
ABSTRACT 
 
 
 
Title of thesis:   APERY SETS OF NUMERICAL SEMIGROUPS 
 

Monica Grace Madero-Craven, Master of Arts, 2003 
 
Thesis directed by: Professor Lawrence C. Washington 
 Department of Mathematics 
 
 
A numerical semigroup is a subset, S of the non-negative integers, + which contains 

zero, is closed under addition, and whose complement in + is finite.  We discuss the 

basic properties of numerical semigroups as well as associated structures such as relative 

ideals.  Further, we examine several finite subsets of S including the Apery Set and two of 

its subsets.  Relationships between these subsets of S will allow us to give an equivalent 

definition for S to be symmetric as well as a necessary condition for S to be almost 

symmetric. 



APERY SETS OF NUMERICAL SEMIGROUPS 
 
 

by 
 

Monica Grace Madero-Craven 
 
 
 
 

Thesis submitted to the faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
Master of Arts 

2003 
 
 
 
 
 
 
 
 

Advisory Committee: 
 
Professor Lawrence C. Washington, Chair 
Professor William W. Adams 
Professor Niranjan Ramachandran 
 
 



 



DEDICATION 
 
 
To all of my children:  Richard (RC), James, Ashley, David, Danielle, and Kimberly. 

 ii



ACKNOWLEDGEMENTS 
 

 
 
 I wish to thank all the faculty and staff of the United States Air Force Academy, 

Department of Mathematical Science.  I especially want to thank Col Daniel Litwhiler for 

his continual support and belief in my ability to succeed.  I wish to thank Dr. Kurt 

Herzinger for introducing me to numerical semigroups.  I also wish to express my sincere 

gratitude for his patience and guidance, not to mention the countless hours he has devoted 

to me during the past two years.  Finally, I want to give a special thanks to my friends 

and family whose support was vital for my success:  Chris and Kate Truman, Mark 

Johnston, Herb Schreiber, my parents, Michael and Monica Madero and my three 

youngest children, David, Danielle, and Kimberly.   

 iii



TABLE OF CONTENTS 
 
 
Introduction.......................................................................................................................1 
 
Chapter 1:  Basics and Background..................................................................................3 
 
Chapter 2:  The Apery Set and its Subsets......................................................................11 
 
Appendix:........................................................................................................................22 
 
Bibliography ...................................................................................................................46 

 iv



 
 
 
 
 
 
 

INTRODUCTION 
 
 
 
 In this thesis we will investigate various finite subsets of a numerical semigroup.  

A numerical semigroup is a subset S of the non-negative integers + which contains zero, 

is closed under addition, and whose complement in + is finite.  The numerical 

semigroup S is denoted by its generators, that is, if  are the generators of S, then kaa ,...,1

kaa ,...,1=S .  S is the set of values created by linear combinations of the generators 

with non-negative coefficients.   

 

In Chapter 1 we establish the standard definitions and notations related to 

numerical semigroups.  These include the multiplicity, Frobenius number, and the 

minimal generating set for S.  We will also briefly discuss structures associated to 

numerical semigroups called relative ideals. 

 

In Chapter 2 we conduct an investigation of the Apery Set of S denoted by  

and two of its subsets, .  We will demonstrate a known relationship 

between S  and  but provide a proof that is somewhat different from the one 

provided in [5].  Next we will completely establish the relationship between  and 

.  We will provide an equivalent definition of symmetric in terms of .  

)(SAp

)S

)( and )( * SS AppA ′

)′ (SpA ′

(*Ap

)(* SAp)(SH

 1



Finally, we discuss the notion of S being almost symmetric and prove a necessary 

condition for it in terms of  and .  We also provide an example that shows 

this condition is not sufficient. 

)(SpA ′ )(* SAp

 

The appendix of this thesis contains the code for a program used extensively in 

the research for this paper.  It allows the user to quickly calculate all of the items defined 

in this paper.  The program can be utilized in any DOS environment.   

 

 

 

 2



 

 

 

1.  BASICS AND BACKGROUND 

 

 We begin by establishing the basic definitions and notation commonly associated 

with numerical semigroups.  For more background on the topic of numerical semigroups 

the reader is encouraged to see [2], [5], [6], and [7]. 

 

(1.1) Definitions/Notation:  Let + denote the non-negative integers.  A numerical 

semigroup S is a subset of + such that  

1) ,  S∈0

2) S is closed under addition,  

3) there exists an ∈x +\S such that, S∈y  for all xy > . 

 

 The largest integer not contained in S is called the Frobenius number of S and is 

denoted by g(S). The number of elements in S smaller than g(S) is denoted by n(S).  The 

smallest positive element of S is called the multiplicity of S and is denoted by m(S). 

 

(1.2) Definition:  We say that a numerical semigroup S is symmetric provided the 

following statement is true for all ∈z :    

S)S(S ∉−⇔∈ zgz . 

 3



(1.3) Example:  Let S = {0, 5, 6, 7, 10, 11, 12, 13, 14,T}, (where T indicates all 

numbers greater than 14 are included in S.)  Then S is a numerical semigroup with  

g(S) = 9, n(S) = 4, and  m(S) = 5.  Since S)S(S ∉=−=−∉ 1898 and 8 g  we see S is not 

symmetric. 

 

(1.4) Example: Let S = {0, 6, 8, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27,T}.  

Then S is a numerical semigroup with g(S) = 21, n(S) = 11, and  m(S) = 6.  It’s easy to 

check that S is symmetric since for every SSS ∈−∉ zgz )(, . 

 

 The following two facts are common in the literature on numerical semigroups.  We 

present them here with proofs. 

 

(1.5) Fact:  
2

1+
≤

)S()S( gn . 

Proof: Case 1:   is odd.  Partition the set {  as follows: )(Sg )}(,,1,0 SgK

},{,(,1{)},(,0{ 2
1)(

2
1)( +− SSS gggg K},1) −S .  The partition is composed of 2

1+)S(g  subsets.  If 

2
1+

>
)S()S( gn , then by the Pigeon Hole Principle we know that at least one of the sets 

has two elements in common with S.  Thus there exists S∈21 , ss such that )(21 Sgss =+ .  

Since S is closed under addition we conclude S)S( ∈g  which is a contradiction.  

 

Case 2:  g(S) is even.  In this case we want to partition the set {  as follows: )}(,,1,0 SgK

}{},,{,},1)(,1{)},(,0{ 2
)(

2
2)(

2
2)( SSSSS ggggg +−− K .  The partition is composed of 2

2+)S(g  

 4



subsets.  If  
2

1+
>

)S()S( gn

such that  , 21 Sss

 then either every subset in the partition has one element in 

common with S or one of the sets has two elements in common with S.  In either case 

there exists )(21 Sgss =+∈ .  Again we have a contradiction.   

In either case we conclude 
2

1+
≤

)S()S( gn . 

 

S

S(n

S ∈)(g

S∉ z < or    0

S)S( ∉− z

(1.6)  Fact:  A numerical semigroup S is symmetric if and only if g(S) is odd and 

2
1+

=
)S()S( gn .  

Proof:  For the forward implication, assume that g(S) is even or 2
1+< )S()S( gn . 

If g(S) is even then )S( ∉2
g (since S is closed under addition) and S)S( )S()S( ∉=− 22

ggg .  

So by definition S is not symmetric.  If 2
1+< )S() g

S

, then following the notation from 

(1.5), we see that one of the subsets in the partition of {  has no elements in 

common with S (otherwise we have 

)}(,,1,0 SgK

).  Thus there exists ∈z  such that 

.  We conclude S is not symmetric. S)S(S ∉−∉ zgz  and 

 For the reverse implication, assume g(S) is odd and 2
1+= )S()S( gn

,1,0 K

.  Again following 

the notation in (1.5), we have that each subset in the partition of {  has 

exactly one element in common with S.  Thus for every element of the set { , 

we have .  If 

)}(, Sg

,1,0 )}(, SgK

)S(S −⇔∈ zgz )S(gz > , then it follows from our 

definitions that S ⇔∈ gz .  We conclude S is symmetric. 

 

 5



(1.7) Definition/Notation: The minimal generating set of S is the unique smallest subset 

of S such that every element of S can be expressed as a linear combination of the 

elements in this subset with non-negative coefficients.  We denote the size of the minimal 

generating set by )(Sµ .   

