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Artificial Intelligence can be divided between symbolic and sub-symbolic

methods, with neural networks making up a majority of the latter. Symbolic

systems have the advantage when capabilities such as deduction and planning

are required, while sub-symbolic ones are preferable for tasks requiring skills

such as perception and generalization. One of the domains in which neural

approaches tend to fare poorly is cognitive control: maintaining short-term

memory, inhibiting distractions, and shifting attention. Our own biological

neural networks are more than capable of these sorts of executive functions,

but artificial neural networks struggle with them. This work explores the gap

between the cognitive control that is possible with both symbolic AI systems

and biological neural networks, but not with artificial neural networks. To do

so, I identify a set of general-purpose, regional-level functions and interactions

that are useful for cognitive control in large-scale neural architectures. My

approach has three main pillars: a region-and-pathway architecture inspired by



the human cerebral cortex and biologically-plausible Hebbian learning, neural

regions that each serve as an attractor network able to learn sequences, and

neural regions that not only learn to exchange information but also to modulate

the functions of other regions. The resultant networks have behaviors based on

their own memory contents rather than exclusively on their structure. Because

they learn not just memories of the environment but also procedures for tasks,

it is possible to “program” these neural networks with the desired behaviors.

This research makes four primary contributions. First, the extension of

Hopfield-like attractor networks from processing only fixed-point attractors

to processing sequential ones. This is accomplished via the introduction of

temporally asymmetric weights to Hopfield-like networks, a novel technique that

I developed. Second, the combination of several such networks to create models

capable of autonomously directing their own performance of cognitive control

tasks. By learning procedural memories for a task they can perform in ways

that match those of human subjects in key respects. Third, the extension of

this approach to spatial domains, binding together visuospatial data to perform

a complex memory task at the same level observed in humans and a comparable

symbolic model. Finally, these new memories and learning procedures are

integrated so that models can respond to feedback from the environment. This

enables them to improve as they gain experience by refining their own internal

representations of their instructions. These results establish that the use of



regional networks, sequential attractor dynamics, and gated connections provide

an effective way to accomplish the difficult task of neurally-based cognitive

control.
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1

Introduction and Rationale

“Cognitive control” is an umbrella term for those executive cognitive systems

that manage other cognitive processes, such as working memory, planning,

attention, inhibition, and action selection. Building neural architectures ca-

pable of modeling cognitive control processes is increasingly recognized as an

important research direction for several reasons (Roy, 2008). First, improving

the performance of neural networks in domains at which symbolic systems

currently dominate will allow the strengths of neural networks, such as incre-

mental learning and pattern recognition, to be leveraged (Omlin and Giles,

2000). Further, the capability to perform higher level executive functions like

goal formation, planning and selective attention will make neural networks

more autonomous, and hence more useful, in the future. Finally, neural models

of human cognition may ultimately provide insight into human cognition and

its neurobiological basis.

While these potential benefits are evident, developing such architectures

has proven to be surprisingly challenging. Neural systems currently excel

at problems that are limited to their strengths but they often struggle with

problems requiring executive behaviors such as representing the goals and
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rules of a task or constructing and carrying out procedures (Marcus, 2001). In

contrast, symbolic AI systems face little difficulty with incorporating executive

behaviors (Simen et al., 2010), due to the ease with which they can bind

variables, create data structures, and perform global computations. This

divergence in ability is particularly odd since biological neural systems do not

experience the same difficulty that artificial neural networks do. For instance

a person can typically play a novel card game merely after hearing the rules

described, but a neural network might have to witness the game being played

thousands of times before it can play it on its own. Why are cognitive control

functions such as focusing on a goal state so easy for symbolic systems and

living beings, but so difficult for artificial neural networks? It stands to reason

that it should be just as possible for neural networks to perform these tasks as

it is for the biological counterparts from which they draw inspiration.

There has been increasing interest during recent years regarding biologically-

inspired computation that addresses these issues. Rather than just using neural

networks as tools for applications at which they excel (character recognition,

system control, etc.), many researchers are looking to understand the brain’s

computation from the bottom up, leveraging the link between neural AI systems

and the brain. Examples of this interest are recent conferences (bica, agi,

etc.), and research programs such as those as darpa and iarpa. The growing

interest in biologically-inspired computation has led to, among other things, the

development of pioneering neural models that explicitly incorporate aspects of

cognitive control, such as for managing working memory (O’Reilly and Frank,

2006) and for planning solutions to the Towers of London problem (Dehaene

and Changeux, 1997, 2000; Samadi et al., 2008).
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However, many such neural models are hard-wired for the particular task for

which they are designed (Stewart et al., 2010), connection strengths are often

set by hand without a learning procedure, and local conjunctive encodings are

often used (e.g., Frank et al., 2001; Riachi et al., 2009; Varma and Just, 2006)

specifying the exact sets of possible inputs and outputs and making adaptation

to other situations, contexts or environments tricky. This specialization can

make neural network models of cognitive control difficult to build, because

each model requires not only parameter tuning and other human supervision,

but often construction from the ground up. Even small changes in the task

specifications can require large modifications to the architecture. For instance,

the model for solving the Towers of London problem in Dehaene and Changeux

(1997), while capable of an impressive amount of planning for a neural network,

is incapable of solving the very similar Towers of Hanoi problem, or even of

solving Towers of London using a method other than the greedy, depth-first

search it has been constructed to execute. What would be helpful is the

development of a general purpose, adaptive approach that, building on the

successes of past specific implementations of cognitive control mechanisms, can

be used for a broad range of applications.

This dissertation presents an approach to building neural models of cognitive

control called galis, for “Gated Attractors Learning Instruction Sequences.”

galis is intended to be a general-purpose, adaptive neurocomputational

architecture that learns how to perform tasks, including tasks that themselves

involve learning, within which models for specific tasks can be instantiated.

The goal is not to provide a veridical model of the neurobiology underlying

human cognitive control, but rather to take inspiration from the large-scale

organization of the cerebral cortex to create a general computational framework
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that can be used effectively to create a broad range of neural architectures

for specific tasks. Similarly, while I will refer to galis as a cognitive model

in the following, no claim is being made here that the galis framework is

an accurate model of human cognitive algorithms, although we will see that

at times its performance can align well with human data and can also make

testable, falsifiable predictions (e.g., see the results related to the n-Back task

in Section 4.3). All that is claimed is that the approach introduced here —

i.e., gated transient-attractor networks — provides a substantial contribution

to neurocomputational methods for executive control.

1.1 The GALIS Framework

While galis is not intended to be a neuroanatomical/physiological model

of the brain circuitry underlying cognitive control, it is strongly inspired by

contemporary views of the organization and functionality of primate cerebral

cortex. Specifically, galis is derived from three main hypotheses about how

cerebral cortex directs working memory, as follows.

The first hypothesis is that the cerebral cortex is organized as a distributed

network of interacting cortical regions. Such a hypothesis is supported by a

broad range of scientific evidence (Bressler and Menon, 2010; Sporns, 2011; van

Essen et al., 1992). The implication for galis is that all aspects of working

memory contents, both static information that captures task-specific details

and dynamic procedures for performing a task, are stored within a network

of model regions. In other words, model cortical regions must learn not only

the “facts” about a specific instance of a task (as in most neural network

systems), but also the procedure or “software” that is needed to perform that
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task. Thus while galis models have dedicated substructures to carry out

certain procedures, such as judging the similarity of two patterns, the behavior

of these models is largely based on the patterns that are learned by its control

memory. This focus on making behavior largely dependent on patterns stored

in the network’s memory, rather than on the network’s structure or “hardware,”

is a break from previous neural networks and is intended to make galis

models more generalizable: their behavior can be changed by adjusting which

sequences are learned rather than by adjusting the structure of the model

itself. This also allows a model’s behaviors to be dynamically modified during

task performance (Long et al., 1998) by adding or removing items from the

instruction memory rather than changing the network architecture, something

that is an important step toward more autonomous intelligent agents.

The second hypothesis is that each region in the cortical network can usefully

be viewed as an attractor neural network, i.e., as a dynamical system whose

activity is continuously being driven towards certain preferred states. Attractor

networks have been used previously in cognitive control models (e.g., Farrell

and Lewandowsky, 2002; Hoshino et al., 1997; Jones and Polk, 2002), but

usually they are limited to dealing with only fixed-point attractors. However,

if working memory is to accommodate procedural information that supports

cognitive control, it must also be able to store attractors that are linked together

as temporal sequences. In other words, a model region must be capable of

switching dynamically from one fixed point attractor state to another. Various

techniques have been used to add dynamism like this to attractor nets, including

dynamic thresholds, negative feedback, and Hebbian unlearning (Brown et al.,

2000; Horn and Usher, 1992; Katori et al., 2011; Tsuda, 2001; Winder et al.,

2009). Model cortical regions in galis consist of recurrently connected
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neural networks that use temporally asymmetric learning of intra-regional

connections weights in a fashion that supports storage of temporal sequences

of actions (Sylvester et al., 2011, 2010).

The third hypothesis is that each cortical region can not only exchange

information with other cortical regions in the form of activity patterns as is

done in many other neural networks, but can also gate other regions’ functions

and interactions. By gating here we mean that a cortical region can turn on/off

functions in other regions, or open/close the flow of information between other

regions, or enable/suppress learning. The claim here is that this is a core aspect

of cognitive control. Such gating interactions might be brought about in part by

direct connections between regions, such as the poorly understood “backwards”

inter-regional connections that are well documented to exist in primate cortical

networks (van Essen et al., 1992). However, these gating actions more likely

occur indirectly between biological cortical regions, being implemented via a

complex network of subcortical nuclei, including those in the basal ganglia

and thalamus (Frank et al., 2001; Sherman and Guillery, 2009; van Essen,

2005), and/or via functional mechanisms such as activity synchronization.

Synchronization has been postulated as an effective way to gate information

flow between cortical areas (Singer, 2011), and this may contribute to top-down

attention mechanisms (Womelsdorf and Fries, 2009). While gating has been

used in some previous models of working memory control, such past work has

generally incorporated explicit neuroanatomical models of hypothesized subcor-

tical nuclei and their interconnectivity to implement gating actions (e.g., Frank

et al., 2001; O’Reilly and Frank, 2006). In contrast, in the galis framework

the details of implementing gating actions via complex subcortical circuity,

synchronized cortical oscillatory activity, or other mechanisms are suppressed.
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Instead, the framework assumes such mechanisms exist and implements them

as direct gating interactions between model cortical regions and the pathways

that inter-connect these regions.

In summary, inspired by the organization of the primate cerebral cortex,

the approach adopted in this dissertation to the problem of learned cognitive

control is to build a network of regional neural networks, linked together by

gated connections. galis models incorporate at least two different types of

memory systems: those that store task specific state information (task memory),

and those that store the actions and procedures necessary for performing the

task (control or instruction memory). Both types of memory are implemented

as discrete attractor networks and operate according to the same rules. The

adaptive gates throughout galis networks control how activity flows between

regions. In addition, gates are used to control when connection weights are

updated. By opening and closing its gates, a galis network can determine

when to learn and unlearn stimuli. In addition, galis also uses distributed

rather than local representations and Hebbian learning rather than error back-

propagation, both of which are intended to increase the biological plausibility

of the galis approach.

1.2 Goals and Aims

The central goal of this research is to develop a neurocomputational model of

cognitive control which retains some of the capabilities of symbolic systems,

in particular the ability to store procedures of behavior. I hypothesize that

the ability of neural networks to base their behavior on the contents of their

memory in addition to their overall structure will not only make them easier
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to build, but will make them more powerful by allowing them to apply their

own learning ability to the procedures they are executing.

To this end the following specific objectives guided this research.

1. Design and build a neural model of working memory using sequential

attractor networks. Specifically, augment the standard weights used with

an additional set of temporally asymmetric weights to allow an attractor

network to move from one basin of attraction to another in a particular

order. Test this model against human performance on the Running Span

task.

2. Using the techniques developed in achieving the first objective, construct

a multi-region model of cognitive control with dual memories: one for

sequences of external events and one for sequences of instructions for

completing the required task. Link these and other regions in the model

by gated connections, with the gates controlled by instruction memory

within the model itself. Validate this approach using models for both a

simple proof-of-concept task and the n-Back task. With respect to the

latter, the model should both match human performance and be flexible

enough to change which task condition it is performing during execution,

without any modification to model structure, parameters or weights.

3. Develop a visual system to extend the model from dealing with purely

abstract stimuli to those situated in a spatial environment. Split the

visual information about the external world into object and location

data (i.e., simulate ventral and dorsal visual pathways) and be able to

recombine and process it by binding the two sets of information together.
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This system is tested on a common childhood memory game against both

human subjects and a comparable symbolic model.

4. Extend the binding of object and location information from the previous

objective to handle multiple features, while also developing a system to

allow galis models to learn from their own experience based on binary

reinforcement signals from the environment. This is tested by creating a

network that performs the Wisconsin Card Sort Test on the basis of the

instructions it is given, testing to see whether it is able to perform at a

higher level after having taken the test several times.

1.3 Overview

The rest of this dissertation is organized as follows. Chapter 2 presents

background information about human working memory and neural network

models of it, neural networks for sequential processing more broadly, neural

models of cognitive control, and techniques used for gating and fast-weights.

Chapter 3 presents my model for sequential working memory using temporally

asymmetric weights. This technique underpins the overall galis model of

cognitive control, and the model of working memory provides an introduction

to both the types of tasks considered here and the methods used for them.

Chapter 4 presents galis models for two basic cognitive control tasks, both

using asymmetric weight attractor networks to store memories of external

stimuli and internal procedures. One of these tasks, the n-Back problem,

taken from cognitive psychology, is compared to human results from that

field. Chapter 5 discusses a galis model capable of binding ‘what’ and

‘where’ information together in order to carry out a memory test which requires
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proactive decisions in a visuospatial environment at the same level as human

subjects and a symbolic AI comparison model. Chapter 6 goes further by

presenting a galis model that can bind multiple features with different values

in another task from cognitive psychology — the Wisconsin Card Sort Test

(wcst) — and can perform this task at an increasing level as it gains experience.

Chapter 7 concludes this dissertation with a summary and discussion of the

work’s limitations and possible future avenues for addressing them.
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2

Background

This chapter briefly reviews a selection of prior research that is relevant to

the work in this dissertation. The chapter begins with a brief introduction

to working memory in humans. The following two sections describe some of

the neural network approaches which have been used for modeling working

memory specifically and cognitive control more broadly. The final two sections

of the chapter discuss neural network methods for sequence processing, and

the use of gating in neural networks.

2.1 The Nature of Human Working

Memory

Working memory is the ability to hold, monitor and manipulate information

needed for tasks in the mind (Durstewitz et al., 2000).1 Working memory is of

1 I use “working memory” to refer to the concept in Psychology and Cognitive Science,
which stands in contrast to the way the phrase is occasionally used in Artificial Intelli-
gence research for a database-like component which determines which production rules
will fire (Charniak et al., 2013). In this usage, the working memory is sometimes of
unlimited capacity, e.g., Forgy (1982) and Miranker (1987). See also Baddeley (2000a)
and Richardson et al. (1996), which both discuss the debated non-existence of capacity
limits in Newell and Simon’s influential 1972 work.
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very limited capacity, short duration, and subject to both decay and interfer-

ence (Cowan et al., 2005); it must strike a balance between the ability to update

rapidly and the competing demand to remain fixed in the presence of spurious

or distracting information. The term was introduced by Miller et al. (1960) and

adopted by Baddeley and Hitch (1974) to differentiate between a unitary short

term memory store and the “three-component model” they introduced. This

model consists of three parts: the phonological loop, for handling sound and

language; the visuospatial sketchpad, for processing objects and locations; and

the central executive, serving as a control system (Baddeley, 2003). This tripar-

tite division has been widely adopted, with many offering further refinements

and divisions. The problem of how to store items in sequences is of particular

interest within the phonological loop. The visuospatial sketchpad has been

fractioned into two separate (Courtney et al., 1996; McCarthy et al., 1996;

Smith et al., 1995) but overlapping (Awh and Jonides, 2001) subparts, one for

objects and the other for spatial coding. The central executive plays numerous

potential roles, particularly the focusing, dividing and switching of attention

and the coordination between short term and long term memory. Baddeley’s

three-component model still underpins most of the research in computational

models of working memory (Baddeley, 2012; Lewandowsky and Farrell, 2003).

More recently Baddeley expanded his model by introducing a fourth com-

ponent, called the “episodic buffer” (Baddeley, 2000a). The episodic buffer

mediates between the other components of working memory and long-term

memory and serves to bind together information into coherent episodes. The

episodic buffer is also hypothesized to be under control of the central executive.

Not all theories of working memory subscribe to Baddley’s multi-component

model. Cowan’s “embedded process model” categorizes information into three
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hierarchical levels (Cowan, 1988, 1995). At the base there is all the information

in long-term memory, a subset of that is “active” at any point in time, either

consciously or not, and a subset of active information is being consciously

attended to. Working memory is not a separate function or apparatus, but the

set of “cognitive processes that retain information in an unusually accessible

state” (Cowan, 1999, p. 62). This is a qualitative model of working memory,

rather than a quantitative one from which detailed predictions can be made.

Several other models such as Interacting Cognitive Subsystems (ics) and

Controlled Automatic Processing (cap2) take the opposite approach: rather

than positing a unified group of information and processing like Cowan, they

propose a proliferation of independent modules. The ics model (Barnard, 1985,

1999; Barnard and Teasdale, 1991) is built on a set of specialized subsystems,

each suited for a particular class of information such as acoustics or body

position. ics uses no centralized working memory or executive system. Barnard

claims that in theory each subsystem could be built using a neural network, but

that it would be computationally prohibitive. cap2 (Schneider, 1999; Schneider

and Chein, 2003; Schneider and Detweiler, 1987; Shedden and Schneider, 1990)

is a hybrid neural/symbolic model with a multitude of processing modules,

though it uses a purely symbolic executive system. cap2 is discussed further

in Section 2.3.

Working memory is distinct from long-term memory in several ways besides

its duration. While the capacity of long-term memory is effectively unbounded,

working memory has a very limited capacity, often of three to four items depend-

ing on the specific situation (Cowan, 2001; Cowan et al., 2005). Additionally,

long-term memory is driven by chemical synaptic change, especially long-term

potentiation. These synaptic changes occur over much longer time scales, often
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requiring repeated exposure to stimuli to form memories. In contrast, working

memory is generally viewed as being based on temporary electrical activity

patterns in neurons (Barak and Tsodyks, 2014; Dehaene and Changeux, 1989;

Gazzaley and Nobre, 2012; Zipser, 1991). Working memory capacity, unlike

that of long-term memory, is linked with general fluid intelligence (Conway

et al., 2002; Engle et al., 1999). Increased working memory capacity also has

implications for increased judgements of probabilities and ability to generate

alternative hypotheses (Dougherty and Hunter, 2003a,b).

Another key aspect of working memory is the need to balance rapid updating

vs. stable maintenance (Durstewitz et al., 2000; Goldman-Rakic, 1987). (This

is sometimes called the “stability-plasticity dilemma” in the neural networks

literature.) Long-term memories can be formed and updated very slowly.

However working memory must be plastic enough to respond rapidly to new

information yet stable enough to persist in the face of distraction. This is a

common issue that must be addressed when modeling working memory.

The pattern formed in working memory by an external stimulus can remain

active and stable even after the stimulus has been removed. In fact, such

patterns can remain stable in the presence of noise, or distracting stimuli.

The mechanism underlying this ability is unknown, though the most common

candidate is recurrent excitation within cell assemblies (Compte et al., 2000;

Zipser et al., 1993). Two other possibilities are “synfire chains,” which are

feedforward-connected loops of neurons (Diesmann et al., 1999), and single neu-

rons capable of bistable activity patterns (Guigon et al., 1995). (See Durstewitz

et al. (2000) for a review of these theories.)

Perhaps the most prominent method of resolving the simultaneous need for

flexibility and stability is to employ “active gating,” sometimes also known
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as “adaptive” or “dynamic” gating (Braver and Cohen, 2000; Frank et al.,

2001; O’Reilly et al., 1997, 2002). When such gates are open representations in

the working memory are free to update and when closed activity patterns are

protected from interference. This is captured in part by the lstm recurrent

neural network architecture, in which “memory cells” have nodes which can

close off their input or output as well as resetting the cell to “forget” the

value being remembered (Hochreiter and Schmidhuber, 1997). This enables a

memory cell to store values for an arbitrary length of time but also to change

stored values quickly. Furthermore, it is hypothesized that the dopaminergic

system in the prefrontal cortex and basal ganglia is capable of modulating

behavior in a way very similar to active gating (Cohen and O’Reilly, 1996;

Hazy et al., 2007).

The previous section outlines some of the basic characteristics of human

working memory. Among these are a limited capacity, a short duration,

persistence in the absence of external stimulus or presence of distractions,

and the ability to rapidly update state. It is also widely hypothesized that

working memory is divided into functional components as well as being tightly

integrated with some sort of executive control processes, although the form of

the division as well as the nature of the executive are both debated. These

characteristics are all elements which should guide the construction of models

of working memory.
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2.2 Past Neural Network Models of

Working Memory

Attractor networks are often used to model working memory. Attractor net-

works are recurrent neural networks whose state dynamically shifts until settling

into a stable pattern, which may be fixed, cyclical, or chaotic. One such at-

tractor network model is that of Jones and Polk (2002), which uses real-valued

attractor networks for serial recall. One positive aspect of this model is the

degree to which it gives three important assumptions about neural cognition,

namely the use of intra-layer recurrent connections, distributed representations,

and Hebbian learning. Jones and Polk’s model is composed of three sections:

a “position” network, an “item” network, and a set of “association” networks.

The position network stores patterns representing ‘first,’ ‘second,’ and so on,

while the item networks trains the actual items being stored. A sequence is

stored by training the connections between the position and item networks. It

is the learned correlation between the position and item patterns which make

recall possible. The association networks exist to strengthen the attractors in

the item network through excitatory connections. Each association network is

responsible for the memory of a single possible item. For example, a model

which was tasked with remembering sequences of letters would have one associ-

ation network whose only memory is ‘A’, another whose sole memory is ‘B’,

and so on. This is the major weakness of this model: an additional layer is

needed for every item which might potentially be stored.

Kesner et al. (2000) identifies four uses for attractor networks in the brain.

These are: (i) short-term and working memory by maintaining activity patterns;
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(ii) separation or orthogonalization of input patterns; (iii) pattern association

through correlational learning, and; (iv) temporal pattern completion using

asymmetric connection strengths. My proposed work makes use of all four of

these. Note that temporal pattern completion is a form of pattern recognition

more generally, in that assembling a full sequence from partial subsequences is

way of restoring full patterns from partial or noisy versions, which attractor

networks are widely recognized to do.

It is worth mentioning two other notable models of working memory which

use local encoding, especially for the phonological loop and serial recall. One

is the “Competitive Queueing Model” (Burgess and Hitch, 1999), which repro-

duces a wide range of experimental findings about serial recall, but at the cost

of high complexity. This was simplified by the “Primacy Model” (Page and

Norris, 1998), which accounts for slightly less of the experimental observations

(such as grouping effects) but has the benefit of far fewer free parameters.

The “Start-End Model” (Henson, 1998) exceeds the explanatory power of the

Primacy Model, but requires that the list length be known in advance, which is

an unrealistic assumption since humans are more than capable of remembering

lists without prior knowledge of the list length, for instance in tasks such as

Running Memory Span (Bunting et al., 2006).

oscar is a model of working memory for phonological serial recall that does

use distributed representations, however its recall is governed by setting a collec-

tion of oscillatory timers to the same values they had when the items were first

trained, and it is unclear how this would function in a biological system (Brown

et al., 2000). Another drawback of oscar is shared by todam, which is also

a neural network model using distributed representations (Lewandowsky and

Murdock, 1989; Li and Lewandowsky, 1993). In order to output which item

17



is being recalled both models must convert back into localist representations

in order to combat the noise that their associative memories generate as a

result of interference. Having to use modules with local codings of all possible

inputs somewhat undermines the use of distributed representations in the first

place. Additionally, none of the prior four models display much in the form

of a cognitive control system. Instead each is governed exogenously, being

commanded when to store items and when to switch to recall mode.

All of these approaches to working memory modeling thus far have had the

aim of representing or understanding biological cognitive systems. Pascanu and

Jaeger (2011) takes a different approach, building a working memory model for

use in a signal processing task. Their model is based on reservoir computing,

using an Echo State Network (Jaeger, 2001) augmented with special output

nodes they call “WM-units.” These nodes have trainable connections both from

the reservoir and between themselves, and fixed recurrent connections back to

the reservoir. The WM-units are used to keep track of the number of open curly

braces in a stream of handwritten text, while the standard output units identify

which letter is currently being presented. Since the distribution of characters in

the input stream is a function of the nesting level of the braces, the WM-units

provide valuable contextual information for the character recognition. This

is an interesting application of the concept of working memory since it fits

the commonly used cognitive definition — “the ability to transiently hold and

manipulate goal-related information to guide forthcoming action” (Durstewitz

et al., 2000) — even though the point of the model is not to do cognitive

modeling.

The models described above have several common limitations. The first

of these is a lack of internal cognitive control. They rely on some external
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force to direct them to add items to memory or to recall them from memory.

Secondly, many of these models use local encoding, which is neither biologically

realistic, good at generalization, or able to scale well. Finally, even some of the

models which use distributed representations suffer from scaling problems since

they require additional units, and often whole additional layers, in order to

encode more values in memory. Basing galis on a network of gated sequential

attractor networks overcomes these limitations. galis’s control module is able

to guide the rest of the network’s activity in performance of the tasks it has

been trained on without relying on exogenous control instructions. Gating is

used not just as a method of balancing the stability and plasticity of working

memory representations, but also to direct the flow of information and the

shape of attractor landscapes. Finally, the attractor network approach frees

the model from having to devote additional substrate for each new item added

to memory since the attractor network can hold multiple patterns in memory.

2.3 Past Neural Models for Cognitive

Control

Compared to artificial neural networks, symbolic AI systems excel at modeling

executive behaviors like decision making due to the ease with which they can

do things like searching, representing working memory, and variable binding.

And yet biological neural systems are completely capable of these sorts of

executive functions. This section outlines some of the attempts to build neural

networks which are capable of performing tasks requiring cognitive control. In

addition to the benefits of bringing the capabilities of the neural paradigm

closer in line with the symbolic one, and potentially shedding light on some of
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the more mysterious, higher functions of human cognition, exploring neural

network models of goal-directed behavior has another advantage. By improving

on some of the inherent weaknesses of neural systems one could make better

use of some of their strengths, such as their natural facility with generalization

or partial pattern matching.

One of the dominant forms of non-neural cognitive models is the “produc-

tion system,” exemplified by such architectures as act-r (Anderson, 1996;

Anderson et al., 2004; Anderson and Lebiere, 1998). Production systems take

the form of if-then rules. Productions are activated or “fired” whenever their

preconditions are met. While powerful, the current symbolic implementations

of such systems have little basis in biological reality and map poorly onto the

known functioning and structure of the brain. Neurally-based architectures

have some other advantages over symbolic ones besides their correspondence to

biological systems. For instance, neural networks can deal with partial matches

with ease. Neural representations are also easier to learn than symbolic ones,

since the “discrete and fragile” nature of the latter causes them to be more

brittle, making iterative improvements to representations difficult (O’Reilly

and Busby, 2002, §2.1).

There have been several efforts to bridge the gap between symbolic and

neural systems. cap2 is a hybrid system, using both neural components,

such as associative memories, and symbolic components, such as buffers and

production rules (Schneider, 1999; Schneider and Chein, 2003; Schneider and

Detweiler, 1987; Shedden and Schneider, 1990). It is difficult to tell how much

of each paradigm is used, since the executive system is described as potentially

being an Elman-style Simple Recurrent Network but also described elsewhere

as being implemented as a symbolic rule system (Schneider and Oliver, 1989,
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p. 7). Other control modules, such as the “Episodic Store,” are also symbolic.

What neural modules are used are trained with Error Backpropagation. One

of the key control modules, the “Goal Processor,” is inherently sequential, like

that of galis. It influences the operation of other modules by adjusting gain

parameters, which can be seen as a primitive form of gating. Details on how

the system operates are scant, however.

act-rn took a different approach to reconciling neural and symbolic pro-

duction system by attempting to re-implement act-r with neural components

while maintaining the same overall organization and operation (Lebiere and

Anderson, 1993). act-rn required an extra node for every “chunk” of infor-

mation in its declarative memory as well as an extra node for every production

rule it knew. As a result of these and other drawbacks act-rn has been

declared to be “not of practical use” by its own creators (Jilk et al., 2008,

p. 202). One interesting aspect of act-rn is the way it handled goals in a

real-valued Hopfield memory. When a subgoal is identified the goal memory

learns the subgoal’s correlation with the current goal. When the current goal

is complete, this correlation can be used to retrieve the parent goal. The

correlation between the two is then unlearned, returning the goal memory to

roughly the same state it had before the subgoal was added.

act-rn was not unique in mimicking the structure of a symbolic production

system using neural building blocks rather than crafting the architecture from

a neural perspective from the start. One such endeavor was the Distributed

Connectionist Production System (dcps), which was built as a demonstration

that a coarsely-coded neural network can implement a restricted set of simple

production rules, including a limited amount of variable binding (Touretzky

and Hinton, 1988). This is achieved through a set of five modules, four of which
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are a modified form of Boltzmann machines. The memory module is composed

of simple latches, and these nodes do no computation of their own. The other

four — used to isolate particular clauses in the production rules, represent

the current rule and bind variables between clauses — all employ competitive

dynamics. The connections in and between modules were hard-coded into

the network rather than being trained. Additionally the system contained no

control elements: all executive functioning was external to the model.

dcps was later the basis of a connectionist model for symbol processing

named “BoltzCons” (Touretzky, 1990). BoltzCons is similar to dcps in

structure but it is designed for manipulating Lisp-style data structures and

symbol processing rather than production rules. Using competition between

nodes BoltzCons implements associative memory version of linked lists, stacks

and trees. Also like dcps all connections are hardwired in advance and

executive function is exogenous.

There have been attempts at building neural models capable of implementing

production system-style rules that do not mimic the top-level functioning and

organization of symbolic architectures (Kiela, 2011; Kriete et al., 2013; Lamb,

2008; Townsend et al., 2014). One such a system is given by Simen et al. (2010),

which uses leaky integrator nodes to represent populations of neurons (see also

Simen and Polk, 2009). By setting the weights on the recurrent self-connections

of these nodes to wii > 1.0 they behave like bistable switches. The discrete

behavior of these switches can then be used to build assemblies which implement

a production rule. The input weights to the assembly recognize the antecedent

of the rule, and the switch node can then be flipped on or off to signify the

consequent. One drawback of this system is that it requires one assembly for

every rule in the system. Another problem is that there is no known learning
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rule to learn the appropriate connection strengths, so the system must be

hard-wired by hand.

In contrast to the attempts to replicate production system architectures

with neural building blocks, Dehaene and Changeux (1997) presented an all-

neural model, sometimes called dc97, capable of solving Towers of London

problems. The network is organized into three hierarchical levels, one each

for “gestures,” such as pointing to a location, “operations,” such as moving a

particular disk, and “plans,” for higher level abstraction such as determining if

a goal condition has been met. The patterns in each layer are kept stable by a

combination of competitive dynamics and recurrent excitation. One criticism

of dc97 is that it uses a very local conjunctive coding scheme, which is both

undesirable from the perspective of biological fidelity and can lead to problems

of combinatorial explosion as more entities must be encoded. dc97 also has

no learning procedure, making it hard-wired for performing only Towers of

London tasks; it is incapable of generalizing to even similar problems such as

Towers of Hanoi.

Polk et al. (2002) also criticized dc97 for being “method-specific” because

it implements only greedy depth-first searches of the state space, albeit with

some look-ahead capability. In that paper, Polk et al. present their own model

of the Towers of London task, which is built around Hopfield networks. Each

variable used in the model gets its own Hopfield net, and each network is trained

using Hebbian learning so that all possible values of the corresponding variable

are attractor states of the network. Production rules are then implemented

by training the connections between the antecedent and consequent variables’

networks. For instance, a rule if color=red then size=medium would involve

connections from the color network to the size network which biases the latter
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towards the medium state whenever the former is near the attractor red. This

system can accommodate goals by introducing extra biases on the consequent

networks which further deforms the attractor landscape, enlarging the attractor

basins corresponding to the desired outcomes. The major drawback with this

system is that it requires a layer of nodes for every variable. This both scales

poorly with task complexity and locks the model in to representing just the

task it was designed for.

Another alternative to the depth-first search of dc97 goal-seeking is the

approach of Schmajuk and Thieme (1992). It was built for maze navigation,

but can be applied to any problem describable by a directed state graph. Their

model is divided in two components, the “cognitive system,” which builds a

topological map of the space by linking adjacent locations, and the “action

system,” to handle action selection. The cognitive map builds heteroassociative

correlations between “places” and “views,” which are the locations immediately

adjacent to the current place. These associations are then used to make

predictions about what the results of taking certain paths will be. It is possible

to make long-range predictions by feeding the output view back in to the map

as a place and repeating the process.

