
ABSTRACT

Title of dissertation: PERFORMANCE EXPLORATION OF
THE HYBRID MEMORY CUBE

Paul Rosenfeld, Doctor of Philosophy, 2014

Dissertation directed by: Bruce Jacob
Department of Electrical Engineering

The Hybrid Memory Cube (HMC) is an emerging main memory technology

that leverages advances in 3D fabrication techniques to create a memory device with

several DRAM dies stacked on top of a CMOS logic layer. The logic layer at the base

of each stack contains several DRAM memory controllers that communicate with the

host processor over high speed serial links using an abstracted packet interface. Each

memory controller is connected to several memory banks in the DRAM stack with

Through-Silicon Vias (TSVs), which are metal connections that extend vertically

through each chip in the die stack. Since the TSVs form a dense interconnect with

short path lengths, the data bus between the controller and memory banks can be

operated at higher throughput and lower energy per bit compared to traditional

Double Data Rate (DDRx) memories, which uses many long and parallel wires

on the motherboard to communicate with the memory controller located on the

CPU die. The TSV connections combined with the presence of multiple memory

controllers near the memory arrays form a device that exposes significant memory-

level parallelism and is capable of delivering an order of magnitude more bandwidth

than current DDRx solutions.

While the architecture of this type of device is still nascent, we present several

parameter sweeps to highlight the performance characteristics and trade-offs in the

HMC architecture. In the first part of this dissertation, we attempt to understand

and optimize the architecture of a single HMC device that is not connected to

any other HMCs. We begin by quantifying the impact of a packetized high-speed

serial interface on the performance of the memory system and how it differs from

current generation DDRx memories. Next, we perform a sensitivity analysis to

gain insight into how various queue sizes, interconnect parameters, and DRAM

timings affect the overall performance of the memory system. Then, we analyze

several different cube configurations that are resource-constrained to illustrate the

trade-offs in choosing the number of memory controllers, DRAM dies, and memory

banks in the system. Finally, we use a full system simulation environment running

multi-threaded workloads on top of an unmodified Linux kernel to compare the

performance of HMC against DDRx and “ideal” memory systems. We conclude that

today’s CPU protocols such as coherent caches pose a problem for a high-throughput

memory system such as the HMC. After removing the bottleneck, however, we see

that memory intensive workloads can benefit significantly from the HMC’s high

bandwidth.

In addition to being used as a single HMC device attached to a CPU socket,

the HMC allows two or more devices to be “chained” together to form a diverse set

of topologies with unique performance characteristics. Since each HMC regenerates

the high speed signal on its links, in theory any number of cubes can be connected

together to extend the capacity of the memory system. There are, however, practical

limits on the number of cubes and types of topologies that can be implemented.

In the second part of this work, we describe the challenges and performance

impacts of chaining multiple HMC cubes together. We implement several cube

topologies of two, four, and eight cubes and apply a number of different routing

heuristics of varying complexity. We discuss the effects of the topology on the overall

performance of the memory system and the practical limits of chaining. Finally, we

quantify the impact of chaining on the execution of workloads using full-system

simulation and show that chaining overheads are low enough for it to be a viable

avenue to extend memory capacity.

PERFORMANCE EXPLORATION OF THE
HYBRID MEMORY CUBE

by

Paul Rosenfeld

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Bruce Jacob, Chair/Advisor
Professor Manoj Franklin
Professor Gang Qu
Professor Donald Yeung
Professor Jeffrey Hollingsworth, Dean’s Representative

c© Copyright by
Paul Rosenfeld

2014

To my wonderful parents, Simon and Olga Rosenfeld

Without their support, none of this would have been possible.

ii

Acknowledgments

First and foremost, I would like to acknowledge my family who has done

everything in their power to support me in both my academic and personal life. My

father’s brilliance and boundless curiosity, my mother’s encouragement and ability

to ward off any oncoming panic attack with a few words, and my brother’s unique

perspective and guidance have all helped me focus on what is important. Their

support underlies everything that I do, and I am thankful to have such wonderful

people in my life.

I owe a special thanks to my girlfriend, Ivy Liu, who has had to endure a

disproportionate number of computer references over the years. I imagine that she

will forever think “memory fragmentation problem” when looking at a suboptimal

seating arrangement (and for that, I apologize). She has helped me through several

graduate school existential crises and has always been there for me—for that I am

grateful.

Thanks to Elliott Cooper-Balis for being a friend and sounding board for ideas

throughout my graduate school career. I wish all the best to the DRAM Ninjas past

and present (Mu-Tien Chang, Ishwar Bhati, Jim Stevens, Paul Tschirhart). Avadh

Patel who contributed so much of his time and effort furthering the open source and

academic research communities and enabling our group’s work. Arun Rodrigues

for pulling us into the world of supercomputers. Finally, I would like to thank

my advisor, Dr. Bruce Jacob, for his leadership and for always being our biggest

proponent.

iii

Table of Contents

List of Tables vi

List of Figures vi

List of Abbreviations ix

1 Introduction 1
1.1 Status Quo: Current Generation Memory Systems 1
1.2 Synchronous DRAM . 2
1.3 Currently Proposed Solutions . 6

1.3.1 DDR4 . 7
1.3.2 LRDIMM . 8
1.3.3 Fully Buffered DIMM . 9
1.3.4 Buffer-on-Board . 11

1.4 Discussion of Proposed Solutions . 13

2 Hybrid Memory Cube Architecture 16
2.1 HMC Architecture . 16
2.2 Benefits of the HMC . 23

2.2.1 Capacity . 23
2.2.2 Parallelism and Aggregate Bandwidth 24
2.2.3 Energy Efficiency . 25
2.2.4 Device Process Heterogeneity 26
2.2.5 Interface Abstraction . 26
2.2.6 Near-Memory Computation 29

3 Related Work 30
3.1 DRAM on CPU Stacking . 30
3.2 System Level Studies . 31
3.3 Low Level Studies . 33
3.4 Serially Attached Stacked DRAM . 34

4 Methodology 36
4.1 HMC Simulator . 36
4.2 HMC Parameters . 37

4.2.1 DRAM Timing Parameters 37
4.2.2 Switch Interconnect . 38
4.2.3 Vault Controller . 39

4.3 Random Stream Methodology . 41
4.4 Full System Simulation Methodology 44

4.4.1 Choosing a Simulation Environment 44
4.4.2 MARSSx86 Simulator . 48
4.4.3 Comparison Systems . 50

iv

5 Single Cube Optimization 52
5.1 Motivation . 52
5.2 Link Bandwidth Optimization . 53

5.2.1 Link Efficiency and Read/Write Sensitivity 53
5.2.2 Selecting Link/TSV Bandwidth 57

5.3 Switch Parameters . 62
5.4 Queuing Parameters . 63

5.4.1 Vault Command Queue Depth 65
5.4.2 Vault Read Return Queue Depth 66

5.5 Constrained Resource Sweep . 67
5.5.1 Vault/Partition Organization 68
5.5.2 Impact of Total Banks . 75

5.6 Full System Simulation . 77
5.6.1 Memory Bandwidth Exploration 77
5.6.2 Workload Selection . 83

5.7 Full System Results . 87
5.7.1 DRAM Sensitivity . 87

5.8 Address Mapping . 98
5.8.1 Single Cube Address Mapping Results 100

5.9 Memory Performance Comparison . 105

6 Multiple Cube Topologies 114
6.1 HMC Chaining Background . 114
6.2 Routing Background . 116
6.3 Route Selection Algorithms . 118

6.3.1 Link Choosers . 119
6.3.1.1 Random . 119
6.3.1.2 Address-based . 119
6.3.1.3 Buffer Space . 120
6.3.1.4 Read/Write Ratio 120

6.3.2 Route Choosers . 121
6.3.2.1 Random . 121
6.3.2.2 Round Robin . 122

6.3.3 Congestion Aware . 122
6.4 Topologies . 123

6.4.1 Chain . 123
6.4.2 Ring . 124

6.5 Cube Topology Random Stream Results 129
6.5.1 Route Heuristics . 129
6.5.2 Full System Performance Impact 134

7 Conclusion 141

Bibliography 143

v

List of Tables

4.1 DRAM timing parameters used in simulations 37
4.2 MARSSx86 Configuration . 48

5.1 Effective link bandwidth for various request sizes and a 16 byte over-
head. Larger requests achieve higher effective bandwidth on the links. 56

5.2 Effective theoretical peak link bandwidths for different read/write ratios 58
5.3 Speedup of workloads when increasing core count and changing co-

herence scheme . 82

6.1 Memory bandwidth and execution time impact of cube chaining . . . 138

List of Figures

1.1 One channel of a traditional DDRx memory system 4
1.2 A Single LRDIMM channel . 8
1.3 One FB-DIMM channel . 10
1.4 A Buffer-on-Board memory system 12

2.1 A closeup of an HMC stack . 17
2.2 The architecture of an HMC cube . 17
2.3 An artist’s rendering of the HMC . 18
2.4 A cross section of an HMC device . 18
2.5 Comparison of HMC and DDRx DRAM dies 20

2.5a Single HMC DRAM die . 20
2.5b Samsung 2Gb DDR3 DRAM die 20

2.6 The architecture of an HMC memory system 21

3.1 Two possible 3D rank organizations 32

4.1 A block diagram of the MARSSx86 simulator 49

5.1 Link efficiencies . 55
5.1a Link efficiency as a function of read/write ratio 55
5.1b Effective link bandwidth for 64 byte requests for different link

speeds . 55
5.2 Several Link and TSV bandwidth combinations 60

5.2a Overall main memory bandwidth of several link and TSV
throughputs. 60

5.2b Main memory TSV efficiency 60
5.3 Main memory bandwidth with several different data path widths and

read/write ratios . 63
5.4 Effects of increasing command queue depth 65

5.4a Cube bandwidth . 65

vi

5.4b TSV Utilization . 65
5.5 Impact of increasing read return queue size 67

5.5a Read return queue . 67
5.5b Cube bandwidth . 67

5.6 Performance of several resource constrained cube configurations or-
ganized into different numbers of vaults, partitions, and total banks . 71
5.6a Main memory bandwidth . 71

5.6b TSV Utilization . 71
5.7 Comparison of coherence schemes . 78
5.8 Core scaling of the STREAM benchmark with various coherence

schemes . 79
5.9 Comparison of the access patterns of STREAM and STREAM-mm . 81
5.10 Core scaling of the STREAM-mm benchmark with various coherence

schemes . 82
5.11 Bandwidth time series: PARSEC suite 85
5.12 Bandwidth time series: NAS Parallel Benchamark suite 86
5.13 Bandwidth time series: synthetic micro benchmarks 86
5.14 Bandwidth time series: MANTEVO mini application (MiniFE) 87
5.15 Box plot summary of the bandwidth characteristics of all workloads . 88
5.16 Effects of doubling the tRAS DRAM timing paramter 90
5.17 Effects of doubling the tRCD DRAM timing paramter 90
5.18 Effect of varying tRAS and tRCD on bandwidth over time in a 128

bank HMC . 92
5.19 Effect of varying tRAS and tRCD on bandwidth over time in a 256

bank HMC . 93
5.20 Distribution of bandwidths for varying tRAS and tRCD DRAM timing

parameters . 94
5.21 Time-varying latency components for various workloads 95
5.22 The impact of DRAM timing parameters on workload execution time 97
5.23 Single cube address mapping schemes 99
5.24 Performance of various workloads under various address mapping

schemes with a single cube . 101
5.25 Heatmaps for five address mapping schemes for the STREAM-mm

workload over time . 104
5.26 Address mapping scheme comparison for the STREAM-mm workload 106
5.27 Heatmaps for five address mapping schemes for the ft.B workload

over time . 107
5.28 Address mapping scheme comparison for the ft.B workload 108
5.29 Address mapping scheme comparison for the sp.C workload 109
5.30 Comparison of memory system technologies: Quad Channel DDR3,

HMC, and perfect. (1) . 111
5.31 Comparison of memory system technologies: Quad Channel DDR3,

HMC, and perfect. (2) . 112

vii

6.1 A linear chain topology . 123
6.2 Block diagram of a ring topology . 124
6.3 Deadlock in a ring topology . 127

6.3a Example of deadlock case . 127
6.3b One strategy to avoid deadlock 127

6.4 Logical representation of a ring topology 128
6.5 Bandwidth of various link and route heuristics with a 56% read/write

ratio stream . 130
6.6 Bandwidth of various link and routing heuristics for a chain topology 132
6.7 Bandwidth of various link and routing heuristics for a ring topology . 133
6.8 Box plot of average number of requests per epoch to each cube in

four cube topologies . 136
6.9 Round trip latency to different cubes in four cube topologies 137
6.10 Memory bandwidth as seen from the CPU over time for topologies of

varying size . 140

viii

List of Abbreviations

DRAM Dynamic Random Access Memory
DDR Double Data Rate
DIMM Dual Inline Memory Module
HMC Hybrid Memory Cube
NUMA Non-Uniform Memory Access
RRQ Read Return Queue
TSV Through-Silicon Via

ix

Chapter 1

Introduction

1.1 Status Quo: Current Generation Memory Systems

The original “Memory Wall” [1] paper was published well over a decade ago

and the authors expressed horror at the idea that a memory access could take “tens

or hundreds of” CPU cycles in a decade’s time. Soon after their paper was published,

synchronous DRAM began its slow march toward ubiquity after its standardization

JEDEC in 1993. What is remarkable about this situation is that while researchers

have been sounding the alarm about the memory bottleneck for nearly two decades,

today’s DDRx memory systems look largely identical to the SDRAM systems from

two decades ago.

With today’s multi-core processors containing aggressive pipelines, superscalar

execution, and out of order scheduling, the demands on the memory system are more

stringent than ever. There are three major problems that today’s systems encounter:

• Memory bandwidth per core is insufficient to meet the demands of modern

chip multiprocessors

• Memory capacity per core is insufficient to meet the needs of server and high

performance systems

• Memory power consumption is beginning to dominate large systems (i.e., high

1

performance computing, data centers)[2][3]

1.2 Synchronous DRAM

The original SDRAM standard was adopted by JEDEC in 1993 and the

vast majority of today’s computers are still using updated variants of the origi-

nal SDRAM: DDR1, DDR2, or DDR3. Although these subsequent improvements

to the original standard allowed the devices to achieve higher bandwidth through

signaling and timing improvements (such as the inclusion of On Die Termination,

DLLs, doubling the data clock rate, etc.), the underlying architecture has barely

changed since the original SDRAM standard.

A modern DDRx memory system consists of a memory controller that issues

commands to a set of DRAM devices that are soldered to a Dual Inline Memory

Module (DIMM) that is plugged into the motherboard. Each DIMM is made up

of one or more ranks that are comprised of several DRAM devices connected to a

common set of control and address lines (i.e., all of the devices in a rank operate in

lockstep to perform the same operation on their local memory arrays). Within each

device, there are multiple banks of memory each of which contains the circuitry

required to decode an address and sense data from the DRAM array. A DDR3

device has eight banks per rank. The bank is the smallest independent unit of

memory operations: commands destined for different banks can execute completely

in parallel with respect to one another. A schematic image of the DDRx memory

system can be seen in figure 1.1.

2

In order to reduce the number of address pins required, DDRx addresses are

split into separate row and column addresses. The DRAM array inside of each

bank is subdivided into rows of bits which are connected to a wordline driver. In

the first phase of a data access, a row activation command (RAS) causes all of the

devices in a particular bank to activate a wordline that contains an entire row of

bits. Sense amplifiers detect the value of each DRAM cell and store the values in

a row buffer. After the data has been stored in the row buffer, a column access

command (CAS W/CAS) drives data into or out of the DRAM array for a write or

a read, respectively. Before a different row can be activated, a precharge command

(PRE) must be issued to ready the sense amplifiers to sense a new row. The DRAM

protocol also allows for a row to be implicitly precharged after a column access

without having to send an explicit precharge command in order to reduce command

bus contention.

The DRAM devices are designed to be “dumb” in that the memory controller

is responsible for keeping track of the state of each bank in the memory system and

guaranteeing that all device timing constraints are met. The device has no ability

to detect timing violations; the data will simply become corrupt if the memory

controller issues a command at the wrong time. Additionally, the memory controller

must schedule all transactions such that there are no collisions on the shared data

bus. In addition to avoiding collisions on the bus, the controller must also account

turnaround time when the direction of the direction of the shared data bus changes.

In order to keep the core memory clock low with respect to the data bus

clock, the DDRx standard specifies a minimum “burst length” for transactions to

3

Figure 1.1: One channel of a traditional DDRx memory system. All of the ranks
share common address, command, and data buses. The destination rank is chosen
by a chip select line. The memory controller is responsible for ensuring all DRAM
device timing constraints are met.

the DRAM array. Data is transferred to and from the memory controller over a

wide 64-bit bus (or a 72-bit bus when ECC DRAM is used) in a series of “bursts”.

A DDR3 DIMM has a “burst length” of eight: a CAS triggers eight data transfers

of 64 bits each for a total of 64 bytes. This corresponds to the size of a typical cache

line fill (although a burst length of 4 can be requested for a 32 byte granularity).

Data transfers happen on both the rising and falling edges of the I/O clock (hence

the term Double Data Rate).

In non-embedded devices, a DIMM contains several individual DRAM devices

that operate as a single logical device (see 1.1). The DRAM device width specifies

4

the number of bits that the device will drive out onto the data bus during each data

burst. For example, a DDR3 DIMM that uses x8 width DRAMs will contain eight

devices per rank that are connected to the 64 bit data bus. Each CAS command

selects a set of columns from the row and these bits are driven out of the I/O pins

onto the shared data bus on each burst. That is, on each rising and falling edge of

the I/O clock, each device will output a certain number of bits which are aggregated

together onto the data bus.

Each device contains rows with 1K columns of 8 bits each for a total of 8 Kb

per device [4]. On a row activation, all eight DRAM devices will activate 8 Kb

for a total of 8 KB across the DIMM. This situation is even worse for a DIMM

consisting of x4 parts where a full 16 KB is activated across the DIMM. Before a

row is closed (precharged) any number of column activations can be sent without

having to re-issue a RAS command. For a detailed description of DRAM protocol

and operation see [5].

This multiplexed addressing scheme, however, results in an efficiency problem:

a row access activates 8-16 KB while a CAS only drives 64 bytes of data into

or out of the DRAM array. In a “close page” row buffer policy (where a row is

closed immediately after every column activation), less than 1% of the activated

bits are actually read or written. This is known as the “overfetch” problem [6] and

results in one source of energy inefficiency in DDRx DRAM. Memory controllers

may implement an “open page” row buffer policy which attempts to exploit spatial

locality in the request stream to send multiple column access commands to an open

row and thus increase the row utilization. However, this comes at the cost of logic

5

complexity and queue space overhead in the controller. Even so, it is unlikely that

a normal access pattern can exploit more than a few percent of the bits in an open

row.

The wide parallel data bus in DDRx systems also creates a scaling problem.

As the DRAM clock rates increase to try to keep pace with CPU bandwidth de-

mand, the signal integrity becomes significantly degraded due to crosstalk and signal

reflection. This problem is also exacerbated by the fact that electrical contact to the

DIMMs is maintained by physical pressure from the DIMM slot contacts and not

a permanent electrical connection such as with solder. As more DIMMs are added

to the wide multidrop DDRx bus, the resulting capacitance increase and signaling

problems create a situation where the data clock rate must be lowered in order to

maintain signal integrity. This means that in order to achieve higher bandwidths,

system designers typically reduce the number of DIMMs per channel and increase

the clock rate. This, in turn, leads to a capacity problem since the number of CPU

pins devoted to the memory system and the capacity of a single DIMM are not

growing very quickly.

1.3 Currently Proposed Solutions

Recently, industry has come up with several solutions to try to address the

various shortcomings of DDRx.

6

1.3.1 DDR4

Recently, JEDEC has completed the DDR4 standard that is slated to replace

current DDR3 devices. DDR4 introduces advanced I/O technology such as Dynamic

Bus Inversion, Pseudo Open Drain, along with new On Die Termination techniques

to reduce bus power consumption and increase signal integrity. DDR4 devices will

operate at 1.2V, resulting in a substantial energy savings over current DDR3 devices

which run at 1.35V. The use of shorter rows in the DRAM array (512B per row

compared to a typical 2048B per row in DDR3) results in a lower activation energy

as well as a lower row cycle time.

DDR4 is expected to provide data rates from 1.6 GT/s all the way up to

3.2 GT/s (2x the data rate of DDR3-1600 [7][8]) in future parts. DDR4 devices

will contain 16 banks organized into four bank groups (compared to DDR3’s 8

independent banks) that result in a higher level of memory parallelism and higher

throughput at the cost of increasing scheduling complexity [9]. Consecutive accesses

to the same bank group will incur a longer access time than accesses to different

bank groups. This means that consecutive requests must go to different bank groups

in order to avoid idling the data bus and reducing throughput [10].

Since no systems yet support DDR4, there is no clarity on how many DDR4

DIMMs per channel will be supported. Intel’s upcoming Haswell-E CPU is reported

to feature four DDR4 channels each supporting only a single DIMM per channel

[11] as discussed by previous sources [12]. However, other sources refer to DDR4

configurations with up to three DIMMs per channel at reduced data rates [13]. It

7

is unclear from this document whether a three DIMM per channel configuration

requires LRDIMM technology to be used (see section 1.3.2).

To overcome the potential capacity limitation due to single channel depth,

the DDR4 standard contains TSV stacking extensions to create 3D stacked DIMMs

containing up to 8 DRAM dies [8]. Currently, Samsung has announced Registered

DIMMs with capacity of up to 32 GB per DIMM (and LRDIMMs with capacity of

up to 128 GB per DIMM) [13].

1.3.2 LRDIMM

Figure 1.2: A Single LRDIMM channel. By placing a buffer chip on each DIMM to
latch the control, address, and data lines, LRDIMM is able to reduce the loading
on the DRAM bus. This enables faster clock speeds with higher channel depths as
compared to a standard DDRx channel.

8

Load Reduced DIMM (LRDIMM) takes the approach of reducing the capaci-

tive load on the memory buses by adding latching registers to the control, address,

and data lines1. In a traditional unregistered or registered DIMM, each rank on

a DIMM is its own electrical load on the bus. In an LRDIMM, however, multiple

ranks are connected to the buffer chip that appears as a single electrical load on the

bus. This means that a 32 GB quad rank LRDIMM results in a 4x load reduction

compared to a normal Registered DIMM (RDIMM) [14]. The load reduction miti-

gates the capacity problem by allowing more DIMMs to be placed per channel than

traditional DDRx systems while maintaining reasonably high clock speeds. For ex-

ample, LRDIMM allows three DIMMs per channel at 1333 MT/s at 1.5 V whereas

RDIMM only allows two [15]. Recently, Inphi and Samsung demonstrated a quad-

socket server system containing 1.5 TB DRAM running at 1333MT/s (4 sockets x

4 channels per socket x 3 32GB DIMMs per channel) [16].

