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Abstract

In this paper we describe new methods for efficient and exaoth (keyword and full-text) in distributed names-
paces. Our methods can be used in conjunction with exisisighilited lookup schemes, such as Distributed Hash
Tables, and distributed directories. We describe how iesléar implementing distributed searches can be efficiently
created, located, and stored. We describe techniqueseatilng approximate indexes that can be used to bound the
space requirement at individual hosts; such techniquegaatieularly useful for full-text searches that may requr
very large number of individual indexes to be created andhtamied.

Our methods use a new distributed data structure calleditive tree View trees can be used to efficiently
cache and locate results from prior queries. We describeview trees are created, and maintained. We present
experimental results, using large namespaces and real@t, showing that the techniques introduced in this paper
can reduce search overheads (both network and processitgj by more than an order of magnitude.

1 Introduction

This paper addresses the problem of content-based seapeeiifto-peer (P2P) networks. We use indexes on
searchable attributes to permit such searches withoutifigatle network. We also use cached query results,
which we callview cachesto further improve efficiency. Our work is equally appliteiho systems built of
either distributed hash trees (DHTS) (e.g., Chord [1], CAN Tapestry [3], and Pastry [4]), or systems built
from hierarchical directory services (e.g., TerraDir [t we draw our examples from DHTSs in this paper.

A DHT is a distributed and decentralized structure thatvedl@utonomougpeersto cooperatively provide
access to a very large set of data. DHTs use cryptographiekas provide near-random association of objects
to sites that publish the objects to the rest of the systemolfject is looked up by using the hash of the object
name to route to the corresponding peer, usuall§ {tog ) overlay hops. DHTs provide excellent balance of
routing load because paths to a given node vary widely basddeopath’s origin, and because related objects
(even with only slightly different names) are randomly dizited throughout the system.

This random distribution is the strength of the DHT approdumit it also destroys object locality. A set
of objects chosen by common attributes or characteristissits members mapped to peers throughout the
system. This distribution, together with the sheer scatkdiversity of the source data, makes it impractical to
consider solutions that (even periodically) flood the nekin order to evaluate queries. Similarly, flooding the
network should not be considered a practical primitive wbezating indexes designed to aid query evaluation.
Instead, such indexes should be created and maintaineshieatally. Further, given the nature of DHT-based
applications, the indexes should be as distributed and@ntialized as the underlying system.

A straightforward method that satisfies the above requirgsis one that maps each index entry to a peer
using a hash of the entry’s name. Distributing index enirighis manner allows them to be managed using the
services provided by the DHTs for data objects. Among thesdces are transparent caching and replication,
which are used to provide fault-tolerance and high avditgbi



However, the question of efficiency remains. A straightfamvuse of distributed indexes is potentially
quite expensive. DHTs are intended for use with extremealyelaistributed data sets. (Data sets with up to
10'* objects have been discussed [6].) Distributed indexesvadiealuation of single-attribute queries (e.g.,
artist="fo0") without flooding, but a simple conjunctive query with twarétutes (e.g.arti st =" f oo"
and genre="bar") typically requires the entire index for one attribute todemt across the network. The
indexes may be quite large, as their size may grow lineatly thie number of system peers.

We address the shortcomings of the above approach by ugngcachingo efficiently exploit locality in
query streams and object attributes. Our work is most agiplécto systems in which queries exhibit a high
degree of locality. Previous studies (e.g., [7]) have iathd a Zipf-like distribution for queries in P2P sys-
tems such as Gnutella. Our approach uses the locality inhereZipf-like distributions to cache and re-use
results between queries. In particular, our methods maimat only single-attribute indexes on the search-
able attributes (e.garti st, al bun), but also conjunctive multi-attribute indexes, which vedl wiews (e.qg.,
artist and al bumartist and al bumand title and genre). Our methods permit efficient
evaluation of conjunctive queries using these views bygiaidistributed data structure callediaw tree Non-
conjunctive queries are evaluated by evaluation of thewwantive disjuncts in their disjunctive normal forms.

Results presented in Section 4 show that these techniquesdtuating queries can reduce the amount of
data exchanged by about 85%. Further, the view tree is a éeddta structure that preserves local autonomy.
The decision of what to cache, and for how long, is made lptslleach peer, not dictated by a central server or
caching discipline.

The main contributions of this paper are as follows:

e \We present a distributed data structuveey treg for organizing cached query resultgdwsg in a P2P
system.

e We describe how to create and maintain multi-attribute edevhile maintaining the autonomy of peers.

e \We present methods that use cached query results storediew &rge to efficiently evaluate queries using
a fraction of the network and processing costs of direct oegh

e We present results from detailed simulations and show thefiis of maintaining the view tree.

The rest of the paper is organized as follows. Section 2 disprior work. Section 3 presents our search
algorithm and our methods for creating and maintaining flee/\tree. Section 4 summarizes our results. We
discuss some issues like index partitioning and aggragati€ection 5. We conclude in Section 6.

2 Related Work

Our work builds on recent work on peer-to-peer namespaeesding DHTs [1, 2, 3, 4, 8, 9, 10, 11], and wide-
area directories [5]. The techniques described in this ipege be used to provide indexed search services for
all of these systems. There have been a number of otherseftoprovide a search infrastructure over peer-to-
peer systems. Reynolds and Vahdat [12], Gnawali [13], ared &al. [14] discuss search infrastructures using
distributed global inverted indexing, where an index idtlfor each attribute. The model of queries, indexes,
and updates proposed in [12] is identical to the model usétisrpaper: Each index maps a keyword to the set
of documents containing that keyword, while each host irstfetem is responsible for all keywords that map to
it. In [12], the authors also investigate how to use Bloonef#tto efficiently compute approximate intersections
for multi-attribute queries. In this paper, we introduce tbea of result caching using view trees and discuss
how these caches can be used to answer queries. We beli¢tkehao techniques are complementary: one
could use Bloom filters to compute the intersection of indeaféer the set of useful caches have been identified.



