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Abstract

In this paper we describe new methods for efficient and exact search (keyword and full-text) in distributed names-
paces. Our methods can be used in conjunction with existing distributed lookup schemes, such as Distributed Hash
Tables, and distributed directories. We describe how indexes for implementing distributed searches can be efficiently
created, located, and stored. We describe techniques for creating approximate indexes that can be used to bound the
space requirement at individual hosts; such techniques areparticularly useful for full-text searches that may require a
very large number of individual indexes to be created and maintained.

Our methods use a new distributed data structure called theview tree. View trees can be used to efficiently
cache and locate results from prior queries. We describe howview trees are created, and maintained. We present
experimental results, using large namespaces and realistic data, showing that the techniques introduced in this paper
can reduce search overheads (both network and processing costs) by more than an order of magnitude.

1 Introduction

This paper addresses the problem of content-based search inpeer-to-peer (P2P) networks. We use indexes on
searchable attributes to permit such searches without flooding the network. We also use cached query results,
which we callview caches, to further improve efficiency. Our work is equally applicable to systems built of
either distributed hash trees (DHTs) (e.g., Chord [1], CAN [2], Tapestry [3], and Pastry [4]), or systems built
from hierarchical directory services (e.g., TerraDir [5]), but we draw our examples from DHTs in this paper.

A DHT is a distributed and decentralized structure that allows autonomouspeersto cooperatively provide
access to a very large set of data. DHTs use cryptographic hashes to provide near-random association of objects
to sites that publish the objects to the rest of the system. Anobject is looked up by using the hash of the object
name to route to the corresponding peer, usually inO(log n) overlay hops. DHTs provide excellent balance of
routing load because paths to a given node vary widely based on the path’s origin, and because related objects
(even with only slightly different names) are randomly distributed throughout the system.

This random distribution is the strength of the DHT approach, but it also destroys object locality. A set
of objects chosen by common attributes or characteristics has its members mapped to peers throughout the
system. This distribution, together with the sheer scale and diversity of the source data, makes it impractical to
consider solutions that (even periodically) flood the network in order to evaluate queries. Similarly, flooding the
network should not be considered a practical primitive whencreating indexes designed to aid query evaluation.
Instead, such indexes should be created and maintained incrementally. Further, given the nature of DHT-based
applications, the indexes should be as distributed and as decentralized as the underlying system.

A straightforward method that satisfies the above requirements is one that maps each index entry to a peer
using a hash of the entry’s name. Distributing index entriesin this manner allows them to be managed using the
services provided by the DHTs for data objects. Among these services are transparent caching and replication,
which are used to provide fault-tolerance and high availability.
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However, the question of efficiency remains. A straightforward use of distributed indexes is potentially
quite expensive. DHTs are intended for use with extremely large distributed data sets. (Data sets with up to
1014 objects have been discussed [6].) Distributed indexes allow evaluation of single-attribute queries (e.g.,
artist="foo") without flooding, but a simple conjunctive query with two attributes (e.g.,artist="foo"
and genre="bar") typically requires the entire index for one attribute to besent across the network. The
indexes may be quite large, as their size may grow linearly with the number of system peers.

We address the shortcomings of the above approach by usingview cachingto efficiently exploit locality in
query streams and object attributes. Our work is most applicable to systems in which queries exhibit a high
degree of locality. Previous studies (e.g., [7]) have indicated a Zipf-like distribution for queries in P2P sys-
tems such as Gnutella. Our approach uses the locality inherent in Zipf-like distributions to cache and re-use
results between queries. In particular, our methods maintain not only single-attribute indexes on the search-
able attributes (e.g.,artist, album), but also conjunctive multi-attribute indexes, which we call views (e.g.,
artist and album, artist and album and title and genre). Our methods permit efficient
evaluation of conjunctive queries using these views by using a distributed data structure called aview tree. Non-
conjunctive queries are evaluated by evaluation of the conjunctive disjuncts in their disjunctive normal forms.

Results presented in Section 4 show that these techniques for evaluating queries can reduce the amount of
data exchanged by about 85%. Further, the view tree is a flexible data structure that preserves local autonomy.
The decision of what to cache, and for how long, is made locally by each peer, not dictated by a central server or
caching discipline.

The main contributions of this paper are as follows:

• We present a distributed data structure (view tree) for organizing cached query results (views) in a P2P
system.

• We describe how to create and maintain multi-attribute indexes while maintaining the autonomy of peers.

• We present methods that use cached query results stored in a view tree to efficiently evaluate queries using
a fraction of the network and processing costs of direct methods.

• We present results from detailed simulations and show the benefits of maintaining the view tree.

The rest of the paper is organized as follows. Section 2 discusses prior work. Section 3 presents our search
algorithm and our methods for creating and maintaining the view tree. Section 4 summarizes our results. We
discuss some issues like index partitioning and aggregation in Section 5. We conclude in Section 6.

2 Related Work

Our work builds on recent work on peer-to-peer namespaces, including DHTs [1, 2, 3, 4, 8, 9, 10, 11], and wide-
area directories [5]. The techniques described in this paper can be used to provide indexed search services for
all of these systems. There have been a number of other efforts to provide a search infrastructure over peer-to-
peer systems. Reynolds and Vahdat [12], Gnawali [13], and Suel et al. [14] discuss search infrastructures using
distributed global inverted indexing, where an index is built for each attribute. The model of queries, indexes,
and updates proposed in [12] is identical to the model used inthis paper: Each index maps a keyword to the set
of documents containing that keyword, while each host in thesystem is responsible for all keywords that map to
it. In [12], the authors also investigate how to use Bloom filters to efficiently compute approximate intersections
for multi-attribute queries. In this paper, we introduce the idea of result caching using view trees and discuss
how these caches can be used to answer queries. We believe that the two techniques are complementary: one
could use Bloom filters to compute the intersection of indexes after the set of useful caches have been identified.
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In [13], the author argues for storing intersections of two keywords instead of storing indexes of single keywords.
In [14], the authors propose a two-tier architecture to do P2P full-text searches using inverted indexes.