 If k=)S(µ and the elements of the minimal generating set are  then the 

numerical semigroup is denoted by 

kaaa ,,, 21 K

== kaaa ,,, 21 KS   ∈++ knan 11 L kk nan ,,: 1 K{  

+} , where  and kaa <<< L21a<0 11 ,, −∉ mm aa Ka . 

 

(1.8) Examples: From (1.3), S = {0, 5, 6, 7, 10, 11, 12, 13, 14,T }, can be expressed as 

∈++== 321321 ,,|765{7,6,5 kkkkkkS +}.  Thus we have 3=)S(µ .   

 From (1.4), S = {0, 6, 8, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27,T}, 

can be expressed as ∈++== 321321 ,,|1186{11,8,6 kkkkkkS +} and again 3=)S(µ . 

 

(1.9) Fact:  Let S be a numerical semigroup with 2)( =Sµ , that is 21 ,aa=S .  Then 

          (1)    and 

          (2) S is symmetric. 

Proof:  The proofs of both these facts are common throughout the literature on numerical 

semigroups.  In fact the proof of (1) is often found as a homework problem on linear 

Diophantine equations in textbooks on number theory (see [9], section 3.6, exercises 

17,18).  In Chapter 2 we will provide new proofs for both of these facts. 

2121)( aaaag −−=S

 

 6



(1.10) Definitions: Given a semigroup S, we can derive a set from the elements not in S 

called the holes of S.  We define the holes of S by  

∈= z{)H(S + | })( SSS ∉−∉ zgandz . 

(In some papers  is referred to as the set of holes of the second type.  See [3]).      )(SH

  

 From this definition we have an equivalent definition of what it means for S to be 

symmetric.  The proof of the following fact is clear from the definitions. 

 

(1.11) Fact:  S is symmetric if only if φ=)SH( .   

 

(1.12) Example:  If 7,6,5=S , then H(S) = {1, 8}.  If 11,8,6=S , then S is 

symmetric, and we know from (1.11) that φ=)SH( . 

 

(1.13) Definitions/Notation:  Let S be a numerical semigroup.  A relative ideal is a 

nonempty subset I of  such that I has a least element denoted by  and if 

 then .  There exists a largest element in \I  called the 

Frobenius number of I and denoted by .  A relative ideal I is usually denoted by its 

minimal generating set which is the unique smallest subset T  such that every 

element of  I can be expresses as 

),(Im

, and , IS ∈∈ is I∈+ si

)(Ig

I⊆

st +  where S∈∈ sT  and t .  We denote the size of the 

minimal generating set of I by )I(Sµ .  If n=)I(Sµ and the elements of the minimal 

generating set are  then the relative ideal is denoted by nb,Kb ,1 ( ) == nb,b ,1 KI  

 where b)S()( 1 S ∪∪+b L +nb nb<<L1  and )1−,,( 1∉ mbm bb K . 

 7



 

(1.14) Examples:  Let )5,1( and  ,)4,2(,13,11,10,8 === JIS .  Then 

S = {0, 8, 10, 11, 13, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, T}, 13)(,25)( == SS ng   

=+∪+= )S()S(I 42

2)( and19)( == II mg

{2, 4, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25,T}  

.  

=+∪+= )S()S(J 51 {1, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18,T}  and 10)( =Jg 1)( =Jm . 

 

Note:  It is clear from the definitions that )S()I()I( gmg +≤ . 

 

(1.15) Definitions: If I and J are relative ideals of S, then we define JIJI −+   and    as 

 and },|{ JIJI ∈∈+=+ baba ∈=− z{JI  | }IJ ⊆+z

J

.  It is quick to check that both 

 are relative ideals of S.  We call IJIJI −+  and −  the dual of J in I.  In the case when 

J = S we simply call this the dual of I. 

 

(1.16) Example:  As in (1.14) let )5,1( and  ,)4,2(,13,11,10,8 === JI

,19,18,

,26,25,23,

,26,25,24,

S .  Then 

T} = (3, 5, 7, 9). 

T} = (9, 12, 13, 16). 

T} = (6, 9, 18). 

 

17,16,15,14,13,11,9,7,5,3{=+ JI

22,21,20,19,17,16,13,12,9{=− JI

22,20,19,18,17,16,14,9,6{=− IS

(1.17) Definitions/Notation:  We define the maximal ideal of S to be M = S\{0}.  

Further we define S  =  (S-M)\S.  The number of elements in S′ ′  is referred to as the type 

of S.   

 8



(1.18) Example:  From example (1.14), we can determine M =  

{8,10,11,13,16,18,19,20,21,22,23,24,26,27,28,T}.  It is quick to confirm that S is 

symmetric by (1.16).  Further we see 

)13,11,10,8(  =

}25{=′S  and hence has type 1. 

 

(1.19) Facts:  (1)  For any numerical semigroup S we have SS ′∈)(g . 

            (2)  The second largest element of S′  is the largest element of H(S). 

            (3)  S is symmetric if and only if )};({ SS g=′  that is, if and only if S has type 1. 

Proof:  The proof of (1) is clear from the definition of S′ . 

 For (2), let h(S) denote the largest element of H(S).  Let M∈s .  Then h(S) + s > 

h(S), so h(S) + s ∉  H(S).  Suppose h(S) + s ∉  S.  Then −)S(g (h(S)) + s ∈  S and hence 

or some t=h  fsg −− )S()S( S∈t .  But S)S(( )S ∈+=− tsg h  which is a contradiction.  

We must conclude that S)S( ′∈h  by definition. 

 Next suppose  and .  Consider S′∈z )S(h>z zg −)S( .  Because , we 

know  and so we must have 

)S(h>z

),(H S∉z S)S( ∈− zg .  Thus sz +g =)S(  for some S∈s .  

If , then  and so M z∈s ,S∈s+ S)S( ∈g  which is a contradiction.  We conclude that 

 and so .  Then there are no elements of S0=s z=g( )S ′  strictly between h(S) and . 

The proof of (3) follows quickly from (1) and (2).   

)S(g

 

Note:  A slightly different proof of (1.19(2)) can be found in [5]. 

 9



Connections to Rings 

 

 Beyond being an interesting algebraic structure in their own right, numerical 

semigroups are often used as a tool to investigate problems in the area of commutative 

algebra.  In particular, let R represent the power series ring , where k is a 

field and 0 .  Let 

]],,[[ 1 naa ttk K

naa <<< L1 υ  represent the standard valuation mapping from the 

quotient field of R to .  Then υ (R) is the numerical semigroup ,, ka,1a K=S  and 

many of the properties of R are reflected by the properties of S.  For example: 

(1) The embedding dimension of R = )S(µ . 

(2) If   is a fractional ideal of R, then ),,( 1 mbb tt K=I ),,()( 1 mbb K=Iυ  is a 

relative ideal of S.  Moreover, )())(( II RS µυµ =  and  [6]. )I(υS)I(υ −=−1

(3) R is Gorenstein if and only if S is symmetric [7]. 

 

 For more details on the connections between numerical semigroups and 

commutative algebra, please refer to [2], [3], [4], [6], and [7]. 

 

 

  

 10



 

 

 

2.  THE APERY SET AND ITS SUBSETS 

 

(2.1) Definitions:  We define a partial ordering S≤  on a numerical semigroup S by 

 provided  (see also [5]).   

 

yx S≤ S∈− xy

(2.2) Example:  Let },31,28,27,26,25,24,21,20,19,14,13,12,7,0{13,12,7 →==S

19S

.  

Based on this partial ordering, 7 ≤  since S∈=− 127 19S≤/19  but 13  because 

. 

 

S∉=− 61319

(2.3) Note:  The elements of S\{0} that are minimal under this partial ordering are 

exactly the elements of the minimal generating set for S. 

 

(2.4) Definitions/Notation:  Let }0{\S∈n

}

.  We define the Apery Set with respect to n 

to be :{),( SSS ∉−∈= nssnAp

)(SAp S(

.  The Apery Set with respect to m(S) is typically 

denoted by .  That is }S)S(:S{) ∉−∈= mssAp .   

 

(2.5) Note/Notation:  It follows from the definition that  contains exactly one 

element of S from each congruence class modulo m(S).  Specifically consists of the 

)(SAp

)(SAp

 11



smallest element of S which is congruent to i for 1)(...,,1,0 −= Smi

)(S )(i

.  We denote the 

element of  which is congruent to   by )(SAp mod mi ω .  We denote the largest 

element of  by )(SAp ω′ .  Further, it is important to note that with this definition we have 

ω′=)S+ ()(S mg . 