Schmajuk and Thieme’s model has a particularly interesting property: it

exhibits “latent learning,” which is the ability to learn about the environment

in the absence of any reinforcing rewards (Tolman and Honzik, 1930). If it

is allowed to wander through a maze without any reward being present at

the goal it still builds a cognitive map of the environment. Then when it

is re-introduced to the maze with a reward present it is able to act on the

knowledge previously acquired. Few models are able to successfully learn both

with and without reward signals.
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Many control architectures fall prey to a homuncular fallacy: their proposed

solutions to the problem of cognitive control themselves require an external

controller (van Veen and Carter, 2006). If the controller itself needs to be

controlled, as if driven by a homunculus, then as many questions are raised as

answered: what is controlling the homunculus? Addressing this issue was the

motivation behind the pbwm model (O’Reilly and Frank, 2006). It combines

modules inspired by the prefrontal cortex and subcortical structures, especially

the basal ganglia, using actively gated connections to implement an actor-

critic architecture for reinforcement learning. This method, called the pvlv

algorithm (“primary value, learned value”), is inspired by Pavlovian learning

in psychology and is an alternative to TD-learning (O’Reilly et al., 2007, 2014;

but see Houk, 2007). It is used to enable the basal ganglia module to learn

when to gate connections.

Though this learning system goes a long way to sidestepping the problems of

homuncular control by allowing the control dynamics to emerge, the architecture

used for these models is very hard-wired to the particular task at hand and

relies on conjunctive, local representations. For instance, in their model of the

Wisconsin Card Sort Test (wcst) there is a single prefrontal cortex (pfc)

node each for the shape and line dimensions, and the ventral tegmental area

was represented by another solitary node (O’Reilly et al., 2002; Rougier et al.,

2005). O’Reilly and colleagues have made occasional efforts to address this

reliance on local representation, such as O’Reilly and Busby (2002). However,

three of the six modules in that model still used local representation. In the

modules that did use distributed representations, objects were encoded by

activating just two of eight nodes, rather than the one of eight that would be

used for local encoding.
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galis differs from pbwm in several ways. First of all, pbwm uses firing

rate neurons, while galis uses a more abstract paradigm in which each node

represents the combined, often binary activity of a group of neurons. Secondly,

galis makes a stronger commitment to distributed representations. pbwm

and galis also differ in their approach to gating. pbwm’s gates are based

on the binary state of an intra-node latch, while gates in galis modulate

the input entering a node using continuous values. pbwm uses gating for

shielding the contents of working memory from update, while galis uses

gating for controlling flow of information between modules more generally,

including inputs, outputs, and biasing attractor networks, in addition to

updating working memory. Finally, it is my goal for galis to require fewer

task-specific changes to its architecture than pbwm does.

The pbwm model of Chatham et al. (2011) is a particular contrast to the

work I present in Section 4.3. The authors present a model of a sequential

memory task called n-Back, but the inputs to their model consist of both

the letter to be remembered and that letter’s serial order.2 So while the

galis model described in this dissertation receives a stream of stimuli such

as ASDFSG. . . no matter what the value of n is, Chatham et al.’s pbwm

model receives A1S2D1F2 S1G2. . . if it is supposed to perform 2-back but

A1S2D3F1 S2G3. . . if the task is 3-back. Structuring the inputs this way

removes some of the burden from the model to determine which prior stimuli

the current one should be compared to. In addition, it uses an iterative

approach to training, while galis use one-shot Hebbian learning. Further, the

PBWM model prevents interference between memories by learning to explicitly

over-write old memories with the new ones which occur at the same position in

2 q.v. § 4.3 for an explanation of n-Back.
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the period (so that, for instance, G3 displaces D3 in the example above), while

galis uses weight decay and Hebbian unlearning to minimize interference

from older, irrelevant stimuli.

Kaplan et al. (2006) developed a biologically-motivated model of cognitive

control for the wcst which used a Hopfield network as a working memory

and gating to control maintenance and updating. Though it was capable of

modifying behavior in response to feedback from the environment, it is limited

by its extremely small size and local encoding: the entire working memory was

composed of only four nodes.

Morton and Munakata (2001) present a neural network model of cognitive

control which adopts an “active-latent account,” dividing control mechanisms

and memory into two types. Active representations in the pfc can overcome

habituated, latent ones in the posterior cortex. Morton and Munakata link

active representations to activity patterns which can be maintained even in

the absence of their antecedent stimulus, and latent representations to weight

changes. Flexibility of control is related to the relative strengths of active and

latent representations. Their model generalizes well, being able to model both

the wcst and a verbal interpretation task with minimal architectural changes,

but representations are extremely localized.

There is neuroanatomical evidence of “loops” running from the pfc to the

basal ganglia to the thalamus and back to the pfc. These loops have been the

subject of various models, for instance Amos (2000) assigns the pfc module

to maintain information including the most recent stimulus and the currently

operative rule, and the basal ganglia modules to integration of pfc outputs

and gating possible actions. (The thalamus serves as an output in this model,
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as it does not project back to the cortical layer.) It also uses local coding, with

one neuron per feature-value pair in the wcst.

Another loop-based model is Monchi and Taylor (1999), which presents a

spiking neuron model designed specifically to align with fMRI data (Monchi

et al., 2001). While the architecture used can be fairly easily adapted to both

Delayed Response Tasks (Petrides, 1994) and the wcst, which shows some

versatility, it is both locally coded and hard-wired to the task selected, with

all weights and connections set by hand, without learning algorithms. This

model can also be artificially “lesioned” in order to study such neurological

abnormalities as schizophrenia and Parkinson’s disease (Monchi, 2000).

Dehaene et al. (1998) created a neural model of cognitive control for the

Stroop task based around a “global workspace” for effortful mental operations.

This is a limited implementation of Baars’ global workspace theory (Baars,

1983, 2002), which revolves around consciousness and awareness. Dehaene et

al. postulate two different types of computational “spaces”: specialized ones

for roles like perception and motor control, and a general space to mobilize

or suppress the specialized modules. This formation also relies heavily on a

gating concept, with only some nodes of some modules being granted access

to the global workspace. Using semi-supervised learning, this model can

learn to perform the Stroop task without any special rule coding units or

pre-programmed behaviors. However, once again local encoding were used

and the architecture is specific to Stroop. Furthermore, once the network has

learned to perform Stroop, it could not learn another task.

The problem of action selection recurs in all executive systems. Many neural

network approaches are based on Gurney et al. (2001a,b), which deals with a

model of action selection based on the basal ganglia (e.g., Beiser and Houk,
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1998; Frank, 2005; Stewart and Eliasmith, 2011). A signal is selected through

an off-center, on-surround pattern of activation caused by the combination

of diffuse excitatory connections with concentrated, topographic inhibitory

connections. (Off-center, on-surround is the opposite arrangement of that

used for typically used for selecting winners, such as in self-organizing maps.

However the basal ganglia have inhibitory output so it is the least active signal

which designates the action to be selected as low basal ganglia output will

lead to disinhibition of the corresponding action.) Interestingly, the selected

action is output twice: once to the pfc via the thalamus, so that it may be

acted upon, and once back to the basal ganglia. It is hypothesized that this

second output is used to adjust the action selection process itself, but the exact

mechanism for this is unclear.

In order to select from a set of actions it is necessary to have already

learned something about them and their expected outcomes. Fortunately, the

basal ganglia has also been linked to a reinforcement learning process (Barto,

1995; Cohen, 2008; Rivest et al., 2004). There is a particularly close alignment

possible between the actor-critic model of TD-learning (Sutton, 1988) and the

functioning of the basal ganglia.3 By adding in circuits analogous to cortical

regions, Botvinick et al. (2009) recently built a model capable of “hierarchical

reinforcement learning,” which allows the network to learn reusable subroutines

called “options.” This temporal abstraction is very helpful for alleviating the

temporal credit assignment problem.

The actor-critic framework is not the only version of TD-learning linked

to the basal ganglia. Walsh and Anderson (2010) examine three differed TD-

3 There is an impressive degree of correspondence between the actor and the dorsolateral
striatum and between the critic and the ventral striatum and dopaminergic system (Doya,
1999).
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learning models, actor-critic, Q-learning and sarsa, all of which are supported

by different neural evidence. (Respectively, neuroimaging studies (O’Doherty

et al., 2004), dopamine levels in rats (Roesch et al., 2007), and single cell

readings in monkeys (Morris et al., 2006).) It was Walsh and Anderson’s opinion

that the Q-learning model accounted best for both neural and behavioral data.

Finally, it is worth noting the work of Eliasmith and colleagues (Eliasmith,

2013; Eliasmith et al., 2012). They have built models of numerous tasks using

spiking neuron implementations of Holographic Reduced Representations (hrr;

Plate, 1995, 2003b), which is a type of Vector Symbolic Architecture (vsa;

Gayler, 2003). VSAs represent symbols as high dimensional vectors, such

as points on a unit hypersphere. Individual vectors can be combined in two

different ways, superposition (+) and binding (⊗). The superposition of

two vectors is accomplished through vector addition and gives a result which

is similar to both operands. The binding operation is done with circular

convolution and gives a result which is dissimilar to both operands. In addition,

there is an approximate inverse function (∗) which allows vectors to be unbound.

All of these operations can be computed with spiking neural networks, but

there is no learning rule to do so. Rather, the appropriate weight matrices are

determined analytically in advance and hard-coded into the system (Eliasmith

and Anderson, 2003). Crucially, all of these operation produce outputs which are

the same dimensionality as their inputs. This allows operations to be combined

to produce structured representations, such as attribute-value bindings. For

instance, a binding of X to attribute A1 and Y to A2 could be represented by

a vector R = A1 ⊗X + A2 ⊗ Y . To get the value of A1, simply bind R with

the inverse A∗1.
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This general system has been used for the Wason card task (Eliasmith,

2005), sequence memory (Choo and Eliasmith, 2010), production rules (Stewart

et al., 2010), Raven’s Matrices (Rasmussen and Eliasmith, 2010), and Towers

of Hanoi (Stewart and Eliasmith, 2011). While this is a very impressive

range of complex problems this approach is capable of addressing, there are

some weaknesses as well. One of these has been mentioned already: there

is no learning rule to produce the transformations necessary for the binding,

superposition and inverse operations. Another is related to recovering values

from attribute-value bindings. Binding with the inverse of the attribute yields

only an approximation of the value being sought. Recovering the actual value

requires a “cleanup memory” (Stewart et al., 2011) to remove excess noise. In

order to do this the cleanup memory must be pre-trained with all the atomic

symbols that could potentially be recognized, limiting the model to a distinct

vocabulary of symbols. Furthermore, there needs to be a separate set of nodes

dedicated to recognizing each symbol in memory. There are other aspects

of several of these models which requires the size of the model to scale up

in proportion to behavioral complexity. For instance, each rule necessary to

perform the Towers of Hanoi task needs its own assembly of nodes. Finally,

these models entail a great deal of computational complexity. The Towers of

Hanoi model, for instance, uses 150,640 leaky-integrate-and-fire spiking nodes,

each of which processes a 128-dimensional vector.

Unlike the models discussed at the beginning of this section, namely act-

rn, dcps and BoltzCons, galis is not attempting to recreate a symbolic

architecture with neural components. Neither is it a hybrid model, using both

neural and symbolic systems when convenient, like cap2. Rather, galis

is an attempt to model executive function from the ground-up, drawing on
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neurobiology rather than production systems for inspiration. Many similar

neural models of cognitive control, such as dc97, the work of Simen and Polk,

and that of Eliasmith and colleagues, suffer from a common problem related

to scaling. Each of these systems requires an additional set of nodes for every

stimulus (e.g., Jones and Polk, 2002; Stewart et al., 2011) or rule (e.g., Simen

et al., 2010; Stewart and Eliasmith, 2011) the model must respond to. This

leads to several issues. The first is a computational problem, because such

models scale poorly to more complex tasks and environments. The second

is the conflict that arises with what we know of biological neural networks,

which make heavy re-use of substrate (Anderson, 2010). The third is the

brittleness this introduces to the model. The designer must know in advance

how many symbols will be in the input set, or how many actions will be required

to perform the task. galis avoids these issues by not requiring such linear

increases in the neural substrate with every additional behavior.

There is another common limitation of biologically-inspired models of

cognitive control, such as those O’Reilly and colleagues as well as the work

of Dehaene et al. (1998), which is a that they are very specific to the task

being modeled. This hard-wired nature is often combined with, or sometimes

a consequence of, the local, conjunctive encoding schemes used. galis relies

on distributed representations and a more general architecture which should

minimize the number of changes needed to model different tasks. This also

allows other advantages of distributed representations included ease of learning

and noise resistance.

galis does not yet incorporate features of the many models which use

analogs of the basal ganglia or thalamocortical loops for action selection or

reinforcement learning. However, this could be added in future expansions.
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None of the models which do use these subcortical approaches are coupled

with attractor networks like galis is. Other authors take the basal ganglia

and thalamic nuclei to be the locus of gating activity, but gating can also be

seen to be a result of interactions between these subcortical elements and the

cortex. At least for the time being I am abrogating these biological details and

treating gating as if it were a cortical function (indirectly, via a subcortical

mechanism), making the basal ganglia and thalamus implicit in galis.

Finally, I believe galis is unique in using a memory not just to store a

record of past inputs, but also storing the instructions needed to execute a

task. Many models have weight matrices which encode the mappings necessary

for a task, but as far as I know none of them encode the task instructions

in the states of nodes. By processing both memories of inputs and memories

of procedures using the same techniques galis adopts a form of code-data

equivalence.

As a consequence of this explicit task memory, galis learns to perform

tasks rather than having behaviors hard-coded into the model itself. Because

different behaviors result from different instruction memories, which in turn

result from different training data, there is much more possibility for generality

and flexibility. For instance, galis should be useful in studying transfer effects

between tasks, since the difference between two models of different tasks will

lie primarily in the contents of their instruction memories and less in their

architecture, making them much more comparable.
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2.4 Past Neural Networks for Sequence

Processing

This section is limited to just those studies which are relevant to either the

subject of my work (executive functions of cognition) or the methods I employ

(principally temporally asymmetric learning). For a more comprehensive review,

see Kremer (2001).

Within the psychological domain neural networks have become a major

way to model serial recall (Brown et al., 2000; Burgess et al., 1999; Page and

Norris, 1998; Pascanu and Jaeger, 2011; Ponzi, 2008; Verduzco-Flores et al.,

2012). However, these models do not agree on a unified theoretical perspective.

The most common approaches can be divided into inter-item, ordinal and

positional theories (Henson and Burgess, 1997). The latter two approaches are

sometimes called “context-based” accounts. Inter-item models associate items

in the sequence with each other and manage recall by “connecting the dots”

between consecutive items. For this reason the most common of these theories

are called “chaining” models. Ordinal models such as Page and Norris’ (1998)

Primacy Model store sequences along a single dimension such as the overall

strength of their representation, so that the first item is the most active, the

second item is the next most active, and so on. Positional models associate

items with some context information such as a unique pattern indicating its

ordinal position (Anderson and Matessa, 1997), its relative distance from the

start or end of the list (Henson, 1998; Houghton, 1990), or the state of an

oscillatory neural timer at the moment the item was presented (Brown et al.,
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2000; Burgess et al., 1999). These three subtypes of positional models are

called absolute, relative and temporal, respectively.

Inter-item accounts, typically based on recurrent neural networks, have

better support from the neuroscience data, but context-based accounts have

better support from the behavioral data. The recurrent neural network model

of Botvinick and Plaut (2006) is an attempt to reconcile this by creating

an inter-item system that matches some important behavioral observations

which earlier chaining accounts could not. While it does meet this goal, it

does so using Backpropagation Through Time with teacher forcing, which

is not very biologically plausible. Botvinick and Plaut’s method is to train

a modified Simple Recurrent Network to store and echo back any sequences

to which it is exposed. The stimuli presented during trials are represented

only by the network’s activity and not by its connection weights. Rather

than the network’s weights learning the particular sequence as it is presented,

they learn the behavior “store this sequence and then repeat it as output,”

in advance over the course of tens of thousands of training samples. Note

that local encodings are used for the input and output, though not for the

internal, hidden representations. The authors claim that the local encoding

is not necessary, but it is unclear to what degree the model relies on it. If

distributed representations were used it is possible that a prohibitive amount of

training would be required because of the concomitant increase in the number

of potential patterns that the network would have to learn to process (Plate,

2003a).

As mentioned previously, attractor networks are commonly used to model

working memory (e.g., Maniadakis et al., 2012). While this approach is effective

and has generated substantial theoretical and experimental analysis, it is
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typically limited to maintaining only a single pattern at a time in short-term

memory. This restriction makes sequence processing difficult. In response

to these and other concerns, a number of oscillatory memory models have

been created and studied during the last several years. In these models,

items in memory are typically represented as rhythmic network activity in

which multiple memory patterns are simultaneously present in the same neural

substrate. This is possible because the networks activity oscillates between

activity states representing different stored patterns.

A diverse set of oscillatory memory models exists. Some are based on theo-

ries about the mechanisms underlying theta/gamma activity in specific brain

regions such as the hippocampus or neocortex (Hasselmo et al., 2002; Ingber,

1995; Koene and Hasselmo, 2007; Lisman and Idiart, 1995), others use individ-

ual spiking neurons (Raffone and Wolters, 2001), while still others have adopted

more abstract approach such as Wilson-Cowan oscillators (Chakravarthy and

Ghosh, 1996; Hayashi, 1994; Wang, 1995).

A particularly simple and elegant approach to creating oscillatory sequence-

processing memories is based on minimally modifying Hebbian associative

memories having fixed-point attractor states so that they become oscillatory.

For example, Horn and Usher (1991, 1992) produced a simple oscillatory

memory by introducing “dynamic thresholds” into Hopfield networks (Amit,

1989; Hopfield, 1982). With this approach, whenever a node has a particular

activity level±1, the threshold of that node gradually changes so that eventually

the node switches its activity level to the complementary value. When such a

network is presented with an input that is a superposition of multiple stored

memories, it oscillates between activity states that represent these individual

memories, thereby indicating its recall of the memories in parallel. Similar

36



behaviors have been produced based upon Hopfield networks modified to use

dynamic synapses (Pantic et al., 2002) or negative feedback with asymmetric

connection weights (Brown et al., 2000).

Horn and Usher’s approach was extended by Winder et al. (2009) and

Reggia et al. (2009) to include rapid decay of connection weights. This weight

decay allows the network’s activation to be influenced by the order in which

stimuli are presented, something that is not the case with classical Hopfield

networks. While the combination of dynamic thresholds and decay enabled

networks to match the position-specific recall rates of human subjects, the

order in which the stimuli were recalled by the model was arbitrary.

The Serial-Order-in-a-Box (sob) model is an alternate approach to storing

sequences in attractor networks (Farrell and Lewandowsky, 2002). Items are

stored using decreasing learning rates, so that the earlier an item appears in

the sequences the larger its basin of attraction will be. When the network is

put in a random state, it is likely to be drawn to the first, largest basin. Rather

than using dynamic thresholds to induce a transition to another attractor,

the networks weights are adjusted after each item is recalled to suppress

the most recently recollected pattern. This adjustment of weights after each

item is recalled has several drawbacks, including making rehearsal difficult.

Additionally, sob requires that items be represented by orthogonal patterns.

One technique that has been used to capture sequential patterns is tempo-

rally asymmetric weights (Abbott and Blum, 1991; Blum and Abbott, 1996;

Rao and Sejnowski, 2001). This is a Hebbian learning process which bases

connection strengths not on the correlation between concurrent activity in

pairs of nodes, but on the consecutive activity of those nodes. That is, learning

is based on a the correlation between the current activity and other nodes’
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activity during the prior time step. Often these models deal with the timing of

spike trains in spiking neuron models (e.g., Abbott and Song, 1999; Gerstner

et al., 1993). Rao and Sejnowski (2001) and Dayan (2002) also link asymmetric

weights to temporal difference learning. These studies have support in recent

neural experimental evidence (Bi and Poo, 1998, 2001; Markram et al., 1997;

Zhang et al., 1998).

Schulz and Reggia (2004) took a very different approach, modifying a self-

organizing map (som) to represent sequential information using temporally

asymmetric weights. The input to each node in the map is a function of the

current stimulus as well as the activity state which resulted from the previous

inputs. Weight updates are defined in such a way as to correlate these two

components of input using one-shot Hebbian learning. This is one of several

modifications made to soms to enable sequence processing, and many of the

other approaches are reviewed in that paper.

Hoshino et al. (1997) also adopt an approach using temporally asymmetric

Hebbian learning, but do not use it to form a separate weight matrix. Rather,

weights are generating using the sum of both standard and asymmetric Hebbian

learning components. This technique is used to form networks whose dynamics

take the form of “itinerant attractors,” in which the network’s state moves in

state space between different attractor basins, each one of which represents

one stored pattern (Tsuda, 2001). By adjusting the relative contributions of

the symmetric and asymmetric learning, the network will either move between

attractors in the order they were trained or in a random order, like sob. One

drawback of this approach is that the weight matrix must be modified in order

to induce a transition from one basin to another. This is done by reducing
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the size of the current attractor basin using anti-Hebbian learning so that the

network transitions into a different one.

Dealing with sequence processing is central to galis, since neither percep-

tions nor actions occur in isolation, but rather are inextricably embedded in the

sequence of perceptions and actions which occur around them (Elman, 1990).

Just as some AI researchers focus on agents situated in physical environments,

I believe cognition must be situated in a temporal environment. I approach

this serial nature of cognition by integrating methods used in many of the

models discussed in this section. I adopt an inter-item approach, exemplified

by psychological research such as that of Botvinick and Plaut’s, in contrast

the the context-based approaches of many qualitative models. However, I

expand on Botvinick and Plaut’s work by using distributed representations and

correlational learning, which are both more biologically plausible, less fragile,

and better able to generalize than the local representations they employ. I

also draw on attractor network models like sob, as well as the past work in

computer science and neuroscience in using temporally asymmetric learning to

process sequences. By combining these methods with attractor networks I can

harness their ability to generalize and restore full patterns from incomplete

versions and use this to build robust representations of sequences.

2.5 Fast Weights & Gating

Error backpropagation is a very successful type of artificial neural network

learning technique, shown to achieve both high accuracy and good general-

ization capability on many tasks. However, there is very little evidence for

error propagation signals in biological neural networks. Additionally, back-
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propagation is by nature a slow training method, requiring highly repeated

iterative presentation of each training stimulus. As such, it makes a poor model

for biological short term working memory, which does not require long-term,

repeated exposure of a stimulus in order to insert it into memory. Indeed,

working memory is defined in part by its ability to be rapidly updated. It is

important, therefore, to examine other neural network models which allow for

near instant training and fast updating of weights.

The most commonly known technique in this category is “one shot” Hebbian

learning. This is a learning technique often used in Hopfield networks to form

associative memories (Hopfield, 1982). Only a single presentation is required to

store a stimulus in memory. The downside to this rapid storage is that stored

stimuli can interfere with previous memories, especially if multiple stimuli are

sufficiently similar. As a result Hopfield networks have a small but variable

memory capacity, with capacity being a function of the particular items being

stored and the network size. This restriction is not unlike biological working

memory however.

One of the earliest fast-weight paradigms is presented by Hinton and Plaut

(1987). Their system had two weights on every connection, both trained by

error backpropagation. One would have a much higher learning rate than the

other, however, resulting in much faster adjustments. The effective weight

at any point in time would simply be the sum of the fast and slow weights.

Hinton and Plaut outline several applications, but concentrate on presenting a

method for reducing the interference that training a network on new patterns

has on the patterns already stored. This is an interesting concept, but the “fast

weights” are really only fast in comparison to the slow ones from this model,

as they still trained over hundreds of epochs.
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Kak has developed a neural network paradigm requiring only a single

training step for each input called the “Corner Classification” method (Kak,

1993, 1998, 1999).4 The training method for CC networks requires only a

single pass through the training data with minimal computation at each step

to determine connection strengths. The major drawback is that a distinct

hidden node is required for each training sample. Such local representation

is reminiscent of “grandmother cells,” and a large number of nodes would be

required for a complicated problem domain. (Note that training is very quick in

relation to the number of nodes, so large networks are more feasible than they

would be using a different training method.) CC networks can generalize but

only within a fixed-width hypercube around each training sample. Additionally

the radius of generalization is constant for the entire network. Finally, CC

networks operate only on binary data, and are best at two class discrimination

problems, though tasks with more classes can be handled by building several

networks in parallel, each of which is trained to recognize a single class.

More recently Kak extended CC networks to a model called “Fast Classifier

Networks” which allow for real-valued input and different degrees of generaliza-

tion in different subregions of the input space (Kak, 2002; Tang and Kak, 2002).

FC nets retain the ability to train quickly, though they need two passes through

the training data rather than one. The first is used to sets weights in the

network and the second is used to determine what the radius of generalization

will be for each hidden node. The requirement for a hidden node per training

sample is retained. The other major change is the addition of a “Rule Base,”

4 This is not to be confused with the corner classification problem, a data set used to test
neural networks. Roughly speaking, Kak’s corner classification method converts every
problem into an instance of the corner classification problem, and so the problem and
the method share a name.
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making FC nets a hybrid connectionist-symbolic model. The function of the

Rule Base, which contains only two rules, is to determine whether the network

will act according a single nearest neighbor or a k-nearest neighbor model when

evaluating each test sample. The former occurs when the test stimulus is within

the generalization region of a hidden node, otherwise the latter is used. As

such FC networks are a connectionist implementation of the statistical nearest

neighbor technique, and gain their fast training time in a similar way to the

“lazy” method of nearest neighbor techniques.

The Restricted Boltzmann Machine is similar to a stochastic version of

Hopfield nets in that they are associative, energy minimizing networks. The

rbm has also been interpreted as a Product of Experts model, with each hidden

node in the rbm being equivalent to one expert (Hinton, 2002). Tieleman

and Hinton (2009) proposed a training technique for rbms which incorporated

the rbm’s usual, slowly changing weights with a supplementary set of fast

weights which learn and decay more rapidly. Only the standard weights are

used to define the energy landscape the network is acting within, while the

fast weights are used to define a temporary “overlay” on that landscape. The

Markov Chain Monte Carlo method which is used to sample the network’s state

for training purposes then operates on this temporary overlay. The energy

landscape defined by the normal, slow weights is updated gradually and with

decreasing velocity, allowing the network to settle into an attractor basin. The

landscape of the fast weights is more dynamic, allowing the mcmc sampling

to converge closer to the probability distribution of the network quickly.

“Competitive activation dynamics” is an alternative to lateral inhibitory con-

nections for inducing competition between nodes in connectionist models (Cho

and Reggia, 1993; Reggia et al., 1992, 1988). Rather than using internode
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connections which explicitly act to create inhibition, this paradigm allows

nodes to compete with each other for the activation of upstream nodes. Thus,

a node’s input is not just dependent on its inputs and associated connection

strengths, but also on its own current activity. This creates a “rich-get-richer”

dynamic in which activation is allocated to one or a few winning nodes and

drained from others. This can be accomplished by having two sets of connection

strengths: a set of fixed “resting weights” and another set of “fast weights”

which are redefined every time step (Reggia and Edwards, 1990).

Schmidhuber (1992) presented a technique for fast weights involving two

parallel feedforward networks. One network — called the “fast” network —

is trained to associate the desired inputs and outputs, as usual, while the

second network — the “slow” network — is trained to adjust the weights

of the fast network. The slow network’s outputs are the weight changes

the fast network requires to properly map inputs to outputs. This allows

extremely rapid updating of the fast network’s weights, allowing for high levels

of plasticity and dynamic response, but without upsetting the stability of the

overall system, because the slow network’s weights are still comparatively static

and stable. This slow network/fast network arrangement makes possible a form

of temporary variable binding, which is a problem artificial neural networks

often struggle with. The weights within the fast network bind the inputs,

acting as variable addresses or slots, to the outputs, acting as the potential

values of the variables. The slow network acts as a controller to rapidly update

which fast network outputs (values) are responsive to which fast network inputs

(addresses), thereby changing the value of the stored variable. This technique

was also used to evolve controllers for a difficult pole-balancing task (Gomez

and Schmidhuber, 2005).
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Schmidhuber’s fast weight networks can be seen as a precursor to the Long

Short-Term Memory (Bakker, 2002; Gers and Schmidhuber, 2000; Hochreiter

and Schmidhuber, 1997). The Long Short-Term Memory (lstm) is a recurrent

network for sequential memory which relies on gating. It combines fast training

and efficient learning using a specific architecture. The key feature of this

architecture is a hidden layer composed of “memory blocks.” Each block

has three gates: one controls input to the block, another controls output,

and another wipes the state of the block (Gers et al., 2000). These gates

allow units’ effects to be changed very rapidly in response to inputs. lstm

training possesses two important properties: locality in both space and time,

meaning that weight updates are not dependent on global information about

the network nor on information from arbitrarily far in the past. However, this

lstm learning procedure can only be used on the very specific architectures,

in particular lstm networks can not have multiple hidden layers in parallel.

Recently, a generalized version of lstm, called lstm-g, has been developed

which allows more flexibility in architecture, as well as architectures which

vary during trials (Monner and Reggia, 2013, 2012). One of the key advances

which makes this possible is a shift in how gating is used. Rather than gates

being applied to the states of nodes within memory cells, they modulate the

connections between them. As mentioned in Section 2.1, lstm was part of

the inspiration for the pbwm model of working memory and cognitive control.

Gating is the key feature of pbwm which enables the switch between active

maintenance and rapid updating of activity patterns (O’Reilly and Frank, 2006;

O’Reilly et al., 2002). Several papers by O’Reilly and colleagues identify gating

as a major area of cognitive control research (O’Reilly, 2006; O’Reilly et al.,

2010).
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The Mixture of Experts (Jacobs et al., 1991b) and Hierarchical Mixture

of Experts (Jordan and Jacobs, 1994) methods take the gating approach to

fast weight changes further by gating entire networks rather than individual

connections. The Mixture of Experts architecture is composed of multiple

“expert networks” in addition to a “gating network.” The expert networks are

trained like standard feedforward neural networks (often multilayer perceptrons

using error backpropagation). The gating network however is trained to learn

which of the expert networks is likely to be most accurate for a given input

vector. The outputs of the gating network are then used to combine the outputs

of the expert networks, weighting the final Mixture of Experts output towards

the expert network judged most likely to be correct for the current input. The

Hierarchical Mixture of Experts architecture is similar to Mixture of Experts

but is arranged in a tree structure. Multiple gating networks are used to select

the expert network in the tree most likely to be successful for the current input.

Though weights in the composite network may not be changed rapidly, the

behavior of the network can be made to change rapidly based on the output of

gating networks. If one gating network outputs a zero signal to the gate of a

particular subnetwork then the weights of that subnetwork may as well all be

zero, behaviorally. Similarly a high gating signal serves to magnify the output

of the subnetwork to which it corresponds.

These frameworks have been used for many different machine learning

problems such as document classification (Ruiz and Srinivasan, 2002) and

control of industrial plants (Ronco et al., 1998; Ronco and Gawthrop, 1997).

In the latter, gated modular networks such as Mixture of Expert systems were

found to be especially useful when the environment requires abrupt changes by

the controller. In this respect, controlling an industrial plant and controlling a
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cognitive system are more similar than they may at first seem, in that they both

require a balance between stability and rapid response to external changes.

One other application that is of particular interest for my research is the use

of a Mixture of Experts architecture to perform a “what/where” task (Jacobs

et al., 1991a). For each input the network is asked which of nine three-by-three

patterns is present on a five-by-five grid as well as which of nine possible

locations the pattern is centered on. One network successfully learned to

specialize on each subtask. This is a good demonstration of the ability of

gating to combat interference and distinguish between object and location

information. However, I believe the simplicity of the networks involved — the

gating “networks” in one case were no more than output nodes with biases —

leaves much to be expanded upon.

Unlike many other models of cognitive control, galis uses exclusively one-

shot learning. This is not only biologically plausible in many situations, but

also side-steps one of the major computational costs of many neural networks

that use backpropagation techniques, which can take hundreds or thousands of

iterations. In addition to connections trained with one-shot learning, which

have an inherrent “fastness” to them, galis incorporates three other aspects of

fast weights. The first is present in galis in the form of its gated connections.

These gates move beyond those in or pbwm by taking continuous values,

including negative ones, instead of being in binary open or closed states. The

second aspect is fast-weights of the form presented in Schmidhuber (1992).

This underlies my approach to parallel visual pathways in Chapter 5. The third

is learning methods added to handle set shifting and instruction refinement

in Chapter 6, which are more similar to the type discussed in Tieleman and

Hinton (2009) Numerous neural networks have made use of one of these fast
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weight techniques, especially to solve problems related to the trade-off between

stability and plasticity, but none has explored the use of multiple fast weight

techniques concurrently.
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3

Associative Memories Based on Temporally Asymmetric

Weights

3.1 Introduction

Recurrent connections combined with the appropriate dynamics enable oscilla-

tory neural networks to produce rhythmic activity patterns. Such oscillatory

activity could potentially represent multiple stored patterns simultaneously,

rather than the single pattern of a typical fixed-point attractor neural network,

and without requiring the addition of hidden “delay” layers used by many

recurrent neural networks for sequence processing. However, retrieving these

stored patterns in the same order as they were observed — or any other desired

order — has proven challenging. The goal of this chapter is to address this chal-

lenge through the use of temporally asymmetric weights in attractor networks

to create an auto-associative memory that can learn sequences of patterns.