There have also been proposals to performs searches withoutglobal indexes. Tang et al. [15] and Song et
al. [16] propose schemes for semantic-based searches over the CAN [2] network. The authors of [15] extend the
vector space model (VSM) and latent semantic indexing (LSI)to hash the data to a point in the CAN network.
They show that semantically similar data items hash to points that are close to each other in the CAN network.
Search is implemented by applying the same technique on the query and flooding the neighborhood until enough
results are obtained. The authors in [16] maintain neighbor-lists for semantically similar data in the network.
They propagate the message along these neighbor-lists while searching for content. There have also been pro-
posals to build semantic overlays to improve the search in Gnutella-like networks [17, 18]. Annexstein et al. [19]
argue for combining text data to speedup search queries, at the expense of more work done attaching/ detaching
a peer in Gnutella-like networks. The indexes are kept as suffix trees.

Finally, in [20], Li et al. question the feasibility of Web indexing and searching in Peer-to-Peer systems.
They conclude that techniques that reduce the amount of datastored and transferred are required for the idea to
be feasible. We show in section 4 that our method reduces the amount of data transferred at the cost of very little
disk space and can hence be used as a strategy to make P2P indexing and searching more practical.

3 Searching Large Namespaces

3.1 Data and Query Model

We assume that objects are uniquely identified by their names. Locating an object given its name is the basic
operation supported by the P2P infrastructure (e.g., usinga DHT). Each object has associated metadata that we
model as a set of attribute-value pairs. Searching for objects by querying their metadata is the main operation
that we explore in this paper.

Our primary focus is on the distribution, maintenance, and use of indexes and view caches, and not on the
methods used for managing individual indexes. Specifically, we are interested in identifying and locating indexes
that may be profitably used to evaluate a given query, and not on the specifics of the data structures used for the
indexes themselves. Our methods are not dependent on any particulars of the underlying indexing schemes
and support equally well the identification and location of profitable B-tree indexes (for range queries) as they do
profitable hash indexes (for point queries) or R-tree indexes (for spatial queries). Similarly, our methods could be
generalized easily to more structured metadata representations (e.g., XML). To simplify our discussion, however,
we assume that attributes are boolean in this paper. Queriesare thus boolean combinations of attributes (e.g.,
a ∧ (b ∨ ¬c)). Our methods use conjunctive queries of the forma1 ∧ a2 ∧ . . . ∧ ak as the building blocks for
supporting more general queries.

3.2 Attribute Indexes

Since we wish to evaluate queries without flooding the network, we need a method for associative data access.
Attribute indexes provide this base functionality by mapping attribute names to objects (object names) with that
attribute. Attribute indexes can be stored in the P2P network in a specially designated part of the namespace.
For example, the indexes for attributesmanufacturer andprice are named/idx/manufacturer and
/idx/price, respectively. (We use/idx as the reserved namespace for indexes; in practice, a more obscure
name is appropriate.) With this naming scheme, locating indexes is no different from locating other objects in
the P2P system. Further, this scheme is applicable to both hash-based and tree-based methods for name-based
search. For example, if the index in question is/idx/price, the index could be stored in the peer determined
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by the keyk = Hash(/idx/price). In hierarchical systems like TerraDir, the index is storedin the node with
fully qualified name/idx/price.

3.3 Materialized Views

While attribute indexes permit single-attribute queries to be evaluated without flooding the network, evaluating
multi-attribute queries may require large sets of the object identifiers matching one attribute to be transferred
over the network to the sites of the other attribute indexes.To avoid such large data transfers, our method
uses cached query results, orviews. More precisely, a view is the materialized result of a conjunctive query.
(Views for non-conjunctive queries are obtained from the disjunctive normal form of the queries.) The idea
of using cached results and materialized views to enable faster query processing has beens studied extensively
in the database literature (e.g., [21], [22], [23]) and is also related to the problem of answering queries using
views (e.g., [24], [25]). However, as we describe below, when views are scattered over a P2P network instead
of located at a centralized server, the tasks of view maintenance and query evaluation using these views pose
additional challenges.

We now describe the task of locating materialized views thatare beneficial to the evaluation of a query. For
a given query, this task may be thought of as consisting of twointerdependent subtasks. The first task, which
we call theview location problem, consists of determining the materialized views that existin the network,
preferably restricting our attention to those that are relevant to the query. This task highlights an important
difference between this problem and the well-studied problem of answering queries using views in the database
literature. Database methods assume that the set of views iswell known and typically small, while in a P2P
environment this set is generally unknown and large. The second task, theview selection problem, consists of
determining a good query plan based on the available materialized views (and statistics such as cardinalities of
views and selectivities of attributes). Unlike prior work on this problem, we focus on methods that are efficient
in a P2P environment without a central repository of view metadata.

At first glance, it may appear that the view location problem can be solved by assigning acanonical name
to each view (so that equivalent expressions of the same vieware unified) and using the facilities of the P2P
network for locating the named views. For example, if we render views in canonical form by listing the attribute
in sorted order of their names, equivalent viewsa∧ c∧ b andb∧a∧ c both map toa∧ b∧ c. Unfortunately, this
idea solves only part of the problem: locating a view that is equivalent to a given view. For example, it permits
us to locate a viewa∧ b∧ c in response to a request fora∧ c∧ b, using a canonical name of the form/idx/abc
(with attribute names sorted lexicographically, in general). However, this idea does not help us locate the views
that are helpful in evaluating the above query in the absenceof the viewa∧ b∧ c. The number of views that are
useful for answering this query is exponential in the size ofthe query (number of named attributes) even without
the repetition of equivalent views. For example, the query may be answered by using viewsa ∧ b andb ∧ c or
usinga ∧ b anda ∧ c, or usinga ∧ b andc, and so on.