,25,24,21,20,19,14

)1(,12)5( =

,13,12,7,1 =S

,13,0{)1 =S(Ap = ωω

ωω ′== 37(2)

0≥

z )(mod Smiz ≡

)(iω )(mod Smi

)(i z ω≥ )()( Slmiz += ω

 

 Apery sets (named after Roger Apery, see [1]) appear often in the standard 

literature on numerical semigroups (see [5]) and are represented by a variety of different 

notations.  For the development which follows, it seems most natural to adopt the 

notation established in [8]. 

 

(2.6) Example:  Let },31,28,27,260{13,12,7 →=

}37,36,25,24, 36

. 

Then , and we see 12   and 

.   

 

 The following four lemmas establish some of the basic properties of . 

 

)(SAp

(2.7) Lemma:  Every integer z has a unique representation in the form )()( Slmiz += ω  

for some i and l∈.  Moreover, S∈z  if and only if l . 

Proof:  Let  be some non-negative integer.  Then , for some i. 

Since  is the smallest element of S congruent to , we know  if and 

only if

S∈z

 which is true if and only if  for some l . 

 

0≥

 12



(2.8) Lemma:  )()()()( Slmjiji ++=+ ωωω  for some . 

Proof:  

0≥l

)()( Si mod)( and )(mod S mjjmi ≡≡ ωω . 

Thus ).(mod) Smjij +≡()(i +ωω  Also S∈+ )j()(i ωω since S is closed under 

addition.  The result follows from (2.7). 

 

(2.9) Lemma:  If  and S∈21 , zz )(21 SApzz ∈+ , then )(, 21 SApzz ∈ .   

Proof:  (By Contrapositive):  Let ., 21 S∈zz   Assume )(2 SAp∉zor  )(1 SApz ∉ .  Then 

0or   2 >0    where)(2)()()( 111 > and 2 +=z+= ljmliz S lml Sωω   Thus  =+ 21 zz

)()2 Sml()()( 1lji +++ωω 02 ≥k  where),()()()( 1 ++++= SmSkmj lliω .  Thus 

0  where),( 1))( 2221 >( 1 +++++ lk+=+ lmljizz lkSω .  Hence . )(2 SApz ∉1z +

This completes the proof. 

 

(2.10) Example:  The converse of (2.9) is not always true.  Consider example (2.6).  

 and 13 , but clearly, 13)(25,13 1SAp∈ 125, S∈ )(3825 1SAp∉=+ . 

 

(2.11) Lemma:  )S()()()( lmjiji +−=− ωωω  where 0≤l .   

Proof:  Consider )()( jji ωω +− .   

By (2.8), =++−=+− )()()()( Skmjjijji ωωω )()( Skmi +ω  for some .  Then 0≥k

)()()( Skmji +−=)( ji − ωωω .  So )( j)() i()( kmji ωωω −=−− S .   Now let l k−= , 

hence )()()() jilmji( ωωω −=+− S . 

 

 13



(2.12) Definitions:  There are two subsets of the Apery set which are of particular 

interest to this investigation:  

of elements  theamong maximal is  |)({)( ωω SS AppA ∈=′

}|)({)(* SSS

}   w.r.t.)Ap( SS ≤  and  

∉−′∈= ωωω ApAp . 

 

(2.13) Lemma:  { }ω′∪⊆′ )()( * SS AppA

(pA

. 

Proof:  Clear from the definitions of )( and ) * SS Ap′ . 

 

(2.14) Example:  Let ,30,28,27,26,24,23,22,20,19,16,15,12,11,8,0{15,12,11,82 ==

}37,33,26,22,15, }37,33,12{)( 2

S T}.  

Then , 12,11,0{)( 2 =SAp =′ SpA }33,12{)( 2

* =SAp, and .  

Notice 37=′ω , and thus }{)()( 2

*

2 ω′∪⊆′ SS AppA . 

 

 The following lemma comes from [5] and reveals the bijective relationship between 

the sets  and .  We offer a proof here that is slightly different than the one in [5]. 

 

S′ )(SpA ′

(2.15) Lemma:  )()( ifonly  and if SSS pAmzz ′∈+′∈

)(mod Sm

 

Proof: Let .  iz ≡

 For the forward direction, assume S′∈z .  Then S)S(S ∈+∉ mzz but    

)(mod Sm

.  Thus 

 is the smallest element of S congruent to i .  By definition we have )S(mz +

+ )(Smz = )Ap((i) S∈ω .  Now suppose ij ≠ij ∈−   somefor   S)()( ωω .  Then by (2.9) 

and (2.11) )( ij)()( ij −=− ωωω .  Thus =−+−−=− )ij(  so  )()( zmzj)i( j ωωω S  

S∉)S− ()( mjω  by (2.7).   This is a contradiction since S′∈z )( ∈− ij and }0{\Sω .  

 14



We conclude ,  allfor   )()( ijij ≠∉− Sωω  and hence )(iω  is maximal in  with 

respect to ≤ .  Therefore 

)S(Ap

S )S()( pAi ′∈ω .  

)S(z ′+ )() iω=

)S(Ap )( − miω

)()(say    },0{\ SlmjsS +=∈ ω mod0

)S()()S( lmjm ++)i − ω () −ω

)(S′ =+ )()( ji ωω (Sω

)()1() Smlkj −++i + +k

},0{\S

S

z

{)

}30,29{

}29,25,4{2 =′S

=

)(* S

)(),( ji ∈ωω

)(SAp)j ∈ )()( * SApi ∈ω )(* S )( Apj ∈

)()( * SApi ∈ω −′ω ),S

 For the reverse direction, assume )S( pAm ∈ .  Then S(mz +  and 

)(iω  is maximal in  with respect to S≤ .  So by (2.7) we know S)S( ∉=z .  

Now let s  where )(Smj ≡/  or .  Then 0>l

(sz + = ω .  Note that )(SAp)i( ji ∉+ω  because 

)(i pA∈ω .  Therefore  ))( kmji ++  where .  Thus, 0>k

(sz + = ω  where 01≥−l .  So we have  by (2.7).  

Since s was an arbitrary element of  we conclude 

∈+ sz

S′∈ , by definition. 

 

(2.16) Example:  Using (2.15) we can determine for example (2.6) S   and 

for example (2.14) . 

 

1 =′

(2.17) Corollary:  S is symmetric if and only if }( ω′′ SpA . 

Proof:  The statement follows immediately from (2.15), (2.5), and (1.19(3)). 

 

We now begin an examination of the properties of . 

 

Ap

(2.18) Proposition:  Assume )(SAp  with the property that 

()(i +ωω .  If  or  )( j Ap∈ω , then )()( * Si +ωω .  

Proof:  Suppose .  Then S)( ∉iω .  Let (mod mk≡′ω  that is, 

 15



)(kωω =′ .  Then )S()()()( lmikik −−=− ωωω  where l  by (2.7) and (2.11).  Now 

consider 

0>

))() ji(( ωωω + )(k−′  which equals )S()()()( lmjiki −−−)( j =−− ωωωωω . 

S)() ∈− ji( −k ωω

)()() jikjik( −−=−− ωωω

=)( j−)(i−)(k ωωω SS ∉−−− )()( lmjikω ))()(()( ∉+− jik ωωω

S)() ∉− ji( −k ωω

),(S)()() tmjikjik( −−−=−− ωωω 0>t

=)( j−)(i−)(k ωωω )()()( Slmjik −−− ωω )()(( SlmStmk −)ji −−−= ω

0  where),()( >)( ++− ltSmlt− ji−= kω S)()(( ∉−)( − jik ωωω

S∉−−′ ))()(( ji ωωω )(* SAp

)(* S

)S(

\)()(),( ApSApji

) *Ap∈()( ji +ωω

∈ωω )()( ji ωω +

)S(*Ap }37,36,13,12, 25,24,0{)( 1 =SAp

\)(24,13, 1SAp}36{)( 1

* =SAp )1(* SAp∈ )(3624 1

* SAp∈=+

)( 1

* SAp

)()( * SApi ∈

25∉=13+

ω )S()S H()( mi ∈−ω

SSS ∉−∈)(i )()(  (2.7)by   then )(* miAp ωω =−− )]()([)( SS mig ω

SSS ∉−′= )() i+ () m− ()( ig ωωω )S()S( Hm ∈)(i −ω

Case 1:   

In this case,  by (2.7) and (2.11).  Thus 

.  We conclude S . 

