆H)r)
)(
r − r−

)
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This formula comes about by carefully rearranging formula 2.5 to remove the aphe-

lion term. For convenience, let N := 1 +
√

1− 2P 2
ϕ(J0 − Pϕ) and M = 2(Pϕ − J0).

Examination of the interval estimates in section 2.2 indicates that if the appro-

priate formulas for time, action, and difference in angle are given, then the estimates

in section 2.2 still hold. Since the comet does not make an elongated Solar passage

where it moves from r = 5 to an aphelion to back to r = 5, then the multiplier

of 2 is not needed in the formulas for tout and Tout as well as in similar formulas.

Everywhere there is a 2ρ, it may be replaced with a ρ. Everywhere is an integral

bound 2Bout(i), or 2D, replace it with a Bout(i), or D respectively. These places are

indicated in text of section 2.2.

80–Solar passages are used to perform very high eccentricity action compar-

isons. Use R±+ = 80 where ever it appears in section 2.2. If an extreme 2BP is

elliptic, then it suffices to use Bout(i)’s as defined in section 2.2. Otherwise the bs

and Bs must be modified to account for hyperbolic 2BP’s.

It suffices to know how to integrate

∫ r1

r0

rk

ṙ
dr =

∫ r1

r0

rk+1√(
b+ er

)(
r − a

)dr (D.1)

The following are the analogs of the integrals from above for hyperbolic mo-

tions. For convenience functions are defined as Ik(a, b, e, x) and

Ik(a, b, e, c, d) := Ik(a, b, e, d)− Ik(a, b, e, c).

Ihyp−3 (a, b, e, x) :=

„√ab(b+ ex)(x− a)(2ab− 3x(ae− b))− (3b2 − ae(2b− 3ae))x2
p

(b+ ex)(x− a) arctan(
q

b(x−a)
a(b+ex)

)

4(ab)
5
2 x2

p
(b+ ex)(x− a)

«
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Ihyp−2 (a, b, e, x) :=

(√ab(b+ ex)(x− a)− (ae− b)x
√

(b+ ex)(x− a) arctan(

√
b(x−a)√
a(b+ex)

)

(ab)
3
2x
√

(b+ ex)(x− a)

)

Ihyp−1 (a, b, e, x) :=

(2 arctan

( √
b(x−a)√
a(ex+b)

)
√
ab

)

Ihyp0 (a, b, e, x) :=

(2 log
(
e
√
x− a+

√
e(b+ ex)

)
√
e

)
Ihyp1 (a, b, e, x) :=

(√
(ex+ b)(x− a)

e
+
ae− b
e

3
2

log
(
e
√
x− a+

√
e(b+ ex)

))

New bouts and Bouts (for 80-Solar passages) are defined by

b±out(k) =Ihyp(r±−, x±, y±, 80, k)− Ihyp(r±−, x±, y±, 5, k)

B±out(k) =Ihyp(R±−, X±, Y±, 80, k)− Ihyp(r±−, x±, y±, 5, k)

x± =1 +
√

1 + 2(Pϕ ± ρ(5)± w)2(Pϕ ± ρ(5)± w − J0)

X± =1 +
√

1 + 2(Pϕ ± ρ(5)± w ±M)2(Pϕ ± ρ(5)± w ±M − J0)

y± = = 2(Pϕ ± ρ(5)± w − J0)

Y± = = 2(Pϕ ± ρ(5)± w ±M − J0)

where w, M , r±−, and R±− are defined as in section 2.2. Such bounds are easily

computable on a computer.

179



Appendix E

Computer Assistance

“Let anyone integrate them who can.” - Clairaut

E.1 Rigorous Numerics

A computer is needed to provide mathematically verified bounds on flows of

ODE’s to complete some of the estimates encountered in Theorem 2.2.4 and Theo-

rem B.2.1, and algorithms in Chapter 5 related to localization intervals. Consider

the initial value problem (IVP) 
ẋ = f(x)

x(0) = x0

(E.1)

Assume that solutions exist, are unique, and are defined for all time, and that f is

sufficiently smooth (either C∞ or real analytic). Suppose a fixed step size h in time

is specified. If x(t) is a solution to the IVP, then from Taylor’s Theorem

x(t+ h) = x(t) + hx′(t) +O(h2) ≈ x(t) + hf(x(t))
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Euler’s Method forgets the remainder and makes a linear approximation at each

time step to give 
ti = ti−1 + h

xi = xi−1 + hf(xi−1)

Each step of the Euler Method (which is an example of a first order Taylor method)

makes an error of O(h2). Errors made truncating Taylor series methods are known

as the local truncation errors, which for h small are usually not too bad. However

the small errors made by disregarding the O(h2) term causes the method to track a

slightly different solution after each time step. After many steps these small errors

can accumulate and destroy the method’s usefulness by tracking to a solution which

has different behavior from the one desired. This is known as global truncation

error. Even higher order Taylor methods as well as Runge-Kutta methods are

still susceptible to this. The goal is to find and utilize methods which avoid these

difficulties.

E.1.1 Interval Arithmetic

When working on a computer, there is another source of error which must be

accounted for - floating point error - which arises because a computer is incapable

of representing most real numbers.

Machine representable numbers are a subset of real numbers which a com-

puter can perform computations with. Define machine-ε as the smallest positive

number such that 1 6= (1 + ε) on our machine. It gives a kind of spacing between
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machine representable numbers. This is dependent on the computer’s architecture

and software, however most computers adopt IEEE standards which specify such

representable numbers, and use machine ε ≈ 10−16. Assume that a standard such

as [IEEE] has been adopted for all work in this document.

One method to get around the difficulties of machine representability is by

using so called interval arithmetic. If x ∈ R we say [a, b] is an interval representation

for x with machine representable numbers a and b if x ∈ [a, b]. Intervals shall be

denoted in calligraphic capital letters, e.g. I. If I = [a, b], then define max(I) = b

and min(I) = a.

Suppose f : Rn × Rm → R is a smooth function and I × J is a product of

intervals, The interval K encloses f on the domain I×J if f(I,J ) ⊂ K. Computing

good enclosures is a principle difficulty in interval arithmetic. [KM] and [MZ] contain

methods to make enclosures both rigorous and efficient( for a different approach see

[MB1].) Typically complex functions f are broken into a composition of simple

arithmetic rules. Rules for interval arithmetic roughly follow intuition. For example

if x ∈ [a, b] and y ∈ [c, d], then x + y ∈ [a + c, b + d]. On a computer additional

work must be done since it is not necessarily true that a+ c and b+ d are machine

representable. To be safe, a computer may say that x+ y ∈ [a+ c− ε, b+ d+ ε].

By saying “bound f : Rd → R over the domain D using interval arithmetic”

what is really meant is following algorithm.

1. Cover D with n intervals (or products of intervals) Idi so that D ⊂
⋃n
i Idi .

2. Find enclosures Ki such that f(Idi ) ⊂ Ki.
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3. Compute m = min(Ki) and M = max(Ki)

This algorithm generates numbers so that f(x) ∈ [m,M ] for all x ∈ D. The bounds

depend on D, d, n, and the regularity of f . Generally speaking, decreasing diam(Idi )

improves the bounds.

Several of the computations found in this document are done on a computer

algebra system (CAS). For the purposes of this thesis, a computer algebra system

is a program which rigorously manipulates algebraic and numerical expressions. A

CAS can be programmed to use exact arithmetic, which is arithmetic using symbolic

expressions to produce exact output without rounding. For example 1
2

+ 1
3

= 5
6

on

a CAS. It is possible to perform exact interval arithmetic where intervals contain

symbolic expressions and the bounds are manipulated using exact arithmetic. For

the purposes of this thesis, a CAS is required to have the following capabilities. It

must:

1. Manipulate algebraic expressions using exact arithmetic

2. Take symbolic derivatives (where possible)

3. Take symbolic integrals (where possible)

4. Manipulate formal power series (where possible)

5. Perform interval arithmetic accounting for rounding error

The estimates used in this document require many lower and upper bounds.

Adopt the notation (·)± to denote functions or numbers which are upper and lower

bounds on the function (·). For a function f(x, y) defined on the domain I ×J , let
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“f(x, y) ≤ (f(x))+” mean that (f(x))+ is a function of x ∈ I such that the bound

holds for all y ∈ J in the domain of f . As such a function is not necessarily well

defined, explicit constructions are given whenever this notation is used.

Returning to the problem of rigorous numerics for ODE’s, the problem can

now be reformulated in terms of interval arithmetic. Now consider the Interval

Value Problem (IvVP) . 
ẋ = f(x)

x(0) ∈ I = [x0 − w, x0 + w]

(E.2)

where now I is some interval of initial conditions (a w-window around x0), x is

now a product of intervals in Rd, and all operations are performed via interval

arithmetic. From a dynamical systems perspective, the IvVP transports a cube of

initial conditions under the flow of the ODE. The advantage of an IvVP solver is

that by covering the space of initial conditions with intervals, the solver tells us

rigorously how the entire space moves under flow. This is because the flow of the

IVP given in (E.1) is rigorously contained inside the flow of the IvVP given by (E.2).

E.1.2 CAPD

One might wonder how to construct a rigorous IvVP solver or even if they

exist. Both questions are answered in [Z] and [WZ]. The main idea is as follows.

Recall the difficulty with non-rigorous methods is that they follow slightly

different solutions at each step. Gronwall’s inequality says that differing solutions

move apart at most exponentially based on the magnitude of a Lipschitz constant,
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which is roughly ||Df(x)||. For example, the O(h2) local truncation error in Euler’s

Method is from the remainder term in Taylor’s theorem which can be written in the

form x′′(ξ)h
2

2
= Df(ξ)f(ξ)h

2

2
for some ξ. A naive way to produce a rigorous inte-

grator is to bound the truncation error at each step. Poor bounds on the remainder

require the integrator to use larger and larger interval bounds after each step, and

these bounds can potentially grow exponentially, rendering the output useless. This

is commonly known as the wrapping effect. It arises not only from Euler’s Method,

but from higher order methods as well.

