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Chapter 1. Introduction

Metabolic profiling refers to a high throughput measurement technique, which
would allow simultaneous relative quantification of few hundreds of
intracellular metabolites extracted from a biological sample. It is thus an
extremely useful tool to probe the cellular physiology of a biological system at
metabolic level. When combined with multivariate statistical methods, in plants,
metabolic profiling can be used to distinguish between various ecotypes [Fiehn
et. al., 2000] or mutants [Fiehn et. al., 2000, Roessner et. al., 2001a] and to identify
environmental effects [Roessner et. al., 2001b]. These studies have shown that
perturbation in one of the cellular levels can be correlated to changes at the
metabolic level in plants, using metabolic profiling techniques. Such high
throughput measurement and data analysis techniques allow much better
understanding of response of the plant to a perturbation as compared to the
traditional metabolic analysis techniques [Steuer et. al., 2003].

Comprehensive analysis of biological systems requires the integration of all
cellular fingerprints: genome sequence, maps of gene and protein expression,
metabolic output, and in vivo enzymatic activity [Klapa et. al., 2003]. Hence
metabolic profiling can provides a comprehensive framework for measuring the
metabolic fingerprints in such integrated analysis thus playing an important role

in plants quantitative systems biology studies.



1.1Motivation

Plant metabolism has been studied using traditional metabolic analysis
techniques. However such techniques are limited to the measurement of
particular group of metabolites. Thus such an analysis requires a a-priori
hypothesis of which metabolites are likely to change in a particular study. The
ability of metabolic profiling to quantify major metabolite categories (sugars,
amino acids, lipids, alcohols, organic acids) allows an analysis with a much
limited a-priori hypothesis.

Besides the obvious interest in studying the effect of the change in the ambient
CO: concentration on the physiology of the plants in light of the global warming
issue, the modification of the CO: levels in the environment of the plant cultures
aimed at satisfying an additional need: to initially focus the holistic analysis of
plant physiology in the central carbon metabolism and amino acid biosynthesis
networks. Also there exists extensive information about their function both at the
metabolic and genomic level. The majority of the involved metabolic pathways
have been well characterized in plants, while the regulation of these pathways
has been extensively investigated at least in prokaryotic systems. A. thaliana was
chosen for the current study, as A. thaliana has been used a model system for

many studies in plant, and its full genome has been sequenced.



1.2 Major objectives and specific aims
In this context, the major objective of the thesis is to obtain the phenotypic
fingerprint of each plant at the metabolic level using high throughput metabolic
profiling to understand the short term response of plants to elevated CO: levels.
The specific aims to be pursued are following:
1. Conduct experiment with elevated CO: perturbation:
A. thaliana plants (Columbia Strain) were grown for 12 days, in liquid media under
constant light condition, for 12 days at 23 <C temperature. On the 13" day the
control set was connected to a cylinder containing air at ambient concentration and
the perturbed system was connected to air containing 1% CO:. In both cases 10% of
the air used was C» labeled. Plants were harvested at 0.5 hr, 1 hr, 1.5 hr, 2 hr, 3 hr, 6
hr, 12 hr and 23 hr during the course of the 13" day. The plants were stored at -80 °C
post harvesting and later the metabolites were extracted using methanol extraction
protocol [Rosenner et. al., 2000]. (This part of the experiment was conducted by
Dr. Maria Klapa, Dr. Tara van Toi, Lara Linford, Jeremy Matthew, Linda Moy
and Dr. John Quackenbush at The Institute of Genomic Research, Rockville,
MD. The extracted plant samples obtained from their work were used for the
metabolic analysis discussed in this text)
2. Establish a Gas Chromatography-Mass Spectrometry protocol which will

allow for relative quantification of the extracted metabolites.



3. Develop a systematic methodology for the quantitative analysis of time
series metabolic profiling data which considers:
* Data filtering / bias elimination
* Data normalization
* Multivariate statistical analysis
4. Discuss the obtained results in the context of the known A. thaliana
physiology.
* In the context of the acquired experience from the current analysis,

modifications were suggested for future experiments
1.3 Thesis Description

Chapter 1: Provides an introduction and motivation for the current analysis
along with the specific aims being followed for the current analysis.

Chapter 2: It provides a brief review of the CO: metabolism in plants. Past
experiments of long term effects of elevated CO: on the plant physiology have
also been reviewed.

Chapter 3: High throughput methods and instrumental platforms currently
available for probing plant metabolism have been reviewed. Out of these
methods, the protocol used for current analysis - metabolic profiling using GC-

MS is described in detail.



Chapter 4: Discusses the role of multivariate statistics in interpreting data
obtained from metabolic profiling by reviewing the experiments performed
using metabolic profiling. A description of current statistical methods that can be
used for time series metabolic data analysis is provided.

Chapter 5: Provides description of the current experiment, along with details
about the metabolic profiling protocol established. The data filtration and
normalization procedure developed for time series metabolic data is described
and the results obtained from the analysis are presented.

Chapter 6: The results obtained using the multivariate statistical analysis are
discussed in the context of the known effects of elevated CO: on plant
physiology. Based on the current analysis, the advantages of using high
throughput metabolic analysis and time series data are discussed by comparing
the results obtained from current analysis with past experiments.

Chapter 7: Based on the current analysis the possible future work, which can
further improve the understanding of effect of CO: on plant physiology is

discussed.



Chapter 2. Plant response to elevated CO:

2.1 Stoichiometry of CO: metabolism in plants:

CO: is the main carbon and energy source of plants. One of the main roles of
plants in global ecology is to maintain the carbon and nitrogen balance of the
environment [Buchanan et. al, 2001]. In this context and in light of global
warming due to elevated CO: levels in the environment, CO: metabolism in the
plant has been extensively studied.

CO: fixation in plants is directly relates to photosynthesis. Photosynthesis is a
complex process which uses light energy to transport and convert the CO: in the
growth environment of the plant into organic compound needed for their growth
[Buchanan et. al., 2001]. Depending on the mechanism by which CO: is fixed in
plants, they are classified into three major categories known as C3, C4 and CAM
plants [Buchanan et. al., 2001].

* (3 Plants: Most plants, including commercial crops like rice, wheat,
cotton, belong to the C3 plant category. In C3 plants, the first stable
compound produced from CO: fixation is 3-phosphoglycerate, a three
carbon atom metabolite. The detailed C3 carbon fixation pathway is
shown in Figure 2.1 [Buchanan et. al., 2001]

* (4 Plants: In the plants of this category (e.g. maize, sugarcane tropical

grasses) malate (or aspartate) is the first metabolite produced as a result of
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Figure 2.1: CO2 Fixation in C3 Plants (A) Three Stages of Carbon Fixation and
important intermediates. The number in bracket indicates the stoichiometric
coefficients of the overall reaction (B) Detailed Calvin cycle with stableintermediate
metabolites. Copied From Buchanan et. al., 2001.



carbon fixation. Both these metabolites contain four carbon atoms each.
These plants contain a two stage carbon fixation process as shown in
Figure 2.2 (A) [Buchanan et. al., 2001].

CAM Plants: CAM plants are usually encountered in extremely arid

environments and usually belong to crassulacean species. Succulent plants
such as cacti and pineapple are the characteristic examples of such plant.
The first metabolite produced as a result of CO: fixation is malate
(aspartate) like in C4 plants, but the two carboxylation processes are

separated temporally rather than physically as shown in Figure 2.2(B).
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Buchanan et. al., 2001.



A. thaliana plants used in the current study use C3 photosynthesis like most of
the other plants. In C3 plants CO: fixation is part of the Calvin cycle and takes
place in bundle sheath cells. As shown in Figure 2.1 (A) the Calvin cycle
comprises three phases:

(a) Carboxylation: In carboxylation, CO: and water react with ribulose 1,5

bisphosphate (RuBP) to produce 3-phosphoglycerate (3-PGA). The
enzyme that catalyzes the CO: fixation is ribulose bisphosphate
carboxylase/ oxygenase (RuBisCO).

(b) Reduction: In the reduction phase, 3-PGA is converted to glyceraldehyde-
3-phosphate (GAP) while 6 molecules of ATP and NADPH are
consumed.

(c) Regeneration: In the regeneration phase, from the six molecules of GAP,

five are used to regenerate three molecules of RuBP and complete the
Calvin cycle through a series of reactions shown in Figure 2.1(B) with the
simultaneous consumption of three molecules of ATP. The sixth molecule
of GAP is subsequently used for anabolic needs of the plant.

In summary the stoichiometry of CO?2 fixation in the C3 plants is as follows:

3 CO:2+3 H20 + 6 NADPH + 9 ATP > GAP +9 ADP + 6 NADPH + 6 Pi



2.2 Effect of elevated CO: on C3 Plant Physiology:

Plant biomass typically consists of carbon, nitrogen, and ionic salts, which have
been fixed by the plant over their lifetime [Buchanan et. al., 2001]. These primary
nutrients are distributed in plants in different forms, each with specific roles in
plant cellular processes. One of the main effects of elevated CO: in plants’
growth environment is the increase in their growth rate despite significant
limitation of other resources (like nitrogen) and environmental stresses [Idso et.
al., 2001]. Increased growth rate translates into increased plant biomass for the
same life period [Idso et. al., 2001; Paul, 2001; Grondzinski et. al., 1996], including
the edible biomass [Idso et. al., 2001] which represents the grains of plant which
are consumed by humans. The observed increase in plant biomass at high CO:
fixation is not uniform for all its constituents. In the following paragraphs this
difference will be explained.