In [13], the author argues for storing intersections of tegwords instead of storing indexes of single keywords.
In [14], the authors propose a two-tier architecture to dB R@I-text searches using inverted indexes.

There have also been proposals to performs searches wilahal indexes. Tang et al. [15] and Song et
al. [16] propose schemes for semantic-based searchedwev@€AN [2] network. The authors of [15] extend the
vector space model (VSM) and latent semantic indexing (k&hHash the data to a point in the CAN network.
They show that semantically similar data items hash to pdit are close to each other in the CAN network.
Search is implemented by applying the same technique oruttry @nd flooding the neighborhood until enough
results are obtained. The authors in [16] maintain neiglibts for semantically similar data in the network.
They propagate the message along these neighbor-lists sddlrching for content. There have also been pro-
posals to build semantic overlays to improve the search ut@la-like networks [17, 18]. Annexstein et al. [19]
argue for combining text data to speedup search queridss @&xpense of more work done attaching/ detaching
a peer in Gnutella-like networks. The indexes are kept dxgtdes.

Finally, in [20], Li et al. question the feasibility of Webdexing and searching in Peer-to-Peer systems.
They conclude that techniques that reduce the amount ofstlated and transferred are required for the idea to
be feasible. We show in section 4 that our method reducestioest of data transferred at the cost of very little
disk space and can hence be used as a strategy to make P2iRgratek searching more practical.

3 Searching Large Namespaces

3.1 Data and Query Model

We assume that objects are uniquely identified by their narbhesating an object given its name is the basic
operation supported by the P2P infrastructure (e.g., usiDgiT). Each object has associated metadata that we
model as a set of attribute-value pairs. Searching for ébjeg querying their metadata is the main operation
that we explore in this paper.

Our primary focus is on the distribution, maintenance, asel of indexes and view caches, and not on the
methods used for managing individual indexes. Specificaltyare interested in identifying and locating indexes
that may be profitably used to evaluate a given query, andmti@specifics of the data structures used for the
indexes themselves. Our methods are not dependent on atigufzas of the underlying indexing schemes
and support equally well the identification and location iffflable B-tree indexes (for range queries) as they do
profitable hash indexes (for point queries) or R-tree indéfa@ spatial queries). Similarly, our methods could be
generalized easily to more structured metadata repragergge.g., XML). To simplify our discussion, however,
we assume that attributes are boolean in this paper. Quameethus boolean combinations of attributes (e.g.,
a A (b V —c)). Our methods use conjunctive queries of the farm a, A ... A a; as the building blocks for
supporting more general queries.

3.2 Attribute Indexes

Since we wish to evaluate queries without flooding the ndtywae need a method for associative data access.
Attribute indexes provide this base functionality by maggpattribute names to objects (object names) with that
attribute. Attribute indexes can be stored in the P2P nétivor specially designated part of the namespace.
For example, the indexes for attributesnuf act ur er andpri ce are named i dx/ manuf act urer and

/i dx/ pri ce, respectively. (We uski dx as the reserved namespace for indexes; in practice, a mscereb
name is appropriate.) With this naming scheme, locatinged is no different from locating other objects in
the P2P system. Further, this scheme is applicable to bait-based and tree-based methods for name-based
search. For example, if the index in questiohigix/ pri ce, the index could be stored in the peer determined



by the keyk = HasH/ i dx/ pri ce). In hierarchical systems like TerraDir, the index is starethe node with
fully qualified namée i dx/ pri ce.

3.3 Materialized Views

While attribute indexes permit single-attribute querebé evaluated without flooding the network, evaluating
multi-attribute queries may require large sets of the dhbentifiers matching one attribute to be transferred
over the network to the sites of the other attribute index&s.avoid such large data transfers, our method
uses cached query results,\vdews More precisely, a view is the materialized result of a canjive query.
(Views for non-conjunctive queries are obtained from thgutictive normal form of the queries.) The idea
of using cached results and materialized views to enabterfgsiery processing has beens studied extensively
in the database literature (e.g., [21], [22], [23]) and soalelated to the problem of answering queries using
views (e.g., [24], [25]). However, as we describe below, wkiegws are scattered over a P2P network instead
of located at a centralized server, the tasks of view maartea and query evaluation using these views pose
additional challenges.

We now describe the task of locating materialized views #inatbeneficial to the evaluation of a query. For
a given query, this task may be thought of as consisting ofitbd@rdependent subtasks. The first task, which
we call theview location problemconsists of determining the materialized views that exighe network,
preferably restricting our attention to those that arevaai¢ to the query. This task highlights an important
difference between this problem and the well-studied pabbf answering queries using views in the database
literature. Database methods assume that the set of viewslli&known and typically small, while in a P2P
environment this set is generally unknown and large. Therstask, theview selection problentonsists of
determining a good query plan based on the available mbzedaviews (and statistics such as cardinalities of
views and selectivities of attributes). Unlike prior wonk this problem, we focus on methods that are efficient
in a P2P environment without a central repository of viewadata.

At first glance, it may appear that the view location problean be solved by assigningcanonical name
to each view (so that equivalent expressions of the same aiewunified) and using the facilities of the P2P
network for locating the named views. For example, if we erndews in canonical form by listing the attribute
in sorted order of their names, equivalent viewsc A b andb A a A ¢ both map taz A b A c. Unfortunately, this
idea solves only part of the problem: locating a view thatgsiealent to a given view. For example, it permits
us to locate a view A b A ¢ in response to a request for\ ¢ A b, using a canonical name of the forhidx /abc
(with attribute names sorted lexicographically, in gefjetdowever, this idea does not help us locate the views
that are helpful in evaluating the above query in the absehtte viewa A b A c. The number of views that are
useful for answering this query is exponential in the sizthefquery (number of named attributes) even without
the repetition of equivalent views. For example, the queay e answered by using viewsA b andb A c or
usinga A b anda A ¢, or usinga A b andc, and so on.