In order to get tight estimates on the errors made after each step, accurate of

estimates of ||Df(x)|| are needed. In [Z], [WZ] and [MZ], efficient methods are out-

lined to do this. They introduce efficient representations of interval sets that allow

for better bounds and introduce an alternative to Gronwall’s inequality which appro-

priately deals with exponential decay. It is also noted that when solving equations

of variation, the same main idea can be applied to D2f(x) and higher derivatives so

that one can get efficient bounds for higher order equations of variation.

The theory developed in [Z] and [WZ] has been implemented in a package

called CAPD. It is the primary tool for rigorous integration of the equations of

motion used in this thesis.

E.1.3 Taylor Models

In this subsection, an alternative procedure to solve Interval Value Problem is

described.

185



Definition E.1.1. Suppose f is Cn+1 in an open domain D ⊂ Rn. The nth order

Taylor Model about x0 ∈ D is a pair (P, I) where P is nth order Taylor Polynomial

of f about x0, and I is some interval such that for all x ∈ D the function f(x) ∈

P (x− x0) + I.

Since f is Cn+1, then Taylor’s theorem says that the size of I necessary to

ensure the enclosure in the definition shrinks as n grows. Hence the definition is

nothing more than a clever statement that says that smooth functions behave like

their Taylor Polynomial approximations (up to some small error) inside a sufficiently

small neighborhood.

Rules for “Taylor Model Arithmetic”have been generated in [BM1] and are

similar to those of interval arithmetic. For example, suppose T1 = (P1, I1) and

T2 = (P2, I2) are nth order Taylor Models about x0 ∈ D. Then

T1 + T2 = (P1 + P2, I1 + I2)

T1 · T2 = (P1 · P2 − Ph, B(Ph) +B(P1) · I2 +B(P2) · I1 + I1 · I2

where Ph is the polynomial made up of all terms of order (n + 1) or larger in

P1 · P2, and B(P ) is a bound on the polynomial P in the domain D. One can

obtain a bound on any polynomial using the interval arithmetic. Other arithmetic

operations, truncation, and the notion of an anti-derivative can also be defined and

are done so in [MB1].

Note an immediate advantage of working with Taylor models is the reduced

wrapping effect. For example if x ∈ [−1, 1], then interval arithmetic would say

x− x = [−2, 2]. A Taylor model on the other hand would use [−1, 1] as the domain
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and model x as a Taylor model (x, [−ε, ε]). Then x − x would be modeled by

(x − x, [−2ε, 2ε]) = (0, [−2ε, 2ε]). Then the bound on the model B(0, [−2ε, 2ε]) =

[−2ε, 2ε] which is much tighter than the enclosure obtained with interval arithmetic.

Taylor models obtain better enclosures for functions over domains at the cost of

additional storage and overhead in their manipulation.

Another advantage of working with Taylor Models is that bounds for most

common functions are known and can be computed automatically with a computer.

Bounds for polynomials, trigonometric, exponential, and logarithmic functions, as

well as operations like 1
x

and
√
x (all referred to as ‘intrinsic functions’) have been

computed in [MB1]. All of these quantities are known explicitly and for a domain of

size h, they have remainders that scale like O(hn+1) when using an nth order Taylor

model. Most complicated expressions (i.e. the ones most people care about) are

made from composing these simple known quantities together and hence have nice

Taylor Models with remainder intervals that scale like O(hn+1). This is known as

Theorem E.1.2 (The Fundamental Theorem of Taylor Model Arithmetic). Suppose

that the function f is described by an nth order Taylor Model (Pf , If ) on its domain

D. Let g be a function which is composed of finitely many elementary operations

and intrinsic functions, and suppose g is defined on the range of f . Let (P, I) be

the Taylor Model which arises by plugging in (Pf , If ) into g and evaluating using

Taylor Model arithmetic. Then (P, I) is a Taylor Model for g ◦ f . Furthermore, if

the remainder interval If scales like O(hn+1), then so does the remainder interval

I. [MB1]
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The theory developed in [MB1] has been implemented in a package called

COSY.

Taylor Models have an important operation which can be defined in a natural

way: the operation of anti-differentiation. If (P, I) is a Taylor Model, then define

the anti-differentiation operator

∂−1(P, I) =

(∫
Pn−1(x)dx, (B(P − Pn−1) + I) · [a, b]

)
where Pn−1 is the (n − 1)-th degree truncation of P , and x ∈ [a, b]. Notice this

operation is easy to compute since integration of a polynomial is just manipulation

of its coefficients. The bounds in the remainder term are easily computed with

interval arithmetic. This is the key to implementing a rigorous ODE solver.

Consider the initial value problem (E.1) where f(x) ∈ Cr(Rn) for r ≥ 1

sufficiently large. Recall that solutions to IVPs of this form can be written as an

integral equation

x(t) = x(0) +

∫ t

0

f(x(s))ds for t ≤ h.

Define the Picard operator

Af (x)(t) = x(0) +

∫ t

0

f(x(s))ds

Af is a map from C0([0, h]) onto itself and fixed points of Af correspond to

solutions of the IVP. The functional Af is continuous because f is assumed to be

continuous. The following theorem gives the existence of such fixed points.

Theorem E.1.3 (Schauder’s Theorem). Let A be a continuous operator on the

Banach Space X. Let M ⊂ X be compact and convex, and let A(M) ⊂M . Then A

has a fixed point in M .
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In [BM2] it was shown that Schauder’s Theorem can be applied to a subset of

X = C0([0, h]) which contains all Taylor Models. While this allows for the creation

a rigorous integrator, it is still possible that the bounds obtained are poor. If the

interval part is too large, then it is possible for solutions to grow apart exponentially

for each step of the integrator. This is commonly known as the wrapping effect.

A technique called Shrink Wrapping outlined in [MB4] is used to further reduce

the wrapping effect. It works by attempting to absorb a large remainder bound

into the polynomial part of a Taylor Model. In doing so, the error can then be

manipulated (and hopefully canceled) along with polynomial parts. This is outlined

below. The curious reader is referred to [MB4] for the proofs of shrink wrapping

theorems. (These proofs simply rely on taking norms and measuring distances to

images of boxes.)

Suppose (P, I) is a d-dimensional Taylor Model of order n about the point x0

in the domain B = [−1, 1]d. (It is always possible to rescale variables so that this

holds.) Let C be the constant terms of the Taylor Model and M be the linear terms.

Apply the operator L(·) = M−1(· − C) to P + I to get L(P + I) = Id + S + Î (

where Id is the identity). Define the following constants.

Î ⊂ [−h, h]d, s ≤ |Si(x)| ∀x ∈ B, 1 ≤ i ≤ d, v ≤ |∂Si(x)
∂xi

| ∀x ∈ B, 1 ≤ i, j ≤ d

Define the shrink wrap factor q as

q = 1 +
h

(1− (d− 1)v)(1− s)

Theorem E.1.4 (Shrink Wrapping). Let Q = Id+S be the Taylor Model described

above, and suppose R = [−h, h]d +
⋃
x∈B Q(x) is the range of the Taylor Model
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over the domain B. Let q be the shrink wrap factor defined above. Then R ⊂⋃
x∈B(qQ)(x). Hence multiplying the polynomial part by q makes it possible to set

the interval remainder bound to zero. [MB4]

Shrink wrapping is incredibly useful since it makes it possible to absorb the

interval remainders generated after each integration step into the polynomial part

where it can more easily manipulated. An application of shrink wrapping to the

integrator based on Schauder theorem allows for very long time integration. The

author has implemented this theory in a package called COSY-JERI, written in

COSYscript. It is the primary tool for verifying the crossings solutions and local-

ization intervals from chapter 5.

E.1.3.1 Some Missing Lemmas

This section shall fill in some technical gaps which are used in the construction

of COSY-JERI, but which are not explicitly stated in Berz’s papers on integration

with Taylor models. Specifically, in these papers never actually gave a detailed de-

scription of how to implement Schauder’s Theorem to produce a rigorous integrator.

The key to applying Schauder’s Theorem is to find a Taylor Model (P, I) so

that A(P + I) ⊂ P + I on a compact domain D ⊂ Rn. Then the fixed point, i.e. the

solution of the ODE, is contained in the Taylor Model. Notice that if I is small, then

this method says the flow is closely modeled by the polynomial part. Finding such

a Taylor Model is relatively easy computationally. Start with the zero polynomial,

and repeatedly iterate it through A = Af , each time disregarding terms of order
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(n+ 1) or higher. The following claim was started, but not proved in [BM2].

Lemma E.1.5. Suppose f ∈ Cn+2. Let p0(x) = 0 and for i > 0 consider the

sequence pi(x) = (Af (pi−1(x)))n where ()n means truncate terms of the polynomial

of degree (n + 1) or higher. Then for i ≥ (n + 1) steps, pi+1(x) = pi(x), i.e. the

sequence of polynomials stabilizes.

Proof: It shall be shown that after k applications of A = Af to the zero

polynomial, all terms of degree (k−1) are fixed. Since the Taylor Model is of degree

n, then more than (n + 1) applications of A = Af forces the sequence to stabilize.

It suffices to show:

Claim: Let P = Ak(0). Then A(P +O(tk)) = P +O(tk).

The proof of the claim is by induction on k.

Basis: k = 1. P = A(0) = x0.

A(x0 +O(t)) = x0 +

∫ t

0

f(x0 +O(τ))dτ = x0 +O(t)

The equality on right follows from the fact that all terms in the integral pick up at

least a factor of t after the integration.

Assume the result holds true for k. Now it shall be shown that it holds for

(k + 1). Let Q = A(P ) = Ak+1(0). By the inductive hypothesis,

Q = R + S +O(tk+1)

where R is the degree k − 1 polynomial such that P = R +O(tk) (hence R is fixed
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under iterates of A), and S is the polynomial composed of the degree k terms in Q.

A(Q) =A(R + S +O(tk+1)) = x0 +

∫ t

0

f(R + S +O(τ k+1))dτ

= x0 +

∫ t

0

f(R + S) + f ′(R + S) ·O(τ k+1) +
f ′′(R + S)

2
O(τ k+1)2 + ...dτ

= A(R +O(tk)) +

∫ t

0

O(τ k+1)(H.O.T)dτ

= R +O(tk) +O(tk+2)

= R + (kth order terms) +O(tk+1)

This follows from the Taylor Series expansion of f in terms of its argument x, and

the inductive hypothesis. The claim will be complete if the (kth order terms)=S.

