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INTRODUCTION

In this thesis we will investigate various finite subsets of a numerical semigroup.
A numerical semigroup is a subset S of the non-negative integers Z, which contains zero,
is closed under addition, and whose complement in Z. is finite. The numerical

semigroup S is denoted by its generators, that is, if a,...,a, are the generators of S, then

1

S = <a yees @, > S is the set of values created by linear combinations of the generators

with non-negative coefficients.

In Chapter 1 we establish the standard definitions and notations related to
numerical semigroups. These include the multiplicity, Frobenius number, and the
minimal generating set for S. We will also briefly discuss structures associated to

numerical semigroups called relative ideals.

In Chapter 2 we conduct an investigation of the Apery Set of S denoted by Ap(S)
and two of its subsets, Ap'(S)and Ap (S). We will demonstrate a known relationship
between S’ and Ap'(S) but provide a proof that is somewhat different from the one
provided in [5]. Next we will completely establish the relationship between Ap™(S) and

H(S). We will provide an equivalent definition of symmetric in terms of Ap™(S).



Finally, we discuss the notion of S being almost symmetric and prove a necessary
condition for it in terms of 4p'(S) and 4p”(S). We also provide an example that shows

this condition is not sufficient.

The appendix of this thesis contains the code for a program used extensively in
the research for this paper. It allows the user to quickly calculate all of the items defined

in this paper. The program can be utilized in any DOS environment.



1. BASICS AND BACKGROUND

We begin by establishing the basic definitions and notation commonly associated
with numerical semigroups. For more background on the topic of numerical semigroups

the reader is encouraged to see [2], [5], [6], and [7].

(1.1) Definitions/Notation: Let Z. denote the non-negative integers. A numerical
semigroup S is a subset of Z such that

1) 0€S,

2) Sis closed under addition,

3) there exists an x € Z:\S such that, y €S forall y > x.

The largest integer not contained in S is called the Frobenius number of S and is
denoted by g(S). The number of elements in S smaller than g(S) is denoted by n(S). The

smallest positive element of S is called the multiplicity of § and is denoted by m(S).

(1.2) Definition: We say that a numerical semigroup S is symmetric provided the
following statement is true for all z € Z:

zeS& g(S)—z¢S.



(1.3) Example: LetS={0,5,6,7,10, 11,12, 13, 14,-}, (where — indicates all
numbers greater than 14 are included in S.) Then S is a numerical semigroup with
2(8)=9,n(S)=4,and m(S)=5. Since 8¢ Sand g(S)-8=9-8=1¢ S we see S is not

symmetric.

(1.4) Example: Let S= {0, 6, 8, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27,-}.
Then S is a numerical semigroup with g(S) =21, n(S) =11, and m(S) = 6. It’s easy to

check that S is symmetric since for every z ¢ S,g(S)—z €S.

The following two facts are common in the literature on numerical semigroups. We

present them here with proofs.

g®)+1

(1.5) Fact: n(S)< 5

Proof: Case 1: g(S) is odd. Partition the set {0,1,...,2(S)} as follows:

0,2(S)}, {1,g(S) -1}, 20 2O The partition is composed of £2 subsets. If
{0,g g p p

n(S) >

—g(Sz) *l , then by the Pigeon Hole Principle we know that at least one of the sets

has two elements in common with S. Thus there exists s ,s, € Ssuch that s, +s, = g(S).

Since S is closed under addition we conclude g(S) € S which is a contradiction.

Case 2: g(8) is even. In this case we want to partition the set {0,1,...,g(S)} as follows:

{0,2(S)}, {1, g(S) - 1},...,{£8=2 sC2y 2B The partition is composed of £5*2



subsets. If n(S) >

g(Sz) + then either every subset in the partition has one element in

common with S or one of the sets has two elements in common with S. In either case

there exists s,,s, € Ssuch that s, +s, = g(S). Again we have a contradiction.

g®)+1

In either case we conclude n(S) < 5

(1.6) Fact: A numerical semigroup S is symmetric if and only if g(S) is odd and

_g)+1
n(S) = B

. . .. . (S)+1
Proof: For the forward implication, assume that g(§) is even or n(S) < £5—.

If g(S) is even then £ ¢ S (since S is closed under addition) and g(S)— <> =< ¢S,

g(8)+1

So by definition S is not symmetric. If n(S) < <3

, then following the notation from
(1.5), we see that one of the subsets in the partition of {0,1,...,2(S)} has no elements in
common with S (otherwise we have g(S) € S). Thus there exists z € Z such that

z¢Sand g(S)—z ¢S . We conclude S is not symmetric.

T : _ 29+
For the reverse implication, assume g(S) is odd and n(S) = £5~—

. Again following
the notation in (1.5), we have that each subset in the partition of {0,1,...,g(S)} has
exactly one element in common with S. Thus for every element of the set {0,1,...,2(S)},

we have zeS < g(S)—z¢S. If z<0 or z> g(S), then it follows from our

definitions that ze S < g(S)—z ¢ S. We conclude S is symmetric.



(1.7) Definition/Notation: The minimal generating set of S is the unique smallest subset
of S such that every element of S can be expressed as a linear combination of the
elements in this subset with non-negative coefficients. We denote the size of the minimal

generating set by 4(S).

If 1(S) = k and the elements of the minimal generating set are a,,a,,...,a, then the

numerical semigroup is denoted by S = <al,a2,...,ak> = {na +---+na, :n,....,n €

k

Z.},where 0<a <a,<---<a, and a, e(al,...,ami).

(1.8) Examples: From (1.3), S= {0, 5, 6,7, 10, 11, 12, 13, 14,— }, can be expressed as
S=(5,6,7)={5k, +6k, +Tky | k;,k,,k; €Z.}. Thus we have 1(S)=3.
From (1.4),S=1{0,6,8, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27,-},

can be expressed as S = <6, 8,1 1> = {6k +8k, +11k, |k k,,k, €Z.} and again p(S)=3.

(1.9) Fact: Let S be a numerical semigroup with x(S)=2, thatis S = <a1,a2> . Then
(1) g(S)=a,a,—a,—a, and
(2) S is symmetric.
Proof: The proofs of both these facts are common throughout the literature on numerical
semigroups. In fact the proof of (1) is often found as a homework problem on linear

Diophantine equations in textbooks on number theory (see [9], section 3.6, exercises

17,18). In Chapter 2 we will provide new proofs for both of these facts.



(1.10) Definitions: Given a semigroup S, we can derive a set from the elements not in S
called the holes of S. We define the holes of S by

HS)={zeZ, |z¢S and g(S)—z¢S}.

(In some papers H(S) is referred to as the set of holes of the second type. See [3]).

From this definition we have an equivalent definition of what it means for S to be

symmetric. The proof of the following fact is clear from the definitions.

(1.11) Fact: S is symmetric if only if H(S) = 4.

(1.12) Example: If S=(5,6,7), then H(S) = {1, 8}. If S=(6, 8, 11, then S is

symmetric, and we know from (1.11) that H(S) = ¢.