Carbohydrates:

In plants, carbohydrates are used for energy storage, biosynthesis, and for
various structural roles [Buchanan et. al.,, 2001]. Carbohydrates are typically
produced in the form of starch, sucrose & polysaccharides, starting from the
GAP produced in the Calvin cycle. Sucrose which is produced in the leaf cells as
a result of photosynthesis, is then transported to other parts of the plants that

need carbohydrates. Starch —a polymer of the glucose molecule— is used for

10



carbohydrate storage in the leaf whenever the sucrose production from
photosynthesis exceeds the capacity of the leaf to export it to other parts of plants
[Buchanan et. al.,, 2001]. Polysaccharides, which are polymers made by the
combination of two or more sugars, are the primary constituent of the cell wall.
During growth, cell wall uses a large part of the plant biomass thus being a major
drain on carbon supply [Buchanan et. al., 2001]. Some common constituents of
cell walls are cellulose (principal scaffolding component of plant cell wall), cross
linking glycans, like xyloglucan and glucuronoarabinoxylans (also known as
hemicelluloses, used for cross linking cellulose microfibrils) and pectin (which
perform many specific functions like determining wall porosity, pH modulation,
cell adhesion, etc.)[Buchanan et. al., 2001].

It has been observed that during the first few days of plant growth under
conditions of elevated CO: (typically 2 to 3 fold increase with respect to the
ambient CO: level) the rate of photosynthesis increases and leads to
accumulation of non-structural carbohydrates like sucrose and starch in the leaf
[Hui et. al., 2001; Paul et. al.,, 2001]. On average the soluble sugars and starch
content increase by 52% and 160%, respectively [Paul et. al., 2001]. This increase
results in the feedback inhibition of RubisCO activity, allowing the plant to
transfer resources that are being used for photosynthetic activity to other cellular

processes [Paul et. al., 2001]. Additionally, enzymes involved in carbohydrate

11



synthesis, like hexokinase, are also known to regulate photosynthesis [Paul et.
al., 2001], however the exact mechanism is not yet fully understood.

Lipids:

Lipids — defined as plant metabolites which are soluble in non-aqueous solvents
like chloroform - mainly include fatty acid derived compounds [Buchanan et. al.,
2001]. It is speculated that ~200 different fatty acid derivatives can be present in
the plants [Buchanan et. al., 2001]. Lipids are produced from Acetyl-CoA, formed
from the breakdown of the carbohydrates produced from photosynthesis.
Characteristic examples of lipids are the glycerolipids (structural component in
the cell membrane), triacylglycerols (storage compounds), and waxes (storage
and plant protection compounds). Other lipids have more specific plant
functions like plant defense, signaling, electron transport and photoprotection.
Fatty acid composition is measured in few photosynthetic related studies. It has
been observed that elevated CO: did alter the composition of glycerolipids in
Chlorella kessleri (green algae) [Sato et. al., 2003] and increased cell division in
potatoes [Chen et. al., 2001].

Proteins:

Proteins are macromolecules produced from amino acids and constitute the
catalysts and regulators of almost all major processes in plants. Total protein

content measured using enzymatic assays reduced relatively, in wheat canopies

12



grown under elevated CO: conditions in the presence of NO3- & NH4*. This
decrease however was due to a relatively larger increase in other constituents of
biomass like carbohydrates. In absolute term there was an increase in total
protein content of the plant. The absolute increase in protein content in wheat
canopies grown with NH4* nutrients was larger than in those grown in NO3;,
there by indicating that the increase of protein content is dependent on the
source of nitrogen used for plant.

Other Constituents:

Apart from the three most abundant constituents of plant biomass, biomass also
comprises minerals (ionic nutrients) and primary/secondary metabolite pools,
which play an important role in specific plant functions. Some of the most
abundant secondary metabolites are lignins, which play an important structural
role in vascular & woody plants[Buchanan et. al., 2001]. The composition of plant
biomass in each of these constituents is affected differently by the CO: increase in
the plant environment which has been reviewed by Idso et. al. [2001], and
Grodzinski et. al.[1996]

2.3 Effect of elevated CO: on nitrogen assimilation:

In plants most of the nitrogen uptake occurs in roots and then nitrogen is

transported to other parts of the plants in the form of nitrate ions. Plants can use

13



three nitrogen substrates, NOs», NHs* and atmospheric nitrogen as shown in

Figure 2.3(A).
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Figure 2.3 (A) Stoichiometry of the primary nitrogen assimilation Mechanisms (B)
Enzymesinvolved in nitrogen assimilation (Buchanan et. al., 2001).

N:z: The assimilation of atmospheric nitrogen in plants takes place only in the

presence of symbiotic bacteria.

NOs: NOs present in the soil is converted to NHs* through the formation of

nitrite ion. The conversion from NOs to NH4" ion takes place in the plastid in the

roots, and in the chloroplasts in leaves as shown in Figure 2.3(A).

NH+: NH4" is assimilated into the N-transport amino acids: glutamate, glutamine,

aspartate and asparagine [Buchanan et. al,, 2001]. From these nitrogen stores,

mainly aspartate and glutamate donate nitrogen for cellular reactions requiring
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nitrogen. Carbon and nitrogen availability dictates whether plants choose
glutamine or asparagine for nitrogen storage. In dark, adapted plants, due to the
lower rate of carbon fixation, carbon availability is low. Under these
circumstances, asparagine levels increase dramatically with a simultaneous
decrease in glutamine levels, because asparagine stores more nitrogen per carbon
atom as compared to glutamine.

The effect of elevated CO: on the plant nitrogen content holds extreme
significance. While most of the studies which were carried out in controlled
(closed) lab or greenhouse environment indicated reduction in the nitrogen
content, the experiments being carried out in the field showed the opposite [Idso
et. al., 2001]. This “contradiction” can be easily explained if someone takes into
consideration that under elevated CO: conditions plants redistribute biomass to
roots and legumes responsible for symbiotic nitrogen fixation [Idso et. al., one
more]. In the field experiments, involving the long term effect of elevated CO:
(few days to months), plants increase their roots which leads to increase in the
nitrogen uptake and compensates for the nitrogen stress that is induced in
response to elevated COs.

Even though it was argued that a decrease in nitrogen content observed in the
lab experiments could be merely a result of dilution effect of increasing biomass,

the decrease measured in plant/leaf nitrogen content was much more as
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compared to what could be accounted due to increase in biomass. More detailed
analysis by researchers [Smart et. al., 1998; Bloom et. al., 2002] indicates that there
is a reduction in primary nitrogen assimilation in response to elevated CO2
experiment.
To understand the reduction in plant nitrogen content, Smart et. al. (1998)
measured the nitrogen balance in response to elevated CO: (1000 ppm) in wheat
grown under controlled environment using solution cultured techniques. The
plants were also grown under two different NOs (100 and 1000 mM)
concentrations in the root zones. They observed:
* Increase in total plant biomass
* Increase in the plant biomass allocation to roots but did not observe an
increase in nitrogen uptake per unit area of the root
* A slight increase in NOs uptake in plants
* Reduction in biomass organic nitrogen content which was much more
than what could be accounted by the increase in the plant biomass.
Based on the observation of a decrease in plant organic nitrogen content
indicating lower nitrogen assimilation, in spite of observing a slight increase in
NOs uptake by root, they concluded, that elevated CO: conditions interfere NOs

assimilation into organic nitrogen.
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To further understand the mechanism by which NOs™ assimilation is hindered by
presence of elevated CO2, Bloom et. al. (2002) carried out a second experiment in
which they grew wheat canopies under elevated CO: (700 ppm) and ambient
conditions with two different nitrogen source, NOs or NHs* . This time they
measured:
* O2and CO: uptake rates in the plants throughout the experiment
* Total nitrogen and protein content of the plants, two weeks after the
beginning of the experiment
* The nitrite (NOx2') absorption of extracted wheat chloroplast under 0, 0.3, 1
or 3 mM HCOs under in-vitro conditions

Observations on NOs to NHs conversion:

The change in rate of conversion of NOs to NO: and further to NHs* was
monitored by measuring the change in O: liberated in the process. The analysis
of the result obtained indicated that in presence of elevated CO:in plant leaves,
the transformation of NOs to NHs* (in presence of light) was reduced in short
time periods (few hours) as well as long time periods (few days).
The inhibition of NOs fixation in presence of elevated CO:, could be due to:
» Limitation of NADH (provided by the common malate shuttle in
chloroplast and cytoplasm) required for conversion of NOs to NO:z in

presence of higher photosynthetic rate.

17



» Limitation of e (provided by ferrodoxin) required for the conversion of
NOz to NOs which also competes with ferrodoxin requirement during
photosynthesis

Since the NOs can be easily stored in plants for a longer time as compared to
CO, plants utilize the NADH (reducing power) for photosynthesis in preference
for NOs assimilation. The combined effect of NADH and ferrodoxin limitation is
that under the elevated CO: condition the NOs  conversion to NHs* is inhibited in
presence of higher carbon fixation rate.