Case 2:   

In this case  where  by (2.7).  Thus 

 

.  Hence  by (2.7). 

In both cases we have .  By definition of  we conclude that 

. 

 

(2.19) Note/Example:  If  , then  may or may not 

be in .   From example (2.6),  and  

.  So we have 12  and 12   

but 12 . 

 

(2.20) Lemma:  If , then .  

Proof:  Let .  Also   

.  Hence by definition .   

 

 16



(2.21) Lemma:  If , then )(SHz∈ )S()( lmiz −= ω  where  and 0>l )()( * SApi ∈ω . 

Proof:  Let , then )(SHz∈ S∉z .  By (2.7), )(S) lmi(z −= ω  for some i and some . 

We need only to show 

0> l

)S()(i ∈ *Apω .   

 Now consider =+−+=−′ )]([)()()( SSS lmzmgiωω )()()( SSS lmzmg −−+ .  So 

=−′ )(iωω  .  But )()1( Smlz −+ (  so  ,)( SS gzg)(Sg − )()() SS kmjz −=−∉− ω  for 

some  j and some  by (2.7).  Thus 0> )()( jik )()1( Smkl −−+=−′ ωωω  where 

.  Thus 01 <−− kl S)( ∉−′ iωω  by (2.7), and we conclude )()( * SApi ∈ω .   

 

The previous two lemmas reveal the following fact about symmetry. 

 

(2.22) Fact:  S is symmetric if and only if φ=)(* SAp . 

Proof:  By (2.20) and (2.21) we have φ=)(S*Ap  if and only if φ=)(SH  which is true 

if and only if S is symmetric by (1.11). 

 

 As promised in Chapter 1, we now provide a proof of (1.9) from the standpoint of 

Apery Sets. 

 

 Let 21 ,aa=S .  Then for all S∈s  we know 2211 akaks +=  where .  

Notice that if  then s  because 

0, 21 ≥kk

11 ≥k )(SAp∉ S∈+−=− 21 aas

01

211 )1( kak , (recall that 

.)  Thus s  if and only if ) ∈(1 Sma = )(SAp =k  and 10 12 −≤≤ ak .  We then conclude 

that =)S 2,,0{ 2a(Ap }2)1(..., 1 aa,2a − .  Now by (2.5), we see =−′= )(Sm)(Sg ω  

.  Next notice that if 02a−1a−211 aaa =−21 )1( aa − 11 −≤≤ aj , then =− 2ja′ω  

 17



S∈−−=−− 21221 )1()1( ajajaaa .  Therefore )(*

2 SApja ∉ .  Hence φ=)(* SAp .  Thus 

S is symmetric by (2.22). 

 

)S()( Hlmi ∉−ω )S()()( mli +− 1ω >l

)S(H∈()( li +−ω

S)S()()()S( ∉++− mlig 1ω )S()( lmi)S()( mlg ++=+1

S)]S()([)S()S( ∉−−+= lmimg ω S−− ()([ lmiω

)S()S()( Hlmi ∈−ω

mod|)(S iz,(SH ≡

,4{)( 2 =SH

)( 1

4{)4,( 2 =SH

,15,8,1{)1, =}25{)1,( 2 =SH SH

)(SH

)(Sgj ≡+ )j),( iH S

,),(),( kjHiH == SS ,(S iH )}()( Skmi −2)(),(S mim −ω

)}(Skm(2)(),()({),( SS mjmjjH −−= ωω

),( iHx S∈ )S( xg −

(2.23) Lemma:  If )S( , then ()S H∉  where .  

Proof:  (By Contrapositive)  Let l  and assume 

0

0> )S()m1 .  Then 

.  So )S()(i )S(g)S( m−+− ωω  

.  Thus SS ∉)])(g .  So by definition 

.   This completes the proof.  

 

(2.24) Definition:  We define )}({) SmHzi ∈= .  

 

(2.25) Example:  From example (2.14), we have }25 , so  and 

.  If we look at example (2.6), we have 

}

,22 }29( 1= SH . 

 

 The following two theorems completely establish the relationship between  

and . 

)(* SAp

 

(2.26) Theorem:  Let i .  Then )(mod Sm ,(H S= .  Further, if 

 then ),...,(S)({) i −= ωω  and 

)(),...,S j −ω .    

Proof:  Let  then by definition we know )S(H∈  and 

 18



)(mod)( SS mjxg ≡− .  Thus ),()( jHxg SS ∈− .  Similarly, if ),( jHy S∈ , then 

.  We conclude ),()( iHyg SS ∈− )j,(),( HiH SS = . 

i),S 0= >

)i),( iH S

)()( Slmi −ω > kt ≤≤ ))(iω

)()( S Hvmi ∉−ω tv ≥ H (S

)}()(),..., kmi SS),()( mi S −− ωω iH =),(S

),( jH S

)S() kmj +′= ω

H

)(i

)()( * SApi ∉ω

== ),(),( jHiH SS

)()1()( Smki +−ω

(

+− ()()( SS kmig ω

S +− ()()( kkmjω

++− 1()()(S kig ω

 Assume k=H ( .  If k , then there is nothing to prove.  Let k .  By the 

definition of  and (2.7) we know every element of   must be of the form 

0

,(H S

 where l .  Let 0 1 .  If (SH)(Stm ∉− , then by (2.23) we 

know )(S  for .  Hence k≤

)i

ti <),

,(H S⊆

, which is a contradiction.  

Thus { (m2)(i −ω .  Since k , we have 

our conclusion.  The proof for  is similar.    

 

(2.27) Theorem:  If ()(i +ωω , then kjHiH == ),(),( SS . 

Proof:  Clearly ),(), jHi SS =( , by (2.26) 

 Assume )S()( kmj +′=+ ωωω .  If ωωω ′=+= )()( then ,0 jik .  Thus 

 and )()( * SApj ∉ω .  So by (2.21), we may conclude 

φ .  Now assume .  We will show 1≥k )(SH∈)()( Skmi −ω  and 

)(SH∉ .   

 We know SS ∉− )() kmiω  by (2.7).  Now consider =−− ))()(()( SS kmig ω  

=−+−′=−+−+= ()() SS mg )()1()( Smki)()1()() Smki ωωω  

SSS ∉−=− ()()1 jm )() mω  by (2.7).  Hence )()()( SS Hkmi ∈−ω .   

 To show that )()()1()( SS Hmki ∉+−ω  we consider =+−− ))()1()(()( SS mkig ω  

=)() Sm =+−+ )(Skm)()()( SS img ω SS ∈=+−′ )()()( jkmi ωωω .  

 19



By definition, )()()1()( SS Hmki ∉+−ω .  Now by (2.23) we know )()()( SS Htmi ∉−ω  

for t .  Thus 1+≥ k kjHiH == ),(),( SS .  

} 12)4( =ω

3)1( =ω 37)5( ==′ ωω )( 2Sm+′

1)4,( 2 =SH

)( 1

*

(SH

=SAp 37)2( == ω

)(5 1Sm+′)1( + ωω

)(Sg

)(SH =

)}({) SS g∪

 and }30,29{1 =′ 1S

 

(2.28) Example:  From example (2.14), we have 33,12{)( 2

* =SAp  where  

and 3 .  Since , we consider )4()1( =+ ωωω .  This tells 

us that ) =1,2 , which agrees with what we determined in (2.25).  Now 

we look at example (2.6) where }36{ , 36)1( =ω , and ′ω .  So we 

have )1 =(ω .  This tells us that 5)1,( 1 =SH , which again agrees with 

what we stated in (2.25). 

 

 When a numerical semigroup S is not symmetric, it is natural to inquire as to “how 

far it is from being symmetric.”  Throughout the study of numerical semigroups various 

measures of symmetry have been devised.  Those semigroups which are considered 

“close” to being symmetric are often given special names.  For example, if  is even 

and }{ 2
)(Sg , then S is said to be psuedosymmetric [2].  The concept of almost 

symmetric was introduced in [3].  We give the definition here as well. 

 

(2.29) Definition:  We say S is almost symmetric provided S (H=′ . 