(1.13) Definitions/Notation: Let S be a numerical semigroup. A relative ideal is a

nonempty subset I of Z such that I has a least element denoted by m(I), and if
seS,andiel, then i+s5 el. There exists a largest element in Z\I called the
Frobenius number of I and denoted by g(I). A relative ideal I is usually denoted by its
minimal generating set which is the unique smallest subset 7 < I such that every
element of I can be expresses as ¢ +s where t € T and s € S. We denote the size of the
minimal generating set of I by u(I). If x4 (I) = n and the elements of the minimal

generating set are b,,...,b then the relative ideal is denoted by I = (b] yeuesh ) =

(b +S)u---U(b, +8S) where b <---<b and b ¢ (b,,...,b ).



(1.14) Examples: Let S =(8,10,11,13), 1=(2,4), andJ =(1,5). Then

S = {0, 8, 10, 11, 13, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, -}, g(S) =25, n(S) =13
I=Q2+S)uU@+S)=1{2,4,10,12,13, 14,15, 17, 18, 20, 21, 22, 23, 24, 25,>}
g()=19 and m(I)=2.

J=(1+S)UG+S)={1,5,9,11, 12, 13, 14, 15, 16, 17, 18,} g(J)=10 and m(J)=1.

Note: It is clear from the definitions that g(I) < m(I)+ g(S).

(1.15) Definitions: If I and J are relative ideals of S, then we define I+J and I-J as
I+J={a+blacl, bed} and I -J={zeZ|z+J c1}. Itis quick to check that both

I+JandI—-J are relative ideals of S. We call I -J the dual of J in 1. In the case when

J =S we simply call this the dual of 1.

(1.16) Example: Asin (1.14) let S =(8,10,11,13), I=(2,4), andJ = (1,5). Then
I1+J=1{3,57,9,11,13,14,15,16,17,18,19, =} = (3,5, 7, 9).
I1-J=1{9,12,13,16,17,19,20,21,22,23,25,26, -} = (9, 12, 13, 16).

S-1={6,9,14,16,17,18,19,20,22,24,25,26, =} = (6, 9, 18).

(1.17) Definitions/Notation: We define the maximal ideal of S to be M = S\{0}.
Further we define S’ = (S-M)\S. The number of elements in S’ is referred to as the type

of S.



(1.18) Example: From example (1.14), we can determine M = (8,10,11,13) =
{8,10,11,13,16,18,19,20,21,22,23,24,26,27,28,—}. It is quick to confirm that S is

symmetric by (1.16). Further we see S’ = {25} and hence has type 1.

(1.19) Facts: (1) For any numerical semigroup S we have g(S) e S’.

(2) The second largest element of S’ is the largest element of H(S).

(3) Sis symmetric if and only if S" = {g(S)}; that is, if and only if S has type 1.
Proof: The proof of (1) is clear from the definition of S’.

For (2), let h(S) denote the largest element of H(S). Let s e M. Then h(S) +s>
h(S), so h(S) +s ¢ H(S). Suppose h(S) +s ¢ S. Then g(S)—(h(S)) +s € S and hence
g(S)—h(S)—s=¢ forsome 1 €S. But g(S)—h(S)=s+1¢ S which is a contradiction.
We must conclude that h(S) € S’ by definition.

Next suppose z € S’ and z > h(S). Consider g(S)—z. Because z > h(S), we
know z ¢ H(S), and so we must have g(S)—z€S. Thus g(S)=z+s forsome s€S.
If seM,then z+s5 €8, and so g(S) € S which is a contradiction. We conclude that
s =0 and so g(S)=z. Then there are no elements of S’ strictly between h(S) and g(S).

The proof of (3) follows quickly from (1) and (2).

Note: A slightly different proof of (1.19(2)) can be found in [5].



Connections to Rings

Beyond being an interesting algebraic structure in their own right, numerical

semigroups are often used as a tool to investigate problems in the area of commutative
algebra. In particular, let R represent the power series ring k[[¢“,...,t" ]], where kis a
fieldand 0 <a, <---<a . Let v represent the standard valuation mapping from the
quotient field of R to Z. Then v (R) is the numerical semigroup S = <a1 yeeend, >, and

many of the properties of R are reflected by the properties of S. For example:

(1) The embedding dimension of R = x(S).
(2) If T=(¢",...,t") is a fractional ideal of R, then v(I) = (b,,...,b ) isa
relative ideal of S. Moreover, g (v(I)) = u, (I) and v(I7") =S —ov(I) [6].

(3) R is Gorenstein if and only if S is symmetric [7].

For more details on the connections between numerical semigroups and

commutative algebra, please refer to [2], [3], [4], [6], and [7].
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2. THE APERY SET AND ITS SUBSETS

(2.1) Definitions: We define a partial ordering <g on a numerical semigroup S by

x <¢ y provided y—x €S (see also [5]).

(2.2) Example: Let S = <7,12,13> ={0,7,12,13,14,19,20,21,24,25,26,27,28,31,—>}.
Based on this partial ordering, 7 <¢ 19 since 19-7 =12 S but 13 £4 19 because

19-13=6¢S.

(2.3) Note: The elements of S\{0} that are minimal under this partial ordering are

exactly the elements of the minimal generating set for S.

(2.4) Definitions/Notation: Let n € S\ {0} . We define the Apery Set with respect to n
tobe Ap(S,n)={seS:s—n¢&S}. The Apery Set with respect to m(S) is typically

denoted by Ap(S). Thatis Ap(S)={seS:s5—m(S) ¢ S}.

(2.5) Note/Notation: It follows from the definition that Ap(S) contains exactly one

element of S from each congruence class modulo m(S). Specifically Ap(S) consists of the

11



smallest element of S which is congruent to i for i =0,1,..., m(S) —1. We denote the
element of Ap(S) which is congruent to i modm(S) by w(i). We denote the largest
element of Ap(S) by @'. Further, it is important to note that with this definition we have

gS)+mS)=w'.

Apery sets (named after Roger Apery, see [1]) appear often in the standard
literature on numerical semigroups (see [5]) and are represented by a variety of different
notations. For the development which follows, it seems most natural to adopt the

notation established in [8].

(2.6) Example: Let S, = <7,12,13> ={0,7,12,13,14,19,20,21,24,25,26,27,28,31,—} .
Then A4p(S,)={0,12,13,24,25,36,37}, and we see w(5) =12, o(1) =36 and

w2)=37=w'".

The following four lemmas establish some of the basic properties of Ap(S).

(2.7) Lemma: Every integer z has a unique representation in the form z = (i) + /m(S)

for some i and /e Z. Moreover, z €S ifand only if / > 0.

Proof: Let z be some non-negative integer. Then z =i modm(S), for some i.
Since w(i) is the smallest element of S congruent to i mod m(S), we know z € S if and

only if z > (i) which is true if and only if z = w(i) + Im(S) for some />0.

12



(2.8) Lemma: w(i)+ o(j) = w(i+ j)+Im(S) for some / >0.
Proof: w(i) =i modm(S)and w(j) = j modm(S).
Thus w(i)+ w(j) =i+ j modm(S). Also w(i)+ w(j) € S since S is closed under

addition. The result follows from (2.7).