The LRDIMM load reduction technique can be utilized with DDR3 as well as

upcoming DDR4 devices.

1.3.3 Fully Buffered DIMM

In 2007, JEDEC approved a new memory standard called Fully Buffered

DIMM (FB-DIMM). FB-DIMM places a buffer chip called an Advanced Memory

Buffer (AMB) on each memory module. The modules communicate with the mem-

ory controller using a high speed, full-duplex point-to-point link instead of a wide

1Note that this differs from a Registered DIMM that only latches the control and address

signals, but not the data bus.

9

Figure 1.3: One FB-DIMM channel. The wide DDRx data bus is localized to a
single DIMM. The Advanced Memory Buffer on each DIMM translates the high
speed link protocol into DRAM protocol.

parallel bus. Since all connections between modules are point-to-point, each memory

module must capture the data from the link and either process the request locally

or forward the request to the next module in the chain.

By replacing the wide DRAM buses with high speed, point-to-point links,

many more DIMMs can be placed in a channel while maintaining high data rate.

Though FB-DIMM addressed the bandwidth and capacity problems of the memory

system, it was never widely adopted. The power consumption of the AMB proved to

be the biggest problem with FB-DIMM since it added a non-trivial power overhead

to each DIMM. FB-DIMM allowed approximately 24x the number of DIMMs in the

10

memory system [17] as compared to a DDR3 system while adding approximately 4

W of power overhead per DIMM [17][18] resulting in power overheads that could

reach nearly 100 W. The power overhead of the memory was on par with CPU power

consumption at the time.

In the end, FB-DIMM was abandoned by vendors and taken off industry road

maps altogether.

1.3.4 Buffer-on-Board

Yet another approach to increasing capacity and bandwidth is the “Buffer-on-

Board” (BOB) memory system. This type of memory system has been implemented

by the major vendors (Intel, IBM, etc.) for their high end server systems. The

BOB memory system is comprised of a master memory controller on the CPU die

communicating with several slave memory controllers over high speed, full-duplex

serial links. Whereas the CPU communicates with each slave controller using a

packet-based protocol, the slave controllers communicate with commodity DDR3

DIMMs using a standard DDR3 memory protocol. To amortize the cost of each

high speed link, each slave controller can control more than one DRAM channel.

By splitting off each slave controller and allowing it to act as a buffer between

the wide DRAM channel and the CPU, the BOB memory system can achieve high

bandwidth and large capacity. The capacity is increased because the serial interface

requires far fewer CPU pins per channel as compared to a DDR3 channel. A large

number of memory channels can use the same number of CPU pins as just a few

11

Figure 1.4: A Buffer-on-Board memory system. In the Buffer-on-Board memory
system the main memory controller communicates with slave memory controllers
over high speed links which then drive their own DDRx channels. By amortizing
the cost of the slave memory controller over several DIMMs (instead of a single
DIMM as in FB-DIMM), Buffer-on-Board is more cost and power efficient than
FB-DIMM while maintaining its capacity and bandwidth.

DDR3 channels.

The high level of memory level parallelism enables better spread of memory

requests to independent resources to shorten access time by avoiding conflicts. The

independent, high speed, full-duplex links stream the data back to the CPU with

minimal latency overhead. Overall, the system can achieve high bandwidth and

high capacity with reasonable latency overheads. For example, [19] shows that a

particular buffer on board configuration with 256 GB of memory connected to an

12

eight core CMP is able to achieve sustained bandwidth of about 35G B/s with

about a 110 ns latency (limit case simulations using random address streams show

sustained bandwidths of around 60 GB/s).

While the performance of BOB systems is significantly higher than a regular

DDRx system, a BOB system introduces a significant power penalty. Unlike the FB-

DIMM memory system that requires a buffer for each memory module, the BOB

system only requires a single buffer for one or more channels of memory. Although

this cuts down on the number of buffers required in the system, there is still a

significant power penalty for running the slave memory controllers. In addition to

driving a standard DRAM bus, the slave controllers must send and receive data

over high speed I/O links to the CPU. Since these links don’t exist in a traditional

DDRx memory system, they represent yet another power overhead. Finally, since

the BOB memory system allows expanded capacity, the number of DIMMs in the

memory system is higher, adding further to a typical system power budget.

1.4 Discussion of Proposed Solutions

All of the solutions discussed in the previous section address various shortcom-

ings of the current DDRx memory system. The common theme among all of the

proposed solutions is that they maintain the standard DDRx technology at their

core. Most of these solutions use a standard DDRx DRAM device and improve it

externally by adding extra circuitry (and DDR4, while redesigned, keeps most of

the core DDRx technology intact). From a cost and business perspective, this is a

13

lower risk approach: fabrication facilities do not need to be retooled to build ex-

otic new memory technologies that may fail to gain widespread adoption. However,

by keeping the core DDRx technology in place, the solutions only make incremen-

tal progress in increasing bandwidth, capacity, and energy efficiency. DDR4 doubles

throughput and lowers power consumption, but may potentially suffer from capacity

limitations due to the large CPU pin requirement and potential single channel depth.

LRDIMM increases capacity while changing power and performance only nominally.

FB-DIMM and Buffer on Board offer capacity and performance increase, but with

a power penalty.

The longer term problem with these solutions is the widely predicted end of

DRAM scaling. Current generation DDR devices are manufactured in a 20 nm

process [20], but it is unclear how much further the DRAM technology process

will be able to scale downwards while still being able to produce a device that can

hold charge without having to be incessantly refreshed. Currently, technology node

scaling allows for improvements in power consumption and density of the memory

system. However, after the predicted end of DRAM scaling, there is no clear path

to continue increasing density and lowering power.

In the long run, some form of 3D stacking will become necessary to keep

pushing the performance, capacity, and power advancements in the main memory

system. 3D stacking can be used to eliminate long, problematic wires (both going

to the chip on the motherboard and the global wire length on a chip), to increase

density by allowing more devices per package and per CPU pin, and to decrease

power consumption through better electrical characteristics and shorter wires. In

14

this dissertation, we will examine one such implementation of a 3D stacked DRAM

system: the Hybrid Memory Cube.

15

Chapter 2

Hybrid Memory Cube Architecture

One of the recently proposed solutions to the bandwidth, capacity, and power

problems of the main memory system is a new memory device called Hybrid Mem-

ory Cube (HMC) [21][22]. The HMC technology leverages advances in fabrication

technology to create a 3D stack of dies that contains a CMOS logic layer with sev-

eral DRAM dies stacked on top. While the idea of stacking memory on top of logic

is not a new one, only recently has research into advanced fabrication techniques

allowed for such a device to start becoming commercially viable.

2.1 HMC Architecture

The Hybrid Memory Cube proposes to combine several stacked DRAM dies

on top of a CMOS logic layer to form a cube. The term “hybrid” is used to describe

the fact the device contains both DRAM dies as well as logic dies combined into a

single stack. The dies in the 3D stack are connected through a dense interconnect of

Through-Silicon Vias (TSVs), which are metal connections that extend vertically

through the entire chip stack. A cross section of the dies and TSVs can be seen in

figure 2.4.

To create these vertical connections, the device wafers are first thinned and

then etched to form holes that completely penetrate the wafer. The holes are then

16

Figure 2.1: A closeup of an HMC stack.

Figure 2.2: The architecture of an HMC cube. High speed serial links bring data
into the cube which is routed to one of the vault controllers. Finally, the vault
controller issues DRAM commands to the DRAM vaults. Read data flows from the
vault controller through the interconnect and back out of the high speed links.

17

Figure 2.3: An artist’s rendering of the HMC. Several DRAM dies are connected to
a CMOS logic layer by vertical metal Through Silicon Vias (TSVs)

Figure 2.4: A cross section of an HMC device. A thinned wafer is perforated with
vias that are filled with metal. Several wafers are bonded together to form a stack
of devices connected with vertical metal connections.

18

filled with metal to form an electrical connection vertically through the entire wafer.

Finally, several wafers are bonded together to form a 3D stacked device that can be

packaged (see figure 2.1 for a close up of the HMC device before it is packaged).

The result is a permanent dense metal interconnect between the DRAM dies

and the logic die that contains thousands of TSVs [23]. Unlike a typical DDRx

DIMM which maintains electrical contact through the pressure of the pin slot, the

TSV process forms a permanent metal connection between the dies. Because the

TSVs provide a very short interconnect path between dies with lower capacitance

than long PCB trace buses, data can be sent at a reasonably high data rate through

the stack without having to use expensive and power hungry I/O drivers [24]. Fur-

thermore, smaller I/O drivers and simplified routing allow a high interconnect den-

sity between the dies.

In order to increase the parallelism of the architecture, the dies are segmented

vertically into vaults. Each vault contains several partitions that each contain

several banks. A single DRAM die within the stack contains several different parti-

tions as shown in figure 2.5.

The base of each vault contains a vault controller which takes on the role

of a traditional memory controller in that it sends DRAM-specific commands to the

DRAM devices and keeps track of DRAM timing constraints. The vault controller

communicates with the DRAM devices through the electrical connections provided

by the TSVs. A vault is roughly the equivalent of a traditional DDRx channel since

it contains a controller and several independent ranks (partitions) of memory on a

common bi-directional data bus. However, unlike a traditional DDRx system, these

19

(a) Single HMC DRAM Die (source: Micron) (b) Samsung 2Gb DDR3 DRAM die (source:
chipworks)

Figure 2.5: Comparison of HMC and DDRx DRAM dies. Each DRAM die in the
HMC stack contains several partitions each with several banks. The areas between
the DRAM devices are taken up by the TSVs while the DDR3 die is almost entire
devoted to memory arrays.

20

Figure 2.6: The architecture of an HMC memory system. The CPU communicates
with cubes over a high speed packet interface. Cubes can connect to other cubes to
form networks of memory.

21

connections are vastly shorter than the DDRx bus traces on a motherboard and have

much better electrical properties. An illustration of the overall cube architecture

can be seen in Figure 2.2.

In addition to containing several vault controllers, the logic layer interfaces

with other cubes or hosts (e.g., CPUs) through a high speed link interface. Each

link is comprised of several high speed lanes that typically run at several gigabits per

second per lane. Although each individual lane is unidirectional and differentially

signalled, each link is comprised of several lanes that run in both directions, mak-

ing the link full-duplex. The link interface is responsible for serializing packets for

transmission on the link’s lanes by serializing them into the minimal transmission

unit known as flits (as per the HMC specification, a flit is 16 bytes wide). When

receiving packets, the link interface must de-serialize individual flits back into pack-

ets. Each packet contains metadata required for routing, error correction, and flow

control.

The logic layer also provides a switch interconnect that connects the links

to local vaults as well as to other links. The HMC specification states that any

link must be able to access any local vault. Similarly, in order to support chaining

of HMC cubes together, a packet from any link should be able to access pass-

through links. There are two interconnect structures that are mentioned by the

specification. The first is a full crossbar switch in which any link can transmit to

any vault. The second is a segmented structure in which each link connects to a

quadrant that services several local vaults. If a request arrives at a quadrant which

does not contain the target vault, it can be forwarded to the appropriate quadrant

22

that can service the request. However, details of the switching structure are not

dictated by the HMC specification as the switching is completely hidden from the

host controller. This is a major benefit to vendors as it allows them to optimize the

switching structure without affecting the host protocol. This type of encapsulation

is a feature of the HMC that will be described further in the next section.

2.2 Benefits of the HMC

The HMC architecture provides several key benefits over traditional DDRx

memories that solve key problems plaguing current and future memory systems.

2.2.1 Capacity

One of the benefits of an HMC architecture is that it addresses the capacity and

density problems of current DRAM technology. The capacitors inside of a DRAM

die must maintain a minimum capacitance in order to be able to store charge long

enough to avoid corruption or constant refreshing. It is difficult to shrink the DRAM

cell size while keeping the same capacitance and thus improvements in DRAM den-

sity have slowed in recent years. Furthermore, it is unclear how much longer DRAM

can continue to scale down to improve density. By leveraging Through-Silicon Vias,

multiple DRAM dies can be stacked together (currently demonstrated parts have

4 dies, but 8 dies have been mentioned). With stacked dram dies, a single cube

can contain a multiple of 4 or 8 times the storage in the same package footprint

as a single DRAM device. In addition to decreasing footprint, the amount of ca-

23

pacity accessible per active CPU pin is increased as compared to a planar DRAM

device. Note that the application of 3D stacking techniques to increase capacity is

not unique to HMC. For example, as discussed in section 1.3.1, the DDR4 standard

has 3D stacking extensions in order to help increase density without increasing pin

count.

2.2.2 Parallelism and Aggregate Bandwidth

As previously mentioned, the TSVs are able to provide a high bandwidth

connection between layers of the 3D stack. This high bandwidth is achieved through

a combination of the density of the TSVs (there can be thousands of TSVs per

cube) as well as the ability to transfer data at a high frequency. As TSVs are a

short vertical path between dies, it is possible to transmit data at a high frequency

without the signalling problems of many parallel long wires associated with PCB

traces on a motherboard (as in DDRx systems). Furthermore, each cube has several

high speed serialized links which achieve high bandwidth by using unidirectional

differentially signalled lanes.

Since there are many independent vaults, each with one or more banks, there

is a high level of parallelism inside of the cube. Each vault is roughly equivalent to

a DDRx channel since it is comprised of a controller communicating with several

independent DRAM devices sharing a data bus. With 16 or more vaults per cube,

this means that each cube can support approximately an order of magnitude more

parallelism within a single package. Furthermore, the vertical stacking of DRAM

24

devices allows for a greater number of banks per package which is also beneficial to

parallelism.

The architecture of the cube leverages many relatively slow DRAM devices put

together in parallel to take advantage of the enormous bandwidth provided both by

the TSVs that connect them to the controller as well as the high speed links that

ultimately connect them to the CPU. Overall, depending on the particular cube

configuration, tests on real hardware [25] and simulations in later chapters show

that the HMC can deliver aggregate memory bandwidth of over 100 GB/s.

2.2.3 Energy Efficiency

By radically decreasing the length and capacitance of the electrical connections

between the memory controller and the DRAM devices, the HMC is more energy

efficient compared to DDRx memory devices. As previously mentioned, this also

allows for the I/O driver circuitry to be simplified, making it more power efficient.

Additionally, since much of the peripheral circuitry is moved into the logic layer,

the power cost of this circuitry is amortized over a large number of DRAM devices,

saving on overall power consumption. That is, each DRAM device is only responsible

for reading the DRAM array and sending the data over a very short TSV bus, but

unlike a traditional DDRx DRAM device, it does not need to communicate data all

the way back to the CPU. Claims about energy efficiency range anywhere from 7x

[26] to 10x [27] over current generation memory systems. Current estimates of HMC

25

energy usage range from 10.48 pJ/bit [23] to 13.7 pJ/bit [21]. At peak utilization1,

it is estimated that DDR3 and LPDDR2 devices use approximately 70 pJ/bit and

40 pJ/bit, respectively [28]. Academic investigations also claim that a 3D stacked

architecture like the HMC can be up to 15x more energy efficient than an LPDDR

memory part [29].

2.2.4 Device Process Heterogeneity

Since a TSV process allows for heterogeneous dies to be stacked together, each

die can be optimized for a specific purpose without having to sacrifice performance.

The logic layer is optimized for switching and I/O while the DRAM dies are opti-

mized for density and data retention. If these two dies were to co-exist in a single

fabrication process, they would both suffer (i.e., DRAM built in a logic process

cannot be dense; switching logic built in a DRAM process cannot switch at a high

frequency). As a result of the stacking, each die achieves good performance and

energy efficiency while retaining almost all of the benefits of being on the same die.

2.2.5 Interface Abstraction

The original SDRAM standard purposely created many generations of “dumb”

memory devices; the memory controller was in full control of the memory devices

and was responsible for ensuring all timing constraints were met. This enabled

DRAM devices to contain a minimal amount of circuitry that wasn’t related to ma-

1Note that “peak utilization” represents the most energy efficient scenario; “typical utilization”

has a higher energy per bit.

26

nipulating the DRAM array and driving the data on the data bus. While this was a

rational design decision at the time, it had the effect of curtailing innovation in the

memory system. Once the standard was written, nothing could be done to change

the protocol. Any deviations from the standard DRAM protocol required the agree-

ment of DRAM manufacturers, motherboard manufacturers, CPU manufacturers,

etc. As modern CPUs began to incorporate the memory controller onto the CPU

die for performance reasons, the problem became even worse: every processor model

could only work with a single type of DRAM and would have to be intimately aware

of every timing constraint of the memory system. These two factors together meant

that any attempt at innovation in the memory system would usually take the form

of adding external logic that was invisible to the host (ex: LRDIMM) or used com-

modity parts with a change to the host (ex: Buffer on board). Nothing could be

done inside of the actual memory device itself.

Furthermore, the commodity economics of DRAM further stifled attempts at

innovation. Even if improvements could be made inside of a DIMM that did not

modify the DRAM protocol, they would largely be ignored as such improvements

would add to the cost of a product in a commodity market where consumers make

their decisions based largely on cost.

In the Hybrid Memory Cube, however, the memory device at the end of the

communication link is no longer “dumb”. That is, the CPU can communicate with

the cube (or topology of cubes) over a general protocol that is then converted into

device-specific commands within the vault controller. This allows for innovation in

a number of different ways. The first improvement is that the DRAM timing inside

27

of the cube can be changed without changing the CPU interface. Since the CPU

has to simply operate at the read/write level and not at the DRAM protocol level,

it no longer has to be intimately aware of every timing parameter associated with

the memory device. This means advances in a DRAM can be integrated into the

HMC without having to design an entirely new memory controller or CPU.

A second benefit of an abstract interface is that it allows any communica-

tion medium to be used as long as it is capable of delivering packets between a

CPU and memory cube. Already researchers are thinking about how to replace

electrical SerDes with high speed optical interconnects [30][3][31] to decrease power

consumption.

Finally, an abstract interface provides a method of future-proofing the memory

system. The authors of [3] point out that in the past, the CPU had to control

hard disks at a very low level until the serial ATA (SATA) interface came along

and pushed all of the control details into the disks themselves while only exposing

an abstract interface to the CPU. This change enabled a painless transition from

spinning disks to solid state disks by allowing vendors to conform to the high level

SATA interface while managing the details of their own device. The same line

of reasoning can be applied to the HMC: if the internal details of the memory

technology are the responsibility of the cube and not the CPU, then it would be

easy to change the underlying memory technology seamlessly if something came

along to replace DRAM. There is an entire field of research into emerging memory

technologies such as Spin-transfer Torque RAM (STT-RAM) and Phase Change

Memory (PCM) that have a different set of trade-offs and access characteristics as

28

compared to DRAM. An abstract protocol would enable them to migrate into an

HMC-like device without exposing the change to the CPU. Furthermore, one could

imagine heterogeneous memory stacks where DRAM dies and non-volatile memory

dies co-exist in the same cube and are intelligently and transparently managed by

the logic inside of an HMC.

2.2.6 Near-Memory Computation

Having a memory device with logic nearby opens the possibility of performing

near-memory computations. Certain types of computations and operations could

take operands from memory, perform some computation in the logic layer, and put

the result back in memory or return it to the CPU. Although this idea is not new,

there has never been such a convenient platform for implementing these operations

since, as discussed in section 2.2.4, DRAM and logic can easily co-exist in an optimal

way.

Already the HMC specification defines several commands that can be used

for operations such as locking and read-modify-write that are best done near the

memory instead of in the CPU. By executing these memory intensive operations

near the memory, the HMC is able to reduce the amount of data that must be

transferred back and forth between the memory and the processor.

29

Chapter 3

Related Work

The idea of stacking the memory hierarchy on top of the processor has been

around for over a decade. Shortly after the “memory wall” paper was published,

Kleiner et al. [32] proposed the idea of stacking the L2 cache (which was off-chip at

the time) and DRAM on top of a RISC CPU and connecting the two chips using

vias. They showed that such a stacked processor could perform instructions 25%

faster. However, only recently has the fabrication technology progressed to the point

where through silicon vias are actually feasible on a commercial scale. Buoyed by

forward progress in TSV technology, there has been a recent surge of academic and

industry research about possible applications of the technology.

3.1 DRAM on CPU Stacking

One of the biggest research directions for the utilization of 3D stacking has

been the case where DRAM is stacked directly on top of the processor. This is a

natural approach since the TSV process allows for heterogeneous dies to be stacked

together (i.e., a CMOS logic CPU die with a DRAM die). This approach also

provides the highest bandwidth and lowest latency path to the main memory, which

leads to an effective way of bridging the performance gap between the processor and

the memory.

30

3.2 System Level Studies

Liu, et al. [33] look at the advantages of stacking various memories (L2 cache

or DRAM) directly on top of the CPU as well as the effects of deepening the cache

hierarchy to include an L3 cache. Although they use a single core CPU model with

dated benchmarks, they conclude that bringing the memory closer to the CPU via

stacking can improve performance almost to the same level as having a perfect L2

cache.

In a similar but more recent study, Black, et al. [34] examine the performance

and power implications of stacking either an SRAM or DRAM cache on top of a

dual core CPU (unlike other studies, they do not assume the entire main memory

will fit on top of the CPU). They show that using a 32MB stacked DRAM results

in an average reduction of off-chip traffic by a factor of three, which translates to

a 13% average reduction in memory access time and a 66% average reduction in

bus power consumption. Their thermal modeling also shows that the temperature

increases from stacking a single extra die are negligible and unlikely to impact the

feasibility of stacking.

Kgil, et al. [35] show that stacking the main memory on top of a slow and

simple multi-core CPU without an L2 cache can increase the network throughput for

web server applications while achieving a 2-4x energy efficiency compared to more

complex conventional CPUs. Their decision to use many simple cores with no L2

cache is motivated by their target workloads, which exhibit low locality and high

thread level parallelism. The authors state that 3D stacking allows their chip to run

31

Figure 3.1: Two possible 3D rank organizations. Ranks are either split (a) hori-
zontally (“3D”) or (b) vertically (“true 3D”). The HMC model presented in this
dissertation is more akin to the horizontal “3D” model in (a). (Image source: [37])

at a slower clock rate but still perform similar to a Pentium 4-like CPU at 1/10th

of the power cost.