Notice that since deg(S) = k,

∫ t

0

f(R + S)dτ =

∫ t

0

f(R) + f ′(R)S +
f ′′(R)

2
S2 + ...dτ

=

∫ t

0

f(R)dτ +

∫ t

0

R · (H.O.T.)dτ

=

∫ t

0

f(R)dτ +O(tk+1)

hence all the terms in S get integrated and land in the O(tk+1). Now

A(P ) = A(R + (P −R))

= x0 +

∫ t

0

f(R + (P −R))dτ

= x0 +

∫ t

0

f(R) + f ′(R)(P −R) + ...dτ

= A(R) +

∫ t

0

(P −R)(H.O.T.)dτ

= A(R) +O(tk+1)
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since deg(P −R) = k. Hence A(Q) = A(R) +O(tk+1) and

A(R) = A(P ) +O(tk+1)

= A(Ak(0)) +O(tk+1)

= Q+O(tk+1)

so

A(Q) = Q+O(tk+1) = R + S +O(tk+1)

which implies that (kth order terms)=S.

Using this algorithm, it is possible to generate a polynomial P invariant under

Af . It remains to give a bound on the remainder formula for rigorous integration

using Taylor Models in order to complete the application of Schauder’s Theorem

as in [BM2]. Specifically, an interval I is required so that A(P + I) ⊂ P + I on a

compact neighborhood D ⊂ R.

Lemma E.1.6. Suppose f is real analytic in an ε-neighborhood of the range of P

where ε ≥ 2 and P is the polynomial invariant under Af . Then there exists a number

h and an interval I such that for 0 ≤ t ≤ h

A(P + I)− P ⊂ I

Proof: Compute

A(P + I) = x0 +

∫ t

0

f(P + I)dτ

By the Fundamental Theorem of Taylor Model Arithmetic [MB1], f(P + I) is a

Taylor Model. Consider the decomposition:

f(P + I) = Q+R + Î
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where Q is all terms of degree (n − 1) or less, R is all degree n terms, and Î is

the remainder. Since A(P ) = (P )n and since deg(R) = n, then R integrates to an

(n+ 1) order term after an application of Af , and hence

P = x0 +

∫ t

0

Qdτ.

Thus the other terms contribute exclusively to the remainder, i.e.

A(P + I)− P ⊂
∫ t

0

(R + Î)dτ

Let us better understand this relation since Î depends upon I. Notice

A(P + I) = x0 +

∫ t

0

f(P + I)dτ

= x0 +

∫ t

0

f(P ) + f ′(P )I +
f ′′(P )

2
I2 + ...dτ

= x0 +

∫ t

0

Q+R + f ′(P )I +
f ′′(P )

2
I2 + ...dτ

= P +

∫ t

0

R + f ′(P )I +
f ′′(P )

2
I2 + ...dτ

Since the class of functions considered is real analytic in a large domain, then the

‘...’ converges. Now suppose the interval I ⊂ [−d, d] where d < 1. Then

A(P + I)− P ⊂
∫ t

0

R + f ′(P )I +
f ′′(P )

2
I2 + ...dτ

⊂
∫ t

0

R + I · (f ′(P ) +
f ′′(P )

2
+ ...)dτ

Notice that the Taylor expansion of f(P + 1) about the point P gives

f(P + 1) = f(P ) + f ′(P ) +
f ′′(P )

2
+ ...

where the sum converges due to the regularity class of the functions considered.
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Hence

A(P + I)− P ⊂
∫ t

0

R + I · (f(P + 1)− f(P ))dτ

⊂ B(

∫ t

0

Rdτ) + IB(

∫ t

0

(f(P + 1)− f(P ))dτ)

where the operator B means ‘bound’ over 0 ≤ t ≤ h and over the domain D. In

the event that R = 0, i.e. f(P ) has no nth order terms, make an upper bound by

replacing R = 0 with R = tn.1 If the above expression is contained inside of the

interval I, it is possible to formally ‘solve’ for I to get

B(
∫ t

0
Rdτ)

1−B(
∫ t

0
(f(P + 1)− f(P ))dτ)

⊂ I. (E.3)

In order to justify the assumption that I ⊂ [−d, d] where d < 1 and remove the

‘formally’, the quantity h is specified. Suppose t ∈ [−h, h]. Clearly for h = 0, then

left hand side of (E.3) evaluates to zero, which is to say that to model the initial

condition requires no error. Notice the left hand side of (E.3) is continuous as a

function of h, except at the point where the denominator is zero, i.e. the point

where the bounds become (−∞,∞). Hence by the intermediate value theorem,

there is some h so that d < 1.

Notice that the remainder interval I scales with h. This makes sense since it is

easier to model the flow for a short period of time, than for a longer period. What

is hidden is exactly how well it scales. The term R which is the nth degree pieces of

f(P + I) behaves like O(hn+1) so decreasing h (the time the ODE is modeled for),

or increasing n results in a dramatic increase in accuracy.

1If instead R = 0 is left as is, then it would boil down to requiring t to be so that B(
∫ t
0
(f(P +

1)− f(P ))dτ) ⊂ [−α, α] for some 0 < α < 1.
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The above lemma carries through without difficulty in the multidimensional

case provided the remainder interval is the same in each dimension. This can proba-

bly be avoided with some more lengthy expressions for the remainder interval error,

however this is pursue not pursued.

Note that (E.3) can be modified to allow for Taylor Models which are poly-

nomials in both time t and initial conditions x0. Suppose the initial conditions

x0 are contained inside of the Taylor model (G, J), i.e. x0 ∈ G + J where G is

a degree n polynomial. It is possible to create a polynomial P invariant under

Ã(x)(t) = G+
∫ t

0
f(x(τ))dτ . But then

A(P )(t) = G+ J +

∫ t

0

f(x(τ))dτ = Ã(P )(t) + J =n P + J.

The additional J is added to (E.3) to yield the bound

B(
∫ h

0
Rdτ) + J

1−B(
∫ h

0
(f(P + 1)− f(P ))dτ)

⊂ I.

With the appropriate shrink wrapping (see e.g. [MB4]), B(J) ≈ 0 and this extra

term does not greatly ruin the degree n scaling for the remainder term.

E.1.3.2 Example

Consider the linear ODE 
ẋ = λx

x(0) = 1
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Consider a degree n = 3 Taylor Model and model the ODE up to time t = h.

Iteration of the operator A gives the polynomial

P (t) = x0 · (1 + λt+
(λt)2

2
+

(λt)3

6
)

And the remainder interval is now

B(
∫ h

0
λ(λτ)3

6
dτ)

1−B(
∫ h

0
(λ · (P + 1)− λ(P ))dτ)

Which gives

d =
(λh)4

24(1− λh)

Note that |λh| < 1, otherwise the bound is useless. This constrains the choice of h.

Additionally |λh| needs to be so small that d < 1. (For this particular value of n, a

choice of h = min(0.99, 0.72
|λ| ) works.) For λh < 1, expand d as a power series to get

(λh)4

24(1− λh)
=

1

24
(λh)4(1 + λh+ (λh)2 + (λh)3...)

Compare this to the power series of the actual solution at time t = h:

Exp(λh) = (1 + λh+
(λh)2

2
+

(λh)3

6
+

(λh)4

24
+

(λh)5

120
+ ...)

Notice that P (h) + I has larger coefficients for terms of order 4 and higher. Hence

the enclosure is valid.

E.2 Hardware and Software

The purpose of this section is to provide a technical guide to the programs

and estimates used in the thesis. To verify claims in these papers a mixture of
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programs written in C++, Fortran 77, and Mathematica are used. Specifically

the CAPD library is used in C++ to implement rigorous numerical integration,

the COSY library (implemented in Fortran 77) is used to rigorously manipulate

Taylor models, and Mathematica is used for symbolic manipulation and interval

arithmetic.

To verify the claims of the thesis, the following rigorous numerical tools are

used:

• Interval arithmetic

• Taylor models

• Rigorous numerical integration to solve IvVPs

• Symbolic manipulation.

There are also tools developed to do nonrigorous numerical integration which is

many orders of magnitude faster. Nonrigorous methods are not used in the actual

proofs of the papers, however they are very helpful for quickly understanding the

behavior of the systems considered.

This section is primarily intended to answer more technical questions pertain-

ing to computer implementation and execution of the algorithms outlined in thesis

which are not appropriate for journal paper in mathematics. The contents are not

essential for understanding of the mathematical results, however they are necessary

to verify the results in question. This section is not meant to be self contained and

it is assumed the reader is familiar with some of the literature in the bibliography.
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This section is organized in the following manner.

• Section E.2.5 contains a discussion of programs and where computer assistance

is used.

• Section E.2.16 contains discussion of rigorous numerical integration as imple-

mented by the CAPD library.

• Section E.2.20 contains discussion of rigorous numerical integration as imple-

mented by COSY-JERI.

• Section E.2.15 contains information on installation and execution of the pro-

grams.

For reference, a list of programs as well as brief description of each one is

included below.

E.2.1 Mathematica Notebooks

• actcomp.nb - Performs the action comparison method, using nonrigorous

numerical integration. It uses elongated solar passages.

• actcomp hyp.nb - Does the action comparison method using nonrigorous

numerical integration. It uses 80-solar passages.

• actcomp res.nb - Summary of numerical output from actcomp.cpp with

visualizations of the data.

• crossings.nb - Trajectories which cross localization intervals.

199



• delsimps.nb - Derivatives of polar quantities with respect to Delaunay vari-

ables.

• GK1Claims.nb - This contains miscellaneous claims originally found [GK1].

• GK2Claims.nb - This contains miscellaneous claims originally found in [GK2].

• localization test.nb - Finds the localization intervals using nonrigorous in-

tegration and a mesh of initial conditions.