(2.9) Lemma: If z,z, €S and z, +z, € Ap(S), then z ,z, € Ap(S).

Proof: (By Contrapositive): Let z,z, €S. Assume z, ¢ Ap(S)orz, ¢ Ap(S). Then
z, =o()+Im(S)and z, = @(j)+1,m(S) where [, >0 or/, >0 Thus z, +z, =

(@) +o(j)+({ +1,)m(S) =@+ j)+km(S)+ (I, +1,)m(S), wherek > 0. Thus
z+z, =0+ j)+(k+1 +1,)m(S),wherek+[ +/,>0. Hence z +z, ¢ Ap(S).

This completes the proof.

(2.10) Example: The converse of (2.9) is not always true. Consider example (2.6).

13,25€ Ap(S,) and 13,25 S, but clearly, 13+25=38¢ Ap(S)).

(2.11) Lemma: o(i)— o(j) = o(i — j)+Im(S) where [ <0.

Proof: Consider a(i— j)+ a(}).

By (2.8), w(i— j)+a(j) = a(i— j+ j)+km(S) = a(i)+ km(S) for some k >0. Then
w(i—j) = o(i)—a(j)+km(S). So w(i- j)—km(S) =) - wo(j). Nowlet /=-k,

hence w(i — j)+Im(S) = 0(i) — o(j).

13



(2.12) Definitions: There are two subsets of the Apery set which are of particular
interest to this investigation:

Ap'(S) ={w € Ap(S) | @ is maximal among the elements of Ap(S) w.r.t. <.} and

Ap (S)={we Ap(S) |®' —w ¢ S} .

(2.13) Lemma: Ap'(S)c 4p'(S)u{w'}.

Proof: Clear from the definitions of Ap'(S) and 4p™(S) .

(2.14) Example: Let S, = (8,11,12,15) = {0,8,11,12,15,16,19,20,22,23,24,26,27,28,30, -} .

Then Ap(S,) = {0,11,12,15,22,26,33,37}, Ap'(S,) =1{12,33,37}, and Ap'(S,) = {12,33}.

Notice @' =37, and thus Ap'(S,) < Ap'(S,) vi{w'}.

The following lemma comes from [5] and reveals the bijective relationship between

the sets S’ and Ap'(S). We offer a proof here that is slightly different than the one in [5].

(2.15) Lemma: z e S'if and onlyif z + m(S) € Ap'(S)
Proof: Let z =i modm(S).

For the forward direction, assume z € S'. Then z ¢S but z+m(S)eS. Thus
z+m(S) is the smallest element of S congruent to i modm(S) . By definition we have
z+m(S) = w(i) € Ap(S). Now suppose @o(j)— (i) €S forsome j #i. Then by (2.9)
and (2.11) w(j)—w(i)=w(j —i). Thus o(j—i)=w(j)—z—m(S) so z+w(j—i) =

@(j)—m(S) ¢S by (2.7). This is a contradiction since z € S’ and w(j —i) € S\ {0}.

14



We conclude w(j)—w(i) ¢ S forall j#1i, and hence (i) is maximal in Ap(S) with
respect to <¢. Therefore w(i) € Ap'(S).

For the reverse direction, assume z +m(S) € Ap'(S). Then z + m(S) = w(i) and
(i) is maximal in Ap(S) with respect to <. So by (2.7) we know z = w(i)—m(S) ¢ S.
Now let s € S\ {0}, say s = @(j)+Im(S) where j # 0 modm(S) or / >0. Then
z+ s =w(i)—m(S)+ w(j)+Im(S). Note that w(i + j)—w(i) ¢ Ap(S) because
(i) € Ap'(S) . Therefore w(i)+ w(j) = w(i+ j)+ km(S) where k> 0. Thus,
z+s=w(i+j)+(k+]-1)m(S) where k+/-1>0. So we have z+s €S by (2.7).

Since s was an arbitrary element of S\ {0}, we conclude z € S’, by definition.

(2.16) Example: Using (2.15) we can determine for example (2.6) S' = {29,30} and

for example (2.14) S’ = {4,25,29}.

(2.17) Corollary: S is symmetric if and only if Ap'(S) = {w'} .

Proof: The statement follows immediately from (2.15), (2.5), and (1.19(3)).

We now begin an examination of the properties of Ap (S).

(2.18) Proposition: Assume w(i), w(j) € Ap(S) with the property that
o)+ w()) € Ap(S) . If w(i) e Ap'(S) or w(j) e Ap (S), then w(i)+ w(j) € Ap (S).

Proof: Suppose w(i) € Ap’(S). Then o' w(i) ¢ S. Let @' =kmodm(S), that is,

15



@' = w(k). Then w(k)—-w(i) = w(k —i)—Im(S) where [ >0 by (2.7) and (2.11). Now
consider @' — (a(i) + @(;)) which equals (k) — (i) — o(j) = w(k — i) — o(j) - Im(S) .
Case l: w(k—-i)-aw(j)eS
In this case, @(k — i) — o(j) = @(k —i — j) by (2.7) and (2.11). Thus
o(k) — (i) - o(j) = ok —i— j)—Im(S) ¢ S . We conclude @(k)—(o(i)+ (/) €S
Case2: w(k—-i)—aw(j) &S
In this case @(k — i) — o(j) = @(k —i — j)—tm(S), where >0 by (2.7). Thus
(k) — (i) - o(j) = o(k —i) = o(j) = Im(S) = ok —i = j)—tm(S) —Im(S)
= w(k—i— j)—(t+1)m(S), where ¢ +1>0. Hence a(k)—(a(i)—o(j) S by (2.7).

In both cases we have o' — (w(i) — w(j)) ¢ S. By definition of Ap"(S) we conclude that

(i) + o(j) € Ap” (S).

(2.19) Note/Example: If w(i),w(j) € Ap(S)\ Ap”(S), then w(i)+ w(j) may or may not
bein Ap'(S). From example (2.6), Ap(S,) ={0,12,13,24,25,36,37} and
Ap'(S,)=1{36}. Sowe have 12,13,24 € Ap(S,)\ Ap'(S,) and 12+24 =36 Ap'(S,)

but 12+13=25¢ Ap'(S,).

(2.20) Lemma: If w(i) € Ap (S), then w(i)—m(S) e H(S).

Proof: Let w(i) € Ap'(S) then by (2.7) w(i)—m(S) ¢ S. Also g(S)—[w(i)—m(S)]=

g(S)—w(i)+m(S)=w"—w(i) ¢ S. Hence by definition w(i)—m(S) e H(S).

16



(2.21) Lemma: If z € H(S), then z = w(i) — Im(S) where [ >0 and w(i) € Ap'(S).
Proof: Let ze H(S),then z¢ S. By (2.7), z = w(i) —Im(S) for some i and some / > 0.
We need only to show w(i) € Ap”(S).