Obviously any method that relies on checking the presence ofall views that are relevant to a query is not
practical. Hence, we must restrict the set of views we consider. Some of these problems could be circumvented
by maintaining a centralized list of all materialized viewsin the network. In a P2P network, this strategy would
translate to one peer storing and maintaining all indexes, as well as responding to all index lookups. Such a
design has several problems. Not only is it unfair to the index-handling peer, it also creates a single point of
failure and produces a performance hotspot.

3.4 The View Tree

Our solution to the above problems is based on a distributed data structure we call theview tree. The view tree
maintains a distributed snapshot of the set of views materialized in the network, allowing efficient location of the
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Figure 1: Example of a View Tree. Note that a nodea1a2 . . . ak represents materialized viewa1 ∧ a2 ∧ . . . ∧ ak. The
picture also depicts a materialized viewa ∧ c ∧ e ∧ g being inserted into the view tree.

views relevant to a query. Below, we describe the structure of this tree, the search algorithm used to locate views
for a query, and the methods used to maintain the tree as both data and views in the network change.

Each node in a view tree represents a materialized conjunctive view. That is, each node corresponds to the
cached results of a conjunctive query of the forma1 ∧ a2 ∧ . . . ∧ ak, whereai are attribute names. For brevity,
we refer to views and their corresponding view-tree nodes assimplya1a2 . . . ak, the conjunctions being implicit.
The label l(n) of a noden in the view tree is the view it represents. Each view tree nodeis, in general, located
at a different network host. Thus traversing a tree link incurs a network hop. (Our methods permit several view
tree nodes to be mapped to the same host; such aggregation of nodes results in only improved performance.)
Figure 1 depicts an example of such a view tree. The root of thetree is labeled with the special index prefix
/idx. The first level of the tree represents all the attribute indexes (single-attribute views) in the network. The
multi-attribute materialized views are mapped to nodes at greater depths. For example, the nodebc corresponds
to the viewb ∧ c and the nodefcb corresponds to the viewf ∧ c ∧ b.

In order to identify logically equivalent views (e.g.,bac, cba, andbca), we refer to each view using acanon-
ical name. The simplest choice for such a canonical name is the lexicographically sorted list of attribute names
(abc in our example). However, this scheme is likely to result in very unbalanced trees. Subtrees rooted at nodes
labeled with attributes that occur early in the sort order would likely to be much larger than those corresponding
to attributes later in the sort order. This bias would createrouting imbalances and hotspots. We avoid this prob-
lem by defining canonical names using apermuting functionon the attributes of a view. The function is chosen
so that it is equally likely to generate any one of thel! permutations of a view withl attributes. (Methods for
generating such permutations are well-known [26].)

We may think of the view tree as a modification to a trie over thealphabet of attribute names. In the trie,
each node is labeled with a single attribute and the depth of anode equals the number of attributes in the view
it represents. The view tree uses a PATRICIA-like scheme in which sibling-less nodes are merged with their
parents, concatenating their node labels [27]. Thus each interior node of the tree has at least two children. We
define theresidual labelr(n) of a view tree noden to be the suffix of its label that is not included in its parent’s
label. That is,l(n) = l(p(n))||r(n), wherep(n) is n’s parent and‖ denotes concatenation.

We illustrate this scheme in Figure 1. Suppose we want to insert the viewaceg into the view tree. Further,
suppose that the permuting function applied to this view results in eagc. The parent of this view in the view
tree is the node corresponding to the longest prefix ofeagc, i.e., eag. As illustrated by Figure 1, finding the
parent of a new view when it is inserted into the view tree is simple: we follow tree links corresponding to each
attribute in the view, in order; the node that does not have a link to the required attribute is the parent of the node
representing the new view.
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1: let q = a1 . . . am {input query}
2: let c1, . . . , ck be the children ofn in view tree
3: qw ← q {remainder query}
4: rw ← ∅ {useful views}
5: while qw 6= ǫ ∧ ∃i, j, s1, s2 : s1‖ai‖s2 = r(cj) do
6: (i∗, j∗)←min{(i, j) :∃s1, s2 :s1‖ai‖s2 = r(cj)}

7: rw ← rw ∪ {r(cj∗)} {add child’s view}
8: r′ ← S(cj∗ , ai∗+1 . . . am) {computed atcj∗}

9: qw ← qw ⊖ r′ {remove newly covered attributes}
10: rw ← rw ∪ r′ {add recursively found views}
11: end while
12: return rw

Figure 2: Search for queryq at noden: S(n, q)

3.5 Answering Queries using the View Tree

Given a view tree and a conjunctive query over the attributes, finding the smallest set of views to evaluate the
query (using only the views) is NP-hard even in the centralized case, by reduction fromExact Set Cover[28].
Thus, an exact solution is not practical, especially in a distributed environment. Not surprisingly, our method for
answering queries using views materialized in a P2P networkis based on heuristics. However, it possesses the
following desirable properties:

1. Minimum utility: If the network contains a materialized view that is logically equivalent to the query, our
method is guaranteed to find this view. This property ensuresa minimum utility for each view because, at
the very least, it benefits future invocations of queries that are logically equivalent to query whose results
are cached. Of course, the benefit of materialized views in not limited to such queries. As indicated by our
experimental results in Section 4, views are often useful for multiple queries.

2. Forward progress: If there is no view equivalent to the query, then each view tree node that is visited by
our method results in locating a view that contains at least one new query attribute (one that does not occur
in the views located so far). This property not only limits the number of nodes visited to the length of the
query (number of query attributes), but also yields tangible incremental benefit at each step of the process,
allowing graceful early termination. (Recall that a query for attributes not covered by any materialized
views may always be answered by using the attribute indexes,albeit at higher cost.)