Obviously any method that relies on checking the presenadl efews that are relevant to a query is not
practical. Hence, we must restrict the set of views we carsi@ome of these problems could be circumvented
by maintaining a centralized list of all materialized viesvghe network. In a P2P network, this strategy would
translate to one peer storing and maintaining all indexesyell as responding to all index lookups. Such a
design has several problems. Not only is it unfair to the xaldandling peer, it also creates a single point of
failure and produces a performance hotspot.

3.4 The View Tree

Our solution to the above problems is based on a distribuaéal structure we call theéew tree The view tree
maintains a distributed snapshot of the set of views maditegthin the network, allowing efficient location of the
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Figure 1: Example of a View Tree. Note that a nedes . . . a; represents materialized view A as A ... A ag. The
picture also depicts a materialized viewh ¢ A e A g being inserted into the view tree.

views relevant to a query. Below, we describe the structfiteistree, the search algorithm used to locate views
for a query, and the methods used to maintain the tree as htdradd views in the network change.

Each node in a view tree represents a materialized conyengigw. That is, each node corresponds to the
cached results of a conjunctive query of the farfm\ a, A ... A ag, Wherea; are attribute names. For brevity,
we refer to views and their corresponding view-tree nodesmagly a, a, . . . ai, the conjunctions being implicit.
Thelabel(n) of a noden in the view tree is the view it represents. Each view tree risdi@ general, located
at a different network host. Thus traversing a tree link m@unetwork hop. (Our methods permit several view
tree nodes to be mapped to the same host; such aggregatioded results in only improved performance.)
Figure 1 depicts an example of such a view tree. The root ofrdeeis labeled with the special index prefix
/idx. The first level of the tree represents all the attributdexes (single-attribute views) in the network. The
multi-attribute materialized views are mapped to nodesedtgr depths. For example, the nédeorresponds
to the viewb A c and the nod¢ cb corresponds to the vieW A ¢ A b.

In order to identify logically equivalent views (e.@ac, cba, andbca), we refer to each view usinganon-
ical name The simplest choice for such a canonical name is the leragigcally sorted list of attribute names
(abc in our example). However, this scheme is likely to resultémpunbalanced trees. Subtrees rooted at nodes
labeled with attributes that occur early in the sort ordeulddikely to be much larger than those corresponding
to attributes later in the sort order. This bias would creatging imbalances and hotspots. We avoid this prob-
lem by defining canonical names usingermuting functioron the attributes of a view. The function is chosen
so that it is equally likely to generate any one of theermutations of a view with attributes. (Methods for
generating such permutations are well-known [26].)

We may think of the view tree as a modification to a trie overdhghabet of attribute names. In the trie,
each node is labeled with a single attribute and the depthnofda equals the number of attributes in the view
it represents. The view tree uses a PATRICIA-like schemehithsibling-less nodes are merged with their
parents, concatenating their node labels [27]. Thus edeldn node of the tree has at least two children. We
define theesidual labelr(n) of a view tree node to be the suffix of its label that is not included in its parent’
label. Thatis/(n) = l(p(n))||r(n), wherep(n) is n’s parent and| denotes concatenation.

We illustrate this scheme in Figure 1. Suppose we want tatitise viewaceg into the view tree. Further,
suppose that the permuting function applied to this viewltesn eagc. The parent of this view in the view
tree is the node corresponding to the longest prefixagfc, i.e., eag. As illustrated by Figure 1, finding the
parent of a new view when it is inserted into the view treense: we follow tree links corresponding to each
attribute in the view, in order; the node that does not havekad the required attribute is the parent of the node
representing the new view.
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Figure 2: Search for queryat noden: S(n, q)

3.5 Answering Queries using the View Tree

Given a view tree and a conjunctive query over the attribdteding the smallest set of views to evaluate the
guery (using only the views) is NP-hard even in the centedlizase, by reduction frofxact Set Covef28].
Thus, an exact solution is not practical, especially in &ithisted environment. Not surprisingly, our method for
answering queries using views materialized in a P2P netigdolased on heuristics. However, it possesses the
following desirable properties:

1. Minimum utility. If the network contains a materialized view that is logig&quivalent to the query, our
method is guaranteed to find this view. This property ensairemimum utility for each view because, at
the very least, it benefits future invocations of queries #na logically equivalent to query whose results
are cached. Of course, the benefit of materialized viewstitimaed to such queries. As indicated by our
experimental results in Section 4, views are often usefuifoltiple queries.

2. Forward progress If there is no view equivalent to the query, then each viexe tnode that is visited by
our method results in locating a view that contains at leastr@w query attribute (one that does not occur
in the views located so far). This property not only limite thumber of nodes visited to the length of the
qguery (number of query attributes), but also yields targgibtremental benefit at each step of the process,
allowing graceful early termination. (Recall that a quewny &ttributes not covered by any materialized
views may always be answered by using the attribute indeXesit at higher cost.)

Our search algorithm is outlined in Figure 2. Given a qugfin the canonical form described earlier), the
algorithm is invoked a$ (¢, ¢), wheret is the root of the view tree. Recall thét) is the view at node: and
r(n) part of/(n) that is not in the view ofi’s parent. We use the notatiene X to denote the string obtained
by deleting froms the characters that occur in s€t ands; || s, to denote the concatenation of stringsandss.

The computation o6 (n, ¢) at a node: is based on selecting a set of suitable children to which ¢hepeitation

is propagated, recursively. Results from the childrenaatti the attributes afthat have been covered. As noted
earlier, an exhaustive search is impractical. It is easetdwthat the test on line 5 ensures that our method has
the exact match and forward progress properties descridtidre The rest of the pseudo-code is concerned with
bookkeeping of the attributes of the query that have beeareahby the views encountered so far.