Now consider @' — w(i) = g(S) + m(S) —[z + Im(S)] = g(S)+ m(S)—z—Im(S). So
o' —o()= gS)—z+(1-m(S). But g(S)—z ¢S, so g(S)—-z=a(j)—kmn(S) for
some j and some k >0 by (2.7). Thus @' — w(i) = @(j)+ (1-1-k)m(S) where

1-1-k<0. Thus @' —w(i) ¢ S by (2.7), and we conclude w(i) € Ap"(S).

The previous two lemmas reveal the following fact about symmetry.

(2.22) Fact: S is symmetric if and only if Ap"(S)=¢.
Proof: By (2.20) and (2.21) we have Ap'(S) = ¢ if and only if H(S) = ¢ which is true

if and only if S is symmetric by (1.11).

As promised in Chapter 1, we now provide a proof of (1.9) from the standpoint of

Apery Sets.

Let S = <a1,a2> . Then for all s €S we know s =k a, +k,a, where k ,k, 20.

Notice that if &, >1 then s ¢ Ap(S) because s —a, =(k, —1)a, +k,a, €S, (recall that
a, =m(S).) Thus s € Ap(S) ifand only if £, =0 and 0 <k, <a, —1. We then conclude
that Ap(S) = {0,a,,2a,,....,(a, —1)a,}. Now by (2.5), we see g(S)=a"—m(S) =

(a, -Da, —a, =aa, —a, —a,. Nextnotice thatif 0< j<a —1,then @' — ja, =
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(a, —)a, — ja, =(a, —1—j)a, € S. Therefore ja, ¢ Ap (S). Hence Ap (S)=¢. Thus

S is symmetric by (2.22).

(2.23) Lemma: If w(i)—Im(S) & H(S), then a(i)— (I +1)m(S) ¢ H(S) where /> 0.
Proof: (By Contrapositive) Let / >0 and assume @(i)— (/ + 1)m(S) € H(S). Then
gS)— @)+ +Dm(S)£S. So g(S)— @)+ (+1Dm(S) = g(S) — (@) + Im(S) + m(S)
= g(S)+m(S)—[a(i)— Im(S)] ¢S . Thus g(S)—[w(i)—Im(S)]S. So by definition

(i) —Im(S) € H(S). This completes the proof.

(2.24) Definition: We define H(S,i)={z € H(S)|z=imodm(S)}.

(2.25) Example: From example (2.14), we have H(S,) = {4,25},s0 H(S,,4) = {4} and

H(S,,1) ={25}. If we look at example (2.6), we have H(S,) = H(S,,]) ={1,8,15,22,29}.

The following two theorems completely establish the relationship between Ap’(S)

and H(S).

(2.26) Theorem: Let i+ j = g(S)mod m(S). Then |H(S,i)

=|H(S, j)|. Further, if

\H(S,i)

=|H(S, /)| = k, then H(S,i)= {@(i)—m(S),o(i) — 2m(S),..., (i)~ km(S)} and

H(S, j) ={o()) = m(S), &(j)=2m(8),...,&(j) = km(S)} .

Proof: Let x € H(S,i) then by definition we know g(S)—x € H(S) and
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g(S)—x=jmodm(S). Thus g(S)—xe H(S,j). Similarly, if y € H(S, j), then

g(S)—y e H(S,i). We conclude |H(S,i)

=|H(S, /)|

Assume |H(S,i)

=k . If k=0, then there is nothing to prove. Let k£ > 0. By the

definition of H(S,i) and (2.7) we know every element of H(S,i) must be of the form
(@) —Im(S) where [ >0. Let 1<t <k. If w(i)—tm(S)¢ H(S), then by (2.23) we

know w(i)—vm(S) ¢ H(S) for v>t¢. Hence |H(S,i)

<t <k, which is a contradiction.

Thus {@(i) - m(S),@(i) — 2m(S),..., (i) — km(S)} < H(S,i). Since |H(S,i)

=k , we have

our conclusion. The proof for |H(S, /)| is similar.

(2.27) Theorem: If w(i)+ w(j) = @'+ km(S), then|H (S, i)

=|H(S, ) =k.

Proof: Clearly |H (S,0)

= |HS, )

, by (2.26)
Assume (i) + @(j) = @' + km(S). If k =0, then w(i) + w(j) = @' . Thus

o(i) & Ap'(S) and @(j) & Ap'(S). So by (2.21), we may conclude

H(S,i)= H(S, j) = ¢. Now assume k >1. We will show (i) — km(S) € H(S) and

(i) — (k +m(S) ¢ H(S).
We know (i) — km(S) & S by (2.7). Now consider g(S) — (w(i) — km(S)) =

g(8) — (i) + km(S) = g(S) + m(S) — (i) + (k —)m(S) = &' — (i) + (k —)m(S) =

o( ) — km(S) + (k —1)m(S) = () —m(S) & S by (2.7). Hence a(i)—km(S) € H(S).
To show that w(i)— (k + )m(S) ¢ H(S) we consider g(S)—(a(i)— (k +1)m(S)) =

2(S) — w(i) + (k + Dm(S) = g(S) + m(S) — (i) + km(S) = &' — (i) + km(S) = w(j) €S .
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By definition, @(i)— (k +1)m(S) ¢ H(S). Now by (2.23) we know @(i) —tm(S) ¢ H(S)

for t > k+1. Thus |H(S,i)

=|H(S, ) =k.

(2.28) Example: From example (2.14), we have Ap'(S,) = {12,33} where @w(4) =12
and o(1) =33. Since o' = w(5) =37, we consider w(1)+ w(4) = @'+ m(S,). This tells

us that |H(S,,1)

= |H (S, ,4)| =1, which agrees with what we determined in (2.25). Now
we look at example (2.6) where Ap'(S,) ={36}, (1) =36, and @' = ®(2)=37. So we

have @(1)+ @(1) = @'+ 5m(S,). This tells us that |H (S,,1) =5, which again agrees with

what we stated in (2.25).

When a numerical semigroup S is not symmetric, it is natural to inquire as to “how
far it is from being symmetric.” Throughout the study of numerical semigroups various
measures of symmetry have been devised. Those semigroups which are considered

“close” to being symmetric are often given special names. For example, if g(S) is even
and H(S) = {@}, then S is said to be psuedosymmetric [2]. The concept of almost

symmetric was introduced in [3]. We give the definition here as well.

(2.29) Definition: We say S is almost symmetric provided S"'= H(S) U {g(S)}.

(2.30) Example: Using this definition we can quickly determine if our two examples are

almost symmetric. Since S’ ={29,30}and H(S,)) = {1,8,15,22,29} clearly S, is not
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almost symmetric. Next, we see that S’ = {4,25,29}, H(S,) ={4,25}, and g(S,) =29.

Thus S, is almost symmetric since S’ = H(S,) U {g(S,)}.

The following theorem gives a necessary condition, in terms of Apery Sets, for S to
be almost symmetric. However, the example which follows the theorem shows that this

condition is not sufficient.

(2.31) Theorem: IfS is almost symmetric, then Ap'(S) = Ap (S) U {w'} .

Proof: (By Contrapositive): Suppose Ap'(S) # Ap (S) U {w'} . By (2.13) there exists
some w(i) € Ap"(S)\ Ap'(S). So w(i)—m(S) e H(S) by (2.20). But w(i)—m(S) ¢ S’
because w(i) ¢ Ap'(S) by (2.15). Therefore S" = H(S) U {g(S)}, whence S is not almost

symmetric by definition. This completes the proof.