Loi, et al. [36] demonstrate that there is a 45% performance benefit to stacking

memory on top of the CPU while maintaining a 64-bit bus width (same as conven-

tional DRAM). Further utilizing the density of the TSVs to increase the memory bus

width improves performance by up to 65% over conventional DRAM. Additionally,

the authors show that even when taking into account the clock speed limitations

imposed by thermal constraints of 3D stacked devices, these clock-limited stacked

devices perform better than higher clocked 2D devices because of their ability to

overcome the memory bottleneck with short, high density interconnections. There

is, however, one shortcoming to this work as it only considers a 64 MB main memory

size despite being a reasonably recent publication.

Loh [37] evaluates different organizations for 3D stacked DRAM. He shows

that 3D organizations where each die contains a single rank (figure 3.1a) are not

32

able to utilize the full bandwidth potential of the TSVs. The alternative approach

of organizing the ranks in vertical slices (such that the banks are spread vertically

among the dies; see figure 3.1b) results in the greatest performance increase. Stack-

ing dies rank-wise yields a 35% performance increase (over a conventional off-chip

DRAM configuration); further increasing the bus width to 64 bytes (so a cache line

can be transferred in a single cycle) results in a 72% performance increase. Finally,

going to a “true 3D” implementation with vertical ranks generates an impressive

117% performance increase. The work also contains a parameter sweep with varying

numbers of memory controllers and ranks and shows that increasing the number of

memory interfaces has better performance characteristics than increasing the num-

ber of ranks. The HMC model presented in this dissertation has an organization

closer to figure 3.1a (i.e., the lower performing configuration): banks are contained

within partitions located on a single DRAM die.

3.3 Low Level Studies

Facchini, et al. [24] develop a model for computing TSV power and use it to

explore the energy-saving potential of stacking a DRAM die on top of a logic die in

the context of mobile applications. They show that due to the improved electrical

characteristics of the TSVs, simpler CMOS transceivers can be used to eliminate a

significant portion of the bus power as compared to conventional DRAM.

CACTI-3DD [38] is an extension to CACTI-D to model the power, perfor-

mance, and die area of 3D stacked DRAM. The authors also show, similarly to [37],

33

that a “coarse-grain” stacking for each rank is unable to take full advantage of the

TSV bandwidth, whereas a fine-grain “vertical rank” (where banks are spread verti-

cally through the stack as opposed to horizontally on a single die) is able to achieve

better performance and power characteristics.

Weis, et al. [29] explore the design space for how best to stack commodity

DRAM dies for mobile applications with a focus on the internal structure (ex: num-

ber of banks per layer, number of data I/O TSVs). They find that a 1 Gbit 3D

stack has 15x energy efficiency compared to LP-DDR devices when using a 64 Mbit

tile size with x128 I/O.

3.4 Serially Attached Stacked DRAM

Udipi, et al. [3] examine how the use of emerging silicon photonics can be

efficiently utilized to connect a CPU to an off-chip 3D stacked memory. Unlike much

of the other related work in this area, their main memory is not stacked directly on

top of the CPU. They propose an interface die that sits below the memory dies and

converts the photonic packet interface into electrical signals and handles the low-

level memory scheduling details. They examine various configurations of photonic

stops in order to most effectively amortize the photonics power costs. Finally, they

propose an “unscheduled” interface policy between the CPU memory controller and

the DRAM to try to reduce complexity.

The work in [3] builds on their previous work [39] that proposes to alleviate the

“overfetch” problem (i.e., bringing an enormous number of bits into the row buffers

34

but only using a tiny fraction of them) by making DRAM rows much shorter. One

of the biggest challenges they cite in this work is the lack of throughput between

the smaller banks and the main memory controller. In their new work, the TSVs

provide the low latency and high bandwidth path from the banks to the interface

die, thereby eliminating the bottleneck. They are able to take advantage of the

parallelism of a large number of banks through the usage of the TSVs.

Although the architecture presented in their work is very similar to the HMC

(high speed links providing an abstract memory interface connected to an interface

die with multiple memory controllers), their paper focuses more heavily on the

photonics aspect of optimizing the architecture.

Kim, et al. [40] develop a “memory-centric network” of hybrid memory cubes

that operate as both a storage and interconnect network for multiple CPUs. They

attempt to maximize HMC storage capacity while lowering request latencies in the

network through various routing techniques. This work focuses more on the in-

terconnection aspects of the network of HMCs while we focus on the performance

evaluation of a single cube and chains of cubes connected to a single host (and not

multiple hosts). We also focus more heavily on understanding the internal dynamics

of the memory cube as opposed to the traffic patterns between cubes.

35

Chapter 4

Methodology

4.1 HMC Simulator

All of the experiments performed are done using a C++ HMC simulator devel-

oped by our group. The cycle-based simulator models the entire HMC architecture

including the high speed links, the link/vault interconnect, flow control, vault con-

troller logic, and DRAM devices with their full set of timings. The initial version

of the simulator was developed during a project that involved HMC modeling for

Micron but was later modularized and generalized so that it can model any arbitrary

3D stacked memory device.

Although the internal logic and abstract protocol of the HMC has many prac-

tical advantages for the memory system (see 2.2.5), it also complicates academic

HMC research. HMC vendors can hide the internals of the device behind the proto-

col and compete with one another by changing the internals of the device to deliver

more performance with less power and cost. This type of competition is very difficult

in a conventional DDRx system since all vendors are bound by the timing param-

eters and behaviors of the DDR specification and consumers make their purchases

largely based on cost. However, this means that typically vendors will obscure the

internal structure and parameters of the architecture. Parameters such as DRAM

timings, clock frequencies, interconnect details, etc., become proprietary details that

36

Timing Parameter Value (cycles @
tCK=1.25ns)

Time (ns) Value (cycles @
tCK=0.8ns)

tRP 11 cycles 13.75 ns 17 cycles

tCCD 4 cycles 5 ns 6 cycles

tRCD 11 cycles 13.75 ns 17 cycles

tCL 11 cycles 13.75 ns 17 cycles

tWR 12 cycles 15 ns 19 cycles

tRAS 22 cycles 27.5 ns 34 cycles

Table 4.1: DRAM timing parameters used in simulations. Based on the parameters
published in [40]

are closely guarded by vendors.

4.2 HMC Parameters

4.2.1 DRAM Timing Parameters

Being a memory device, one of the fundamental parameters in an HMC device

is the DRAM timings. Unfortunately, as mentioned in the previous section, the

DRAM timing inside of the HMC is proprietary information. The simulations per-

formed here use the DRAM timings published in [40] as they are, to the best of our

knowledge, the most comprehensive set of parameters that are currently published.

Furthermore, they are more pessimistic with respect to the 45 nm DRAM timings

presented in [29] and are similar to the timings mentioned in [41].

For simplicity, however, we assume that the vault clock is a multiple of the

link reference clock which is defined as 125 MHz per the HMC specification [22].

To compute the vault clock, we take vault throughput of 10 GB/s [42] and divide it

37

by the 32 TSV data lanes within each vault [23]. This yields a 2.5 Gb/s data rate,

which, if we assume double data rate transmission, yields a 1.25 GHz TSV frequency

(tCK = 0.8ns). This frequency is precisely 10 times the link reference clock of 125

MHz. Table 4.1 shows the timing parameters used by [40], their equivalent time

values, and our timing parameters based on a 0.8 ns clock period.

We note, however, that section 5.7.1 will show that small changes in DRAM

timing parameters are unlikely to have a significant impact on the results presented

here due to the large amount of memory-level parallelism in the HMC device.

4.2.2 Switch Interconnect

The role of the interconnect in the logic layer is to connect links to local vaults

and to other links. In the single cube case, the switch interconnect only needs to

connect links to vault vaults and vice versa. In the chained case, however, the switch

also needs to connect links to other links to pass remote requests to a different cube.

Several presentations refer to the interconnect as a full crossbar [21], whereas

the HMC specification refers to a switch structure where each link can service sev-

eral local vaults with a lower latency than requests to non-local vaults. We will

assume the switch interconnect is a crossbar switch due to the lack of details of the

implementation of a different switch structure.

Since a flit is the smallest unit of data transmission, we assume that all of the

data flows through the links and switches as individual flits until they arrive at the

vault controller where they are re-assembled into transactions. Although the flits

38

travel through the system as individual pieces of data, we enforce that flits from

two transactions can never interleave when travelling between two endpoints (i.e.,

all of the flits in a transaction must complete between two points before the flits

from another transaction can transmit).

4.2.3 Vault Controller

As transactions arrive at the vault controller from the switch, their flits are

re-assembled into transactions and are placed in a command queue. The vault

controller uses a First Ready First Come First Serve (FR-FCFS) [43] policy where

ready requests can bypass stalled ones. While the controller will reorder requests,

it will not reorder dependent requests ahead of one another.

Read responses are held in a “read return queue” as they wait to be transmitted

on the switch back to a link. When a vault’s read return queue fills up, the controller

must stall the execution of all reads to avoid losing data.

We assume the vault controllers will use a closed page policy in which an

implicit precharge command immediately follows the DRAM column access. That

is, a row is immediately closed after data is written to or read from that row. This is

in contrast to another row buffer policy called “open page” which leaves the DRAM

row open by keeping its data in the row buffer and allows for subsequent read or

write accesses to that row to be serviced from the buffer. For memory access patterns

that exhibit high levels of temporal and spatial locality, leaving a DRAM row open

can increase performance by amortizing a single row activation over many column

39

accesses. On the other hand, open page row buffer models also impose a logic cost as

the scheduling hardware is typically more complex: queues must be scanned to find

transactions that can be scheduled early to an open row to make full use of the open

row. Heuristics about when rows are likely to be reused must be carefully designed

to avoid needlessly keeping rows open and incurring a power penalty. Furthermore,

when an open page policy is used on workloads with little locality, delaying the

precharge between accesses to different rows increases the latency of requests.

Server and HPC workloads typically exhibit little or no locality either due

to the underlying algorithm (e.g., pointer chasing or sparse floating point compu-

tations) or the execution model (e.g., highly threaded server workloads). There is

indication that the HMC’s DRAM devices have been redesigned to have shorter

rows [23] (256 bytes rather than 8-16 KB in a typical DDR3 device). The reduced

row length helps to save power by alleviating the so-called “overfetch” problem

where many bits are brought into the sense amplifiers but few are used. Shorter

rows, however, reduce the probability of a row buffer hit, making open page mode

impractical. Moreover, with the large number of banks in each cube, it is more effi-

cient to utilize the high level memory-level parallelism to achieve high performance

rather than to rely on locality which may or may not be present in a given memory

access stream. For these reasons, we select a closed page row buffer policy for the

simulations presented here.

40

4.3 Random Stream Methodology

In order to gain an understanding of the performance characteristics of various

design choices, an exploration of the design space is required. Such a step through

the design space involves changing many variables simultaneously and thus requires

hundreds or potentially thousands of individual simulation runs. Running a full

system simulation for each combination of variables is not feasible given that a full

system simulation can take anywhere from several hours to several days. Therefore,

to gain an initial understanding of how different variables affect performance, we

perform random stream simulation for both single and multiple cube configurations.

In addition to having a much lower execution time than full-system simula-

tions, random stream simulations have several useful properties that make them

ideal for an initial design space exploration:

• Zero Locality: Random streams exhibit no spatial or temporal locality which

represents the worst case performance scenario for modern processors as it ren-

ders caches ineffective for hiding memory latency. Furthermore, modern server

applications execute many threads which substantially decrease the amount of

locality in the memory access stream [44]. Similarly, many high performance

computing applications utilize sparse data structures which require dereferenc-

ing multiple pointers to reach a particular data item (graphs, sparse matrices,

etc.) Such “pointer chasing” algorithms generate a memory access stream

that appears to be random. Therefore, a random stream is a good first or-

der approximation for these types of applications as it represents a worst-case

41

scenario where caches are ineffective and there is maximum load on the main

memory system.

• Address Mapping Agnostic: Since each bit in a random address is equally

likely to be zero or one, each request is equally likely to go to any memory

bank/row in the system. Therefore, any address mapping scheme will have

the same performance as any other address mapping scheme when driven by a

random stream. Since the address mapping scheme will always tend to favor

some particular access pattern, a random stream provides a way to look at

the average performance of any address mapping stream. This eliminates the

need to test different address mapping schemes and reduces the number of

simulations required.

• Determinism: Since the random number generator can be seeded with a

specific value, the same address stream can be generated to guarantee a fair

comparison between different configurations. This is not always possible in a

full system simulation where multiple factors can make the simulation non-

deterministic.

• Controllable Read/Write Ratio: As we will later show in section 5.2.1,

the performance of an HMC cube is dependent on the read/write ratio of the

memory access stream. Unlike a particular application, a random stream gen-

erator can be tuned to produce memory accesses with deterministic read/write

ratios.

The random stream simulations execute five million random transactions with

42

a specific read/write ratio. Five million transactions allows the simulation to exe-

cute in steady state long enough to average out the transient start-up and tear-down

portions of the simulation (i.e., waiting for the memory system to fill up and empty

out). The driver program monitors the flow of requests to ensure that all transac-

tions complete inside the HMC simulator before stopping the simulation.

To generate the stream, the driver generates a random 64-bit address and

assigns it to be either a read or a write with probability equal to the specified

read/write ratio. All random numbers are generated using the standard GNU C

library routines (rand(), randr(), etc.). The random number generator seed for

each simulation is set manually so that each set of configurations within a sweep

being tested execute identical random streams (i.e., a set of simulations with varying

parameters all have the same memory stream). Each set of configurations is executed

three times with different seeds and the results are averaged to reduce the likelihood

of a corner case result. In practice, however, we have observed very small standard

deviations in performance metrics (bandwidth, latency) from different runs with

different seeds.

The driver is configured to issue requests “as fast as possible”: as soon as a

cube’s link is able to accept the transaction, the driver sends the transaction to the

link. This mode of operation is designed to show the limit case of what happens

when a device is under full load.

43

4.4 Full System Simulation Methodology

4.4.1 Choosing a Simulation Environment

Unfortunately, given the immense complexity and cost of chip fabrication, it is

rarely possible for academic researchers to implement their ideas in actual hardware.

Therefore, in order to show the benefits of a proposed architectural feature or new

technology, most research relies heavily on simulation. Typically, new hardware

features or devices strive to improve some specific aspect of the system such as

increasing reliability, increasing performance, or decreasing power. By comparing

the simulated performance of a system with and without the hardware feature, one

hopes to accurately capture the impact of that feature on some target workload. In

our case, we hope to see the impact of various memory system parameters on the

execution time of programs.

One option for simulating a workload is to first create a memory trace that

captures the addresses of all loads and stores in a program. This trace can then be

replayed through the memory simulator and some metrics of performance can be

extracted from the simulation. Trace-based simulation has the advantage of being

fully deterministic: identical memory streams are executed through all the memory

models. However, trace-based simulations are not “closed loop” in that without

capturing the dependence information in the memory stream, it is not possible to

have the memory model stall the CPU model. That is, if the data of WRITE B

depends on the value of READ A, real CPU would stall until READ A is complete

before sending WRITE B. In a trace-based model, however, these dependencies are

44

typically not tracked and so it is assumed that READ A and WRITE B can simply

execute through the memory model in parallel. Given the complexity of modern

processors and workloads, we feel that a trace-based simulation cannot give an

accurate picture of the performance impacts of a new memory device and therefore

we do not consider any trace-based approaches.

In order to capture more realistic behavior, we consider CPU simulators that

actually simulate the underlying processor ISA as a program is executing on sim-

ulated hardware. By connecting different memory models to the CPU simulator,

we can capture the performance impact of the memory system on the program ex-

ecution. Unlike the trace-based approach, this method is “closed loop” in that the

memory performance affects the CPU performance and vice versa. That is, if the

CPU issues many requests that swamp the memory system, the memory system

may return responses more slowly (for example, due to conflicts), and thus the CPU

must stall waiting on outstanding requests, which will result in a decrease in memory

pressure. Capturing this feedback loop is essential in quantifying the performance

impact of various memory technologies on workload performance. Given the goal of

this work to understand the impact of the memory system on programs, it is clear

that an ISA simulator is required.

Choosing an appropriate CPU simulator, however, can be challenging as there

are several academic and commercial simulators available that vary widely in their

features, fidelity levels, and target ISAs. As most HPC and server systems still use

x86 CPUs, we limited our search to those simulators that support the x86 ISA.

Targeting x86 also has some positive implications on tool chains and simulators:

45

binaries are easier to build when a cross compiler is not required and some simulators

can offload simulated instructions to the hardware if the simulated ISA matches the

host ISA.

Many simulators only offer a “system call emulation” mode where the operat-

ing system is emulated by simply emulating the system call interface. In most non-

embedded environments, the user program can only access the hardware through

the kernel via the system call interfaces. By emulating the system call interface, the

CPU simulator monitors the user code’s accesses to hardware while bypassing the

kernel completely. The user process can execute without ever being aware that it is

running in a simulator with no actual devices.

A benefit of this approach is that it is much faster than simulating the full

detail of the OS kernel: the user code is the only code that is being run in the CPU

simulation. System call routines are typically implemented by remapping them to

the underlying operating system of the host machine. For example, if a process

opens a file handle to write a file, a system call emulation implementation can

simply create a file descriptor in its own process and write the data to it. This

behavior, while functionally correct, does not capture the hardware behavior of the

underlying devices.

Since there is no kernel running in system call emulation mode, it cannot

capture the full complexity of a modern operating system. The overhead of context

switching, process scheduling, interrupts, and virtual memory are all lost in system

call emulation mode. When trying to characterize the performance of a workload

with a given memory system, it is important to capture the impact of virtual memory

46

as it can have a noticeable impact on the memory access pattern seen at the physical

memory. That is, since all modern operating systems utilize virtual memory for

paging and protection, memory accesses that appear to be contiguous in the logical

address space might be split at page boundaries by the operating system and placed

into completely unrelated portions of physical memory. A system call emulation

simulation cannot account for this important memory access behavior as it is the

only executing process with no real operating system or virtual memory system

underneath.

In addition to virtual memory, most modern devices make use of Direct Mem-

ory Access (DMA) to move data to and from hardware devices. Since system call

emulation mode does not model any hardware except for the CPU and memory,

it cannot capture the extra memory traffic generated by DMA devices. Similarly,

memory traffic generated by the kernel itself cannot be captured in system call em-

ulation mode. Although full system simulation is significantly slower than system

call emulation simulation, we feel it is necessary to perform full system simulations

to capture the full complexity of both the workload and the operating system it

is running on. Therefore, we also limited ourselves to looking only for full system

simulators.

In the end, we narrowed down the options to one of two simulators: the gem5

simulator [45] and MARSSx86 [46]. The gem5 simulator is a popular choice for

academic computer architecture research because it is highly flexible. It supports a

number of different ISAs including ALPHA, ARM, MIPS, x86, and SPARC. It also

supports a number of different levels of CPU detail ranging from basic single-IPC

47

CPU 8 out-of-order x86 cores @ 3.2 GHz
Issue Width: 4

128 Reorder Buffer Entries
48 Load Queue Entries
48 Store Queue Entries

L1 Cache 128 K L1-I / 128 K L1-D

L2 Cache 2 MB shared L2

Hardware Prefetch Disabled

Operating System Ubuntu Linux 11.04 Kernel 2.6.38

Table 4.2: MARSSx86 Configuration

models to fully pipelined, out of order models. Gem5 offers both a full-system mode

that can boot an unmodified Linux kernel as well as a system call emulation mode.

Unfortunately, at the time when we began this research, the x86 ISA was not fully

functional in gem5 and we chose the much more stable x86 support in MARSSx86.

4.4.2 MARSSx86 Simulator

MARSSx86 is a cycle-based simulator that models an out-of-order, superscalar

x86 multi-core CPU with a flexible cache hierarchy. It combines the emulation

capabilities of QEMU with very detailed x86 timing models which allows it to boot

an unmodified Linux operating system (see figure 4.1). Once a simulation begins,

both user and kernel execution are simulated.

We augment the MARSSx86 simulator by replacing the built-in memory con-

troller model with hooks to our own memory models. These include our HMC

simulator, DRAMSim2 [47] to simulate the DDR3 baseline, and our “perfect mem-

ory” model that is described in section 4.4.3 to utilize our HMC simulator. We

48

Figure 4.1: A block diagram of the MARSSx86 simulator. MARSSx86 combines
QEMU emulated hardware with a CPU simulation path.

create identical software bindings to all three memory simulators so that they can

utilize the same memory controller hooks within MARSSx86.

MARSSx86 is configured to simulate an eight core CPU running at 3.2 GHz

and 4 GB of memory. A summary of the parameters for MARSSx86 can be found

in table 4.2.

In order to reduce simulation time and to ignore uninteresting parts of the

workload such as application initialization and shutdown, all workloads are anno-

tated with a ”region of interest” hook. These extra function calls are inserted into

the workload to start the simulation directly before the interesting computation

begins and stop the simulation after it ends. The PARSEC benchmarks contain

predefined regions of interest while the other workloads are annotated by hand. All

of the workloads presented here are compiled with OpenMP support and run as

eight threads inside of MARSSx86 (which simulates 8 cores).

In order to reduce the variability and non-determinism of full-system simula-

49

tions, we utilize MARSSx86’s checkpointing capability to create a snapshot of the

running system state right at the start of the region of interest. After a simulation

completes, any changes to the underlying disk image and snapshot are discarded

to ensure that the original snapshot is preserved. This allows for several different

simulations with different parameters to run starting from an identical system state.

Since each run simulates an identical portion of a program’s execution, it is

possible to directly compute the speedup or slowdown between two runs by com-

paring the simulated runtime of the region of interest.

4.4.3 Comparison Systems

In order to provide useful context of the performance of HMC we choose two

comparison points that represent an upper and lower bound. The lower bound is

a quad-channel DDR3-1600 system simulated in DRAMSim2 with timing parame-

ters taken from the data sheet for Micron DDR3-1600 device MT41J256M4. The

channels are configured in “unganged” mode to expose the maximum amount of

memory-level parallelism. Configured in such a way, this DDR3-1600 system has

a maximum theoretical peak bandwidth of 51.2 GB/s. It should be noted that al-

though we refer to this as a “lower bound”, this is quite an aggressive comparison

point as only high end server CPUs have enough pins to implement a quad channel

DDR3 memory system.

Additionally, we build a simple “perfect” memory model in order to put an

upper bound on potential speedup of an application. This model only adds latency

50

and has infinite bandwidth (i.e., any number of requests can be queued to the

memory system per cycle and all are completed after a fixed latency). We add a

latency of tRCD + tCL + tBurst = 19ns for a DDR3-1600 device, which represents

the minimum time to open a row and stream data out of that row. Unlike real

DRAM, this model implies that the memory system has infinite parallelism, no

conflicts, and is perfectly deterministic. Although it is not possible to build such

a memory in real life, it serves as a way to characterize how memory intensive a

particular application is. That is, if a particular workload’s execution time cannot be

significantly decreased with the perfect model, the workload is not memory intensive.