This is done in the context of modeling human working memory, one of the

fundamental cognitive control capabilities. A model is built which will form

the basis of all the memory systems in the remainder of this dissertation. It is

capable of matching the recall performance of human subjects on a standard
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cognitive psychology memory task (Running Memory Span), it reproduces

the recency effect humans exhibit in working memory, and it displays similar

position-specific recall rates.

There has been increasing interest in recent years in the development of

oscillatory neural network models for a variety of tasks. In contrast to fixed-

point attractor networks, which are typically limited to activating a single

pattern in memory at a time, oscillating networks have dynamics characterized

by recurrent connections leading to persistent rhythmic activity. This allows

multiple patterns to be held in the same short-term memory concurrently as

the model’s state persistently switches between them.

A large variety of oscillating neural models exist. For example, some are

based on underlying theta/gamma activity in the hippocampus or neocor-

tex (Hasselmo et al., 2002; Ingber, 1995; Koene and Hasselmo, 2007; Lisman

and Idiart, 1995), while others use individual spiking neurons (Raffone and

Wolters, 2001). Other more abstract approaches have also been used, for

example Wilson-Cowan oscillators (Chakravarthy and Ghosh, 1996; Hayashi,

1994; Wang, 1995). For further examples, see Section 2.4.

The focus here is on modeling short-term working memory, which is active

over periods of time on the order of several seconds. A key characteristic

of working memory is that it has a very limited capacity, unlike long-term

memory (Baddeley, 2000b). Recent studies suggest that this capacity is capped

at around four items (Cowan, 2001; Cowan et al., 2005). More specifically the

concentration is on working memory for sequential tasks, or those for which

the serial order of stimuli is important.

An elegant and parsimonious approach to oscillating working memory

models is based on simple modification of Hebbian associative memories with
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fixed-point attractors to make them oscillatory. For example, Horn and Usher

(1991) developed a basic oscillatory memory by adding “dynamic thresholds”

into Hopfield networks. With this approach, the thresholds used to determine

the next activity state of a node are continuously changing such that it becomes

increasingly difficult for a node to remain in the same state, and eventually it

switches its activity state to the complementary value. When such a network

is trained with multiple input stimuli it will oscillate between activity states

representing these stored memory patterns.

Recently the Horn and Usher model was extended to include a weight decay

term so that the order of input pattern presentations could affect the network’s

recall (Reggia et al., 2009; Winder et al., 2009). This allows the network to

accurately model the recency effect observed in human working memory on

running memory span tasks. Stimuli which were presented later in the input

sequence were more likely to be successfully stored and recalled by the network

when using weight decay.

While this memory model was able to match the position-specific recall

rates of human subjects, the order in which the stimuli were recalled was

arbitrary. In this chapter, the oscillatory weight decay network is augmented to

enable it to recall inputs in the order presented. This is achieved by introducing

a second set of temporally asymmetric weights into the model. By doing so the

network is induced to oscillate between stored memory states in the desired

order.

More specifically, in the work presented here temporally asymmetric Hebbian

learning is used in oscillatory networks for the first time. Adaptation occurs in

a fashion inspired by experimental evidence that synaptic efficacy in biological

cortex and other brain structures is “temporally asymmetric” (Bi and Poo, 2001;
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Figure 3.1. Stimuli to the model consist of 35 binary-valued in-
puts, conceived of as letters (such as the ‘P’ shown here) for ease of
visualization and interpretation.

Markram et al., 1997; Zhang et al., 1998). That is, synapses are strengthened

(LTP) if presynaptic activity precedes excitatory post-synaptic potentials by

20-50ms, and weakened (LTD) if the time course is reversed. The model

presented here, when extended in this fashion, not only captures the recency

effect of the original model (Winder et al., 2009) but also now largely retains

the sequential order in which the stimuli were presented.

3.2 Methods

3.2.1 Model Description

The model uses a fully connected network of N linear threshold units. Each

node takes a binary value ai ∈ {−1, 1}. The stimuli used are in effect arbitrary

sets of N bits, although they are treated as being individual letters from A to

Z for ease of interpretation. Figure 3.1 shows an input to a 35 node network

interpreted as the letter ‘P.’

The operation of the model occurs in two phases: first a temporal sequence

of input stimuli are presented and the weight matrices learned according to

Equations 3.1 and 3.2 below, and then the model is allowed to oscillate between

states according to Equations 3.3 and 3.5 for a predetermined total number of
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Figure 3.2. Architecture of the sequential associative memory. Only
the connections of one node are shown. Nodes are interpreted as
being arranged in a 5×7 grid; here they are offset so that depicted
edges are not collinear to enhance legibility. Solid grey lines represent
connections between nodes which have both symmetric and asymmet-
ric weights. The dotted black line from the highlighted node to itself
indicates that this self-connection has only asymmetric weights.

iterations. One iteration, or time step, corresponds to asynchronously updating

every node once in random order.

3.2.1.1 Training

There are two sets of connection weights, W and V. Both are N×N matrices

composed of real values, and are initialized to zero before learning. The first of

these, W, is the same symmetric weight matrix used in previous version of this

model (Winder et al., 2009). The entries of W are updated as each stimulus is

presented according to:

wtij = (1− kd)wt−1ij +
1

N
atia

t
j(1− δij) (3.1)
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where kd is a decay rate (0 ≤ kd < 1), and δij is Kronecker’s delta, which

ensures that weights on self-connections are fixed at zero. This is, at it’s core,

the same Hebbian weight change rule used in many previous neural network

models. The difference is the addition of the decay term kd that reduces the

influence of older stimuli in favor of more recent ones.

The new element of this model is the incorporation of a second weight

matrix V. The purpose of V is to allow the model to recall stimuli in the same

order they were presented. In order to accomplish this, V is trained with a

temporally asymmetric learning rule

vtij = (1− kd)vt−1ij +
1

N
atia

t−1
j (3.2)

inspired by the learning method used in some past neural networks for processing

temporal sequences (Schulz and Reggia, 2004). This is similar to the Hebbian

learning with decay given in Equation 3.1, but it associates the activity of

node i during the presentation of stimulus at time t with the activity of all

other nodes j during the presentation of the previous stimulus at time t− 1

in the sequence. This introduces a sense of temporal ordering to the weight

matrix, potentially making it possible to recall the stimuli in order rather than

randomly as was previously done. Note that the decay term is still present,

although the Kronecker’s delta factor is no longer used as it is desirable for

a node’s activity to be influenced by its activation state in the previous time

steps.

3.2.1.2 Recall

After learning and before recall the network is initially set in a random activity

state. It is not necessary to prime the network with a partial or noisy version
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of any of the input patterns. The calculation of inputs to each node is modified

from the prior model to account for both sets of weights. The input to node i

at time step t is given as

hti =
∑
j

(
βWwija

t
j + βVvija

t−1
j

)
− θti (3.3)

where the constant coefficients βW and βV are used to weight the relative

contributions of W and V (0 ≤ βW, βV ≤ 1). θi is a dynamic threshold used to

insure that the network oscillates between states rather than coming to rest at

a fixed attractor. Its calculation has been simplified from previously, however,

with it now being updated according to the following two rules. Every time

step, θi decays according to θt+1
i = (1− kθ) θti . In any time step in which the

state of node i has remained unchanged from the previous time step a factor

of kwa
t
i is also added to θt+1

i .

θt+1
i =


(1− kθ) θti + kwa

t
i ati = at−1i

(1− kθ) θti ati 6= at−1i

(3.4)

This moves θi in the direction of the activity state of node i, making it more

difficult for node i to remain in the same state. Both kθ and kw are constants

chosen in advance, with 0< kθ < kw < 1. We use kθ = 0.09 and kw = 0.175 in the

following computational experiments, although similar values gave qualitatively

similar results. Equation 3.3 has been simplified from the model it is derived

from by dropping the Ki biasing term derived from Horn and Usher (1991).

This was previously used to account for the potentially uneven distribution of

active and inactive nodes across potential stimuli and current network state.

Computational experiments revealed that it added computational complexity

to the model without significant impact on performance.

54



After the input to each node is calculated, the node’s state is updated

according to the following rule.

ati =


+1 hti > 0

at−1i hti = 0

−1 hti < 0

(3.5)

This is also a simplification of earlier models, which used a stochastic updating

process. We have found that the deterministic rule given above performs

roughly the same with this and similar data sets and significantly reduces

computational cost.

3.2.2 Measuring Recall

We assess the network’s recall by calculating the Hamming distance dλ between

its activity state ~a and ~aλ, where ~aλ is a perfect representation of one of the

26 stimuli λ:

dλ =
1

2

N∑
i=1

∣∣aλi − ai∣∣ (3.6)

The greater the distance dλ between ~a and ~aλ, the lower the similarity sλ = 0.85dλ

will be. A value of sλ = 1.0 indicates a perfect match between ~a and ~aλ. We

call any such time step a “recall peak” for λ. An exponential function was

used to define sλ in order to emphasize the difference between some pairs of

inputs with small Hamming distance between them. The choice of 0.85 in the

definition of sλ is essentially arbitrary, chosen because it produced visually

reasonable results. Values such as 0.7 or 0.9 work just as well.
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In order to compare versions of the model as to whether they successfully

recalled the stimuli in the same order as they were presented, a record is made

of the transitions from one recall peak to the next and this is used to generate a

single scalar value. We count the proportion of these peak-to-peak transitions

which occur between one stimulus and the stimulus which was presented to

the network immediately following. A transition from the fourth-back to the

third-back stimulus would be counted as a correct transition, while one from

the third to the fourth, or fourth to second, would not. A higher proportion of

such correct transitions is indicative of the recall being more well ordered in the

sense that the model is cycling through the stimuli it recalls in the same order

as they were initially presented. Transitions following the one-back stimulus

(i.e., the final stimulus) are ignored because there is no “next” stimulus to

correctly transition to.

The recall phase of the model lasts for hundreds of time steps, each one

potentially generating the recall of a stimulus. This lengthy series of activity

must be distilled into a single ordering of the inputs, in which each unique

stimulus appears no more than once. This is accomplished by consolidating

any consecutive time steps in which the network peaks for the same stimuli.

(Neither human subjects nor the model were ever presented with duplicates of

the same stimulus, so there was no cause for the model to report seeing the

same stimulus repeated.) So, for instance, if a stimuli sequence of ‘ABCDE’

were to result in the network oscillating between the states ‘BCCCDDE’ then

the recalled sequence would be taken to be ‘BCDE,’ and the second through

fifth stimuli would be considered to have been remembered correctly. The

requirement to remember the stimuli in the appropriate position is the same as

what human subjects are faced with when doing running memory span tasks.
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Previous versions of the model were not subjected to this requirement; any

recall peak for a stimulus was enough for it to be considered correctly stored.

3.2.3 Human Behavioral Data

Previously collected human behavioral data (Winder et al., 2009) on the

Running Memory Span task was used for comparison with the new model’s

performance, following the designs of Pollack et al. (1959) and Bunting et al.

(2006). The data was obtained from 38 adult subjects, all of whom completed

the task satisfactorily. They were shown a rapidly presented, two per second

sequence of 12 to 20 randomly ordered stimuli under computer control, and were

asked to remember the most recent six items in the order of their presentation.

Subjects indicated the stimuli that they recalled by clicking on a subsequent

graphical display of all possible stimuli. Recall was measured by assessing

accuracy of recall as a function of stimulus position. A stimulus was counted as

accurately recalled only if: (i) it was presented in the retention window (e.g.,

the last six items, depending on instructions), (ii) it was correctly recalled

by the participant; and (iii) it was recalled in the same position as it was

presented, counting backwards from the final, most recent stimulus. Any item

presented prior to the retention window that was recalled was considered a false

positive, as was any item that was not presented at all but which was recalled.

Any item from the retention window that was not recalled was considered a

miss. Any item that was presented in the retention window, but which was

recalled in the incorrect position was also counted as wrong (e.g., if the last six

items presented were ABCDEF and the subject recalled DCBFEA then only

E was counted as correct). A total of twelve trials were conducted for the task

57



with each subject requiring roughly 20 minutes per trial; no time restrictions

were placed on subject responses. All 38 subjects completed the task.

3.3 Results

The model’s recall was evaluated on the basis of both accuracy and peak-to-

peak transitions occurring in the correct order, as described in the previous

section.

In addition to comparing the model’s performance to human subjects, it

was also compared to a previous model for this task (Winder et al., 2009) which

uses dynamic thresholds but not asymmetric weights. Figure 3.3 shows an

example of the effect that introducing asymmetric weights has on sequential

recall. A plot of peaks in similarity for each of the stimuli presented is shown. In

Figure 3.3(a) recall occurs without temporally asymmetric weights. As a result

the ordering of the peaks is largely random, with the network moving between

four stored memory states without regard to their original presentation order.

In contrast, Figure 3.3(b) shows recall with asymmetric weights. Recalled

memory patterns are much more ordered in their progression, with activity

tending to proceed from earlier to later input patterns. This ordered retrieval of

stored memories is much closer to the human behavioral task described above

than was the earlier model which used only temporally symmetric weights.

Table 3.1 shows the number of stimuli successfully stored and recalled by the

network for various values of βW and βV when the network is presented with a

sequence of six inputs. In constructing Table 3.1, five hundred random sequences

were used for each simulation, and the network was allowed to oscillate for 250

time steps, with kd = .15. The cell corresponding to βW = 1.0, βV = 0.0 is
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(a) without asymmetric weights V

(b) with asymmetric weights V

Figure 3.3. Plot over time of when the values of similarity s reached
their peaks for the eight stimuli during an example run of the model.
Black marks indicate when s reached the maximum possible value
of 1.0 and thus were counted as present, while gray marks indicate
when s exceeded 0.8 but did not reach 1.0. The lines between activity
peaks indicate transitions that occurred in the same order as the
stimuli were presented. The first 150 time steps of the recall phase are
shown here. Figure 3.3(a) is without asymmetric weights (βW = 1.0,
βV = 0.0), and Figure 3.3(b) is with asymmetric weights (βW = 0.5,
βV = 1.0). In the former, one can see that the oscillatory states
alternate between the four recalled memory patterns for the 4th, 6th,
7th and 8th stimuli (F, J, D and E). Note that these peaks largely
occur in an arbitrary order. In the latter case, the network state
alternates between the five most recent stimuli, i.e., it has a propensity
to recall input stimuli in the same sequence as that in which they
were presented.

equivalent to running the network without any influence from the asymmetric

weights. The best results were achieved with βW = 0.5, βV = 1.0, which gave a

capacity of 2.26 items and with βW = 0.25, βV = 0.75, which gave 2.22 items.

For comparison, human subjects had a memory capacity of 2.73 items.

Furthermore, asymmetric weights increase position-specific recall perfor-

mance in addition to increasing the total memory capacity relative to baseline

(βV = 0). Figure 3.4 shows the recall rate at each stimulus position for networks
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Table 3.1. Number of stimuli recalled.

βV
0.00 0.25 0.50 0.75 1.00

0.00 — 1.13 1.38 1.46 1.54
0.25 1.18 1.84 2.01 2.22 2.12

βW 0.50 1.44 1.91 1.89 2.04 2.26
0.75 1.72 1.88 1.95 2.02 2.08
1.00 1.76 1.90 1.93 1.93 1.85

Table 3.2. Proportion of peak-to-peak
transitions in correct order.

βV
0.00 0.25 0.50 0.75 1.00

0.00 — 0.81 0.86 0.93 0.87
0.25 0.56 0.71 0.71 0.83 0.78

βW 0.50 0.50 0.70 0.68 0.79 0.85
0.75 0.56 0.65 0.68 0.75 0.78
1.00 0.53 0.61 0.67 0.74 0.71
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Figure 3.4. Recall rates for each position with and without tempo-
rally asymmetric weights. Five hundred random stimuli sequences
were run using a decay rate of kd = 0.2. Networks with asymmetric
weights enabled used βW = 0.5, βV = 1.0.

both with and without asymmetric weights. Asymmetrically weighted networks

were significantly more likely to retain the three most recent inputs.

Figure 3.5 shows that the network is capable of modeling human recency

behavior on Running Memory Span when using asymmetric weighting by

properly tuning the decay parameter, βW and βV. The model provides close

matches for human performance on both 6-back and 12-back running span

tasks. (For the former kd = 0.05, βW = 0.5 and βV = 1.0 and for the latter
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Figure 3.5. Comparison of the position-specific fraction of recalled
simuli by the model and human subjects for both 6-back and 12-back
tasks.

kd = 0.075, βW = 0.63 and βV = 0.37) Fitting data derived from human subjects

is a simple matter of tuning these three coefficients, which was accomplished

here with a simple iteratively-refined grid search, minimizing the rmse.

In addition to having higher total and position-specific capacity, asynchro-

nous weighted networks also retained the ordering of the input sequence more

effectively. Table 3.2 gives the proportion of peaks in similarity s that occur

in the correct order, using the same parameters as Table 3.1. That is, those

that progress from the fourth-back to the third-back, for example. A high

proportion of such transitions is achieved when the synchronous weights are

ignored completely (i.e., when βW = 0), but note that the number of stimuli

recalled by such networks is significantly lower. The fewer items stored at

all, the easier it becomes to get them into the correct sequence. Limiting the

results to those networks which stored more than two of the six stimuli on
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average, we again find that βW = 0.5, βV = 1.0 gives the best result with 85%

of the peaks in s transitioning correctly, compared to between 50 and 56% for

the fully temporally symmetric networks, regardless of βW.

3.4 Discussion

This chapter adds to the growing range of current models of short-term memory.

It explains some of the richness of human memory behavior, for instance the

limited memory capacity and recency effect in sequential recall tasks, but

does so while remaining parsimonious in its design. There is no need to

explicitly specify lateral inhibition in order to provoke competition between

stored patterns, such as in Haarman and Usher (2001). In contrast, competition

is allowed to arise from the process of Hebbian learning and dynamic thresholds.

Further, we do not use different structures for different phases of the memory

process. There is no complex architecture of learning and recall units, or

structures to explicitly guide the recall process (Frank et al., 2001; O’Reilly

and Frank, 2006). Rather, a single substrate of identical nodes is all that is

needed. The two weight matrices used in the model are also trained with

nearly identical rules, and are treated identically during recall. There is also

no need to introduce extra layers or nodes to provide temporality of network

activity, or to introduce recurrent connections or back-propagation between

layers (Botvinick and Plaut, 2006). Multiple patterns, along with their order

of appearance, can be stored on the same neural substrate simultaneously.

For the limited range of data considered here, this model did not need

to maintain a unified record of the entire sequence of stimuli. Correlations

between temporal events can be reconstructed by the network during recall in
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order to preserve the entire sequence, despite the network only being aware

of the immediately preceding stimulus during training. The model’s temporal

“awareness,” such as it is, only exists in a thin temporal slice. Similarly, during

the recall phase, each change of a node’s activity is only dependent on the

immediately preceding state of the network. Of course, with more complex

data additional processing mechanisms may be needed.

While this model appears similar to “chaining,” it is important to recognize

that it does not suffer from one of the principle weaknesses of chaining as a

technique for storing sequences: that a single error in recall will break the thread

connecting consecutive items, causing the model to be unable to continue with

the rest of the sequence. My approach, like that of Botvinick and Plaut (2006),

sob (Farrell and Lewandowsky, 2002), and todam (Li and Lewandowsky,

1993), avoids this issue by using distributed encodings of items on a single

substrate and embracing noisy, stochastic processing. To borrow an analogy

from Li and Lewandowsky (1993), if the memories in traditional chaining

are like beads on a string, galis’ sequence memory is like superimposing

several photographs on a single frame of film. A small error would break the

thread, causing the rest of the beads to be lost, but a small piece of the film

being damaged does not significantly impact the rest of the memories. The

inherently stochastic nature of the network’s activity means there is little harm

in being “knocked out” of sequence as the model is able to pick up the trail

again (Lewandowsky and Farrell, 2003). (In fact, the initial state of the network

is already out of the desired sequence. It is initialized to a random pattern,

and not a noisy or partial version of the first pattern in the sequence or a

special start-of-list marker, as is common.) From this initially random state

the network is able to progress through the sequence, occasionally going astray,

63



but even then tending back towards the proper ordering because the errors

occur in only some of the nodes, not an entire item representation as would be

the case in a localist model.

Note that other difficult conditions for chaining, such as duplicate stimuli,

repetitions, and interleaving confusable and non-confusable items, were not

present in the tasks that human subjects performed, and so were left out of the

model’s training as well.1 It would be instructive to test these conditions in the

future. Despite the challenge they present, work such as Botvinick and Plaut

(2006) shows that recurrent neural networks as a class are capable of handling

such situations. Furthermore, Botvinick and Plaut partially attributed their

success on those difficult conditions to the way their model encoded each item

independently of the way other items were encoded. The attractors in my

model of sequential recall maintain a similar independence which I believe may

allow them to capture some of the same behavior, although this hypothesis is

untested.

1 See Baddeley (1968) and Henson et al. (1996) for discussion of conditions which are
difficult to account for using only chaining models.
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4

Learning Instruction Sequences for Control

4.1 Introduction

The asymmetric weights approach for sequential memory presented in the

previous chapter expands the capabilities of attractor networks in a valuable

way, and in doing so captures some interesting properties of sequential working

memory. The goal of this chapter is to build a cognitive model which uses this

technique to not only learn sequences of stimuli from the external environment

but also to learn sequences of instructions required to perform its task. To

accomplish this, multiple networks of the type described in the previous chapter

are linked together to form a network of “regions and pathways” that is

controlled using gated connections — that is, by using connections between

regions whose behavior can be controlled by a third network. In addition,

the associative memories discussed in the preceding chapter are enhanced

to allow them to store multiple sequences in the same substrate or region

concurrently. This approach, termed galis for “Gated Attractors Learning

Instruction Sequences,” is demonstrated in this chapter by building models
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for two different tasks: one called Store/Recognize, of my own design, and one

called n-Back, which is commonly used in cognitive psychology.

The model of the prior chapter successfully captures many aspects of human

working memory. However, it still relies on exogenous control: the occurrence

of all weight changes, updates, recollections, accuracy assessments, etc., are

controlled by the modeler, not by the model itself. In order to make control

internal to the model I have linked a number of such attractor networks together,

in addition to other regional modules, using gating. This expanded system

uses sequential attractor networks not just to learn memories of perceptual

stimuli, but also to learn memories of the steps needed to perform tasks.

In order to make the algorithm for a task more tractable it is beneficial

to be able to decompose it into multiple, smaller subroutines. Each of these

subroutines then has its own sequence of instructions used to execute it. This

allows for more modular algorithms but introduces the (non-trivial) requirement

that a sequential attractor network store more than one sequence at a time.

This is accomplished by a modification to the learning procedure given in

Equations 3.1 and 3.2: a separate set of weights is learned for each constituent

sequence in the same way that the weights were learned in prior versions for a

single sequence. The weights are then averaged together so that only a single

set of weights is needed no matter how many sequences are being stored. This

independent training of each sequence ensures that both the weight decay and

the asymmetric weights operate only within a sequence and not between them.

(For instance, the first element in the second sequence will not cause decay in

the storage of the last element of the prior sequence.)

This leaves the problem of controlling which of these several sequences

is recalled. To address this, the network is conceptually divided into two
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partitions. (It is still fully connected, but the states of each set are interpreted

as representing different things. See Figure 4.1.) Which of the trained sequences

is recalled can be controlled by adjusting the input to one of these sets to

provide context information to the network. The nodes used to provide this

context are termed the “cue” nodes. They have values associated with each

sequence so the network can reproduce it when necessary. The other nodes are

termed the “response” nodes; they are used to encode the items the sequences

are composed of. This arrangement makes it possible to form memories of

multiple sequences concurrently, even if sequences share elements in common.

This last point is crucial if such networks are going to be used in an executive

control system. The response to multiple situations may require some of the

same steps be taken, so it is important that learning multiple sequences not

rely on them having disjoint sets of elements (cf. Botvinick and Plaut, 2002).

For example, imagine a system which has been trained to prepare cups of coffee

and tea. If the system was midway through making a cup of coffee and had

just added sugar, you would want it to avoid following this by adding lemon,

the next step in preparing tea. This is a danger because because the addition

of sugar is a step in both procedures.

The rest of this chapter is organized in to three sections. The first of

these covers a galis model for the Store/Recognize task, which I designed

to serve as a introduction to how galis approaches cognitive control. The

next section expands on this to present a model for n-Back, which is a popular

task in cognitive psychology, and compares results from this model to those

from human subjects. The chapter concludes with a discussion of galis and

cognitive control.
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Figure 4.1. A depiction of a memory divided into two conceptual
partitions. In the previous chapter, as well as most of the literature,
auto associative memories are depicted in a rectangular grid so that
we may easily visualize their contents pictorially. In truth, nodes have
no locations; any arrangement is equally valid. The layout of nodes
above emphasizes the “divided” nature of the memory introduced in
this chapter to store multiple sequences. Its nine nodes are still fully
connected, and could be interpreted as representing a 3×3 bitmap,
or the binary string 1011001112 = 359. (Darker nodes = 1; lighter
nodes = 0; reading top-to-bottom, left-to-right). However we can
also interpret it as representing two different numbers: 101102 = 22
(left column) and 01112 = 7 (right column). In this way a network
with a single, fully-connected set of weights can simultaneously be
seen as forming an autoassociative memory of long patterns and
a heteroassociative memory of two shorter patterns. I exploit this
throughout the remained of this dissertation to use one set of nodes to
represent which sequence is being recalled, and the other to represent
the items in that sequence.

4.2 The ‘Store & Recognize’ Task

Store/Recognize is a task designed as the first test of the galis control

system (Sylvester et al., 2011). This task is a first attempt to establish the

basic idea of the galis control system works, before moving on to real-world

problems and tasks from cognitive psychology. Store/Recognize was designed

to be straightforward and easy to understand while still demonstrating some

important features. Specifically, the Store/Recognize task was designed so
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Figure 4.2. Three of the visual input patterns V used for the
Store/Recognize task. The inputs are patterned after the IBM CGA
typeset, as seen in Chartier and Boukadoum (2006). Light and dark
squares denote a values of -1.0 and 1.0, respectively.

that the control system would have to consider two different inputs, make

two different decisions based on them, one after the other, add inputs to

working memory, and search the contents of memory for a given pattern and

recognize when it is present. In addition, the general process the model uses

to address this task is roughly the same as that needed to address the n-Back

problem discussed later in this chapter and the Card Matching task, discussed

in Chapter 5. This task provides a good first illustration of how galis works

that will facilitate understanding how these more complex tasks are addressed.

The Store/Recognize task consists of a series of visual inputs S, each paired

with an instruction M to either commit the stimulus to working memory or to

evaluate whether that stimulus is already in memory. These are termed the

“load” and “evaluate” modes. (For the purposes of this task, M is treated as

an input, but from a wider perspective it is a piece of contextual information

about the task to be carried out being received from elsewhere in the brain,

not from the external world like S.) Each visual stimulus is a bipolar pattern

of length 49, which for convenience and ease of interpretation are visualized as

a 7×7 grid of pixels with each stimulus again taking the form of a lower case

English letter. See Figure 4.2 for examples.
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Figure 4.3. The galis model for the Store/Recognize task. Thin,
solid arrows denote one-to-one connections. The recurrent connections
of the memory layer are fully connected. Dotted lines are the outputs
of the control module. Note that the number of boxes in the each
layer is an approximation only, and does not faithfully represent the
number of nodes used in the model. Details of the Compare and
Control Modules can be seen in Figures 4.4 and 4.7.

After receiving a visual stimulus and a mode (S,M), the model processes

the stimulus until producing an output by activating one of three output

nodes (Figure 4.3). When M = load the model should activate the complete

node, to signify that it is done storing the stimulus. When M = evaluate the

model should output either present or not present, depending on whether the

stimulus has previously appeared. In the latter case, the model should also

store the stimulus in memory before signaling its output. This means that

when a pattern which has not previously been presented is evaluated twice, the

correct output is not present the first time, but present the second, so output

is dependent not just on the current input but also on input at previous times.

Output is produced only when the model has finished processing the input

(S,M), rather than at every time step. It may take a varying number of time

steps from initial observation of an input until an output is produced, depending

on the particular input, the prior state of the model, and the efficiency of
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the model’s performance. For instance, more time steps are needed when

M = evaluate and a visual input is not found in memory than when it is found,

since the former requires storing the new visual input while the latter does not.

Once an output is produced a new pair of inputs is presented and processing

continues.

4.2.1 Model Overview

The galis model for the Store/Recognize task is composed of six components,

which can be seen in Figure 4.3. They are the visual input layer, the mode

input layer, the output nodes, the memory layer, the compare module, and the

control module.

Nodes in the visual input layer take values in {−1, 1}, and are set externally

to represent the visual stimulus V being presented in the current stage. As

such, the layer consists of 49 nodes.

The mode input, also set externally, encodes the current system goal.

Rather than using a local representation with a single node or pair of nodes to

differentiate load from evaluate inputs, a bipolar pattern of length twenty four

is used to represent each mode. This more accurately reflects the fact that this

input would be provided to the control module from another brain region, and

such connections use coarse, distributed representations rather than localized

ones. The specific patterns used to represent load and evaluate are random

bipolar patterns chosen in advance.

Three linear threshold units are used for output. There is one each for

complete, present, and not present. For each of these, an input xi ≥ 1 will

produce an output of one, otherwise output is zero.
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The memory layer is a discrete Hopfield network forming an auto-associative

memory. Hopfield networks are often used for long-term memories, but the

memory layer of this model represents working memory, with limited capacity,

high plasticity, and close integration with executive systems. The working

memory nodes are bipolar valued, and the size is the same as that of the input

layer. Training of the memory layer is accomplished with standard one-shot

Hebbian learning with weight decay

wtij = (1− kd)wt−1ij +
1

N
atia

t
j(1− δij) (4.1)

where kd is a decay rate (0≤ kd < 1) and δij is Kronecker’s delta, which ensures

that weights on self-connections are fixed at zero (Winder et al., 2009). The

weight matrix for the memory layer is termed WM, to differentiate it from the

weight matrices needed within the control module, W and V. Note that the

Store/Recognize task only requires remembering the set of stimuli which have

been seen, not the order they were seen in. As such only a single, symmetric

weight matrix is used to store the memory of external stimuli. In contrast, both

symmetric and asymmetric weights are used in the memory of instructions

since these must be recalled in order.

Input to each node i in the memory layer is composed of the influence of all

other nodes in the layer along with a gated connection from the topologically

corresponding node in the input layer:

hi = 2gin in i +
∑
j

wijaj (4.2)

where gin is the value of the gating node mediating the input-to-memory

connections, in i is the state of node i in the visual input layer, wij is the

strength of the connection from node j to node i both in the memory layer,
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Figure 4.4. The compare module. Thin, solid arrows denote one-
to-one connections. Thick arrows denote full connections.

and aj is the state of node j in the memory layer. State updates to the working

memory are the same as Equation 3.5 in the previous chapter.

ati =


+1 hti > 0

at−1i hti = 0

−1 hti < 0

(4.3)

The visual input-to-memory connection is used to enable the memory to be

influenced towards or away from the current stimulus. When the gate is fully

open (gin = 1), the state of the memory is forced to become the same as the

input layer. When the gate closes (gin = 0), there is no influence from the input

layer and the memory layer operates as a standard auto-associative memory.

The factor of two is necessary to ensure that the inputs coming through the

gate are able to overwhelm the influence of the intralayer connections and

effectively force the state of the memory.

The fifth component of the model is the compare module, which is used to

judge the similarity between the current state of the input and the memory

layer. It is composed of three layers, as seen in Figure 4.4. The first layer is

the same size as the memory and visual input layers, and receives one-to-one
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connections from each of those components. The state of nodes in this layer is

the product of the states of the corresponding nodes in the input and memory

layers.

The second layer of the compare module has two nodes, both of which take

as input the sum of the nodes of the first layer, divided by the size of the input

layer. (This produces a value proportional to the inner product of the input

and memory layers’ states.) One of the second layer nodes adopts a state of

one if its input is above a certain threshold — for this model and set of inputs

a value of 0.9 is used — and zero otherwise, while the other node outputs one

if its input is below that threshold and zero if it is above. The state of this

two node layer is then multiplied by a fixed weight matrix to produce a 32-bit

bipolar pattern which serves as input to the control module. The patterns

output by the compare module are static and pre-defined random ones, like

the load and evaluate patterns.

The compare module outputs these 32-bit patterns for two reasons, one

theoretical and the other practical. From a theoretical standpoint, the brain

rarely uses local encodings to transmit data between regions, and so it is more

plausible to design the model to use a distributed representation of the compare

module’s output. Regarding practicality, the patterns the control module uses

internally are on the order of several hundred bits long. It aids the necessary

mapping from the compare module’s output to the control module patterns

if the former is already thirty two bits long rather than two. In addition,

the control module must learn to recognize whether the compare module is

indicating a high or low similarity between working memory and visual input.

This discrimination is easier in higher dimensions.
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The final component is the control module, which is used to direct the

operation of the rest of the model. It takes inputs from the mode input layer,

and compare module. The control module has three outputs to the complete,

present, and not present nodes, as well as four other outputs, called “gate

control signals,” which operate gates in the rest of the model. For example,

one of the control module’s outputs manipulates the gate between the input

layer and memory layer, controlling how much the former influences the latter.