(2.32) Example: If we use this theorem to check example (2.14), we see that since S, is
almost symmetric Ap'(S,)= Ap'(S,)u{w'}. If welook at S, (example 2.6) we see that
Ap'(S,))= A4p' (S,) u{w'}, but we know from (2.30) that S, is not almost symmetric. So
the converse is not always true, that is, Ap'(S) = Ap (S) U {w'} does not imply almost

symmetric.
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APPENDIX

This appendix contains the code for a program used extensively in the research
for this paper. It allows the user to quickly calculate all of the items defined in this paper.
The program can be utilized in any DOS environment. The menus available to the user
are provided below.

AMilitaryAUMDAT hesis\Code\Thesiz_exe
WELCOHE TO THE WORLD OF WUMERICAL SEMIGROUPS

Main Menu: Please select what you would like to do.

Enter generators and compute the numerical semigroup,. 5.
Compute H{S8>». the holes of 5.

Ideals...

Apery...

Diszplay the elements of §.

Leave this world.
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de\Thesis exe

Ideal Menu: Please select what you would like to do.

Enter generators and compute the ideal ‘I°.
Enter Generators adn compute the ideal J.
Compute 'I+J°.

Compute the dual *

Compute the dual

Compute the dual

Compute the dual 'S

Compute <I+J>-1.

Compute (I+J>—J.

Display the elements

Display the elements

Display the elements

Return to Main Menu.

E N e T [T ] -

c. DAMiltarp\UMDAT hesis\Code\Thesis_exe

Apery Menu: Please select what you would like to

Compute Ap
Compure Ap*
Compute Ap=

Return to Main Menu.
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1

// Numerical Semigroups
// By Capt Monica Madero-Craven

/1

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

//Variables
int 1; //index for loops
int flag =12; // number of items tracked in flag array
int flags[12]; //array to track computed items
int max_s, max_i,max_j, max_ij; //maximum size for semigroup and ideals
int max_dij, min_dij, max_dji, min_dji; //max and min I-J and J-I
int max_dsi, min_dsi, max_dsj, min_dsj;  //max and min S-I and S-J
int max_dij i, min_dij i, max_dij j, min_dij j; /max/min (I+]))-1, (I+J))-I
int max_ap; //maximum size for Apery
int count_s, count i, count j; //number of generators
int count_ij; //number of generators in [+J
int generators_s[100]; //array for generators of S
int generators_i[10], generators_j[10]; //arrays for generators of ideals
int generators_1j[50]; //array for the generators of I+]
int semigroup[1000]; //array for creating semigroup
int ideal i[100], ideal j[100]; //array for creating ideals I and J
int ideal 1j[100]; //array for creating I+J
int dual _ij[100], dual ji[100]; //array for creating I-J, J-I
int dual sj[100], dual si[100]; //array for creating S-J, S-I
int dual_ij i[100], dual ij j[100]; //array for creating (I+J)-I, (I+J)-J
int holes[1000]; //array for the holes of S
intg s,g i,g j, g ij; //Frobenius number
intn s,n i,n_j,n_ij; //mumber of elements in the set
int apery[500], apery prime[100], apery_star[100];
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//Functions

void initialize array(int array[], int count);

int many_generators(void); //fen to determine how many generators

void get generators(int gen[], int count); //fcn to get generators

void include gen(int gen[], int count, int array[]);

void create_s(int gen[], int count, int group[], int maximum);

void create ideal(int gen[], int count, int group(], int g_s, int ideal[]);

int find_frobenius(int group[], int g); //Find Frobenius

int count_elements(int array[], int count); //Count elements

void print_array(int array[], int count); //Print items = 1

void print_other(int g, int n); //Print the Frobenius number and n

char enter s error(void); //user must enter S first

char ideal error(), apery error(); //user needs another option first

void add_ideals(int sum_ideal[], int gen 1[], int count 1, int gen 2[],
int count_2); //adds any two ideals

void create dual(int array 1[], int g 1, int gen 2[], int count 2, int dual[],
int minimum, int maximum); //create dual of array1 - array?2

void create_apery(int gen[], int group[], int g_s, int apery[], int count);

void create_prime(int group[], int apery[], int max_ap, int prime[]);

void create_star(int group[], int apery[], int maximum, int star[]);

void create_holes(int h[], int s[], int gs);

//Menu Variables and Functions
char main_choice, ideal choice;  //letter selected from the menu
char apery choice; //letter selected form the menu
char main_choice menu(void); //function to print main menu
char ideal choice menu(void); //function to print ideal menu
char apery choice menu(void); //function to print apery menu

int main()

{

//Welcome and choice menu.

cout <<"WELCOME TO THE WORLD OF NUMERICAL SEMIGROUPS\n\n";
main_choice = toupper(main_choice menu());

while (main_choice !="X")

{

//******************** Enter Generators and Compute S sk ke sk sk ske sk sk sk ke sk sk sk skeosk sk skoskosk sk

if (main_choice =="A")

{
initialize array(flags,flag);
flags[0]=1;
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count_s = many_generators();

get generators(generators_s,count_s);

max_s = (generators_s[0]-1)*(generators_s[1]-1)+1;
initialize array(semigroup,max_s);

include gen(generators_s,count_s,semigroup);
create s(generators s,count s,semigroup,max_s);
g s=find_frobenius(semigroup, max_s);

n_s = count_elements(semigroup, g s);

system ("cls");

cout << "\n\nS =";

print_array(semigroup, g_s);

print_other(g s, n_s);

system ("Pause");

system ("cls");

main_choice = toupper(main_choice menu());
continue;

} //End of Main Choice A

//******************** Compute HOleS OfS, H(S) sk s sfe sk sfe sk ske sk sk stk sk sk skeske sk sk

if (main_choice =='B')
{

if (flags[0] !=1)

{

cout << "\n\n";

main_choice = toupper(enter_s_error());

continue;

}

flags[1] = 1;

initialize array(holes,g s+1);
create_holes(holes,semigroup,g_s);
system ("cls");

cout << "\n\nH(S)=";
print_array(holes,g_s);

system ("Pause");

system ("cls");

flags[1] = 0;

main_choice = toupper(main_choice menu());
continue;
} //End of Main choice B

//******************** GO to the Ideal Menu sk ok 3 ok o sk ok sk ok ook sk sk sk skosk ko sk
if (main_choice =="C")

{
if (flags[0] !=1) /Iverify S is alreay computed
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{

main_choice = toupper(enter s _error());

continue;

b

ideal choice = toupper(ideal choice menu()); //display menu
while (ideal choice !="X") //while != return to main

{

/******************** Enter Generators and Computel ********************/

if (ideal choice =="A")