Our search algorithm is outlined in Figure 2. Given a queryq (in the canonical form described earlier), the
algorithm is invoked asS(t, q), wheret is the root of the view tree. Recall thatl(n) is the view at noden and
r(n) part of l(n) that is not in the view ofn’s parent. We use the notations ⊖X to denote the string obtained
by deleting froms the characters that occur in setX, ands1‖s2 to denote the concatenation of stringss1 ands2.
The computation ofS(n, q) at a noden is based on selecting a set of suitable children to which the computation
is propagated, recursively. Results from the children indicate the attributes ofq that have been covered. As noted
earlier, an exhaustive search is impractical. It is easy to verify that the test on line 5 ensures that our method has
the exact match and forward progress properties described earlier. The rest of the pseudo-code is concerned with
bookkeeping of the attributes of the query that have been covered by the views encountered so far.

Figure 3 depicts the actions of our method for the querycbagekhilo. The circled numbers in the figures
denote the order in which computation occurs at view tree nodes. (Recall that each view tree node maps to a
different network host in general.) Intuitively, the algorithm first locates the best prefix match, which iscbag.
Even though the longer prefix,cbage is not materialized, thecbagh child of cbag is useful for this query, and
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Figure 3: Example of a search using the View Tree. The search proceeds along the direction marked with arrows
visiting the nodes in order they are numbered.

thus this node is visited next. The algorithm is now in the forward progress component of the search and proceeds
in depth-first manner visiting nodes that represent views that cover at least one uncovered attribute. Also note
that nodecbe, the query does not proceed to its childcbeh because the node does not have any attribute that has
not already been covered. The query can finally be answered using the intersection of the viewscbaghi, cbe, k

andlo.

3.6 Improving Query Plans

Recall that a query plan as determined by our search algorithm described so far is essentially a cover for the set
of attributes in the query using the sets of attributes occurring in the views. We may define an optimal query
plan as one that uses views that contain as few tuples as possible, resulting in the smallest data exchange. Given
the hardness of even the simpler set-cover problem, insisting on such an optimal query plan is not realistic.
However, our preliminary experiments revealed that substantial benefits may be realized by avoiding the plans
that fare particularly badly by this metric. In the absence of global data statistics, we estimate the size of a view
using the number of attributes in the view definition. Since our queries are conjunctive, views with a larger
number of attributes are expected to be smaller, and thus preferred in query plans. We therefore implemented a
modified version of our search algorithm that tries to find a query plan in which each view has at leastt attributes,
wheret is parameter that may be set on a per-query basis at runtime. The essential difference from the earlier
search method is the stopping condition: the earlier methodstops when all attributes in a query are covered. Our
modified search method stops when either all attributes in the query are covered with views of length (number of
attributes) at leastt or when none of the nodes explored so far has a child that represents a view of lengthl that
can be used to replace a view of lengthl′ < t in the current plan.

Figure 4 depicts the actions of the modified method on the query from the previous example. We use a
thresholdt = 6, implying that the method attempts to evaluate the query using views of at least six attributes
each. The search proceeds fromcbe to cbeh (even thoughcbeh is not in the canonical order) because the latter
covers more attributes. In this process, it also findscbehlo. However, it now starts searching for a six-attribute
view that containsk. It does so by visiting every attribute index not yet visited. Since there are no six-attribute
indexes containingk, the search visits nodes for all 10 attributes before deciding on usingcbaghi, cbehlo and
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Figure 4: Example of the modified search algorithm. The search still proceeds along the direction marked with arrows
visiting the nodes in the order they are numbered.

k to evaluate the query. This modification does not have the forward progress property of the earlier method
because it may visit nodes that do not cover any additional attributes. However, such nodes result in increasing
the length of a view used to cover the query. Therefore, at most |q| · t additional nodes are visited. Typically,
the additional query planning work required by this change is small, and is offset by the increased efficiency of
query processing resulting from the use of longer views.

3.7 Maintaining the View Tree

Since the view tree stores materialized views of network data, there is an implicit consistency requirement: the
contents of a materialized view must be identical to the result of evaluating the corresponding query directly
on the network data. Thus, the view tree must be modified in response to two kinds of events. The first kind,
which we calldata modifications, are insertions, deletions, and updates of network objects. The second, which
we callview modifications, are creations and deletions of materialized views, including deletions resulting from
the departure of network hosts.

3.8 Data Modifications

When an object is inserted into the network, views that name one or more of its attributes should be updated.
This update procedure need not be invoked immediately for most applications. For example, the presence of a
document that does not appear in the indexes and views for several hours is not a serious problem for typical
text-search applications. Further, not all indexes and views need be updated at once. Since shorter views (fewer
attributes) are likely to be used by a greater number of queries, the update procedure may prefer to update them
sooner than longer views. Therefore, when an object’s insertion is to be reflected in the view tree, we update
views in order of increasing length: first, all single-attribute views (i.e., the attribute indexes) over the object’s
attributes; next, all two-attribute views over the attributes; next, all three-attribute views; and so on.

The procedure for updating indexes and views in response to an object’s deletion is completely analogous to
the insertion procedure. Updates triggered by deletions can be postponed even longer than those triggered by
insertions because the index entries for the nonexistent object can be flagged with a tombstone in a lazy manner
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Figure 5: Maintaining the tree when a new node joins.

when they are dereferenced by applications. Similarly, when a document is updated, we follow the deletion
procedure for the dropped attributes and the insertion procedure for the added attributes.

3.9 View Modifications

The policy decisions of which views to cache and for how long are made autonomously by each host in the
network using criteria such as query length, result size, and estimated utility. Each host may follow its own
policy; our methods do not mandate any in particular. For example, a host may decide to cache the results of
queries with at most eight attributes, provided each such query contains at least one attribute from a certain hot
set and that the corresponding result contains at most ten thousand tuples.