The core of the control module is a second discrete Hopfield attractor

network, called the “Instruction Sequence Memory” (ism). Unlike the working

memory attractor network mentioned above, this network is modified to use

temporally asymmetric weights, allowing it to store sequences of patterns.

(Refer to Chapter 3 for more details. Call the symmetric weights W and the

asymmetric weights V.) Each stored pattern corresponds to a particular action

the network may take, or more specifically, to a particular set of signals to

open and close different gates to different degrees. A sequence of these actions

taken together corresponds to the steps needed to address a particular situation.

For instance, when presented with a new visual stimulus when M = load , the

model must take three actions sequentially: first, make the state of the memory

layer match that of the visual input layer by fully opening the input-to-memory

layer gate, then update WM to store the new pattern in memory, and finally

output complete and prepare the model for a new input.

The control module has two other sections besides this temporally asym-

metric attractor network which are called the “encoder” and “decoder.” They

serve to translate the inputs to the control module into the particular patterns

stored in the instruction sequence memory, and then translate the response of

the instruction sequence memory into the control module’s final outputs. This
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pre- and post-processing is done primarily to mitigate the effects of noise and

to enable the control module to convert between inputs, stored patterns, and

outputs of different dimensions.

4.2.1.1 Control Outputs and Gating

The control module manages the behavior of the model through a system of

gates. The outputs of the control module are used to open and close these

gates, which in turn modulate the flow of activity between different layers. In

addition to the opening and closing of gates, the control module also activates

the three output nodes.

The four gates which control the flow of activity throughout the model can

be seen in Figure 4.3. They are:

1. a memory input gate between the visual input layer and memory layer,

so that the memory’s current state can be biased towards or away from

the current stimulus;

2. a memory training gate which controls when the working memory updates

its weight matrix WM;

3. a compare output gate which modulates the output of the compare

module, so that it is possible to notice or ignore the similarity between

input and memory state, and;

4. a control input gate which controls the encoder, so that the control

module can control when it updates its own state.

When a gate is open it allows information to flow through it like an open valve

in a pipe. (In contrast to an open switch in an electrical circuit, which would
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prevent flow.) A gate’s state is given by

gt = kgg
t−1 + st (4.4)

where kg is a decay term, here equal to 0.5, and st is the current value of the

control module output governing this gate. The effect of gates is multiplicative,

such that their downstream activity is a product of their incoming activity

and their current state gt. Control module outputs have values in [−1, 1],

so with kg = 0.5 gates will have states in [−2, 2]. This allows gates to have

more nuanced effects than binary states of “open” and “closed.” Like Stewart

and Eliasmith (2011), a gate can have an amplifying effect on its incoming

value (gt > 1.0), a damping effect (0.0 ≤ gt < 1.0), or an inhibitory effect

(gt < 0.0). Being able to use the same system for both attending to an input

(i.e., amplification) and inhibiting that input is appealing, since the two effects

have been described in the cognitive psychology literature as antipodal (Engle

et al., 1995).

The exception to this is the memory training gate. Because updating the

working memory weights is a discrete decision —WM is either updated or not

in any time step — the working memory gate has a threshold. Its state gt is

calculated the same way, and WM is updated when gt > 1 and not updated

when gt ≤ 1.

In some of the situations listed there are many connections being mediated

by the same gate. For instance, the connection between the input and memory

layer is one-to-one. You may think of each of these 49 connections as having its

own gate, with each gate having an identical value. The effect is the same as a

single, “master” gate controlling all 49 connections based on a single output

from the control module and so I adopt the convention of referring to the
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parallel opening and closing of these 49 connections as if there was a single

gate present.

4.2.2 Model Operation

The control module is trained before the task begins, so that the instruction

sequence memory already contains the appropriate pairings of conditions and

responses. The encoder and decoder are also trained before the task begins.

Training the control module occurs only once for this task, and once the task

begins its weights remain unchanged. The memory layer, in contrast, begins

the task in a blank, untrained state, and has its weights updated multiple times

as the task progresses.

During each step of processing the model goes through the following opera-

tions.

If the model activated any of the three output nodes in the previous time

step, a new stimulus will be presented, otherwise the inputs from the previous

step are retained. Next, the state of the main memory is updated according to

Equations 4.2 and 4.3. Then the output of the compare module is updated

to reflect the new state of memory and the potentially new state of the input

layer.

Next, the control module’s encoder is updated if the gate regulating it is

open. If it is not open, the encoder input will be the same as the previous time

step, and so its output will be unchanged, and thus the downstream layers

in the control module will receive the same inputs as the previous time step.

This prevents the control module from switching to a new sequence of actions

before the previous sequence has concluded, as this gate is opened only at the
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end of a sequence, setting the stage for the next sequence of actions to begin

in the following time step.

The encoder’s output, whether it is the result of new inputs from an open

gate or not, is then fed in to the cue nodes of the sequences memory. The

instruction sequence memory is then updated to produce the next response

pattern. This response pattern is processed by the decoder to select a particular

action, which then outputs the gate control signals which compose that action.

The newly produced gate control signals are used to update the gating

values according to Equation 4.4. If the gate responsible for training the main

memory is open (i.e., its state is greater than 1.0), then those weights are

updated at this point and the weight update gate has its value reset to −1.0.

Finally, the three output nodes are updated according to their associated

control signals. If any output is activated, all three have their values reset to

−1.0, and a new stimulus will be presented to the model during the next time

step.

4.2.3 Control Module Operation

There are four different situations to which the model as a whole, and thus

the control module, must respond. Each has an associated sequence of actions

which form the desired response. Note that there are many-to-one associations

between situations and responses, that is, the same action may be a member

of more than one sequence. A listing of the situations and their associated

response sequences can be seen in Table 4.1.

The first situation occurs when the model is given a new visual stimulus

and M = load . In that case the model must store the current input in memory

and then activate the complete output node. This is accomplished by first
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Table 4.1. Instruction sequences stored in control module’s ism.

Sequence Action

1. load stimulus 1. open input-to-memory gate, strongly
biasing memory state towards the input

2. train the memory layer (WM)

3. output “complete”

2. evaluate whether
stimulus is present

4. open input-to-memory gate, slightly bi-
asing memory state towards input

5. close the input-to-memory gate, remov-
ing the bias to the memory

8. open the output gate of the compare
module

3. stimulus present 6. output “present”
6. output “present”

4. stimulus not present 1. open input-to-memory gate, biasing
memory state towards the input

2. train the memory layer (WM)

7. output “not present”

fully opening the input-to-memory gate, forcing the state of the memory to

match the input layer. Next the control module opens the gate which allows

the memory module to update WM, storing the current pattern in memory.

Finally, the “complete” output node is activated and the gate which allows the

control module to update its input is opened. This series of actions is depicted

visually in Figure 4.5.

The second situation occurs when the model is presented with a stimulus,

M = evaluate and the control module is not receiving any input from the

compare module. The first action in the associated sequence opens the input-

to-memory gate. The added input to the memory layer nodes reshapes the

attractor landscape so that the activity of the memory layer is biased in favor
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Figure 4.5. The series of actions to store a pattern in working memory. The
process takes three time steps, but it has been unpacked here into six stages for
clarity. (a) A new pair of inputs (S,M) is presented, and the control module input
gate is open. Because M = load , the controller determines that it must execute
sequence 1 in Table 4.1. (b) The first step is to open the memory layer’s input gate.
At the same time, the control module input gate is closed to prevent the controller
from switching sequences before the current one completes. (c) Input from the visual
layer causes the state of the working memory to match the visual input S. (d) To
store S as an attractor state, the memory training gate is opened. (e) Now when
the biasing input is removed S persists as the state of the working memory. (f) The
complete output node is activated and the control module’s input gate is opened so
that it can select a new sequence of actions in the next time step.
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of the pattern in the visual input layer. (Imagine the memory layer’s attractor

landscape as a rubber sheet, with the attractors being depressions in the sheet.

The additional activity from the visual input layer is like a force pushing down

on the sheet, creating an additional depression into which the activity state

will fall.) The second action closes the input-to-memory gate, removing the

bias from the memory module. If the input pattern has previously been stored

in memory then the memory state should remain in that basin of attraction

when the bias is removed since it will be in an energy minima. Conversely, if

the pattern has not been previously stored, then when the memory is updated

in the next time step the state should shift to a pattern which has already

been stored. (See Figure 4.6 for a diagram of this process.) The final step of

this sequence is to open the output gate of the compare module in order to

judge whether the memory layer has remained in the same state or changed to

a different one.

This sequence is followed by either the third or fourth sequence, depending

on the output of the compare module. If the compare module indicates that

the memory state and input layer match each other, then sequence 3 is begun,

otherwise 4 is started.

Sequence 3 is simple, as all that needs to be done if the memory and input

layers match each other (i.e., the input pattern has previously been stored in

memory) is to activate the present node. There is, however, a small wrinkle.

Note that response 6 appears consecutively in response to cue 3 in Table 4.1.

This is an artifact of the instruction sequence memory. It has difficulty recalling

degenerate sequences of length one, since their is no prior pattern to associate

with in order to train V. It is only necessary for the control module to output
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Figure 4.6. How biasing the attractor landscape is used to determine if a pattern is
in memory. Each curve is a one-dimenstional representation of an attractor landscape,
with the state-space along the horizontal axis, and the effective energy along the
vertical. On the left is an attractor landscape with basins of attraction at x = 3 and
x = 4. On the right is another attractor with basins at x = 2 and x = 3. In both,
the present state of the network, represented by a small circle, is initially x = 3. At
time t+ 1 both networks receive biasing inputs at x = 4, which deforms the attractor
landscape as if the energy at x = 4 had been lowered. As a result at time t+ 2 both
networks change their state to x = 4. At time t + 3 the biasing input is removed,
returning the attractor landscape to its prior condition. Because x = 4 is a basin
of attraction in the network on the left, the state of that network remains at x = 4.
However, x = 4 is not an attractor in the network on the right, so it shifts its state
to x = 3. This allows galis to determine if x = 4 was a prior attractor state of the
network: if it was an attractor then biasing the network at x = 4 temporarily will
shift the network into that state even when the biasing input is removed, but if it
was not an attractor then the network will not stay in the state after removing the
input.
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response 6 a single time in order to successfully activate the present output

node, but it must be trained on a sequence consisting response 6 two times.

If the state of the memory does not match that of the input layer then the

current input pattern has not been found in memory. In this fourth and final

case the model must first store that pattern in memory, and then activate the

not present output node. This occurs in the same way as the first sequence,

though not present is output instead of complete.

4.2.4 Control Module Architecture

A diagram of the control module’s internal structure can be seen in Figure 4.7.

It is composed of three subcomponents. The principal of these is the instruction

sequence memory which is used to store the actions needed to respond to each

circumstance. The other two components are an encoder and decoder, which

are used for pre- and post-processing to convert the inputs of the controller

into the patterns stored in the instruction sequence memory, and then from

those patterns into the signals the control module outputs.

4.2.4.1 Instruction Sequence Memory

The instruction sequence memory is a discrete associative memory modified

in two ways. The first is the incorporation of temporally asymmetric weights,

which makes sequential recall possible, as shown in Chapter 3. The second is a

conceptual division of the nodes into two sets, the “cue” and “response” nodes.

The role of the cue nodes is to provide the necessary context information

to the response nodes to enable them to produce a series of outputs based on

a single input. The state of the cue nodes corresponds to the situation the

model is facing. The state of the response nodes in turn corresponds to one
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Encoder Input (56)!

Encoder Hetero-associative (200)!

Encoder Auto-associative (200)!
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Action Selection (8)!
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Cue Nodes (200)!

Response Nodes (120)!

Figure 4.7. The control module. Thick arrows denote fully con-
nected layers, while thin arrows denote one-to-one connections. The
number following the name of each layer is the number of nodes it
contains.

of the actions which should be taken for the current context. The network

will be trained on multiple sequences, so the cue nodes provide the context

information necessary to prompt the network to reproduce the correct sequence

in the response nodes.

As an example, one pattern the cue nodes may take corresponds to having

M = evaluate and having the compare module indicating that the state of the

main memory and input layers are approximately equal. In the event that cue

is given, the proper response is to output the series of three response patterns

which will lead to the model activating the present output node. (Sequence 3

in Table 4.1.)

There are four different cues and eight responses used for Store/Recognize.

Because some responses are associated with more than one cue (that is, the

same action is required in more than one circumstance), there are actually ten
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total patterns stored in the instruction sequence memory. Each of these ten

is the concatenation of a cue pattern with one of the responses required for

it. This combined pattern, along with the others derived from the same cue,

together form a sequence the memory is trained to recall.

Like the patterns chosen to represent the inputs and results of the compare

module, the patterns chosen to represent each cue and response are random

bipolar strings.

Although the instruction sequence memory is divided into cue and response

groups the network is fully connected. The difference is that cue nodes receive

an extra input from the encoder to bias their state towards the encoder’s output.

Additionally, only the state of the response nodes is read by the decoder. The

galis model for Store/Recognize uses 200 cue nodes and 120 response nodes.

Learning in the ism is again based on the methods successfully used in

Chapter 3. Specifically, the ism has two weight matrices, W and V, both of

which are trained in advance of running the model on the memory tasks. The

former is a typical weight matrix for an autoassociative memory, trained with

one-shot Hebbian learning with weight decay, as defined in Equation 4.5.

wtij = (1− kD)wt−1ij +
1

N
atia

t
j(1− δij) (4.5)

(Note that the coefficient for decay in the instruction sequence memory is

denoted kD, and is distinct from the decay term kd used for the main memory

in Equation 4.1, which can take a different value.) The second weight matrix,

V, also uses Hebbian learning but associates the state of a node not with the

current states of other nodes, but with the other nodes’ previous states. The
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learning rule is given in Equation 4.6.

vtij = (1− kD)vt−1ij +
1

N
atia

t−1
j (4.6)

As mentioned in Section 4.1, in order to allow the instruction sequence

memory to store multiple sequences, a change was made from the prior chapter

regarding how W and V are formed from these individual weight updates.

For each sequence l to be stored, a separate Wl and Vl matrix are generated

according to Equations 4.5 and 4.6. Once all Wl and Vl matrices have been

calculated they are then averaged together to get the final W and V matrices.

This batch learning-like process is done because decay should only have an effect

on intra-sequence ordering of patterns, not the order the sequences themselves

happened to be trained in.

Updating the state of the instruction sequence memory occurs in two stages,

the first governed by the asymmetric weights, and the second by the symmetric

weights. This two-part update process is a change from the previous work of

Chapter 3, in which the effects of both W and V were combined in a single

input calculation. When both W and V are used simultaneously they can

work at cross purposes. V is pushing the network towards the next attractor,

while W is fighting to keep it in the same attractor basin. The new process

helps the network to proceed from one state to the next in a much more orderly

and predictable progression.

First the input to each node is calculated using V and the previous network

state

hti =
∑
j

vija
t−1
j − θti + eti (4.7)
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where ei is the input from the encoder (ei = 0 when i is a response node), and

θi is a dynamic threshold that is used to keep the network from settling into

any one attractor basin. If a node’s state has not changed in the previous

time step, θi rises (if ai = 1) or falls (if ai = −1), which means node i will

require inputs with increasingly larger magnitudes to remain in the same state.

More specifically, at every time step, θi decays according to θt+1
i = (1− kθ)θti .

In any time step in which the state of node i has remained unchanged from

the previous time step a factor of kwa
t
i is also added to θt+1

i . (This process is

formalized in Equation 3.4 supra.) Here kθ = .02 and kw = 0.0125.

The input hi is then used to update the state of each node according to

Equation 4.3. Using only V to update the network serves to move the network

state from the current attractor basin to the basin associated with the next

pattern in the sequence.

After updating both ~a and ~θ, the updating process begins again, this time

using W and the current network state, according to the following input rule:

f ti =
∑
j

wija
t
j − θti + eti (4.8)

This helps the network to settle further into the new attractor basin it was

pushed towards by V in the previous stage. This new input is then used

to update ~a according to Equation 4.3 again (though the conditionals are

predicated on fi, not hi this time). Finally, ~θ is updated according to the rules

given above once again.

4.2.4.2 Encoder

The encoder is responsible for translating between the inputs to the control

module — the output of the compare module and the mode input layer — and
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the cue portion of the patterns stored in the instruction sequence memory. It is

necessary to translate between them since the size of the input vector doesn’t

match the number of cue nodes. (There are 56 of the former and 200 of the

latter.) By using more dimensions in the instruction sequence memory the

stored patterns are more distinct from each other, and thus can be stored with

less interference.

The encoder is composed of three layers of bipolar nodes, depicted in

Figure 4.7. This architecture could possibly be made simpler, but only at the

expense of more complicated dynamics. As is, each piece of the encoder has its

own separate role for which it is specialized. Combining layers would disrupt

this specialization of labor, which would in turn lead to interference between

the functions being carried out.

There are 56 nodes in the first layer (one per input) and they receive input

from outside the control module. The second and third layers have 200 nodes,

one per cue node in the instruction sequence memory. The connections between

the first and second layers are trained by way of standard one-shot Hebbian

learning, which forms the two layers into a heteroassociative memory. The goal

is to be able to produce the correct cue pattern when given the corresponding

mode vector and compare module output.

The third layer is a standard autoassociative Hopfield network with one-

to-one outputs to the instruction sequence memory cue nodes. It has a full

set of intralayer connections which have been trained by one-shot Hebbian

learning to recognize cue patterns. These connections serve to move the state

further into the current activity basin, i.e., closer to the cue pattern that the

heteroassociative process produced. This helps to mitigate errors in the result

of the first two layers. By training only on the cue patterns and not the control
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module’s inputs or response patterns the Hopfield network in the encoder

specializes in cue pattern memory, and avoids interference which can arise in

either the initial layers of the encoder or the instruction sequence memory.

Combining layers of the encoder would eliminate this specialization of roles

and reintroduce interference between these operations.

The encoder’s auto-associative memory layer is carrying out a redintegra-

tion process, which is the recovery of a pattern from a partial copy (Stuart

and Hulme, 2009). Many cognitive models require that a pattern retrieved

from memory be redintegrated in some way (Lewandowsky and Farrell, 2003),

including clarion (Sun, 2006) and the “clean-up” memory of Eliasmith and

colleagues (presented in (Stewart et al., 2011) and used in (Choo and Eliasmith,

2010), among others). Attractor networks have been used for this purpose

before, including Lewandowsky (1999) and Kesner et al. (2000).

As mentioned, the control module is capable of using gating to regulate

itself. This is done by gating the inputs to the encoder. When this gate is

open activity flows from the compare module and mode input layer to the

encoder’s input layer, and is then operated on as described above. When the

gate is closed the encoder does not receive input and the state of its input layer

remains unchanged from the previous time step. This in turn means that the

encoder’s output will be the same as the previous time step, so the instruction

sequence memory will be operating on the same cue pattern as it did in the

previous time step. This is done to prevent the instruction sequence memory

from switching to the next sequence before the previous sequence in completed.

The encoder input gate is opened as part of the final action of a sequence. This

has the effect of allowing the control module to ready itself in the next time

step to begin processing a new sequence of actions.
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4.2.4.3 Decoder

The decoder is composed of two layers. The first, called the action selection

layer, has eight binary nodes — as many as there are response patterns. It is fully

connected to the response nodes of the sequences memory. These connections

are trained by one-shot Hebbian learning to associate each response pattern

with a single active node in the action selection layer.

In order to help ensure that only one node will be active, the action selection

layer also has a set of recurrent connections. This sets up a competitive dynamic,

with every node reinforcing its own activation while inhibiting that of the other

nodes. Since the Hebbian weights from the response nodes to the action

selection layer have already produced an activity pattern which is close to

having a single winner, only a single step of these competitive dynamics is

needed to make one node maximally active and all other nodes off.

The action selection layer then feeds in to the control module’s output layer,

which generates the actual control signals used to adjust the gates in the model.

This is accomplished using a weight matrix which, in the current version of the

model, is hand-coded in advance to produce the desired behavior. The outgoing

weights from each action node are equal to the value that the corresponding

control module output should have when that action is taken. For instance, if

action i necessitates fully opening the first gate, partially closing the second,

and leaving the others unchanged, action node i’s outgoing weights would be

(1,−0.25, 0, 0, 0, 0, 0).
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Table 4.2. Inputs and desired outputs for a run of the first set of experiments.

Stimulus # 1 2 3 4 5 6

Visual Input A B A X Y X
Mode Input load load evaluate evaluate evaluate evaluate
Correct response complete complete present not

present
not
present

present

4.2.5 Results

A series of computational experiments was conducted to evaluate this basic

galis model on the Store/Recognize task. The first set of experiments uses

random series of six inputs where the first and third as well as fourth and

sixth visual inputs match, for example, ABAXYX. Details are in Table 4.2.

Five hundred iterations using random visual stimuli were run. The model was

judged based on the accuracy of each of the six outputs for each run, as shown

in Figure 4.8.

The average accuracy across all responses in all trials was 90.6%. Predictably,

the sixth input is the most difficult to respond to correctly, because it requires

the stimulus to have been identified as not present on its first presentation, and

thus stored in working memory, for it to be correctly identified as present later.

Varying the decay rate kD in Eqs. 4.5 and 4.6 governing the control module’s

instruction sequence memory indicated (surprisingly) that small, negative decay

rates performed the best. With a negative value of kD previous items in a

sequence are amplified rather than weakened. This amplification enlarges the

basin of attraction for earlier patterns in a sequence, making it easier for the

memory to run through a sequence from the beginning. With a very small,

negative decay rate (−0.05), the average accuracy increased to 93.8%. The

idea of a negative decay rate seems odd at first glance, but it is effectively
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Figure 4.8. The proportion of runs for which the model gave the
correct output for each of the six stimuli in the 1-3 and 4-6 matching
version of the Store/Recognize task. The dark bars are for runs using
a decay in the controller’s instruction sequence memory of kD = 0,
while the light bars used kD = −0.05. (Note that the vertical axis
does not begin at 0.0.)

equivalent to the gain terms that have been used to produce a primacy effect

in models of serial recall previously (e.g., Choo and Eliasmith, 2010).

The capacity of the working memory layer was also tested by performing

a varying number of load operations, from one to eight, followed by a pair of

evaluations. The first evaluation queried the model to see if it recalled being

presented with the first stimulus, and the second evaluated a novel stimulus.

This should produce an output of present followed by not present. For example,

to test the model’s ability to remember four items, the visual stimuli could

have been ABCDAZ (Table 4.3). For these experiments there was no decay

in working memory (kd = 0 in Equation 4.1). Figure 4.9 shows the accuracy

of the model on the former evaluation. The model was also very successful at

correctly identifying the final input as novel; accuracy on that question ranged

from 93.2% to 96.5% and was independent of the number of stimuli loaded.

Accuracy begins to drop off at a capacity of four, with performance dropping
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Figure 4.9. Results of the capacity tests. After loading one through
eight stimuli into working memory, the first item loaded was evaluated.
Shown is the proportion of runs which correctly identified that stimuli
as having been previously seen.

Table 4.3. Example inputs and outputs for a run of the capacity experiments.

Stimulus # 1 2 3 4 5 6

Visual Input A B C D A Z
Mode Input load load load load evaluate evaluate
Correct response complete complete complete complete present not present

under 50% when seven items have been loaded. This corresponds well with

measures of human working memory, which have found four items to be a

typical capacity level Cowan (2001).

As mentioned, the above capacity experiments do not use any decay in

the working memory. Biological working memory tends to exhibit a “recency

effect,” in which more recent items are more likely to be successfully recalled

than older ones. In order to model this, I have run further capacity tests with a

decaying working memory. The results can be seen in Figure 4.10, which shows

the degree to which galis is able to recall each of six stored inputs for varying

values of kd. When kd = 0.0 the model does equally well recognizing the first of
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the six stimuli it has seen as it does the last. In the absence of decay this is to

be expected, since the earlier stimuli interfere with the latter exactly as much

as the latter interfere with the former. When decay is introduced (kd = 0.05),

older memories are degraded as each new input is trained. As a result a recency

effect emerges, and galis is better able to recall more recent stimuli. As kd

is increased (kd = 0.10) further the model is able to recall the more recent

stimulus very reliably, but at the cost of having mostly forgotten about the first

stimulus. This relationship between interference and decay is consistent with

our earlier studies of working memory described in Chapter 3 (see also Reggia

et al., 2009; Sylvester et al., 2010). The memory capacity of this architecture

is maximized when there is a trade-off between interference and decay: too

much decay and items deteriorate too soon; too little decay and the older items

remain in memory interfering with newer ones.

4.3 The n-Back Task

The prior section described a proof-of-concept galis model to demonstrate

that cognitive control is possible using independent recurrent networks, sequen-

tial attractors, and gated connections. This section continues by presenting a

second galis model capable of performing a more difficult, real-world work-

ing memory learning task that is widely used in cognitive psychology. Some

lessons learned during the development of the previously presented model were

incorporated when constructing this one, resulting in some small changes to

galis.

In an n-Back task, the participant is presented with a stream of stimuli and

must identify which of these is the same as the stimulus presented n steps earlier.
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Figure 4.10. The effects of decay in the working memory. Without
decay the model is equally able to recall any of the six stimuli it
has been trained on, without regard to the order in which they were
trained. When working memory decay is introduced the model gains
the ability to recall more recent stimuli at the cost of making recalling
older stimuli less likely.

For example, in a 3-back task the bold letters in the following sequence would be

considered matches: VHZVXOL IOSAJXAO. Following each letter (except

the first n), the participant must give either a match or no-match response.

The n-Back task is of significant interest in cognitive psychology (Owen et al.,

2005). It is commonly used in brain imaging studies (e.g., Schmidt et al., 2009;

Watter et al., 2001), correlated with general intelligence (Jaeggi et al., 2008),

and used for training to improve working memory capacity (Jaeggi et al., 2010,

2011; but see Sprenger et al., 2013, Thompson et al., 2013).

In order to best explain the galis model for the n-Back task, which is more

complex than that of Section 4.2, the model’s description has been split up into

two sections. Section 4.3.1 gives an overview of each component of the galis

model for n-Back, then describes how it operates to process stimuli, and finally
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covers the internal structure of the control module. The intent is to present an

intuitive description that makes evident how the galis model for n-Back is

similar to that for Store/Recognize, and to also highlight the variations due

to the different tasks. Having provided a description of the function of the

model’s components, further technical details are given in Section 4.3.2.

4.3.1 Methods

4.3.1.1 Top level architecture for n-Back tasks

The galis model for performing n-Back tasks consists of several interacting

regions, as seen in Figure 4.11. They are the visual input layer, the n-input

layer, the output nodes, the memory layer, the compare module, the context

module, and the control module. While there are some differences, overall the

functionality is similar to the Store/Recognize task galis model described in

the preceding section, as will be evident in the following description.

Nodes in the visual input layer are set externally to represent the visual

stimulus being presented during the current time step. Visual stimuli take the

form of 128-bit, randomly selected bipolar patterns. Patterns are generated

such that each input has an equal chance of being either 1 or -1. There are no

constraints placed on inter-pattern distances. For ease of discussion we refer to

visual stimuli as “letters,” as in the example sequence given above.

The n-input layer is a second input layer which is used to specify the current

goal of the model. This module is a stand-in for goal-related information that

may be represented biologically in the rostral prefrontal cortex (Charron and

Koechlin, 2010), and which could be added in a future extension of galis.

In the case of modeling the n-Back task, this n-input layer encodes which
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Figure 4.11. The galis model as used for the n-Back task. Thin,
solid arrows denote one-to-one connections. The working memory
layer is fully recurrently connected (broad arrow). Dotted lines are
the outputs of the control module. Note that the number of boxes
pictured in each layer is an approximation only, and does not faithfully
represent the number of nodes used in the model.

particular version of n-Back the model should currently be performing (i.e.,

the current value of n). One of five different distributed patterns is used to

indicate whether the model’s current objective is to perform 1-, 2-, 3-, 4-, or

5-back. The five specific patterns used are random bipolar patterns chosen in

advance. Note that the model learns to execute all five versions. Which version

is executed in a specific situation depends only on changing this input, not on

retraining or reconfiguring the model in any way. While the input layer used

for this example selects only among the relatively limited set of five versions of

n-Back, ultimately the same input mechanism could be used to select between

a wider array of tasks and objectives.

Two linear threshold units are used for model output, one each for match

and no-match, indicating whether the present stimuli is the same as the one
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n steps previously. The inputs to both nodes are gated. They can only be

activated when the control module has opened the Output gate.

The working memory layer is a discrete attractor network forming an auto-

associative memory, along the lines of those described earlier in this dissertation.

Like biological working memories, the galis working memory layer has limited

capacity (McEliece et al., 1987), high plasticity via one-shot learning (Sandberg

et al., 2003), and close integration with executive systems. Additionally, the

working memory layer has been modified from standard Hopfield networks to

include dynamic thresholds, weight decay and temporally asymmetric weights

as outlined in the previous chapter to enable it to recall a temporal sequence of

stored patterns in a specified order rather than randomly. The working memory

layer is the same size as the visual input layer, and its nodes are bipolar valued.

It is treated in more depth in Sections 4.3.1.2 and 4.3.2.1.

As with the Store/Recognize task, the compare module is used to compare

the visual input layer to the current state of the working memory, to assess if

the current stimuli and recalled stimuli match. Depending on the similarity

between the two, it will send activity to one of the two output nodes. Please

refer to Section 4.3.2.4 for details.

The context module allows the control module to keep track of what stage

of processing it is in. Processing each new stimulus occurs in two stages,

called start and finish. During the start phase, the new stimulus is added to

the working memory contents. During the finish phase the working memory

contents is searched to determine if that new stimulus is a match with the

n-Back item. The control module adjusts, via the Context Gate, the state of

the context module to indicate the current stage. This state information can

then be output back to the controller, allowing the controller to affect its own
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inputs in the following time step and giving it greater flexibility than if it were

to respond only to the current input.1 In effect, this gives the controller the

ability to select its own short-term sub-goals to be carried out in the following

time step, similar to the Endogenous Goals layer of codam (Korsten et al.,

2006). Details are given in Section 4.3.2.5.

The final component is the control module, which is responsible for directing

the operation of the rest of the system. It takes input from the n-input layer

and context module, and its outputs drive the six gates which govern flow

of activity and updating of weights throughout the rest of the model. Just

like with the Store/Recognize task, the core of the control module is a second

discrete attractor network, called the “instruction sequence memory” (ism).

Like the working memory attractor network, the instruction sequence memory

stores sequences using temporally asymmetric weights. But where the working

memory module stores visual stimuli, the control module stores the actions

necessary for completing a task. Both the working memory and ism are based

on the same weight update, input and state update rules. Reusing the same

principles for both data and instruction storage makes galis particularly

parsimonious. However, the ism has been modified to store multiple sequences

concurrently. Each sequence corresponds to a particular set of actions the

model may need to perform during a task. For instance, with n-Back, one such

sequence of actions would be used to add a new stimulus to working memory.

Each component action takes a single time-step of the simulation to execute,

1 The context module could be considered as part of the control module, but we indicate
it separately here to facilitate explanation. In addition, separating the two increases
the modularity of galis models by allowing the control module to be agnostic about
the source of its inputs.
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Figure 4.12. Slightly expanded control module showing its gated
input encoder and output decoder which function as heteroassociative
memories. (See Figure 4.14 on page 116 for full detail.)

and corresponds to a particular set of signals to open and close different gates

to different degrees.

The control module has two other components besides the ism, an input

“encoder” and output “decoder” (see Figure 4.12). They serve as heteroas-

sociative memories that translate the inputs to the control module into the

particular patterns stored in the ism, and then translate the response of the

ism into the controller’s final outputs. This pre- and post-processing is done

primarily to mitigate the effects of noise and crosstalk and to enable the control

module to convert between inputs, stored patterns, and outputs of differing

dimensions. Details on the control module can be founds in Sections 4.3.2.2

and 4.3.2.3.

Control Outputs and Gating. The control module again manages the behavior

of the model through a system of gates. The outputs of the control module are

used to open and close these gates, which in turn modulate the flow of activity

between layers and regulate the weight updates in the working memory layer.
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The six gates which control the flow of activity throughout the n-Back model

can be seen in Figure 4.11. They are:

1. the Memory Input gate, between the visual input layer and working

memory layer that biases the memory’s current state towards or away

from the current stimulus;

2. the Output gate which controls the flow of activity from the compare

layer to the output nodes;

3. the Memory Training gate which controls when the working memory

learns a new pattern;

4. the Memory Unlearning gate which controls when the working memory

removes a pattern from memory;

5. the Context gate which regulates the state of the context module; and

6. the Encoder Update gate which governs the inputs to the control module,

so that it can decide whether it updates its own state.

When a gate is open it allows information to flow through it like an open

valve in a water pipe (in contrast to an open switch in an electrical circuit,

which prevents flow). A gate’s state is given by

gt = kg g
t−1 + st (4.9)

where kg is a decay term, here equal to 0.5, t is the current time step, and

st is the current value of the control module output governing this gate.2

2 Here t and t−1 denote the current and previous time step in the simulation, respectively.
This is true of all equations except Eqs. 4.17 & 4.18, in which τ and τ−1 are used in
their place to refer to the training epoch rather than the time step. This is by necessity,
since the control module learning which these equations describe occurs before the
simulation itself is run, i.e., before there are time steps as such to be counted.