{

flags[2]=1;

flags[4] = flags[5] = flags[6] = flags[7] = O;
count i=many_generators();

get generators(generators_i,count 1i);
max_i=g s+ generators i[0]+1;

initialize array(ideal i,max 1i);
create_ideal(generators_i,count i,semigroup,g s,ideal i);
g 1="find frobenius(ideal i, max 1i);

n_i=count elements(ideal i, g i);

system ("cls");

cout <<"\n\nl =";

print_array(ideal 1, g 1);

print_other(g i, n_i);

system ("Pause");

ideal choice = toupper(ideal choice menu());
continue;

} //End of Ideal Choice A

//******************** Enter Generators and Compute J sk ke sk sk ske sk sk sk sk sk sk sk skeosk sk skoskosk sk

if (ideal choice == 'B') //enter generators and compute J
{
flags[3]=1;

flags[4] = flags[5] = flags[6] = flags[8] = 0;
count_j = many_generators();
get_generators(generators_j,count j);
max_j =g s+ generators_j[0]+1;

initialize array(ideal j,max j);
create_ideal(generators_j,count j,semigroup,g_s.ideal j);
g j=find frobenius(ideal j, max j);
n_j=count elements(ideal j, g j);

system ("cls");

cout << "\n\nJ =";

print_array(ideal j, g j);
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print_other(g _j, n_j);

system ("Pause");

ideal choice = toupper(ideal choice menu());
continue;

} //End of Ideal Choice B

//******************** Compute I+J sk sfe sk st sfe sk sk sfe ke sk sfeoske sk sk skeskeosk sk sk

if (ideal choice =="'C")
{
if (flags[2] =1 || flags[3] !=1) // Check if I & J are Computed
{
ideal choice = toupper(ideal error());
continue;
}
flags[4]=1;
count_ij = count i * count j; //Number of generators for [+]J
initialize array(generators_ij, count ij);
add_ideals(generators_ij, generators_i, count i, generators_j, count_j);
max_ij =g s + generators_ij[0]+1;
initialize array(ideal ij,max ij);
create ideal(generators_ij,count ij,semigroup,g_s,ideal ij);
g ij =find frobenius(ideal ij, max_ij);
n_ij = count elements(ideal ij, g ij);
system ("cls");
cout << "\n\nl+J =";
print_array(ideal ij, g ij);
print_other(g_ij, n_ij);
system (""Pause");
ideal choice = toupper(ideal choice menu());
continue;
} //End of Ideal Choice C

//******************** Compute I-J sk sk s ok o ke s sk sk ook ook sk skeosk skok skok

if (ideal _choice =="'D")
{
if (flags[2] =1 || flags[3] !=1) //Check if | & J are Computed
{
ideal choice = toupper(ideal error());
continue;
}
flags[5]=1;
flags[11]=1;
min_dij = generators_i[0] - generators_j[0];
max_dij = g i - generators j[0] + generators_j[count j-1];
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if (min_dij <0)

{

cout << "The dual contains negative numbers.\n";
cout << "Please adjust I and/or J.\n";

}

else
{
create_dual(ideal i, g_i, generators_j, count j, dual ij, min_dij, max_dij);
system ("cls");
cout << "\n\nl-J =";
print_array(dual 1}, max_dij);
}
system ("Pause");
ideal choice = toupper(ideal choice menu());
continue;
flags[11]=0;
+ // End of ideal choice D

//******************** Compute J-1 sk sk sk sk s ke sk sk sk sk sk sk skeosk skok skok

if (ideal choice =="'E')
{
if (flags[2] =1 || flags[3] !=1) //Check if I & J are Computed
{
ideal choice = toupper(ideal error());
continue;
}
flags[6]=1;
flags[11]=1;
min_dji = generators_j[0] - generators_i[0];
max_dji =g j - generators _i[0] + generators_i[count i-1];

if (min_dji <0)

{

cout << "The dual contains negative numbers.\n";
cout << "Please adjust I and/or J.\n";

}

else

{

create_dual(ideal j, g j, generators_i, count_i, dual ji, min_dji,
max_dji);

system ("cls");

cout << "\n\nJ-I=";

print_array(dual ji, max_dji);

}
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system ("Pause");

ideal choice = toupper(ideal choice menu());
continue;

flags[11]=0;

+ // End of ideal choice E

//******************** Compute S_I sk sfe ke sk sfe sk sk sfe ke sk sfeoske sk sk skeskeosk skesk

if (ideal choice =="F")
{
if (flags[0] =1 || flags[2] !=1) //Check if S & I are Computed
{
ideal choice = toupper(ideal error());
continue;
}
flags[7]=1;
flags[11]=1;
min_dsi = generators_s[0] - generators_i[0];
max_dsi =g s - generators_i[0] + generators_i[count i-1];

if (min_dsi <0)

{

cout << "The dual contains negative numbers.\n";
cout << "Please adjust I and/or S.\n";

}

else
{
create_dual(semigroup, g_s, generators_i, count i, dual si, min_dsi,
max_dsi);
system ("cls");
cout << "\n\nS-1=";
print_array(dual_si, max_dsi);
}
system ("Pause");
ideal choice = toupper(ideal choice menu());
continue;
flags[11]=0;
+ // End of ideal choice F

//******************** Compute S_J sk ok s sk o sk sk sk ok s ke sk sk sk skosk ko sk

if (ideal _choice =='G")

{
if (flags[0] =1 || flags[3] !=1) //Check if S & J are Computed

{

ideal choice = toupper(ideal error());
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continue;

}
flags[8]=1;
flags[11]=1;

min_dsj = generators_s[0] - generators_j[0];
max_dsj =g s - generators j[0] + generators j[count j-1];

if (min_dsj <0)

{

cout << "The dual contains negative numbers.\n";
cout << "Please adjust I and/or J.\n";

}

else
{
create_dual(semigroup, g_s, generators_j, count_j, dual sj, min_dsj,
max_dsj);
system ("cls");
cout << "\n\nS-J=";
print_array(dual_sj, max_dsj);
b
system ("Pause");
ideal choice = toupper(ideal choice menu());
continue;
flags[11]=0;
} // End of ideal choice G

//******************** Compute (I+J)_I sk sk sk sk sfe sk sk sk sk s sk sk skeoske sk sk skok

if (ideal choice == 'H")
{
if (flags[2] =1 || flags[3] !=1) //Check if I & J are Computed
{
ideal choice = toupper(ideal error());
continue;
}
if (flags[4] ==0)
{
cout << "You must compute [+]J first.\n";
ideal choice = toupper(ideal error());
continue;
b
min_dij_i= generators_ij[0] - generators_i[0];
max_dij i=g_ij - generators_i[0] + generators_i[count i-1];

if (min_dij_i<0)
{
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cout << "The dual contains negative numbers.\n";
cout << "Please adjust I and/or J.\n";

}

else
{
flags[11]=1;
create_dual(ideal ij, g ij, generators_i, count i, dual ij i,
min_dij_1, max_dij 1);
system ("cls");
cout << "\n\n(I+J)-I =";
print_array(dual ij i, max_dij i);
h
system ("Pause");
ideal choice = toupper(ideal choice menu());
continue;
flags[11]=0;
} // End of ideal choice H