• RCP3BP Estimates.nb - This notebook contains many tools to convert

between Delaunay and Polar variables as well as tools to find various orbital

elements. It computes the derivatives for perturbation terms in both polar and

Delaunay using it as well as some bounds. This notebook contains numeri-

cal integrators to generate numerical solutions to the RCP3BP in polar and

Delaunay coordinates, as well as numerical solutions to the equations of varia-

tion. This notebook is used ubiquitously to generate claims found throughout

this thesis.

• RCP3BP estimates old.nb - This notebook supports the modified action-

angle variables found in section E.2.14.1.

• simplifications for COSY.nb - Simplified forms for the perturbation term

in the alternative action-angle coordinate system found in section E.2.14.1.

• twistcheck.nb - Finds the twist region as described in 3.2.
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• usefulintegrals.nb - Symbolic computation of integrals which frequently ap-

pear.

E.2.2 CAPD

• actcomp.cpp - Performs rigorous action comparison in the kick region. This

file also records information the time to cross the kick region and change in

angular momentum in kick the region.

• C0integrator*.cpp - Examples of a C0–integrators. This are not used any-

where in proofs.

• outactcomp.cpp - Performs rigorous action comparison using elongated Solar

passages. It requires the summary log files generated by actcomp.cpp.

• outactcomp hyp.cpp - Performs rigorous action comparison using 100 - So-

lar passages. Requires the summary log files generated by actcomp.cpp.

• reader.cpp - Reads through the Summary Layer*.txt log files and extracts

an individual element of data from each.

• readtime.cpp - Reads through the Layer*.txt log files and extracts an in-

dividual element of data from each.

• varbound.cpp - Computes rigorous bounds on the equations of variation in

the kick region.
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E.2.3 COSY

• COSY JERI.fox - A rigorous global optimizer and ODE solver using Taylor

model arithmetic. Specific information about the RCP3BP is built into this

package to compute rigorous numerical trajectories for RCP3BP in polar and

modified Delaunay variables.

• findpolarcross.fox - A program to verify crossings of localization intervals.

• gridstore.fox - Performs the massive grid calculation needed to compute

localization intervals. It produces the file mydata 4.dat.

• gridread.fox - Reads data and produces localization intervals. It requires the

file mydata 4.dat.

• RCP3BP Derviatives.fox - A library which contains derivatives of the

RCP3BP in the action-angle variables described in section E.2.14.1.

• RigInt.fox - An example of rigorous integration using COSY-JERI. This is

not used in any proofs.

• RigOpt.fox - An example of rigorous global optimization using COSY-

JERI. This is not used in any proofs.

E.2.4 Relevant Data Files

• Crossing test*.DAT - Log files pertaining to trajectories which cross the

localization intervals. These are generated by findpolarcross.fox.
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• ExitTimes.txt - Log file which contains the maximum time to cross the kick

region for each layer. This is generated by readtime.cpp using data from

Layers*.txt.

• Layer*.txt - Output of actcomp.cpp which contains data about each so-

lution rigorously integrated.2 Due to size, these are distributed by request

only.

• localization intervals.txt - This contains a summary of the localization in-

tervals.

• Max*.txt and Min*.txt - Output of reader.cpp which contained extrem-

ized quantities by layer generated from the data in Summary Layer*.txt.

• mydata 4.dat - Output of gridstore.fox which contains results of integra-

tion in action-angle variables over. This is stored in a zip file mydata 4.zip.

• outact.txt - Output of outactcomp.cpp which lists where the action com-

parison holds using elongated Solar passages.

• outacthyp.txt - Output of outactcomp hyp.cpp which lists where the

action comparison holds using 100–Solar passages.

• outact fail.txt - Alternative output of outactcomp.cpp which outputs lay-

ers were the action comparison failed.

2In the implementation currently used, these files only contain data on how long it takes a

trajectory to cross the kick region.
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• Summary Layer*.txt - Output of actcomp.cpp which contains a summary

of data needed for the action comparison. These are stored in a zip file sum-

mary.zip.

E.2.5 Usage of the Programs

Computer assistance is used for the following.

1. Bounds on perturbation terms (Appendix A)

2. Bounds on total change in angular momentum (Appendix B)

3. Determining the twist region TwDel (Chapter 3)

4. Performing the action comparison (Chapter 2)

5. Expansion of the domain of definition (Chapter 3)

6. Analysis of the equations of variation (Appendix B)

7. Computing the localization intervals (Chapter 5)

8. Computing the crossings (Chapter 5)

9. Determining the number of iterations needed to cross the kick region. (Chapter

5)

E.2.6 Bounds on perturbation terms

In chapter A, bounds on the perturbation terms are developed.
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Mathematica’s symbolic manipulation capabilities are used to sum up such

infinite series. This is done in the notebook RCP3BP Estimates.nb in the section

‘Assembles perturbation term dH approximation’.

The bounds on the perturbation terms are used to compute bounds on perihe-

lion radii. These calculations are contained inside of the notebook GK1claims.nb

in the section ‘Minimum Perihelion.’ Interval arithmetic is used to verify the claims

that ∂rperih

∂Pϕ
< 0. The other estimates use numerical solvers to obtain the concrete

numbers. Since all expressions evaluated were either algebraic, or a combination of

algebraic and trigonometric, then Mathematica’s internal routines are capable of

accurately evaluating the expressions in question up to arbitrary accuracy.

The only additional facts used were the bounds on the derivatives of Legendre

polynomials. Suppose Pn is the nth Legendre Polynomial. Then for x ∈ [−1, 1]

|P ′n(x)| ≤ n(n+ 1)

2

|P ′′n (x)| ≤ (n− 1)(n+ 1)(n+ 2)

8

These are used to generate the bounds on derivatives of ∆H involving ϕ.

Specific bounds on the derivatives of the perturbation terms for µ = 0.001

and r > 1.5 were found in Appendix A. To find these bounds, Mathematica can

find upper bounds on the terms from section A.1. This is done in the notebook

GK2claims.nb.
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E.2.6.1 Bounds on Terms Involving Perturbation Terms

A computer algebra system is used to compute derivatives in Delaunay. The

routines for taking derivatives are found in RCP3BP Estimates.nb. The simpli-

fications are found in the notebook delsimps.nb. Some of the specific numerical

quantities are found in GK2claims.nb.

In Lemma A.3.2, Mathematica is used compute the derivatives of r, φ with

respect to the Delaunay variable G. The notebook delsimps.nb contains the sym-

bolic manipulations to produce the identities used. The notebook GK1claims.nb

contains the numerical quantities in question in the section ‘Quantities in Lemma

10.1’.

E.2.7 Bounds on change in Angular Momentum

Proof of Lemma 2.2.2 on the change in angular momentum requires a func-

tion ρ(r) measuring change in angular momentum over the orbit from aphelion to

perihelion. In the construction, Mathematica is used to verify the claim that(
(|∆H|)+(r0) + (|∆H|)+(r1) +

∫ r0
r1

(|∂∆H
∂r
|)+dr

)
is nondecreasing as a function of r0

for r0 ≥ r1 ≥ 1 + µ by differentiating the expression with respect to r0 and noting

the derivative is identically zero. This is found in the notebook GK1claims.nb

under the section ‘Angmom claim’.

Additionally Mathematica is used to evaluate the integral in the the function

ρ symbolically and simplify the expression. It produces

ρ(r) =
2µ(1− µ)r

(r2 −M)
(
µ2 + r(r − 1) + µ(2r − 1)

)
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where M = maxPϕ is the upper bound on angular momentum. In Appendix B.1

this number was shown to be at most M = 1.81. However it is possible to improve

this bound as well as the bound on the minimum perihelion. Notice that the value

M needed for the proof is Theorem 1.1.2 is really the smallest angular momentum

P ∗ϕ so that a trajectory of comet which so that a comet which passes through the

perihelion with angular momentum P ∗ϕ escapes. Escape occurs if Pϕ(t) > J0 for all

positive time. Hence the system may be written:

M − 2ρ(rperih) =J0

−J0 =H2BP (rperih, 0, 0,M)− (|∆H|)+ ≤ H(rperih, ϕ, 0,M)

This is a system of two equations in two variables, and Mathematica may solve

to find the optimal (rperih,M) = (1.61513, 1.80403). This is done in the notebook

GK1claims.nb. These numbers provide additional verification that our bounds of

M = 1.81 and rperih ≥ 1.61048 are valid.

The third claim of Lemma 2.2.2 requires additional computer assistance. Re-

call that the proof of Theorem 2.2.4 rigorously integrate all 5-solar passages in our

class of interest and record the final conditions. This is used to determine the total

change in Pϕ after a 5-solar passage. ρ(5) is then used to estimate behavior in the

outside region.

E.2.8 Determining the Twist Region

In section 3.2, a computer is used to find the size of the twist region. Proof of

this lemma boiled down to computer verification of two facts:

207



1. The sign of

TT =

(
∂H
∂G

) (
∂2H
∂L2 + ∂2H

∂L∂G
∂G
∂L

)
−
(
∂H
∂L

) (
∂2H
∂L∂G

+ ∂2H
∂G2

∂G
∂L

)
(∂H
∂G

)2

is positive everywhere in a region, where

∂G

∂L
=
L−3 +

(
∂∆H
∂L

)
1−

(
∂∆H
∂G

)
2. The sign of ∂L(t)

∂L
is positive over one revolution of the comet about the sun.

To address item one, Mathematica’s symbolic manipulation abilities are used

to explicitly compute the twist term TT . Note that the denominator of this term

is always nonnegative and hence does not effect the sign, so only the numerator

needs to be computed to determine sign change. The Mathematica notebook

twistcheck.nb demonstrates sign change3. The variable ‘ReducedTwistTermD’ is

the numerator of the twist term TT .

Numerical optimization is used over all angular variables, as well as the per-

turbation term4 to find the minimal value of ‘ReducedTwistTermD’ for a fixed L

value on the energy surface S(1.8). The nonrigorous numerical optimizations indi-

cate that the twist term changes signs somewhere near L = 1.61, i.e. e ≈ 0.06 and

L = 15.94, i.e. e ≈ 0.994.