If we compare the simple speedup of memory device B over another memory

device A for a given workload and see only a small speedup, we may reach the

conclusion that device B is only marginally better than device A. However, this

may turn out to be the wrong conclusion if the workload only rarely accesses the

main memory. If, instead of a simple speedup, we compute a slowdown from perfect

for each memory system, we account for both the performance of the memory system

but also the memory intensivity of the workload. In this case if memory device A

and memory device B both have a small slowdown from perfect we can conclude

that the workload is simply not able to stress the main memory enough to show

a difference between the devices. If, however, both devices have a very large and

similar slowdown from perfect, we can safely conclude that memory device A and

memory device B are being adequately accessed by the workload and have similar

performance.

51

Chapter 5

Single Cube Optimization

5.1 Motivation

The HMC architecture contains a large design space of parameters to be ex-

plored in order to optimize memory performance.

Within the DRAM stack, decisions must be made as to how to expose the

proper level of memory parallelism to effectively utilize the available TSV and link

bandwidth. That is, the links can be configured to provide tremendous throughput

(terabits per second), but if the TSVs and memory storage elements are not able to

utilize this bandwidth, then the throughput at the links is wasted. Some examples

of choices inside of the cube include the number of independent vaults, the number

of DRAM dies that should be stacked on top, and how many banks are required.

In this chapter, we attempt to characterize the performance trade-offs asso-

ciated with different design parameters. First, we will try to understand how the

serial full-duplex links change the HMC’s performance as compared to a conven-

tional memory system. This includes parameters such as link, TSV, and switch

throughputs and queueing parameters. Next, to gain a general understanding of the

design space, we simulate different HMC configurations being driven by a tunable

random stream as described in 4.3. This includes a discussion of the relationship

between the link and TSV bandwidth in section 5.2, a “constrained resource sweep”

52

(section 5.5) where different HMC configurations of equal bandwidth and parallelism

are compared. Then, we use full system simulation to illustrate the sensitivity of the

overall cube performance to DRAM parameter changes. Finally, using the results

from the random simulations as a guide, we proceed to characterize the full system

performance of the HMC, as compared to DDR3 and “perfect” memory systems in

section 5.6.

5.2 Link Bandwidth Optimization

5.2.1 Link Efficiency and Read/Write Sensitivity

In this section we attempt to understand the performance issues associated

with the high-speed bi-directional links of the HMC memory system. Unlike a tra-

ditional DDRx system where the CPU communicates directly with the DRAM chips

over a dedicated set of command, address, and data lines, the CPU communicates

with the HMC using symmetric full-duplex serial links that transmit requests and

data in packets. Similar to network traffic, each packet contains information neces-

sary for routing, flow control, error checking, etc. in addition to the actual command

and data. Since these overheads travel on the link along with the data and not on

a dedicated command bus, they must be accounted for when choosing link param-

eters. That is, unlike a DDRx system which only transmits command and data,

the HMC’s packets contain overheads that reduce the effective raw bandwidth of

the links. However, unlike a bi-directional bus, a full-duplex link does not require

any “turnaround time” to change the direction of the bus. In a DDRx system with

53

many, the utilization of the data bus can be significantly reduced by bus arbitration.

The bi-directional DDRx data bus is not sensitive to the read/write ratio of

the stream since data flowing in either direction on the data bus represents useful

bits. This is in contrast to the HMC where each link is composed of a dedicated

request and response path that makes it sensitive to the read/write ratio: write data

only flows on the request side of a link while read data only flows on the response

side of a link. For example, if a memory access stream contains only writes, only the

request side of the link will be utilized, while the response link will be idle1. There

is an optimal read/write ratio at which both the request and response directions of

a link are utilized fully, while other read/write ratios will leave the links partially

idle.

We compute the theoretical peak link efficiency for different read/write ratios

by considering how many overhead and idle cycles are introduced to transmit a

stream with a particular read/write ratio. That is, we calculate the ratio of useful

cycles on the link (i.e., cycles used to transmit data) to total cycles (i.e., all cycles

including data, idle, and overhead cycles) as shown in equation 5.1.

Efficiency =
Data Cycles

Data Cycles + Idle Cycles + Overhead Cycles
∗ 100 (5.1)

It would be a reasonable expectation that the ideal read/write ratio for sym-

metric links should be 50%: write data would keep the request link busy while

read data would keep the response link busy. Figure 5.1a shows the impact of the

1More precisely, the HMC will generate explicit write return packets when write returns cannot

be piggy-backed on read returns, but these packets are pure overhead so we still consider the

response link to be idle.

54

32B

64B
128B

0%

25%

50%

75%

100%

0% 30% 60% 90%

% Reads

L
in

k
E

ffi
ci

en
cy

(a) Link efficiency as a function of read/write
ratio

80 GB/s Links

160 GB/s Links

240 GB/s Links

320 GB/s Links

0

50

100

150

200

0% 25% 50% 75% 100%

% Reads

Id
ea

l
E

ff
ec

ti
v
e

B
a
n
d
w

id
th

(G
B

/s
)

(b) Effective link bandwidth for 64 byte requests
for different link speeds

Figure 5.1: Link efficiencies. Packet overhead is 16 bytes per packet. For a 64 byte
request size, 56% reads yields a peak link efficiency of 72%.

read/write ratio on the peak link efficiency for varying packet sizes with a 16-byte

packet overhead (as defined by the HMC standard). The interesting feature of this

graph is that the peak efficiency for all request sizes is greater than 50% reads. This

is due to the fact that a read request incurs a packet overhead twice (once for the

request packet and once for the data response packet), and so the stream must con-

tain a greater number of read requests to keep both sides of the link fully occupied.

In other words, the response link only transmits read response overheads whereas

the request link transmits write request overheads and read request overheads 2.

This means that the response link has more effective bandwidth to transmit read

2We assume that there is sufficient read traffic to piggy-back all write returns onto read response

packets

55

Request Size Peak Efficiency Raw Bandwidth Effective Peak Bandwidth

32B
55.6% at
60% Reads

80 GB/s 44.4 GB/s
160 GB/s 88.9 GB/s
240 GB/s 133.3 GB/s
320 GB/s 177.8 GB/s

64B
71.9% at
56% Reads

80 GB/s 57.6 GB/s
160 GB/s 115.1 GB/s
240 GB/s 172.7 GB/s
320 GB/s 230.2 GB/s

128B
83.9% at
53% Reads

80 GB/s 67.1 GB/s
160 GB/s 134.2 GB/s
240 GB/s 201.3 GB/s
320 GB/s 268.5 GB/s

Table 5.1: Effective link bandwidth for various request sizes and a 16 byte overhead.
Larger requests achieve higher effective bandwidth on the links.

data.

Another salient feature of this graph is that as the request size becomes larger,

the peak efficiency increases and shifts toward lower read/write ratios. The higher

efficiency is due to the fact that the fixed 16 byte overhead is better amortized

over the larger request size. The shift toward lower read/write ratios happens for

the same reason: as a read overhead becomes smaller relative to read data, fewer

reads are required to keep the response link fully utilized. Table 5.1 summarizes

the effective peak bandwidth (corresponding to the peak of each curve in figure

5.1a) of various link configurations and packet sizes. As the table shows, packet

overheads will always reduce the effective link bandwidth, making it impossible to

achieve 100% link utilization. Thus the effective link bandwidth will always be

lower than the raw link bandwidth. Link efficiencies of the read/write ratios used

throughout this thesis are shown in table 5.2. In the next section we will use these

56

observations to understand how to properly match TSV and link bandwidths for

maximum utilization.

In order to achieve maximum link utilization, data should be flowing on both

sides of a link at the same time. We have shown that link utilization is highly

dependent on the read/write ratio, but we should note that the temporal structure

of the memory access stream is also important to achieve full link utilization. That

is, it is not enough for an overall memory stream to have a certain read/write ratio

— the short-term read/write ratio should match the ideal read/write ratio at any

given point in time to fully utilize the links. For example, a memory access stream

that does 66 reads followed by 34 writes will only utilize one side of the link at a

time and thus achieve much lower utilization than an access pattern that does 2

reads then 1 write repeatedly for 100 requests. Although both streams have the

same overall read/write ratio and the same number of requests, the second stream

will have much better link utilization.

5.2.2 Selecting Link/TSV Bandwidth

From the discussion in the previous section it can be concluded that in order

to offset negative performance impact of link overheads, the link bandwidth should

be greater than the aggregate bandwidth of the DRAM devices in order to maxi-

mize overall system-level throughput. We configure two typical HMC configurations

which are discussed in [21]: 128 total banks in 16 vaults with 4 DRAM dies and

256 total banks in 16 vaults with 8 DRAM dies. Then we select an aggregate TSV

57

Read/Write Ratio Peak Efficiency Raw Bandwidth Effective Peak
Bandwidth

25% 50.0%

80 GB/s 40 GB/s
160 GB/s 80.0 GB/s
240 GB/s 120.0 GB/s
320 GB/s 160.0 GB/s

50% 66.7%

80 GB/s 53.3 GB/s
160 GB/s 160.7 GB/s
240 GB/s 160.0 GB/s
320 GB/s 213.3 GB/s

56% 71.4%

80 GB/s 57.1 GB/s
160 GB/s 114.3 GB/s
240 GB/s 171.4 GB/s
320 GB/s 228.6 GB/s

66% 60.0%

80 GB/s 48.5 GB/s
160 GB/s 97.0 GB/s
240 GB/s 145.5 GB/s
320 GB/s 193.9 GB/s

75% 53.3%

80 GB/s 42.667 GB/s
160 GB/s 85.3 GB/s
240 GB/s 128.0 GB/s
320 GB/s 170.7 GB/s

Table 5.2: Effective theoretical peak link bandwidths for different read/write ratios

bandwidth and vary the aggregate link bandwidth based on typical values given in

the HMC specification [22]. For this experiment, the switch parameters are set to

provide effectively unlimited bandwidth between the links and the vaults so as to

eliminate its impact. Figure 5.2a shows the results of several different link and TSV

bandwidth combinations for three read/write ratios for the 128 and 256 total bank

configurations.

As the link bandwidth increases, the overall throughput eventually flattens

out indicating that the DRAM is unable to utilize the extra available bandwidth at

the links. For example, considering the 56% reads case with 160 GB/s aggregate

58

TSV bandwidth, we see that the flat region begins at an aggregate link bandwidth

of 240 GB/s. This is consistent with table 5.1: 240 GB/s links provide an effective

bandwidth of 172GB/s, which is just higher than the 160 GB/s TSV bandwidth.

Since the link overheads are significant at 66% and 75% reads, higher link

throughput is required to drive the DRAM to the peak bandwidth. This can be

seen in the graph: as the read/write ratio increases, the flat area at the right of

each graph moves farther to the right. However, if the TSV bandwidth is fixed

at 160 GB/s, increasing the link bandwidth beyond 240 GB/s does not yield a

significant advantage (except in the 75% case which must overcome a low effective

link bandwidth). In all cases, increasing the TSV bandwidth beyond 160 GB/s

yields diminishing returns (i.e., doubling the TSV bandwidth from 160 GB/s to 320

GB/s results in only a small performance increase). This is due to the fact that

the memory banks are simply not fast enough to utilize the extra bandwidth. 256

banks are able to provide a higher degree of memory parallelism which are able to

more effectively utilize higher TSV bandwidths.

Figure 5.2b displays the same data as Figure 5.2a except the main memory

bandwidth is normalized to the aggregate TSV bandwidth. Normalizing the output

bandwidth to the TSV bandwidth makes it much clearer which combinations of

TSV and link bandwidths are the most efficient. Namely, if we only consider the

raw output bandwidth, we neglect to take into account the cost of adding more TSVs

or increasing the TSV clock rate. By normalizing the output bandwidth to the TSV

bandwidth, it is easier to understand which configurations make the best trade-off

between performance and efficient utilization of resources. This graph shows that

59

128 Total Banks 256 Total Banks

20 GB/s TSV BW

40 GB/s TSV BW

80 GB/s TSV BW

160 GB/s TSV BW

320 GB/s TSV BW

20 GB/s TSV BW

40 GB/s TSV BW

80 GB/s TSV BW

160 GB/s TSV BW

320 GB/s TSV BW

20 GB/s TSV BW

40 GB/s TSV BW

80 GB/s TSV BW

160 GB/s TSV BW

320 GB/s TSV BW

20 GB/s TSV BW

40 GB/s TSV BW

80 GB/s TSV BW

160 GB/s TSV BW

320 GB/s TSV BW

20 GB/s TSV BW

40 GB/s TSV BW

80 GB/s TSV BW

160 GB/s TSV BW

320 GB/s TSV BW

20 GB/s TSV BW

40 GB/s TSV BW

80 GB/s TSV BW

160 GB/s TSV BW

320 GB/s TSV BW

50

100

150

50

100

150

50

100

150

56
%

R
ead

s
66

%
R
ead

s
76

%
R
ead

s

80
G
B
/
s

16
0
G
B
/s

2
40

G
B
/
s

3
20

G
B
/s

4
00

G
B
/
s

80
G
B
/s

1
60

G
B
/s

2
40

G
B
/s

3
20

G
B
/s

4
00

G
B
/s

Aggregate Link Bandwidth (GB/s)

C
u
b
e
B
an

d
w
id
th

(G
B
/s
)

(a) Overall main memory bandwidth of sev-
eral link and TSV throughputs.

128 Total Banks 256 Total Banks

320 GB/s TSV BW

160 GB/s TSV BW

80 GB/s TSV BW

40 GB/s TSV BW

20 GB/s TSV BW

320 GB/s TSV BW

160 GB/s TSV BW

80 GB/s TSV BW

40 GB/s TSV BW

20 GB/s TSV BW

320 GB/s TSV BW

160 GB/s TSV BW

80 GB/s TSV BW

40 GB/s TSV BW

20 GB/s TSV BW

320 GB/s TSV BW

160 GB/s TSV BW

80 GB/s TSV BW

40 GB/s TSV BW

20 GB/s TSV BW

320 GB/s TSV BW

160 GB/s TSV BW

80 GB/s TSV BW

40 GB/s TSV BW

20 GB/s TSV BW

320 GB/s TSV BW

160 GB/s TSV BW

80 GB/s TSV BW

40 GB/s TSV BW

20 GB/s TSV BW

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

56
%

R
ead

s
66

%
R

ead
s

76
%

R
ead

s

0
G

B
/
s

80
G

B
/
s

1
60

G
B

/
s

2
40

G
B

/
s

3
20

G
B

/
s

4
00

G
B

/s

0
G

B
/
s

80
G

B
/s

1
60

G
B

/s

2
40

G
B

/s

3
20

G
B

/s

4
00

G
B

/s

Aggregate Link Bandwidth (GB/s)

T
S

V
E

ffi
ci

en
cy

(%
)

(b) Main memory TSV efficiency
(TSV Efficiency = Main Memory Bandwidth

Aggregate TSV bandwidth)

Figure 5.2: Several Link and TSV bandwidth combinations.

60

160 GB/s aggregate TSV bandwidth captures the optimal point as the maximum

efficiency is nearly halved by increasing the TSV bandwidth further to 320 GB/s.

The lowest link bandwidth that achieves maximum efficiency is 240 GB/s for 160

GB/s TSV bandwidth (i.e., the first point of the plateau on the 160 GB/s line is at

240 GB/s on the x-axis).

The other dimension in these graphs considers the impact of memory paral-

lelism in the form of extra banks. Extra memory banks can help boost both the TSV

utilization as well as overall performance (i.e., for a given line in the 128 bank panel,

the corresponding line in the 256 bank panel to the right achieves both higher band-

width and higher efficiency). Since, in this experiment, the extra memory banks are

the result of adding extra DRAM dies to the stack (i.e., the 128 bank configuration

has 4 stacked dies whereas the 256 bank configuration has 8 stacked dies), we can

see that adding DRAM dies is an important capability in fully utilizing the available

bandwidth of the HMC. However, even by doubling the number of banks, doubling

the TSV bandwidth from 160 GB/s to 320 GB/s yields a only a 1.4x increase in

overall performance with a drastic decrease in the TSV efficiency. This leads us to

conclude that for a typical DRAM die configuration, a single cube can only efficiently

utilize 160 GB/s of TSV bandwidth. This result matches figure 5.1a since the peak

link bandwidth for 64 byte requests is 172.7 GB/s, which most closely matches the

160 GB/s TSV bandwidth. If we consider read/write ratios below 75%, most of the

configurations can reach their peak efficiency with 240 GB/s of link bandwidth and

160 GB/s TSVs.

61

5.3 Switch Parameters

In the previous set of experiments, the switch settings provided effectively

unlimited throughput between the high speed links and vault controllers. As men-

tioned before, the HMC specification does not describe a concrete switch architec-

ture. However, it stipulates that a request from any link must be able to reach any

vault or any other link. This condition simplifies the CPU interface, since the host

can access the entire memory space from any link.

The crossbar switch architecture is simple and deterministic — it connects all

links to all vaults and all other links such that a request from any link can proceed

directly to any local vault (for a local request) or any other link (for a remote request

in another cube). Since the amount of data within a given transaction is variable we

allow for a single transaction to transmit for multiple cycles on a given switch path

but transactions will not interleave (i.e., a transaction must finish completely before

the data path can be switched to another destination or another transaction). For

simplicity, we make the data path full-duplex: request packets flow on a different

set of wires from response packets. This condition is necessary to avoid having to

implement complex deadlock avoidance techniques inside of the switch. Finally, we

assume that the switch path widths are uniform on both the transmitter and the

receiver (e.g., if the switch transmits 2 flits out of the link buffer per cycle, the vault

must also have a 2 flit-wide input data path).

Figure 5.3 shows how the switch data path width affects the output bandwidth.

This result is to be expected, as the maximum bandwidth occurs when the switch

62

25% Reads
75% Reads
66% Reads
56% Reads
50% Reads

0

50

100

150

80 160 240 320 400 480

Switch Path Bandwidth (GB/s)

C
u
b
e
B
an

d
w
id
th

(G
B
/s
)

Figure 5.3: Main memory bandwidth with several different data path widths and
read/write ratios. (64 entry Read Return Queue depth, 256 banks, 160 GB/s Ag-
gregate TSV bandwidth, 240 Aggregate Link bandwidth)

bandwidth matches or exceeds the link bandwidth (i.e., each of the four links delivers

30 GB/s per direction and so each switch path should deliver 30 GB/s per second

in each direction).

5.4 Queuing Parameters

One aspect of the architecture that is worth exploring is the amount of queue

space needed to optimize performance. In a memory system, queues are used for two

primary purposes: collecting transactions that can be re-ordered in a more optimal

way and holding data to even out bursty traffic patterns.

A typical memory controller will contain a command queue that can be used

to schedule transactions around bank conflicts. That is, if two transactions are

bound for the same bank, they must be serialized: the second must wait until the

first completes before being scheduled for execution. If, however, a transaction is

destined to the same vault but different bank, it can proceed independently of the

stalled transaction (in a DDRx memory system, this same situation arises when a

63

request is bound for the same rank but different bank). The situation can be even

worse when the request is destined for a bank that is being refreshed, as refresh

time can be quite long in a DDRx system. If a system has no buffering, a single

stalled request can stall all accesses to the conflicting resource while others are

under-utilized. In this case, the buffer is used to counteract hotspots caused by

spatial locality.

In addition to command queueing, the second type of queue can be used to even

out bursty traffic patterns. For example, if several read requests arrive at the same

vault but are destined for different banks, they will all proceed largely in parallel

(albeit, the controller still has to take into account the shared bus scheduling). Since

the requests proceed in parallel, their data will become available at approximately

the same time and should be buffered inside of a queue while it waits to return to the

CPU. If no buffering existed, the controller would only be able to send a single read

request in order to ensure no data is lost. In our model of the HMC architecture,

this queue is called the “read return queue”.

In the HMC example, there are many more vaults than high speed links. If,

for example, we implement a round-robin switch arbiter with 16 vaults, a vault may

have to wait for 15 other vaults to transmit data (in the worst case) before sending

a second response. If the controller had to stall issuing all other read requests and

wait for 15 vaults to transmit data, the memory system throughput would suffer

significantly. In this case, the use of a buffer holds entries to help smooth out

temporal hotspots.

Although queueing is helpful in these two scenarios, it is helpful to know the

64

64 Total Banks 128 Total Banks 256 Total Banks 512 Total Banks 1024 Total Banks

0

50

100

4 16 32 64 128 256 4 16 32 64 128 256 4 16 32 64 128 256 4 16 32 64 128 256 4 16 32 64 128 256

Vault Command Queue Depth

C
u
b
e
B
an

d
w
id
th

(G
B
/s
)

(a) Cube bandwidth
64 Total Banks 128 Total Banks 256 Total Banks 512 Total Banks 1024 Total Banks

0

25

50

75

100

4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256

Vault Command Queue Depth (entries)

P
or
ti
on

of
C
y
cl
es Idle

Turnaround Idle

Read Data

Write Data

(b) TSV Utilization

Figure 5.4: Effects of increasing command queue depth.

minimum amount of space needed to capture the most performance. Not only do

queues take up die area, but deep queues could end up adding undesired latency. In

this section, we will discuss the impact of queue sizes on HMC performance.

5.4.1 Vault Command Queue Depth

The vault command queue is used by the vault controller to reorder incoming

DRAM transactions to schedule around DRAM conflicts. Figure 5.4a shows the im-

pact of varying the command queue size fo a memory system with different numbers

of total banks. While the 64 bank system is unable to reach the peak performance

due to a lack of memory parallelism, all of the other configurations level off at the

65

same maximum bandwidth for a given read/write ratio. One might expect that

more banks per vault would require more queue space, but in fact, the relationship

is the opposite. As the number of banks grows, fewer command queue entries are

required to reach peak throughput. As described earlier, the primary goal of the

command queue is to store entries for scheduling around bank conflicts. However,

as the number of banks per vault increases, the likelihood of a bank conflict goes

down, and so fewer queue entries are required to reorder requests.

It should also be noted that due to the nature of the “limit case” of the random

stream simulations performed here, it is likely that a normal system would require

fewer entries to capture the full performance of the vault. In other words, a 16 or

32 byte entry buffer should suffice for normal operation.

We can see this in 5.4b in that most of the idle time is due to bus arbitration

(dark gray component) and not actual idle time (light gray component).