//******************** Compute (I_|_J)_J sk s sfe sk sfe sk ske sk sk skeoske sk sk sk skeske sk sk

if (ideal _choice =="T")
{

if (flags[2] =1 || flags[3] !=1) //Check if I & J are Computed
{

ideal choice = toupper(ideal error());

continue;

b

if (flags[4] ==0)

{

cout << "You must compute [+] first.\n";

ideal choice = toupper(ideal error());

continue;

b

min_dij_j = generators_ij[0] - generators_j[0];

max_dij j =g ij - generators_j[0] + generators_j[count j-1];

if (min_dij j <0)

{

cout << "The dual contains negative numbers.\n";
cout << "Please adjust I and/or J.\n";

}

else

{

flags[11]=1;

create_dual(ideal ij, g_ij, generators_j, count_j, dual ij j,
min_dij_j, max_dij_j);
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system ("cls");

cout << "\n\n(I+J)-J =";

print_array(dual ij j, max_dij j);

b

system ("Pause");

ideal choice = toupper(ideal choice menu());
continue;

flags[11]=0;

} //End of Ideal Choice I

//******************** Print the Elements OfS sk sk sk sk sfe s sk sfe ke sk skeosie skeoskeoske skeoskeoske skosk

if (ideal choice =="J")

{

if (flags[0] !=1)

{
cout << "\n\n";
ideal choice = toupper(enter s _error());
continue;

b

system ("cls");

cout << "\n\nS =";
print_array(semigroup, g s);
print_other(g s, n_s);

system ("Pause");
system ("cls");
ideal choice = toupper(ideal choice menu());
continue;

} //End of Ideal Choice J

//******************** Print the Elements OfI sk sk sfe sk sfe sk ske sk sk sk sk skeosk sk sk sk

if (ideal _choice =='K")

{

if (flags[2] !=1) //Check if | are Computed
{
ideal choice = toupper(ideal error());
continue;
}

system ("cls");

cout << "\n\nl =";

print_array(ideal i, g i);

print_other(g i, n_1i);

system ("Pause");

system ("cls");

ideal choice = toupper(ideal choice menu());
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continue;
} //End of Ideal Choice K

//******************** Print the Elements OfJ sk ok s sk sfe sk sk sk sk s ok s sk sk skeosk skok skok

if (ideal choice =="L")

{

if (flags[3] !=1) //Check if J are Computed
{
ideal choice = toupper(ideal error());
continue;
}

system ("cls");

cout << "\n\nJ =";

print_array(ideal j, g j);

print_other(g j, n_j);

system ("Pause");

system ("cls");

ideal choice = toupper(ideal choice menu());
continue;

} //End of Ideal Choice L

cout << "\nYou entered an invalid letter. Try again:\n\n";

system ("Pause");

ideal choice = toupper(ideal choice menu()); //display menu
+ //End of Ideal Choice Menu

cout << "\n";

system ("Pause");

system ("cls");

main_choice = toupper(main_choice_menu()); //return to main menu

continue;
} //End of Main Choice C

//******************** GO to Apery Menu sk ke sk sk ske sk sk sk ke sk sk sk skeosk sk skokosk sk

if (main_choice =="D")
{
if (flags[0] !=1) /Iverify S is alreay computed
{
main_choice = toupper(enter_s_error()); //error and get new choice
continue;
} //end error

apery_choice = toupper(apery_choice menu()); //display menu
while (apery choice !="'X") //while != return to main

34



{
flags[10] =1;

//******************** Compute Apery (Ap) 3k st st sfe s ok sk ok ok ok ok sk sk sk sk skoskoskoskok

if (apery_choice =="A")

{

flags[9] = 1;

max_ap =g s+ generators_s[0] + 1;

initialize array(apery, max_ap);

create apery(generators_s, semigroup, g_s, apery, max_ap);
system ("cls");

cout << "\n\nAp(S)=";

print_array(apery, max_ap);

system ("Pause");

apery_choice = toupper(apery choice menu());
continue;

} //End Apery Choice A

//******************** Compute Ap' sk sfe sk sk sfe ok sk sfe sk sk sfeoske sk sk skeskeosk skesk

if (apery_choice =='B')

{

if (flags[9] !=1) //Check if Apery Set is Computed
{

apery_choice = toupper(apery_error());

continue;

} //end error

initialize array(apery prime, max_ap);
create_prime(semigroup, apery, max_ap, apery_prime);
system ("cls");

cout << "\n\nAp'(S)=";

print_array(apery_prime, max_ap);

system ("Pause");

apery_choice = toupper(apery choice menu());
continue;

+ //End of Apery Choice B

/ ok s ok sk sk s sk s s s sk sk sk sk skoskosk ok Compute Ap* >k ok o sk ok sk sk ook s sk ok skosk ok sk sk

if (apery_choice =="C")

{

if (flags[9] !=1) //Check if Apery Set is Computed
{
apery_choice = toupper(apery_error());
continue;

} //end error
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initialize array(apery_star, max_ap);

create star(semigroup, apery, max_ap-1, apery_star);
system ("cls");
cout << "\n\nAp*(S)=";

print_array(apery_star, max_ap);

system ("Pause");

apery_choice = toupper(apery choice menu());
continue;
} //End of Apery Choice C

cout << "\nYou entered an invalid letter. Try again:\n\n";

system ("Pause");

apery_choice = toupper(apery choice menu()); //display menu

+// End Apery while loop

flags[10]= 0;

system ("Pause");

system ("cls");

main_choice = toupper(main_choice _menu()); //return to main menu

continue;
} //End of Main Choice D

//******************** Print the Elements OfS sk sk sk sk sfe i sk sfe ke sk skeosie skeoskeoske skeoskeoske skosk

if (main_choice =='E')
{
if (flags[0] !=1)
{
cout << "\n\n";
main_choice = toupper(enter_s_error());
continue;
b
system ("cls");
cout << "\n\nS =";
print_array(semigroup, g_s);
print_other(g_s, n_s);
system ("Pause");
system ("cls");
main_choice = toupper(main_choice _menu());

continue;
} //End of Main Choice E

cout << "\nYou entered an invalid letter. Try again:\n\n";
system ("Pause");
system ("cls");
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main_choice = toupper(main_choice menu());
} //End of Main Choice Menu

cout << "\n";
system("PAUSE");
return O;

}

/I End of Main Program, begin Functions

T Main Choice Menu I
char main_choice menu(void) //Main choice menu function
{

char choice; //letter selected from welcome menu

cout << "Main Menu: Please select what you would like to do.\n\n"
<<"A - Enter generators and compute the numerical semigroup, S.\n\n"
<< "B - Compute H(S), the holes of S.\n\n"
<< "C - Ideals...\n\n"
<< "D - Apery...\n\n"
<<"E - Display the elements of S.\n\n"
<< "X - Leave this world.\n\n";

cin >> choice;

return choice;

}

T Choice Menu for Ideals T
char ideal choice menu(void)