Figure 3 depicts the actions of our method for the quéyekhilo. The circled numbers in the figures
denote the order in which computation occurs at view treeeao@Recall that each view tree node maps to a
different network host in general.) Intuitively, the algbm first locates the best prefix match, whichcigg.
Even though the longer prefixbage is not materialized, thebagh child of cbag is useful for this query, and
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Figure 3: Example of a search using the View Tree. The seamtepds along the direction marked with arrows
visiting the nodes in order they are numbered.

thus this node is visited next. The algorithm is now in theviand progress component of the search and proceeds
in depth-first manner visiting nodes that represent viewas tover at least one uncovered attribute. Also note
that nodecbe, the query does not proceed to its chilgth because the node does not have any attribute that has
not already been covered. The query can finally be answeird te intersection of the viewsaghi, cbe, k
andlo.

3.6 Improving Query Plans

Recall that a query plan as determined by our search algodtscribed so far is essentially a cover for the set
of attributes in the query using the sets of attributes aaogiin the views. We may define an optimal query
plan as one that uses views that contain as few tuples abpmseisulting in the smallest data exchange. Given
the hardness of even the simpler set-cover problem, ingigth such an optimal query plan is not realistic.
However, our preliminary experiments revealed that sutbistabenefits may be realized by avoiding the plans
that fare particularly badly by this metric. In the absentglobal data statistics, we estimate the size of a view
using the number of attributes in the view definition. Since queries are conjunctive, views with a larger
number of attributes are expected to be smaller, and thdsrped in query plans. We therefore implemented a
modified version of our search algorithm that tries to find argigplan in which each view has at leastttributes,
wheret is parameter that may be set on a per-query basis at runtitme e3sential difference from the earlier
search method is the stopping condition: the earlier mesimas when all attributes in a query are covered. Our
modified search method stops when either all attributesdnjtlery are covered with views of length (hnumber of
attributes) at leastor when none of the nodes explored so far has a child thatseptga view of lengththat
can be used to replace a view of lengthc ¢ in the current plan.

Figure 4 depicts the actions of the modified method on theygfrtem the previous example. We use a
thresholdt = 6, implying that the method attempts to evaluate the quenygugiews of at least six attributes
each. The search proceeds froba to cbeh (even thoughebeh is not in the canonical order) because the latter
covers more attributes. In this process, it also fictgds:lo. However, it now starts searching for a six-attribute
view that containg. It does so by visiting every attribute index not yet visit&ince there are no six-attribute
indexes containing, the search visits nodes for all 10 attributes before degidn usingcbaghi, chehlo and
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Figure 4: Example of the modified search algorithm. The s$estitt proceeds along the direction marked with arrows
visiting the nodes in the order they are numbered.

k to evaluate the query. This modification does not have theent progress property of the earlier method
because it may visit nodes that do not cover any additiom@bates. However, such nodes result in increasing
the length of a view used to cover the query. Therefore, at faps ¢ additional nodes are visited. Typically,
the additional query planning work required by this charsggennall, and is offset by the increased efficiency of
guery processing resulting from the use of longer views.

3.7 Maintaining the View Tree

Since the view tree stores materialized views of network dhere is an implicit consistency requirement: the
contents of a materialized view must be identical to the Iteffuevaluating the corresponding query directly
on the network data. Thus, the view tree must be modified iparese to two kinds of events. The first kind,
which we calldata modificationsare insertions, deletions, and updates of network obj@é¢ts second, which
we callview modificationsare creations and deletions of materialized views, irinlydeletions resulting from
the departure of network hosts.

3.8 Data Modifications

When an object is inserted into the network, views that nameear more of its attributes should be updated.
This update procedure need not be invoked immediately fest mpplications. For example, the presence of a
document that does not appear in the indexes and views feradwurs is not a serious problem for typical
text-search applications. Further, not all indexes andvieeed be updated at once. Since shorter views (fewer
attributes) are likely to be used by a greater number of gaetihe update procedure may prefer to update them
sooner than longer views. Therefore, when an object’s fioseis to be reflected in the view tree, we update
views in order of increasing length: first, all single-ditrie views (i.e., the attribute indexes) over the object’s
attributes; next, all two-attribute views over the atttds] next, all three-attribute views; and so on.

The procedure for updating indexes and views in response ¢bjgct’s deletion is completely analogous to
the insertion procedure. Updates triggered by deletionsbeapostponed even longer than those triggered by
insertions because the index entries for the nonexistgatbban be flagged with a tombstone in a lazy manner
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Figure 5: Maintaining the tree when a new node joins.

when they are dereferenced by applications. Similarly, whelocument is updated, we follow the deletion
procedure for the dropped attributes and the insertiongutoie for the added attributes.

3.9 View Modifications

The policy decisions of which views to cache and for how longy made autonomously by each host in the
network using criteria such as query length, result size, estimated utility. Each host may follow its own
policy; our methods do not mandate any in particular. Fomg{a, a host may decide to cache the results of
gueries with at most eight attributes, provided each suemgcontains at least one attribute from a certain hot
set and that the corresponding result contains at most ¢ersémd tuples.

When a view is to be cached, the view tree is searched for thendeal name of the view by following tree
branches corresponding to the attribute names in the vieseguence (as in a standard PATRICIA search). If
a match is found, it means that this view was inserted by awmeit view-insertion operation, and the current
insertion is skipped. Serialization occurs at each nodéemath from the root of the view tree to the node for
the view with a canonical name that is the longest existimgiyof the view being inserted. Necessary changes,
such as moving children pointers to the new node, are pegdmthis time.

Figure 5 depicts the vieweg being added to the tree. The deterministic permutation magdo eag, and
the exact prefixea is found in the tree. The old child @f, eagc, now becomes a child of the newly inserted
nodeeag.