Observations on HNO: transport:

As part of the primary non-symbiotic nitrogen assimilation process, as shown in
Figure 2.3(A,B), HNO: is transported from the cytoplasm to the chloroplast in
leaves. The study of the effect on NO: transport across chloroplast membrane for
different HCOs ion concentration, indicated a decrease in NO: transport with
higher HCOs ion concentration inside the chloroplast. This is another way by
which the primary nitrogen assimilation using NOs" as a substrate is hindered.

Observations on Plant Nitrogen Content:

These observations were confirmed by comparing plant growth rates and protein
content in plants grown in NOs and NHs" as the nitrogen source. The

comparison between the two showed:
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* Plants grown in NHs+* and NOs under normal CO: levels showed the same
biomass content

* In presence of elevated CO;, the NOs grown plants showed 44% increase
in biomass and 24% increase in leaf area as compared to 78% and 49%
increase respectively for NHs* grown plants.

* The absolute protein content (after accounting for increase in biomass
content) in the shoot protein increased 73% and 32% under NHs* and NOs
respectively.

These measurements support the possible hypothesis for the mechanism by

which primary nitrogen assimilation is reduced in plants in response to

elevated CO2.

2.4 Elevated CO2 effect on Photorespiration:

The carbon fixation in Calvin cycle takes place in presence of RuBisco enzyme.
As indicated by the name, RuBisCO gene fixes CO: and also catalyzes oxygen
tixation. Both CO2 and O: have the same binding site in RuBisCO and hence are
competitive substrates. In the oxygenation process, one molecule of RuBP gets
converted to one molecule of 3-PGA and one molecule of Phosphoglycolate
containing two carbon atoms. Phosphoglycolate then undergoes a series of
conversions, which are collectively called as “Photorespiration” [Dey et.al., 1996].

In presence of light, as the temperatures increase, the ratio of carboxylation to
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oxygenation shifts in favor of oxygenation due to change in the relative
solubility’s of COz and O, thus reducing carbon fixation efficiency. In order to
avoid this condition, in more temperate zone plants use C-4 mechanism using a
special leaf anatomy which allows separation of RuBisCo from oxygen. Previous
studies measuring the flux control coefficient have confirmed this mechanism
[Dey et. al., 1996].

Due to the competition between CO: and O, at elevated CO: levels the
photorespiration pathway gets inhibited [Buchanan et. al., 2001]. Hence a
photorespiration mutant plant, deficient in secondary nitrogen assimilation
associated with photorespiration, does not survive at normal CO2 levels.
However when they are grown at 1% CO2 level, due to inhibition of
photorespiration, they show a normal growth cycle. Thus 1% CO2 inhibits
photorespiration [Buchanan et. al., 2001]

2.5 Role of the experimental design in uncovering the effect of elevated CO:

on plant physiology:

The review of the literature related to the effect of elevated CO: on plant
physiology suggests that the experimental design, setup and conditions play an
important role in the conclusions that can be derived from the experiment. For
the results to be comparable all experimental parameters need to be taken into

consideration including mainly, the plant, the time duration of the experiment,
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sampling frequency, growth media, light and humidity conditions, the
composition of nutrients. In addition the analytical method chosen decides how
many and which effects can be measured from the experiment.
2.5.1 Plant Species:
As discussed in the earlier section, plants use three different mechanisms to fix
COz. The choice of the model plant system should be made in a way that it
represents the general class of plants in which the results need to be applied. The
choice of plant should be based on:
» Since most of the plants including major important crops are C3 plants,
studies using C3 plants can be more useful.
» The plant should also have a short growth cycle since that can
significantly affect the project cost and time.
* Maximum information about the biochemical pathways and gene
structure should be available.
Arabidopsis thaliana, which is a C-3 plant, has been used extensively to study the
interaction between photosynthesis and photorespiration. Recent sequencing of
the full A. thaliana genome allows a much better understanding of the plant
response at gene expression level. Mutants in A. thaliana having defective
photorespiration, nitrogen assimilation, stomatal density, insensitivity to light

and many more have already been identified and are easily available
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commercially, allowing their use in experiment design. Also its short growth
cycle makes it an ideal model system to study the effect of elevated CO: on C3
plant physiology.

2.5.2 Time Duration:

Most of the studies available in literature refer to duration of the CO: “treatment”
studies from over few days to up to 10 years [Idso et. al.,2001]. The duration of
“treatment” before any measurements are made is important because plants with
long life cycles can acclimatize to the elevated CO: level with no effect observed
in plant physiology. Such a study may be important from the point of view of
understanding the effect of elevated CO: in the global environment for
commercial products, but may not offer a better understanding of the interaction
of carbon fixation with other cellular processes.

253 CO2level:

The choice of CO: level could affect some conclusions drawn from the
experiments. In most previous metabolic studies, plants have been treated with
700 & 1000 ppm CO:2 levels. For example, when plants are treated in presence of
700 ppm CO: levels, the total secondary plant metabolites show an increase as
compared to ambient level in high nutrient environment, but show a decrease in
low nutrient environment. However, at 1000 ppm level, the plants show an

increase in total secondary metabolites independent of the nutrient level. Thus,
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the amount of CO: used in the elevated CO: atmosphere may also affect the
conclusion derived from an experiment.

Apart from the amount of CO: used for the experiment, the way the perturbation
is applied on the plant, affects the conclusions of the experiment. A gradual
increase in the CO: levels allows the plant to acclimatize, and hence show a
different effect as compared to the one in which sudden changes are made in the
CO: levels [Hui et. al., 2001].Thus the type of perturbation would depend on the
objective of the study.

2.5.4 Nutrient Condition:

Contradictory results have been obtained due to difference in the amount of
nutrients, and type of nutrients used for the analysis. As discussed in earlier part
of this report, different results about the plant nitrogen content were observed
depending on amount of nutrient available to plant [Idso et. al., 2001] and even
depending on the type of nitrogen source that was used (NHs" or NOs") [Bloom
et. al., 2002]. Hence any results obtained should be discussed keeping in mind
the effect of nutrients on the plant response to elevated CO: discussed.

2.5.5 Analytical Method:

Most of the experiments related to response of elevated CO: focused on
measuring carbohydrate accumulation, effect on nitrogen assimilation,

secondary carbon metabolites, protein synthesis, and biomass redistribution. For
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the analysis of the plant sample typically specific chemical, enzymatic, HPLC &
GC based methods suitable for measuring an individual or a class of metabolites
was used. A more focused study, which investigated the mechanism of
regulation of nitrogen assimilation by elevated CO: used very specific
instruments to measure CO:2 consumption and oxygen evolution rate [Bloom et.
al., 2001]. Labeled carbon and nitrogen substrates were also used to understand
the biomass redistribution in plants. In all cases the analytical methods were
chosen based upon the experiment hypothesis, which predicted a change in a
particular class of the compound.
The current review of literature presented shows that the elevated CO:, apart
from affecting the Calvin cycle metabolite, also affects metabolites involved in
carbohydrate synthesis, photorespiration, lipids, secondary metabolites and
amino acids. Current analytical methods do not allow us to measure the change
in all these metabolites simultaneously. Hence a high throughput method which
can simultaneously measure changes in metabolites belonging to different classes
will allow:

1. Understanding the effect of elevated CO: on the metabolism of various

plant sub systems.
2. The extent of response of different plant sub systems in response to

elevated CO..
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3. Understanding the interaction between different sub systems of the plants
A high throughput method for analysis of metabolic data would allow
understanding of a holistic, complete response of the plant to elevated CO: level,
as compared to current methods which are focused more in a particular class of
compounds. Also since the high throughput method would strive to measure all
the metabolites, no prior hypothesis of which class of compounds are expected to
change in response to a particular experiment is needed. This allows us to do a
less constrained hypothesis based analysis Analytical methods that can be used

for such an analysis are discussed in the next chapter.
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Chapter 3. Metabolic Profiling of Plants

Metabolic Profiling refers to the high throughput methodology that allows for
the simultaneous detection and quantification of low molecular weight
metabolites (belonging to different functional categories) that are derived from
cellular breakdown of a biological sample. Metabolic profiling analysis of plants
comprises each of the following steps:
= Extraction: In the extraction process, the cell wall and cell membrane are
broken and the intra cellular metabolites are extracted in solvents. The
presence of methanol and the heat treatment at 70°C ensures that the
proteins are deactivated and does not affect the metabolites.