Rigorous verification of these facts is much harder and is done with interval

arithmetic. Descriptions of interval arithmetic are found in the references cited

below. While interval arithmetic works well at bounding small domains, it can be

3This notebook requires the notebook RCP3BP Estimates.nb to run.
4It follows from section E.2.6 that the perturbation term is known to be bounded by 0.64µ

inside the domain of definition. The program uses ∆H ∈ [−0.7µ, 0.7µ].
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very slow for larger ones. Due the complexity of the twisting term, evaluations are

expensive. To get good bounds, small boxes must be used. To prove the nonrigorous

numerical result rigorously would take a very long time with current computing

power. The best that can be done at present is to instruct Mathematica to use

machine precision when carrying out the numerical optimization.

Mathematica can also symbolically expand the twisting term in terms of 1
L

and it can be shown it is at most O( 1
L4 ). Theory tells us it behaves like −3

L4 +O(µ),

so twist is expected to be violated for high L values, which is seen in the notebook.

In the notebook twistcheck, values of the twist term in ADDV are also com-

puted.

Item two follows from the fact that ∂Pϕ
∂Pϕ0

> 1 over one revolution. This fact is

proved in the section on analysis of the equation of variation.

E.2.9 Performing the Action Comparison

A quick nonrigorous method of performing the action comparison is automated

in a Mathematica notebook, and a more in depth rigorous approach is the focus

of several programs.

E.2.9.1 Nonrigorous Action Comparison

The Mathematica notebook actcomp.nb contains code optimized for J0 =

1.8. At the start, set the value of ’PphiIC’, the initial angular momentum, and

execute all the cells. The notebook generates a large number of test solutions using
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nonrigorous Runge-Kutta integration, computes action in the kick region, finds the

extrema in action with respect to angle, finds the extreme angles, then uses extreme

2BP’s to carry out the outside action comparison. The formulas are implemented

exactly as described, modulo slightly different (and in some cases more descriptive)

variable names. At the end of the notebook is the total comparison. If the interval

contains numbers less than or equal to zero, the comparison has failed. Otherwise it

works. Information on eccentricity and maximum radius are also computed at the

end.

Here are some of the options in the program are some special choices.

• ‘GridSize=512’ says to use 2 · 512 + 1 test solutions.

• ‘innercompdiff’ is the action difference in the inner region, found numerically

over the class of test solutions.

• ‘maxpphidiff’ is the maximum change in angular momentum over the class of

5-Solar passages considered and is estimated from the test solutions.

• ‘pphiwindow=0.000025’ is actually to account for extra thickness in the Pϕ

direction which occurs when conducting rigorous numerics. For nonrigorous

numerics, it can be set to zero, however leaving it as 0.000025 can be useful to

double check the enclosures produced during the rigorous action comparison.

• ‘arcl=2’ uses elongated solar passages. ‘arcl=1’ uses standard R-solar pas-

sages. This is the extra factor of 2 discussed in section 2.2.
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The notebook actcomp hyp.nb performs the action comparison using 80-

Solar passages. It is of a similar structure to actcomp.nb, however it has several

additional modules and functions to handle hyperbolic 2BPs.

The heuristic calculation using parabolic motion used the function ‘ptime[r, J0]’

which inputs radius and J0 and outputs the time the parabolic 2BP is at in its orbit,

where t = 0 corresponds to the perihelion. ‘ptime’, implemented in RCP3BP Estimates.nb

is the generates the second formula in (2.1.4). Additionally, Mathematica’s sym-

bolic manipulation abilities can be used to invert this function and solve for r(t).

This produces the first formula for parabolic motion in (2.1.4). See GK1Claims.nb.

E.2.9.2 Rigorous Action Comparison

Performing the rigorous action comparison is a substantial computational task

as rigorous numerical integration of all trajectories in the kick region must be per-

formed, and the outside region must employ interval arithmetic to be rigorous. This

is detailed in section 2.2. To perform both tasks, the CAPD package in C++ is

used. It employees the Lohner algorithm to rigorously integrate ODEs and also has

built in libraries for interval arithmetic. See E.1 for a brief description, and the

references [Z], [WZ], and [MZ] for more through details on the CAPD package.

Examples of CAPD integrators are given in section E.2.16 of this document.

To perform the rigorous action comparison, the program actcomp.cpp. is

used. The mathematical setup is recorded in the proof of Theorem 2.2.4, and the

technical details (step sizes, dimensionality of various arrays, included packages)
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are documented in the code, in some cases line by line. (See section E.2.16 of

this document for a worked example). The program requires as input a start and

stop range between 0 and 28001. Each value i corresponds to computing the action

comparison for Pϕ ∈ [1.67−i ·0.000025, 1.67+i ·0.000025].5 Call the data associated

to each i a layer.

The program saves, for each value i, two log files, Summary Layeri.txt and

Layeri.txt. The summary log files contain only the information for the action

comparison. The standard (Layer) log file contains information on each integrated

trajectory. In order to avoid storing massive logs of data, actcomp.cpp has lines

commented out, which when activated, saves all this data. However the default is

to just log the action comparison data and the crossing times for trajectories.

Running actcomp.cpp is quite computationally intensive and can take months

of time on a single processor. Since each layer i is independent, it is possible (and

encouraged) to run different layers on different machines. At the end, simply place

all the log files in one directory. The programs reader.cpp and readtime.cpp

allow one to parse through the log files generated. The notebook actcomp res.nb

contains visual output of the data.

Once log files are generated, outactcomp.cpp and outactcomp hyp.cpp

uses them to complete the action comparison. outactcomp.cpp carries out the

5This is slightly different than has described in section 2.2. The reason for the difference is that

previously the program had to take negative arguments, whereas now it does not. Furthermore

this program uses smaller boxes which allows us to produce tighter results. Notably it gives

e∗(1.8, 0.001) ≈ 0.57 which is less than the 0.66 cited in Theorem 1.1.2.
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comparison using elongated solar passages. It only accepts inputs (Layers) less than

25500. ouactcomp hyp.cpp carries out the comparison using 100-solar passages6

The formulas in section 2.2 are implemented exactly as described, however

using slightly different (and in some cases more descriptive) variable names. The

program outputs eccentricities were there are no invariant curves. Logs for this are

called outact.txt and outact hyp.txt. It is possible to modify code (see comments

in code) to output places where the comparison failed. This output is included in

the file outact fail.txt in the ‘Logs and Data’ subdirectory.

The data generated by the rigorous action comparison is used in Theorem

2.2.4. At present, the programs actually improve modestly on some of these num-

bers. The data is also used in the third claim of Lemma 2.2.2 on total change in

angular momentum along an R-solar passage. The data on the time to cross the

kick the region as found in Lemma 5.1.1 is also generated. The visualizations as in

actcomp res.nb are the origin of the graphs accompanying all of these respective

claims.

In the outside region action comparison several closed form integrals are used.

These are found in the notebook usefulintegrals.nb.

6This is slightly different than in section 2.2 which requires 80-solar passages. mathematically

R = 80 works fine, but due to rounding used in interval arithmetic estimates, it is better for the

program to use R = 100-solar passages.
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E.2.10 Expansion of the domain

Theorem 3.1.1 establishes that ν = 2.8µ. The method outlined in the proof

using upper bounds on ∆H and using ρ is carried out in GK2claims.nb.

E.2.11 Analysis of the Equations of Variation

To handle the bounds on equations of variation in the outside region, Mathe-

matica is used to evaluate the terms ai(r0) as outlined in section B.2. This functions

are found in the notebook GK2claims.nb. These functions used integrals from the

notebook usefulintegrals.nb which contains closed form integrals for the 2BP.

To handle the bounds on equations of variation in the outside region, CAPD

is used to rigorously integrate the equations of variation over all 5–solar passages

which initial conditions on the tangent space described as in the paper. The program

is called varbound.cpp and it runs in about 5 hours. Cince it uses intervals in Pϕ

of size 0.0001, it is not very accurate and more refined analysis is possible at the

cost of increased computation.

E.2.12 Computing Localization Intervals

A quick nonrigorous method of finding the localization intervals is automated

in a Mathematica notebook, and a more in depth rigorous approach is the focus

of several programs.
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E.2.12.1 Nonrigorous Computation

The Mathematica notebook localization test.nb computes localization in-

tervals in Delaunay coordinates. Simply evaluate all the cells to get nonrigorous

approximations for the localization intervals. (Note one must first evaluate the

notebook RCP3BP Estimates.nb.)

The notebook works by creating a grid of solutions with initial conditions all on

the energy surface H = −1.8 and g = 0. For each solution, it computes δL and δ` as

specified in chapter 5 and stores this additional data. It is possible to obtain visual

representations of these data sets and the notebook does so. The notebook also

records the location of the kick and outside regions by computing |Lu|. Confidence

intervals are computed using the algorithm in section 5.1.3 with initial condition

∆L = 0.1 with 3 iterations. Localization intervals are then computed by using

quantities computed during generation of the confidence intervals. The numerical

experiments contained in this notebook also give some of the heuristic estimates

found in section 5.1.1.

A sample grid is input and evaluated to produce roughly the quantities found

in the paper. These are only approximations due to the fact that the mesh is not

very fine, and also due to the fact that in the rigorous case, additional care must be

handled to deal with boxes of initial conditions.
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E.2.12.2 Rigorous Computation

Rigorous computation of the localization intervals is broken up into two pro-

grams. Step 1 of algorithm in section 5.2 is the rigorous integration of a grid of

boxes of initial conditions. The remaining steps can be carried out in a separate

program once the first step is complete.

To carry out the massive grid integration, gridstore.fox, a COSY-JERI

program, is used to rigorously integrate the equations of motion for the RCP3BP.

The Modified action-angle variables in subsection E.2.14.1 are used. The domain of

definition is divided into a large number of small boxes and each is integrated over

one return time. Differences between initial and final conditions are saved in data

files. Because the bounds need to be very tight, degree 4 or 5 Taylor Models are

used as well as small boxes of initial conditions. This slows down computation time

considerably. As such, difference parts of the domain were run on different CPUs

and the resulting data files were all pooled together. The computation would take a

long time on a single computer (approx 19.5 million seconds, or 225 days), however

due to utilization of multiple processors, it actually only took about 2 weeks.