When a viewv is to be deleted, we begin by locating its nodm the view tree. Ifn is a leaf of the view tree,
it is simply removed from the tree. f an interior node, then its parent becomes the new paregisahildren.

We also assume that the parent and children exchange hataribesages to handle ungraceful host departures.
In the case of such failure, the child will attempts to rejthia tree by following the insertion procedure. Thus,
failures result in only temporary partitions from whichsteasy to recover.

3.10 Replication

Given that some of the attributes are more popular than stlieis reasonable to expect hotspots among the
attribute indexes and the nodes in the view tree. Our systas the adaptive replication protocol described in
(citation omitted for anonymijyto handle such hotspots and to prevent the overloadingeysgesting popular
indexes. Every peer that holds an attribute index has tHigyatoi request the creation of replicas when its load
exceeds a threshold.

Index lookup requests contain data describing the load enmdghuesting host. While servicing the index
lookup request, the receiving host uses this load infolrnaty decide if it wants to replicate. Overloaded peers
attempt to create replicas in peers that have loads at |@8stl&wver. Hosts with replicas may create further
replicas, resulting in &ree of replicas for each index. Figure 6 shows the replica treesiewsbag andeagc.
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The numbers in the replica tree represent the server IDsentherview is replicated. The parent of a peer in this
tree is the peer from which a replica creation request wasved. In the figure, the views at server IDs 613 and
132 created the first replicas and hence are the parentsiofedbpective replica trees.

A peer that receives a replica creation request is not dielihto accept it. If it rejects the request, the
requesting peer waits until it finds another suitable casgidIf it accepts the request, it obtains the index data
from the requesting peer and sends it an acknowledgment thieeéndexes have been added. On receiving this
acknowledgment, the requesting peer adds a pointer to #p@meling peer to its list of replicas. This pointer
is also propagated to the requesting peer’s parent, if artjpd view tree for this index. When a parent in the
view tree receives an index lookup request, it may choosertedrd it to one of the replicas for which it holds
pointers. Note that replication works orthogonally to tlearsh system. As far as the view tree is concerned,
all the replicas of the view are equivalent and can therdfereonsidered as a single node. Modifications to the
index are propagated transparently to all the replicasgusia replica tree. When a replicated node is deleted
from the view tree, its children are not grafted to its pamntiescribed in Section 3.7; instead, they are left in
place because they are reachable from the replicas.

4 Results

4.1 Data Source and Methodology

We chose sets of documents, uniformly at random, from thel@data set from Text REtrieval Conference
(TREC) Data as the source data for our experiments. We usétiLHages that exported tHeeywor d meta-
tag, and used 64 thousand pages for each experiment. Thesjuere generated as follows. First, we chose
a representative sample of Web queries from the publiclylabla sear ch. comquery set. Unfortunately,
thesear ch. comquery set does not provide an associated document set oveh thiese queries would be
valid. Therefore, we generated queries with the same ttati€haracteristics as theear ch. comqueries
using keywords from the TREC-Web data set. Specifically, eduthesear ch. com queries to generate
the distribution of number of attributes per query. We wes® gyiven access to 32 thousand Web queries
by the IRCache project and we found that the characterisfitise IRCache andear ch. comqueries were
comparable. We ran simulations with both data sets withlaimésults. For brevity, we present results from only
the largersear ch. comquery set here. We used the distribution of keywords in th@fsource documents
to map keywords to each attribute. For multi-attribute (eserwe generated a set of 50,000 popular keyword
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digrams, trigrams, etc., and used these, uniformly at nands the input query set. The popular 50,000 keywords
covered all possible multi-attribute queries with nonknesults for our source datasets.

We have implemented view trees on both a controlled testiredi on a detailed packet-level simulator. In
our testbed, we have conducted experiments with the allest tiee algorithms, and have tested the replication
and tree re-construction protocols. These experiments w@nducted on a 40-node testbed, over which we
exported and searched 4096 documents selected from the TRtaSets. However, the true benefits of the
view tree are only realized on large deployments (hundredbausands of servers) of the scale not feasible
in our local testbed. We therefore implemented a packett&wmulator to experiment with large system sizes.
The simulator and implementation showed remarkable ageaefor the small networks that both could run.
The results in the rest of this section are from much largaukited networks (nominally 1000 servers), with
simulation parameters as detailed below.

4.2 Simulation Setup

We ran each experiment with 500,000 queries; this numberswficient in all experiments for the caching
behavior to stabilize. For each experiment, we usegking set which is a set of unique queries from which
some fraction of the overall queries are drawn. We used aingiet of size 50,000, from which 50%, 90%,
or 99% of the queries are constructed. We used the 90%-tkitvgpset stream of queries as representative of a
Zipf input. Henceforth, we refer to this stream as #tigf input All queries, including the queries in the working
set, were generated using the scheme described above. elp@@% of the queries were always directed to the
gueries in the working set, while 10% were unconstrained.

The base system for our experiments consisted of 1000 semsgorting 65,535 data items and a maximum
of 15 attributes per data item. The query inter-arrival tiwees exponentially distributed with an average of 10
milliseconds. We assume that 10% of servers (approximatdy fail over the period of all the experiments,
unless otherwise noted. We also assume that a server tlisatdais so ungracefully; i.e. it does not inform peers
about its departure. We further assume that a failed seoes dot recover during the simulation. The upper and
lower thresholds for replication are set to 0.75 and 0.3eetyely, while the capacity of each server is assumed
to be 10 queries/second. Obviously, this is an artificiadhy balue, but we had to resort to such scaled down
capacities in order to reduce the running time of the expamis

We assume that hosts allocate disk space for the cachesatmpdrom the disk space for the attribute
indexes. In our experiments, we noticed that single atigiindexes have 600,000 tuples all together. Since we
use 1000 servers, a uniform distribution of data would lea@Q0 tuples per server for holding the indexes. In
practice, the distribution is nonuniform and some hosts hae to allocate more than this number to hold the
attribute indexes. Since we are only interested in the si@@m by the caches we create, the disk space used
by the attribute indexes is not important in our experimehtewever, we allocate disk space in multiples of
600 tuples for our caches. Specifically, unless otherwisatiored, we assume that disk space for 600 tuples is
set aside for the view caches at each server. Once agairtuial deployment, we expect the disk capacities of
servers to be much larger as well.