102



The effect of gates is multiplicative, such that the downstream activity of a

gated connection is a product of its incoming activity and its current state g.

Gates have values in [−2, 2], so gates have more nuanced effects than binary

states of “open” and “closed.” A gate can have an amplifying effect on its

incoming value (g > 1.0), a damping effect (0.0 ≤ g < 1.0), or an inhibitory

effect (g < 0.0). Being able to use the same system for both attending to an

input (i.e., amplification) and inhibiting that input is appealing, since the two

effects can be viewed as antipodal (Engle et al., 1995). An exception to this

continuous behavior are the two gates which control learning and unlearning

in the working memory. Because updating the working memory weights is a

discrete decision — a weight matrix is either updated or not in any time step —

these gates have a threshold. Their state is calculated the same way, and the

weights are updated when g > 1 and not updated when g ≤ 1. All gates are

initially closed when the model begins.

In some situations there are many connections being mediated by the same

gate. For instance, the connections between the input and memory layer are

one-to-one. These may be thought of as 128 individual connections each having

their own gate, with each gate having an identical value. The effect is the

same as a single “master” gate controlling all 128 connections based on a single

output from the control module, and so we adopt the convention of referring to

the parallel opening and closing of these 128 connections as if there is a single

gate present.

4.3.1.2 Working Memory

The working memory layer is a discrete attractor network incorporating dy-

namic thresholds and temporally asymmetric weights that permit it to process
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temporal sequences as described in Chapter 3 as well as Reggia et al. (2009)

and Sylvester et al. (2010). The dynamic threshold keeps the network from

becoming stuck in any single attractor basin during recall by incrementally

increasing the amount of input a node must have in order to stay in the same

state. This allows multiple patterns to be activated serially during recall rather

than having the network settle on a single pattern, as is typically the case with

the fixed-point attractor dynamics of standard Hopfield networks.

The temporally asymmetric weights are formed using a one-shot Hebbian

learning rule which correlates a node’s activity with the activity of the other

nodes during the presentation of the previous input rather than the current

one, unlike with typical Hopfield networks. By using correlations between

both concurrent and consecutive activity there is the potential for representing

more structured information (Cowan, 1999). In particular, the asymmetric

weights are used here to ensure that the network not only switches between

attractors in its state space, but does so in an order corresponding to that in

which the input patterns were presented. Section 4.3.2.1 provides details on

weight learning rules, calculating inputs and updating states.

In addition to adding patterns to working memory, the network also has

the capability to “unlearn” or partially “forget” stored patterns. This is

accomplished using an anti-Hebbian learning rule (Hopfield et al., 1983). One

could think of the unlearning procedure as the addition of an “erase” command

to complement the typical “load” and “store” functions already present. In the

case of n-Back, for example, patterns more than n steps back in the sequence

are no longer needed. Unlearning these patterns reduces the interference they

cause, making it easier to recall more recent stimuli. While this model was able

to perform n-Back tasks without needing to unlearn these older stimuli, initial
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experiments indicated that unlearning significantly increased performance due

to reduced interference.

4.3.1.3 Model Operation

Each run of the model is divided into two phases: Controller Initialization

and Task Execution. In the Controller Initialization phase, the control module

learns the instruction sequences necessary to perform the task using one-

shot Hebbian learning. This is so the ism contains the appropriate pairings

of conditions and responses when the task is begun. This training of the

control module occurs only once, and after the Task Execution phase begins

its weights remain unchanged. The working memory layer, in contrast, begins

in a blank, untrained state, and has its weights updated multiple times as the

trial progresses through the Task Execution phase. While the associations

being learned in the control module are determined by the human modeler,

the learning that the working memory engages in during the task is entirely

guided by the model itself, with the model determining when to add or remove

a pattern from working memory.

During each step of processing in the Task Execution phase the model

goes through the following operations, directed by the control module. If the

model activated either output node in the previous time step, a new stimulus

will be presented, otherwise the inputs from the previous step are retained.

Next, the state of the working memory is updated. Then the output of the

compare module is updated to reflect the new state of working memory and

the potentially new state of the visual input layer. Following this the state of

the context module is updated.
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Next, the control module’s encoder is updated if the Encoder Update gate,

which regulates it, is open. If it is not open, the encoder input will be the

same as the previous time step, and thus the downstream layers in the control

module will receive the same inputs as the previous time step. This prevents

the control module from starting recall of a new sequence of actions before

the previous sequence has concluded. (Each action is one of the elements in

the sequences stored in the control module, and corresponds to one particular

operation necessary to carry out the task, as explained below.) This occurs

because the Encoder Update gate is opened only at the end of a sequence,

setting the stage for the next sequence to begin at the following time step.

The encoder’s output, whether it is the result of new inputs from an open

gate or not, is then used as input for the ism. Once the ism is updated the

decoder selects an action and outputs the gate control signals which compose

that action. These newly produced gate control signals are used to update the

gating values according to Equation 4.9. If either the learning or unlearning

gates are open, then weight updates of the working memory layer occur. If the

Output gate is open then either output node may be activated, depending on

the state of the compare module. If either is activated then a new stimulus

will be presented in the following time step, proximately corresponding to a

self-paced stimulus presentation.

4.3.1.4 Controller Functionality

As with the Store/Recognize task, the Controller Initialization phase occurs

before the model is presented with any inputs or produces any outputs. For

the n-Back model, the network learns to perform the task for n ∈ {1, 2, 3, 4, 5}.

The model is always trained to do all five versions, so training is identical
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no matter which versions the model will ultimately perform during the Task

Execution phase, when the n-input layer specifies which of the five different

versions the model will perform. This makes the model capable of switching

between versions of n-Back during trials, as dictated solely by its inputs and

without any other adjustments being made.

For the n-Back task, during the Controller Initialization phase the control

module learns six instruction sequences (Table 4.4; WM = working memory).

One of these six sequences adds a new stimulus to working memory when it

is executed. The other five each correspond to one of the five possible values

of n. Each of these five sequences steps back through the working memory’s

record of the recent visual stimuli the appropriate number of items and then

evaluates whether the current stimulus matches the one recalled. Which of the

six instruction sequences is executed is determined by the control module’s

inputs, which come from the context module and the n-input layer. (See

Section 4.3.2.2 for further information.)

To illustrate how the trained control module works during the Task Exe-

cution phase on a concrete sequence of inputs, consider a sequence of stimuli

ASDFG, with A being the first stimulus and G the last. Figure 4.13 illustrates

the step-by-step actions that occur in processing the single input pattern G,

where the n-input value is 3. The goal is for the model to generate the correct

no match output since G does not match the 3-back stimulus S. In order to

evaluate if G matches the 3-back stimulus (which in this case is S), The model

must first add G to its working memory and then recover the 3-back stimulus

from its record. This requires stepping backwards through the sequence it has

learned, from G to F to D and finally to S.
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Figure 4.13. Step-by-step operation of the n-Back model to process one input
stimulus G. (See text for details.)
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Table 4.4. Instruction sequences learned by the control module’s ism.

Sequence Action

1. add stimulus
to memory

1. open memory input gate, strongly biasing memory state
towards input

2. train the working memory layer; switch to finish context

2. current stimulus
matches 1-back?

3. open output gate; switch to start context; unlearn WM

3. current stimulus
matches 2-back?

4. delay (i.e., update the state of WM, but nothing else)

3. open output gate; switch to start context; unlearn WM

4. current stimulus
matches 3-back?

5. delay

4. delay

3. open output gate; switch to start context; unlearn WM

5. current stimulus
matches 4-back?

6. delay

5. delay

4. delay

3. open output gate; switch to start context; unlearn WM

6. current stimulus
matches 5-back?

7. delay

6. delay

5. delay

4. delay

3. open output gate; switch to start context; unlearn WM

In Figure 4.13(a) a new stimulus G is presented for time step t, n-input is

set to 3, and the Encoder Update gate is open as indicated by the shaded label

in the illustration. Recall that an open gate allows the flow of activation in the

same way that an open valve in a pipe allows the flow of fluid. Because n=3,

the controller determines that it must execute the first instruction sequence in

Table 4.4 (“add stimulus to working memory”). The working memory state

is depicted as A because that is three stimuli before the stimulus which was

just processed (F). By the end of time step t (Figure 4.13(b)), the effects

of action 1 can be seen: the Encoder Update gate has been closed to allow
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sequence 1 to finish executing, and the working memory state has become

the same as the visual input because the Memory Input gate is open. At the

end of t + 1 (Figure 4.13(c)), the Memory Training gate has been opened,

updating the working memory weights, the Context gate has been closed,

changing the context to finish, and the Encoder Update gate has been opened

to allow a new sequence to be selected in the next time step. At the end of

t + 2 (Figure 4.13(d)), a new instruction sequence has been selected (“does

the current stimulus match the one from three back?”). The Memory Input

gate is closed, allowing the working memory to recall the previous item in

memory. The Encoder Update gate is closed again to allow the instruction

sequence to complete. In Figure 4.13(e) the gates remain unchanged as the

working memory recalls the preceding item again. In Figure 4.13(f) the working

memory steps back a third item in memory. The Output gates are opened,

allowing the compare module to activate the no-match node since the input

pattern G fails to match the working memory state S, generating the correct

output for this stimulus. The Memory Unlearning gate is opened to forget S

now that it is no longer relevant to the task. The Context, Memory Input and

Encoder Update gates are switched to ready the model for a new stimulus in

the following time step. Other values of n would lead to similar behavior, only

with a different number of delaying steps until the match step in Figure 4.13(f)

is done.

4.3.2 Model Details

This section provides some further details on the n-Back model that are relevant

for its operation but not necessary in order to understand its overall structure.

Two systems are particularly highlighted here as they differ most from the
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model of the prior section. The first is the working memory, which differs

because it must process sequential memories to perform n-Back, which it did

not need to do to for the Store/Recognize task. Second is the controller. The

controller architecture used for Store/Recognize is slightly simplified for ease

of explication, whereas for n-Back it is more refined. Further details on the

controller are provided here since this is the form that will be used in the final

two chapters.

4.3.2.1 Working Memory

The working memory layer is based on the temporally asymmetric attractor

approach developed in Chapter 3. It uses two weight matrices to store items in

the sequence as well as their order. The first weight matrix, WWM, is trained

with standard one-shot Hebbian learning with the addition of a weight decay

term so that older memories are supplanted by more recent ones:

wtij = (1− kWM)wt−1ij +
1

N
ati a

t
j (1− δij) (4.10)

Here kWM is the decay rate (0 ≤ kWM < 1) and δij is Kronecker’s delta, which

ensures that weights on self-connections are fixed at zero. The second weight

matrix, VWM, also uses Hebbian learning but associates the state of a node

not with the current states of other nodes, but with the other nodes’ previous

states. This introduces a sense of temporal ordering to VWM, making it possible

to recall the stimuli in order rather than randomly. The learning rule is given

by

vtij = (1− kWM) vt−1ij +
1

N
ati a

t−1
j (4.11)
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The decay term is still present, although the Kronecker’s delta factor is not

as it is desirable for a node’s activity to be influenced by its own previous

state. Updating the state of the working memory layer occurs in two stages,

the first governed by the asymmetric weights, and the second by the symmetric

weights. When both WWM and VWM are used simultaneously they can work at

cross purposes. VWM is pushing the network towards the next attractor, while

WWM is fighting to keep it in the same attractor basin. The two-stage process

adopted here helps the network to proceed from one state to the next in a

more orderly and predictable progression.

Activation updating begins by first calculating the input hti to each node i

using VWM and the previous network state along with a gated connection from

the topologically corresponding node in the input layer. Using only VWM to

update the network serves to move the network state from the current attractor

basin to the basin associated with the next pattern in the sequence:

hti =
∑
j

vij a
t−1
j − θti + 2 gtin inti (4.12)

where vij is the strength of the temporally asymmetric connection from node j

to node i both in the memory layer, aj is the state of node j in the memory layer,

gin is the value of the gating node mediating the input-to-memory connections,

in i is the state of node i in the visual input layer, and θi is a dynamic threshold

that is used to keep the network from settling permanently into any one

attractor basin. If a node’s state has not changed in the previous time step,

the magnitude of θi increases, which means node i will require inputs with

larger magnitudes to remain in the same state. This is done according to the

same procedure as for Store/Recognize (see § 4.2.4.1 as well as Equation 3.4),

and the same parameter values are used — namely kθ = .02 and kw = 0.0125.
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The input hi is then used to update the state of each node according to the

same step function used previously (i.e., Equations 3.5 and 4.3).

After updating both ~a and ~θ, the updating process begins again, this time

using WWM and the current network state to calculate the input f ti according

to the following rule:

f ti =
∑
j

wij a
t
j − θti + 2 gtin inti (4.13)

This helps the network to settle further into the new attractor basin it was

pushed towards by VWM in the previous stage. The asymmetric weights suffice

to get the network into the next attractor basin; the symmetric weights impel

it into the bottom of that basin, reducing the noisiness of the recall. This new

input f ti is then used to update ~a according to Equation ?? again (though the

conditionals are predicated on fi, not hi, this time), and ~θ is updated once

again.

The working memory module’s unlearning is defined by the following anti-

Hebbian rules:

wtij = wt−1ij −
1

2n−1
· 1

N
ati a

t
j (1− δij) (4.14)

vtij = vt−1ij −
1

2n−1
· 1

N
ati sgn

(
N∑
l=1

vlja
t
l

)
(4.15)

Here N is the number of nodes, while n is the same as the lag n in n-Back. The

at−1j term in Equation 4.11 has been replaced in Equation 4.15 by the summation

because the goal is not to disassociate the current state of the memory from

the state immediately preceding it, but from the pattern which was trained

preceding the current one. Because VWM is trained to make the memory move

toward the previously trained pattern, we can use it to approximate the pattern
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trained prior to the current state. The factor of 1/2n−1 is used so that unlearning

is more aggressive when shorter sequences need to be retained.

4.3.2.2 Controller Operation

In the Task Execution phase, processing each visual stimulus occurs in two

stages. The objective of the first stage is to add the new stimulus to working

memory. This situation is indicated by the context module outputting the

start pattern. If the context module is outputting start, then sequence 1 in

Table 4.4 will be executed, regardless of the value of the n-input layer. Adding

a new item to working memory is accomplished through two actions (numbers

1 & 2 in the table). The first action opens the Memory Input gate, so that the

state of the working memory will be biased towards the current visual stimulus.

The second action updates the weights WWM and VWM to add the current state

to working memory, and switches the context module to the finish mode so

that when the control module updates in the next time step it knows that the

working memory has already been trained.

The objective of the second stage in processing a visual stimulus is to

evaluate whether that stimulus matches the one presented n steps ago. This

requires stepping back through the working memory’s record of events, which is

accomplished by allowing the working memory’s dynamics to run n times. Due

to the effect of the temporally asymmetric weights, the state of the network

should shift to the previously trained item each time it updates. The sequence

to carry this out is selected based on the value of the n-input layer as well as

the context module outputting the finish pattern. For clarity, we describe how

this works in detail only for 3-back since extrapolation to the other versions of

the task is straightforward.
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Checking whether the current stimulus matches the stimulus three items ago

requires three actions (numbers 5, 4 & 3 in Table 4.4) executed consecutively.

The first two actions each delay the controller for a time step, which gives the

working memory the opportunity to update its state twice. During each of these

updates the asymmetric weights should move the network to the previously

trained stimuli. The third action does three things: open the Output gate so

the comparison between the current memory state and visual input can be

output, unlearn the current state of the working memory since it is no longer

relevant to the task, and switch the context module back to start so that in the

next time step the controller will know that processing the current stimulus is

complete and it is time to begin the first phase of processing the next stimulus.

(There are multiple delay actions with identical effects listed in Table 4.4

because the ism cannot be trained to repeat the same pattern a set number

of times, such as a sequence like α, α, α, δ. It can, however, learn α, β, γ, δ.

By defining β and γ to cause the same controller outputs as α— that is, if

you define them to be three different tokens all of the same type — you can

reproduce the effects of training the sequence α, α, α, δ. The four different

actions labeled “delay” all have the same effect, but each is represented as a

distinct bipolar pattern. Using this type/token distinction, the number of total

time steps the working memory delays can be controlled by using a different

number of these delay tokens in the instruction sequence for each value of n.)

4.3.2.3 Controller Architecture

A diagram of the control module’s internal structure can be seen in Figure 4.14.

It is composed of three subcomponents. The principal of these is the instruction

sequence memory (ism) which learns the actions needed to respond to each
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Figure 4.14. The control module. Thick arrows denote fully con-
nected layers, while thin arrows denote one-to-one connections. Fol-
lowing the name of each layer is the number of nodes it contains in
the example presented in this paper. One-to-one connections from
the Encoder Auto-associative layer terminate on the cue nodes of the
instruction sequence memory, while full connections terminate on the
response nodes.

circumstance. The other two components are the encoder and decoder, which

are used for pre- and post-processing to convert the inputs of the controller

into the patterns stored in the instruction sequence memory, and then from

those patterns into the gating control signals the control module outputs.

Instruction Sequence Memory. The instruction sequence memory is a discrete

autoassociative memory that uses temporally asymmetric learning in addition

to standard Hebbian learning to process sequences (Chapter 3, supra; also

Sylvester et al., 2010). This allows it to store which actions make up the

response needed for the task, and also the order in which those actions must be

carried out. The ism has one important difference from the working memory
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layer, however: it has been modified to store multiple sequences at the same

time. This is accomplished by way of a conceptual division of the nodes into

two sets, the “cue” and “response” nodes. (The working memory module could

also be augmented in this way, for instance to model a dual n-Back task (Jaeggi

et al., 2010), but it is not necessary for this model.)

The role of the cue nodes is to provide the necessary context information

to the network to select from among the stored instruction sequences. The

state of the cue nodes corresponds to the situation the model is facing. The

response nodes are responsible for storing the actual items in each sequence,

and thus selecting an action from those in the given instruction sequence. Each

instruction sequence and each action are represented internally by random

bipolar strings. For n-Back there are six different instruction sequences and

seven actions, outlined in Table 4.4. Because an action can belong to more

than one sequence there are a total of seventeen patterns stored as attractors

in the ism (one for each row of Table 4.4).

Although the ism is divided into cue and response groups, its nodes are fully

connected. The difference between the two types of nodes lies in their inputs

and outputs. Only the state of the response nodes are output to the decoder

and the cue and response nodes receive different inputs from the encoder.

Cue node i’s external input ei comes from one-to-one topographic connections

from the corresponding node in the encoder auto-associative memory. These

connections allow the cue pattern which has been chosen by the encoder to

be passed on to the cue nodes. Response nodes, on the other hand, are fully

connected to all nodes in the encoder auto-associative memory. The weights

on these connections are trained using one-shot Hebbian learning to associate

each cue pattern with the first response pattern in that sequence. The purpose
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of the connections between the encoder and response nodes is to bias the ism

towards the first pattern in the sequence. This is only desirable when a new

sequence is being selected, so the gate on these connections is kept closed at

all other times. This way the encoder influences the response nodes only in

time steps when the controller determines that a new sequence is supposed to

be selected, and is ignored otherwise.

The external input to ism node i is defined by

ei =


aenci i ∈ {Cue}

gctrl
∑
k∈enc

uikaenck i ∈ {Response}
(4.16)

where aencj is the state of node j in the encoder auto-associative memory, uik

is the connection strength from node k in the encoder auto-associative memory

to node i in the instruction sequence memory, enc is the set of nodes in the

encoder, and gctrl is the value of the Encoder Update gate.

Like the working memory, the ism also has two weight matrices, WISM and

VISM. The former is trained using standard Hebbian learning and the latter

using temporally asymmetric learning, defined by the following rules:

wτij = (1− kISM)wτ−1ij +
1

N
aτi a

τ
j (1− δij) (4.17)

vτij = (1− kISM) vτ−1ij +
1

N
aτ−1i aτj (4.18)

where τ is the training epoch. Here ~a is simply the concatenation of a cue and

response pattern which make up one of the seventeen distinct actions listed

in Table 4.4. Unlike kWM, kISM can be positive or negative. When negative,

it acts as a gain rather than decay. A positive value decreases the strength

of earlier items in a sequence. This is desirable when trying to reproduce
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serial position effects in human memories of external stimuli, but there is no

particular reason for earlier items in the instruction sequence to be diminished.

Negative values, which serve to amplify earlier items, have surprisingly been

found to be beneficial for the ism.

Other than taking input from the encoder rather than the visual input

layer, the dynamics of the ism are the same as those of the working memory.

The same two-part update process as the working memory layer (using first

the asymmetric and then the symmetric weights), although Eqs. 4.12 and 4.13

are redefined as follows to accommodate the differences in the external input,

given in Equation 4.16.

hti =
∑
j

vij a
t−1
j − θti + eti (4.19)

f ti =
∑
j

wij a
t
j − θti + eti (4.20)

Both the state ~a and dynamic threshold ~θ of the ism are updated in the same

way as they are in the working memory.

Encoder. The encoder is responsible for selecting an instruction sequence to

execute by translating between the inputs to the control module and the cue

portion of the patterns stored in the ism. Both the inputs to the encoder and

the connections between the encoder and the ism response nodes are gated.

They are opened as part of the final action of a sequence, which allows the

control module to ready itself in the next time step to begin processing a new

sequence of actions. When the Encoder Input gate is open activity flows from

the context module and n-input layer to the encoder’s input layer. When this

gate is closed the encoder does not receive input so the state of its input layer
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remains unchanged from the previous time step. This in turn means that the

encoder’s output will be the same as the previous time step, so the ism will be

operating on the same cue pattern as it did in the previous time step. This

is done to prevent the ism from switching to the next instruction sequence

before the previous sequence in completed. The encoder-to-response-node

connections are mediated by the same gate value, since they should should

influence computation when a new sequence is being started and be ignored

otherwise.

The encoder is composed of three layers of bipolar nodes (Fig. 4.14). This

architecture could possibly be made simpler, but only at the expense of more

complicated dynamics. There are 96 nodes in the first layer (one per input) and

they receive input from the output of the context module and the n-input layer.

The second and third layers have 320 nodes, one per cue node in the ism. The

connections between the first and second layers are trained by one-shot Hebbian

learning, forming the two layers into a heteroassociative memory which can

produce the correct cue pattern when given the corresponding n-input vector

and context module output.

The third layer is a standard autoassociative Hopfield network which outputs

to the ism. It has a full set of intralayer connections which have been trained

by one-shot Hebbian learning to recognize cue patterns. These connections

serve to move the state further into the current activity basin, i.e., closer to the

cue pattern that the heteroassociative memory recalled. This mitigates errors

resulting from the first two layers. By training only on the cue patterns and

not the control module’s inputs or response patterns, this layer specializes in

cue pattern memory, and avoids interference which can arise in the preceding

and following layers.
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This autoassociative memory is carrying out a “redintegration” process, us-

ing prior knowledge to help reconstruct a pattern from a partial copy (Baddeley,

2007). Many cognitive models require that a pattern retrieved from memory

be reconstructed in some way (Lewandowsky and Farrell, 2003), including

clarion (Sun, 2006) and the “clean-up” memory of Eliasmith and colleagues

(presented in (Stewart et al., 2011) and used in (Choo and Eliasmith, 2010),

among others). Attractor networks have been used for this purpose before,

including Lewandowsky (1999) and Kesner et al. (2000).

Decoder. The decoder is responsible for translating the patterns represented

in the ism response nodes into the signals used to drive gate activity. This

is accomplished through a competitive layer which serves to select a single

response action and a set of Hebbian-trained weights which learn to produce

the desired gate outputs for each action. It is composed of two layers (Fig. 4.14).

The first, called the action selection layer, has seven binary nodes — as many as

there are response patterns.3 It is fully connected to the response nodes of the

ism. These connections are trained by one-shot Hebbian learning to associate

each response pattern with a single active node in the action selection layer.

In order to help ensure that only one node will be active, the action selection

layer also has a set of recurrent connections which create competitive dynamics,

with every node reinforcing its own activation while inhibiting that of the

3 While using one node per action is a violation of galis’ commitment to using distributed
representations, there is some basis for their use in this situation. Distributed systems
using localized nodes for action selection is relatively common (e.g., Amos (2000)). This
is partially because it is an effective and convenient arrangement, but also because
action selection has been linked to the basal ganglia (Gurney et al., 2001a; Redgrave
et al., 1999; Schroll et al., 2012), and the basal ganglia have up to one thousand times
as many inputs as outputs. This topology suggests that information is being condensed
or integrated in some way, which is what occurs in the decoder. While we are not
attempting to explicitly model the basal ganglia here, we still do not wish to ignore the
role the cortico-basalganglio-thalamic loops play in action selection.
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other nodes. Since the Hebbian weights from the response nodes to the action

selection layer have already produced an activity pattern which is close to

having a single winner, only a single step of these competitive dynamics is

needed to make one node maximally active and all other nodes off.

The action selection layer then feeds in to the control module’s output layer,

which generates the gate control signals. The weights on these connections also

use one-shot Hebbian learning to learn the desired gate control signals. For

instance, if action i necessitates fully opening the first gate, partially closing

the second, and leaving the others unchanged, action node i’s outgoing weights

would be (1,−0.25, 0, 0, 0, 0, 0).

4.3.2.4 Compare Module

The compare module is composed of two layers. The first is the same size as

the memory and visual input layers, and receives one-to-one connections from

each of those components. The state of nodes in this layer is the product of

the states of the corresponding nodes in the input and memory layers. The

second layer has two nodes, both of which take as input a value proportional

to the inner product of the input and memory layers’ states. One of the second

layer nodes adopts a state of one if its input is above a certain threshold —

here equal to 0.9 — and zero otherwise, while the other node outputs one if its

input is below that threshold and zero if it is above. These two nodes drive

the model’s output nodes.

4.3.2.5 Context Module

Within the context module, two linear threshold units, one each for start and

finish, are each fully connected to a set of 32 nodes. The start node activates
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when the Context gate’s state is less than one, the finish node when it is

greater than one. The weights on these connections are randomly selected

binary patterns. By raising or lowering the gate’s value above or below the

threshold the control module can select one of the two patterns for output.

While the context module may seem complex for its relatively simple function,

we note that this is largely due to the commitment to using a gating-based

mechanism and the desire to maintain modularity between the control and

context functions.

4.3.3 Results

After the galis n-Back model was trained to perform n-Back tasks of varying

lengths (n=1 through n=5), it was given sequences of 30 + n stimuli. The

first n are “preparatory stimuli,” and the response to these is ignored. This is

done for two reasons: primarily, because this is the way human subjects are

evaluated, and secondarily, because the first stimuli present a boundary case

to the model for which it was not given special behaviors to handle, namely,

attempting to recall a sequence which is longer than the one it has stored. For

each trial, ten stimuli would be generated, and the sequence of inputs would

then be drawn from these ten. A subset of all possible stimuli was used because

trials with human subjects often use limited sets of stimuli such as the digits

0–9 (Schoofs et al., 2008) or eight rotational positions around a circle (Hockey

and Geffen, 2004). Of the stimuli following the preparatory period, one third

were randomly selected to be matches. The following is a sample sequence used

for the 3-back version of the task with matching stimuli emphasized.

ADJAEFDKJCKAHFAHGDFGDKACKHCAGJAGK
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A is the first stimulus in the sequence and K is the last. Each sequence was

generated without any “lures” (matching stimuli which are one position off

from the target location, for instance a match four positions back when doing a

3-back task). Lures were excluded for two reasons. The first is that the human

data we were attempting to match (Watter et al. (2001)) did not use lures.

The second is that we wished to remove one potentially confounding factor

in order to concentrate on investigating the control module’s basic ability to

govern the model.

In Figure 4.15, the model’s performance is given, and is also compared

to that of human subjects, on 1-, 2- and 3-back tasks. Human data is taken

from Watter et al. (2001), which is typical of human results reported in the

literature. The model results are the average accuracy across all 30 stimuli in

250 random sequences. The error bars in Figure 4.15 represent the standard

error of the mean. Two different variations of the model were tested. Model V

used variable working memory decay rates (the larger n was, the smaller the

decay rate used, so that for larger n values the working memory attempted to

store more stimuli), while Model C used the same decay rate for all values of

n.4

Both models show that, as n increased from n=1 to n=5, response accuracy

decreased monotonically. For n=1, 2, 3 both models’ results are not significantly

different than human performance at the level of p = .05; however the overall fit

for Model V was closer. This is possible because different decay rates are most

suitable for recalling sequences of different lengths (Chapter 3). A lower decay

4 Specifically, in terms of the parameters given in §4.3.2, Model V used kWM = .350, .300,
.225, .150, .075 for n=1 through n=5, respectively, while Model C used kWM = .2625
for all versions. These values were chosen via iterative deepening depth-first search. In
both models kISM = −0.3 for all versions of the task.
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Figure 4.15. Accuracy for human subjects and the computational
model for all five versions of n-Back. Human results were not reported
for n=4 and n=5. Error bars represent the standard error of the
mean. Model V used different working memory decay rates (kWM)
for each n, while Model C did not vary decay. The dashed horizontal
line indicates the accuracy that would be expected if one randomly
selected responses in a proportion matching that used to generate the
stimuli — i.e., outputting “match” according to a Bernoulli process
with p=1/3. (Note that the vertical axis does not begin at 0.0.)

rate in the working memory layer allows longer sequences of visual stimuli to

be successfully stored without deteriorating away. A higher decay rate removes

older items from memory, reducing interference and improving the ability to

recall shorter sequences. This accords with previous investigations into the role

of decay on attractor net working memories, where it has been hypothesized

that humans may adjust a working memory decay rate in order to control

the length of sequences that they are attempting to remember (Altmann and

Gray, 2002; Winder et al., 2009). The additional degree of freedom in Model V

may account for it’s improved fit compared to Model C. However, it should be

noted that this freedom is not necessary for Model C to produce a statistically

significant match with human performance.

Figure 4.15 does not show human results for n= 4 and n= 5 because

they are not reported in Watter et al. (2001). This is common, as human
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subjects typically find them to be extremely challenging (Owen et al., 2005).

Nonetheless, the galis n-Back model is trained to perform 4- and 5-back,

and the simulation results are shown as model predictions. If humans really

can adjust working memory decay to adapt to longer sequences, Model V’s

performance leads us to predict that subjects taking Watter et al.’s version

of n-Back for n= 4 and n= 5 would see their performance drop off linearly

to approximately 76.3% and 70.7%, respectively. Higher values of kWM have

more of an impact on larger values of n, since decay is compounded. Keeping

kWM = .2625 in Model C therefore disproportionally impacts performance for

n= 4, 5, reducing Model C’s accuracy on 5-back to no better than chance.

(Since one third of stimuli are matches, a strategy of random guessing would

result in an expected accuracy of 66.6%.) If humans cannot adjust working

memory decay to suit the task then we would predict that their accuracy on

Watter et al.’s version of 4-back to fall to 72.7%, and for human subjects to

be unable to perform 5-back at better than random accuracy. Both Model

V’s and C’s errors in these more demanding versions of n-Back appear to be

caused by the difficulty of recalling sequences of this length from the working

memory layer, rather than from improper retrieval of the instruction sequences

from the ism.

The galis n-Back model exhibits a response time which is approximately

linear in the value of n. When a new stimulus is presented the model requires

two time steps to execute actions 1 and 2 in Table 4.4, and n additional time

steps for memory retrieval. Watter et al. (2001) also reports the participants’

average response times following each stimulus on 1-, 2- and 3-back tasks,

which is also roughly linear in n. This is compared to the average number of

time steps needed by the galis n-Back model in Figure 4.16. The galis
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Figure 4.16. Correlation between human response time per stimulus
and the average number of steps the model takes per stimulus. The
trend line is defined by y = 0.011x− 2.042, with R2 = 0.9888.

n-Back model’s response time correlates well with the human response time

data, with R2 = 0.9888. These results are relatively robust to variations in

kWM and kISM.

To demonstrate that our n-Back model is capable of switching between

versions of n-Back without relearning any of the instructions, experiments were

run in which the value presented to the n-input layer changed mid-trial. Input

sequences were constructed in the same way as described at the beginning of

this section, with one third matches, no lures, and a preamble of preparatory

inputs. For the first fifteen stimuli following the preamble, the n-input layer

was given an input of n1. Beginning with the sixteenth stimulus, the value of

the n-input layer was set to n2 6= n1.
5 No parameters were adjusted or weight

matrices were externally modified between the first and second phases of each

trial; the only difference was the value of the n-input layer.