 

(2.30) Example:  Using this definition we can quickly determine if our two examples are 

almost symmetric.  Since }29,22,15,8,1{)( 1 =SHS  clearly  is not 

 20



almost symmetric.  Next, we see that 29)( and  ,}25,4{)(},29,25,4{ 222 ===′ SS gH

)}({)( 222 SS gH ∪

S .  

Thus  is almost symmetric since S2S =′ . 

}{)()( * ω′∪=′ SS AppA

}{)()( * ω′∪≠′ SS AppA

(ω )()() SS Hmi( ∈−ω SS ′∉− )()( miω

)}({)( SS gH ∪≠′

2

}{)2 ω′∪ 1S

)1S 1

}{)()( * ω′∪=′ SS AppA

 

 The following theorem gives a necessary condition, in terms of Apery Sets, for S to 

be almost symmetric.  However, the example which follows the theorem shows that this 

condition is not sufficient. 

 

(2.31) Theorem:  If S is almost symmetric, then .  

Proof:  (By Contrapositive):  Suppose .  By (2.13) there exists 

some )(\)() * SS pAApi ′∈ .  So  by (2.20).  But  

because )()( SpAi ′∉ω by (2.15).  Therefore S , whence S is not almost 

symmetric by definition.  This completes the proof. 

 

(2.32) Example:  If we use this theorem to check example (2.14), we see that since S  is 

almost symmetric ()( *

2 =′ SS AppA

}{)

.  If we look at  (example 2.6) we see that 

=′(pA ( 1

* ω′∪SAp , but we know from (2.30) that S  is not almost symmetric.  So 

the converse is not always true, that is,  does not imply almost 

symmetric.   

 21



 
 
 
 
 
 
 

APPENDIX 
 
 

This appendix contains the code for a program used extensively in the research 
for this paper.  It allows the user to quickly calculate all of the items defined in this paper.  
The program can be utilized in any DOS environment.  The menus available to the user 
are provided below. 
 
 
 

 

 22



 
 

 
 

 
  

 23



//============================================================== 
// Numerical Semigroups 
// By Capt Monica Madero-Craven 
//============================================================== 
 
#include <iostream.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
 
//Variables 
  int i;            //index for loops 
  int flag = 12;   // number of items tracked in flag array 
  int flags[12]; //array to track computed items 
  int max_s, max_i,max_j, max_ij;   //maximum size for semigroup and ideals 
  int max_dij, min_dij, max_dji, min_dji;       //max and min I-J and J-I 
  int max_dsi, min_dsi, max_dsj, min_dsj;       //max and min S-I and S-J 
  int max_dij_i, min_dij_i, max_dij_j, min_dij_j;  //max/min  (I+J)-I, (I+J)-I 
  int max_ap;                       //maximum size for Apery 
  int count_s, count_i, count_j;   //number of generators 
  int count_ij;   //number of generators in I+J 
  int generators_s[100];           //array for generators of S 
  int generators_i[10], generators_j[10];  //arrays for generators of ideals 
  int generators_ij[50];  //array for the generators of I+J 
  int semigroup[1000];   //array for creating semigroup 
  int ideal_i[100], ideal_j[100];  //array for creating ideals I and J 
  int ideal_ij[100];  //array for creating I+J 
  int dual_ij[100], dual_ji[100];   //array for creating I-J, J-I 
  int dual_sj[100], dual_si[100];   //array for creating S-J, S-I 
  int dual_ij_i[100], dual_ij_j[100];   //array for creating (I+J)-I, (I+J)-J 
  int holes[1000];  //array for the holes of S 
  int g_s, g_i, g_j, g_ij;    //Frobenius number 
  int n_s, n_i, n_j, n_ij;    //number of elements in the set 
  int apery[500], apery_prime[100], apery_star[100]; 
 

 24



//Functions 
  void initialize_array(int array[], int count); 
  int many_generators(void);       //fcn to determine how many generators 
  void get_generators(int gen[], int count); //fcn to get generators 
  void include_gen(int gen[], int count, int array[]); 
  void create_s(int gen[], int count, int group[], int maximum); 
  void create_ideal(int gen[], int count, int group[], int g_s, int ideal[]); 
  int find_frobenius(int group[], int g); //Find Frobenius 
  int count_elements(int array[], int count);  //Count elements 
  void print_array(int array[], int count);   //Print items  = 1 
  void print_other(int g, int n);    //Print the Frobenius number and n 
  char enter_s_error(void);     //user must enter S first 
  char ideal_error(), apery_error();     //user needs another option first 
  void add_ideals(int sum_ideal[], int gen_1[], int count_1, int gen_2[], 
                  int count_2);   //adds any two ideals 
  void create_dual(int array_1[], int g_1, int gen_2[], int count_2, int dual[], 
                   int minimum, int maximum);  //create dual of array1 - array2 
  void create_apery(int gen[], int group[], int g_s, int apery[], int count); 
  void create_prime(int group[], int apery[], int max_ap, int prime[]); 
  void create_star(int group[], int apery[], int maximum, int star[]); 
  void create_holes(int h[], int s[], int gs); 
 
//Menu Variables and Functions 
  char main_choice, ideal_choice;      //letter selected from the menu 
  char apery_choice;   //letter selected form the menu 
  char main_choice_menu(void);     //function to print main menu 
  char ideal_choice_menu(void);    //function to print ideal menu 
  char apery_choice_menu(void);    //function to print apery menu 
 
 
int main() 
{ 
//Welcome and choice menu. 
 
 cout <<"WELCOME TO THE WORLD OF NUMERICAL SEMIGROUPS\n\n"; 
 main_choice = toupper(main_choice_menu()); 
 
 while (main_choice != 'X') 
 { 
 
//********************    Enter Generators and Compute S   ******************** 
 
  if (main_choice == 'A') 
  { 
   initialize_array(flags,flag); 
   flags[0]= 1; 

 25



   count_s = many_generators(); 
   get_generators(generators_s,count_s); 
   max_s = (generators_s[0]-1)*(generators_s[1]-1)+1; 
   initialize_array(semigroup,max_s); 
   include_gen(generators_s,count_s,semigroup); 
   create_s(generators_s,count_s,semigroup,max_s); 
   g_s = find_frobenius(semigroup, max_s); 
   n_s = count_elements(semigroup, g_s); 
   system ("cls"); 
   cout << "\n\nS = "; 
   print_array(semigroup, g_s); 
   print_other(g_s, n_s); 
   system ("Pause"); 
   system ("cls"); 
   main_choice = toupper(main_choice_menu()); 
   continue; 
  }   //End of Main Choice A 
 
//********************      Compute Holes of S, H(S)       ******************** 
 
  if (main_choice == 'B') 
  { 
   if (flags[0] != 1) 
   { 
    cout << "\n\n"; 
    main_choice = toupper(enter_s_error()); 
    continue; 
   } 
   flags[1] = 1; 
   initialize_array(holes,g_s+1); 
   create_holes(holes,semigroup,g_s); 
   system ("cls"); 
   cout << "\n\nH(S)= "; 
   print_array(holes,g_s); 
   system ("Pause"); 
   system ("cls"); 
   flags[1] = 0; 
   main_choice = toupper(main_choice_menu()); 
   continue; 
  }  //End of Main choice B 
 
//********************         Go to the Ideal Menu        ******************** 
 
  if (main_choice == 'C') 
  { 
   if (flags[0] != 1)        //verify S is alreay computed 

 26



   { 
    main_choice = toupper(enter_s_error()); 
    continue; 
   } 
   ideal_choice = toupper(ideal_choice_menu());   //display menu 
   while (ideal_choice != 'X')        //while != return to main 
   { 
 
/********************    Enter Generators and Compute I    ********************/ 
 
    if (ideal_choice == 'A') 
    { 
     flags[2]= 1; 
     flags[4] = flags[5] = flags[6] = flags[7] = 0; 
     count_i = many_generators(); 
     get_generators(generators_i,count_i); 
     max_i = g_s + generators_i[0]+1; 
     initialize_array(ideal_i,max_i); 
     create_ideal(generators_i,count_i,semigroup,g_s,ideal_i); 
     g_i = find_frobenius(ideal_i, max_i); 
     n_i = count_elements(ideal_i, g_i); 
     system ("cls"); 
     cout << "\n\nI = "; 
     print_array(ideal_i, g_i); 
     print_other(g_i, n_i); 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
    }  //End of Ideal Choice A 
 