4.3 Evaluation Metrics

The view tree algorithm described in this paper is speclfidargeted towards efficiently answering multi-
attribute queries. In fact, as long as the single attribntkexes are kept current, the view tree is not used for
any single attribute query. As shown in Figure 7, 36% of owerigs are single attribute queries, and these were
faithfully executed in our simulator. However, the contiibns of this work pertain to multi-attribute queries,
which we evaluate using three metrics:
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Figure 7: The distribution of keywords in queries in our geed input and in traces obtained from search.com and
IRCache.

e Number of tuples intersectedOur primary metric is the number of tuples intersected wheaiuating
multi-attribute queries. There are two points to note:

— In our results, we report the number of tuples transferrédéen peers for query evaluation, and not
the number of tuples transferred as the result to the quengdr indexes will have to be intersected
when a view tree is not used, since multi-attribute indexdsch are inherently smaller, are not
available.

For our data, the average sizes of the different indexeshanwrsin Table 1. If an exact result is
required, then the number of tuples intersected is also aeripound on the number of tuples that
must be transferred between hosts. Thus our metric repgeegavorst case for the view tree.

— If an approximate method (e.qg., [12]) is used, then it is massary to transfer large indexes over the
network. It is sufficient to transfer the approximate indefe.g., Bloom filters) to a single location
where the intersection is computed. However, the numbeunplés that must be processed is still
equal to the number of intersected tuples. Thus, this matsc provides a lower bound on the
amount of processing that must be done by hosts in the seatafork to answer a query.

e Storage cost We report the number of tuples in the single- and multi{adtié indexes stored in the
network. Once again, the particular storage requiremestsiatirely a function of the input data set and,
in our experiments, conform to the averages shown in TablEhk. tuples in the single-attribute indexes
must be stored if exact results for these attributes aranejwithout flooding the network. However, the
multi-attribute indexes are not required for correctn&ds.explicitly account for the storage required for
multi-attribute indexes and experiment with differentlemement strategies for these indexes.

e \View maintenance overheadV¥e also model updates to the data. Specifically, we consittisde in-
sertion, deletion, and update. New attributes, for bothiitien and updates, are chosen using the original
keyword distribution generated from the complete sourda slet. For deletion, attributes are selected uni-
formly at random. Both single- and multi-attribute indexese to be updated as data items are inserted,
updated, or deleted from the namespace. We present regaltsifying the number of messages that are
required to update the attribute indexes. We specificaltpant for the number of messages that are sent
directly as a result of maintaining the view tree. Once agamassume the worst case scenario in which
each index is hosted by a different host. Thus, the overhsadsesent represent an upper bound on the
number of messages and tuples that would have to be tragiara deployed system.
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# of 90% locality Random Queries
attributes| min avg max| min avg max
1 1 29.38 6658 1 29.38 6658
2 0 3339 31390 0 7.85 3139
3 0 2655 19421 0 0.31 1118
4 0 273 1918 0 0.01 111
5 0 391 753] 0 0.00 2
6 0 0.00 0 0 0.00 0

Table 1: The minimum, average, and maximum sizes (humbearé$) ofn-attribute indexes, when 90% of the
gueries are from a set of 50,000.
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Figure 8: Caching benefit by level.

There are a number of other metrics we have analyzed thaf academic interest. They do not intrinsically
account for overheads or performance, but instead help derstand the system better. These include number
of indexes created, multi-attribute index hit rates, amioreplacement rates when storage bounds are enforced.
We instrumented our simulator to log these numbers as wallyeport them below.

4.4 Utility of View Caches

Our first set of experiments studies the benefit of maintgitiire view tree. These experiments used our base
system and 500,000 queries. We ran experiments with allitbe/gtreams: 50%, 90%, and 99% generated from
a working set of 50,000 queries, and a random query streaguré-B depicts the number of tuples transferred
for query evaluation, for different levels of caching forthle query streams. Thgaxis depicts the normalized
number of tuples transferred for each level of caching iagid on ther-axis. They-axis is normalized by
setting the number of tuples transferred for the singlebaitie indexes to one. The number of tuples actually
transferred for the single attribute indexes was 60.89Merandom queries, 227M for the 50% case, 437.31M
for the 90% case and 445.52M for the 99% case.

The figure illustrates the benefits of maintaining a view:treaintaining only the 2-attribute indexes reduces
the number of tuples transferred for the skewed inputs by @&8n 437.3M for attribute indexes only to 72.9M
tuples for caching 2-attribute indexes). Caching all trexwa further reduces the intersection overhead to about
85% of the original (from 437.3M to 67.4M). The same trendegaated for all other skewed query streams as
well.
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Figure 8 also indicates that even the random set of querigsfibérom the view tree, with a 45% reduction
in the number of intersected tuples. This result may be asintitive, since there is no locality in the queries,
but is explained by the following: if two of the requestedibatite indexes are large and their intersection is
small, then storing the result in a cache can reduce the datasttransferred while computing any new query
that requires these two attributes. As Table 1 indicateshfarandom case, the average size of indexes with two
or more attributes is much lower than that of single-attelindexes.

4.5 View Maintenance: Updates

Zipf queries Random queries

# of #of Extra  Reductionin | #of Extra  Reduction in
Updates| Updates data transferrgd Updates  data transferred
500 K 469.7 K 349.55 M 390.6 K 29.26 M

50K 82.82K 403.55M 62.43K 30.60 M
5,000 9,078 409.66 M 5,840 30.74M
500 877 410.19 M 674 30.89M

Table 2: Update overhead for 500,000 queries. All the resuilt in number of tuples. Zipf refers to 90% of the queries
directed to the 50K working set.