When a view is to be cached, the view tree is searched for the canonical name of the view by following tree
branches corresponding to the attribute names in the view, in sequence (as in a standard PATRICIA search). If
a match is found, it means that this view was inserted by a concurrent view-insertion operation, and the current
insertion is skipped. Serialization occurs at each node on the path from the root of the view tree to the node for
the view with a canonical name that is the longest existing prefix of the view being inserted. Necessary changes,
such as moving children pointers to the new node, are performed at this time.

Figure 5 depicts the viewaeg being added to the tree. The deterministic permutation mapsaeg to eag, and
the exact prefixea is found in the tree. The old child ofea, eagc, now becomes a child of the newly inserted
nodeeag.

When a viewv is to be deleted, we begin by locating its noden in the view tree. Ifn is a leaf of the view tree,
it is simply removed from the tree. Ifn an interior node, then its parent becomes the new parent ofn’s children.
We also assume that the parent and children exchange heartbeat messages to handle ungraceful host departures.
In the case of such failure, the child will attempts to rejointhe tree by following the insertion procedure. Thus,
failures result in only temporary partitions from which it is easy to recover.

3.10 Replication

Given that some of the attributes are more popular than others, it is reasonable to expect hotspots among the
attribute indexes and the nodes in the view tree. Our system uses the adaptive replication protocol described in
(citation omitted for anonymity) to handle such hotspots and to prevent the overloading of peers hosting popular
indexes. Every peer that holds an attribute index has the ability to request the creation of replicas when its load
exceeds a threshold.

Index lookup requests contain data describing the load on the requesting host. While servicing the index
lookup request, the receiving host uses this load information to decide if it wants to replicate. Overloaded peers
attempt to create replicas in peers that have loads at least 50% lower. Hosts with replicas may create further
replicas, resulting in atreeof replicas for each index. Figure 6 shows the replica trees for viewsbag andeagc.
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The numbers in the replica tree represent the server IDs where the view is replicated. The parent of a peer in this
tree is the peer from which a replica creation request was received. In the figure, the views at server IDs 613 and
132 created the first replicas and hence are the parents of their respective replica trees.

A peer that receives a replica creation request is not obligated to accept it. If it rejects the request, the
requesting peer waits until it finds another suitable candidate. If it accepts the request, it obtains the index data
from the requesting peer and sends it an acknowledgment whenthe indexes have been added. On receiving this
acknowledgment, the requesting peer adds a pointer to the responding peer to its list of replicas. This pointer
is also propagated to the requesting peer’s parent, if any, in the view tree for this index. When a parent in the
view tree receives an index lookup request, it may choose to forward it to one of the replicas for which it holds
pointers. Note that replication works orthogonally to the search system. As far as the view tree is concerned,
all the replicas of the view are equivalent and can thereforebe considered as a single node. Modifications to the
index are propagated transparently to all the replicas using the replica tree. When a replicated node is deleted
from the view tree, its children are not grafted to its parentas described in Section 3.7; instead, they are left in
place because they are reachable from the replicas.

4 Results

4.1 Data Source and Methodology

We chose sets of documents, uniformly at random, from the WT-10g data set from Text REtrieval Conference
(TREC) Data as the source data for our experiments. We used HTML pages that exported thekeyword meta-
tag, and used 64 thousand pages for each experiment. The queries were generated as follows. First, we chose
a representative sample of Web queries from the publicly available search.com query set. Unfortunately,
thesearch.com query set does not provide an associated document set over which these queries would be
valid. Therefore, we generated queries with the same statistical characteristics as thesearch.com queries
using keywords from the TREC-Web data set. Specifically, we used thesearch.com queries to generate
the distribution of number of attributes per query. We were also given access to 32 thousand Web queries
by the IRCache project and we found that the characteristicsof the IRCache andsearch.com queries were
comparable. We ran simulations with both data sets with similar results. For brevity, we present results from only
the largersearch.com query set here. We used the distribution of keywords in the set of source documents
to map keywords to each attribute. For multi-attribute queries, we generated a set of 50,000 popular keyword
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digrams, trigrams, etc., and used these, uniformly at random, as the input query set. The popular 50,000 keywords
covered all possible multi-attribute queries with non-null results for our source datasets.

We have implemented view trees on both a controlled testbed,and on a detailed packet-level simulator. In
our testbed, we have conducted experiments with the all of view tree algorithms, and have tested the replication
and tree re-construction protocols. These experiments were conducted on a 40-node testbed, over which we
exported and searched 4096 documents selected from the TRECdatasets. However, the true benefits of the
view tree are only realized on large deployments (hundreds or thousands of servers) of the scale not feasible
in our local testbed. We therefore implemented a packet-level simulator to experiment with large system sizes.
The simulator and implementation showed remarkable agreement for the small networks that both could run.
The results in the rest of this section are from much larger simulated networks (nominally 1000 servers), with
simulation parameters as detailed below.

4.2 Simulation Setup

We ran each experiment with 500,000 queries; this number wassufficient in all experiments for the caching
behavior to stabilize. For each experiment, we use aworking set, which is a set of unique queries from which
some fraction of the overall queries are drawn. We used a working set of size 50,000, from which 50%, 90%,
or 99% of the queries are constructed. We used the 90%-to-working-set stream of queries as representative of a
Zipf input. Henceforth, we refer to this stream as theZipf input. All queries, including the queries in the working
set, were generated using the scheme described above. However, 90% of the queries were always directed to the
queries in the working set, while 10% were unconstrained.

The base system for our experiments consisted of 1000 servers, exporting 65,535 data items and a maximum
of 15 attributes per data item. The query inter-arrival timewas exponentially distributed with an average of 10
milliseconds. We assume that 10% of servers (approximately100) fail over the period of all the experiments,
unless otherwise noted. We also assume that a server that fails does so ungracefully; i.e. it does not inform peers
about its departure. We further assume that a failed server does not recover during the simulation. The upper and
lower thresholds for replication are set to 0.75 and 0.3 respectively, while the capacity of each server is assumed
to be 10 queries/second. Obviously, this is an artificially low value, but we had to resort to such scaled down
capacities in order to reduce the running time of the experiments.