After gridstore.fox is finished, all the data files are merged together. The

data files occupy several hundred megabytes of space and are available upon spe-

cial request. Another COSY-JERI program, gridread.fox, reads the data files

and checks that all elements of the domain in question are present. It then stores

several more log files containing differences in action and angle variables which are

organized by initial conditions. This program has routines to compute confidence
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intervals. Because it uses small boxes of initial conditions, some boxes are counted

as being both in the kick and outside regions. Calculations are carried out using

interval arithmetic. The ordering condition is used to produce bounds on the local-

ization intervals as specified below in the appendix. The program outputs n and

the confidence interval associated to it.

E.2.13 Crossing Intervals

A quick nonrigorous method of computing crossing trajectories is automated

in a Mathematica notebook, and a more in depth rigorous approach is the focus

of several programs.

E.2.13.1 Nonrigorous Computation

All the tools to generate nonrigorous crossings are contained in the

RCP3BP Estimates.nb notebook. Once the localization intervals are known,

simply use the nonrigorous numerical integration to cross them. All the solutions

listed in section 5.3 are generated and plotted in the notebook crossings.nb. As

mentioned in section 5.3, it is easier to compute crossings in polar coordinates since

the equations are simpler to express, and therefore integration can be carried out

more quickly and accurately.

Actually finding crossings is difficult and involves a lot of trial and error.

Given a localization interval [G−, G+], the computer can be programmed to generate

several thousand solutions with initial conditions Pϕ = G−−ε, where ε is some small
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number. Typically it takes hours (or days) to generate test solutions. Each solution

is checked to determine if it crosses the localization interval. Most do not. In some

cases, all test solutions do not cross and more must be generated. Once a handful

of crossings is found, the initial conditions are carefully perturbed by hand in an

effort to produce a larger difference in the Pϕ = G direction, or a quicker crossing

time. This is more less ad hoc and is also very time consuming. It is also completely

irrelevant to the proofs, since only the existence of crossings is required, and once

trajectories crossing the localization intervals are produced, the proof is complete.

E.2.13.2 Rigorous Computation

Once a potential crossing solution is located by nonrigorous methods above,

it must be verified rigorously. The integrator COSY-JERI is used to do this.

COSY-JERI is described more throughly in section E.2.20. The primary difficulty

in verifying crossings is that verification requires both high precision (on order of

10−3 accuracy) and long integration times (on order of thousands of time units).

The faster the crossing time, and the larger the jump, the easier the verification.

This is why solutions were carefully chosen by hand.

The program findpolarcross.fox contains all the code necessary to verify a

polar crossing. The program needs slight modification for each crossing, namely

that the initial conditions, integration time, and order of the Taylor Model must be

input by hand. Values for each crossing are stored in the log files. The program

uses Taylor Models and Shrink Wrapping as described section E.1.3 to carry out
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long term rigorous integration.

The program produces the log files Crossing test*.DAT which contains a

record of the solution at certain times, and also records the range in the G = Pϕ

direction. The program outputs to the screen the current values of the solution after

a time step, as well as the bounds in the G direction.

An important technical note is that since solutions are bounded as intervals,

G(t) ∈ [a(t), b(t)], then the crossing of the localization interval [G−, G+] is only

verified provided there is a time t∗ when b(t∗) < G− and a time t∗ when a(t∗) >

G+. This condition ensures that the trajectory actually crosses the localization

interval, independent of any errors introduced from computer arithmetic. In some

cases, candidate solutions crossed the localization in the nonrigorous Mathematica

notebook, however they failed this containment condition and hence could not be

used.

The process of checking a crossing is very memory and processor intensive.

Typically high order Taylor models (order > 10) must be used which requires ap-

proximately a 1 gigabyte of memory and a fast processor. Verification times could

take up to a week of continuous processor usage. It is likely this time could be

improved with better choice of crossing solution or more careful optimization of the

parameters in the integrator. However this was not attempted. It is very likely the

time it would take to carefully optimize the code would exceed the time necessary

to perform the integration.

Remark: At present CAPD can be used to integrate accurately up to around

500 time units. With some more careful coding on the author’s part, CAPD should
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be able to verify the crossing solutions’ behavior.

E.2.14 Crossing the Kick Region

In Lemma 5.1.1, it is stated that it takes at most 3 iterates of F to cross the

kick region for a certain set of parameters. To prove this rigorously, estimates on

total change in angular momentum, estimates of the perturbation terms, as well as

an upper bound on the time to make a 5-Solar passage are needed for the parameters

listed. The program actcomp.cpp, as described above also records an upper bound

on the time to make a 5-Solar Passage. Once the data files are generated, it is a

simple matter to scan through them to obtain the desired upper bound.

E.2.14.1 Alternative Action-Angle Variables for RCP3BP

When the source code for parts of this thesis was written, the author was

unaware of how prevalent Delaunay variables were in the literature. The software

(COSY-JERI) was not been rewritten using Delaunay7. Instead alternative action

variables were used to formulate several of the results. These variables are denoted

7It would require significant time recoding, rechecking, and rerunning the software. It is easier

to just change the mathematical statements than do this.
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(J, Jr, θ, θr, ξ) are are associated to Delaunay variables in the following way.

J = L Jr = L−G

θ = `− θr ξ = u

u− e sin(u) =` = θ + θr

e =

√
1− G2

L2
=

√
1− (J − Jr)2

J2

θr = −g − 2 arctan(

√
1 + e

1− e
tan(

u

2
)) + arccos(

cos(u)− e
1− e cos(u)

)sign(sin(u))

The calculations for the localization intervals were computed using this mod-

ified coordinate system. This is not serious as J = L. Mathematically, the state-

ments of certain theorems change, but the proofs remain the same, up to change of

coordinates. These changes are stated now for completeness.

In the modified coordinate system,

HModified = − 1

2J2
− (J − Jr) + ∆H(J, Jr, θ, θr)

The perturbation term can be computed explicitly through the use of a computer

algebra system, noting the following identities

r =J2(1− ecos(ξ)

cos(ϕ) =
cos(ξ)− e

1− e cos(ξ)
− θr

e =

√
1− (J − Jr)2

J2

ξ − e sin(ξ) =θ + θr

In this coordinate system, fixing an energy surface H = −E, where E is Jacobi

constant, implicitly defines the variable Jr ≈ J − E + 1
2J2 . Take a Poincaré section
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{θr = 0 mod 2π}. The Poincaré map is now

F =
(Fθ
FJ

)
:
(θ0

J0

)
7→
(θ(t∗, θ0, J0)

J(t∗, θ0, J0)

)
Proof of twisting remains the same, and the twist term is of the same form

expect with J ’s instead of L’s and θ’s instead of `’s. There is still twisting for e ≤ 0.9,

the region where the integration in the algorithm of section 5.2 is performed. It still

takes 3 iterates to cross the kick region. All extremized quantities remain the same

with with J ’s instead of L’s and θ’s instead of `’s. The kick region and the procedure

to define and refine confidence intervals remains the same.

The variable θ moves differently than ` and the corresponding ordering condi-

tion is

θn − θ0 < 2π(1− n)

and the localization theorem is stated as

Theorem E.2.1 (Localization Intervals). Fix mass ratio µ, Jacobi constant J0, and

rotation symbol ω ∈ [ 1
n+1

+, 1
n
−]. Suppose An < ω−

1
3 and ∆J are nonnegative real

numbers such that the (An,∆J) containment assumption is satisfied for all solutions

with initial conditions J0 = An. Suppose Jn > ω−
1
3 and ∆J ′ are nonnegative real

numbers such that the (Bn,∆J
′) containment assumption is satisfied for all solutions

with initial conditions L0 = Bn. Further suppose that

Nδθkick,min
(J0,∆Ji)

+ (n−N)δθout,min
(J0,∆Ji)

≥ 2π(1− n)

and

Nδθkick,max
(J ′0,∆J

′i) + ((N − 1)− 3)δθout,max
(J ′0,∆J

′i) ≤ −2πn
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holds, where N is the number of iterates needed to cross the Delaunay kick region.

Then [An, Bn] is an ω-localization interval. Moreover An, Bn <∞.

Proof of the theorem is the same, except for using the modified ordering con-

dition, and J ’s instead of L’s and θ’s instead of `’s.

E.2.15 Obtaining and Installing the Software

In this subsection, some details are given on how to obtain and install the

software packages necessary to verify the claims in this thesis.

E.2.15.1 Required Packages

Three software packages are required to run the necessary programs: CAPD,

Mathematica, and COSY. These packages are not distributed by the author.

Below is information on obtaining them.

1. CAPD is a GPL open source software library and can be obtained from the

“Computer Assisted Proofs in Dynamical Systems Group” free of charge. See

http ://CAPD. i i . u j . edu . p l /

for details on obtaining and installing CAPD. It is recommended to use the

latest available build. To compile CAPD, a Linux-type environment running

the X graphics server is required.

2. Mathematica is a closed source software package, distributed for a fee by

Wolfram Research. See
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http ://www. wolfram . com/

for details on obtaining and installing Mathematica. Version 5 was used

when creating the software used in this document.

3. COSY is an open source software library distributed for free with a restricted

license by Martin Berz at Michigan State. See

www. COSYinfinity . org

for details on obtaining and installing COSY. The build distributed in 2008

was the version used.

While developing and running this software, the author used Ubuntu 8.10, Ubuntu

9.04, or Fedora Core 7. All computers used had at least 256MB of RAM, a 4GB

HDD, and a 1Ghz processor.

Installing the Programs:

E.2.15.2 CAPD

1. Obtain and Install CAPD on your system

2. Create a subdirectory called private in the CAPD directory structure. Goto

the private subdirectory.

3. Inside of our zip file, there is a directory called CAPD with various programs

in it. Copy the directory of the program of your choice to the folder ‘private’

that you just created.

224



4. Goto the subdirectory of ‘private’ that you just created. It contains a makefile.

5. Run the make command twice.

6. The program executable is in ˜/CAPD/bin and has the same name as the

.cpp file.

Tips for the Linux Installation

• Compilation may fail if you do not have the X-development library. Usually

this manifests in a ’... Xlib.h not found ...’ in the compilation output.