Figure 4.17 shows some representative results when mid-trial changes in n

occur. Each graph shows the accuracy at each position in the input sequence,

5 For all trials in these experiments, kISM = −.3 and kWM = .225. (See Section 4.3.2.)
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Figure 4.17. Accuracy when changing the value of n during a trial. The horizontal
axis is the serial position within each sequence (following the preparatory period),
and the vertical axis is the average accuracy of responses to that stimulus across all
trials. Values of n were switched beginning with the 16th stimulus. [Top] Switching
from n1 = 1 to n2 = 3 (dark crosses) and vice-versa (light circles). The average
accuracy for the n=1 and n=3 conditions are shown as dotted and dashed lines,
respectively. [Middle] Switching between n=2 and n=4. [Bottom] Switching between
n=3 and n=4. (Note that the vertical axis does not begin at 0.0.)
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averaged over 1000 trials. Prior to changing the value of n, the model performs

as expected: at the average accuracy for n1. After the switch the model’s

accuracy is indistinguishable from trials in which the model was run at n2

for the entire trial (call this the baseline n2 accuracy). Thus there is no long-

lasting performance penalty associated with having had to switch versions of

the task. However, although the transition between values of n is quick, it is not

perfect. Whenever n is decreased, there is a brief transitional period in which

performance is below, but monotonically rises to, the baseline n2 accuracy. This

gradual increase in accuracy occurs because some patterns added to working

memory are never unlearned during the transition period, resulting in increased

interference. The only exception to this pattern is whenever transitioning to

n2 =1, in which case the model’s accuracy jumps to the baseline n2 accuracy

level as soon as the new value of n is input. We believe this is possible because

the attractor for the 1-back stimulus is strong enough, having been decayed

only once, to overcome any problems introduced by insufficient unlearning of

other stimuli. In contrast, and unexpectedly, when n is increased there is a

sharp drop in accuracy below the baseline n2 accuracy. This occurs because

when n2>n1 some patterns which are needed have already been unlearned.

This premature unlearning problem is only temporary, however, as the patterns

which experience too much unlearning decay as more stimuli are added to

working memory. After several stimuli the model is behaving as if it was never

forced to switch between versions of the task.

In summary, the galis n-Back model makes several testable predictions

about the average accuracy following a mid-trail change from n1 to n2. First,

after a brief transition period the accuracy is always the same as the baseline

n2 accuracy. Second, if n2 < n1, there will be a rapid monotonic rise in
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accuracy to the n2 baseline value. Third, if n2 > n1, there will be a sudden,

sharp deterioration in accuracy below n2’s baseline value, followed by a rapid

monotonic rise to n2’s baseline value. To our knowledge, data does not yet

exist that can support or refute these predictions.

In order to investigate the sources of model errors, 100 runs of Model C

were executed for n ∈ {1, 2, 3, 4} according to the same procedures outlined

at the beginning of this section. The n=5 case was not evaluated because it

was already performing no better than chance, as explained earlier. For each

time step, the action chosen by the control module was recorded. This was

compared to the correct responses; for instance, for n=3, actions 1, 2, 5, 4,

3 (action numbers are listed in Table 4.4) should occur in that order for each

stimulus. We then computed the Levenshtein distance6 between the actual

and ideal responses (Navarro, 2001). A value of zero indicates a perfect match,

meaning the control module never selected an incorrect action during that

trial. The errors made by runs with non-zero distances can be attributed to

failures of the control module. Errors made during a run with zero Levenshtein

distance (no controller errors) were generally due to a failure of the working

memory, such as a recalled pattern which is too noisy to be properly identified,

or a failure to advance to the previously trained item. (It is possible that the

6 Levenshtein distance is a measure of string distance in which the two strings do not
need to be the same length. It is a count of the number of symbols which must be
added, removed or modified to produce one string from the other, and thus is a natural
fit for this situation as we are interested in the number of actions which are missing,
duplicated or erroneous. Formally, it is defined recursively as leva,b(|a|, |b|) where

leva,b(i, j) =


max(i, j) if min(i, j) = 0,

min

 { leva,b(i− 1, j), . . .

leva,b(i, j − 1), . . .

leva,b(i− 1, j − 1)− δij}

+ 1 otherwise

.
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working memory could correctly recall a pattern and the compare module fails

to correctly judge it, but testing the components individually revealed that

this was hardly ever the case.) Both control and working memory errors are

due to incorrect associations in the respective Hopfield networks, and can be

linked to Hopfield nets’ limited capacity and stochastic recall process (Ma,

1999; McEliece et al., 1987). It is possible that these errors could be reduced

by employing different learning rules which have been shown to increase the

capacity of Hopfield nets (Storkey, 1997; Storkey and Valabregue, 1999).

The proportion of runs having control errors can be seen in Fig. 4.18(a).

As n increases so does the prevalence of control errors, since the length of the

instruction sequence required is greater. The overall accuracy for all trials is

compared to the accuracy only for those networks which made no control errors

in Fig. 4.18(b). The proportion of responses which were incorrect as a result of

malfunctions in the control module, working memory module, or both is shown

in Fig. 4.18(c). Even though more errors can be made by the control module

as n increases, the number of errors made by the working memory increases

even faster. As a result, a larger proportion of errors can be attributed to

mistakes in the working memory at higher n. Increasing error rates at higher

values of n are to be expected since errors in both the control module and

working memory can occur at any step during processing and higher values of n

necessarily include more processing steps, allowing more errors to accumulate.

Runs in which the control module made errors can be subdivided into

two groups: those making “pathological” and “non-pathological” errors. The

pathological set were those that completely failed to output a particular action

for the entire trial, for instance, a network which throughout was never able to

enter the attractor state corresponding to action 4. These networks produced
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Figure 4.18. (a) The proportion of runs in which the control module
made one or more errors for n∈ {1, 2, 3, 4}. (b) The accuracy of model
outputs for all runs (darker bars), and for those runs where no control
errors were made (lighter bars). (Note that the vertical axis does
not begin at 0.0.) (c) The proportion of model responses which were
incorrect due to malfunctions in the working memory, controller, or
both.

Levenshtein distances over 50. The non-pathological networks were those that

made occasional errors, but were able to respond perfectly to a majority of

stimuli. These networks tended to produce Levenshtein distances between one

and ten.

We believe these pathological conditions are caused either because the

attractor basin associated with the un-recalled action is either too small or

too close in state-space to another basin. Either of these situations can

occur simply as a result of having randomly chosen the bit patterns for the
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internal representation of that action. This could be resolved by selecting semi-

orthogonal patterns to represent each action, or ensuring there is a minimum

Hamming distance between internal representations.

4.4 Discussion

4.4.1 Testing the GALIS Hypothesis

The work described here with the n-Back task demonstrates for the first time

that the galis framework is capable of supporting executive functioning more

typically associated with symbolic AI systems. This executive behavior allows

galis-built models to exercise control over their own working memory. This

control is a function not only of the structure of the network, as is usually

the case, but also of the activity patterns learned by the instruction memory

that make it possible to “program” a network to a novel extent. For example,

after an initial training phase is complete, the galis n-Back model performs

n-Back tasks for varying values of n without any direction from the user about

how or when to modify its memory, activate outputs, etc. This independence

is maintained even when the model switches between different versions of

n-Back dynamically within trials. This was made possible by using attractor

networks with asymmetric learning that control the sequential opening and

closing of gated connections between model components. It was not necessary

to rely on symbolic production rule-based systems, complex models of spiking

neurons, locally encoded information, or biologically implausible learning rules.

Parameters did not need to be re-tuned in order to match human performance

on 1-, 2- and 3-back versions of the task, although adjusting the working
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memory decay rate did lead to a better fit. There is also a theoretical argument

for why lesser amounts of decay are desirable for larger values of n, namely,

people may implicitly adjust decay in an attempt to change the size of their

memory buffer (Altmann and Gray, 2002; Weems et al., 2009). The number of

time steps the model takes for each stimulus is also highly correlated with the

response times of human subjects. No modifications of any kind were necessary

to capture this relationship in response times.

Importantly, testable predictions were made regarding 4- and 5-back as well

as for intra-sequence changes to n. Although human participants find 4- and

5-back difficult, some studies test such lengths under certain conditions, and

research is ongoing on training regimes which may allow humans to perform

at such levels with practice (Harbison et al., 2011; Jaeggi et al., 2010). The

method presented here for modeling n-Back could be falsified if human subjects

failed to produce the observed patterns in accuracy changes when switching

values of n within trials. I am not aware of any studies in which human subjects

have been required to change n midstream, as opposed to between trials or

blocks of trials, but if such studies were carried out one would expect to see

the patterns evident in Figure 4.17.

One key point is that an important part of the behavior of the galis n-Back

model, the value of n, is encoded in the contents of its adaptive instruction

memory rather than the model architecture or in hand-coded connections. No

changes to the model were required to perform five different versions of n-Back;

changing the inputs to the model is sufficient to effect different behaviors in

the model. Additionally, there are only a few major architectural differences

between this model and a previously implemented model of the much simpler

Store/Recognize task. These consist primarily of adjusting output — and to
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a lesser degree, input — system to accord with the particular requirements of

the task (e.g., two rather than three output nodes) and introducing one new

component, the context module. This new component could be generally useful

for a variety of tasks, not only n-Back, since it acts much like a very simple

Program Counter in a CPU. In addition to the context module, the compare

module present in both of these models is also a dedicated piece of architecture,

hand-designed by the modeler. This does decrease the generality of the model,

but I would note that this component is one which is also useful in a large

variety of situations, and so while it is specifically tailored to one purpose, this

purpose could generally be useful for a spectrum of future tasks.

4.4.2 GALIS as a general purpose framework

The behavior-as-software approach used in the galis framework is a novel

approach among neural network models. In a sense, the ability to store

temporal sequences of “instructions” in a control module and gate the activity

throughout model regions based on these instructions gives galis models the

ability to act in a “computer-like” fashion. Further, I predict that changing

the information learned by the control module will enable galis models to

be adapted to other tasks. In other words, I believe that building models of

other similar tasks will require mostly changes to the neural software and only

minimal changes to the neural hardware as I will demonstrate in the following

chapters.

The use of both attractor networks and gating help to overcome one of

the primary challenges of working memory: the need to balance stability with

plasticity (Goldman-Rakic, 1987). Each pattern stored in both the working

memory layer and the attractor networks of the controller gains stability from
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being represented as the minimum of an attractor basin. However, the states

of these networks can still be rapidly updated by introducing biasing inputs

from external sources or adjusting nodes’ thresholds. Similarly, gating can

be used both to stabilize a network by, for instance, closing off its external

inputs, or to rapidly destabilize a network by allowing inputs or triggering

weight updates (O’Reilly et al., 2002). This is reminiscent of the D1 and D2

forms of attractor dynamics present in the prefrontal cortex (Durstewitz and

Seamans, 2008). Attractors dominated by D1-type dynamics have deep basins,

aiding robustness of working memory but increasing preseveration, while those

dominated by D2 dynamics have shallow attractors, allowing fast switching and

high flexibility, but making maintenance more difficult. Differing activation

of the relevant dopaminergic systems can shift the attractor systems between

modes, similar to the way that opening and closing gates governing biasing

inputs can reform the attractor networks in galis.

Of course, the galis framework currently has some limitations, and will

evolve in its details as it is used for additional tasks. These limitations include

requiring learned instruction sequences to be determined by the modeler.

Despite this issue, I think the current system of basing behavior on stored

patterns in memory is a valuable stepping-stone towards more autonomous

systems. If behavior can be stored in memory then it can be more easily modified

than if it was built into the architecture. And if it can be modified, I believe

it can be generated autonomously during learning. In other words, galis

moves away from systems whose behavior is a function of their construction

and towards ones whose behavior is based on instruction, with the eventual aim

of not needing to provide those instructions explicitly. I am optimistic that the

instruction patterns of the ism can be modified online by the model because
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the instruction memory operates by the same paradigm as the working memory

layer, which I have shown can be modified by the model online. Future work

needs to allow galis to modify instruction sequences during task performance,

improving as it gains experience, and generate instruction sequences from the

ground up, as is done in Chapter 6. This would enable galis models to

proactively adjust their own behavior during trials rather than carrying out a

predetermined sequence of reactions to the environment.

A second shortcoming of the current galis approach to storing instructions

is the inability of temporally asymmetric attractor nets to store sequences in

which the same item is repeated a given number of times without resorting to

storing multiple tokens each representing the same type. There is a diverse

assortment of attractor net methods for storing sequences (e.g., Farrell and

Lewandowsky, 2002; Koene and Hasselmo, 2007) which are being explored to

resolve this issue, in addition to looking into other neural approaches to serial

memory (e.g., Botvinick and Plaut, 2006; Kremer, 2001; Monner and Reggia,

2012).

Finally, while galis is not intended as an accurate model of the brain,

it is loosely inspired by the organization of cerebral cortex, especially frontal

regions. For example, the control module’s rule-like behavioral sequencing

captures roles believed to be played by lateral prefrontal cortex (Bunge, 2004;

Tanji et al., 2007), and the compare module’s pattern matching activities can

be related to the performance and detection of incongruent stimuli functions of

the anterior cingulate cortex (Brown and Braver, 2005; MacDonald et al., 2000).

An important direction for future research will be to further bring galis into

alignment with known neuroscientific data.
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5

Visuospatial Processing and Binding

5.1 Introduction

The cognitive control capability of the galis framework was evaluated in

the previous chapter using two sequential memory tasks. Specifically, it was

applied successfully to learn to perform simultaneously five versions of the

classic n-Back task that is widely used in psychological testing. Not only did

the resulting n-Back model function correctly, but its accuracy and response

times correlated strongly with those of human subjects performing the same

task (Sylvester et al., 2013). While this was encouraging, the n-Back task is

relatively limited in terms of cognitive operations; for example, it does not

involve any spatial information.

The goal of this chapter is to extend the galis framework to a much

more challenging task that, for the first time, involves incorporating spatial

relationships and addressing the binding problem concerning two different types

of visual information (Feldman, 2013). Specifically, it presents a model for a

card matching task in which an agent uncovers pairs of face-down cards, trying

to select pairs that have matching patterns on their faces. This task makes
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heavy use of visual information processing, working memory of the location

of specific previously-uncovered cards, attention mechanisms, and binding

of visual patterns to the spatial locations in which they occur. The trained

card matching system addresses this latter challenge by taking inspiration

from the ventral “what” and dorsal “where” visual pathways of the human

brain (Baizer et al., 1991; Ungerleider and Haxby, 1994) and how they provide

integrated information to prefrontal cortical regions. Binding the general

location information provided by the dorsal pathway with the appropriate

detailed object-specific information provided by the ventral pathway is a

significant challenge (Reynolds and Desimone, 1999), and is a key focus of the

task-specific model presented here. Computational experiments show that the

galis card matching system not only performs the task successfully, but that

it does so in ways that are again reminiscent of observations of human subjects

performing this task.

Like the n-Back model, discussion of the methods used in this chapter

has been divided into two sections. A comprehensive informal overview is

provided in the next section, with further technical details being provided in

Section 5.3. The final two sections cover the results of experiments with the

model, comparing it to both a symbolic alternative and human subjects, and a

discussion of the findings.

5.2 Methods

Here I apply the galis approach for the first time to a more complex spatial

memory task known by many names including “Pairs,” “Pelmanism,” and

“Concentration,” but which I will refer to here as the “card matching task.”
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It is played by first randomly placing several pairs of cards face-down on a

tabletop. The player turns over two cards each round, one at a time, with the

goal being to uncover matching pairs of cards so that they can be removed

from the table. Play proceeds until all cards have been removed.

The requirements of the card matching task expand on the cognitive control

tasks described in the preceding chapters by placing stimuli patterns in a

spatial environment. That is, the model is not just attempting to remember a

set of abstract stimuli in the æther, but must successfully bind together what

was seen with where it was seen in the environment. The binding of multiple

features is an ongoing challenge for neural models. This task also requires that

a system make judgements about the contents of its own memory. In other

words, it is not enough to just store a series of stimuli, but the model must

be able to make strategic decisions based on inspection of its own memory of

what cards have been seen previously and their locations.

In this implementation of card matching each card is 9 by 13 pixels. The

backs are a uniform dark grey, and the fronts are bichromatic patterns such

as horizontal stripes, crosses, or diagonals (see Figure 5.1). Depending on the

experiment either four, six or eight pairs of matching cards (i.e., eight, twelve

or sixteen cards in all) are arrayed on the table top, initially all face down.

The images on the fronts of cards consist of monochromatic, low-resolution

simplifications of national flags. For instance the 5-shaped card in Figure 5.1

is derived from the flag of Scotland, while the striped card could alternately

represent the flag of Italy, Ireland or France.

The galis model for card matching is composed of seven modules as

illustrated in Figure 5.2. These are the Visual, Location, Object, Motor,

Working Memory, Conflict, and Controller modules. Their functions are
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Figure 5.1. A depiction of the visual environment for the card
matching task during play. On the left is a view of the full environ-
ment. Here there are 10 cards still present, two of which are face-up
showing an 5 and a vertically-striped pattern. The middle part of
the illustration shows an expanded view of these two cards as well as
one of the face-down cards. On the right a 4×4 section of the board
has been blown up to show how each of the four “colors” used in
the visual field is encoded as an 8 bit binary string. In this example,
the white areas on the faces of cards (upper left of detailed area) are
encoded as 11010000 and the black areas on the faces of cards are
encoded as 0101111.

explained in the remainder of this section. Technical details can be found in

Section 5.3.

5.2.1 Visual System

The Visual System consists of the Primary Visual, Location, and Object

modules. The Primary Visual module provides input to the model (Figure 5.3).

Its visual field consists of a 55×67 grid of grayscale “pixels.” Each may take

one of four values: light grey, representing the surface of the tabletop; dark

grey, representing the back of a card; white and black, which together make

the patterns on the front of the cards. Each of these values is represented by a

random 8-bit pattern, so there is a total of 29480 nodes/neurons in the Primary

Visual module.
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Figure 5.2. Overall architecture of the galis model for the card
matching task. Its seven modules form three functional systems, the
visual, executive and motor systems. Each system is indicated by an
enclosing dashed-line box. See Figures 5.3 and 5.4 for more detailed
views of the visual and executive systems, respectively.

The Visual module’s output is sent to two different regions for further

processing. This is inspired by the parallel visual pathways present in the

mammalian brain which connect the visual cortex to the prefrontal cortex via

both the parietal/dorsal/where and temporal/ventral/what cortices. In this

model, the Location and Object modules can be seen as simplified analogs

to the parietal and temporal cortices, respectively (Baizer et al., 1991). The

former is responsible for broad but low-resolution vision — identifying that

there is an object at a particular location, but not particular features of that

object — while the latter provides a detailed but narrow view — thus being

able to discern details of an object but remaining ignorant of its location. The

two visual pathways influence each other, with the Location module helping to

guide the attention of the Object module, and the Object module providing

detailed information about the visual field that the Location module lacks. This

inter-pathway influence fits naturally with galis’ use of gating/higher-order

network connections.
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Figure 5.3. The model’s visual system. Here there are 8 cards
depicted in the environment. All are face-down except for one in the
bottom row, which is striped. The region of the Location module
corresponding to this card is the most active. A Location node
along the left edge is also highlighted, along with its topographically
corresponding receptive field in the Visual module. The state of
the Object module reflects that it is attending to the sole face-
up card. Two of its nodes and their receptive fields are shown.
The smaller rectangles between the Visual and Object modules are
depictions of the incoming weights to these two nodes, as set by
the Location module. One can view these as a cross-section of the
connections, with just one of the many incoming links to each node
being open/active.

The Location module is the same size as the Visual module: 55×67 pixels.

Rather than using 8 binary nodes to represent each pixel, each pixel is congruent

with a single node with values in [0, 1]. This value roughly represents the salience

the model gives to that location in the visual field. Nodes’ activations are

determined by the logistic sigmoid of the sum of both bottom-up input from

the Visual Module and top-down input from the Executive System. For the
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former of these inputs, each node is connected topographically, with a receptive

field in the Visual module of a 5×5 square. The second input is from the

Executive System. This input is gated so that when it is closed the attention

of the model emerges from the interaction of the Visual and Location modules.

When it is open, it serves to control visual attention from the top-down. This

is of particular use when there are two cards face-up. Using only the bottom-

up attentional mechanism both will be equally salient. The addition of the

top-down element allows the Location module’s focus to be directed to the

card chosen by the Executive System.

The Location module also has two outputs. The first leads to the Executive

system, providing it with a coarse view of the visual field so that it may

determine object locations at a top level. The weights on these outputs, called

Wloc, form a random bipolar matrix of size 3685×1024. This has the effect of

assigning each node a random 1024 bit code. This pattern is then stored in

the Working Memory to track where a card was seen.

The second output from the Location module is used, as mentioned previ-

ously, to control the receptive field of the Object module (see Figures 5.2 &

5.3). The Object module can access the visual field in finer detail, but at the

cost of a limited scope. The Location module determines where the Object

module should focus its limited field-of-view. I view this as an example of

gating. The output of the Location module is able to open and close activity

flowing from the Visual to the Object module. Thus, Wobj acts like a mask,

only allowing the portion of a Object node’s receptive field which corresponds

topographically to a card of interest to pass through. Activity in some portion

of the Location module (which manifests as a rectangularly-shaped spike of

activation) moves the focus of the Object module to attend to the area in the
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visual field corresponding to the spike of activity. So, for example, if there is

high activity in the upper left of the Location module then the connections

between the upper left of the visual field and the Object module are opened

and the rest are closed. This gating is essentially an example of higher-order

nodes (Lipson and Siegelmann, 2000). The gating is implemented via“fast

weights,” in which one network’s output (from the Location module) is used to

adjust the weights of another network (the Object module).

The Object module is 9×13 pixels, each of which uses 8 binary nodes to

encode “color” values, for a total of 936 nodes. Other sizes for the Object

module were tested. Sizes smaller than the cards result in too much detail

being missed and make it difficult to accurately judge whether two cards match

each other or not. Tests with an Object module larger than the cards did not

show any increase in accuracy, but did significantly increase computational

overhead. Since the focus of this work is not principally about perception, I

opted to make the Object module to be the same size as the stimuli.

The Object module is guided to focus on a particular region of the input

plane by the Location module using a combination of the bottom-up information

from the Primary Visual module and top-down information from the Executive

System. Its output proceeds upstream to the Working Memory region with

one-to-one connections, so that the model can form a memory of the visual

appearance of cards it has seen.

5.2.2 Executive System

The Executive System consists of three modules (see Figure 5.2): Working

Memory, a Controller, and a Conflict module. It is inspired by functionalities
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generally associated with prefrontal cortical regions of the brain. The Executive

System’s structure is shown in more detail in Figure 5.4.

5.2.2.1 Working Memory

The role of the Working Memory system is to store knowledge of which cards

have been observed and where they were observed by integrating and learning

the outputs of the Location and Object modules. This allow the model to

choose pairs of cards intelligently based on its past experience (much as a

person does) rather than blindly guessing at the locations of potential matches.

The working memories used to remember external stimuli in previous galis

models were unitary: they were capable of storing a sequence of binary patterns,

but each pattern stood alone, without reference to any features such as its

location in space (Reggia et al., 2009; Sylvester et al., 2010). Using the same

approach that galis already uses to store instruction sequences, I now employ

an auto associative network to effectively link representations of seen objects

(i.e., overturned cards) and the locations at which they appeared.

Training of Working Memory is accomplished with standard one-shot Heb-

bian learning, which occurs whenever the Working Memory training gate is

open. This establishes the learned pattern as an attractor in the Working

Memory’s state space. This pattern can then be recovered when the network

is in a state sufficiently close to it: either a noisy or corrupted version of the

original pattern, or — more importantly for our purposes — when a part of the

pattern in missing.

For example, if the 5-shaped “Scotland” card depicted in Figure 5.1 is

observed in the topmost row and leftmost column of cards in the environment

then the working memory would learn a string corresponding to the tuple (5;
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Figure 5.4. Architecture of the model’s executive system. Thick
arrows represent full internal connections. Thinner gray lines represent
gating outputs from the Controller. Note that the size of layers is not
to scale.

top-left corner). This string becomes an attractor state of the Working Memory

network via one-shot Hebbian learning. This will allow the full pattern to be

recovered from either portion. That is, by setting the “what” nodes to “5” and

allowing the memory to update, the “top-left corner” portion can be recovered,

and vice-versa. This is analogous to the way that the entirety of an image

learned by an auto-associative memory can be recovered when presented with

only a portion of the original image.

Every time the Working Memory is trained its prior weights undergo weight

decay. This reduces the interference between patterns in memory, and allows

for older memories to be supplanted by more recent ones. Adjusting the amount

of decay can be used to affect the length of sequences that a memory like this

stores: lower levels of decay allow longer series at the cost of more interference,
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while higher levels of decay are better suited for shorter series (Winder et al.,

2009).

The model’s Working Memory also includes a “register” layer to allow the

comparison of one pattern to another. These allow operations on multiple

operands. The register layer is the same size as the main wm layer, and is

linked to it by one-to-one, gated connections allowing patterns to be read into

and out of this extra buffer.

5.2.2.2 Controller

The Controller is at the core of the Executive System. It is trained to direct

the operation of the rest of the model by opening and closing the nine gates

which govern the flow of activity, thereby allowing the entire system to function

autonomously. The nucleus of the Controller is a discrete attractor network

called the “Instruction Sequence Memory” (ism). This is a memory unit whose

purpose is to store the instructions for performing card matching rather than

external stimuli as is the case with the main Working Memory component. As

with the preceding chapters, this galis model’s behavior is determined in

large part by sequences of patterns that have been stored in its ism, which shift

the control of the network’s behavior away from its architectural construction

and towards its informational content.

Input to the ism comes from a subcomponent called the Encoder, which is

a hetero-associative network that is responsible for converting the Controller’s

input into a selection of which instruction sequence the ism will process. The

ism’s output is sent to the Decoder, which translates between the patterns

stored in the ism and the actual values which are sent to each gate. These

hetero-associative sub-components serve dual purposes. The first is noise
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reduction. This is possible because each specializes in either storing inputs or

outputs, while the ism is required to represent both inputs and outputs as

well as the links between them. The second purpose is to decouple the size of

inputs from outputs. For example, the Controller has nine outputs: one for

each gate. However, more than nine nodes are needed to store a distributed

representation of the six actions used for the card matching task in Hopfield-

type attractor networks (Storkey, 1997). The Encoder and Decoder make it

possible to translate between representations of differing sizes.

The structure and function of the Controller is unchanged from the galis

instantiation of Section 4.3, where it was used to model performance of the

n-Back task. I mention this not only to refer the reader to a more detailed

description, but also to draw attention to the fact that the identical Controller

architecture, when trained on a different set of instruction patterns, was used to

perform this very different task — i.e., the controller provides a general purpose

mechanism for cognitive control.

The ism is trained prior to task execution on the necessary sequences of

steps the model must take to perform the card matching task. Each of the eight

rows in Table 5.1 are represented by a binary string, and each of these strings is

stored as an attractor state of the ism using one-shot Hebbian learning. These

eight actions are linked together into three different sequences using temporally

asymmetric weights. Each of these sequences correspond to the appropriate

response to there being either zero, one or two cards face-up. Depending on

the number of cards which are face-up — as judged by the Conflict Module —

the Controller executes one of the three action sequences detailed in Table 5.1.

The ism’s outputs are the nine gates distributed throughout the rest of the

model (see Figure 5.4). They are:

149



1. the Working Memory Training gate (gtrain), which controls when the

weight matrix of the Working Memory layer undergoes training;

2. the Motor Output gate (gmotor), which allows the model to gesture to a

location on the board to choose a card using the output of the Motor

module;

3. the Location-to-Working Memory (gloc,wm) and Object-to-Working Mem-

ory (gobj,wm) gates, which allow the Working Memory state to be influ-

enced by that of the current Location and Object Module states;

4. the Register-to-Working Memory (greg,wm), which governs the effect of

the register on the “what” and “where” portions of the Working Memory

layer;

5. the Working Memory-to-Register gate (gwm,reg ), which does the reverse;

6. the wm-to-Location gate (gwm,loc), which allows the “where nodes” of the

Working Memory to affect the Location Module, causing the Executive

System to drive attention in a top-down way;

7. the Register-to-Self gate (greg,self ), which allow the new register states to

be dependent on their current state (opening this allows maintenance of

a pattern, while closing it allows rapid updating), and;

8. the Encoder Update gate (gconf) which governs the inputs to the control

module, so that it can decide whether it begins a new sequence of

instructions.
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Table 5.1. Learned instruction sequences stored in the control module’s ism.

Sequence Action

1. Zero cards face-up 1. update wm to retrieve a stored pattern

2. load wm contents into register

3. load register contents into wm
(excite object connections, inhibit location connections);

enable top-down attention
enable output from motor module

2. One card face-up 4. load object module contents into wm;
load location module contents into wm

5. load wm contents into register;
train wm on current pattern

3. load register contents into wm
(excite object connections, inhibit location connections);

enable top-down attention
enable output from motor module

3. Two cards face-up 4. load object module contents into wm;
load location module contents into wm

6. train wm on current pattern

This set of gates is manipulated in order to act out the set of six different

actions the Controller takes in execution of card matching. These six actions

are combined in different ways to create the three sequences in Table 5.1.

When there are no card face-up in the environment, the Controller attempts

to determine if it knows the location of a matching pair of cards. This is

accomplished by retrieving a pattern stored in Working Memory and storing it

in the Register. The Working Memory is then updated again, but its attractor

landscape is perturbed by input from the Register. The connections between

“what” nodes are set to be strongly excitatory, while those of “where” nodes are

mildly inhibitory. This has the affect of causing the network to shift to a new

attractor with the same “what” sub-pattern (i.e., representing the same card

image), but a different “where” sub-pattern (i.e., known to be at a different
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location). This “where” sub-pattern is then passed to the Motor Module

for output and to the Location Module to provide the top-down portion of

attentional control.

When one card is visible (face-up), the first step is to open the Location-to-

Working Memory and Object-to-Working Memory gates so that the Working

Memory’s state will represent the environment being witnessed. The wm

Training gate is then opened, so that this observation is added to the Working

Memory’s knowledge. Next, a check is run to see if there is a card in memory

when matches the one currently being observed. This operates using the same

method as in the zero-cards-up case, except here the card we are hoping to find

a match for is the one which is currently visible rather than a random card

chosen from memory contents as in the zero-card case. To accomplish this the

visible card is stored in the Register, and the wm is updated with excitation

on the “what” connections and inhibition on the “where” connections from the

Register. If a second location for this card has been trained then it will become

the new state of the wm network because the inputs from the Register are

pushing the Working Memory state into the corresponding attractor basin. If

a second location is not known there will be no basin in the region of attractor

space the Working Memory is in, and so it will transition into some other

attractor. While this attractor may be close in the state space of the wm

network, from the point of view of locations in the external environment it

appears to be a randomly guessed location. This has the desired affect of

making the model guess a location to explore. In either case, the “where”

sub-pattern which results from this update is passed to the Motor module for

output and back to the Location module.
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The model’s actions when there are two cards face-up are very simple (as

they are for a human player). If the two cards match then they are removed

from the environment. If not, the only action required is to add the newly

observed card to Working Memory. (Because the card which was already

face-up was added to Working Memory when it was first revealed, i.e., while

executing Sequence #2 in Table 5.1, there is only ever a single observation

that needs to be remembered.) This is accomplished in the same way as with

the beginning of the one-card-up case: open the gates allowing the Object

and Location Modules to load their activity in the Working Memory and then

update the Working Memory weights on this newly observed pattern.

5.2.2.3 Conflict Module

The Conflict Module’s purpose is to gauge the level of disagreement in the

Location Module about where to focus attention. This gives an indication of

how many cards are face-up in the visual field. When no cards are face-up,

the Location module will have minimal activity, resulting in very low conflict.

When one card is face-up, it’s location will be the single dominant source of

activity, also resulting in low conflict. However, when two different card faces

are visible, each location will vie for attention, causing internal disagreement

about which to encode. The Conflict Module monitors for that disagreement,

and reports it to the Controller. This behavior is inspired by the mismatch

detection functions of the anterior cingulate cortex (Brown and Braver, 2005).

By informing the Control Module about how many cards are face-up, the

Conflict Module allows the Controller to choose which of the three sequences

described in the previous section it will execute. The connection from Conflict

to Control Modules is gated; the signal to open the gate is only sent at the
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termination of each of the three instruction sequences. This results in the

gate being open the next time step, which allows the Controller to assess

which sequence it should begin running. While this gate is closed, no input is

received by the ism, which allows it to continue running the current instruction

sequence without interruption.

The inputs to the Conflict Module come from 512 randomly selected pairs of

nodes in the Location Module, with each pair providing one bit of the eventual

output. The desired output differs depending on the distance between the two

nodes in a pair. Nodes which are topologically close in the Location Module

should have similar states; indeed there is no inherent conflict in neighbors

agreeing with each other. If nearby nodes have different states that is an

indication of conflicting representations. In contrast, nodes which are far apart

are not in conflict if they are both inactive, but are in conflict if they are both

active as this represents the attempt to encode two disparate locations at once.

The Conflict Module’s final output is effectively the proportion of pairs of nodes

which are either nearby but in different states or far apart but both active.

5.2.3 Motor System

The Motor System is intentionally very simple, consisting of only a single

module (Figure 5.2), as detailed motor control is not being studied here. This

Motor Module is roughly analogous to the premotor cortex. It consists of

two layers (Figure 5.4), both of which are the same size as the Visual and

Location Layers (55×67). The first layer has inputs from the Working Memory

which are encoded using the same methods as the top-down mechanism linking

the Working Memory to the Location module — i.e., Wloc
T (cf. Langner et al.,

2013). The second layer is connected topographically to the first, with each
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node being linked to 5×5 rectangle of nodes below it, each with a fixed and

equal weight. This blurs the first layer’s representation of the output space,

allowing a smoother and less volatile output.

When the controller has signaled that output should be allowed (i.e., by

opening the output gate), the node with the maximum activity is interpreted

as being a “gesture” to that particular location on the table top. If that

node corresponds to an area in the visual field where a card is present, it is

interpreted as the model “pointing” to that card, which is then “flipped” to

reveal its identity.