Table 2 summarizes the cost and benefit of maintaining the triee. In these experiments, we cache all
views (which corresponds to the worst case for update oaeld)eand vary the number of updates. In each
update, an attribute is added to or deleted from an objectp&#®rm one update for evedy queries where
k = {1,10,100,1000}. The number of actual updates performed depends on the mwhbeaches in the
system and the replicas of these caches. In the table, werpirgly the number oéxtra updates that have to
be performed to maintain the view tree, and (2) the reductiatue to the view tree— in the amount of data
transferred to answer the queries. From the table, it ig thed even for unrealistically high update rates (one
update per query), the view tree update overhead is esbenggligible (about 1% in the very worst case).

Note that in general, the humber of updates is higher in tlegvell query stream. This is because each
update has to propagate to more caches and replicas. Otcasris evident from the table, this small increase
in number of updates is quickly dwarfed by the savings dubéatche hits in the query phase.

4.6 Effect of Disk Space

In this experiment, we quantify the effect of the amount afkdspace caches on the efficacy of the view
tree. Recall that in our simulations, the nominal amountisk gépace is 600 tuples. Assurmedenote this
unit (600 tuples), and in Figure 9, we show how well the viegesr work for disk space allocations bf=
{0.25,0.5,1,2,4,8}. The figure also contains a result with no replacements (umtbed disk spacek(= o).

As expected, the number of tuples exchanged to resolve & geuces as the amount of disk space increases
(because there are more direct cache hits). With localithénquery stream, the number of tuples exchanged
drops to 36% with onlyc = 0.25. Also, for our experiments, & = 8 the performance is essentially equivalent
to having unbounded space. Lastly, we note, these resalfscan experiments performed with both replication
(which increases disk space requirements) and serverdai{which decrease the total available disk space).
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Figure 9: Effect of disk space: Even a small fraction of spaléecated for the caches helps reduce the number of
tuples intersected.
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Figure 10: Query processing with server failures.

4.7 Effect of Server Failures

Recall that we do not assume that a failing server updatesisfarmation. Instead, its peers discover the failure
independently and update their own states. We performedriements to analyze the effect of result caching
and adaptive replication on reliability in the face of serfalures. We used no caching and no replication as
the base case and used a Zipf query stream. In each run, tHeenoffrfailing servers ranged from 50 to 500.
As Figure 10 illustrates, result caching increases the murabsuccessful queries (by about 35,000). With the
addition of adaptive replication, we see improvements tiveibase case by as much as 20% when there are 50
failures and 15% when 500 servers fail.

Figure 11 summarizes our experimental results on the edfeadaptive replication and view caching on the
number of queries successfully answered. Here, 500K cpiedme into the system of 1000 servers, with 100
servers failing over time. As the graph shows, the replicasicheme increases the number of queries answered
from 69% to 91% when only attribute indexes are stored, am ff6% to 92% with all views cached. However,
the scheme does not perform very well with random queriesiregts performing a little worse than the no
replication case. This result is due to the fact that whenetiequery locality, the load on a server is due to
the popular indexes and hence they are replicated. Whea &neffailures, this replication increases the chances
that a query to these indexes is answered. Locality als@a&qthe increase in the number of successful queries
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Figure 11: Adaptive replication helps answer more queriesnthere is locality in the query stream.

with no replication. When there are failures, the greatemtimount of search required, the higher the probability
of not finding an index. Caching views reduces the amount afcéeneeded to answer queries with locality.
The fluctuations in the replicated case are due to indexaadn&w be replaced to accommodate the replicas in
the available disk space. In this process, some caches oputgr keywords are lost and hence queries to to
the attributes in those caches cannot be evaluated. Ndtthtbdappens only when the single attribute indexes
corresponding to the requested attributes are also lodocsexver failure.

In the random case however, replication does not necessapilicate the requested index, and so does not
help availability. On the contrary, replication might letrdthe replacement of the requested index from the
cache.

4.8 Upper Bounds on Query Performance

In order to further quantify the effect of server failuresldimited disk space on query performance, we com-
pared our results with those for a network with no failured anbounded disk space (labeleést casg We
used two query streams: random and Zipf. We also varied thénmuan number of attributes in a cached view
for each run.

Figure 12 summarizes the results. In the best case, 2tdttnitiews and a Zipf query distribution results in
approximately 90% reduction in data transfers. This nungbes up to 95% when we store all the materialized
views. A more realistic system, with 10% of servers failimglaiskspace equivalent to 600 tuples, still provides
significant benefit (e.g., 85% reduction for the Zipf inputamtwe cache all the views).

5 Discussion

5.1 Limiting the fanout in a hierarchical system

In a hierarchical system, that uses tree structures fotitagabjects by name (such as the TerraDir), a naive
application of the index-location method is likely to cayssrformance problems due to overloading of the
/i dx node, which has one child node for each attribute known tangtevork. A more pragmatic approach,
and one we use, is to limit the fan-out of thedx node and other nodes in the indexing namespace. A number
of data structures suggest themselves for this purposeexXamnple, a structure such as tiB-treedescribed

in [29] can be used to limit fan-out and maintain a balanced {thus bounding lookup cost). We may also
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Figure 12: Comparison of Performance under best- and necasa.

use methods based on distributed linear hashing, such ag3ai* Note that this problem does not afflict the
hash-based schemes.