5.4.2 Vault Read Return Queue Depth

We repeat a similar experiment for the read return queue which stores return

data inside of the vault as it awaits switch arbitration. Figure 5.5a shows the

percentage of cycles the read return queue is full as a function of the RRQ depth.

The data shows the behavior one would expect: for low read/write ratios, only a

few entries are needed and the number of required entries goes up as more read

requests are added to the stream. The rate of decay decreases with 75% reads and

the RRQ is full some of the time no matter how many queue entries are added.

66

25% Reads
50% Reads
56% Reads
66% Reads
75% Reads

0

20

40

60

80

1 2 4 8 16 32 64

Read Return Queue Size (entries)

%
of

C
y
cl
es

R
R
Q

F
u
ll

(a) Read return queue

25% Reads
75% Reads
66% Reads
56% Reads
50% Reads

0

50

100

150

1 2 4 8 16 32 64

Read Return Queue Size (entries)

C
u
b
e
B
an

d
w
id
th

(G
B
/s
)

(b) Cube bandwidth

Figure 5.5: Impact of increasing read return queue size.

Figure 5.5b shows the cube bandwidth for the same set of points. As expected, the

output bandwidth is roughly inversely proportional to the portion of cycles that the

RRQ is full. This is due to the fact that the controller must stall reads when the

RRQ becomes full and so the DRAM throughput goes down.

5.5 Constrained Resource Sweep

To further understand how various design decisions impact a single cube’s

performance, we construct an experiment to evaluate a set of configurations that

67

contain a constrained set of resources organized in different ways. That is, given a

fixed aggregate TSV bandwidth, fixed available queue space in the logic layer, fixed

switch bandwidth, fixed link bandwidth, fixed number of banks, etc., is there an

optimal way to structure these resources? The main resource to hold constant is

the number of banks as this defines the level of available parallelism in the memory

system. Second, we hold the number of TSVs within the cube constant and divide

them evenly among the vault. Since we keep the TSV data clock rate the same in

all cases this results in a fixed aggregate bandwidth within the die stack. We also

assume a fixed amount of buffer space such as the number of command queue entries

and read return queue entries that will be shared among the vaults. Finally, we fix

the aggregate switch bandwidth that the vaults must share.

5.5.1 Vault/Partition Organization

In this section, we quantify the trade-offs of taking a fixed set of banks and

organizing them into different cube configurations. Using the discussion in section

5.2 as a starting point, we configure several different cubes that all have 240 GB/s

aggregate link bandwidth and 160 GB/s aggregate TSV bandwidth. We vary the

DRAM stack height, number of vaults, and banks per DRAM die to create config-

urations that have the same total number of banks, but arranged in different ways.

For example, 128 total banks can be constructed with 16 vaults, 4 partitions (i.e.,

four stacked DRAM dies), and 2 banks per partition, or 128 total banks can be

arranged as 4 vaults, 8 partitions, and 4 banks per partition, etc. Although these

68

configurations have the same throughput and parallelism, their organization has an

impact on the overall cube throughput.

A configuration with a few vault controllers and many DRAM dies stacked

on top would allow each vault controller to have extremely wide TSV buses to

the memory banks, but such a configuration could potentially be limited by a lack

of parallelism from having too few independent vaults (since vaults are roughly the

equivalent of channels). At the other end of the spectrum, one can configure the same

number of banks into many vaults and fewer dies stacked on top. This configuration

would create more parallelism from independent channels at the expense of having

a narrower data path between the controller and memory. In other words, we ask

the question “for a given total number of banks, total number of TSVs, and fixed

buffering and switch resources, is there a number of DRAM dies (and by extension,

a number of vaults) that lead to the best performance?”

Note that in section 5.2.2 the switch bandwidth was effectively infinite so as

to remove the impact of the switch. However, in this section, the aggregate switch

bandwidth is finite and held constant among all configurations (i.e., doubling the

number of vaults halves the switch bandwidth available for an individual vault).

Additionally, we hold the total number of queue entries available in the logic layer

to be constant (such as command queues and queues that hold return data) so that

doubling the number of vaults halves the available queue space in each vault. By

also holding the total number of banks constant and total number of TSVs con-

stant, the bandwidth per bank is also identical for all configurations. Therefore, the

performance differences are solely the result of the interaction between the various

69

components.

First, we drive the cube configurations with a 56% read/write ratio stream

since this stream results in the highest effective link bandwidth. Figure 5.6a shows

the results for cubes consisting of 64, 128, 256, and 512 total banks. Bars are

grouped by the number of vaults, and each bar within a group represents a different

number of DRAM dies in the stack. Configurations requiring fewer than one bank

per partition or greater than 16 banks per partition are considered invalid and so

each group may have missing bars.

The most noticeable feature of this graph is that within each group of bars,

the output bandwidth of the memory system is similar. This points to the fact that

the most important determinant of the memory system bandwidth is the number of

vaults (for a given number of total banks). In this experiment the number of vaults

determines both the queue space per vault controller as well as the bandwidths of

each TSV bus attached to it (i.e., with 160 GB/s of aggregate TSV bandwidth

available per cube, 8 vaults would have access to 20 GB/s TSV bandwidth per vault

and 16 vaults would have 10 GB/s per vault of bandwidth to the memory devices).

Both 8 and 16 vaults are able to achieve the highest output bandwidth for all of the

configurations showed.

Within each group of bars the performance is similar (i.e., for a given number

of vaults, distributing the banks among different numbers of stacked dies yields

similar performance). This indicates that the performance overhead of die stacking

is in fact quite low. This experiment shows that stacking a larger number of lower

density dies can achieve similar performance and capacity as stacking a smaller

70

64 Total Banks 128 Total Banks 256 Total Banks 512 Total Banks

168421 8421 16 421 8 16 21 4 8 16

Dies Dies Dies Dies

168421 168421 8421 16 421 8 16

Dies Dies Dies Dies

16841 2 168421 168421 8421 16

Dies Dies Dies Dies

1681 2 4 16841 2 168421 168421

Dies Dies Dies Dies

0

50

100

5
6
%

R
ea
d
s

4 Vaults 8 Vaults 16 Vaults 32 Vaults 4 Vaults 8 Vaults 16 Vaults 32 Vaults 4 Vaults 8 Vaults 16 Vaults 32 Vaults 4 Vaults 8 Vaults 16 Vaults 32 Vaults .

C
u
b
e
B
a
n
d
w
id
th

(G
B
/
s)

(a) Main memory bandwidth

64 Total Banks 128 Total Banks 256 Total Banks 512 Total Banks

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Dies Dies Dies Dies

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Dies Dies Dies Dies

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Dies Dies Dies Dies

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Dies Dies Dies Dies

56
%

R
ead

s
4
V
au

lt
s

8
V
au

lt
s

16
V
au

lt
s

32
V
au

lt
s

4
V
au

lt
s

8
V
au

lt
s

16
V
au

lt
s

32
V
au

lt
s

4
V
au

lt
s

8
V
au

lt
s

16
V
au

lt
s

32
V
au

lt
s

4
V
au

lt
s

8
V
au

lt
s

16
V
au

lt
s

32
V
au

lt
s

P
or
ti
on

of
C
y
cl
es

Idle

Turnaround Idle

Read Data

Write Data

(b) TSV Utilization

Figure 5.6: Performance of several resource constrained cube configurations orga-
nized into different numbers of vaults, partitions, and total banks.

71

number of higher density dies. In other words, if the reliability and yields of die

stacks are improved to allow building taller stacks, the industry can overcome the

predicted end of DRAM scaling by simply adding more dies to the stack. In doing

so, one can increase the overall capacity and memory-level parallelism of the device

while keeping the density of an individual DRAM die constant. Moreover, it stands

to reason that the TSV stacking processes will only improve as vendors move to

mass produce stacked parts and decrease their cost.

To obtain a more detailed picture of the internal dynamics of the cube, we

track the utilization of each TSV bus by counting the number of cycles a TSV is

transmitting data or being idle. Figure 5.6b shows the same configurations as 5.6a

where the average TSV utilization components are averaged among the different

vaults. The green components represent the portion of cycles spent transmitting

useful data (reads and writes) while the gray components represent two kinds of

idle times when the TSVs are not being used to send data. The “turnaround idle”

component represents the equivalent of rank-to-rank switching time and write-to-

read turnaround time in a traditional DDRx system. Since partitions are analogous

to ranks in a traditional DDRx system (i.e., multiple partitions share a common

TSV bus), the simulator adds an idle cycle between back-to-back data bursts from

different partitions and between consecutive reads and writes. The final idle compo-

nent represents the cycles where, for whatever reason, the TSVs are not being used

to transmit any data. Such idle cycles may arise due to bank conflicts, insufficient

request rate to the vaults, etc.

As the number of DRAM dies in the stack grows, there is a small increase in

72

the turnaround idle component indicating that more back-to-back reads to different

partitions and read-to-write requests are issued. This is to be expected as the

probability of reads to different partitions grows with the number of partitions and

thus requires more turnaround cycles to be inserted. This accounts for the small

bandwidth decrease within a particular group of bars: more TSV bus arbitration

between a larger number of dies connected to that bus.

As the number of vaults decreases from 16 to 8, the turnaround component

(dark gray portion) increases significantly. Compared to a 16 vault configuration,

each vault in the 8 vault configuration must service twice as many requests with

twice as much available TSV bandwidth. The increased request load leads to a

higher probability of needing to insert turnaround cycles. The problem is further

accentuated by the fact that the relative cost of idling a wider bus (when fewer

vaults are present) for a single turnaround cycle is higher than idling a narrower

bus for a single cycle (i.e., if a request typically takes n cycles followed by a cycle

of turnaround, doubling the bus throughput will reduce the data time to n/2 cycles

while keeping a single cycle turnaround penalty). These two factors together account

for the increase in the relative number of turnaround cycles when going from 16 to

8 vaults.

The four vault configuration does not perform well due to the fact that it has

very few wide TSV buses. As mentioned previously, the cost of an idle cycle is high

with a wide bus since the number of bits that could have been transmitted that

cycle is high. In other words, every idle TSV cycle in the four vault configuration

has twice the impact on the TSV efficiency as in the eight vault configuration. The

73

overall result is that, although the vault controllers in the four vault configuration

can receive requests quickly (high per-vault switch bandwidth) and transmit them

quickly to the memory devices (high TSV bandwidth), the cost of idling the bus is

simply too high to maintain a reasonable efficiency.

The wide TSV buses are also inefficient because in essence, they transfer data

to and from the DRAM too quickly. Although this seems slightly counter-intuitive,

this is due to the fact that the DRAM timing constraints stay the same in our case

while the data burst time decreases significantly. This results in a situation where

the I/O is not effectively overlapped with the DRAM access time in addition to the

high turnaround penalty.

Within the 32 vault configuration, there are two main factors that cause poor

performance: switch bandwidth and queue depths. Since we constrain the aggregate

switch bandwidth and the total available queue depth in the logic layer, the 32

vault configuration has limited per-vault switch bandwidth as well as limited per-

vault queue space for incoming requests and outgoing return data. This creates a

situation where each vault controller does not have a large enough pool of requests

to schedule from as there are limited queue slots that are slowly filled by the limited

switch bandwidths. Similarly, return data streaming from the vaults drains slowly;

if too many return requests build up in the vault controller, the simulator stalls

issuing new requests to prevent data loss. In this way, the limited queue space can

adversely impact the flow of memory requests through the memory banks.

74

5.5.2 Impact of Total Banks

Another aspect of the constrained resource sweep is the impact of the total

number of banks on overall performance. As discussed in the previous section, the

4 and 32 vault configurations are unable to make efficient use of the DRAM and

so are not sensitive to the total number of banks. Specifically, when we move from

64 to 512 total banks in figure 5.6a, the 4 and 32 vault configurations show almost

no increase in overall bandwidth. If adding memory-level parallelism to the cube

does not increase the overall bandwidth, this is an indication that the bottleneck

occurs somewhere outside of the DRAM devices (i.e., in the switch or scheduling

processes).

The middle two graphs show that the 8 and 16 vault configurations can achieve

almost peak performance using 128 banks. In fact, increasing the total number of

banks to 256 yields a 4.2% and 6.5% increase in throughput in the 8 and 16 vault

cases, respectively. Since each bank requires extra circuitry (sense amplifiers, row

decoders), a trade-off could be made to build 128 larger banks with less overall

circuitry instead of 256 smaller banks. This 128 bank system would provide enough

parallelism to capture a large portion of the available throughput while reducing

DRAM die complexity and power. Furthermore, some applications may be unable

to utilize more than 100 GB/s of memory bandwidth and thus one could reduce

the bank-level parallelism and the aggregate throughput to save on cost and power

budgets.

In conclusion, this section has highlighted some important issues in the de-

75

sign space of the HMC. The effective link bandwidth is sensitive to the read/write

ratio and packetization overhead which requires links to have significantly higher

throughput than the TSVs. Adding more capacity to the cube can be achieved by

stacking more DRAM dies with only a small performance penalty due to increased

turnaround overhead. With 160 GB/s TSVs, a 16 vault configuration is able to

reduce the impact of turnaround idle time and make the most effective usage of the

TSVs. Finally, in order to utilize 160 GB/s TSV bandwidth, at least 128 banks are

required but having 512 banks does not improve performance further.

76

5.6 Full System Simulation

5.6.1 Memory Bandwidth Exploration

Although many papers lament the lack of memory bandwidth as a system-

level bottleneck in modern systems, testing this assertion in a simulation setting

turns out to be somewhat difficult. Conventional wisdom states that modern multi-

core architectures demand more memory bandwidth since each additional core adds

parallel computation that in turn adds traffic to the memory system. If the main

memory is not able to provide the extra bandwidth required, the overall performance

of the system will suffer. As the random stream simulations in the previous sections

have shown, the HMC architecture can potentially provide an order of magnitude

more bandwidth than a typical DDRx memory system (i.e., over one hundred versus

dozens of gigabytes per second). However, our initial full system simulations showed

that adding main memory bandwidth did not result in a significant reduction in exe-

cution time. Closer inspection of the statistics from the memory simulator confirmed

that the CPU simulator was not able to generate nearly enough bandwidth to stress

the HMC for a variety of workloads.

To make matters worse, adding extra cores and running multi-threaded work-

loads that utilized all of the available cores failed to substantially increase the main

memory bandwidth demand as well. After careful examination of the bindings be-

tween the CPU and memory simulators, we discovered that the source of the problem

stems from the cache coherence protocol on the CPU: as the number of cores and

number of memory operations scaled up, the default MESI coherence scheme of the

77

Figure 5.7: Comparison of coherence schemes. In the “ideal” scheme, the bandwidth
between the private L1s and shared L2 scales proportionally to the number of cores.

MARSSx86 simulator was creating a bottleneck. The coherence traffic on the bus

overshadowed actual useful traffic and the throughput of requests out of the CPU

was greatly diminished. This was a big problem for our simulation infrastructure:

if the CPU cannot take advantage of the available memory bandwidth due to bot-

tlenecks on the CPU die, there would be no way of showing the benefits of a new

high bandwidth memory technology such as the HMC.

In order to quantify the extent of the problem, we simulate the execution of

the memory-intensive STREAM [48] benchmark in MARSSx86 with the “perfect”

memory model described in section 4.4.3. We vary the core count (2, 4, 8) and cache

coherence schemes (MESI, MOESI, and Ideal). The standard MESI bus structure

uses a round-robin algorithm to transmit a single request every two cycles. The

MOESI structure connects the caches to a directory using a crossbar switch. The

ideal bus can transmit one request per core every 2 cycles. Since the bandwidth of

the ideal structure is proportional to the number of cores, it removes the bottleneck

of the MESI structure. A comparison of the coherence structures is shown in figure

5.7. It is important to note that the Ideal bus structure, while based on the MESI

78

2c 4c 8c

0

50

100

150

0

50

100

150

0

50

100

150

M
E
S
I

M
O
E
S
I

Id
eal

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

Simulated Time (ms)

M
a
in

M
em

or
y
B
a
n
d
w
id
th

(G
B
/s
)

STREAM

Figure 5.8: Core scaling of the STREAM benchmark with various coherence
schemes. The MESI coherence scheme restricts core scaling.

bus structure, is not coherent.

Figure 5.8 shows the time-series execution of the STREAM benchmark for the

various combinations of cores and coherence schemes. As all of these executions

are between the same two region of interest points in the program, a shorter line

indicates a lower execution time. The first feature that is immediately apparent

from the graph is the lack of memory bandwidth scaling in the MESI bus: doubling

the number of cores results in almost no increase in the off-chip memory band-

width. This is because the bottleneck occurs within the MESI protocol long before

a request reaches the main memory system. It also becomes evident that this mem-

ory bottleneck limits the usefulness of additional cores as they simply spend their

cycles waiting to access the MESI bus. Another interesting feature of the MESI

79

graph is that the periodic features of the STREAM benchmark flatten out when

scaling beyond two cores. This indicates that with only two cores, some phases

of the benchmark have a lower bandwidth demand than what the MESI bus pro-

vides; however, as more cores are added, every phase of the benchmark exceeds the

effective bandwidth of the MESI bus and the line becomes flat.

The MOESI coherence scheme scales better than MESI, but sub-linearly with

the number of cores (i.e., going from two to eight cores yields only a 1.58x speedup).

Given the structure of the ideal bus, it scales roughly linearly from 2 to 4 cores,

but fails to scale beyond 4 cores. This is due to the fact that although the bus

bandwidth scales with the core count, it still has the limitation that it can only

transmit when the memory controller pending queue has room. See table 5.3 for

the full list of speedups over the dual core system.

The standard STREAM workload has an access pattern that sequentially ac-

cesses large arrays of doubles that result in much larger working sets than any

standard on-chip cache (for example, our configuration accesses approximately 180

MB of memory). Although this access pattern results in many capacity misses, a

64 byte cache line still yields 7 hits for each capacity miss. Since our goal is to

maximally stress the main memory system, we modify the STREAM benchmark to

eliminate these cache hits by padding each element in the array to the width of a

full cache line. Each access to the arrays only touches the first double (8 bytes) of

the cache line and the rest of the line is not used. This creates an access stream

where all of the memory accesses are a cache miss. We refer to this benchmark as

the “main memory” STREAM or STREAM-mm. A comparison of the sum phase

80

of STREAM and STREAM-mm is shown in figure 5.9.

Figure 5.9: Comparison of the access patterns of STREAM and STREAM-mm.
By padding each element, STREAM-mm purposely removes all of the cache hits
from STREAM’s memory access stream and maximizes stress on the main memory
system.

We repeat the coherence scaling experiment as before but this time we use

the STREAM-mm workload. It is clear that the MESI bus structure shows no

memory bandwidth increase or execution time decrease as a result of adding cores.

Since STREAM-mm is designed to increase the main memory pressure by removing

the role of the cache, it would be reasonable to assume that the main memory

bandwidth should increase given that the ideal memory model can supply infinite

bandwidth. To the contrary, we see that the STREAM-mm memory bandwidth is

lower with the MESI and MOESI coherence schemes as compared to STREAM. We

conclude, then, that the overhead of the coherence protocol actually diminishes the

off-chip bandwidth demand. The “Ideal” structure, on the other hand, removes the

coherence bottleneck and is able to generate hundreds of gigabytes per second of

request bandwidth to the perfect memory model.

81

2c 4c 8c

0

100

200

300

0

100

200

300

0

100

200

300

M
E
S
I

M
O
E
S
I

Id
eal

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Simulated Time (ms)

M
ai
n
M
em

or
y
B
a
n
d
w
id
th

(G
B
/s
)

STREAM-mm

Figure 5.10: Core scaling of the STREAM-mm benchmark with various coherence
schemes. The main memory bandwidth of the MESI and MOESI protocols actually
decreases when running STREAM-mm instead of STREAM. The Ideal bus removes
the coherence bottleneck and floods the memory system with requests.

STREAM STREAM-mm

Cores Ideal MESI MOESI Ideal MESI MOESI

2 1.00 1.00 1.00 1.00 1.00 1.00
4 1.99 1.24 1.86 1.72 1.00 1.35
8 3.96 1.24 2.63 1.72 1.00 1.58

Table 5.3: Speedup of workloads when increasing core count and changing coherence
scheme. Speedups are computed based on the dual core execution time.

82

Since the HMC can potentially deliver an order of magnitude more band-

width than previous memory systems, its benefits can only be demonstrated with

workloads and CPU structures that can take advantage of the available memory

bandwidth. The previous scaling experiments have shown that it would be difficult

to scale the main memory bandwidth high enough to saturate the HMC using the

MESI or MOESI protocols. Therefore, we choose the ideal coherence bus model

in all of the full system experiments in this dissertation. In other words, to show

the full benefit of the HMC on system performance we need to move the memory

bottleneck past the cache and back to the main memory.

These experiments also demonstrate that the industry may be reaching a point

where on-chip cache structures should be redesigned to support next generation

memory systems. Specifically, in order to embrace next generation memory archi-

tectures, it may be necessary to depart from traditional coherence guarantees and

move to weaker consistency or non-coherent memory models that will allow the cores

to take advantage of available memory bandwidth. However, such a move will be

difficult as writing parallel programs has a steep learning curve even with the strong

coherence guarantees of today’s CPUs.

5.6.2 Workload Selection

As the previous section showed, it is not always trivial to find a set of work-

loads that will generate enough off-chip bandwidth to utilize the HMC’s available

bandwidth. This is problematic when attempting to characterize the impact of

83

design choices in full system simulation: if the workload cannot utilize the mem-

ory system, it is likely that memory systems design choices will not meaningfully

affect the overall execution time of the program. In order to avoid simulating work-

loads that are unable to utilize any significant amount of memory bandwidth, we

attempt to characterize the memory behavior of several multi-core workloads from

various sources: multi-threaded benchmarks from the PARSEC [49] and NAS Par-

allel Benchmark [50] suites, several micro benchmarks such as GUPS and STREAM

[48] (and our STREAM-mm variant described earlier), and one MANTEVO mini

application [51]. Since full-system simulation with the CPU and memory system

forms a closed feedback loop, sometimes it is difficult to separate the effects of the

memory system on the simulation. As in the previous section, we use our previously

described “ideal” memory model which provides infinite bandwidth to capture the

off-chip bandwidth of several applications running using eight threads on an eight

core CPU model. To reduce simulation time, the workloads are run for a maximum

of 2 billion cycles (or until completion).