We assume that hosts allocate disk space for the caches separately from the disk space for the attribute
indexes. In our experiments, we noticed that single attribute indexes have 600,000 tuples all together. Since we
use 1000 servers, a uniform distribution of data would lead to 600 tuples per server for holding the indexes. In
practice, the distribution is nonuniform and some hosts mayhave to allocate more than this number to hold the
attribute indexes. Since we are only interested in the spacetaken by the caches we create, the disk space used
by the attribute indexes is not important in our experiments. However, we allocate disk space in multiples of
600 tuples for our caches. Specifically, unless otherwise mentioned, we assume that disk space for 600 tuples is
set aside for the view caches at each server. Once again, in actual deployment, we expect the disk capacities of
servers to be much larger as well.

4.3 Evaluation Metrics

The view tree algorithm described in this paper is specifically targeted towards efficiently answering multi-
attribute queries. In fact, as long as the single attribute indexes are kept current, the view tree is not used for
any single attribute query. As shown in Figure 7, 36% of our queries are single attribute queries, and these were
faithfully executed in our simulator. However, the contributions of this work pertain to multi-attribute queries,
which we evaluate using three metrics:
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Figure 7: The distribution of keywords in queries in our generated input and in traces obtained from search.com and
IRCache.

• Number of tuples intersected -Our primary metric is the number of tuples intersected when evaluating
multi-attribute queries. There are two points to note:

– In our results, we report the number of tuples transferred between peers for query evaluation, and not
the number of tuples transferred as the result to the query. Larger indexes will have to be intersected
when a view tree is not used, since multi-attribute indexes,which are inherently smaller, are not
available.

For our data, the average sizes of the different indexes are shown in Table 1. If an exact result is
required, then the number of tuples intersected is also an upper bound on the number of tuples that
must be transferred between hosts. Thus our metric represents a worst case for the view tree.

– If an approximate method (e.g., [12]) is used, then it is not necessary to transfer large indexes over the
network. It is sufficient to transfer the approximate indexes (e.g., Bloom filters) to a single location
where the intersection is computed. However, the number of tuples that must be processed is still
equal to the number of intersected tuples. Thus, this metricalso provides a lower bound on the
amount of processing that must be done by hosts in the search network to answer a query.

• Storage cost -We report the number of tuples in the single- and multi-attribute indexes stored in the
network. Once again, the particular storage requirements are entirely a function of the input data set and,
in our experiments, conform to the averages shown in Table 1.The tuples in the single-attribute indexes
must be stored if exact results for these attributes are required without flooding the network. However, the
multi-attribute indexes are not required for correctness.We explicitly account for the storage required for
multi-attribute indexes and experiment with different replacement strategies for these indexes.

• View maintenance overhead -We also model updates to the data. Specifically, we consider attribute in-
sertion, deletion, and update. New attributes, for both insertion and updates, are chosen using the original
keyword distribution generated from the complete source data set. For deletion, attributes are selected uni-
formly at random. Both single- and multi-attribute indexeshave to be updated as data items are inserted,
updated, or deleted from the namespace. We present results quantifying the number of messages that are
required to update the attribute indexes. We specifically account for the number of messages that are sent
directly as a result of maintaining the view tree. Once again, we assume the worst case scenario in which
each index is hosted by a different host. Thus, the overheadswe present represent an upper bound on the
number of messages and tuples that would have to be transferred in a deployed system.
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# of 90% locality Random Queries
attributes min avg max min avg max
1 1 29.38 6658 1 29.38 6658
2 0 33.39 3139 0 7.85 3139
3 0 26.55 1942 0 0.31 1118
4 0 2.73 1918 0 0.01 111
5 0 3.91 753 0 0.00 2
6 0 0.00 0 0 0.00 0

Table 1: The minimum, average, and maximum sizes (number of tuples) ofn-attribute indexes, when 90% of the
queries are from a set of 50,000.
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Figure 8: Caching benefit by level.

There are a number of other metrics we have analyzed that are of academic interest. They do not intrinsically
account for overheads or performance, but instead help us understand the system better. These include number
of indexes created, multi-attribute index hit rates, and index replacement rates when storage bounds are enforced.
We instrumented our simulator to log these numbers as well, and report them below.

4.4 Utility of View Caches

Our first set of experiments studies the benefit of maintaining the view tree. These experiments used our base
system and 500,000 queries. We ran experiments with all the query streams: 50%, 90%, and 99% generated from
a working set of 50,000 queries, and a random query stream. Figure 8 depicts the number of tuples transferred
for query evaluation, for different levels of caching for all the query streams. They-axis depicts the normalized
number of tuples transferred for each level of caching indicated on thex-axis. They-axis is normalized by
setting the number of tuples transferred for the single-attribute indexes to one. The number of tuples actually
transferred for the single attribute indexes was 60.89M forthe random queries, 227M for the 50% case, 437.31M
for the 90% case and 445.52M for the 99% case.

The figure illustrates the benefits of maintaining a view tree: maintaining only the 2-attribute indexes reduces
the number of tuples transferred for the skewed inputs by 82%(from 437.3M for attribute indexes only to 72.9M
tuples for caching 2-attribute indexes). Caching all the views further reduces the intersection overhead to about
85% of the original (from 437.3M to 67.4M). The same trend is repeated for all other skewed query streams as
well.
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Figure 8 also indicates that even the random set of queries benefit from the view tree, with a 45% reduction
in the number of intersected tuples. This result may be counterintuitive, since there is no locality in the queries,
but is explained by the following: if two of the requested attribute indexes are large and their intersection is
small, then storing the result in a cache can reduce the data that is transferred while computing any new query
that requires these two attributes. As Table 1 indicates, for the random case, the average size of indexes with two
or more attributes is much lower than that of single-attribute indexes.