* Detection and Quantification: The small molecular weight metabolites

extracted from the plant sample are detected and quantified using various
analytical instruments.
In past various extraction methods have been used for analyzing specific group
of metabolites which has been reviewed by Katona et. al. (1999). Recently Katona
et. al. (1999) and Roessner et. al. (2000) used methanol extraction to extract polar
metabolites from apricots and potato tuber samples respectively. Later Fiehn et.
al. (2000) extended the protocol to simultaneously extract both the polar and non-

polar metabolites. For the current analysis discussed in this report, the methanol
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extraction protocol [Roessner et. al., 2000] for extraction of polar metabolites was
used. The same is also available in Appendix I for ready reference.
3.1 Analytical Techniques for Metabolic Profiling:
The analytical technique which allows for detection and quantification of
mixtures of low molecular weight organic and organo-metalic compounds can be
used for measurement of the metabolic profiles. These methods are following:

1. Gas Chromatography —Mass Spectrometry (GC-MS)

2. Liquid Chromatography — Mass Spectrometry (LC-MS)

3. Nuclear Magnetic Resonance (NMR)
The concepts, advantages and limitations of these methods are discussed below.
GC-MS: GC-MS system consists of two parts. In the gas chromatography part
the compounds in the sample mixture are separated using chromatography in
the gas phase. After separation the compounds enter a mass spectrometer where
they are identified and quantified.
LC-MS: LC-MS platform uses an approach very similar to that of GC-MS
discussed above except the chromatographic separation takes place in the liquid
phase instead of gas phase. The mass spectrometer used can be identical to GC-
MS.
NMR: Unlike the mass spectrometry approach, NMR uses the magnetic

properties of certain isotopes for metabolic profiling.

27



Typically in metabolic profiling using GC-MS, in order to make the metabolites
volatile they need to be derivatized which is not needed in LC-MS as the
separation takes place in liquid phase. Also some of the metabolites like di-
phosphate derivatives of sugars cannot be vaporized even after derivatization,
hence can not be quantified using GC-MS however can be quantified using LC-
MS. In spite of their advantages, due to higher investment and instrumental cost
associated with LC-MS, it has not been as widely used as GC-MS systems. So LC-
MS use has been mainly limited to analyze selected metabolites [Kopka et. al.,
2004] in plants, however it has potential for metabolite profiling in combination
with GC-MS technique.

The advantage of using NMR over GC-MS technique is that NMR can also
measure the metabolite activity in vivo, and due to its non destructive nature, the
same plant can be used for measuring metabolic state at different times [Ratcliff
et. al, 2001]. NMR technique can also be used to identify structure of the
metabolite unknown metabolites, but its biggest disadvantage is that only the
most abundant metabolites (about 50) can be quantified simultaneously using
plants [Kopka et. al.,, 2004]. In the current analysis the most widely used
technique for plant metabolic profiling is GC-MS, and details of the same are

discussed in the next section.
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3.2 GC-MS protocol for metabolic profiling of plants:

GC-MS has been used for measuring concentrations of various classes of
metabolites in plant derived samples, including sugars, amino acids, fatty acids
etc., for a long time. For each class of compound, a separate method was being
used. Katona et. al. (1999) created a protocol which could simultaneously
measure sugars, alcohols, amino acids in apricots. Roessner et. al. (2000)
conducted rigorous systematic analysis for optimizing various parameters of the
protocol by estimating and quantifying the sources of variations in the protocol
using potato tuber samples. Fiehn et. al. (2000) extended the protocol to also
include non-polar metabolites, measuring concentration of metabolites belonging
to fatty acids and fatty acid alcohols. Using this protocol they could detect 326
metabolites (214 polar, 112 non-polar) in A. thaliana leaf extract. For current
analysis protocol developed by Roessner et. al. (2000) to measure polar
metabolites was used.

3.2.1 Derivatization of Metabolites:

As per the protocol, the low molecular weight polar metabolites obtained from
methanol extraction are used for GC-MS analysis. In order to use these
metabolites for GC-MS analysis, the metabolites need to be derivatized. As per
the derivatization protocol developed by Roessner et. al. (2000), metabolites

containing a ketone or aldehyde groups are transformed into methoxime group.
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Similarly active hydrogen atoms (-H) present in the metabolites (in -NH2, -
COQOH, -OH groups) are replaced by trimethylsilyl (TMS) groups. The detailed
derivatization protocol is available in Appendix I.
3.2.2 Separation of Metabolites:
In metabolic profiling using GC-MS, separation of derivatized metabolites takes
place using a gas chromatographic process which is schematically represented in
Figure 3.1. The process of separation of metabolites is as follows:
* The liquid sample containing derivatized metabolite is injected onto a
heated injector where the sample is vaporized
* The derivatized metabolites in gas phase enter a glass capillary column
coated with a thin layer of stationary phase, where the metabolites are
chromatographically separated.
The separation of the compound is achieved by using the property that the
amount of time a compound takes to travel through the column depends on its
structure, charge and molecular weight when the chromatographic conditions
are held constant. This characteristic time (under given chromatographic
conditions) of each derivatized metabolite is called its retention time.
3.2.3 Generating a Mass Spectrum of Metabolite:
The derivatized metabolite separated using gas chromatography enters the mass

spectrometer through a heated transfer line. In the current analysis ion trap mass
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Figure 3.1: Schematic depiction of Gas Chromatography process

spectrometer was used and the working of the same has been shown in Figure
3.2. The mass spectrum of the metabolite is generated through following process:
* The derivatized metabolite enters the mass spectrometer where they are
bombarded with electrons (in case of electron ionization) or small gaseous
molecules like methane (in case of chemical ionization).
* The electron bombardment breaks down the molecule into smaller
fragments, and also ionizes them (due to loss of hydrogen ion).
* The ions are now subjected to an electromagnetic field, and depending on
their mass/charge ratio, they follow a certain trajectory in the ion trap of

the mass spectrometer.
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* The mass spectrometer detects in each scan (a particular time instant
when measurement is made) the intensity of ions for a specific range

(typically 50-600 m/z) and generates a spectrum (intensity vs. m/z plot) for

the particular scan.
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Figure 3.2: Schematic view of M ass Spectrometry

For a specific metabolite, depending on its structure, at a given ionization
intensity (measured in electron volts), the fragmentation pattern always remains
the same, and is characteristic for the particular molecular structure. The
intensity recorded depends upon number of ions present, which in turn, depends
upon the number of molecules entering the mass spectrometer. Hence the
intensity recorded allows quantification of the compound entering the mass

spectrometer. The retention time of the compound and its mass spectrum,
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together, allow us to identify the compound. Thus, GC-MS technique allows
simultaneous measurement and quantification of compounds. The details about
the identification and quantification of the metabolites specifically for metabolic
profiling of plants are discussed in the later part of this text.

3.3 Metabolite identification and quantification using GC-MS:

As discussed in the earlier section, the mass spectrometer measures the intensity
ions having m/z value in 50-600 range, for each scan which generates a spectrum,
as shown in Figure 3.3(A) which is the plot of intensity vs. m/z values recorded
in a scan at time 21.91 min. The intensities recorded for each m/z ion change at
each scan (i.e. with time) as the compounds entering the mass spectrometer
keeps changing. Thus when the spectrum recorded at each scan is combined
together it generates three dimensional data (intensity, m/z and time) as shown
in Figure 3.3(B). Now by combining the intensity recorded at each m/z value, i.e.
combining the intensity recorded for all the ions, at a particular time point, a 2-D
plot of total intensity recorded vs. time is generated as shown in Figure 3.3(C).
Such a plot represents a two dimensional projection of the 3-D data recorded.
This intensity vs. time data is integrated in order to obtain the chromatogram of
the sample and to calculate Total Ion intensity peak (TIC peak) area as shown in

Figure 3.3 (D). Thus, the TIC peak area represents the total intensity of all the
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ions generated, across all scans, and is thus a measure of the concentration of the
derivatized metabolite in the injected sample and hence used for quantification
of the metabolite. The time at which the highest intensity is recorded, which
corresponds to the time at which most of the metabolite elutes, is called the
retention time for the metabolite, which remains constant under similar

chromatographic conditions.

Identification of an individual metabolite:

Typically, for most GC-MS applications the mass spectrum of a compound is
sufficient for its identification. However for metabolic profiling of plant samples,
many metabolites are isomers and show very similar mass spectra. Hence, the
combination of retention time of a metabolite (under a given chromatographic
conditions) and its mass spectrum which is a unique combination for each
metabolite is used for identification of the metabolite. For example, the TIC peak
shown in Figure 3.3(D) represents TMS derivatized ribitol which has retention
time around 21.9 min, and has a mass spectrum which is shown in Figure 3.3(A)
matches the standard mass spectra for ribitol TMS derivative available in the
commercial NIST Mass spectral library and the Max Planck library on the web
(Fiehn et. al., 2000a). Two other compounds, xylitol and arabinose also show a
mass spectrum similar to that of ribitol, due to similarities in their structure.

However the combination of retention time and spectrum will be unique for
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ribitol and will remain the same in all the plant samples as long as the GC-MS

conditions are held constant.

Identification of co-elution:

In the case of co-elution of two or more metabolites, the TIC peak at a particular
time accounts for the TIC of all co-eluted metabolites. The presence of co-elution
can be identified through the variation of the mass spectrum within a given peak.
Since the fragmentation pattern of the mass spectrum is unique for a particular
metabolite, and it should remain the same throughout all the scans of the peak,
any variation in the same is an indication of co-elution of two or more
metabolites within the peak. The differences between the fragmentation patterns

allows also for the separate identification and quantification of the metabolites.