Figures 5.11, 5.12, 5.13, and 5.14 show the time-series bandwidths of the exe-

cution of the workloads from the PARSEC suite, NAS Parallel Benchmark suite, the

synthetic micro benchmarks, and MANTEVO mini apps, respectively. The interest-

ing thing depicted among these time-series graphs is the variety of access patterns

that are exhibited by these applications. Some applications are highly periodic (such

as STREAM, fluidanimate, ua.C, miniFE), while others make steady use of the main

memory (ex: dc.A, eg.C, canneal, portions of streamcluster), and others have very

irregular access patterns that look very noisy (dedup, GUPS, ep.C). Although the

84

blackscholes bodytrack

canneal dedup

facesim ferret

fluidanimate freqmine

raytrace streamcluster

swaptions vips

0.0

0.5

1.0

0

1

2

3

4

0

5

10

15

0

1

2

3

4

0

10

20

30

40

0

5

10

0

10

20

30

40

50

60

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

2

4

6

8

10

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Simulated Execution Time (ms)

P
er

fe
ct

M
em

or
y

B
an

d
w

id
th

(G
B

/s
)

Bandwith Time Series: PARSEC Suite Benchmarks

Figure 5.11: Bandwidth time series: PARSEC suite.

85

bt.C cg.C

dc.A ep.C

ft.B is.C

lu.C mg.C

sp.C ua.C

0

20

40

60

80

0

10

20

30

40

0

5

10

15

0

5

10

15

0

20

40

60

80

100

120

0

5

10

15

0

50

100

150

0

20

40

60

0

50

100

150

200

250

0

50

100

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Simulated Execution Time (ms)

P
er
fe
ct

M
em

or
y
B
an

d
w
id
th

(G
B
/s
)

Bandwith Time Series: NAS Parallel Benchmarks

Figure 5.12: Bandwidth time series: NAS Parallel Benchamark suite.

gups sandia STREAM

STREAM-mm

0

5

10

15

20

25

0

50

100

0

100

200

300

0 100 200 300 400 500 600

Simulated Execution Time (ms)

P
er
fe
ct

M
em

or
y
B
an

d
w
id
th

(G
B
/s
)

Bandwith Time Series: Synthetic Micro Benchmarks

Figure 5.13: Bandwidth time series: synthetic micro benchmarks

86

miniFE

0

10

20

30

40

50

60

0 100 200 300 400 500 600

Simulated Execution Time (ms)

P
er
fe
ct

M
em

or
y
B
an

d
w
id
th

(G
B
/s
)

Bandwith Time Series: MANTEVO Mini Applications

Figure 5.14: Bandwidth time series: MANTEVO mini application (MiniFE).

access patterns are very different among the workloads, it becomes clear that many

workloads do not generate any significant traffic to main memory and so would not

be useful to simulate in full-system with the HMC model.

To summarize the access patterns of these workloads, we construct a boxplot

that shows the bandwidth distribution of each of these workloads shown in figure

5.15 The lines of each box extend to the minimum and maximum bandwidths for that

workload and the bandwidths are sorted by their average bandwidth. STREAM and

STREAM-mm are, of course, the workloads that generate the highest bandwidth to

memory. Fluidanimate, ua.C, and sp.C have low average bandwidth requirements

but with periods of high bandwidth bursts.

5.7 Full System Results

5.7.1 DRAM Sensitivity

As mentioned previously, past generations of DRAM have been simple “dumb”

devices that contain almost no logic and share a common data bus. In these devices,

the performance of the main memory system as a whole is directly proportional to

87

0

100

200

300

ST
R
EA

M
-m

m

ST
R
EA

M
ft.

B
lu

.C
sp

.C
cg

.C

m
in

iF
E

m
g.
C

gu
ps

sa
nd

ia
dc

.A

ca
nn

ea
l

ua
.C

bt
.C is.

C

fa
ce

sim

st
re

am
cl
us

te
r

fe
rr
et

vi
ps

ep
.C

flu
id

an
im

at
e

de
du

p

ra
yt

ra
ce

bo
dy

tr
ac

k

fre
qm

in
e

bl
ac

ks
ch

ol
es

sw
ap

tio
ns

Workload

P
er

fe
ct

M
em

or
y

B
an

d
w

id
th

(G
B

/s
)

NAS Parallel Benchmarks MANTEVO Mini Applications PARSEC Suite Benchmarks Synthetic Micro Benchmarks

Figure 5.15: Box plot summary of the bandwidth characteristics of all workloads.
Workloads are sorted in decreasing average bandwidth and color coded by their
respective benchmark suites.

the performance of the memory devices connected to the data bus. However, the

HMC introduces extra parallelism which makes the performance of any individual

device less critical. That is, many memory banks and many memory controllers

decrease the likelihood of bank conflicts and allow many requests to be in-flight at

any given time. Having many in progress requests takes any individual device off

the critical path and allows high throughput to be maintained even when memory

devices are slower.

In order to test this hypothesis, we configure several identical HMC configura-

tions with varying DRAM timings. We modify two key parameters that affect the

performance of the DRAM: tRAS and tRCD. For the base case, we use the timings

described in 4.2.1: 34 cycles and 17 cycles for tRAS and tRCD, respectively. Each

value is then halved and doubled and the cross product of the timings are tested.

88

The values are constrained to only include the cases where tRAS > tRCD. This is

due to the fact that the tRCD constraint can extend the row cycle time beyond the

usual value of tRAS + tRP . If tRCD is greater than tRAS, any changes to tRAS would

not change the timing of the end of the DRAM cycle. So instead of the full cross

product of 27 simulations, we only consider the results for the 18 valid combinations

of these parameters.

In closed page mode, both of these timing parameters have an impact on the

maximum number of requests per unit time that can be serviced by a given bank.

The tRAS parameter represents the amount of time that it takes for a row access to

restore data to the DRAM array [5]. A bank cannot be precharged until tRAS after a

row activation. The next request cannot proceed until the row has been precharged

(in closed page mode). As can be seen in figure 5.16, increasing tRAS has the effect

of pushing the precharge forward in time and thus delaying the beginning of the

next request (ACT B).

In addition to modifying tRAS, we also modify the tRCD parameter. tRCD

represents the amount of time necessary to perform the sensing of the data from

the DRAM array. That is, a column access command to read or write data cannot

proceed until tRCD time after a row activation.

Similarly to increasing tRAS, increasing tRCD limits the available bank band-

width because it delays the implicit precharge command that follows the READ

command in closed page mode. This has the effect of delaying the start of the next

request (ACT B), increasing the time to service a request, and thus lowering the

bank bandwidth. Moreover, as shown in figure 5.17, increasing tRCD also has the

89

Figure 5.16: Effects of doubling the tRAS DRAM timing paramter. Although the
data burst comes out at the same time in both cases, the start of the next request
is delayed when tRAS is doubled.

Figure 5.17: Effects of doubling the tRCD DRAM timing paramter. By delaying the
start of the column access, the bank bandwidth is decreased. Furthermore, since
the beginning of the data burst is delayed, the latency of requests is increased.

90

effect of delaying the data burst out of the bank. This means that increasing tRCD

has an added penalty in that it increases the latency of every memory request in

the system. For latency-sensitive applications, the extra time spent waiting for the

data could cause a significant perturbation in system performance.

First, we plot the bandwidth time series for three workloads for the valid

combinations of parameters for a 128 bank HMC in figure 5.18. At first glance, it

appears that although the DRAM timing parameters are changing drastically, the

overall performance does not suffer significantly. Then, as a comparison point, we

also graph the bandwidth over time for the same DRAM configurations, but with a

256 bank HMC in figure 5.19. As we have seen previously, the 256 bank configuration

is able to achieve marginally better overall bandwidth for the most memory intensive

workload (STREAM-mm). To get a better summary of the results, we condense the

time series into a set of box plots shown in figure 5.20.

These results are fairly surprising at first glance: two crucial DRAM timing

parameters change by a factor of two and yet it does not appear to have a very

large impact on the overall output bandwidth. In order to check these results, we

also plot the average latency components of requests as they move through the cube

during execution of the STREAM benchmark in figure 5.21.

Indeed the pattern is consistent with the expected behavior shown in figures

5.16 and 5.17. The non-DRAM components of the latency are stable among the

different configurations while the DRAM latencies vary. The blue line corresponds

to the latency component between the time when a request is sent on the TSVs and

when it is received in the read return queue (i.e., the actual DRAM access and data

91

tRAS=17 ns tRAS=34 ns tRAS=68 ns

0

40

80

120

0

40

80

120

0

40

80

120

fl
u
id

a
n
im

ate
S
T

R
E

A
M

S
T

R
E

A
M

-m
m

0 250 500 750 0 250 500 750 0 250 500 750

ms

va
lu

e

m.tRCD

8

17

34

Figure 5.18: Effect of varying tRAS and tRCD on bandwidth over time in a 128 bank
HMC.

92

tRAS=17 ns tRAS=34 ns tRAS=68 ns

0

50

100

0

50

100

0

50

100

fl
u
id

a
n
im

ate
S
T

R
E

A
M

S
T

R
E

A
M

-m
m

0 200 400 600 0 200 400 600 0 200 400 600

ms

va
lu

e

m.tRCD

8

17

34

Figure 5.19: Effect of varying tRAS and tRCD on bandwidth over time in a 256 bank
HMC.

93

128 Total Banks 256 Total Banks

0

20

40

60

0

25

50

75

0

50

100

fl
u
id

an
im

ate
S
T

R
E

A
M

S
T

R
E

A
M

-m
m

17 34 68 17 34 68

C
u
b

e
B

an
d
w

id
th

(G
B

/s
)

tRCD (cycles)

8

17

34

tRAS (cycles)

Figure 5.20: Distribution of bandwidths for varying tRAS and tRCD DRAM timing
parameters.

94

tRCD=8 ns tRCD=17 ns tRCD=34 ns

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

t
R
A
S
=
1
7
n
s

t
R
A
S
=
34

n
s

t
R
A
S
=
68

n
s

0 50 100 150 0 50 100 150 0 50 100 150

Simulated Execution Time (ms)

C
om

p
on

en
t
L
at
en

cy
(n
s)

Latency Component

DownSwitch RespLink

Init ReqLink

ReqLink UpSwitch

RespLink Done

RRQ DownSwitch

TSV RRQ

UpSwitch CmdQueue

CmdQueue TSV

Figure 5.21: Time-varying latency components for various workloads.

95

burst time). Looking at the plots from top to bottom (tRAS increasing), we see that

the blue line stays constant. This is expected since increasing tRAS makes the bank

unavailable for a longer period of time, but the data burst begins at the same point

in time. The increase in tRAS is seen in the corresponding increase in the pink line

that corresponds to the wait time in the command queue. This is because it takes

longer for a given bank to start the next request which leads to a longer queueing

time in the command queue.

If, however, we examine the plots from left to right (tRCD increasing), we see

that the blue line increases steadily. This increase corresponds to the increasing time

between the start of a request and the end of the data burst. Note that this latency

component also includes the time to burst out the data, so although tRCD doubles,

tCAS and the burst time stay constant, so the overall latency does not double.

Finally, we plot the total execution time of all three workloads with the varying

DRAM timings (figure 5.22) and see that the impact of the DRAM timings on the

execution time is quite small. In the fluidanimate case, the DRAM timings make

almost no impact on the execution time because the benchmark, while bursty, is

not highly memory bound overall. Even STREAM and STREAM-mm experience

only relatively small slowdowns as a result of the different DRAM timings.

Throughout this thesis we use the middle values of 17 cycles and 34 cycles

for tRCD and tRAS, respectively. While one might expect that halving both of those

timing parameters would drastically improve workload performance, we can see from

these graphs that that is not the case. The improved timings have almost no impact

on execution time even in a limiting case workload like STREAM-mm.

96

128 Total Banks 256 Total Banks

0

250

500

750

0

250

500

750

0

250

500

750

fl
u
id

an
im

ate
S
T

R
E

A
M

S
T

R
E

A
M

-m
m

17 34 68 17 34 68

tRAS (cycles)

S
im

u
la

te
d

E
x
ec

u
ti

on
T

im
e

(m
s)

tRCD (cycles)

8

17

34

Figure 5.22: The impact of DRAM timing parameters on workload execution time.
Even when tRCD and tRAS are both quadrupled the execution time of the workloads is
largely unaffected even for highly memory intensive applications such as STREAM-
mm.

97

This can be explained by fact that there is so much bank-level parallelism in

the cube that, on average, any individual bank is not able to slow down the system.

In fact, for a closed page system, we can compute the ideal bank bandwidth by

simply taking sizeburst
tRC

. In the 128 bank configuration with the worst DRAM timings

in this experiment, we get a per-bank bandwidth of 0.94 GB/s. Multiplying this

number by the number of banks in the cube yields an overall DRAM bandwidth of

120 GB/s. This means that even with slow DRAM devices, an HMC can still achieve

high overall throughput. Figure 5.22 supports this hypothesis because the 256 bank

configuration suffers a much smaller slowdown with degraded DRAM timings as

compared to the 128 bank configuration.

5.8 Address Mapping

One of the features presented in the HMC specification is the ability to cus-

tomize the address mapping scheme. Address mapping is the process by which

a physical address’s bits are used to select which specific resource in a particular

memory device will be used to service that request. A suboptimal address mapping

scheme can cause memory requests to continuously cause conflicts to shared re-

sources and degrade performance. On the other hand, an optimal address mapping

scheme can spread requests evenly and utilize the memory system’s full parallelism.

This makes the address mapping scheme a vital consideration for performance. How-

ever, the bad news is that address mapping will always be workload specific: an ad-

dress mapping that is ideal for one workload might cause performance degradation

98

for another workload due to a difference in access pattern over time.

As discussed in [52], the address mapping scheme for a closed page system

should avoid bank conflicts by spreading requests from neighboring cache lines as

far away as possible. For a DDRx system this means mapping the channel to the

least significant bits followed by bank then rank. Translating this mapping scheme

to the HMC would mean putting the vault address in the lowest bits followed by

bank then partition. For a closed page buffer policy, the row and column addresses

are effectively inconsequential since all rows are closed immediately after the request

is completed. In essence, a closed page address mapping scheme only need concern

itself with what request maps to what bank. For this reason, all of the address

mapping schemes chosen have the column and row addresses in the top-most bits so

as to leave the lower-order bits that have lower locality to generate request spread.

Figure 5.23: Single cube address mapping schemes

The HMC specification defines the default address mapping scheme as the

offset in the least significant bits, followed by the vault address, bank address, and

DRAM address. The details of the DRAM address are not fully specified since it

99

is unknown which bits of the DRAM address select the partition, row, and column.

We select five different address mapping schemes shown in figure 5.23 and execute

them in MARSSx86 running eight threads on eight cores attached to a 256 bank/16

vault HMC with 240 GB/s aggregate link bandwidth and 160 GB/s aggregate TSV

bandwidth. We choose five workloads based on the characterization of memory

bandwidth presented in section 5.6.2: these workloads generate high bandwidth to

memory either in a sustained or bursty fashion.

We denote our address mapping schemes as a series of fields which represent

parts of the address from the least significant to the most significant bit. As pre-

viously stated, we assume a 64-byte cache line size and, for simplicity, we force all

addresses to be aligned to a cache line boundary3. This means that the bottom six

bits of the address will be zeros which correspond to the offset and low bits of the col-

umn address (i.e., 26 = 64 bytes per transaction). Since this section only considers

single cube configurations, there are zero cube bits present in the addresses.

5.8.1 Single Cube Address Mapping Results

First, we examine the bandwidth time-series of each of the five workloads

under each of the five address mapping schemes as shown in figure 5.24. In order

to make the relative performance of each scheme clearer, we annotate the graphs

with a vertical line that represents the final time step of each simulation. Since each

execution runs between the same two points in the program, a vertical line further

to the left indicates a shorter total execution time.

3While this assumption is acceptable for cache line fills, it is not valid for DMA requests

100

facesim

ft.B

miniFE

sp.C

STREAM-mm

0

20

40

0

20

40

0

20

40

25

50

75

100

50

60

70

80

90

100

110

0 500 1000 1500 2000

0 1000 2000 3000

0 250 500 750 1000 1250

0 1000 2000 3000 4000

0 250 500 750 1000

Simulated Execution Time (ms)

C
u
b
e
B
an

d
w
id
th

(G
B
/s
)

Address Mapping Scheme

of:cl:bk:vl:rk:rw:ch:cb of:cl:rk:bk:vl:rw:ch:cb of:cl:rk:vl:bk:rw:ch:cb of:cl:vl:bk:rk:rw:ch:cb of:cl:vl:rk:bk:rw:ch:cb

Figure 5.24: Performance of various workloads under various address mapping
schemes with a single cube. The dashed vertical line at the end of each simula-
tion indicates the ending point of the workload’s execution. A vertical line farther
to the left indicates a shorter execution time.

101

Examining the completion times of the various workloads under different ad-

dress mapping schemes, we see that the blue line that corresponds to the vault:bank:partition

address mapping scheme results in the best performance and lowest execution time

among these workloads. If we consider a vault to be equivalent to a DDRx channel

and a partition to be equivalent to a DDRx rank, then we see that this mapping

scheme corresponds exactly to the optimal closed page mapping scheme described

in [52]. The reasoning is fairly straight forward: since a closed page policy assumes

a stream with little or no locality (spatial or temporal), then it is best to distance

adjacent cache lines by spreading them among the most independent elements (i.e.,

vaults). Putting the partition bits higher than the bank bits allows the controllers

to minimize bus switching time (i.e., reads to different partitions that incur a one-

cycle turnaround penalty). Furthermore, placing the bank bits lower in the address

reduces the chances of a bank conflict within a given partition.

If we look at the other mapping schemes, there are some notable exceptions to

the heuristic of putting the vault bits in the lowest part of the address. In particular,

when the partition:bank:vault mapping scheme is paired with facesim from the PAR-

SEC Benchmark suite, it performs nearly as well as the optimal vault:bank:partition

scheme. However, for three out of four of the other benchmarks (miniFE, sp.C, and

STREAM-mm) the partition:bank:vault scheme has the worst performance. This

is especially true of STREAM-mm, which suffers a particularly large slowdown as

a result of using this mapping scheme. Furthermore, unlike the other workloads,

facesim performs most poorly under the vault:partition:bank scheme which has the

vault address mapped to the low bits. Changing the ordering of the partition and

102

bank positions causes a vast difference in performance.

To better visualize the effects of address mapping, we examine how well the

address mapping schemes spread requests between banks over time. As mentioned

previously, we are most concerned with bank-level request spread in a closed page

system: an optimal closed page address mapping scheme should utilize all banks

evenly without generating hotspots to any particular bank. In order to collect this

data, we instrument the simulator to output the number of cycles per epoch in which

bank has an open row. This information is collected for each bank in the system

for each epoch and is displayed as a heat map: the bank’s linear index (0-255) is

along the y-axis and the simulated time is along the x-axis. The heat map colors

range from black (underutilized) to red (half-utilized) to yellow (fully utilized). To

make the heat maps easier to read, each value is scaled on a per-workload basis

(i.e., if a workload only ever utilizes a bank half of the time, the highest yellow

value corresponds to 50% utilization; if another workload has a maximum utilization

of 90%, the most yellow value corresponds to 90% utilization). Note that this

scaling makes it possible to compare address mapping schemes for a single workload

by looking at the relative coloring, but the colors cannot be compared between

workloads.

Figure 5.25 shows the HMC bank-level utilization heat maps for the STREAM-

mm benchmark’s execution. Simply glancing at the heat maps, one can get a fairly

good idea of which mapping schemes perform well: horizontal bands represent bank

hotspots that persist over time. Vertical stripes can be the result of the CPU’s

main memory request rate and so are not inherently related to the address mapping

103

0

100

200

o
f:c

l:b
k
:v

l:rk
:rw

:c
h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:rk
:b

k
:v

l:rw
:c

h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:rk
:v

l:b
k
:rw

:c
h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:v
l:b

k
:rk

:rw
:c

h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:v
l:rk

:b
k
:rw

:c
h
:c

b

B
a
n
k
 N

u
m

b
e
r

Figure 5.25: Heatmaps for five address mapping schemes for the STREAM-mm
workload over time

104

scheme. However, if a vertical band has many different colors within it, this is

an indication that the mapping scheme is performing poorly (i.e., since this is an

indication of some banks being over-utilized while others are idle). Since the values

are normalized per workload, the relative brightness of the entire heat map is also

a good indication of performance.

The mapping scheme with the vault bits in the upper part of the address has

the most color variation with many dark spots and horizontal bands. We zoom in on

the first part of the execution time and compare the two heat maps along with their

bandwidth graphs (see figure 5.26) Indeed we find that it has significantly lower

bandwidth than the schemes where the vault bits are in the lower portions of the

address.

sp.C has areas of intense memory access and then long periods of very low

memory bandwidth. 5.29 shows a comparison of two address mapping schemes for a

very short duration of time during a bandwidth spike. The impact of address map-

ping can clearly be seen here in that the horizontal striping of the rank:bank:vault ad-

dress mapping scheme extends the duration of the access time. The vault:rank:bank

scheme, however, accesses all of the banks nearly evenly and the duration of the spike

is much smaller.

5.9 Memory Performance Comparison

When discussing HMC limit case simulations and full system workloads that

can consume over 100 GB/s of bandwidth, it is easy to forget that this is not the

105

0

100

200

0 100 200 300 400 500

B
an

k
 N

u
m

b
er

STREAM−mm (of:cl:rk:bk:vl:rw:ch:cb)

of:cl:rk:bk:vl:rw:ch:cb

of:cl:vl:rk:bk:rw:ch:cb

STREAM−mm

50

60

70

80

90

100

0 100 200 300 400 500

C
u
b
e

B
an

d
w

id
th

 (
G

B
/s

)

0

100

200

0 100 200 300 400 500

Simulated Execution Time (ms)

B
an

k
 N

u
m

b
er

STREAM−mm (of:cl:vl:rk:bk:rw:ch:cb)

Figure 5.26: Address mapping scheme comparison for the STREAM-mm workload.
Dark spots indicate banks with low utilization whereas red and yellow spots rep-
resent banks of high utilization. Horizontal stripes are an indication of a mapping
scheme that hot spots banks, and thus is suboptimal.

106

0

100

200

o
f:c

l:b
k
:v

l:rk
:rw

:c
h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:rk
:b

k
:v

l:rw
:c

h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:rk
:v

l:b
k
:rw

:c
h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:v
l:b

k
:rk

:rw
:c

h
:c

b

B
a
n
k
 N

u
m

b
e
r

0

100

200

o
f:c

l:v
l:rk

:b
k
:rw

:c
h
:c

b

B
a
n
k
 N

u
m

b
e
r

Figure 5.27: Heatmaps for five address mapping schemes for the ft.B workload over
time

107

0

100

200

0 100 200 300 400 500

B
an

k
 N

u
m

b
er

ft.B (of:cl:rk:bk:vl:rw:ch:cb)

of:cl:rk:bk:vl:rw:ch:cb

of:cl:vl:rk:bk:rw:ch:cb

ft.B

0

10

20

30

40

50

0 100 200 300 400 500

C
u
b
e

B
an

d
w

id
th

 (
G

B
/s

)

0

100

200

0 100 200 300 400 500

Simulated Execution Time (ms)

B
an

k
 N

u
m

b
er

ft.B (of:cl:vl:rk:bk:rw:ch:cb)

Figure 5.28: Address mapping scheme comparison for the ft.B workload. Dark spots
indicate banks with low utilization whereas red and yellow spots represent banks of
high utilization. Horizontal stripes are an indication of a mapping scheme that hot
spots banks, and thus is suboptimal.