4.5 View Maintenance: Updates

Zipf queries Random queries

# of # of Extra Reduction in # of Extra Reduction in
Updates Updates data transferred Updates data transferred
500 K 469.7 K 349.55 M 390.6 K 29.26 M
50 K 82.82 K 403.55 M 62.43 K 30.60 M
5,000 9,078 409.66 M 5,840 30.74 M
500 877 410.19 M 674 30.89 M

Table 2: Update overhead for 500,000 queries. All the results are in number of tuples. Zipf refers to 90% of the queries
directed to the 50K working set.

Table 2 summarizes the cost and benefit of maintaining the view tree. In these experiments, we cache all
views (which corresponds to the worst case for update overheads) and vary the number of updates. In each
update, an attribute is added to or deleted from an object. Weperform one update for everyk queries where
k = {1, 10, 100, 1000}. The number of actual updates performed depends on the number of caches in the
system and the replicas of these caches. In the table, we present (1) the number ofextra updates that have to
be performed to maintain the view tree, and (2) the reduction—due to the view tree— in the amount of data
transferred to answer the queries. From the table, it is clear that even for unrealistically high update rates (one
update per query), the view tree update overhead is essentially negligible (about 1% in the very worst case).

Note that in general, the number of updates is higher in the skewed query stream. This is because each
update has to propagate to more caches and replicas. Of course, as is evident from the table, this small increase
in number of updates is quickly dwarfed by the savings due to the cache hits in the query phase.

4.6 Effect of Disk Space

In this experiment, we quantify the effect of the amount of disk space caches on the efficacy of the view
tree. Recall that in our simulations, the nominal amount of disk space is 600 tuples. Assumek denote this
unit (600 tuples), and in Figure 9, we show how well the view trees work for disk space allocations ofk =

{0.25, 0.5, 1, 2, 4, 8}. The figure also contains a result with no replacements (unbounded disk space) (k =∞).
As expected, the number of tuples exchanged to resolve a query reduces as the amount of disk space increases
(because there are more direct cache hits). With locality inthe query stream, the number of tuples exchanged
drops to 36% with onlyk = 0.25. Also, for our experiments, atk = 8 the performance is essentially equivalent
to having unbounded space. Lastly, we note, these results are from experiments performed with both replication
(which increases disk space requirements) and server failures (which decrease the total available disk space).
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Figure 10: Query processing with server failures.

4.7 Effect of Server Failures

Recall that we do not assume that a failing server updates state information. Instead, its peers discover the failure
independently and update their own states. We performed experiments to analyze the effect of result caching
and adaptive replication on reliability in the face of server failures. We used no caching and no replication as
the base case and used a Zipf query stream. In each run, the number of failing servers ranged from 50 to 500.
As Figure 10 illustrates, result caching increases the number of successful queries (by about 35,000). With the
addition of adaptive replication, we see improvements overthe base case by as much as 20% when there are 50
failures and 15% when 500 servers fail.

Figure 11 summarizes our experimental results on the effectof adaptive replication and view caching on the
number of queries successfully answered. Here, 500K queries come into the system of 1000 servers, with 100
servers failing over time. As the graph shows, the replication scheme increases the number of queries answered
from 69% to 91% when only attribute indexes are stored, and from 76% to 92% with all views cached. However,
the scheme does not perform very well with random queries, attimes performing a little worse than the no
replication case. This result is due to the fact that when there is query locality, the load on a server is due to
the popular indexes and hence they are replicated. When there are failures, this replication increases the chances
that a query to these indexes is answered. Locality also explains the increase in the number of successful queries
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Figure 11: Adaptive replication helps answer more queries when there is locality in the query stream.

with no replication. When there are failures, the greater the amount of search required, the higher the probability
of not finding an index. Caching views reduces the amount of search needed to answer queries with locality.
The fluctuations in the replicated case are due to indexes having to be replaced to accommodate the replicas in
the available disk space. In this process, some caches of unpopular keywords are lost and hence queries to to
the attributes in those caches cannot be evaluated. Note that this happens only when the single attribute indexes
corresponding to the requested attributes are also lost dueto server failure.

In the random case however, replication does not necessarily replicate the requested index, and so does not
help availability. On the contrary, replication might leadto the replacement of the requested index from the
cache.

4.8 Upper Bounds on Query Performance

In order to further quantify the effect of server failures and limited disk space on query performance, we com-
pared our results with those for a network with no failures and unbounded disk space (labeledbest case). We
used two query streams: random and Zipf. We also varied the maximum number of attributes in a cached view
for each run.

Figure 12 summarizes the results. In the best case, 2-attribute views and a Zipf query distribution results in
approximately 90% reduction in data transfers. This numbergoes up to 95% when we store all the materialized
views. A more realistic system, with 10% of servers failing and diskspace equivalent to 600 tuples, still provides
significant benefit (e.g., 85% reduction for the Zipf input when we cache all the views).

5 Discussion

5.1 Limiting the fanout in a hierarchical system

In a hierarchical system, that uses tree structures for locating objects by name (such as the TerraDir), a naive
application of the index-location method is likely to causeperformance problems due to overloading of the
/idx node, which has one child node for each attribute known to thenetwork. A more pragmatic approach,
and one we use, is to limit the fan-out of the/idx node and other nodes in the indexing namespace. A number
of data structures suggest themselves for this purpose. Forexample, a structure such as thedB-treedescribed
in [29] can be used to limit fan-out and maintain a balanced tree (thus bounding lookup cost). We may also
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use methods based on distributed linear hashing, such as LH*[30]. Note that this problem does not afflict the
hash-based schemes.