This can also be seen from the 3-D plot of intensity, m/z and time shown in
Figure 3.4. In the case of the 3-D plot for the ribitol peak, all the individual ion
fragment intensities have their peak at the same time which corresponds to the
retention time of the peak in the chromatogram (21.91 min). However, in case of
the co-eluting peak, there is a slight offset in the highest intensity recorded, for

some individual ions, which indicates co-elution.

Peak de-convolution of co-eluting metabolites:
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Peak de-convolution is an important process in metabolic profiling analysis
because 50-70% of the measured metabolites in a plant sample are expected to co-
elute. It can be performed either manually of automatically through the use of
an appropriate software. Even though the manual approach is more laborious, it
is however more reliable than the automatic one. The advantage of using the
automatic peak de-convolution approach is that it would reduce the time for
detecting all the metabolites considerably, and it can also identify co-elution in
which one of the metabolite has very low concentration, which is difficult to
identify using visual inspection. The disadvantage of using this approach is that
it has not been developed for biological samples, and hence no guidelines exist
for various criteria, required by the algorithm, to distinguish between variations
in intensity due to presence of a metabolite than that of noise. Hence depending
on choice of these parameters for the same chromatogram, the number of

metabolites detected could vary from 200 to 600.

Metabolite Quantification :

As discussed in the previous section, TIC is proportional to the amount of the
derivatized metabolite run through GC. Just as for a given chromatographic
conditions, the retention time of a metabolite remains constant, for a given mass
spectrometric condition the mass spectrum also remains constant. This means

that the ratio of different intensities recorded in a mass spectrum of the
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metabolite remains constant for all the plant samples. This ratio depends upon

the fragmentation pattern of the metabolite in the mass spectrometer, on electron

bombardment. Thus, to quantify the co-eluting metabolites, marker ions are used

in

place of total ion intensity. Since there are many co-eluting peaks in

chromatogram for the plant sample, for the sake of uniformity, marker ions are

used for all the metabolites. Figure 3.5 (A) shows the peak areas for total ion

intensity and for each individual marker ion (B)-(E). Such marker ion intensity

plots are not the projection of the 3-D plot now (which is the total intensity peak

area) shown in Figure 3.4 (B), but instead, a slice of the 3-D plot, at each

individual m/z value.
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3.4 Internal standard Normalization:
The peak area of characteristic m/z used to quantify a particular metabolite is
proportional to the amount of this metabolite run through the GC, however, the
aim of metabolic profiling is to measure the metabolite concentration in the
plant. Since the plant sample goes through many stages of processing before
entering the mass spectrometer and variations between different samples exists,
the quantification of the metabolite would be affected. In order to facilitate data
normalization and to remove the effect of these variations, an internal standard is
used for GC-MS Analysis.
The internal standard is chosen based on following conditions:
* The internal standard used should not be produced by the plant
* The internal standard should be representative of the metabolites being
measured — so that it undergoes the same variations as other metabolites
in the plant sample
The following are possible sources of variation which are accounted using
internal standard:
* variations caused during extraction
* variation in the extent of derivatization
* variation in the quantity of sample being injected into the GC-MS.

 variation in GC-MS sensitivity/ ionization efficiency.
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The principle behind internal standard normalization is that, since a known
quantity of internal standard is added to each plant sample, in absence of any
experimental error, internal standard should have the same peak area for all the
plant samples. Thus any variation caused in the internal standard peak area also
represents the variation the other metabolites in plant sample have undergone.
Thus by normalizing the characteristic m/z peak area for each metabolite with
the internal standard peak area we obtain relative peak area for each metabolite
which is representative of the relative concentration of the metabolites in the
plant which can be used to compare the concentration of the metabolites in
different plant samples.

Since metabolic profiling quantifies few hundred metabolite samples, in order to
compare them across all samples in a non-biased high throughput manner,
multivariate statistical methods are required, which are discussed in the next

chapter.
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Chapter 4.

Multivariate statistical techniques for metabolic data analysis

Metabolic profiling using GC-MS is a powerful tool to probe plant metabolism.
GC-MS has been used for a long time to measure individual metabolites in
biological samples. Recently it was also used to simultaneously measure
metabolites belonging to different functional groups in potato tubers [Roessner
et. al.,, 2000] and in apricots [Katona et. al., 1999]. These developments allowed
quantification of a much larger and diverse group of metabolites than was done
before, generating a lot more metabolic data as compared to past studies.

Even though more information about the metabolic state of the plant could be
extracted in a high throughput manner using these protocols, the data analysis
methods used were restricted to variation in individual comparison of samples
between different groups. This restricted the use of metabolic profiling to get a
biochemical insight of the changes in the physiology of the plant. The use of
multivariate data analysis techniques to analyze the metabolic data [Fiehn et. al.,
2000] allowed mapping of overall response of the plant to a genetic or
environmental change, at the same time identifying metabolites showing

differential activity in the two systems in a non-biased manner.
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In this chapter we discuss the applications for which the metabolic profiling data
can be used and the multivariate statistical techniques required to achieve the
objective of the particular analysis.
4.1 Role of multivariate statistical techniques:
There are currently two primary aims of metabolic data analysis using
multivariate statistics:
1. To identify the overall change in metabolic state, by clustering various
metabolic profiles
2. To identify the metabolites which show a significant difference between
the two sets of metabolic profiles.
Currently hierarchical clustering technique (HCL) and principal component
analysis (PCA) has been used for the first analysis, where as student t-test has
been used to identify differentiated metabolites. The advantages of using
multivariate statistical techniques are as follows:
a. Multivariate statistical techniques allow reproducible, non biased analysis
of large sets of metabolic data. Hence data analysis does not become a
bottle-neck for most studies
b. Multivariate statistical techniques can allow a visual comparison of overall

effect of differences based on large number of variables.
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In order to achieve this, most multivariate statistical technique uses a measure of
distance, which represents the difference between two different metabolic states,
based on the measured values of each metabolite. There are many alternate ways
of calculating the distance and hence appropriate distance should be chosen
based on the problem at hand. In this section we review two commonly used
distance measures.

Euclidean Distance:

The geometrical difference (Dj) between any two points in a three dimensional

plane defined by X1, X2 & X3 axes is given as
Djj = {(X1i — X1j)2+ (X2i — X2j)? + (X3i — X3))2}(1\2) Equation 4.1
The concept of geometrical distance is extended to Euclidean Distance (ED) in

order to compare & quantify the difference between two states (ij) using N

variables and is defined as:
EDjj = {(X1i — X1j)?+ (X2i — X2))? + (X3i — X3j)>+ ...... + (XNi - XNj)2}1\2)

Equation 4.2
Thus Euclidean distance calculates (or is a measure of) the absolute differences
for all the variables being measured.

Pearson Correlation Distance:

The Euclidean distance measures the extent of the difference between the

metabolites, and uses the absolute values of the variables being measured.
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Pearson co-relation measures the similarity and differences in trends irrespective
of the absolute values of the variable. The Pearson correlation distance (PCD)
between two variables (u, v) across different samples (m), or the correlation
between two different samples defined by m different variables is given as:

PCD(u,v) = covariance(u,v) / cu* ov Equation 4.3

Where

" (4, — ), )

cov(u.v) ==
(m—1)

Equation 4.4
Pearson correlation distance value close to 1 would indicate a high degree of
correlation between the two variables, where as close to -1 would indicate the
opposite correlation between the two. A value close to 0 would indicate that the
two samples / variables are not related. Thus Pearson correlation distance is a
good measure to identify similarity in the trend or pattern without considering
the absolute values. These distance measures can be used by various clustering
and significant analysis techniques which are described in the next section.
4.2 Multivariate statistical techniques for metabolic profiling analysis:
From the various multivariate statistical techniques available, as discussed before
PCA [Fiehn et. al., 2000], HCL [Roessner et. al. 2001a] and t-test [Fiehn et. al.,

2000] have been used in previous metabolic studies. Apart from these methods
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other methods like K-Means analysis (and associated FOM analysis), and
Significant Analysis of Microarray, which have been used in gene expression
analysis, could be used for metabolic profiling analysis. These methods are
discussed below:

Hierarchical Clustering Technique (HCL Analysis)

HCL analysis is used for identifying and representing proximity of samples to
each other from a group of plant samples (representing metabolic states). In
order to perform the clustering, the algorithm calculates distances between all
the plant sample using the distance measure chosen by the user. As shown in
Figure 4.1 samples which have the lowest distance are linked together to form a
cluster. The distance from the cluster of the other samples is now calculated and
based on that new linkages are made. Thus HCL analysis can be used to identify
presence of different metabolic states amongst plant samples using the
hypothesis that distance between metabolic profiles of the plants representing
the same metabolic state should be less as compared to distance between
metabolic profiles of plants representing different metabolic states. Such an
analysis would indicate two separate clusters at the highest clustering level,
which would contain plants containing the control set and the perturbed set
which has undergone a different environmental condition or which has a

different genetic makeup.
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Figure 4.1 Hierarchical Clustering Technique

Principal Component Analysis (PCA):

Principal component analysis is a technique which projects a large set of data
onto a smaller set of variables (called principal components) which are a linear
combination of all the initial variables. The principal components are chosen in a
way so that the first component accounts for the largest variation in the samples.
For data sets with high degree or correlation between variables, the first three
components together can account for more than 50% of the total variability of the
system. Under such conditions by plotting the metabolic profiles in the first three
principal component plane, a large part of the variations (or the difference)
between the plant samples can be visually identified. Figure 4.2 indicates a

sample 3-D plot using Principal component analysis. Each dot on the plot
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represents a plant sample. Plant samples which have almost the same metabolic
state cluster close to each other. Hence like HCL analysis, if an environmental or

genetic change alters the metabolic state of a plant significantly, the same can be

identified from PCA in which they would form a separate cluster.