108

0

100

200

0 5 10 15 20 25

B
an

k
 N

u
m

b
er

sp.C (of:cl:rk:bk:vl:rw:ch:cb)

of:cl:vl:rk:bk:rw:ch:cb
of:cl:rk:bk:vl:rw:ch:cb

sp.C

25

50

75

100

0 5 10 15 20 25

C
u
b
e

B
an

d
w

id
th

 (
G

B
/s

)

0

100

200

0 5 10 15 20 25

Simulated Execution Time (ms)

B
an

k
 N

u
m

b
er

sp.C (of:cl:vl:rk:bk:rw:ch:cb)

Figure 5.29: Address mapping scheme comparison for the sp.C workload. Dark
spots indicate banks with low utilization whereas red and yellow spots represent
banks of high utilization. Horizontal stripes are an indication of a mapping scheme
that hot spots banks, and thus is suboptimal.

109

status quo for current memory systems. That is, current generation DDR3-1600

parts have a theoretical maximum throughput of 12.8 GB/s per channel. Each

such channel requires hundreds of CPU pins and a memory controller that sits on

the CPU die, far away from memory. To put the performance of the HMC into

perspective, we configure an aggressive quad channel DDR3-1600 and simulate it

in DRAMSim2 (see section 4.4.3). Additionally, we simulate the perfect memory

model to give a sense of how memory intensive the workloads are.

Figures 5.30 and 5.31 show the main memory bandwidth of several workloads

over time. To reiterate, since these workloads execute between the same two points

in the program, it is possible to calculate the speedup by comparing the relative

lengths of the lines (i.e., shorter line means lower execution time). Upon examining

these graphs, one immediately notices that the HMC memory system can only

make an impact for the workloads with the highest memory intensity. That is, for

workloads such as fluidanimate and miniFE in figure 5.30, the usage of an HMC

memory system fails to make any significant impact on the execution time. In these

cases, even an unattainable “perfect” memory system can only provide a reasonably

small improvement.

For memory intensive workloads such as STREAM, however, the HMC can

provide a significant speedup simply by changing the main memory system. The

bottom graph of figure 5.31 shows that the DDR3-1600 system is constantly running

near its theoretical peak bandwidth, but the HMC system still manages to complete

the workload 2.1 times faster. This is a drastic departure from the performance

of current generation memory systems, especially if the energy efficiency of the

110

fluidanimate

miniFE

sp.C

0

25

50

75

0

25

50

75

0

50

100

150

0 100 200

0 200 400 600

0 500 1000

Simulated Time (milliseconds)

B
an

d
w

id
th

(G
B

/s
)

HMC

4Ch. DDR3-1600

Perfect

Figure 5.30: Comparison of memory system technologies: Quad Channel DDR3,
HMC, and perfect. (1)

111

ft.A

lu.C

STREAM

0

50

100

0

50

100

150

0

100

200

0 500 1000

0 250 500 750

0 50 100 150 200

Simulated Time (milliseconds)

B
an

d
w
id
th

(G
B
/s
)

HMC

4Ch. DDR3-1600

Perfect

Figure 5.31: Comparison of memory system technologies: Quad Channel DDR3,
HMC, and perfect. (2)

112

commercial devices match current predictions (see section 2.2).

113

Chapter 6

Multiple Cube Topologies

6.1 HMC Chaining Background

One of the unique features of the HMC is the ability to create nearly arbitrary

cube topologies by linking multiple cubes together. This feature is enabled by several

different features of the HMC: a general purpose serial link interface, the presence of

general purpose logic within each HMC device, and multiple input and output links

per device. A traditional DDRx memory system forms a uniform memory space with

no hierarchy because of the use of a single broadcast bus for all memory devices per

channel. The memory devices always operate as slave devices as they have no general

purpose logic on the DIMM. Using multiple CPU sockets introduces an element of

non-uniform memory access (NUMA) when each processor socket is connected to

its own local DRAM while being able to access the DRAM connected to any other

socket by traversing an interconnect such as Intel’s QuickPath Interconnect (QPI).

While this can be considered a simple topology of sorts, each memory channel still

requires a CPU to act as a pass-through device.

The HMC, in contrast, contains general purpose logic at the base of each cube

which replaces the CPU as the pass-through device. Furthermore, since the links

transmit data using a general-purpose protocol, the HMC links can be thought of

as analogous to the QPI interface which connects CPU sockets. In some sense, the

114

HMC’s support for chaining is isomorphic to the use of multiple sockets with local

and remote memories, but can be achieved without the use of extra CPU sockets.

The use of multiple CPU sockets is orthogonal to the use of the HMC memory system

and so it is possible to have a second level of NUMA: a local HMC topology where

some portions of the address space are in cubes that are multiple hops away and a

remote HMC topology connected to a different CPU socket. The HMC specification

allows for one cube to receive requests from multiple hosts and some previous work

has also examined the possibility of using a set of HMCs to function both as the

memory system as well as the processor interconnect [40].

The HMC specification explicitly discusses the creation of cube topologies, but

does not discuss many specific topologies or their design implications. According

to the document, unlike many network applications where each router in the net-

work can dynamically update routing tables, requests are source-routed (i.e., the

host determines a route for a request and it is not changed while the request is in

flight). The specification also provides a brief explanation that each HMC is loaded

with vendor-specific topology information which is used to route the request. No

additional implementation details are provided by the specification. Finally, the

specification states that a response to a request must return along the same path as

the original request.

Since creating cube topologies is likely to be a common and important use

case of the HMC, our goal is to take a look at some potential implementations

and understand the trade-offs involved. In this section, while we will try to keep

a realistic view of what cube topologies might look like, we will modify some of

115

the assumptions proposed in the specification to examine the impact of some more

interesting cases. We will maintain the requirement that responses must proceed

along the same route as the corresponding request and that the requests are to

be source-routed. However, in some cases, we will assume that the host controller

has access to information about the congestion level within the topology. This is a

realistic assumption given that the host determines all routes. Therefore, it is fair

to assume it could store information about which routes are in use by outstand-

ing requests. We will also assume that cubes will not send requests “backwards”

through the network to form cycles as this is unlikely to generate useful routes and

complicates route generation.

The HMC simulator is built on a set of primitives which can be composed to

form arbitrary topologies. In this section, we will consider two basic topologies: a

linear chain and a ring (which is simply a chain that wraps the final cube’s links

back to the CPU).

6.2 Routing Background

One of the challenges in building different HMC topologies is the need to gen-

erate possible routes. The HMC specification implies that the routing information

will be generated by the host and programmed into each cube as a lookup table: a

request arrives at a cube, the header information is used to index the lookup table,

and the packet is sent along to either a local vault or out to a pass-through link. In

simulation, however, enumerating the set of all possible routes to a given destination

116

is challenging due to the number of possible routes in certain topologies. Trying to

generate a lookup table by hand would be both time-consuming and error prone.

Furthermore, trying to re-generate such a lookup table each time one wanted to test

a new topology or change the number of cubes would be intractable.

In order to avoid hand-writing the routing information for each topology, the

simulator automatically generates these routes by recording all paths between a

given host link and a given vault and storing a routing table at each host link. The

route generation is done in two steps. First, a breadth-first search is performed

starting from each host link and terminating upon reaching all vaults. As the search

proceeds, each transmitter and receiver is assigned a rank equal to the number of

hops from the host link transmitter. After the nodes have been ranked, the second

step performs a depth-first search starting from each link and recording every path

that ends in a vault. This DFS is restricted to only consider a successor node whose

rank is higher than the current node. In essence, the initial BFS step performs a

topological sort on the nodes to prevent cycles in the depth-first search.

Once all possible routes from each CPU link to each vault are found and

recorded at the CPU, the routing table can be queried to produce a list of all

possible routes that reach the target vault from a given host link. However, once

the host is equipped with this information, a second question arises: what heuristic

should be used to pick a route for a given request? In some topologies, such as a

linear chain, all of the routes to a given vault have the same number of hops, but

given that there are l
2

pass-through links for each cube (where l is the number of

links per cube), there is a non-trivial number of routes available to choose from for a

117

moderately sized chain (i.e., (l
2
)n where n is the number of cubes). Other topologies

(such as a ring) can reach a target vault from several different paths which have

different numbers of hops. Some heuristic might be necessary to choose whether it

is worth it to choose a longer but less congested path over a shorter but busier path.

In both the linear chain and ring, all vaults are accessible from any link. When

discussing the order in which to consider routes, only routes that lead to a target

vault are considered for selection.

6.3 Route Selection Algorithms

For a source routed system like the HMC, the host only has access to local

information to make routing decisions. This information must be available either

from the request itself (e.g., the address of the requests) or from some local data

stored at the host. The route selection algorithm really must answer two largely

independent questions: which link will this request be transmitted on and which

route will it take to get to the target vault.

The first question has to do with the reachability of the target vault from a

given link (i.e., in some configurations, not every link may be able to reach every

vault) and the available resources at a given link (i.e., a link may not have buffer

space for a write request that takes up 80 bytes but may have space for a 16 byte

read). The second question has more to do with optimization. That is, once the

host knows that a given link can reach the target vault and that link has the buffer

space to accommodate that request, any route will satisfy the request but some may

118

be better than others.

The simulation, therefore, splits the problem into two phases. First, a “link

chooser” picks a link which can reach the vault and has buffer space, and then a

“route chooser” looks at the available routes from that host link and chooses one of

those. That route is encoded into the request and is never changed. As mentioned

previously, we enforce the condition that a request must reverse its original path on

the response path.

6.3.1 Link Choosers

We will briefly outline the various algorithms for choosing a link in this section.

6.3.1.1 Random

The random link chooser simply enumerates the list of available links that

reach the target and picks one based on a uniformly distributed pseudo random

number generator. It serves mostly as a control to show what kind of results can be

achieved with no real heuristic at all.

6.3.1.2 Address-based

The address-based selection scheme uses the address of the request to choose

an outgoing link. That is, we select the low order bits just above the transaction

offset and use those bits to generate a link number. If the selected link is busy,

it must wait until that link frees up before the request can be transmitted. The

119

low order bits of an address stream are likely to look fairly random but unlike the

previously described “random chooser”, this algorithm will make a request wait until

the specified link frees up even if other links are idle.

6.3.1.3 Buffer Space

The buffer space selection scheme tries to pick a link that has the most available

buffer space. The rationale is that the buffer space usage is roughly proportional

to the link utilization at any given point in time. Therefore, choosing the link with

the most buffer space is equivalent to choosing the least busy link to ensure an even

spread of requests among links in the long run.

6.3.1.4 Read/Write Ratio

As discussed previously, the maximum theoretical efficiency of the links is

dependent on the read/write ratio. Because of this feature, it stands to reason that

to make the most efficient use of the links, the link heuristic should try to maintain

the read/write ratio for any given link as close to the optimal point as possible.

Since we only consider 64 byte requests, we have shown that the optimal read/write

ratio is 56% reads. Therefore, this chooser keeps a per-link counter of the number

of reads and writes issued to that link and chooses to send the read or write to the

available link that will push the read/write ratio toward the optimal. That is, if a

link is below the optimal read/write ratio, the algorithm will prefer to send reads

to that link (and the opposite for writes). Although read/write ratio is not the only

120

determinant of performance in the system, it is a reasonable approach given only

local information.

6.3.2 Route Choosers

After a link has been selected by the link chooser, a second step of the algo-

rithm must decide on the route that the request will take through the entire memory

system. Implementing a heuristic to choose a route is somewhat more difficult given

the constraint of source routing. A typical network routing algorithm can dynam-

ically change the route of a packet at each node in the network. Therefore a path

can change dynamically to become more optimal since the congestion information

is distributed throughout the network. However, with a source routed algorithm,

the host controller can only use local information that is available either from the

request itself or from historical information stored locally.

The input to the route chooser is a set of routes that originate at the chosen

link and terminate at the vault number of the request.

6.3.2.1 Random

The random route chooser simply chooses a route at random from the list

without considering any properties of the routes. As with the link chooser case, this

case is meant to demonstrate the performance when there is no selection logic at

all.

121

6.3.2.2 Round Robin

The round robin heuristic keeps a history table of which route index was

selected on a previous request between the given link and the given vault. While

the amount of logic to implement this scheme is very simple, it does require the

controller to keep a static history table of pointers to the routing table that has a

size of Nlinks ∗ max(Nvaults). This might be problematic in two ways: (1) if there

is an increase in cube density, the controller may need more entries, which limits

expandability of the system; (2) for large configurations with many cubes, the size

of this table may become significant.

6.3.3 Congestion Aware

The congestion aware heuristic tries to emulate the “ideal” case for a routing

method which is to keep enough state about the traffic flowing globally through the

system to be able to make an informed decision about what route will encounter the

least congestion. This heuristic is the only one that can make a reasonable choice

in a ring topology as it will sometimes choose a longer but less congested path over

a shorter but congested path. In the simulator, this strategy works by examining

the number of flits waiting in the buffers along each route and choosing the smallest

sum. Since the number of buffer entries are roughly proportional to the latency that

the request will encounter, this is a reasonable indicator of the path congestion.

This scheme could be implemented in hardware, but it would require a large

amount of logic and storage to work. Upon choosing a route for a given request, the

122

Figure 6.1: A linear chain topology

controller would have to examine which queues would be utilized by that request

and increment a counter for each one. As responses flow back to the controller,

the counters for the utilized queues would be decremented. Although this would

allow the controller to utilize this scheme, it would impose a limit on scalability

as a single extra cube has many buffers inside, which would require the table to

grow significantly. The logic to examine this table would also likely be too slow and

expensive.

While it is unlikely that this technique would ever be implemented in an actual

system, it serves as a good comparison point of how an “ideal” routing strategy might

perform and how big of a performance impact the routing strategy has.

6.4 Topologies

6.4.1 Chain

The simplest topology that one could implement for a network of cubes is a

simple “linear chain” shown in figure 6.1. Half of a cube’s links are connected to

the left and half are connected to the right. The half of the links in the final cube

123

Figure 6.2: Block diagram of a ring topology. The CPU uses twice as many links as
a linear chain and halves the distance to the farthest cube.

are left unconnected and are powered down.

While a linear chain is a good way to increase the system’s capacity, it does

have some drawbacks. First, it is clear that the request latency increases significantly

as a request moves farther down the chain. Furthermore, the cube closest to the

CPU will likely be overloaded as it must not only service local requests, but transmit

passalong requests and responses for all of the other cubes. To make matters worse,

even though the first cube in the chain must transmit lots of extra data to and from

the CPU, it is only connected to the CPU with half of its links.

6.4.2 Ring

Some of the problems of the linear chain topology can be ameliorated by

making a simple modification to the topology. By connecting the two unconnected

links at the end of the linear chain back to the CPU, the topology becomes a ring

instead of a chain. This fixes two of the major drawbacks of a linear chain. First,

124

while the maximum path length remains the same between the two topologies, a

ring reduces the average path length by a factor of two. That is, because each cube

can be reached by traversing the ring either clockwise or counterclockwise, there is

always a route to a cube that has a maximum path length of half the number of

cubes. The second major benefit is that a ring allows the CPU to communicate

with the cubes using twice as many links as the linear chain.

Although these benefits make the ring seem like a natural choice over a simple

chain, the ring topology does introduce a problem. Since requests and responses can

travel both clockwise and counterclockwise around the ring, both passalong packets

and local requests/responses intermix in the link queues. This can lead to the

situation shown in figure 6.3a. Responses travelling clockwise and counterclockwise

can create a cyclic condition where two vaults become deadlocked. Neither one can

issue new requests due to a full response queue, but passalong packets are stuck

behind incoming command packets. The cycle formed by the requests is highlighted

by the red lines in 6.3a.

Triggering the deadlock requires very high load on the memory system that can

potentially cause several buffers in the system to fill with certain types of requests.

In the random stream simulations performed in section 6.5, this deadlock condition

occurred in less than 2% of simulations. The “congestion aware” heuristic described

in section 6.3.3 would be most likely to trigger a deadlock condition. This is because

this heuristic has a tendency to fill any unused buffer space in the memory system

leading to a situation where a deadlock is more likely. Due to the complexity of

the data paths in the system, figuring out the source of the deadlocking was quite

125

challenging.

This deadlock condition can be overcome by making two observations about

the nature of the requests and responses. The first observation is that response

packets can always make forward progress because their final destination is always

a CPU and the CPU will always eventually accept the response packet. The second

observation is that the deadlock in figure 6.3a can be avoided if the requests from

the vault’s read return queue can drain its responses back into the cube network.

Therefore, if we keep space reserved in the network specifically for responses, the

system can always make forward progress (see 6.3b). Some reserved response slots

will always become available due to the CPU consuming responses meaning that

the vault can always eventually return responses and consume more requests.

Another way to overcome the deadlock condition is to prevent the situation

where requests and responses can flow in both directions around the ring. If we

redraw the ring topology in a logical layout where the CPU is drawn as two “halves”,

we obtain the diagram in figure 6.4. When drawn this way, the ring looks like

two separate logical linear chains. If we impose the condition that packets are not

allowed to cross the cube from one chain to another (i.e., requests stay on either side

of the red center line), then it is impossible to have a deadlock condition because all

requests will flow from the CPU outward and all responses will flow in the opposite

direction. That is, there will never be a case where one response goes to the left and

another response goes to the right within the same chain. Imposing this condition

obviates the need to keep separate reservation slots as discussed previously, but still

allows the system to capture the latency and bandwidth benefits of a ring topology.

126

(a) Example of deadlock case

(b) One strategy to avoid deadlock

Figure 6.3: Deadlock in a ring topology

127

Figure 6.4: Logical representation of a ring topology. A ring is logically equivalent
to two chains with the CPU at both ends. As long as requests are not allowed to
cross the red line, no deadlock is possible.

The only drawback to this approach is that it reduces the number of available paths

for routing. However, whether or not this restriction has any practical impact on

performance is not immediately obvious and will be explored in section 6.5.

128

6.5 Cube Topology Random Stream Results

6.5.1 Route Heuristics

In this section we will discuss the impact of the topology using random stream

simulations. The random stream simulation methodology for this section is the same

as the one described in section 4.3 that was used for single cube simulations.

The topology problem is rather complex because of the number of variables

that must be considered. In addition to the topology itself, we also consider the link

choice heuristic, the route choice heuristic, the read/write ratio, and the number of

cubes. Furthermore, sanity checking the results of the simulations is a difficult task

due to the number of unique routes that are possible for certain topologies such as

rings. In an attempt to visually show the flow of data through the network, the

simulator tracks the route of every request along every hop through the simulator.

The output file is processed by Graphviz to produce a graph diagram of each route

segment and the utilization of each receiver-transmitter pair along that segment.

Only actual data bytes are recorded since commands and packet overheads are

simply a mechanism of requesting data movement and are not useful by themselves.

First, to get an overview of the result space, we consider only the 56% read/write

ratio which corresponds to an optimal link throughput for 64 byte requests (see sec-

tion 5.2). Figure 6.5 shows the cross product of the different link and route heuristics

for the different topologies and numbers of cubes. Note that since we only implement

the star topology for four cubes, we omit the results from this set of graphs.

The first feature of this graph is that the routing heuristics do not make much

129

2 Cubes 4 Cubes 8 Cubes

0

50

100

0

50

100

ch
a
in

rin
g

bufferspace fixed random rw bufferspace fixed random rw bufferspace fixed random rw

Link Chooser

C
u

b
e

B
a
n

d
w

id
th

(G
B

/s
)

Route Chooser

congestion

random

roundrobin

Topology Comparison (56% Reads, 256 Total Banks)

Figure 6.5: Bandwidth of various link and route heuristics with a 56% read/write
ratio stream.

130

difference for a simple chain topology. This is expected since our simulated system

only has two links connecting every CPU/cube pair; there are not very many unique

paths to each vault. Therefore, the details of the route make only a small difference

in the overall throughput of the system. We confirm this by examining the full set

of read/write ratios for the chain in figure 6.6 and seeing that indeed, there is little

change from any given heuristic.

One of the more surprising results from this data set is the fact that the “fixed”

link chooser performs better than the other heuristics. The choice of link is made

based on the bits that are directly above the transaction offset. That is, it shifts off

the last 6 bits of the address for a 64 byte transaction and uses the two lowest bits

to pick a link index. The default address mapping policy of the simulator places the

vault bits in this same set of bits. Since the basic job of the routing logic is to assign

paths between links and vaults, using the vault bits to assign a link index has the

effect of separating traffic streams based on their destination vault. If we examine

the ring configurations more closely over a range of read/write ratios (figure 6.7),

the fixed scheme performs better than or nearly as well as the other schemes.

The chaining also goes against the previous result that the optimal read/write

ratio for 64 byte requests is 56%. Figure 6.7 shows that memory streams with

fewer reads and more writes are able to achieve better overall throughput in a ring

topology. Because both write requests and return data may traverse the ring in

either direction, these large packets interfere with the progress of both the read

request and the read response. Since a full read return queue can stall the issuing

of new read requests to the DRAM, the extra traffic in both directions can impede

131

2 Cubes 4 Cubes 8 Cubes

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

2
5
%

R
ead

s
50%

R
ead

s
56%

R
ead

s
66%

R
ead

s
75%

R
ead

s

bufferspace fixed random rw bufferspace fixed random rw bufferspace fixed random rw

Link Chooser

C
u

b
e

B
a
n

d
w

id
th

(G
B

/s
)

Route Chooser

congestion

random

roundrobin

Chain Topology (256 Total Banks)

Figure 6.6: Bandwidth of various link and routing heuristics for a chain topology.

132

2 Cubes 4 Cubes 8 Cubes

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

2
5
%

R
ead

s
50%

R
ead

s
56%

R
ead

s
66%

R
ead

s
75%

R
ead

s

bufferspace fixed random rw bufferspace fixed random rw bufferspace fixed random rw

Link Chooser

C
u

b
e

B
a
n

d
w

id
th

(G
B

/s
)

Route Chooser

congestion

random

roundrobin

Ring Topology (256 Total Banks)

Figure 6.7: Bandwidth of various link and routing heuristics for a ring topology.