{

char choice;
system ("cls");

cout << "\nldeal Menu: Please select what you would like to do.\n\n"
<<"A - Enter generators and compute the ideal 'T'.\n"
<< "B - Enter Generators adn compute the ideal J.\n"
<< "C - Compute 'I+J'\n"
<< "D - Compute the dual 'I-J".\n"
<<"E - Compute the dual 'J-I'.\n"
<< "F - Compute the dual 'S-I'.\n"
<< "G - Compute the dual 'S-J'.\n"
<< "H - Compute (I+J)-I.\n"
<<"[ - Compute (I+J)-J.\n"
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<<"J - Display the elements of S.\n"
<< "K - Display the elements of [.\n"
<< "L - Display the elements of J.\n"
<< "X - Return to Main Menu.\n\n";

cin >> choice;
return choice;

}

s Choice Menu for Apery s
char apery choice menu(void)

{

char choice;
system ("cls");

cout << "Apery Menu: Please select what you would like to do. \n\n"
<<"A - Compute Ap\n\n"
<< "B - Compure Ap'\n\n"
<< "C - Compute Ap*\n\n"
<< "X - Return to Main Menu.\n\n";

cin >> choice;
return choice;

}

T Initial Int Arrays s
void initialize array(int array[], int count)

{

inti;  //index for loop
for (i=0; i<count; i++)
array[i]= 0;
}

T Enter S First Error Message  ///////1//////111111111111]]
char enter_s_error()

{

char choice;
cout << "You need to compute S first.\n\n";

system ("Pause");
system ("cls");
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choice = main_choice _menu();
return choice;

}

I Create the Holes of S 1111
void create_holes(int h[], int s[], int gs)

{

int 1,n;

for (i=0; i<gs; i++)

{
if (s[i]==1) continue;
n=gs-i;
if (s[n]==1) continue;
h[i]=1;
h[n]=1;

}

}

11 Missing Ideal Data Error Message  ///////1111111111111111]
char ideal error()

{

char choice;

cout << "Insufficient data to perform this calculation.\n\n";
system ("Pause");
system ("cls");

choice = ideal choice menu();
return choice;

11 Missing Apery Data Error Message////////1/1111111111111]
char apery_error()

{

char choice;
cout << "Insufficient data to perform this calculation.\n\n";
system ("Pause");

system ("cls");

choice = apery choice menu();
return choice;
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T Number of Generators T
int many_generators()
{

int count;

printf("\nHow many generators do you want to enter? ");

scanf("%i", &count);

return count;

}

T Get the Generators I
void get generators( int gen[], int count)

{
for (i=0; i<count; i++)
{
printf("Enter Generator # %i: ", i+1);
scanf("%i1", &gen[i]);

}
}
s Include the Generators — ///////1/1111111111111111111111111
void include gen(int gen[], int count, int array[])
{
int i,n;

for (i=0; i<count; i++)
{
n = gen[i];
array[n] = 1;
}
}

T Create the Semigroup ///////11111111111111111111111]]
void create_s(int gen[], int count, int group[], int maximum)

{

int 1,j,k;

group[0] = 1; //include 0 in the semigroup
//loop through the semigroup array starting at m(S)+1
for (i=gen[0]+1; i<maximum; i++)

{
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if (group[i] ==1) continue; //determine if already in the group
//Loop through generators to see if (element - generator) in group
for (j=0; j<count; j++)

{
k =1- gen[j];
if (group[k]==1) //if element - generate is in group
{
group [i]=1; //element is in group
break;
}
}
}

}

T Create an Ideal T
void create ideal(int gen[], int count, int group(], int g_s, int ideal[])

{

int 1,j,k;

for (i=0; i<count; i++)

{
for (j=0; j<g_s; j*+)
{
if (group[j] == 0) continue;
k =]+ gen[i];
ideal[k] = 1;
¥

¥

¥

1 Add Two ldeals s

void add_ideals(int sum_ideal[], int gen 1[], int count 1, int gen 2[],
int count_2)

//determine the generators of the sum of two ideals

{

int 1,j,k,n;

n=0;
for (i=0; i<count 1; i++)
{

for (j=0; j<count 2; j++)

{
k=gen_I[i]+gen 2[j];
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sum_ideal[n] = k;
nt+;
}
}

cout << "\n";

}

s Create Dual of Two Arrays /////////11111111]1]]]
void create dual(int array 1[], int g 1, int gen 2[], int count 2, int dual[],
int minimum, int maximum)

{

int 1,j,n;

initialize array(dual, maximum);
for (I=minimum; i<=maximum; i++)
{
for (j=0; j<count 2; j++)
{
n=gen 2[j] +1;
if(n>g 1)
{
dual[i] = 1;
j=count 2;
continue;
}
if (array_1[n] == 0)
{
dual[i] = 0;
j=count 2;
}
else
dual[i] = 1;
}
}
}

M Find Frobenius Number —— ////1/111711111117117111111171
int find_frobenius(int group(], int g)
{

g--;

while (group[g] !=0) g--;

return g;

}
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1 Count Number of Elements  //////////1111111111111111111
int count_elements(int array[], int count)
{

inti; //index for loop.

int n=0; // count number of elements in the array

for (i=0; i<count; i++)

if (array[i] == 1)

n++;
return n;
}
s Print the Array s
void print_array(int array[], int count)
{

cout << "{";
for (i=0; i<count; i++)
if (array[i] == 1)
cout <<j<<"";
if (flags[1]!=1 && flags[10]!=1 && flags[11]!=1)
cout << count+1 << "..";
if (flags[11]==1) cout << count <<"...";

cout << "}\n\n";

1111111017117177771]1 - Print Frobenius and Number of Elements  /////////1/1/11/1/
void print_other(int g, int n)

{

cout << "The Frobenius Number is " << g;
cout << "\n\nThe number of elements is " <<n << "\n\n";

}

1IN Create the Apery Set — //111111111111111111111111111
void create_apery(int gen[], int group[], int g_s, int apery[], int count)

{
int 1,n;
apery[0] = 1;

for (i=0; i<=count; i++)

{
n=1-gen[0];
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if (n<0) continue;
if (group[i] == 1 && group[n] == 0)
apery[i] = 1;
if (i>g_s && group[n] == 0)
apery[i] = 1;
}
}

A © = (<N S s
void create_prime(int group[], int apery[], int max_ap, int prime[])

{

int 1,j,n;
prime[max_ap-1]=1;

for (i=max_ap; i>0; i--)

{
if (apery[i] == 0) continue; //do not check if not in Ap

for (j=max_ap; j>1; j--)

{
if (apery[j] == 0) continue;
n=j-i;
if (group[n] == 0)
{
prime[i] = 1;
=i
}
}
}

}

M Creat Ap* /1770000010110
void create_star(int group([], int apery[], int maximum, int star[])

{

int 1, n;

for (i=0; i<maximum; i++)
{
if (apery[i] == 0) continue;
n = maximum - i;
if (group[n] == 0) star[i] = 1;
}
}
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T Eags 7000000010000
/* flags[0] = generators of S

flags[1] = H(S)

flags[2] =1

flags[3] =1

flags[4] = [+]

flags[5] =1-J

flags[6] = J-1

flags[7] = S-1

flags[8] = S-J

flags[9] = Ap

flags[10] = Ap print

flags[11] = dual print

*/
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