//********************    Enter Generators and Compute J   ******************** 
 
    if (ideal_choice == 'B')        //enter generators and compute J 
    { 
     flags[3]= 1; 
     flags[4] = flags[5] = flags[6] = flags[8] = 0; 
     count_j = many_generators(); 
     get_generators(generators_j,count_j); 
     max_j = g_s + generators_j[0]+1; 
     initialize_array(ideal_j,max_j); 
     create_ideal(generators_j,count_j,semigroup,g_s,ideal_j); 
     g_j = find_frobenius(ideal_j, max_j); 
     n_j = count_elements(ideal_j, g_j); 
     system ("cls"); 
     cout << "\n\nJ = "; 
     print_array(ideal_j, g_j); 

 27



     print_other(g_j, n_j); 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
    }  //End of Ideal Choice B 
 
//********************             Compute I+J            ******************** 
 
    if (ideal_choice == 'C') 
    { 
     if (flags[2] != 1 || flags[3] != 1)  // Check if I & J are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     flags[4]= 1; 
     count_ij = count_i * count_j;   //Number of generators for I+J 
     initialize_array(generators_ij, count_ij); 
     add_ideals(generators_ij, generators_i, count_i, generators_j, count_j); 
     max_ij = g_s + generators_ij[0]+1; 
     initialize_array(ideal_ij,max_ij); 
     create_ideal(generators_ij,count_ij,semigroup,g_s,ideal_ij); 
     g_ij = find_frobenius(ideal_ij, max_ij); 
     n_ij = count_elements(ideal_ij, g_ij); 
     system ("cls"); 
     cout << "\n\nI+J = "; 
     print_array(ideal_ij, g_ij); 
     print_other(g_ij, n_ij); 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
    }  //End of Ideal Choice C 
 
//********************               Compute I-J           ******************** 
 
    if (ideal_choice == 'D') 
    { 
     if (flags[2] != 1 || flags[3] != 1)  //Check if I & J are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     flags[5]= 1; 
     flags[11]=1; 
     min_dij = generators_i[0] - generators_j[0]; 
     max_dij = g_i - generators_j[0] + generators_j[count_j-1]; 

 28



 
     if (min_dij < 0) 
     { 
      cout << "The dual contains negative numbers.\n"; 
      cout << "Please adjust I and/or J.\n"; 
     } 
     else 
     { 
      create_dual(ideal_i, g_i, generators_j, count_j, dual_ij, min_dij, max_dij); 
      system ("cls"); 
      cout << "\n\nI-J = "; 
      print_array(dual_ij, max_dij); 
     } 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
     flags[11]=0; 
    }  // End of ideal choice D 
 
//********************               Compute J-I           ******************** 
 
    if (ideal_choice == 'E') 
    { 
     if (flags[2] != 1 || flags[3] != 1)  //Check if I & J are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     flags[6]= 1; 
     flags[11]=1; 
     min_dji = generators_j[0] - generators_i[0]; 
     max_dji = g_j - generators_i[0] + generators_i[count_i-1]; 
 
     if (min_dji < 0) 
     { 
      cout << "The dual contains negative numbers.\n"; 
      cout << "Please adjust I and/or J.\n"; 
     } 
     else 
     { 
      create_dual(ideal_j, g_j, generators_i, count_i, dual_ji, min_dji, 
                      max_dji); 
      system ("cls"); 
      cout << "\n\nJ-I = "; 
      print_array(dual_ji, max_dji); 
     } 

 29



     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
     flags[11]=0; 
    }  // End of ideal choice E 
 
//********************               Compute S-I           ******************** 
 
    if (ideal_choice == 'F') 
    { 
     if (flags[0] != 1 || flags[2] != 1)  //Check if S & I are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     flags[7]= 1; 
     flags[11]=1; 
     min_dsi = generators_s[0] - generators_i[0]; 
     max_dsi = g_s - generators_i[0] + generators_i[count_i-1]; 
 
     if (min_dsi < 0) 
     { 
      cout << "The dual contains negative numbers.\n"; 
      cout << "Please adjust I and/or S.\n"; 
     } 
     else 
     { 
      create_dual(semigroup, g_s, generators_i, count_i, dual_si, min_dsi, 
                        max_dsi); 
      system ("cls"); 
      cout << "\n\nS-I = "; 
      print_array(dual_si, max_dsi); 
     } 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
     flags[11]=0; 
    }  // End of ideal choice F 
 
//********************               Compute S-J           ******************** 
 
    if (ideal_choice == 'G') 
    { 
     if (flags[0] != 1 || flags[3] != 1)  //Check if S & J are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 

 30



      continue; 
     } 
     flags[8]= 1; 
     flags[11]=1; 
     min_dsj = generators_s[0] - generators_j[0]; 
     max_dsj = g_s - generators_j[0] + generators_j[count_j-1]; 
 
     if (min_dsj < 0) 
     { 
      cout << "The dual contains negative numbers.\n"; 
      cout << "Please adjust I and/or J.\n"; 
     } 
     else 
     { 
      create_dual(semigroup, g_s, generators_j, count_j, dual_sj, min_dsj, 
                        max_dsj); 
      system ("cls"); 
      cout << "\n\nS-J = "; 
      print_array(dual_sj, max_dsj); 
     } 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
     flags[11]=0; 
    }  // End of ideal choice G 
 
//********************             Compute (I+J)-I         ******************** 
 
    if (ideal_choice == 'H') 
    { 
     if (flags[2] != 1 || flags[3] != 1)  //Check if I & J are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     if (flags[4] ==0) 
     { 
      cout << "You must compute I+J first.\n"; 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     min_dij_i = generators_ij[0] - generators_i[0]; 
     max_dij_i = g_ij - generators_i[0] + generators_i[count_i-1]; 
 
     if (min_dij_i < 0) 
     { 

 31



      cout << "The dual contains negative numbers.\n"; 
      cout << "Please adjust I and/or J.\n"; 
     } 
     else 
     { 
      flags[11]=1; 
      create_dual(ideal_ij, g_ij, generators_i, count_i, dual_ij_i, 
                        min_dij_i, max_dij_i); 
      system ("cls"); 
      cout << "\n\n(I+J)-I = "; 
      print_array(dual_ij_i, max_dij_i); 
     } 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
     flags[11]=0; 
   }  // End of ideal choice H 
 
//********************             Compute (I+J)-J         ******************** 
 
    if (ideal_choice == 'I') 
    { 
     if (flags[2] != 1 || flags[3] != 1)  //Check if I & J are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     if (flags[4] ==0) 
     { 
      cout << "You must compute I+J first.\n"; 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
     min_dij_j = generators_ij[0] - generators_j[0]; 
     max_dij_j = g_ij - generators_j[0] + generators_j[count_j-1]; 
 
     if (min_dij_j < 0) 
     { 
      cout << "The dual contains negative numbers.\n"; 
      cout << "Please adjust I and/or J.\n"; 
     } 
     else 
     { 
      flags[11]=1; 
      create_dual(ideal_ij, g_ij, generators_j, count_j, dual_ij_j, 
                        min_dij_j, max_dij_j); 

 32



      system ("cls"); 
      cout << "\n\n(I+J)-J = "; 
      print_array(dual_ij_j, max_dij_j); 
     } 
     system ("Pause"); 
     ideal_choice = toupper(ideal_choice_menu()); 
     continue; 
     flags[11]=0; 
    }  //End of Ideal Choice I 
 
//********************      Print the Elements of S        ******************** 
 
  if (ideal_choice == 'J') 
  { 
   if (flags[0] != 1) 
   { 
    cout << "\n\n"; 
    ideal_choice = toupper(enter_s_error()); 
    continue; 
   } 
   system ("cls"); 
   cout << "\n\nS = "; 
   print_array(semigroup, g_s); 
   print_other(g_s, n_s); 
   system ("Pause"); 
   system ("cls"); 
   ideal_choice = toupper(ideal_choice_menu()); 
   continue; 
  }   //End of Ideal Choice J 
 
//********************      Print the Elements of I        ******************** 
 
  if (ideal_choice == 'K') 
  { 
   if (flags[2] != 1)  //Check if I are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
   system ("cls"); 
   cout << "\n\nI = "; 
   print_array(ideal_i, g_i); 
   print_other(g_i, n_i); 
   system ("Pause"); 
   system ("cls"); 
   ideal_choice = toupper(ideal_choice_menu()); 