In our current implementation, we use a simpler method. Initially, attribute indexes are inserted in the names-
pace using the names suggested above. After the fanout of the/idx node reaches a threshold (which need
not be fixed in advance), index insertions result in the creation of nodes at depth greater than one in the/idx

namespace. We may describe the change as follows: A new indexnode is temporarily added to the namespace
as a child of/idx. The namespace/idx/* is then searched for a set of nodes that share a longest common
prefix. A new node labeled with this prefix is inserted as a child of /idx and parent of the group of indexes. A
similar procedure is used to insert additional interior nodes in the namespace whenever the fanout of a node gets
too large. (Nodes may use different thresholds or other methods to determine the limits on fanout.)

The above method for inserting interior nodes into the/idx/* namespace separates a set of nodes that
share a longest common prefix. This choice is motivated by thedesire to split off as large a portion of the index
namespace as possible, without incurring major restructuring costs. An alternative scheme is to separate a set
of nodes of largest cardinality, in order to reduce the fanout by as large an amount as possible in one step. Of
course, we could also use a balanced tree data structure, butour experiments (Section 4) suggest that this simple
scheme suffices.

5.2 Index Availability

If the index for an attribute were to become unavailable due to node or network failures, the performance of
queries containing the attribute would be greatly hurt. In the worst case (e.g., a query that searches only on the
attribute whose index is unavailable), it would be necessary to flood the network in order to generate complete
results. Such flooding is not required for all queries that mention the attribute whose index is unavailable. For
example, if the index ona fails, the querya ∧ b ∧ c can be evaluated by first evaluating the queryb ∧ c and
then checking each object in the result fora. Although there is no flooding in such cases, a substantial amount
of additional work is incurred because a potentially large number of objects must be retrieved and checked for
the attributea. When objects are substantially larger than names (e.g., multimedia objects or large XML files),
retrieving objects in this manner for query processing addsa large amount of network traffic. Therefore, it is
important that attribute indexes have high availability.
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5.3 Partitioning Indexes

So far, we have assumed that all attribute indexes are small enough for each replica to fit on a single host.
For some applications, this assumption may not hold. For example, in a P2P full-text search environment, the
inverted file indexes for commonly occurring words are likely to be several gigabytes in size. It is possible to
cope with large indexes by provisioning capacity at a few nodes. However, such a solution reduces the flexibility
of the P2P system and we do not consider it further here. Instead, we cope with large indexes by splitting them
into components that are small enough to be stored on single hosts.

An index is split by logically partitioning the namespace and storing the index entries in each partition
separately. For example, in a DHT environment, we can split index entries using the least-significant bit in the
hash value. The partitions of an index may be further partitioned (e.g., by splitting using other bit positions). The
method for managing the partitions of an index is very similar to the method used for managing replicas. Just as
replicas may spawn their own replicas, index partitions maybe further partitioned. Pointers to index partitions
are treated analogously to pointers to replicas, with one difference: While a lookup is forwarded to only one
replica, it must be forwarded to all partitions of an index.

5.4 Approximate Indexes

We describe a technique for creating approximate indexes which can be used by individual nodes to aggregate
index state from multiple distinct indexes. Anapproximate indexis used to locate data with a given set of
attributes. However, unlike a precise index, the approximate indexes may not directly point to the set of data
items that have the specified attribute; instead, an extra post-processing step must be employed at run-time
to fully resolve any given query. The post processing step may be in the form of a set of directed queries in a
constrained portion of the namespace, or may require filtering useful data from a superset of the tuples that match
the requisite set of attributes. However, the approximate indexes consume far less space, and are an essential
mechanism for efficiently available resources, especiallyin cases when the number of attribute indexes is very
large, and there are not enough resources in the system to store all attribute indexes.

Consider a hierarchical namespace, and let serverS store an indexIA for attributeA. Let data items
/a/b/c/d/e, /a/b/c/d/h, and/a/b/c/d/f be part of indexIA, and assume that serverS wants to aggregate
this index. Instead of storing state about each item individually, nodeS may aggregate items/a/b/c/d/[e, f, h],
as/a/b/c/d/⋆. When this index is used, a sub-query under the/a/b/c/d must subsequently be resolved for
attributeA in order to find the individual data items that belong to the index. In general, a server can aggregate
along the namespace by storing a sub-tree pointer for sets ofitems with common predecessors. The level of
aggregation is be controlled by finding predecessors “higher up” in the namespace. Such aggregation along the
namespace trades off accuracy versus storage, but still provides an efficient mechanism searching using attributes.

In a flat namespace, e.g. a DHT, it is not possible to aggregatealong the namespace. Instead, we must
aggregate along different axes. For example, it is possibleto take two attribute indexes, sayIA andIB, for
attributesA andB, respectively, and store a single index for attributeA ∨ B. Any query for attributeA is
satisfied using this “unified” index which provides a superset of the set of data items that have attributeA. In
order to completely satisfy the query for attributeA, a post-processing step must be performed in which each
item inIA∨B is further checked for attributeA.

6 Conclusion

We have described the design of a text/keyword search infrastructure that operates over distributed namespaces.
Our design is independent of the specifics of how documents are accessed in the underlying namespace, and can
be used with all DHT-like P2P systems. Our main innovation isthe view tree, which can be used to efficiently
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cache, locate, and reuse relevant search results. In this paper, we have described how a view tree is constructed
and updated, and how multi-attribute queries can efficiently be resolved using a view tree. We have also described
how individual views can be replicated to handle hotspots and overloads, and have described techniques for
reconstructing the tree upon failures.

Our results show that a view tree offers significant benefits over maintaining simple one-level attribute in-
dexes. For trace data, the view tree reduces multi-keyword query overheads by over 80%, while consuming little
resources in terms of network bandwidth and disk space. Our results show that a view tree permits extremely
efficient updates (essentially zero overhead), and can produce significant benefits when servers fail in the net-
work. Overall, our results are compelling, and show that view trees efficiently enable much more sophisticated
document retrieval on P2P systems than is currently feasible.
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