133

the progress of the DRAM. As writes can always be issued to the DRAM, they

are not as sensitive to the passalong traffic in the cube and thus get better overall

performance.

6.5.2 Full System Performance Impact

In this section, we illustrate the impact of HMC topologies the performance of

the entire system. We configure a chain and a ring topology and vary the size of each

to include one, two, or four cubes. We connect these different memory topologies

to our MARSSx86 simulator instance and run several workloads.

Up until now, all of the simulations of multiple cubes have been only with

random streams that are agnostic to address mapping. However, for a full-system

experiment, we must choose a specific address mapping policy. In the initial run

of this experiment, the cube bits were simply placed at the top of the address.

This resulted in our simulations only sending requests to a single cube and thus

failing to show any impact whatsoever. Therefore, we adjust the address mapping

scheme so that the cube bits are further toward the lower bits of the address so

that more spread is generated to each cube. We use a vault:bank:cube:rank:dram

address mapping, which is a slight modification to the canonical closed page address

mapping used earlier where cache lines most spread out (i.e., the vault and bank

bits are in the lowest part of the address).

First, we summarize the number of requests arriving per epoch at each cube

in a four cube topology with in figure 6.8. Each cube number is represented by a

134

box plot with a different color with lines extending to the minimum and maximum.

Indeed we can see that the requests are spread quite uniformly among the different

cubes due to the address mapping scheme.

One of the key questions for evaluating the topology is how the latency varies

for accesses to different cubes. This is especially important in a topology such as a

chain where a request may have to traverse through the entire length of a chain of

multiple cubes to reach its final destination. Figure 6.9 shows the latency of each

cube over time for a four cube chain and ring. All of the workloads experience a

fairly uniform latency difference when going to a cube farther down in a linear chain.

The right side of this figure that corresponding to the ring latencies is unevent-

ful. The ring collapses all of the latency values down to a single line indicating that

there is no significant latency penalty for requests going through passalong paths.

As compared to the chain, the host has twice as many links to send requests and

receive responses and also two cubes to send passalong traffic through instead of just

one. Moreover, the number of hops to the farthest cube is halved as compared to

a chain of equal size. Overall, the ring controls the latency distribution to different

cubes within the topology rather well.

135

Chain Topology Ring Topology

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

ft.B miniFE sp.C STREAM STREAM-mm ft.B miniFE sp.C STREAM STREAM-mm

N
u
m
b
er

of
R
eq
u
es
ts

p
er

E
p
o
ch

Figure 6.8: Box plot of average number of requests per epoch to each cube in four
cube topologies. Requests are spread evenly among cubes since cube address bits
are moved lower in the address.

136

Chain Topology Ring Topology

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

ft.B
m
in
iF
E

sp
.C

S
T
R
E
A
M

S
T
R
E
A
M
-m

m

0 1000 2000 3000 0 1000 2000 3000

Simulated Execution Time (ms)

R
ou

n
d
tr
ip

L
at
en

cy
(n
s)

Cube Number 0 1 2 3

Figure 6.9: Round trip latency to different cubes in four cube topologies. Memory
intensive applications experience a much higher latency when going to far away
cubes in a chain. The ring topology is effective at controlling the request latency.

137

B
a
n
d
w

id
th

(G
B

/
s)

E
x
e
cu

ti
o
n

T
im

e
(m

s)
B

a
n

d
w

id
th

R
a
ti

o
S

p
e
e
d

u
p

#
of

C
u
b

es
ch

ai
n

ri
n
g

ch
ai

n
ri

n
g

ch
ai

n
ri

n
g

ch
ai

n
ri

n
g

ft
.B

1
41
.4

1
42
.8

0
19

29
.6

9
18

89
.0

6
1.

00
1.

03
1.

00
1.

02
2

41
.7

3
42
.6

1
19

03
.1

3
18

65
.6

3
1.

01
1.

03
1.

01
1.

03
4

39
.2

4
39
.8

4
19

98
.4

4
19

78
.1

3
0.

95
0.

96
0.

97
0.

98

m
in

iF
E

1
20
.5

6
20
.6

5
11

74
.5

9
11

69
.1

1
1.

00
1.

00
1.

00
1.

00
2

19
.6

5
19
.7

5
12

28
.4

6
12

22
.6

2
0.

96
0.

96
0.

96
0.

96
4

17
.9

2
17
.9

0
13

46
.9

2
13

48
.4

4
0.

87
0.

87
0.

87
0.

87

sp
.C

1
29
.0

8
29
.7

1
29

32
.8

1
28

65
.6

3
1.

00
1.

02
1.

00
1.

02
2

28
.3

8
28
.9

4
30

03
.1

3
29

46
.8

8
0.

98
1.

00
0.

98
1.

00
4

26
.3

3
26
.6

8
32

37
.5

0
31

89
.0

6
0.

91
0.

92
0.

91
0.

92

S
T

R
E

A
M

1
55
.6

4
60
.3

0
16

1.
26

14
8.

77
1.

00
1.

08
1.

00
1.

08
2

55
.5

4
59
.2

7
16

1.
55

15
1.

43
1.

00
1.

07
1.

00
1.

06
4

51
.4

3
53
.2

3
17

4.
50

16
8.

62
0.

92
0.

96
0.

92
0.

96

S
T

R
E

A
M

-m
m

1
65
.1

1
11

8.
20

11
02
.5

7
60

7.
31

1.
00

1.
82

1.
00

1.
82

2
67
.0

2
11

8.
93

10
71
.2

0
60

3.
57

1.
03

1.
83

1.
03

1.
83

4
67
.0

0
11

5.
37

10
71
.3

9
62

2.
17

1.
03

1.
77

1.
03

1.
77

T
ab

le
6.

1:
M

em
or

y
b
an

d
w

id
th

an
d

ex
ec

u
ti

on
ti

m
e

im
p
ac

t
of

cu
b

e
ch

ai
n
in

g.
B

an
d
w

id
th

R
at

io
an

d
S
p

ee
d
u
p

ar
e

n
or

m
al

iz
ed

to
a

si
n
gl

e
cu

b
e

ch
ai

n
.

138

Finally, we examine the impact of cube chaining on overall memory throughput

for different numbers of cubes. We graph the main memory bandwidth as seen from

the CPU as a function of time for one, two, and four cube topologies in figure

6.10. We can see that as the latency results showed previously, there is a reasonable

decrease in bandwidth when increasing the number of cubes in a linear chain. As

the number of cubes increases, the ring is able to achieve higher bandwidth than the

corresponding chain configuration. However, the impact on overall execution time

is small, however, even for memory intensive workloads like STREAM.

These results show that there is an important trade-off between the capacity

and performance of the HMC. As more cubes are added to a network of memory

devices, there are more overheads associated with moving data around the network

as compared to a single cube. However, as these results have shown, the trade-offs

are quite reasonable in that adding capacity in the form of extra cubes only has

a reasonably small impact on overall execution time. Furthermore, with operating

system support that is aware of the non-uniformity of the address space, techniques

could be applied to further hide the performance impacts associated with cube

chaining.

139

Chain Topology Ring Topology

0

40

80

120

0

40

80

120

0

40

80

120

0

40

80

120

0

40

80

120

ft.B
m
in
iF
E

sp
.C

S
T
R
E
A
M

S
T
R
E
A
M
-m

m

0 1000 2000 3000 0 1000 2000 3000

Simulated Execution Time (ms)

C
u
b
e
B
an

d
w
id
th

(G
B
/s
)

Number of Cubes 1 2 4

Figure 6.10: Memory bandwidth as seen from the CPU over time for topologies of
varying size.

140

Chapter 7

Conclusion

The experiments in this thesis have shown that the Hybrid Memory Cube

represents a paradigm shift in the structure and performance of the main memory

system. Although the ideas of high speed signalling and 3D die stacking have been

explored in the past, their combination inside of the memory system creates a device

that can increase memory throughput by an order of magnitude over current tech-

nologies. This is a welcome change for the memory system, as researchers have been

lamenting the “memory wall” for nearly two decades. The HMC provides a way to

extend the life of DRAM as process technology scaling becomes more difficult.

We have demonstrated, however, that such a memory device must be config-

ured carefully in order to make full use of the available memory-level parallelism

and throughput. Link throughput must be over-provisioned with respect to TSV

throughput due to the packet overheads and sensitivity to read/write ratio. Fur-

thermore, we have touched upon the fact that such a memory system might expose

CPU bottlenecks that were not previously problematic due to the reasonably slow

memory system. That is, today’s cache coherence protocols may become too much

of a burden in the future when many cores attempt to access a high-throughput

memory system. Experiments have shown that as the TSV process becomes more

mature, adding more dies to the HMC stack can provide extra capacity without

141

sacrificing performance. High levels of parallelism inside of the cube allow it to

maintain high throughput even with a broad range of DRAM timings. Finally, we

have shown that with the logic at the base of each memory stack and some careful

consideration of topologies, the ability to connect cubes together topologies can also

provide a path to increasing capacity while maintaining performance. It is likely

that making the operating system kernel aware of the non-uniformity of the memory

system can further increase the performance and lower the cost of cube chaining.

Overall, for certain memory intensive workloads, the HMC can decrease work-

load execution time as well as power consumption of the memory system while

allowing vendors to innovate inside of the memory system.

142

Bibliography

[1] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of
the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, mar 1995.

[2] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In Proceedings of the 36th annual in-
ternational symposium on Computer architecture, ISCA ’09, pages 267–278,
New York, NY, USA, 2009. ACM.

[3] Aniruddha N. Udipi, Naveen Muralimanohar, Rajeev Balasubramonian,
Al Davis, and Norman P. Jouppi. Combining memory and a controller with
photonics through 3D-stacking to enable scalable and energy-efficient systems.
In Proceedings of the 38th annual international symposium on Computer archi-
tecture, ISCA ’11, pages 425–436, New York, NY, USA, 2011. ACM.

[4] Micron. 4Gb: x4, x8, x16 DDR3 SDRAM Features. http:

//www.micron.com/~/media/Documents/Products/Data%20Sheet/DRAM/

DDR3/4Gb_DDR3_SDRAM.pdf, 2009.

[5] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann Pub, 2007.

[6] Jung-Ho Ahn, J. Leverich, R.S. Schreiber, and N.P. Jouppi. Multicore dimm:
an energy efficient memory module with independently controlled drams. Com-
puter Architecture Letters, 8(1):5–8, 2009.

[7] JEDEC. Main Memory: DDR3 & DDR4 SDRAM. http://www.jedec.org/

category/technology-focus-area/main-memory-ddr3-ddr4-sdram.

[8] Todd Legler. Choosing the DRAM with Complex System Considerations. In
Embedded Systems Conference, 2012.

[9] D. Wang. Importance of migrating to DDR4.

[10] Graham Allan. Ddr4 bank groups in embedded applications.
http://www.synopsys.com/Company/Publications/DWTB/Pages/

dwtb-ddr4-bank-groups-2013Q2.aspx, 2013.

[11] Joel Hruska. Haswell-E to offer DDR4 support, up to eight
cores in 2014. http://www.extremetech.com/computing/

158824-haswell-e-to-offer-ddr4-support-up-to-eight-cores-in-2014,
2013.

[12] Richard Swinburne. DDR4: What we can Expect. http://www.bit-tech.

net/hardware/memory/2010/08/26/ddr4-what-we-can-expect/2, August
2010.

143

http://www.micron.com/~/media/Documents/Products/Data%20Sheet/DRAM/DDR3/4Gb_DDR3_SDRAM.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/DRAM/DDR3/4Gb_DDR3_SDRAM.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/DRAM/DDR3/4Gb_DDR3_SDRAM.pdf
http://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram
http://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram
http://www.synopsys.com/Company/Publications/DWTB/Pages/dwtb-ddr4-bank-groups-2013Q2.aspx
http://www.synopsys.com/Company/Publications/DWTB/Pages/dwtb-ddr4-bank-groups-2013Q2.aspx
http://www.extremetech.com/computing/158824-haswell-e-to-offer-ddr4-support-up-to-eight-cores-in-2014
http://www.extremetech.com/computing/158824-haswell-e-to-offer-ddr4-support-up-to-eight-cores-in-2014
http://www.bit-tech.net/hardware/memory/2010/08/26/ddr4-what-we-can-expect/2
http://www.bit-tech.net/hardware/memory/2010/08/26/ddr4-what-we-can-expect/2

[13] Samsung. Samsung DDR4 SDRAM. http://www.samsung.com/global/

business/semiconductor/file/media/DDR4_Brochure-0.pdf, 2013.

[14] Samsung. What is a Load Reduced Dual-inline Memory Module (LRDIMM)?

[15] Inphi. Introducing LRDIMM – A New Class of Memory Modules. www.inphi.
com/products/whitepapers/Inphi_LRDIMM_whitepaper_Final.pdf, 2011.

[16] S. Kuppahalli. Inphi and Samsung Demonstrated LRDIMM Technology at IBM
EDGE 2013.

[17] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. Fully-buffered DIMM memory
architectures: Understanding mechanisms, overheads and scaling. pages 109–
120, 2007.

[18] Micron. TN-47-21: FBDIMM – Channel Utilization (Bandwidth and Power)
Scalable Power. Technical report, 2006.

[19] Elliott Cooper-Balis, Paul Rosenfeld, and Bruce Jacob. Buffer-on-board mem-
ory systems. In Computer Architecture (ISCA), 2012 39th Annual International
Symposium on, pages 392–403, june 2012.

[20] Joel Hruska. Samsung pushes ahead with 20nm DDR3 RAM, signaling uncer-
tainty about DDR4, March 2014.

[21] J. Thomas Pawlowski. Hybrid Memory Cube (HMC). In Hot Chips 23, August
2011.

[22] Hybrid memory cube specification 1.0. Technical report, Hybrid Memory Cube
Consortium, 2013.

[23] J. Jeddeloh and B. Keeth. Hybrid memory cube new dram architecture in-
creases density and performance. In VLSI Technology (VLSIT), 2012 Sympo-
sium on, pages 87–88, 2012.

[24] M. Facchini, T. Carlson, A. Vignon, M. Palkovic, F. Catthoor, W. Dehaene,
L. Benini, and P. Marchal. System-level power/performance evaluation of 3D
stacked DRAMs for mobile applications. In Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., pages 923–928, april 2009.

[25] Justin Rattner. Intel Speaks about the Hybrid Memory Cube. http://www.

youtube.com/watch?v=VMHgu_MKjkQ, 2011.

[26] Hybrid Memory Cube: Experimental DRAM. In Intel Developer Forum, 2011.

[27] Micron. Revolutionary Advancements in Memory Performance . http://www.
youtube.com/watch?v=kaV2nZSkw8A.

144

http://www.samsung.com/global/business/semiconductor/file/media/DDR4_Brochure-0.pdf
http://www.samsung.com/global/business/semiconductor/file/media/DDR4_Brochure-0.pdf
www.inphi.com/products/whitepapers/Inphi_LRDIMM_whitepaper_Final.pdf
www.inphi.com/products/whitepapers/Inphi_LRDIMM_whitepaper_Final.pdf
http://www.youtube.com/watch?v=VMHgu_MKjkQ
http://www.youtube.com/watch?v=VMHgu_MKjkQ
http://www.youtube.com/watch?v=kaV2nZSkw8A
http://www.youtube.com/watch?v=kaV2nZSkw8A

[28] K.T. Malladi, F.A. Nothaft, K. Periyathambi, B.C. Lee, C. Kozyrakis, and
M. Horowitz. Towards energy-proportional datacenter memory with mobile
dram. In Computer Architecture (ISCA), 2012 39th Annual International Sym-
posium on, pages 37–48, 2012.

[29] C. Weis, N. Wehn, L. Igor, and L. Benini. Design space exploration for 3D-
stacked DRAMs. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, pages 1–6, march 2011.

[30] Dana Vantrease, Robert Schreiber, Matteo Monchiero, Moray McLaren, Nor-
man P. Jouppi, Marco Fiorentino, Al Davis, Nathan Binkert, Raymond G.
Beausoleil, and Jung Ho Ahn. Corona: System Implications of Emerging
Nanophotonic Technology. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 153–164, Washington,
DC, USA, 2008. IEEE Computer Society.

[31] Gurtej Sandhu. DRAM Scaling & Bandwidth Challenges. In NSF Workshop
on Emerging Technologies for Interconnects (WETI), 2012.

[32] M. B. Kleiner, S. A. Kuhn, P. Ramm, and W. Weber. Performance improve-
ment of the memory hierarchy of RISC-systems by application of 3-D tech-
nology. Components, Packaging, and Manufacturing Technology, Part B: Ad-
vanced Packaging, IEEE Transactions on, 19(4):709–718, nov 1996.

[33] C. C. Liu, I. Ganusov, M. Burtscher, and Sandip Tiwari. Bridging the processor-
memory performance gap with 3D IC technology. Design Test of Computers,
IEEE, 22(6):556–564, nov.-dec. 2005.

[34] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei Jiang,
Gabriel H. Loh, Don McCaule, Pat Morrow, Donald W. Nelson, Daniel Pantuso,
Paul Reed, Jeff Rupley, Sadasivan Shankar, John Shen, and Clair Webb. Die
Stacking (3D) Microarchitecture. In Microarchitecture, 2006. MICRO-39. 39th
Annual IEEE/ACM International Symposium on, pages 469–479, dec. 2006.

[35] Taeho Kgil, Shaun D’Souza, Ali Saidi, Nathan Binkert, Ronald Dreslinski,
Trevor Mudge, Steven Reinhardt, and Krisztian Flautner. PicoServer: using
3D stacking technology to enable a compact energy efficient chip multiprocessor.
In Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, ASPLOS-XII, pages 117–128,
New York, NY, USA, 2006. ACM.

[36] Gian Luca Loi, Banit Agrawal, Navin Srivastava, Sheng-Chih Lin, Timothy
Sherwood, and Kaustav Banerjee. A thermally-aware performance analysis of
vertically integrated (3-D) processor-memory hierarchy. In Proceedings of the
43rd annual Design Automation Conference, DAC ’06, pages 991–996, New
York, NY, USA, 2006. ACM.

145

[37] Gabriel H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors.
In Proceedings of the 35th Annual International Symposium on Computer Ar-
chitecture, ISCA ’08, pages 453–464, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[38] Ke Chen, Sheng Li, N. Muralimanohar, Jung Ho Ahn, J. B. Brockman, and
N. P. Jouppi. CACTI-3DD: Architecture-level modeling for 3D die-stacked
DRAM main memory. In Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2012, pages 33–38, march 2012.

[39] Aniruddha N. Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev Bal-
asubramonian, Al Davis, and Norman P. Jouppi. Rethinking DRAM design
and organization for energy-constrained multi-cores. In Proceedings of the 37th
annual international symposium on Computer architecture, ISCA ’10, pages
175–186, New York, NY, USA, 2010. ACM.

[40] Gwangsun Kim, John Kim, Jung Ho Ahn, and Jaeha Kim. Memory-centric
System Interconnect Design with Hybrid Memory Cubes. In Proceedings of
the 22nd International Conference on Parallel Architectures and Compilation
Techniques, PACT ’13, pages 145–156, Piscataway, NJ, USA, 2013. IEEE Press.

[41] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, and
Vijayalakshmi Srinivasan. Ndc: Analyzing the impact of 3d-stacked memory+
logic devices on mapreduce workloads. In ISPASS, 2014.

[42] Thomas Kinsley and Aron Lunde. Inside the Hybrid Memory Cube, September
2013.

[43] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
access scheduling. pages 128–138, 2000.

[44] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Moham-
mad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anas-
tasia Ailamaki, and Babak Falsafi. Clearing the clouds: A study of emerging
scale-out workloads on modern hardware. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 37–48, New York, NY, USA,
2012. ACM.

[45] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput.
Archit. News, 39(2):1–7, August 2011.

[46] A. Patel and F. Afram. MARSSx86: Micro-ARchitectural and System Simula-
tor for x86-based Systems, 2010.

146

[47] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle accurate
memory system simulator. Computer Architecture Letters, 10(1):16 –19, jan.-
june 2011.

[48] John D. McCalpin. Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages 19–25, dec 1995.

[49] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-
ton University, January 2011.

[50] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L
Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A
Lasinski, Rob S Schreiber, et al. The nas parallel benchmarks. International
Journal of High Performance Computing Applications, 5(3):63–73, 1991.

[51] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willen-
bring, H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter,
Heidi K Thornquist, and Robert W Numrich. Improving performance via mini-
applications. Sandia National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[52] Wang. MODERN DRAM MEMORY SYSTEMS: PERFORMANCE ANAL-
YSIS AND A HIGH PERFORMANCE, POWER-CONSTRAINED DRAM
SCHEDULING ALGORITHM. PhD thesis, University of Maryland, 2005.

147

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Status Quo: Current Generation Memory Systems
	Synchronous DRAM
	Currently Proposed Solutions
	DDR4
	LRDIMM
	Fully Buffered DIMM
	Buffer-on-Board

	Discussion of Proposed Solutions

	Hybrid Memory Cube Architecture
	HMC Architecture
	Benefits of the HMC
	Capacity
	Parallelism and Aggregate Bandwidth
	Energy Efficiency
	Device Process Heterogeneity
	Interface Abstraction
	Near-Memory Computation

	Related Work
	DRAM on CPU Stacking
	System Level Studies
	Low Level Studies
	Serially Attached Stacked DRAM

	Methodology
	HMC Simulator
	HMC Parameters
	DRAM Timing Parameters
	Switch Interconnect
	Vault Controller

	Random Stream Methodology
	Full System Simulation Methodology
	Choosing a Simulation Environment
	MARSSx86 Simulator
	Comparison Systems

	Single Cube Optimization
	Motivation
	Link Bandwidth Optimization
	Link Efficiency and Read/Write Sensitivity
	Selecting Link/TSV Bandwidth

	Switch Parameters
	Queuing Parameters
	Vault Command Queue Depth
	Vault Read Return Queue Depth

	Constrained Resource Sweep
	Vault/Partition Organization
	Impact of Total Banks

	Full System Simulation
	Memory Bandwidth Exploration
	Workload Selection

	Full System Results
	DRAM Sensitivity

	Address Mapping
	Single Cube Address Mapping Results

	Memory Performance Comparison

	Multiple Cube Topologies
	HMC Chaining Background
	Routing Background
	Route Selection Algorithms
	Link Choosers
	Route Choosers
	Congestion Aware

	Topologies
	Chain
	Ring

	Cube Topology Random Stream Results
	Route Heuristics
	Full System Performance Impact

	Conclusion
	Bibliography