 33



   continue; 
  }   //End of Ideal Choice K 
 
//********************      Print the Elements of J        ******************** 
 
  if (ideal_choice == 'L') 
  { 
   if (flags[3] != 1)  //Check if J are Computed 
     { 
      ideal_choice = toupper(ideal_error()); 
      continue; 
     } 
   system ("cls"); 
   cout << "\n\nJ = "; 
   print_array(ideal_j, g_j); 
   print_other(g_j, n_j); 
   system ("Pause"); 
   system ("cls"); 
   ideal_choice = toupper(ideal_choice_menu()); 
   continue; 
  }   //End of Ideal Choice L 
 
    cout << "\nYou entered an invalid letter. Try again:\n\n"; 
    system ("Pause"); 
    ideal_choice = toupper(ideal_choice_menu());   //display menu 
  }  //End of Ideal Choice Menu 
 
   cout << "\n"; 
   system ("Pause"); 
   system ("cls"); 
   main_choice = toupper(main_choice_menu());  //return to main menu 
   continue; 
 }  //End of Main Choice C 
 
//********************          Go to Apery Menu          ******************** 
 
  if (main_choice == 'D') 
  { 
   if (flags[0] != 1)        //verify S is alreay computed 
   { 
    main_choice = toupper(enter_s_error());  //error and get new choice 
    continue; 
   } //end error 
 
   apery_choice = toupper(apery_choice_menu());   //display menu 
   while (apery_choice != 'X')        //while != return to main 

 34



   { 
    flags[10] = 1; 
//********************            Compute Apery (Ap)       ******************** 
 
    if (apery_choice == 'A') 
    { 
     flags[9] = 1; 
     max_ap = g_s + generators_s[0]  + 1; 
     initialize_array(apery, max_ap); 
     create_apery(generators_s, semigroup, g_s, apery, max_ap); 
     system ("cls"); 
     cout << "\n\nAp(S)="; 
     print_array(apery, max_ap); 
     system ("Pause"); 
     apery_choice = toupper(apery_choice_menu()); 
     continue; 
    }  //End Apery Choice A 
 
//********************              Compute Ap'            ******************** 
 
    if (apery_choice == 'B') 
    { 
     if (flags[9] != 1)  //Check if Apery Set is Computed 
     { 
      apery_choice = toupper(apery_error()); 
      continue; 
     }  //end error 
     initialize_array(apery_prime, max_ap); 
     create_prime(semigroup, apery, max_ap, apery_prime); 
     system ("cls"); 
     cout << "\n\nAp'(S)="; 
     print_array(apery_prime, max_ap); 
     system ("Pause"); 
     apery_choice = toupper(apery_choice_menu()); 
     continue; 
    }   //End of Apery Choice B 
 
//********************              Compute Ap*            ******************** 
 
    if (apery_choice == 'C') 
    { 
     if (flags[9] != 1)  //Check if Apery Set is Computed 
      { 
       apery_choice = toupper(apery_error()); 
       continue; 
      }  //end error 

 35



      initialize_array(apery_star, max_ap); 
      create_star(semigroup, apery, max_ap-1, apery_star); 
     system ("cls"); 
     cout << "\n\nAp*(S)="; 
      print_array(apery_star, max_ap); 
      system ("Pause"); 
      apery_choice = toupper(apery_choice_menu()); 
      continue; 
    }   //End of Apery Choice C 
 
    cout << "\nYou entered an invalid letter. Try again:\n\n"; 
    system ("Pause"); 
    apery_choice = toupper(apery_choice_menu());   //display menu 
   }// End Apery while loop 
   flags[10]= 0; 
   system ("Pause"); 
   system ("cls"); 
   main_choice = toupper(main_choice_menu());  //return to main menu 
   continue; 
  }    //End of Main Choice D 
 
 
//********************      Print the Elements of S        ******************** 
 
  if (main_choice == 'E') 
  { 
   if (flags[0] != 1) 
   { 
    cout << "\n\n"; 
    main_choice = toupper(enter_s_error()); 
    continue; 
   } 
   system ("cls"); 
   cout << "\n\nS = "; 
   print_array(semigroup, g_s); 
   print_other(g_s, n_s); 
   system ("Pause"); 
   system ("cls"); 
   main_choice = toupper(main_choice_menu()); 
   continue; 
  }   //End of Main Choice E 
 
 
  cout << "\nYou entered an invalid letter. Try again:\n\n"; 
  system ("Pause"); 
  system ("cls"); 

 36



  main_choice = toupper(main_choice_menu()); 
 
 }  //End of Main Choice Menu 
 
cout << "\n"; 
system("PAUSE"); 
return 0; 
} 
//   End of Main Program, begin Functions 
 
 
////////////////////////////            Main Choice Menu           /////////////////////////////////// 
 
char main_choice_menu(void)          //Main choice menu function 
{ 
 
  char choice;     //letter selected from welcome menu 
 
  cout << "Main Menu:  Please select what you would like to do.\n\n" 
       << "A - Enter generators and compute the numerical semigroup, S.\n\n" 
       << "B - Compute H(S), the holes of S.\n\n" 
       << "C - Ideals...\n\n" 
       << "D - Apery...\n\n" 
       << "E - Display the elements of S.\n\n" 
       << "X - Leave this world.\n\n"; 
  cin >> choice; 
  return choice; 
} 
 
/////////////////////////          Choice Menu for Ideals           //////////////////////////////// 
char ideal_choice_menu(void) 
{ 
  char choice; 
 
  system ("cls"); 
 
  cout << "\nIdeal Menu: Please select what you would like to do.\n\n" 
       << "A - Enter generators and compute the ideal 'I'.\n" 
       << "B - Enter Generators adn compute the ideal J.\n" 
       << "C - Compute 'I+J'.\n" 
       << "D - Compute the dual 'I-J'.\n" 
       << "E - Compute the dual 'J-I'.\n" 
       << "F - Compute the dual 'S-I'.\n" 
       << "G - Compute the dual 'S-J'.\n" 
       << "H - Compute (I+J)-I.\n" 
       << "I - Compute (I+J)-J.\n" 

 37



       << "J - Display the elements of S.\n" 
       << "K - Display the elements of I.\n" 
       << "L - Display the elements of J.\n" 
       << "X - Return to Main Menu.\n\n"; 
 
  cin >> choice; 
  return choice; 
} 
 
 
/////////////////////////                   Choice Menu for Apery             ///////////////////////////////// 
char apery_choice_menu(void) 
{ 
  char choice; 
 
  system ("cls"); 
 
  cout << "Apery Menu:  Please select what you would like to do. \n\n" 
       << "A - Compute Ap\n\n" 
       << "B - Compure Ap'\n\n" 
       << "C - Compute Ap*\n\n" 
       << "X - Return to Main Menu.\n\n"; 
 
  cin >> choice; 
  return choice; 
} 
 
 
///////////////////////////            Initial Int Arrays             ////////////////////////////////// 
void initialize_array(int array[], int count) 
{ 
  int i;      //index for loop 
  for (i=0; i<count; i++) 
    array[i]= 0; 
} 
 
 
///////////////////////         Enter S First Error Message    ///////////////////////////// 
char enter_s_error() 
{ 
  char choice; 
 
  cout << "You need to compute S first.\n\n"; 
  system ("Pause"); 
  system ("cls"); 
 

 38



  choice = main_choice_menu(); 
  return choice; 
} 
 
 
///////////////////////       Create the Holes of S        //////////////////////// 
void create_holes(int h[], int s[], int gs) 
{ 
  int i,n; 
 
  for (i=0; i<gs; i++) 
  { 
    if (s[i]==1) continue; 
    n = gs-i; 
    if (s[n]==1) continue; 
    h[i]=1; 
    h[n]=1; 
  } 
} 
 
 
///////////////////////    Missing Ideal Data Error Message   //////////////////////// 
char ideal_error() 
{ 
  char choice; 
 
  cout << "Insufficient data to perform this calculation.\n\n"; 
  system ("Pause"); 
  system ("cls"); 
 
  choice = ideal_choice_menu(); 
  return choice; 
} 
 
 
///////////////////////Missing Apery Data Error Message//////////////////////// 
char apery_error() 
{ 
  char choice; 
 
  cout << "Insufficient data to perform this calculation.\n\n"; 
  system ("Pause"); 
  system ("cls"); 
 
  choice = apery_choice_menu(); 
  return choice; 