Figure 4.2 Principal component analysis. Projection of different plant sasmplesinto three
dimensional space mapped by thefirst three principal components of their metabolic data.

t-test analysis:

In statistics, for any problem which requires to determine if two sets of data
belong to the same group or two different groups, t-Tests are used. The decision
is achieved by using the mean value of both the groups, the standard deviation
(spread) for both the groups and the p-value (which represents the acceptable

probability limit) for the analysis. As discussed in the previous analysis most of
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the metabolic profiling analysis required comparison between two sets of plants.
In order to decide if the metabolite shows different activity between the two sets,
the average and standard deviation values for the metabolite relative peak area
recorded in both the sets is compared using the p-value between 0.01 — 0.05.
Using the t-test, it can than be determined if the values of the metabolites in two
sets belong to the same group or a different group. If the t-test indicates that the
two sets of values do not represent the same state, than the metabolite is
considered to be differentially expressed between the two systems.

Even though t-tests can be used effectively for identifying metabolites which
show differential expression, the analysis depends upon the p-value used, which
is determined by the user. However t-tests can not be used for time series data in
which the aim is to compare metabolite concentration at the same time point in
two different groups, and to determine based on this paired comparison if the
metabolite shows an increased or decreased activity.

Significant Analysis of Microarray:

Significant analysis of microarray (SAM) is a statistical technique which was
developed for analysis of gene expression data obtained from a microarray
experiment [Tusher et. al.,, 2001]. SAM analysis can be performed using four
different options, however two options which are important for metabolic

profiling data analysis are (a)Two class unpaired SAM (b) Two class paired SAM.
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Like t-test, two class paired SAM can be used to identify genes which show
differential activity between two different groups. For such an analysis SAM
makes an a-priori hypothesis that some of the variables (gene/metabolites) will
have significantly different mean expression levels between different sets of
samples [Saeed et. al., 2003].

Two class unpaired SAM can thus be used in place of t-test to identify
metabolites which show difference between two sets of data, with an added
advantage that SAM analysis allows us to determine the limit of the significant
change dynamically and also calculates the False detection rate for the given
significant change choice. Two class paired SAM, however allows one to one
pairing between samples in two groups and identifies gene (or metabolite) which
is over/under expressed over the entire pairing. This feature of SAM thus allows
identification of metabolites showing significant difference in their time series
metabolic profiles.

K-Means Clustering:

K-Means Clustering (KMC) is a clustering technique similar to hierarchical
clustering method, and even though has not been used for metabolic profiling
data analysis before, it has been used to cluster genes into different clusters
[Saeed et. al., 2003]. The proximity of response across samples can be calculated

using any distance measure like Euclidean or Pearson correlation distance.
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Unlike HCL analysis in which the number of clusters are determined during the
analysis, KMC allows distribution of the metabolites into a pre-defined number
of groups (Saeed et. al., 2003). By using clustering with Euclidean distance, thus
it is possible to cluster all the metabolites which show similar magnitude change
close to each other.

For analysis in which the number of groups are known a-priori, KMC analysis
can be used directly using the known number of groups. However when such
information is not available before conducting KMC analysis, Figure Of Merit
(FOM) analysis is performed. FOM analysis provides a measure for the
effectiveness of the clustering technique. An example of a FOM graph generated
to analyze the efficiency of KMC analysis is shown in Figure 4.3 which provides
for different number of clusters, the efficiency of the clustering technique to
separate the metabolites. The FOM values are calculated, by removing one of the
samples (experiments) out from the analysis and compare it with the original
analysis. The hypothesis behind such an analysis is that the most efficient
clustering pattern should not be dependent on a single experiment and should
not show a significant difference in clustering just by removing one of the
experiments. The FOM value is the measure of overall change in the clustering
pattern by removing one experiment at a time, for the given number of clusters.

Hence lower the FOM value, the higher will be the efficiency of the clustering
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technique, as it indicates the clustering pattern is not dependent on a single

experiment.

FOM walue ws, # of clusters

Adjusted FOM
%
|

Mumber of Clusters

Figure4.3 FOM Analysisfor metabolic data set: FOM curve indicatesthat the most
optimum distribution of the variablesisin six groupsor fifteen groupswherethe FOM
curve shows local minima.

As can be seen from Figure 4.3, beyond six clusters the FOM value is above for
cluster 7 to cluster 13. The next minimum is achieved at 15 clusters. Hence this
FOM analysis can be used to conclude that for the given data set can be

distributed into 6 or 15 groups with maximum clustering efficiency.
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Typically using KMC analysis in conjunction with the Euclidean distance allows
distribution of time series profiles of variables in clusters in such a way that the
variables which show an increasing trend are clustered together as they all
would have similar Euclidean distance, similarly variables which show a
decreasing trend with time, or variables which show oscillatory profiles with
time can be clustered together. Thus such an analysis can be used for analysis of
time series data.

Some of the multivariate techniques described above have been used in plants
for different biological studies. These past studies are discussed in the next
section

4.3 Current applications of multivariate statistics to metabolic profiling
analysis:

Experiment Clustering:

The ability of metabolic profiling to identify different metabolic states is the most
commonly used application of metabolic profiling. Untill now this application
has been used to differentiate plants having different ecotypes [Fiehn et. al.,
2000], genetic mutations or different environmental conditions; also, it can
differentiate between different parts of plant. Fiehn et. al. (2000) first used the
principal component analysis to differentiate between A. thaliana ecotypes (Col-2

and C-24) and their mutants (dgd1, sdd1-1). The ecotypes were known to have
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around 100 allelic genes, and the mutants were single gene mutations, with dgd1
deficient in the signaling pathway for photosynthesis which shows a obvious
phenotype and sdd1-1 is a mild mutant showing a slight increase in stomatal
density. After growing 28-45 plants of each type for two weeks, they were
harvested simultaneously and their metabolic profile was obtained by analyzing
both the polar and non polar phase. The principal component analysis of the
metabolic profiling data indicated the presence of four clusters, with the two
ecotypes clusters completely separated from each other and the mutant plant
samples formed a separate cluster close to their respective ecotype. The
prominent dgdl mutant showed a much clearer separation from its parent
ecotype where as the mild sdd1-1 mutant showed lesser difference from its
parent ecotype. This showed a strong relationship of different ecotypes and
phenotypes with their metabolic state, and showed the ability of metabolic
profiling in combination with multivariate statistics to identify this change in the
metabolic state in a high throughput, systematic, non based way.

The analysis conducted by Fiehn et. al. (2001) was further confirmed by
metabolic profiling of potato tubers for belonging to different transgenic line and
grown in different environmental conditions [Roessner et. al., 2001b]. Metabolic
profiling of potato tubers obtained from wild type and five other mutant or

transgenic lines were analyzed using principal component analysis and



hierarchical clustering. Using just the first two components of the principal
component analysis which accounted for 70% of the total variation, all the six
clusters could be separated. Once again those mutants or transgenic plants which
were defective in genes involved in closely related pathways were clustered close
to each other where as the transgenic lines which had modified genes belonging
to different pathways showed a much clearer separation in their clusters. Similar
clustering pattern was also observed from hierarchical clustering analysis where
the plants of the same genotypes clustered together and than with those plants
containing mutation in closely related pathways. In another analysis tubers
obtained from wild type and three transgenic potato lines were grown under
different glucose concentrations. The subsequent metabolic profiles obtained
when clustered using first two components of principal component analysis
showed that tubers grown in different glucose concentration formed a separate
cluster from the normal potato tubers [Roessner et. al., 2001a]. The hierarchical
clustering pattern also changed between the transgenic plants in presence of
glucose. These experiments and their subsequent non biased, systematic analysis
using multivariate statistical methods (PCA and HCL) showed a method by
which the relationship between the plant metabolic state and its genetic,

phenotypic or environmental conditions can be identified.
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Identification of differentiated metabolite:

Fiehn et. al. (2001), used the t-test method to identify metabolites showing
significant difference due to presence of mutation. Using t-test with a p-value <
0.01 found 153 out of 326 quantified metabolites to show a significant difference
between the dgdl mutant and wild type (Col-2 ecotype) A. thaliana plants
metabolic profiles. However in case of sdd1-1 mutant only 53 metabolites
indicated a significant difference.

The review demonstrates that multivariate statistical analysis have helped find a
relationship between different cellular levels, which was not possible using the
standard comparison methods which consider changes in an individual variable
at a time.