• It is recommended to use wx if you want to modify any of the programs to

incorporate graphics. When you compile the library or programs, use ’make

target=wx’. To use this setting you must have Qt4 installed. This is usually

included with KDE desktops, but not necessarily for Gnome.

E.2.15.3 Mathematica

The Mathematica notebook RCP3BP Estimates.nb contains a library of

functions that all other notebooks require. Evaluate all the cells in this notebook

before running any other notebook.

E.2.15.4 COSY

1. Obtain and install COSY on your system. (See COSY documentation for

help with this.)
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2. Inside of the zip file, there is a directory called COSY with various programs

in it. Copy these files into the directory you in which you just installed COSY.

3. Run COSY and then execute RCP3BP Derivatives.fox to compile the

RCP3BP derivatives library.

4. Run COSY and then execute COSY JERI.fox to compile the JERI add-on

for rigorous integration and global optimization.

5. Run COSY and then execute any of the other programs you placed in the

COSY directory.

Tips for the Windows Installation

• Before installing COSY, set Windows swap file page to 2GB (or more).

• The RCP3BP Derivatives and COSY JERI libraries, when compiled, take

up a lot of space. It is recommended to have at least 250MB of free space before

running any of the COSY programs.

E.2.16 A Quick Guide to Rigorous Integration in CAPD

In this section, the anatomy of a rigorous integrator in CAPD is examined.

The CAPD package was designed by the ’Computer Assisted Proofs in Dynamical

Systems’ group in Krakow Poland. Our goal in this section is not is discuss the

theoretical issues involved in the integration, but rather to work through an explicit

example. It is highly recommended to read the following papers which contain the
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details of the algorithms used in the CAPD as well as ideas on efficient implemen-

tation. There are several other worked examples found on the CAPD website.

Let us step through the process of compiling, running, and modifying a C0

rigorous integrator. The initial example program is called ’C0integrator’ and several

modifications shall be made to it. All the CAPD programs used in the proofs of

this thesis use this same underlaying construction, so it is important to understand

these more basic examples first. Programs which integrate variational equations use

a similar structure, however require more complicated objects. It is recommended

to read the source code itself as well as the CAPD documentation.

Let us consider is the 2 dimensional ODE with parameter µ.

ẋ = −µy

ẏ = µx

µ = 2

Our first example is a C0 integrator using a 20th order Taylor method. The

system is integrated from t = 0 to t = 100. The integrator is given a box of initial

conditions x ∈ [−0.001, 0.001], y ∈ [0.999, 1.001].

E.2.17 Compiling and Running the Example

The program C0integrator.cpp is used as an example.

1. Goto .../CAPD/private/examples .

2. Edit the makefile. ’gedit makefile’.
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3. Change line PROGS to ’PROGS = C0integrator’.

4. At the command prompt. Type ’make’ then hit enter.

5. At the command prompt. Type ’make’ then hit enter again.

6. Edit C0integrator.cpp. This is the source code for the example.

7. Run .../CAPD/bin/C0integrator . This executes the example.

E.2.18 A Walk Through of the Example

Run the program, then read through the source code of the program. The

code is commented. Below are several highlights which should give the interested

reader the ability to modify the code for other ODEs. Here are the highlights.

E.2.18.1 Dimension

To set the dimensionality of the ODE use

const int DIMENSION=2;

The 2 is because a planar ODE is considered. Note you must be able to write your

ODE as an autonomous system of first order equations. If the system is nonau-

tonomous, there is another setup to use, however it is beyond the scope of this

introduction.

E.2.18.2 Length of Integration

To set the length of integration time use
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int l ength=stat ic \ cas t<int>( (100 . /T. getStep ( ) . rightBound ( ) ) ) ;

The 100 sets the length of integration to 100 time units. Notice that the example

ODE is volume preserving, so the effects which cause the size of the box to grow are

overestimates generated to account for roundoff error. Even after 100 time units,

the box size has not grown too much.

E.2.18.3 Stepsize and order

To set the order and step size, use

double s tep =0.125;

int order = 20 ;

Smaller step size allow better enclosure over entire steps, but slows down the inte-

gration process. Higher order gets better enclosures, but takes longer. In general,

its better to use high order and take large steps.

E.2.18.4 ODE input

CAPD accepts a variety of ODEs with vector fields built using the operations

addition, subtraction, multiplication, division, and exponentiation, as well sin, cos,

log, exp, and ’
√
.’. One way to define an ODE is to input the vector field as text.

For example

Map f=”par :mu; var : x , y ; fun :−mu∗y ,mu∗x ; ” ;
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The ‘Map’ object stores the vector field for the ODE. Note it takes parameters,

as well as variables. Parameters and variables can be upper or lower case and be

multiple letters. You need to define constants as parameters since as real numbers,

they may not be machine representable. Setting them as parameters makes the result

rigorous since it instructs CAPD to use interval arithmetic to treat constants as

very small intervals of width machine-ε. The command to set parameters looks like

f . setParameter ( ”mu” , i n t e r v a l ( 2 ) ) ;

E.2.18.5 The dynamical set

The ODE solutions are stored as a ‘dynamical set’ which can be moved in time

by an integration (which is specified by an ’integrator’), and is enclosed at a point

in time, or over an interval in time. The representation of the set is important since

efficient storage and manipulation can dramatically improve the bounds obtained

from rigorous integration. A particularly efficient representation is the doubleton

representation. It is described in [MZ] along with several others. The command to

initialize the doubleton representation is

Rect2Set r e c t 2 (v , r ) ;

This uses the ‘Rect2’ doubleton representation outlined in [MZ], which generally

has the best overall performance of the possible representations CAPD supports

for C0 integration. Essentially it represents an interval as a midpoint, a range, and

some error.
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E.2.19 Enclosure Between Timesteps

Suppose bounds are desired on solutions to the ODE for all time in between

one step of integration. This is issue is addressed in [Z] and the set W1 in [Z] is the

desired enclosure. Finding this set is implemented in CAPD as the command:

In t e rva lVec to r enc = {\ bf CAPD} : : dynsys : : e n c l o s u r e (T. g e t F i e l d ( ) ,w,T. getStep ( ) ) ;

The enclosure command takes as arguments the vector field, the value of the

vector at the start of the time step, and the size of the time step. It outputs an

interval vector containing the enclosure for the timestep. The full setup is found in

the example file C0integratorENC.cpp.

E.2.20 A Quick Guide to Rigorous Integration with COSY-JERI

COSY-JERI (or COSY- Joe’s Electronic Rigorous Integrator) is a library

which uses the Taylor Model manipulation abilities of COSY to implement the ideas

for rigorous numerical integration found in Berz’s papers. These papers don’t seem

to include all of the mathematical details (several of the papers are in physics or

computer science journals). Some of these details are included in subsection E.1.3.1

and are essential to implementing a rigorous integrator. A quick review of Taylor

Models is found in E.1.3.

This section outlines some of the libraries found in COSY-JERI and work

through an example of a rigorous integrator. COSY-JERI consists of 2 library files,

RCP3BP Derivatives.fox, and COSY JERI.fox. Both the libraries and the

programs require COSY (see appendix E.2.15 for information on obtaining COSY).
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COSY has its own language, COSYscript, which COSY-JERI is written in and

it is helpful to have the COSY Programming Manual as a reference. The manual

is distributed with COSY itself.

E.2.21 The RCP3BP Derivatives Library

This library contains first and second order partial derivatives of the perturba-

tion term in action angle coordinates as well as several related partial derivatives. A

list of all the functions and details on arguments are found in documentation at the

top of the library file. It is mathematically important to note that this code does

not use Delaunay action-angle variables; it uses the action-angle variables found in

section E.2.14.1.

The functions in this library were originally computed using Mathemat-

ica’s symbolic manipulation routines. The Mathematica notebook simplifica-

tions for COSY.nb contains the simplified expressions8.

Some by hand simplifications are needed to further reduce the autogenerated

formulas Mathematica produces. For example expressions which contain a
√
x

4

which causes COSY problems, and when it is known that x > 0, the expression is

simplified to an x2. A more serious example involved simplifying expressions with

inverse trigonometric functions in them. This occasionally arose in functions involv-

ing ϕ in action-angle variables and in some cases involving inverse trig functions,

multiples of π or π
2

are added to be consistent with sign conventions. These instances

are documented in the source code.

8To check them, you first need to evaluate the notebook RCP3BP estimates old.nb.
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COSY has a limit of 80 characters per line and in some cases complex ex-

pressions run over this limit. The library contains functions for several commonly

occurring expressions, for example the function ’CTermX’. These are also docu-

mented in the notebook simplifications for COSY.nb.

Construction and testing of this library was rather time consuming and after

completion, the authors became aware of both Delaunay variables and CAPD. It

is likely that in the future results which currently depend on COSY-JERI shall

be redone to use CAPD. The CAPD licensing agreement is also more friendly to

research than that of COSY.9

E.2.22 The COSY-JERI Library

The COSY-JERI Library file, COSY JERI.fox, contains functions and

procedures to perform rigorous global optimization and rigorous ODE solving. It is

meant to emulate the functions of COSY-GO and COSY-VI found in the papers

of Berz, but is NOT closed-sourced.10 Ideas for the algorithms come from papers and

talks by Martin Berz and Kyoto Makino, as well as talks and code demos presented

at CAP08 the conference for Computer Assisted Proofs in Dynamical Systems held

in Barcelona in June 2008. This library is essentially a reverse-engineering of these

closed source products.

The COSY-JERI library contains functions to perform shrink-wrapping and

9While COSY-JERI is distributed for free, it depends on COSY, which has a restrictive

license.
10Berz does not distribute these files in any form.
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blunting, 3D global optimization, basic linear algebra, and rigorous integration using

a Schauder ODE Solver (see section E.1.3.1). At the top of this library, technical

documentation is provided, and each function also contains commenting regarding

technical details.

An important technical comment is that to use the COSY-JERI rigorous

integrator, you must declare your ODE in the function ‘ODEFUNCTION’ contained

in this file. This is due to limitations in COSYscript which require programs to be

compiled sequentially. Thirteen ODEs are input in ‘ODEFUNCTION’ as examples,

including the 2BP(SC) and the RCP3BP. See source code comments.