5.2.4 Experimental Methods

I compared galis experimentally to two other ways of performing the card

matching task. The key measure of performance used is the number of rounds

required to remove all cards. First, in order to assess galis’ similarities to

and differences from people, data was collected from human subjects as they

performed a web-based version of the card matching task that I developed.1

The 34 participants played a total of nine times, three each with either 8, 12

or 16 cards on the board. This gave us 102 recorded trials for each of the three

conditions. The ordering of trials was randomized for each subject to minimize

biases due to ordering effects. The images used on the human subjects cards

were randomly selected each trial from 10 pairs of national flags. To remove

any potential influence of disparate hues and to better match the monochrome

inputs of the neural model, all of the flags were composed of red, white and

blue only (e.g., those of the United Kingdom, the United States, etc.).

1 This can be accessed at http://www.jsylvest.com/cards/.
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The second point of comparison for galis’ neurocomputational approach

is a top-down symbolic algorithm. To achieve this, I implemented a symbolic

AI system to play a simplified version of the card matching task. In this AI

system I have removed all the aspects of vision and spatial processing, and

instead represent each card as a pair of integers: one for the location of the

card, and one for the pattern on the card. The symbolic model pursues the

following strategy: At the start of each turn, the model checks to see if it

knows where a matching pair of cards are. If it does, that pair is removed

from the board. If not, it randomly selects a card from a location which is not

in its memory. If the location of the matching card is in memory, the pair is

removed, otherwise a second random location is chosen (and if by chance the

two randomly selected cards match, they are removed). Any time the model

sees an overturned card, the card is added to memory.

In order to make the performance of the symbolic system more comparable

to that of humans, I introduced a modifiable decay factor to its memory. On

each turn of play, items in memory may be deleted with a probability equal

to a decay rate δS. When δS =0.0 there is no decay, and the symbolic model

plays perfectly. (That is, on average does as well as is theoretically possible

given random card placement and selection). When δS=1.0 the symbolic model

has no memory at all, and plays by random guesses. Intermediate values of

δS allow us to produce intermediate behaviors, while extreme values allow us

to compare galis to theoretically optimal performance (δS =0) or random

performance (δS =1).

The galis results presented below are averages from 200 simulation runs

of the model. In each case the model’s ism was pre-trained on the necessary

instructions, which were identical for all three task variants. With 8 and
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12-card variants, the locations of the cards was randomly chosen from among

the positions used for the 16-card case.

5.3 Further Details of the Card Matching

Model

Because one of the aims of galis is to enable the construction of generalizable

models that do not need major architectural changes to complete different

tasks, many of the details of the model constructed for Card Matching are

unchanged from those used for n-Back. (See Sections 4.3.1 and 4.3.2, as well

as Sylvester et al. (2013).) Elements which have been changed or added, such

as those used for visuospatial processing, are covered below.

5.3.1 Location Layer

The weights on the bottom-up connections (Wvis) from the Visual to Location

modules are trained using one-shot Hebbian learning. It uses extensive weight-

sharing, so that every node has a different receptive field but identical incoming

weights. Each node has the same role: recognize if its receptive field is

“interesting” — i.e., it is looking at a portion of the front of a card, as opposed

to the back or the table surface. Because each node has the same purpose, each

node can have the same weights. So, for example, the weight on a connection

to a node in the Location module from the top-left node in its receptive field is

the same regardless of which node is being considered or where its receptive

field falls in the Visual layer. This makes training much more efficient. The

training patterns are a selection of possible 5×5 patterns which appear on
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cards (12.5% of the total possible patterns are used for training). Through

this process nodes learn to turn on when they detect patterns from the faces

of cards, and remain off when their input field is the table top. This produces

a rectangular surge of activity in the Location module which corresponds

topographically to that of face-up cards in the Visual module. (In Figure 5.3,

this is the horizontally-striped card in the center-right of the bottom row.)

The weights on the these top-down connections are merely the transpose of

the weights on the counter-flowing, bottom-up connections discussed immedi-

ately below. The final state of the node is just the sum of both the bottom-up

and top-down influence, weighted by the appropriate gating factor.

li = σ
(
Wvis

T R(i) + gwm,loc Wloc(:, i) ~a
)

(5.1)

Here li is a node in the Location Layer, R(i) is the receptive field of node i,

gwm,loc is the gate governing top-down attention, Wloc(:,i) is the set of weights

out from node i to the Working Memory, and ~a is the state of the nodes in

Working Memory which store location data.

The output from the Location module to the Executive system is thus

the average of each node’s code string, weighted by the nodes’ activity. As

a result, overlapping spikes of activity produce similar outputs, despite the

randomness of each individual node’s representation. This system also has the

desirable by-product of reducing the dimensionality of the spatial encoding

from that needed by the Location module (3685) to that used by the Working

Memory (1024). The overall effect is similar to that of Random Matrix

Transformations (Achlioptas, 2003; Johnson and Lindenstrauss, 1984; Rahimi

and Recht, 2007, 2008). Finally, this approach has the added advantage of

being easily invertible: Wloc is used to translate between the encoding used the
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Location Module to that used by the Working Memory, providing bottom-up

visual attention; Wloc
T is used for the reverse translation, allowing for top-down

attention control.

5.3.2 Object Module

Every node oi in the Object module has a receptive field of 47×55 nodes in

the Visual module. At any one time, each Object module node should only

be accepting input from one of those Visual module nodes. Furthermore, each

node should be accepting input from the node in the same location in it’s

field — i.e., if one node is attending to the middle of the top row of its receptive

field, so should the others. Each spike of activity in the Location module

therefore translates into a single active point in a 47×55 grid. These pairs of

active regions in the Location module with their correlating points of focus in

the visual field are used as training patterns for the hetero-associative Hebbian

learning which is used to actually form the weights Wobj controlling the Object

module’s focus.

The activation of Object module nodes can be formalized as

oi = σ

 ∑
j∈N(i)

(
xj
∑
k∈loc

Wobjjk lk

) (5.2)

where σ is the logistic sigmoid function, Ni is the receptive neighborhood of

node i, xj is the state of a node in the Visual module, loc is the set of nodes in

the Location module, lk is the state of one of the nodes in the Location module.
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5.3.3 Working Memory

Nodes in the registers update according to the simple rule:

ri = sgn(greg,self ri + gwm,reg si) (5.3)

where si is the state of the topographically corresponding node in the primary

Working Memory layer. It can be seen that the new state of a register is either

the persistence of its current state or a switch to the state of the primary

wm layer, depending on whether the register-to-self gate (greg,self ) or the wm-

to-register gate (gwm,reg ) is open. That is, depending on the the gate signals

the register will either maintain the current state, or load a new one from

wm. This crystalizes the dichotomy between stable maintenance and rapid

updating (Goldman-Rakic, 1987).

The updated states of nodes in the primary wm layer are the result of a

sum, weighted by the appropriate gate values, of the current state, the state

of the register, and the output of the visual system. For nodes which encode

“what” information, this latter value is the simply the state of the Object Layer.

For nodes encoding “where” information, it is the state of the Location Layer,

as weighted by the Wloc weight matrix. This can be formalized as

si = sgn

( ∑
j∈WM

WWMijsj + greg,wmri + gobj,wmoi

)
(5.4)

for “what” nodes and

si = sgn

( ∑
j∈WM

WWMijsj + greg,wmri + gloc,wm

∑
k∈loc

Wlociklk

)
(5.5)

for “where” nodes. Here oi is the ith node of the Object module, lk is the

kth node of the Location module, greg,wm is the gate on the register-to-wm
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connection, gobj,wm is the gate on the Object-to-wm connection, and gloc,wm is

the gate no the Location-to-wm connection.

5.3.4 Conflict Module

The amount of conflict present in the Location module’s activity is estimated

based on a sampling of the conflict between 512 pairs of nodes. It is of course

possible to define the overall conflict to be a function of the entire module’s state,

but this global calculation is both computationally expensive and unnecessary.

Only a small fraction of the pairwise conflicts are needed to get an accurate

assessment of the number of locations that are presently being represented.

The desired output of a node in the Conflict Module differs depending on

the topological distance between its two input nodes in the Location module.

Nodes which are close should be expected to have similar states; indeed there

is no inherent conflict in neighbors which are both on or both off. Nodes which

are far apart are not in conflict if they are both inactive, but are in conflict

if they are both active as this represents the attempt to encode two locations

at once. The goal then, is to output x1 ⊕ x2 if nodes i and j are within some

topological distance d of each other, and to output x1 ∧ x2 if they are not.

To accomplish this, each pair of nodes is connected by a network like that

shown Figure 5.5, with the weights wAC and wBC set according to the distance

between x1 and x2. (We use a Chebyshev distance equal to 7.5 to differentiate

between “near” and “far.”) More formally, if ‖i, j‖∞ > 7.5 then wAC = 1 and

wBC = −1, otherwise wAC = 0 and wBC = 1.
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Figure 5.5. Wiring of a pair of nodes in the conflict module. There
is only one link from A to C and one from B to C, with the weights on
these links depending on the distance between x1 and x2. The weights
labeled on the dashed lines are used for nodes near each other, while the
weights on the dotted lines are used for nodes which are far.

5.4 Results

The decay rate of the symbolic AI model was calibrated prior to evaluating

this galis model. The effect of decay rate on this model’s performance

can be seen in Figure 5.6. In all three task versions, both the average and

the standard deviation of the number of rounds needed to complete the task

increased superlinearly with the decay rate. Results from 200 runs of the

symbolic model showed the closest fit to human subjects for the n=8, 12, and

16-card conditions when the symbolic decay rate δS = 0.475, 0.40, and 0.30,

respectively. This is consistent with analogous findings in past computational

studies where decreased decay was correlated with increased working memory

span (Altmann and Gray, 2002; Reggia et al., 2009; Winder et al., 2009).

The galis system successfully solved every card matching task on which it

was tested. The number of rounds it needed to complete the task, averaged over
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Figure 5.6. Performance of the symbolic model on all three card
matching task versions with varying decay rates. Note that as decay
increases, both the expected performance as well as deviation in
performance increases. Based on 200 runs of the symbolic model for
each value of the number of cards n. Error bars represent standard
deviations.

200 runs, was 8.7, 13.0 and 21.2 for 8-, 12- and 16-card versions respectively.

This compares to mean human scores of 7.9, 13.5 and 18.9. This was achieved

with a decay rate δN =0.125, so it was not necessary to adjust the parameters,

structure or instructions of the model in any way to perform in all the three

conditions. If the symbolic model was similarly limited to a single choice

of decay parameter δS then there was no significant performance difference

between it and the neural methods used by galis. This was possible despite

operating in a much more complex environment than previous galis models.

Results with galis (200 runs for each value of n) are shown in Figure 5.7.

These are compared with both the results from human subjects and from three

instances of the symbolic model — one with no memory decay (δS = 0), one
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without any memory (δS=1), and one with δS=0.375, which was the decay value

which provided the best fit to the human results across all three task conditions.

The mean number of rounds it took galis to complete the task increased as n

increased, consistent with human performance and with expectations. We find

no statistically significant difference at the p=0.05 level between the galis

model’s performance and that of human subjects or the best-matching symbolic

model on both the 8- and 12-card conditions. The galis model performed

somewhat worse than humans on the more challenging 16-card version, as did

the best-matching symbolic model. In this task condition the neural model

slightly out-performed the symbolic model, but not at a significant level.

As expected based on the symbolic model and previous studies of attractor

network-based working memory, a decrease in working memory decay rate δN

was helpful as the problem size grew larger. The galis models were able to

match human performance on n=8 and n=12 with a decay rate of 0.125 — i.e.,

adjusting this parameter was not necessary to fit data from both task versions —

but optimal performance was observed when δN =0.15 and 0.10, respectively.

That is, a marginally lower decay rate increased memory capacity to allow for

additional cards to be recalled. The associated and unavoidable trade-off is

that reduced decay leads to increased interference between items in memory.

The best performance on the n=16 condition occurred with δN =0.025. This

low level of decay was still unable to increase capacity sufficiently to match the

human responses. Any lower values lead to dramatically more interference and

worse performance, while higher values produce too much decay and worsen

performance.

In order to investigate the causes behind the galis model’s less accurate

match to human performance levels under the most challenging task condition
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Figure 5.7. Mean and standard deviation for human subjects, as
well as symbolic and galis models on the card matching task for the
n=8, n=12 and n=16 conditions. For all three n conditions the decay
rate of the galis model was 0.125. Results from the symbolic model
are shown when it experiences no decay to its memory, a decay rate
of 0.375, and complete memory decay. By adjusting the decay rates
of both models it was possible to produce better fits to the human
data, but the values used here provided the best fit across all three
n conditions without varying the decay rate. The difference between
the human results and those of the galis model and the best-fitting
symbolic model are significant only in the n=16 condition.

we constructed histograms of the performance for both humans and the neural

model. These, along with a kernel density estimate (KDE) for smoothing, are

shown in Figure 5.8. As can be seen in the right subplot for n=16, the difference

between human and galis performance is largely due to a thicker right-hand

tail on the distribution of galis results. Without these few outlying runs,

which required over 40 rounds to complete, there was no statistically significant

difference from the human results.

Figure 5.9 shows a similar plot with the bars omitted for the n=16 variant,

with human performance, galis results, and results from the symbolic model
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Figure 5.8. Histogram of human (red) and galis (blue) perfor-
mance on 12-card and 16-card task versions. Also given is a curve
showing a smoothed estimation of each histogram using gaussian
kernel density estimates (ode). Human results are the solid red lines,
and galis results are dashed blue lines.
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with two different decay rates. When δ=0.35 there was no significant difference

between the performance of the symbolic and galis models, and both were

worse than the human level. The symbolic model was able to decrease the

numbers of rounds needed by lowering its decay rate to 0.3. This slight

parameter shift was all that was needed to cause the symbolic model to go

from matching the galis model to the human performance level for n=16

(but not for other values of n). This indicates a partial cause behind the galis

model’s inability to match human results on this task version: galis’ decay

rate was already set very low, making further decreases futile.

It helps to understand the causes of these worst performers — as well as why

they have a significant effect only when n=16 — to consider what happens if

locations are guessed completely at random. The chance of randomly picking a

matching pair of cards in any given turn in which there are c cards on the board

is 1
c−1 . The number of turns needed to randomly uncover the first matching

pair is thus given by a geometric distribution with p = 1
c−1 , which has an

expected value of 1/p = c− 1. Once the first pair is found, the number of cards

decreases by two, and the process is repeated. An entire game of matching

n cards without any memory can be modeled as the sum of a sequence of

geometrically distributed random variables.

X =

n/2∑
i=1

Xi, Xi ∼ Geo

(
p =

1

2i− 1

)
(5.6)

As a result of this process, adding an extra pair of cards causes the expected

number of rounds needed to complete the task to grow quadratically. Impor-

tantly, it also causes the standard deviation of the rounds needed to grow

quadratically. Not only does the average number of turns increase with number
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Figure 5.9. Kernel density estimates on the 16-card task for human
subjects and the galis model compared to the symbolic system with
two different decay rates. When δS =0.3 the symbolic system and
human performance match, and both outperform the galis model.
Increasing the symbolic system’s decay rate to δS = 0.35 shifts its
performance curve to the right, causing it to be statistically similar to
that of the galis model. Note also that the performance distribution
of the symbolic model displays the same positive skew as do humans
and galis models, and that the skewness increases with higher decay
values.

of cards, but the chance of a poor-performing outlier increases greatly as well.

This is the pattern we observed when moving from n=12 to n=16.

The assumption that a player’s choices are being made randomly is, of

course, incorrect. But note that the player will behave more like a random

guesser in early turns, since little is known about the cards. It is exactly those

early turns when the most cards are still present — i.e., i is close to n/2 — that

will dominate the series of random variables Xi above. Furthermore, the more
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rounds that are played the more patterns that will be added to working memory,

and the more the limited capacity of working memory becomes a constraint.

Poor initial performance in a run can create a feedback loop: as more turns

elapse, interference between patterns in working memory increases, causing

difficulty in recall, causing more turns to elapse, and so on. Small perturbations

in the agent’s working memory capacity may therefore result in a very different

distribution of outcomes due to this positive feedback. The galis networks

had the decay in their working memory set as low as possible for the n=16

task. This produces a concomitant increase in interference, causing them to

behave more like a randomly-guessing agent.

Figure 5.10 shows an observation of this pattern. The blue area in the

middle of the plot shows a non-parametric estimate of the average performance

of 100 simulations with n=16 (Hsiang, 2013). Two particular runs of the galis

model are shown in red. The dotted line shows one run with a final score of

17, while the simulation represented by the solid line took twice as many turns

to finish. The difference is entirely due to the inability of the latter to find the

first matching set of cards among the 8 pairs on the board. After this hurdle is

cleared the remaining pairs are identified even more rapidly than they are in

the high-performing example. This early plateau pattern was characteristic

of the few poor-performing simulations that made the galis model’s results

not precisely match those of human subjects when n= 16. Examination of

these outlier runs showed that the controller was working precisely as it was

trained to do, but that by chance the same location cards were frequently

being re-picked early on. In other words, the algorithm in Table 5.1 does not

adequately anticipate this possibility, allowing it to occur in a few percent of
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Figure 5.10. A visually-weighted regression of the model’s aver-
age performance over time in 100 runs of the 16-card task variant
(blue), along with the performance curves of one high and one low-
performance runs (dotted and solid red, respectively). The shading
represents the width of the confidence interval surrounding the perfor-
mance, as determined by a nonparametric bootstrap estimate (Hsiang,
2013).

the simulations and thus biasing the model’s performance overall to take a bit

longer than humans do in this case.

Because the model has no trouble performing as expected once clearing

the early plateau, we do not believe the Control Module is the cause of this

behavior. (If it was to blame, we would expect the incorrect behavior to persist

throughout the run.) In order to verify this we compared the action chosen

by the control module in each time step to the action it should have taken

in that situation. The model should execute actions #1, #2 and #3 when

there are no cards face-up, then #4, #5, and #3 when one card is face-up,

followed by #4 and #6 when two cards are visible, at which point the cycle

should repeat. We were able to construct a list of the actions actually chosen

by the Controller by recording which action’s representation was closest to the
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state of the ism at each time step. To do so, we compared the state of the

ism to the representations of the rows of Table 4.1. We then calculated the

Levenshtein distance (Navarro, 2001) between the list of the correct actions

and the actions chosen by the model.2 A Levenshtein distance of zero indicates

a perfect match between two strings, meaning the Controller never selected

an incorrect action during that trial. Non-zero values were very rare in the

sample. In the 100 simulations shown in Figure 5.10, only six occurred, and

the maximum Levenshtein distance observed was four.

This leaves two potential, and related, sources of error. The first is typical

Working Memory errors: the model incorrectly remembers stimuli by falling

into spurious attractors or otherwise returning an erroneous pattern as a

result of attractor networks’ stochastic updating process (Ma, 1999). The

second is a problem with the algorithm “programmed” into the model itself —

i.e., programmer error. Qualitative analysis of the runs with low-performance

indicate that there is a preponderance of the latter. There is a specific undesired

behavior that recurred: the model would select from the same small set of

locations for many rounds consecutively rather than exploring the full set of

cards. Each time a card is turned over the Working Memory is trained to

remember what was witnessed and where. But repeated exposures to the

same cards causes the associated basins of attraction to grow larger and larger,

crowding out the areas of the state space accorded to other locations. This

results in it being more likely that those repeated cards will be chosen again,

as they now have larger basins of attraction that before. This also creates a

feedback loop from which the model has difficulty breaking out.

2 See Chapter 4, note 6 supra.
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5.5 Discussion

In this chapter, I provide a substantial test of the basic galis hypothesis by

applying it to a challenging card matching task. Performing this task requires,

among other things, the ability to deal with representing external entities and

their locations in space, the ability to support a robust working memory of

previously seen cards, the ability to bind together distinct pieces of information

about the environment, and the ability to exert top-down attention control and

action selection. Such abilities are readily achieved with traditional top-down

AI symbolic systems, but have proven to be extremely challenging for neural

architectures (Martinet et al., 2011; Trullier et al., 1997), and go far beyond

what has been attempted with galis previously.

The results presented here provide significant support for the galis hy-

pothesis. Specifically, not only could the neurocognitive architecture learn to

perform the card matching task, but the number of steps (card selections) it

made during problem solving qualitatively increased with problem difficulty in

a fashion similar to that seen when we had a group of human subjects solve this

problem. At times, the model’s performance and the performance we observed

with the human subjects we studied matched quantitatively. Where this match

deviated significantly (with the larger number of cards), analysis indicated the

most likely reason for this deviation was the author-generated instructions the

system was trained to perform not some failure of the underlying principles.

We also examined the influence of working memory decay on the system and

found that while adjusting the rate was not required in order to match the

behavior of human subjects, doing so did allow closer fits. Decreasing working

memory decay allowed for handling larger number of stimuli, which corrobo-
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rates previous studies of working memory decay as well as corresponding to

the effect of varying decay rates on the behavior of the symbolic model we

built. At the most challenging task condition, a zero lower bound was reached

with the decay rate, making further increases in the model’s memory capacity

infeasible.

This neurocognitive system is composed entirely of components based on

neural network methods that use distributed sub-symbolic representations.

The finding that this system can perform cognitive control operations of the

sort performed by traditional AI symbolic problem-solving methods is both

encouraging and highly significant. Such cognitive control abilities are widely

recognized to be challenging for neural computational methods. In a sense, this

approach provides a synthesis of continuous neurocomputational representations

and symbolic AI representations. Even though the galis approach uses only

neural information processing, the fact that it allows one to “program” a

neural network with a sequence of high-level instructions creates a similarity

to the traditional von Neumann architecture computer. Further, even though

the attractor networks operate in a high-dimensional, continuous state space,

each attractor within that space exists as a discrete entity (Simen and Polk,

2009), and the use of gating allows for hard-cutoff binary distinctions to be

made (open vs. closed communication channel, active vs. quiescent region,

update working memory vs. maintain its current contents, learn vs. don’t learn,

etc.). As a result, galis networks offer a balance between the continuous

nature of neural networks and the discrete nature of symbolic systems. Gating

also has the further benefit of providing a way to balance the dual needs of

maintaining stability of a network’s state and for being able to rapidly switch
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states (O’Reilly et al., 2002), a key requirement that has long been recognized

as important in biological cognitive control systems (Goldman-Rakic, 1987).

The work here can be compared to several past related studies of neural

systems for working memory and cognitive control. As described in Chap-

ter 3, neural networks have been widely used to model cognitive control (e.g.,

Botvinick and Plaut, 2006; Kaplan et al., 2006; Pascanu and Jaeger, 2011; Ponzi,

2008; Verduzco-Flores et al., 2012). Many of these, such as c-sob (Lewandowsky

and Farrell, 2008), concentrate almost exclusively on the working memory as-

pect of cognitive control and rely on the modeler to make decisions about when

to update weights or how to produce output. They also interact with their

environments in a very limited way in the sense that they are exposed to stimuli

in a set order, and produce one response in reaction to each — often yes/no;

rarely are there more than four discrete answers to choose from — at which

point the next input is provided regardless of the accuracy of the response.

The galis model presented here must reach its own decisions about which of

up to 16 cards to observe when, and the environment in which is must perform

the remainder of the task is heavily influenced by its prior performance.

In many past models, the issue of appropriately binding a stimulus to the

conditions of its observation is often side-stepped. Part of the stimuli provided

to models is often constructed explicitly to contain the relevant information

on time or space (e.g., Chatham et al., 2011). This is the difference between

observing, for example, a book on a desk and remembering that the book is on

the desk, as opposed to remembering being told the sentence “the book is on

the desk.”

Successful use of the galis framework to perform a card matching task,

and its previous use to perform simpler n-Back matching tasks in the preceding
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chapter, is very encouraging. However, much further work is needed to assess

this approach and extend it to even more challenging problems. Since neither

sophisticated image processing or motor control were a focus of this work,

expanding such portions of the system to, for example, deal with color and

invariance to input transformations, would of course be important future

research areas. In addition, “programming” a neural network as we have done

here is a fairly new pursuit, and one that would benefit from finding new

methods and tools for analyzing the behaviors of large-scale complex network

architectures.
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6

Learning, Improvement & Task Switching

6.1 Introduction

The galis model from the previous chapter demonstrates the approach’s

ability to co-process visuospatial information and use it to execute a complex

task. This was done using an algorithm which is stored as a set of instructions

in one of its memory layers. One of the primary limitations to its performance

was this stored program itself, rather than the network per se. This limitation

is addressed here with a network capable of improving on its performance and

learning to adjust the representation of its own instructions during execution.

The goal of the work described in this chapter is to allow galis models

to learn procedural knowledge from their experiences and to improve on tasks

from exposure to them. Sub-symbolic systems are typically fairly adept at

improving from experience via incremental weight changes. While galis does

learn to store information — e.g., its working memory, as well as learning its

initial instructions — the galis models in the preceding chapters do not adapt

these instructions based on their experience during task execution. galis

models so far have been limited to being only as good as the instruction set
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their creator provided them with. The work in this chapter overcomes this

limitation by combining the rapid, one-shot learning used thus far in galis

for external episodic memories and instruction sequences with the gradual

improvement more typical of neural networks. Here this capability is referred

to as instruction refinement to differentiate it from the instruction learning

that has been discussed since Chapter 4.

In addition to instruction refinement, the ability of galis models to bind

“what” and “where” information from their environments is expanded upon to

now also include the binding of multiple features — such as number, color and

shape — concurrently. The model must attend to one of these features while

inhibiting the others, which presents a more complex cognitive control problem

than attempted in the previous chapters. The model of the previous chapter

could recognize having seen a ‘5’ image on a card, but here the model must

remember that it saw an image with three red crosses on it, and must also be

able to remember where else it has seen cards with red shapes of any kind, or

crosses of any color.

In order to facilitate rapidly switching between which of these features

is attended to and which inhibited, there is a third variation on instruction

learning used here. Instruction refinement makes small, permanent changes to

the controller’s weights, while more drastic but temporary changes are needed

to shift the network into a new set of behaviors in response to negative feedback

from the environment. These three types of learning used for instructions in

this galis model are summarized in Table 6.1.

The chapter begins with some further background and motivation of the

problem. In order to test galis’ ability to improve with experience, a model is

built which performs the Wisconsin Card Sorting Test (wcst). This test and
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Table 6.1. Types of learning used in the galis wcst model.

Instruction learning Instruction refinement Rule set switching

Purpose: initial memory contents iterative improvement rule changes

Speed: very fast slow fast

Method: 1-shot Hebbian
(symmetric & asymmetric)

bounded Hebbian &

bounded anti-Hebbian
bounded Hebbian

Weights: WENC, WDEC,
WISM, VISM

WISM UENC, UISM

the methods used in the model which executes it are described in the following

section. Finally, results on the wcst are presented which show that galis

is not only capable of performing the wcst, but also of improving over time,

and in learning to distinguish between useful instruction sequences for the task

and spurious ones.

6.2 Methods

6.2.1 The Wisconsin Card Sort Test

The wcst is one of the primary tests of cognitive control (Greve et al.,

2005; Strauss et al., 2006). It is widely used to study executive functions and

the pre-frontal lobes (Barceló and Knight, 2002), for example in studies of

schizophrenia (Everett et al., 2001) and adhd (Romine et al., 2004). It comes

in various forms (Berg, 1948; Milner, 1963; Nelson, 1976), but all are performed

using a deck of cards whose images differ in three dimensions, each of these

which has four possible values. (In this implementation, these are shape, color

and number, as is standard; see Table 6.2.) The test is conducted by placing

four “base” cards in a row, and presenting the participant with a series of cards
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Table 6.2. wcst input features and values.

number color shape

1 red rgb(1,0,0) square n

2 blue rgb(0,0,1) cross :

3 cyan rgb(0,1,1) triangle s

4 yellow rgb(1,1,0) circle l

10 20 30 40 50 60 70 80

5

10

15

Figure 6.1. A sample visual field for the wcst. The four cards
depicted on the left are basis cards showing one red square, two blue
crosses, three cyan and four yellow circles. The stimulus card on the
far right depicts three blue circles, and could match the 2nd, 3rd or
4th bases depending on whether the active dimension is color, number
or shape, respectively. (Best viewed in color.)

from the deck, one at a time. The participant’s task is to match the current

stimulus card to one of the four base cards, but they are not told what rule

should be used for the matching. Figure 6.1 depicts the low-resolution version

of the wcst that the galis model sees. Each stimulus card could match with

three of the four basis cards depending on the currently active dimension. The

active dimension must be attended to while the other two must be inhibited.

Participants are not even informed that there are three potential rules: they

may believe they should be matching based on most overall similarity, or any

more complicated rule of their devising such as choosing the card with the

same shape if the stimulus is red, but the same number if it is any other color.

During the course of the test the relevant dimension will change without

the participant being informed. Depending on the version of the test, this
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switch usually occurs after a prescribed number of consecutive correct responses

(typically six to ten). The most common measure of performance is the number

of rules shifts or “sets” one is able to complete before the deck is emptied.

The only feedback participants receive is “correct” or “incorrect” following

their response to each new stimulus. Using only this binary reward/punishment

signal, the agent must determine whether they are attending to the correct

feature. This creates two potential errors: either continuing to attempt to

apply the same rule after it is no longer working (called “perseveration”), and

switching away from a rule while it is still in effect (called “distractibility”

or “failure to maintain set”). The wcst is often referred to as a test of set

shifting ability, or the ability to switch from one mental frame to another,

changing the features of the environment which are being attended to and which

inhibited (Boone, 1999). One of the principal challenges of cognitive control

is to work with mental constructs which are flexible enough to adapt quickly

while simultaneously remaining robust to unwanted change. This is evident

in the wcst, where a failure to meet the first criteria results in perseverative

error, and a failure to meet the second results in a distraction error (Stemme

et al., 2007).

6.2.2 Model Overview

The use of the wcst as a testbed for this stage of galis’ development is

quite a challenge. The principal demand of wcst is to be able maintain a

stable focus on one feature dimension while also being able to rapidly switch

between features when necessary. This requirement is made more difficult

by the addition of gradual improvement, creating a trichotomy between not

changing behavior, making a large change quickly, and making many small

180



visual

location

motor

working 
memory

value featureobject

sequence action

decoder

encoder

ISM

feedback signal

sequence action

epi-memory

WDEC

WISM

VISM

UISM

WENC

UENC

Figure 6.2. Model architecture for the Wisconsin Card Sort Test.
Solid lines represent the direct flow of activity between layers. Dotted
lines represent gates. The names of the Control Module’s weight
matrices appear next to the layer they operate on.

changes slowly. All of this must be accomplished on the basis of nothing but a

binary reinforcement signal from the environment.

The galis model for performing the wcst is composed of seven modules,

as illustrated in Figure 6.2. These are the Visual, Location, Object, Motor,

Working Memory, and Controller modules. Many of these components are

extremely similar to those used in previous galis models; further information

can be found in earlier chapters as well as Sylvester et al. (2013) and Sylvester

and Reggia (2014). The remainder of this section will concentrate on the

differences between this and those previous galis models.

6.2.3 Information Representation

Like the networks presented in the previous chapters, this model uses randomly

selected binary strings to represent different concepts in a distributed fashion.
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Each sequence of instructions has an identifier, as do the constituent actions

within those sequences. Each feature is represented by such a string, as well

as the particular values they can take. The set of these strings is referred to

as the model’s “codebook.” These are the patterns which are learned by the

model’s attractor networks, and the points in state-space corresponding to

these strings become the centers of the basins of attraction.

In prior chapters these strings were chosen randomly. As a result some

were more similar than others, resulting in deformations to the evenness and

uniformity of the attractor space. In order to ameliorate this issue, we instead

choose encodings using an iterative sampling process (Kulesza and Taskar,

2010, 2012; Usatenko et al., 2014). When new encodings are generated they

are rejected with some probability based on their distance from the already

adopted encodings. That is, the first entry in the “code book” is chosen at

random. The second is chosen, but is likely to be rejected if it is too close

to the first.1 The process is repeated until the codebook is full. While not

algorithmically elegant, it is more than sufficient because the number of points

being chosen is much, much smaller than the dimensionality of the space they

are in (Pan et al., 2007). The strings which identify features and their values

are 512 bits long. Those for sequences are 600 bits and those for actions 424

bits, matching the sizes of the appropriate areas of the ism.

1 Its likelihood of being rejected actually increases if it is too close to the prior selections or
too far, i.e., too close to a prior selection’s complement. This is because auto-associative
memories form spurious attractors around the complements of the patterns they are
trained on. Each attractor should be far away from the others, and also far from the
unwanted doppelgängers that they entail.
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6.2.4 Visual System

The Visual System comprises the Primary Visual, Location and Object layers.

The Primary Visual layer provides the principal input to the network. This

comes in the form of a visual field of 15×80 pixels. (Figure 6.1.) Each pixel is

represented by three nodes: one each for red, green and blue intensity. Cards

are 13×13 pixels, with three colors per pixel, each having a real value in [0,1].

As in the preceding chapter, the galis Visual System is inspired be the

dual pathways of the of the mammalian brain, which connect the visual cortex

to the prefrontal cortex along parallel pathways. The first of these is the

parietal or dorsal pathway, which focuses on information about where objects

are, and the second is the temporal or ventral pathway, which specializes in

what objects are (Ungerleider and Haxby, 1994). Within this galis model,

these pathways are represented by the two layers to which the Primary Visual

layer sends its output: the Location and Object layers.