In our current implementation, we use a simpler methodiallhit attribute indexes are inserted in the names-
pace using the names suggested above. After the fanout &fi tthe node reaches a threshold (which need
not be fixed in advance), index insertions result in the aeaif nodes at depth greater than one in the&lx
namespace. We may describe the change as follows: A new imatxis temporarily added to the namespace
as a child of/ i dx. The namespadei dx/ * is then searched for a set of nodes that share a longest common
prefix. A new node labeled with this prefix is inserted as adcbfl/ i dx and parent of the group of indexes. A
similar procedure is used to insert additional interior e®uh the namespace whenever the fanout of a node gets
too large. (Nodes may use different thresholds or other ouistho determine the limits on fanout.)

The above method for inserting interior nodes into thedx/ * namespace separates a set of nodes that
share a longest common prefix. This choice is motivated byds@e to split off as large a portion of the index
namespace as possible, without incurring major restringfuoosts. An alternative scheme is to separate a set
of nodes of largest cardinality, in order to reduce the farnyuas large an amount as possible in one step. Of
course, we could also use a balanced tree data structur@bexperiments (Section 4) suggest that this simple
scheme suffices.

5.2 Index Availability

If the index for an attribute were to become unavailable duedde or network failures, the performance of
gueries containing the attribute would be greatly hurt.hitorst case (e.g., a query that searches only on the
attribute whose index is unavailable), it would be necgstaflood the network in order to generate complete
results. Such flooding is not required for all queries thahtioa the attribute whose index is unavailable. For
example, if the index om fails, the querya A b A ¢ can be evaluated by first evaluating the quiery ¢ and
then checking each object in the result forAlthough there is no flooding in such cases, a substantiaLiztn

of additional work is incurred because a potentially largenber of objects must be retrieved and checked for
the attributen. When objects are substantially larger than names (e.dtimnewlia objects or large XML files),
retrieving objects in this manner for query processing altfyge amount of network traffic. Therefore, it is
important that attribute indexes have high availability.
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5.3 Partitioning Indexes

So far, we have assumed that all attribute indexes are smallgh for each replica to fit on a single host.
For some applications, this assumption may not hold. Fomgkea, in a P2P full-text search environment, the
inverted file indexes for commonly occurring words are ki be several gigabytes in size. It is possible to
cope with large indexes by provisioning capacity at a fewasodHowever, such a solution reduces the flexibility
of the P2P system and we do not consider it further here.ddstege cope with large indexes by splitting them
into components that are small enough to be stored on siogks.h

An index is split by logically partitioning the namespacealatoring the index entries in each partition
separately. For example, in a DHT environment, we can sgliéx entries using the least-significant bit in the
hash value. The partitions of an index may be further panéd (e.g., by splitting using other bit positions). The
method for managing the partitions of an index is very sintdethe method used for managing replicas. Just as
replicas may spawn their own replicas, index partitions tm@yurther partitioned. Pointers to index partitions
are treated analogously to pointers to replicas, with offerdnce: While a lookup is forwarded to only one
replica, it must be forwarded to all partitions of an index.

5.4 Approximate Indexes

We describe a technique for creating approximate indexeéshwdan be used by individual nodes to aggregate
index state from multiple distinct indexes. Aapproximate indexs used to locate data with a given set of
attributes. However, unlike a precise index, the approténiadexes may not directly point to the set of data
items that have the specified attribute; instead, an extstpocessing step must be employed at run-time
to fully resolve any given query. The post processing step beain the form of a set of directed queries in a
constrained portion of the namespace, or may require fitjarseful data from a superset of the tuples that match
the requisite set of attributes. However, the approximadexes consume far less space, and are an essential
mechanism for efficiently available resources, especiallyases when the number of attribute indexes is very
large, and there are not enough resources in the systenrécaditattribute indexes.

Consider a hierarchical namespace, and let sefvstore an index/ 4, for attribute A. Let data items
/a/b/c/d/e, /a/b/c/d/h, and/a/b/c/d/f be part of index 4, and assume that serv€mwants to aggregate
this index. Instead of storing state about each item indiil, nodeS may aggregate item&:/b/c/d/[e, f, h],
as/a/b/c/d/*. When this index is used, a sub-query under thgb/c/d must subsequently be resolved for
attribute A in order to find the individual data items that belong to thdex. In general, a server can aggregate
along the namespace by storing a sub-tree pointer for seétem$ with common predecessors. The level of
aggregation is be controlled by finding predecessors “ligp&in the namespace. Such aggregation along the
namespace trades off accuracy versus storage, but stilbgsoan efficient mechanism searching using attributes.

In a flat namespace, e.g. a DHT, it is not possible to aggregjatey the namespace. Instead, we must
aggregate along different axes. For example, it is possibtake two attribute indexes, sdy andIp, for
attributesA and B, respectively, and store a single index for attribute/ B. Any query for attributeA is
satisfied using this “unified” index which provides a supefdhe set of data items that have attribute In
order to completely satisfy the query for attribude a post-processing step must be performed in which each
itemin 14, g is further checked for attributd.

6 Conclusion

We have described the design of a text/keyword search tnfictare that operates over distributed namespaces.
Our design is independent of the specifics of how documeata@ressed in the underlying namespace, and can
be used with all DHT-like P2P systems. Our main innovatiothéview tree, which can be used to efficiently
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cache, locate, and reuse relevant search results. In thés,pae have described how a view tree is constructed
and updated, and how multi-attribute queries can effigidrglresolved using a view tree. We have also described
how individual views can be replicated to handle hotspot$ averloads, and have described techniques for
reconstructing the tree upon failures.

Our results show that a view tree offers significant benefier onaintaining simple one-level attribute in-
dexes. For trace data, the view tree reduces multi-keywaedyopverheads by over 80%, while consuming little
resources in terms of network bandwidth and disk space. €auits show that a view tree permits extremely
efficient updates (essentially zero overhead), and carupeodignificant benefits when servers fail in the net-
work. Overall, our results are compelling, and show thatwtieees efficiently enable much more sophisticated
document retrieval on P2P systems than is currently feasibl
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