E.2.23 RigInt

Let us now examine an example of a rigorous integrator using Taylor Models

with blunted shrink wrapping. (Shrink Wrapping is briefly discussed in section

E.1.3 and in depth in [BM2].) The program in question is called RigInt.fox. The

theoretical underpinnings of rigorous integration are contained in the papers [BM2]

and [MB1]-[MB4] and briefly discussed in section E.1.3. Right now, let us point out

some of the highlights for code implementing these ideas.

Consider the Van Der Pol equations

ẋ =y + x− x3

3

ẏ =− x

for time t = 0 to t = 100π in steps of ∆t = 2π
50

with initial conditions x0 ∈

[−2.001, 1.999] and y0 ∈ [−0.001, 0.001].
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E.2.23.1 Dimensionality and Step Size

The code to set the ODE dimensionality and size of integration is

ODEDIM := 2 ;

t imestep :=2∗Pi /50 ;

t imestop :=100∗PI ;

E.2.23.2 Initial Conditions

In order to set the initial conditions to x0 ∈ [−2.001, 1.999] and y0 ∈ [−0.001, 0.001]

use

IC (1) := −2+TM(1)/1000 ;

IC (2) := 0+TM(2)/1000 ;

E.2.23.3 Vector Field

In the line

BoundFlow 4 ODEDIM Daorder IC t imestep flowTM param ;

the number 4 indicates to use the 4th ODE as declared in ODEFUNCTION in the

COSY-JERI library.

Other instances of the ‘BoundFlow’ involve the shrink wrapping and blunting

routines. See code comments for details. If shrink wrapping fails, then the Taylor

Models are linearized and the higher order terms moved to interval remainder. This

typically allows shrink wrapping in the next step. However this dramatically inflates
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the bounds on the ODE flow. See [MB4] for details.

E.2.23.4 Order

Use of 5th order Taylor Models is implemented using

DAorder := 5 ; { DA Order}

Higher order Taylor models typically produce tighter bounds and allow integration

to proceed for a longer time period. However, computationally, they require much

more power and storage. (Consider the number of coefficients for a polynomial in 4

variables of degree 13 vs. one of degree 3. )

E.2.24 RigOpt and Rigorous Domain Bounding

Finding a verified minimum or maximum of a function using Taylor Models

is relatively straightforward. Given a Taylor Model modeling a function, simply

bound the polynomial term by using interval arithmetic where the interval is the

domain of the Taylor Model, then add this bound to the remainder term to bound

the function in question. In [BM1], a more precise is description is given.

If a global minimum or maximum of a function f is desired on a large domain

D, simply divide up D into small subdomains, make a Taylor model on each sub-

domain, bound the Taylor model on each subdomain as above, and then take the

maximum of all maxima generated by computing bounds on the patches. Decreas-

ing the size of the subdomains generally increases the accuracy of the bounds. The

end result of the optimization is a box (or boxes) which is known to contain the
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maximum (maxima) (or minima), and an interval which contains the range of the

function over the domain, all of which are completely rigorous.

To optimize over a large grid of small patches is very inefficient. A better way

is to take the nature of Taylor models into account and note that the error term

is proportional to the size of the domain to the nth power for an nth order Taylor

model. A good way to globally optimize is to divide up a domain into a small

number of subdomains, record which boxes contain potential maxima (or minima),

then subdivide those. Even when subdividing into a small number, due to the nature

of Taylor models, the improvement in bound can be quite significant. Iterating this

procedure several times zooms in on the boxes containing the extrema. Berz uses a

variant of this method in his own (privately held) library, COSY-GO (see [BM1])

but an open-source version is available in COSY-JERI.

E.2.24.1 Example

These ideas are implemented in the example program RigOpt.fox which is

designed to optimize the function

f(x, y, x) = 1− x2 − y2 − z2

over the domain [−1, 1]3. The function is input near the top of the program at the

line

tmp:=LDB(1−SQR(X)−SQR(Y)−SQR(Z ) ) ;

The command ‘LDB’ instructs COSY to use the domain bounder on its argument.

The variables ‘X’, ‘Y’, and ‘Z’ are Taylor Models over some small domain. See
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[BM1].

The domain D = [−1, 1]3 is input in the line

FindMaximum3D IN((−1)\&1) IN((−1)\&1) IN((−1)\&1) temparray1 itermax mmx mxx ;

Full documentation for this function is provided in RigOpt.fox. The rest

of the source code is also commented and uses the recursive divide and conquer

strategy discussed above. The code outputs a box containing the maxima. It can

be used to find minima for a function f by finding maxima of 1
f
, or of −f .

RigOpt.fox uses optimization in 3 dimensions. While it is theoretically

possible to do more, this is not currently implemented due to limitations of the

COSYscript language. Another language based limitation is that functions to be

optimized must be declared before the optimizer routine. In complex programs this

results in the optimizer routine being copied and pasted several times due to the

sequential line by line compilation and execution of COSYscript.

E.2.24.2 Poincaré Return Maps

Rigorous optimization is necessary to find Poincaré return maps. Suppose Φ(t)

is a flow and Φ0 is a value on the surface of a Poincaré section. To find the return

time t, maximize 1
(Φ(t)−Φ0)2 . On the Poincaré section this value is +∞ so it is easy

for an optimizer to detect.

To concrete, for the RCP3BP in modified coordinates (see section E.2.14.1),

the return time t is when θr(t) = 2πk. The rigorous integrator can provide a Taylor

Model of the flow in variables for time and initial conditions near the near point

2πk. This Taylor Model can be feed into a rigorous global optimizer to find the
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return time in question. The routine uses a 1–dimensional version of the 3D global

optimizer used in RigOpt.fox. The function

PROCEDURE FindReturnTime FlowModel Tbounds kr Subd ivs tar t itermax ReturnTime

is found in COSY JERI.fox and has comments and details on the arguments

specified in the source code. It may be modified for other return times provided good

initial guesses are known.
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Appendix F

A review of the 2BP

This chapter reviews basic facts about the 2BP(SC). Motions of the 2BP(SC)

in rotating polar coordinates (r, ϕ) arise as solutions to Hamilton’s equations with

Hamiltonian

HPolar(r, ϕ, Pr, Pϕ) =
P 2
r

2
+
P 2
ϕ

2r2
− Pϕ −

1

r

where Pr and Pϕ are the conjugate momenta to r and ϕ respectively. Note that this

is the RCP3BP Hamiltonian with µ = 0. This is an integrable 2-degree of freedom

system. Integrals of the system are

HPolar = −J0 Pϕ = Pϕ(0).

since it is not hard to see that Ṗϕ ≡ 0. Motions of the system are conic sections which

are characterized by eccentricity on the energy surface S(J0) (i.e. HPolar = −J0).

When e < 1, these motions are ellipses. There are too special points on the ellipse of

motion when the comet is closest and furthest from the Sun. Denote these points the

perihelion and aphelion respectively. The radii of these points are given respectively

by

r± :=
P 2
ϕ

1∓ e

where eccentricity e is given by

e =
√

1− 2P 2
ϕ(J0 − Pϕ)
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Kepler’s Third Laws says the period of revolution is given by

T =
π√

2(J0 − Pϕ)3/2
= 2π

(
P 2
ϕ

1− e2

)3/2

From these formulas, it is not hard to see there are degeneracies when e =

1. Nevertheless, there are still statements that can be made about parabolic and

hyperbolic motions. See for example Lemma 2.1.4. Also see [AKN].

Analysis of the equations of first variation in Polar coordinates can be some-

what tricky. The solutions are in fact integrable. See [Beu] for a description. The

only quantity readily accessible is ∂Pϕ
∂Pϕ(0)

= 1.

Computation of action is via the Lagrangian

L(r, ṙ, ϕ, ϕ̇) =
1

2
(ṙ2 + r2(1 + ϕ̇)2) +

1

r

It is not hard to see this is a mechanical system of the form kinetic+potential.

When transforming the system into the so called Delaunay variables (see 3),

the system has the Hamiltonian

HDel = − 1

2L2
−G

with action variables 0 ≤ G ≤ L and angles `, g ∈ T. The system is still integrable

with integrals

HDel = −J0 G = G(0).

and it is not hard to see that L̇ = Ġ = 0. The variable L2 is the semimajor axis of

the ellipse of motion, i.e. L2 = 1
2
(r−+ r+) and from Kepler’s Third Law, T = 2πL3.
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It is not hard to show that

r = L2
(
1− e cos(u)

)
e =

√
1− G2

L2

u− e sin(u) =L−3t = `

sin(ϕ− ϕ0) =
sin(u)

√
1− e2

1− e cos(u)

cos(ϕ− ϕ0) =
cos(u)− e

1− e cos(u)

Pr =
Le sin(u)

r

Pϕ = G

g = −t

where ϕ0 is the perihelion angle, i.e. the angle the comet makes with respect to the

positive x-axis then it is at the perihelion. Examining these equations it is also not

hard to see that Delaunay variables have degeneracies at e = 1. Also see [AKN] for

more relations.

It is easy to examine the equations of first variation in Delaunay. Every quan-

tity is identically zero except for ∂L
∂L0

= ∂G
∂G0

= ∂`
∂`0

= ∂g
∂g0

= 1 and ∂`
∂L0

= − 3
L4 . The

last term is the so called twist term. See section 3.2.

Using the section P = g = 0 mod 2π, then dynamics can be reduced to that

of an exact area preserving twist map given by

F(`, L) = (`+ 2πL−3, L)

Note the property of twist follows for the map since ∂`
∂L0

= − 6π
L4 .
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Computation of action is via the Lagrangian

L(`, ˙̀) =
3

2
˙̀2/3

It is not hard to parlay this into a generating function for the map (see section 6.1)

h(`0, `1) =
3(`1 − `0)3/2

2
√

2π
= 3πL−2

Note that this says the cheapest motions in terms of action is for L to remain

constant along trajectories. Indeed in the integrable case this is exactly what is

observed from solving the Hamiltonian equations of motion.
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