The Location layer is responsible for judging where a stimulus is being

observed, but not for any details about its appearance. The Object layer is

responsible for more fine-grained observation of stimuli. It provides details

about the appearance of objects, but is capable of processing only a small

region at a time, which results in it being ignorant about where the stimulus

it is attending to is located. The information from both of these must be

reintegrated by the Executive System.

The Location layer combines bottom-up with top-down influences to deter-

mine where in the visual field the model should attend. It directs the model’s

attention to a particular location by gating the connection between the Primary

Visual and Object layers: only those connections between the two that link the
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attended-to location are opened. As this system is identical to that described

in the previous chapter it will not be discussed further here.

Though the Location layer is identical to that of Chapter 5 and Sylvester

and Reggia (2014), the Object layer has been greatly modified to allow it to

do feature-extraction before communicating with the Executive System. To

accomplish this the Object module now consists of two layers: a Self-Organizing

Map (Kohonen, 1998) which learns to extract features from the visual scene,

and an output layer which forms a consensus of the nodes of som. The som is

trained prior to executing any wcst trial. (In essence we assume that the

subject of a wcst trial is already capable of discriminating between squares

and triangles, between yellow and blue, etc.) A 40×40 rectangular grid of

nodes is trained using the standard som learning algorithm with all cards in

the deck as inputs for 3000 epochs. A subset of a trained som is depicted in

Figure 6.3. The nodes of the som output to a second layer of 1536 nodes (512

each for shape, color and number). This layer provides the ultimate output

consisting of the Object module’s opinion of the value of all three features of the

current visual input. The Object module is agnostic about which matching rule

is currently in effect — indeed, it is unaware that any matching is even going

on. It merely passes its determination of shape, color and number upstream to

the controller to do with as it will.

The weights wij from a node i in the Visual layer to a node j in the som

are trained according to the standard competitive learning som algorithm

mentioned above. This results in a som node’s activation being determined

by aj =
∑

iwijsi, with si being the state of node i and aj that of node j. The

weights from nodes in the som to the Object output layer are determined

analytically based on which features the som node responds most strongly to.
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Figure 6.3. Detail from an example Object layer som, with each
node labeled with what the card that would make it maximally active
would look like. For example, the node in the upper left corner has
learned to represent four cyan squares, while that in the lower right
corner has learned to represent three blue crosses. (Best viewed in
color.)

The procedure is more straightforward with an example: if a node responds

more strongly to red more than any other color, squares than any other shape,

and two items more than any other number, its outgoing weights will be set as

the distributed encodings chosen as in §6.2.3 for red, square and two. Formally,

this can be expressed as wj = cp such that

p = arg max
q∈{1,2,3,4}

∑
λ∈Sq

∑
i

wijs
λ
i

 (6.1)

Here cp is the one of the four entries in the codebook for a feature-value, and

Sq is the set of all cards in the deck with that value. (In the case of color, we

might have c1 be the 600-bit code for red, c2 be the code for blue, etc., and thus

S1 is all the red cards, S2 all the blue cards, etc.) The rightmost summation

above is the activation of som node j in response to all of the pixels in card

λ. The left summation then yields node i’s activity as a result of all — for
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example — red cards. We set the desired weight to be the codebook entry cp

for whichever feature-value causes j to be maximally active.

The ultimate output of the Object layer is a summation of the outputs of

each node in the som, weighted by their activity in response to the current

visual input. For an Object output k then, this is

ok = σ

(∑
j

wjkaj

)
(6.2)

where σ(·) is the logistic sigmoid function. This process gives single, consensus

view of the value of the visual input for each feature. These three values are

later combined based on the state of the three visual gates to create a single

512-bit value which is passed to the Executive System. Once again, an example

may help clarify: if the only nodes in the som with non-zero activation respond

most to two red squares and two red circles then the final output will be the

distributed encoding for two, that for red, and an affine combination of the

encodings for square and circle.

6.2.5 Working Memory

The wcst is a game of full information with respect to the visual environment.

All four base cards and the stimulus cards are in view at all times. The memory

which is required is that of the agent’s own recent actions and the feedback to

them. As a result, the Working Memory layer is pre-trained with the relevant

attractors. A new component called the “Epi-Memory” is used by the model

to form a memory of its own recent actions, discussed below in §6.2.6.

The role of the Working Memory is to link features to locations. The

card matching model linked “what” and “where” strings together in a single

auto associative memory in the same way that the ism links sequence and
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action identifiers together. Here the Working Memory of the card matching

model is expanded to link not just what with where, but number, color and

shape with where. To accomplish this the network is divided into two sections

conceptually (i.e., the network is fully connected but we interpret the two

halves as representing two different things), just as was done for the what and

where portions when modeling card matching. The first portion identifies a

feature dimension — number, color, shape and location — while the second

identifies a particular value of one of these features. Using one-shot Hebbian

learning sixteen attractors are created in the network, one for each feature-value

pair. Then these attractor states are linked together using asymmetric Hebbian

learning. For example, given the board depicted in Figure 6.1, the attractor for

(color; red) would be linked to the attractor representing (location; position #1),

as would those for (shape; square) and (number; one). This ‘linking’ is identical

to that discussed in prior chapters to connect one element in a sequence to

the succeeding element. Until now this technique has been used to link, for

example, an observation at time t− 1 to an observation at time t, but there

is no reason that the heteroassociative bond between these two patterns can

only be formed when patterns are temporally related. In total, there are 16

attractors learned using the symmetric weights of WWM, which are linked

together into 12 sequences of 2 elements each using the asymmetric weights of

VWM (Figure 6.4). These two weight matrices used within the Working Memory

layer are equivalent to the symmetric and asymmetric weights introduced and

then refined in Chapters 3 and 4.

Due to the ability of an associative memory to recall full patterns from

partial ones, it is possible to recover a full state such as (color; red) given only

the input red from the Visual system. Using the asymmetric weights, a further
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Figure 6.4. A schematic of the associations between feature-values
and locations. Solid, horizontal lines show associations between a
dimension and one of its possible values that have been made using
the symmetric weights of WWM. Dashed, vertical lines show the
associations that have been formed between the resulting attractors
using the asymmetric weights of VWM.

update of the network will then be able to recall the representation for (location;

position #1), and this value can be passed to the Motor Layer to allow it to

gesture at the basis card in the first (leftmost) position (see Figure 6.1).

6.2.6 Controller

The Controller is responsible for storing the instruction sequences the model

uses. It is composed of the same three components as the previously presented

galis models — Encoder, ism and Decoder — with the addition of one more

component to enable instruction refinement and rule switching, which is termed

the “Epi-Memory.” This section will concentrate on the new Epi-Memory

component, and the reader is referred to Chapters 4 & 5 for details on the

remainder of the controller, as these have not changed.
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The Epi-Memory is used to keep a record of the actions recently taken

my the Controller. Rather than keeping a record of the sequence of visual

stimuli, as for instance the n-Back model’s Working Memory layer did, the

Epi-Memory records the internal state of the ism. It is the same size as the

ism (1024 nodes), and forms a sequential memory using the same attractor

network techniques as the other memories in the model: asymmetric weights,

dynamic thresholds, and weight decay (See Chapter 3). When the model

receives feedback this memory is then used to retrieve the recent actions taken

and either strengthen their representations in the Controller — in the case of

positive feedback — or weaken them — in the case of negative feedback.

6.2.6.1 Gates & Instruction Set

The galis model for the wcst is governed by the following gates (see

Figure 6.2).

• Three dimension gates, one each that controls the relative contribution

of shape, color and number encodings from the Object layer. If all are

closed, the Executive system will not “see” anything; if just the shape

gate is open it will only perceive the shape of the object being viewed,

etc.

• A motor output gate, that when open allows the Motor layer to gesture

to the basis card that the model has chosen as match to the current

stimulus.

• An encoder update gate as in previous models.

• A gate to control the top-down attention in the Location layer, as in

Chapter 5.
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Table 6.3. Instruction sequences stored by the control module.

Sequence Action

1. Attend to number 1. process feedback & update som

2. open number gate

3. retrieve location from WM

4. output

2. Attend to color 1. process feedback

5. open color gate

3. retrieve location from WM

4. output

3. Attend to shape 1. process feedback

6. open shape gate

3. retrieve location from WM

4. output

• A gate on the reinforcement signal that opens when the model the ready

to accept process feedback.

• A gate to govern the updating of weights in the Controller, in the same

way that previous models had gates to update weights in the Working

Memory.

A gloss of the instruction sequences used, similar to those in previous chapters,

is given in Table 6.3. There are three similar sequences, differing only in which

of the visual gates is opened and therefore which feature dimension the model

will be using to determine a match. This makes the algorithm used simple to

understand but difficult for the model since there is a high degree of overlap

between the sequences.

The first step is to process the feedback signal from the environment in

the wake of the model’s previous answer. If the feedback gate is opened the

internal weights of the Control Module will be updated as described in the next
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section. Next, one of the three visual gates is opened, which allows the Object’s

layer’s decision on the value of the corresponding feature to be sent as input

to the Working Memory. Next the working memory is updated which causes

the location of the basis card that matches the stimulus card in the chosen

dimension to be retrieved. Finally this location is output to the environment

and the cycle repeats.

6.2.6.2 New Varieties of Instruction Learning

There are two new facets of learning being used here. The first is rule shifting,

which is a temporary change in the controller’s weights to enable it to change

which instruction sequence it is executing in response to negative feedback. The

second is instruction refinement, which involves repeated, marginal changes to

the controller’s weights to produce increasing performance over time.

Rule Shifting. In order to enable shifting between attentional sets and improv-

ing with experience, two new weight matrices have been added to the controller:

UISM and UENC. These act as “fast weights” to change the dynamics of the

ism and encoder, respectively. By dividing the responsibility between the fast

and standard/slow weight matrices it is possible to make rapid but temporary

changes to the behavior of a network without affecting its behavior in the long

term (Gomez and Schmidhuber, 2005; Hinton and Plaut, 1987; Reggia and

Edwards, 1990; Schmidhuber, 1992; Tieleman and Hinton, 2009). For instance,

if a network has learned to store a set of patterns using Hebbian learning on

matrix W, then one could temporarily remove a pattern from the network’s

memory by doing Hebbian learning of that pattern on a matrix U and using

W −U as the connection weights when updating the network. By setting U
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back to zero the network can be returned to the state is was in at the outset

without affecting its memory of the pattern in question or any others.

Bounded Hebbian learning is used to train the fast weights (Gerstner and

Kistler, 2002). This scales the magnitude of weight changes to prevent them

from overwhelming the existing weights. Following positive feedback, recent

ism states are retrieved from the Epi-Memory just as recent stimuli were

retrieved when carrying out n-Back. A recent state x is then used to update

UISM according to:

uISMij = (1− kU)uISMij +
1

n
φ
(
ψ −

∣∣uISMij ∣∣) (xixj − δij) (6.3)

where kU is decay rate of U and φ and ψ are parameters to control the

boundedness of the weight updates.2

Like the n-Back and Card Matching models, the ism’s state is updated

twice per time step: once using the asymmetric weights VISM to move the state

to a new attractor, and then again using the symmetric weights WISM to settle

the state more fully in the new attractor basin. When the ism is updated

according to its input equations

aISM = sgn [VISM · aISM − θISM] (6.4)

aISM = sgn [(WISM + UISM) · aISM − θISM] (6.5)

it will be more likely to enter states which have recently received positive

feedback, which thereby makes distraction errors less common. The supplemen-

tary, bounded learning works when the model is behaving correctly because

it deepens the basins the network is already in. The intuitive explanation is

2 The experiments described here use φ = 0.3 and ψ = 0.2, but the results are not
particularly sensitive to the specific values, especially if the product φ · ψ is small.
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“what you just did worked; do it more in the future,” or more tersely “don’t

shift rules now.” In a changing environment like that of the wcst what has

worked in the recent past is no guarantee of future success, hence these changes

being made to the decaying, temporary UISM and UENC.

What is needed after incorrect responses is to switch rules by moving to a

different basin. To do this anti-Hebbian learning is used in UENC to temporarily

remove the sequence which provided the incorrect answer. This is done by

uENCij = (1− kU)uENCij − 1

n
(xixj − δij) (6.6)

Since
∣∣uENCij

∣∣ is typically negligibly small, the above can be viewed as the

same bounded Hebbian learning process as Equation 6.3, but with bounding

parameters φ = −1 and ψ = 1. The fast weights for the encoder are combined

with that network’s standard weights during state update, making it unlikely

to remain in a sequence of actions which is yielding negative feedback.

aENC = sgn [(WENC + UENC) · aENC] (6.7)

Note that the Card Matching model of the previous chapter accomplished

the temporary suppression of a state using activity from the Register layer to

provide countervailing biasing inputs. The idea was that this would “push” the

network out of one attractor basin and thereby allow it to enter another. This

was largely effective, but occasionally this resulted in moving the network out

of the current attractor but into a spurious attractor that is the complement

of the intended, trained pattern. Using fast weight matrices to temporarily

unlearn the attractor state in question is a more effective method since it

does not require that the biasing influence be so precisely matched against the

influence of the network’s weights.
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Instruction Refinement. The system for long-term improvement via instruction

refinement is very similar to that for set-shifting. In the case of positive feedback,

a bounded Hebbian learning rule is applied to WISM and WENC to enlarge basins

which resulted in reward. For WISM this rule is given by

wISM
ij = wISM

ij +
1

n
φ
(
ψ −

∣∣wISM
ij

∣∣) (xixj − δij) (6.8)

and the same is used, mutatis mutandis, for WENC. Because these modifications

to the model’s instructions are permanent they are made more gradually, so

smaller values of φ and ψ are used than with the changes to UISM described in

Equation 6.3.3 Following negative feedback the same system is used on WISM

and WENC, but with a negative learning rate to weaken the associated attractors

instead of strengthen them (cf. Tieleman and Hinton, 2009). By repeated

marginal strengthening of the attractors which result in positive feedback and

weakening of those which result in negative feedback the network is able to

fine-tune its representation of is instructions to support increasing performance

levels as as time passes.

6.3 Results

Experiments were initially run using a reduced deck of cards, in which only those

cards which differ from the basis cards in exactly one dimension appear (Dehaene

and Changeux, 1991; Milner, 1963). Those cards that are in the deck appear

twice, giving a total of 48 cards. The correct dimension was switched after 6

consecutive correct responses. Tests using the full deck and a double deck —

3 The work here uses φ = 0.03 and ψ = 0.01. Once again the particulars of this choice
are not significant, but it is important that the product of these two parameters be
sufficiently small.
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both common versions of the test — were also run. These did not produce any

meaningfully different results but did require significantly more computational

time simply due to the increased number of cards to be processed per trial, so

I present results based on reduced deck tests.4

Models were run on the test from the beginning 12 times consecutively.

Between rounds all the layers of the controller had their states reset to random

values, and all fast weights U and dynamic thresholds θ were reset to zero.

(Note that the changes made to WISM and WENC via instruction refinement

were not reset or undone.) A total of 100 trials of 12 consecutive tests each were

run for models with instruction refinement activated and without. The mean

number of sets completed by the models are shown in Figure 6.5. Without

epi-learning, there is no improvement from the first to the twelfth trials. With

epi-learning, however, there is improvement as the model gains experience. This

improvement is significant at the p < 0.05 level as judged by a Kruskal-Wallace

test. While the improvement in performance may appear modest, the number

of sets completed increased from 3.86 to 4.97, a 29% increase.

Figure 6.6 shows a histogram of the number of sets completed by the

instruction refinement model in the first test compared to the last. The shift in

performance is evident: the number of trials which completed four sets or less

decreases while the number completing five or more increases. It is also worth

noting that variation in the number of sets completed across trials decreased

steadily as the models gained experience, indicating a less erratic behavior as

time went on. The standard deviation was 1.02 for the first round both with

4 For a discussion of the applicability of the reduced test in comparison to the full version
in human subjects, see Smith-Seemiller et al. (2001); the authors report on meta-analysis
that concludes short form scores are highly correlated with those on the long form,
though less so for very young or old subjects.
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Figure 6.5. Mean number of 6-card sets completed by galis models
both with and without instruction refinement capability, averaged
over 100 trials. (Note that the vertical axis does not begin at 0.0.)

and without instruction refinement; without instruction refinement, this value

remained roughly constant at 0.98, but with instruction refinement it decreased

to 0.76 after 12 rounds.

In addition to testing the model’s ability to refine its representation of the

three “correct” instruction sequences it was given, I also ran experiments to

judge the galis model’s ability to distinguish between useful and not useful

instruction sequences. This was done by training the model on an additional

sequence which was similar to the three given in Table 6.3, but instead of

opening one of the gates from the Object layer to attend to a particular feature,

all three were opened one third of the way. (Note that human subjects are not

told they should be matching based on only one feature at a time. The rule

“select the basis card with the highest overall similarity to the stimulus” is a
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Figure 6.6. Distribution of the number of sets completed by net-
works with instruction refinement on their first test and their twelfth.
Experience reduces the number of poor performing trials and increases
the number of high performing trials.

perfectly valid option, despite never being correct. This is the rule which the

new, fourth instruction sequence encodes.)

The addition of this supernumerary sequence resulted in an initial drop

in performance. This should not be surprising: not only does the model now

have an extra, incorrect option to choose from during every rule shift (Dehaene

and Changeux, 1991), but there is the added problem of a more crowded

attractor space. Performance thus drops for both algorithmic and neural

reasons. Figure 6.7 shows the average improvement from this initial state over

the course of 15 games: by the end of this period the networks have improved

from an initial performance of 2.8 sets completed per game to 3.7. This final

performance level was not significantly different from the initial performance

when only the three correct instructions were trained, presumably indicating

that the model successfully learned to ignore the unnecessary sequence.
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Figure 6.7. Mean number of 6-card sets completed by galis
model over 100 trials, when the controller has been trained on the
three correct instruction sequences listed in Table 6.3 as well as one
extraneous sequence. (Note that the vertical axis does not begin at
0.0.)

To further explore this adaptation, I also tracked how often each of the

four sequences was selected by the control module over the course of a test.

Figure 6.8 shows the number of times each was selected during the first and

fifteenth games in 100 trials. Though the extraneous instruction sequence

was selected less often than the three correct sequences in the first game of

each trial, this difference was not statistically significant. By the fifteenth

trial, all three of the correct sequences have increased their likelihood of being

acted upon. This comes at the expense of the fourth sequences, which occurs

only two thirds as often as it did before the model gained experience. It is

now significantly less likely to be selected by the model than the other three

sequences, showing that the model learned to differentiate between useful and

useless instructions.
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Figure 6.8. The proportion of time steps each of the four instruc-
tion sequences (#1–3 correct; #4 superfluous) were selected by the
controller, averaged over 100 trials. From game 1, when the model
has no experience, to game 15 the likelihood of executing all three
of the correct instruction sequences increases, while the likelihood
of selecting the superfluous sequence #4 decreases. (Note that the
vertical axis does not begin at 0.0.)

6.4 Discussion

Here we have demonstrated that galis can not only store the instructions

for a task in its memory, but can also autonomously adapt the contents of

that memory to allow better performance. One of the benefits of the galis

approach — the ability to “program” a neural network — can also be viewed as

a potential weakness. To wit, these programs must be determined a priori by

the modeler rather than deduced by the network. While this galis network

does not derive its instructions itself, it does collaborate with the modeler

in improving upon the instructions it is given. It does so by reinforcing the
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attractors for instructions that it has experienced as being useful and dampening

those not found to be so. This is important for several reasons. Firstly, galis

models can be susceptible to choices of patterns which result in attractor

basins being too close together. Instruction refinement in the controller makes

the network more robust to this situation by strengthening attractors which

result in positive performance. Secondly, the instructions do not need to be

fined-tuned, only sketched out because the model itself is capable of performing

this tuning operation. Thirdly, because the model can learn to ignore irrelevant

patterns, the modeler has the flexibility to offer instructions which may be

useful, and have the network discover for itself which of them actually are.

This self-directed improvement was possible within the bounds of the galis

framework, using regions of attractor memories, linked with gating. The fast-

weights concept used in rule switching is closely tied to gating, as discussed

in Chapter 5. Both are strategies which allow one network to influence the

behaviors of others. The two concepts are largely congruent; you could describe

all of the opening and closing of gates as the modification of (very) fast weights

on those gated connections and vice versa.

It was also possible in the context of a demanding cognitive control task

which requires careful balance between stability and plasticity. In addition

to incorporating the abilities to not change (stability) and change quickly

(plasticity), the work here also adds the ability to change slowly (instruction

refinement).

Incremental improvement is one of the areas that neural networks often

have an advantage in compared to their symbolic counterparts. By introducing

this previously-lacking ability to galis it has become a stronger potential

link between the two paradigms.

200



Alternatives to bounded Hebbian learning should be explored further. Initial

explorations of other options, including Storkey learning rules (Hu, 2013;

Storkey, 1997; Storkey and Valabregue, 1999), were inconclusive so it was

decided to remain with Hebbian-based rules to provide continuity with the

rest of the model. Nevertheless, more rigorous testing of alternatives may

be fruitful. Further work should also be done on galis learning to ignore

irrelevant instruction sequences. Currently this is only possible for a small

number of such supernumerary sequences as any more cause the attractor space

to be too crowded to perform at a high enough level to receive positive feedback,

which is a requirement for undergoing the instruction refinement process. Other

memory paradigms with higher capacities, or indeed the same paradigm but

with a larger computational substrate, may allow a larger set of instruction

sequences to be learned as candidates. Other possibilities include introducing

new sequences as old ones decay away, or initializing different networks with

different candidate instructions and monitoring their performance across agents.
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7

Discussion

This chapter concludes this dissertation by summarizing the work done on

neural models of executive behavior and highlighting the original contributions

made to the field. It also covers the limitations of this work in addition to

possible future directions for it.

7.1 Significance and Summary

The fundamental issue addressed in this work is whether there is an identifiable

core set of of general-purpose, region-level functions and interactions that

can be used for cognitive control in large-scale neurocognitive architectures.

The hypothesis is that the galis framework provides such a set of three

key functions and interactions: a region-and-pathway architecture inspired

by the organization of the human cerebral cortex and biologically-plausible

hebbian learning, neural regions that each serve as an attractor network that

is able to learn temporal sequences, and neural regions that not only learn

to exchange information but also learn to turn on/off the functions of other

regions. The idea of simulated cortical regions that can gate one-another’s

activations, learning and communications is particularly novel.
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Most machine intelligence systems fall into one of two general groups:

systems that take a symbolic, top-down approach, and those that adopt a

neural, bottom-up approach. The divide between these two strategies is both

long-standing and, at times, quite contentious. This is regrettable because

the two different strategies are in many ways complementary rather than

competitive: each of the two approaches has its own relative strengths and

weaknesses. For example, while neural systems excel at problems that involve

pattern matching, incremental learning, low level control, fault tolerance, or

processing noisy data, they are less adept at handling higher cognitive functions

such as goal-directed reasoning, natural language processing, meta-cognition,

and planning. Top-down symbolic methods are largely antipodal.

In the cognitive modeling domain, the current limited abilities of neural

architectures to capture critical aspects of high-level cognition puts them at a

tremendous disadvantage when trying to to model the processes underlying

human cognitive control. This limited ability of neurocomputational methods

to support high-level cognition is somewhat unexpected in that the human

brain handles such issues routinely, establishing that neural computations

clearly have the capacity to do so. It also hampers progress in understanding

intelligence, as we are unable to connect our knowledge and experience of

intelligent behavior at the macro level with our vast and growing body of

information about the operation of the brain at the micro level (Reggia et al.,

2014). I believe that a bridge between symbolic and neural approaches will be

very advantageous, and that the galis framework is one way to advance this

reconciliation. To the extent that it and other related research is successful

it may even contribute to a better understanding of the general mind-brain

problem (ibid.).
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The complementarity between the symbolic and neural paradigms has

been recognized in the past and leveraged effectively in a number of cognitive

architectures (e.g., Sun and Naveh, 2004). However, attempts to graft one

approach on to the other have been largely unsuccessful (e.g., Jilk et al., 2008)).

Conversely, more recent attempts to synthesize the two have been meeting

with growing success and interest (Beck et al., 2008; Dayan, 2007; Holyoak and

Hummel, 2000; Stewart et al., 2011). In many ways this mirrors the recent

shift in other domains to hybrid discrete-continuous systems, such as vector

space methods in natural language processing and information retrieval (Le,

2012; Smolensky et al., 2014; Socher et al., 2012)

This dissertation focuses on a potential avenue to attempt to bridge this

gap through the creation of neural networks with memories not only of their

external environment but of internal actions and procedures. galis makes use

of multiple interacting networks, many of which are attractor-based memories,

and which influence each other’s operation through the use of gated connections.

This results in biologically plausible neural networks which nevertheless exhibit

behaviors typical of both symbolic and sub-symbolic approaches. The use of

distributed representations, high dimensional attractor spaces, non-linear inter-

actions between layers and one-shot Hebbian learning are all characteristic of

neural approaches. In contrast, each attractor basin is a discrete unit, gates can

be used for binary operations (opened/closed, excite/inhibit, update/maintain),

and finally “programs” of behavior are stored creating a type of data-code

equivalence.

Attractor networks with gating strike a balance between the continuous

nature of typical neural networks and the discrete nature of symbolic systems,

potentially narrowing the gap between what is possible with systems of each
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paradigm. While galis attractor networks operate in high-dimensional,

continuous space, each attractor within that space can be seen as a discrete

“object” (Simen and Polk, 2009). I believe this dual nature of attractor networks

presents an underexplored opportunity to produce symbolic-like behaviors using

sub-symbolic systems without losing desirable functionality of the sub-symbolic

paradigm, such as easy partial pattern matching.

Sequential attractor nets also help to avoid many scaling problems. Because

the attractors are sequential rather than fixed points, multiple items can be

active “simultaneously” in the same layer (Winder et al., 2009). In fact, the

structure of the instruction memory allows multiple sets of multiple items to

be activated. This obviates the need to dedicate a network to each possible

action by allowing them to be effectively superimposed on a single layer.

Cognitive models built using these galis techniques have been able to

perform psychological evaluation tasks as well as more familiar tasks, and they

do so at the level of human participants despite the high demand these tasks

put on executive functioning.

7.2 Contributions

The work described here makes several contributions to the field.

• The first contribution of this dissertation is the extension of Hopfield-like

attractor networks to process sequential rather than fixed-point attractors.

This is accomplished with temporally asymmetric weights, which allow

the network to act as both be auto- and hetero-associative memories.

This new network construct was used to build a model of serial working

memory which performed multiple versions of the Running Span task at
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levels comparable to human subjects, and exhibited some of the same

behavioral patterns such as the recency effect.

• The second contribution presented here is successful combination of mul-

tiple networks of this sequential attractor type to create models capable

of several cognitive control tasks. This required a method to store not

only multiple patterns in the same memory concurrently, but multiple

sequences of multiple patterns concurrently, and to do so in a way that al-

lowed the model to store both information about its external environment

and information about its task and how to perform it. Such a model was

capable, through the manipulation of gated connections between other

regions, of using the contents of working memory to autonomously carry

out two different cognitive control tasks: the Store/Recognize and the

n-Back tasks. Both of these tasks require a network to learn to carry out

its own learning of the external environment. In the latter task — n-Back,

which is a widely studied benchmark in cognitive psychology — the model

was able to switch between task versions without any adjustment to its

structure or parameters, even if it was instructed to switch in the middle

of task execution. It was also able to match human performance not only

in terms of accuracy but also response time.

• The hetero-associativity of asymmetric weights is useful not only for

learning sequences, but also for learning links between any elements. This

played a major role in the third contribution of this dissertation, in which

the galis system was enhanced to include visuospatial processing and

the binding of different features in a scene. This allows galis models to

interact with a visuospatial environment rather than passively accepting
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a stream of amorphous stimuli. The structure of the visual system is

inspired by the dual “what” and “where” pathways of the brain, balances

bottom-up and top-down attentional control, and does so via continued

use of the gating paradigm. The galis model that demonstrated this

was tested against results that I collected from human subjects on a card-

matching memory test. It was able to match human performance on two

versions of the problem, and exceeded the performance of a comparable

symbolic model on the more difficult test condition.

• The final contribution was the demonstration that galis models with

stored instructions are capable of improving their performance as a result

of experience with a task. This capability for incremental improvement is

one of the major divides between symbolic and sub-symbolic models, and

the ability to learn an algorithm like a symbolic system but make marginal

improvement through time like a neural network is a significant step

forward in narrowing the gap between the two paradigms. This instruction

refinement capability was tested on a challenging cognitive psychology task

called the Wisconsin Card Sort Test. The wcst requires the binding of

multiple visual features, which was possible using the combined symmetric

and asymmetric weights of the sequential attractors I developed. It also

requires the shifting of attention and inhibition between those features,

which was possible by gating inter-region connections, as well as forming

a memory of the agent’s own earlier actions, which was possible using

the same techniques which my prior models used for memories of stimuli.

The model created for the wcst was able to meet all of these require-

ments the first time it executed the wcst, but was able to do so even
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better after it had played several times. This required that the model

make incremental improvements to its own internal representations based

on nothing more than a binary feedback signal. Further, these improve-

ments came through marginal adjustments to its weights which were

originally formed through rapid, one-shot learning procedures. One of the

fundamental challenges of the wcst is satisfying the dichotomy created

by the stability-plasticity dilemma. The addition of incremental improve-

ments to the mix means that the galis model essentially satisfied a

trichotomy by striking a balance between not changing, making rapid,

punctuational changes, and making slower, more marginal changes.

The work I have contributed to the discipline revolves around the theme

of basing neural network behavior on its own memory contents rather than

exclusively on network structure. In other words, the theme of my research has

been that the storing of programs in neural networks the way they’re stored

in computers will be effective for implementing cognitive control mechanisms.

This is a unique approach in neural networks research, and one that may be

viewed as analogous to the shift from special, purpose-built calculating devices

to general purpose, von Neumann-type computers. Like that shift, this has

the potential to make neural networks more powerful and more re-usable, as

well as to provide all of the other benefits that can be derived from shorter

development cycle times.

7.3 Limitations and Future Work

From my perspective, there are currently three principal limitations to the

galis approach. The first is a sensitivity to errors made while recalling
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patterns from memory. If a modeler instructs a symbolic system to first look

up a location in memory and then output the result he can be confident that,

for example, these steps will not happen in the reverse order. If an episodic

memory is formed of three events A,B,C occurring in that order, we may be

confident a symbolic system will not elide B and skip from A to C. (Note that

the same is most certainly not true of biological intelligent systems: modern

cognitive psychology includes substantial study of biases, errors and weaknesses

in human cognition.)

Models created using the galis paradigm do not offer the same confidence.

There are several potential ways of dealing with this. The work discussed here

was built up from the foundation of Hopfield networks. Other, less abstract

models of the brain which incorporate spike timing might be more robust to

this problem, albeit at the cost of increased computational effort. If more

computational energy is to be expended, it is possible that the simple expedient

of using larger sequential attractor networks of the same type described here may

alleviate this limitation, as capacity increases with network size. The approach

used here does recall the correct patterns in the aggregate, so the development

of ensembles of sequential attractors that collaborate on recollection of the

sequence (perhaps using the same representations and weights but operating

from different initial conditions or perhaps each with their own representations

and hence weights) should reduce the error rates during recollections. Finally it

is worth further testing of these sequential attractor networks with other, similar

learning rules such as the Storkey rules (Hu, 2013; Storkey and Valabregue,

1999; Swingler, 2012).

The second limitation of my work is that, although galis models can

store the algorithm for solving a problem, they cannot develop that algorithm
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on their own. The weak link in the chain is the choice of algorithm made by

the person designing the system. The ability to hone an instruction set as

demonstrated in Chapter 6, while short of being able to generate one from

scratch, is a significant move in the right direction and is demonstrative of

galis’ ability to move beyond the explicit instructions given to it by the human

modeler. Still needed is the ability to winnow down the useful instructions

from a much larger set. This mainly requires a larger initial memory capacity,

and the ability to introduce its own instructions or links between them rather

than only modifying those that are given.

Related to this would be the addition of a more sophisticated meta-cognitive

capability (Cox et al., 2011; Haidarian Shahri et al., 2010; Perlis, 1997). The

reinforcement learning-like capability and epi-memory of Chapter 6 opens the

door for more sophisticated self-monitoring by the network. This might enable,

for example, the model to break out of the unwanted repetitive behaviors it

occasionally exhibited with the 16 card trials of Card Matching.

Finally, the structures that can be formed using symmetric and asymmetric

weights are somewhat limited. The techniques I have introduced in this

dissertation allow multiple sequences of multiple elements each to be stored on

the same substrate concurrently. This is even possible with a many-to-many

mapping between elements and sequences, i.e., each sequence contains multiple

elements, and each element may be a member of more than one sequence.

However symbolic AI systems benefit from the ability to use arbitrarily complex

data structures. Adapting techniques that can create more complex data

structure, such as Holographic Reduced Representations (Harris, 2002; Plate,

2003b), Vector Symbolic Architectures (Levy and Gayler, 2008), or Extended

Sparse Distributed Memories (Snaider and Franklin, 2012) would give galis
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models the ability to implement much more complex algorithms and build

more detailed representations of their environments.
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