 39



} 
 
 
//////////////////////////        Number of Generators        ///////////////////////////////// 
int many_generators() 
{ 
  int count; 
  printf("\nHow many generators do you want to enter? "); 
  scanf("%i", &count); 
  return count; 
} 
 
 
///////////////////////////            Get the Generators        ////////////////////////////////// 
void get_generators( int gen[], int count) 
{ 
  for (i=0; i<count; i++) 
  { 
    printf("Enter Generator # %i:  ", i+1); 
    scanf("%i", &gen[i]); 
  } 
} 
 
 
///////////////////////            Include the Generators       ////////////////////////////////// 
void include_gen(int gen[], int count, int array[]) 
{ 
  int i,n; 
 
  for (i=0; i<count; i++) 
  { 
    n = gen[i]; 
    array[n] = 1; 
  } 
} 
 
 
///////////////////////////            Create the Semigroup    //////////////////////////////// 
void create_s(int gen[], int count, int group[], int maximum) 
{ 
  int i,j,k; 
 
  group[0] = 1;  //include 0 in the semigroup 
  //loop through the semigroup array starting at m(S)+1 
  for (i=gen[0]+1; i<maximum; i++) 
  { 

 40



    if (group[i] ==1)  continue;   //determine if already in the group 
    //Loop through generators to see if (element - generator) in group 
    for (j=0; j<count; j++) 
    { 
      k = i - gen[j]; 
      if (group[k]==1)     //if element - generate is in group 
      { 
        group [i] = 1;     //element is in group 
        break; 
      } 
    } 
  } 
} 
 
 
////////////////////////////        Create an Ideal        //////////////////////////////////// 
void create_ideal(int gen[], int count, int group[], int g_s, int ideal[]) 
{ 
  int i,j,k; 
 
  for (i=0; i<count; i++) 
  { 
    for (j=0; j<g_s; j++) 
    { 
     if (group[j] == 0) continue; 
     k = j + gen[i]; 
     ideal[k] = 1; 
    } 
  } 
} 
 
 
////////////////////////////       Add Two Ideals           ///////////////////////////////// 
void add_ideals(int sum_ideal[], int gen_1[], int count_1, int gen_2[], 
                  int count_2) 
//determine the generators of the sum of two ideals 
 
{ 
  int i,j,k,n; 
 
  n=0; 
  for (i=0; i<count_1; i++) 
  { 
    for (j=0; j<count_2; j++) 
    { 
      k = gen_1[i]+gen_2[j]; 

 41



      sum_ideal[n] = k; 
      n++; 
    } 
  } 
  cout << "\n"; 
} 
 
 
////////////////////////////        Create Dual of Two Arrays    //////////////////////// 
void create_dual(int array_1[], int g_1, int gen_2[], int count_2, int dual[], 
                 int minimum, int maximum) 
{ 
  int i,j,n; 
 
  initialize_array(dual, maximum); 
  for (i=minimum; i<=maximum; i++) 
  { 
    for (j=0; j<count_2; j++) 
    { 
      n = gen_2[j] + i; 
      if (n > g_1) 
      { 
        dual[i] = 1; 
        j = count_2; 
        continue; 
      } 
      if (array_1[n] == 0) 
      { 
        dual[i] = 0; 
        j = count_2; 
      } 
      else 
        dual[i] = 1; 
    } 
  } 
} 
 
 
////////////////////////////     Find Frobenius Number      ////////////////////////////// 
int find_frobenius(int group[], int g) 
{ 
  g--; 
  while (group[g] != 0) g--; 
  return g; 
} 
 

 42



 
///////////////////////////      Count Number of Elements    ///////////////////////////// 
int count_elements(int array[], int count) 
{ 
  int i;   //index for loop. 
  int n=0;   // count number of elements in the array 
  for (i=0; i<count; i++) 
   if (array[i] == 1) 
    n++; 
  return n; 
} 
 
 
////////////////////////          Print the Array            /////////////////////////////////// 
void print_array(int array[], int count) 
{ 
  cout << "{"; 
  for (i=0; i<count; i++) 
   if (array[i] == 1) 
     cout << i << " "; 
     if (flags[1]!=1 && flags[10]!=1 && flags[11]!=1) 
     cout << count+1 << "..."; 
     if (flags[11]==1) cout << count << "..."; 
 
     cout << "}\n\n"; 
} 
 
 
///////////////////////    Print Frobenius and Number of Elements     ////////////////// 
void print_other(int g, int n) 
{ 
  cout << "The Frobenius Number is " << g; 
  cout << "\n\nThe number of elements is " << n << "\n\n"; 
} 
 
 
/////////////////////////////     Create the Apery Set      ///////////////////////////// 
void create_apery(int gen[], int group[], int g_s, int apery[], int count) 
{ 
 
  int i,n; 
 
  apery[0] = 1; 
  for (i=0; i<=count; i++) 
  { 
   n = i - gen[0]; 

 43



   if (n<0) continue; 
   if (group[i] == 1 && group[n] == 0) 
     apery[i] = 1; 
   if (i>g_s && group[n] == 0) 
     apery[i] = 1; 
  } 
} 
 
 
//////////////////////////////      Create AP'     /////////////////////////////////////// 
void create_prime(int group[], int apery[], int max_ap, int prime[]) 
{ 
  int i,j,n; 
 
  prime[max_ap-1] = 1; 
 
  for (i=max_ap; i>0; i--) 
  { 
    if (apery[i] == 0) continue;   //do not check if not in Ap 
    for (j=max_ap; j>i; j--) 
    { 
      if (apery[j] == 0) continue; 
      n=j-i; 
      if (group[n] == 0) 
      { 
        prime[i] = 1; 
        j=i; 
      } 
    } 
  } 
} 
 
 
////////////////////////////       Creat Ap*      ////////////////////////////////////// 
void create_star(int group[], int apery[], int maximum, int star[]) 
{ 
  int i, n; 
 
  for (i=0; i<maximum; i++) 
  { 
    if (apery[i] == 0)  continue; 
    n = maximum - i; 
    if (group[n] == 0) star[i] = 1; 
  } 
} 
 

 44



 45

 
/////////////////////////////  Flags  ///////////////////////////////////////// 
/* flags[0] = generators of S 
   flags[1] = H(S) 
   flags[2] = I 
   flags[3] = J 
   flags[4] = I+J 
   flags[5] = I-J 
   flags[6] = J-I 
   flags[7] = S-I 
   flags[8] = S-J 
   flags[9] = Ap 
   flags[10] = Ap print 
   flags[11] = dual print 
 
 
*/ 
 



REFERENCES 
 

 
[1]  R. Apery, Sur les branches superlineaires des courbes algebriques, C.R. Acad. Sci.   
           Paris 222 (1946) 
 
[2]  V. Barucci, D. Dobbs and M. Fontana, Maximality properties in numerical  
       semigroups and applications to one-dimensional analytically irreducible local  
       domains, Memoirs of the American Mathematical Society 125 (1997) 
 
[3]  V. Barucci and R. Froberg, One-dimensional almost Gorenstein rings, J. Algebra 188  
      (1997), 418-442 
 
[4]  P. Constapel, The product of an integrally closed ideal with its inverse, Comm.  
      Algebra 27 (1999), 3777 - 3779 
 
[5]  R. Froberg, C. Gottlieb and R. Haggkvist, On numerical semigroups, Semigroup  
      Forum 35 (1987), 63 - 83 
 
[6]  K. Herzinger, Torsion in the Tensor Product of an ideal with its inverse, Comm.  
      Algebra 24 (1996), 3065-3083 
 
[7]  E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer.  
      Math. Soc. 25 (1970), 748-751 
 
[8]  J.C. Rosales, P.A. Garcia-Sanchez, J.I. Garcia-Garcia and M.B. Branco, Systems of  
      inequalities and numerical semigroups, J. London Math. Soc. 65 (2002) 611-623 
 
[9]  K. Rosen, Elementary number theory and its applications, 4th edition, Addison   
      Wesley Longman, Reading, Massachusetts, 2000 
 
 
 
 
 

 46


	ABSTRACT
	Introduction.pdf
	INTRODUCTION