4.4 TIGR - Multi Experiment Viewer — A new tool for metabolic data analysis:
TIGR - Multi Experiment Viewer (MeV) is a tool developed for multivariate
statistical analysis of data generated using high throughput measurement
techniques [Saeed et. al., 2002]. This java based tool developed by The Institute of
Genomic Research (TIGR) primarily for gene expression data analysis, allows a
common platform for conducting different multivariate analysis. MeV allows
data analysis of gene expression data using 17 different statistical techniques
including the multivariate techniques PCA, HCL, KMC, SAM, t-test described

above. It also allows use of 10 different distance measures including the
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Euclidean and Pearson correlation distance described above. The option of color
coding a cluster of experiment also allows a visual comparison between different
clustering / data analysis techniques. Thus MeV provides an extensive platform
for metabolic profiling data analysis which has not been used in the past.

4.5 Metabolic Profiling for identifying correlation in metabolites

Since metabolic profiling is a technique which can simultaneously measure
metabolites belonging to different parts of a biochemical network of a plant, it
has been considered as one of the promising technologies for identification of
unknown metabolic pathways [Weckwerth et. al., 2002]. The current approach
suggested for finding unknown pathways is through measuring correlation
between metabolites in certain samples. The hypothesis behind such an analysis
is that metabolites which show a correlation in their variations between different
plant samples, should be closely related through biochemical pathways. Even
though an effort to find such correlation in the relative concentration of
metabolites of central carbon metabolism of potato tubers grown under different
conditions [Carrari et. al., 2003] indicated that while fructose-6-phosphate and
glucose-6-phosphate did show a very strong correlation in their relative
concentration across all samples and lysine and methionine did show a mild
correlation in their relative concentrations, citrate - iso-citrate, malate-citrate,

succinate-fumarate which are known to be related in the TCA cycle did not show
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such a correlation. Similarly an analysis of correlation in dgdl mutants of A.
thaliana indicated presence of very strong correlation for leucine, iso-leucine and
serine with threonine (strong) as well as valine (weak). These results indicate that
even though the presence of correlation between metabolites does indicate a
possibility of the metabolites being closely related through a biochemical
pathway, the absence of correlation need not necessarily indicate that the
metabolites are not closely related.

As a first attempt to identify the correlation between metabolites Kose et. al.
(2001) created a correlation matrix called “clique-metabolite” matrix, which
measured the correlation between all the metabolites detected and created a
network which connected metabolites based on their correlation with each other.
In order to account for observation that metabolites directly related to each other
did not always show a strong correlation, a modified approach to measure
correlation which takes into account “dynamic fluctuations” in the experimental
setup which could disturb such correlation was proposed by Stuer et. al. (2003).
In the modeling approach first a non-linear model is created for the system using
the known biochemical pathway and which models the presence of the
“dynamic fluctuation” and then proposed an approximated linear model which
is simpler computationally. Using this approximated model, they obtained

correlations in glycolysis pathway using metabolic data which obtained
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correlations very close to the non-linear model. However when they attempted
to reverse engineer the network using this linear model, they could not obtain
conclusive results in absence of time-series data. Arkin et. al. (1997) conducted a
in-vitro time series analysis for “Correlation Matrix Construction” (CMC) using
enzymes and metabolites of the glycolysis pathway in a continuously stirred
tank reactor at steady state. Using the time series data for variation in 14
metabolites, they could reconstruct the known relationship between the
metabolites.

Thus in absence of time series metabolic data, most efforts until now [Kose et.
al.,2001], [Carrari et. al.,2003], [Stuer et. al., 2003 ] have focused on measuring
correlation in deviation of metabolite concentration among plant samples grown
together as part of one set. The current analysis has not yet identified any strong
correlation between metabolites which are not known to be bio-chemically
linked. Moreover, the simplistic correlation approach to reconstruct a network
has been unsuccessful to reconstruct the known biochemical network. The
success of such a reconstruction in the simplified in-vitro system using time
series data indicates the value of time series data, where the correlation is being
measured not only at a single metabolic state but at a multiple closely related
metabolic states (represented by each time point) in an effort to better

understand and interpret the correlation between different metabolites.

59



Thus from the review of the current literature and discussion it is clear that even
though metabolic profiling can be used currently to identify changes in the
overall metabolic state of the plant and for identifying which metabolites change
the most due to change in the biological state. Even though such an analysis can
be useful to identify genotype or phenotype of a plant, it can not be directly used
to understand complex biochemical relationship or for an integrated analysis
aimed at understanding interactions between different cellular levels. Time series
metabolic profiling studies which would allow comparison between multiple
metabolic states of the same plants represented by different time points would
allow a much better understanding of the biochemical interactions as previously
observed by other researchers. However methodology to identify change in the
metabolic state, to identify metabolites showing differential expression or to
measure correlations between metabolites has not been developed for the time
series metabolic profiling data. Also before conducting a data analysis, a
normalization strategy which would allow better comparison between different
time profiles would also be needed. In the following chapters we present results
obtained from data analysis of time series metabolic profiling and their

significance in context of previously known biological information.
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Chapter 5. Results

5.1 Experimental Setup:

For the current experiment, A. thaliana plants were grown for 12 days in a liquid
culture in 500 ml shake flasks, under constant light condition at 23°C
temperature. On the thirteenth day, the plants were supplied ambient air (79%
N2, 21% Oz, 0.03% CO: concentration) for control system and air of elevated CO2
level (78% Nz, 21% Oz, 1% CO») for the perturbed system. In both experiments,
10% of the CO: present was C labeled. For each experiment 20 shake flasks were
used. In each flask, 200 ml of liquid media was added. The liquid media was
prepared using Gamborg medium (Sigma,USA) and sucrose. The sucrose
concentration in the media was 20 gm/lit or 58.5 mM. The pH of the media was
adjusted to 5.7. For the current experiment seeds of A. thaliana Columbia strain
were used. Approximately 2 mg of seeds were used per flask which is equivalent
to approximately 100 seeds / flask. The seeds were stored overnight in a
refrigerator at 4°C temperature after which they were inoculated in a bio-safety
cabinet.

The flasks were closed with a stopper containing two glass tubes, one of which
was long and immersed in the liquid media, whereas the other shorter tube was
connected to vapor phase of the flask as shown in Figure 5.1(B). On the thirteenth

day, (after growing A. thaliana for the first 12 days at atmospheric condition) the
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longer tube of each flask was connected to a cylinder (containing the desired air

composition) through a manifold as shown in Figure 5.1(A).

Figure5.1: A. Picture of the experimental setup in the growth chamber.
B. Picture of a shake-flask in this setup.

Before connecting the tubes to cylinder, plants from 3 shake flasks in the control
experiment and 4 shake flasks in the perturbed experiment were harvested. On
the thirteenth day, plants from two shake flasks were harvested at each of the
time points 0.5 hr, 1 hr, 1.5 hr, 2 hr, 3 hr, 6 hr, 12 hr and 23 hr. The harvested
plants were cleaned with distilled water, dried, weighed and then were frozen in
liquid nitrogen to stop their metabolism. Later, they were stored in -80 °C
freezers.

5.2 Metabolic Profiling using Gas Chromatography — Mass Spectrometry:

Gas Chromatography-Mass Spectrometry (GC-MS) was used for identification

and quantification of metabolites in the plant sample for this study. The

62



instrument used was Thermo Finnigan make GCQ-Polaris ion trap GC-MS. The
general protocol developed by Roessner et. al.(2000) was followed, however
modifications were made in order to account for specific conditions and

difference in available equipments of the experiment.

5.2.1 Plant Grinding;:

Plant sample stored at -80 °C was transferred to a pre-chilled mortar containing
liquid nitrogen for grinding. It was ground to a fine powder under the presence
of liquid nitrogen. In the previous studies involving metabolic profiling, a
specific tissue of the plant was typically used like potato tubers [Roessner et. al.,
2000; Roessner et. al.,2001a], Arabidopsis thaliana leaves [Fiehn et. al., 2000] and
apricot fruit [Katona et. al., 1999]. Since the aim of the current experiment is to
understand the overall metabolic response of the whole plant to elevated CO:

condition, the whole plant was used for grinding.

5.2.2 Metabolite Extraction:

1 gm of freshly ground plant was transferred in a 50 ml conical tube. 500 pl of 2
mg/ml ribitol (Sigma-Aldrich) solution in water was added as an internal
standard so that the ribitol concentration in the sample is 1 mg/gm of fresh plant.
After adding 28 ml of methanol (Merck, USA), the plant was homogenized using

a tissue homogenizer. The resulting solution was transferred to four 15 ml.
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conical tubes and kept in water bath at 70°C for 15 minutes. Later, an equal
volume of autoclaved de-mineralized water was added to each 15 ml tube
(approximately 7 ml each). Each 15 ml tube solution was further divided —
equally — into two conical tubes, such that the entire plant sample is distributed
equally in 8 conical tubes which were labeled A-H and served as duplicates to
allow multiple analysis of the same plant sample. The solution was then stirred
vigorously and later centrifuged at 2200g for 5 minutes at 23 °C. Subsequently,
the samples were dried in a SpeedVac (make, model) at room temperature until
all the methanol and water was dried. 1.4 ml of methanol was used for 100 pg of
potato tubers as per the protocol. Since A. thaliana roots are known to be difficult
to extract, 28 ml of methanol was used for 1 gm of plant sample, instead of 14 ml
suggested by the protocol. The dried samples in the 15 ml conical tube were

stored at -20°C freezer for further analysis.

(This part of the experiment was conducted by Dr. Maria Klapa, Dr. Tara
van Toi, Lara Linford, Jeremy Matthew, Linda Moy and Dr. John
Quackenbush at The Institute of Genomic Research, Rockville, MD. The
extracted plant samples obtained from their work were used for the

metabolic analysis discussed in this text)



5.2.3 Metabolite Derivatization Protocol:

To derivatize the plant sample, the dried methanol extracted plant samples were
transferred from 15 ml conical tubes to 2 ml glass vial. 100 pl of 20 mg/ml
methoxyamine hydrochloride (Sigma-Aldrich) solution in pyridine (HPLC
Grade, Aldrich) was added to each sample and kept for 90 minutes at 30 °C. 100
pl of derivatizing agent n-methyl (n-trimethylsilyl) trifluoro acetamide (MSTFA)
(Regis Tech, NC,USA) was added to the solution using a glass syringe and
allowed to react for 30 minutes at 37 °C. 30-40 pl of the derivatized sample was
than transferred to a high recovery 1.5 ml autosampler vial. As mentioned in
previous section, metabolites extracted from 1 gm of plant sample were divided
into eight 15 ml conical tubes, hence each conical tube contained metabolites

extracted from approximately 125 pg of plant.

The derivatization protocol (described in Appendix I) was optimized for
metabolites extracted from 100 pg of potato tubers; hence for metabolites derived
from 125 pg plant sample, the reagent volume was increased by 25% — from 80
pl to 100ul, to account for the additional metabolites. Also in the present case,
the solution containing external retention time standards were not used, instead,

the internal standard — ribitol was used as retention time standards.

65



Every day, before starting the plant sample analysis, calibration curves were
prepared using samples with different concentration of ribitol for operations in
linear range of the machine. In preparing the calibration samples, 2 mg of ribitol
was dissolved in 1 ml of pyridine to obtain a solution of 2 pg/pl. Solutions
containing 0.2 pg/pl, 0.02 pg/pl and 0.002 pg/ul of ribitol were prepared using
successive dilution, starting with 2 pg/pl solution with pyridine. Methoxyamine
hydrochloride solution (40 mg/ml) in pyridine was also prepared. In order to
derivatize the calibration sample 50 pL of each ribitol solution (containing 100
Mg, 10 pg, 1 pg and 0.1 pg of ribitol) was mixed with 50 pl of 40 mg/ml
(containing 2 mg of methoxyamine hydrochloride) and allowed to react for 90
minutes. The rest of the protocol was followed exactly as the plant sample

protocol described above.

5.2.4 GC-MS Conditions:

To identify and quantify the metabolites, ion trap GC-MS (GCQ, Polaris,
Thermo-Finnigan make) was used. It was also equipped with an autosampler
(Thermo-Finnigan). Here too, except for few modifications, the protocol used

was similar to the one described in Roessner et. al.(2001a).
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Injector Condition:

Using the autosampler, 1 pl of derivatized sample was injected into a heated
injector at 230°C. In order to reduce sample carry over and to increase the life of
the autosampler syringe, the syringe was flushed three times with 10 pl of
GCResolve Hexane (make) before injection of sample, and 6 pl of pyridine after
injection of sample. The pyridine wash increased syringe life by removing
residual sample solution, which on drying, formed a hard, thin layer on the glass
surface of the syringe. Before injection, the syringe was flushed with 4 pl of the
plant sample to reduce the variation in the quantity of sample injected which
could have been caused by presence of air bubbles or solvent carry over. Three
pull ups were also performed in the auto sampler vial, before withdrawing 1 pl
of the sample. These measures, along with optimization of the right injection
depth, allowed us to decrease the standard deviation between multiple injections

in the ribitol (internal standard) peak area from 12-15% to 2-6%.

Teflon coated high temperature septum was used in order to avoid contact of
pyridine with plastic: thus reducing contamination of the sample with septum
material. A glass liner containing glass wool was used in the injector for
preventing deposition of non-volatile residue on the column surface, which in
turn, increased the life of the chromatography column. The plant samples tend to

dirty the liner at faster rates compared to other organic samples, and hence the
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liner should be changed more frequently to prevent residue built up on the glass
wool of the liner. The split ratio used was 75:1. This was optimized to ensure
operation in linear range of the machine. More details about choosing the right
split ratio are given in the section dealing with quantification of metabolite

concentration.

GC-MS Conditions:

The separation of the metabolites using Gas Chromatography was achieved
using a ZB-50 (Phenomenex, CA, USA) 30 m long, 0.25 mm diameter with a 0.25
pum thick glass capillary column, equivalent to SPB-50 column used as per the
Roessner et. al.(2000) protocol. Oven temperature is held at 70°C for five minutes,
after which is heated to 320°C at the rate of 5 °C/min, and finally held constant at
320°C for 1 min. For calibration samples, the same heating rate was used, but the
highest temperature was 185°C instead of 320 °C. The pressure was controlled
automatically to ensure a constant gas velocity of 40 m/sec. The transfer line was
maintained at 250°C and the ion volume was maintained at 200°C. The ionization
lens was maintained at 1400 eV. The data was recorded starting from 5 minutes
after injection, in a full scan mode, i.e. at all time. The intensity of all the ions in
the range of 50-600 m/z is recorded, as compared to the SIM mode used by
Roessner et. al.(2000), which measures intensity of only specific ions for a

particular time. The scan mode allows better unbiased detection of metabolites in
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the plant sample as compared to SIM mode in which you have to choose a-priori
the ions that are to be monitored; this may miss out on detection of metabolites
which were not expected to be present. The mass spectrometer was auto-tuned

using calibration gas recommended by the manufacturer.

5.2.5 Identification of metabolites:

The GC-MS analysis of the plant samples, using the protocol described in the
earlier section, results in a chromatogram with multiple peaks as shown in
Figure 5.2 (A). Each peak represents concentration of a single metabolite or two-
three co-eluting metabolites as shown in Figure 5.2 (B). The metabolites can be
identified using their retention time and mass spectrum, which is a unique
combination for all metabolites as discussed in Chapter 3. For example, using the
protocol above, TMS derivative of ribitol had retention time of 21.91 min. as can
be seen from Figure 5.2 (B) and had characteristic mass spectrum as shown in
Figure 5.2 (C). The spectrum and the retention time for the TMS derivative were
the same for all the samples containing ribitol and hence can be used for

identifying ribitol peak in the plant chromatogram.

The list of retention times for the derivatized metabolites in plants and their mass
spectrum has been published before and can be downloaded from the web.

However due to variation between two instruments, there are also variation in
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Figure5.2: (a) Complete Chromatogram of the plant sample (b) Each peak of chromatogram
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(21.91 min).
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the retention times of the metabolites. Different mass spectrometers can also
show variation in mass spectrum obtained due to differences in sensitivities and
ionization condition. These differences are even more prominent when
comparing mass spectra (obtained from quadruple mass spectrometer) and ion
trap mass spectrometer. To take care of these variations, a library of around 30
known metabolites containing their retention time and mass spectrum was
created using standard compounds, using the same GC-MS conditions as the
plant samples. On comparison with the TMS derivatives library, in most cases,
the retention times were observed to be around 0.5- 2 min more in our
instrument. That was due to the differences in the chromatographic conditions.
Moreover, the variation in retention time was not constant for all the metabolites.
The comparison of the retention time and the variation for all the metabolites
identified is available in Appendix II. The mass spectrum of the standard
metabolites was also compared to the TMS derivatives library and to the NIST

Mass Spec library.

After creating the library of standard compounds, they were identified in the
plant samples by looking for a peak that had the mass spectrum of the standard
compound, and approximately the same retention time recorded for that
standard in the library. After identifying peaks for the standard metabolites in

plant sample chromatogram, more metabolites were identified in the plant
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sample using the retention time and mass spectrums of the TMS derivatives in
plant that were published (Fiehn et. al., 2000) and commercially available NIST
mass spectral library. The retention time difference between standards library
and the published library was used to estimate the possible retention times of
other metabolites whose standards were unavailable. Due to possibility of errors
present in the library, only those compounds which matched both the retention
time and mass spectrum from one or more sources were treated as a positive

match, and others were treated as unknown metabolites.

Using the method described above 212 different derivatized metabolites were
detected in the plant sample, out of which, 70 had a known structure. These
metabolites were either represented in the chromatogram by an individual peak
or in some cases, two or three co-eluting metabolites were presented together by
a single peak. Such a co-elution occurs due to very close retention times of two or
more metabolites. By conducting manual peak de-convolution for the
chromatogram as described in Chapter 3 of the report, retention time and marker
ion combination for a particular metabolite were obtained. Since approximately
60-70% of the metabolites detected were present in the form of co-eluting peaks,
for the purpose of uniformity, all the peaks were represented by using their

marker ion instead of the total ion intensity peak. The 212 metabolites detected
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using this method (known as well as unknown structure), their retention time

and their marker ions are listed in Appendix III.

5.2.6 Quantification of Metabolites:

Relative quantification of the metabolites was carried out using marker ion peak
area as described in Chapter 3 using ribitol as an internal standard. The marker
ions used for identifying the metabolites, were also used for quantification of the
metabolite. In order to ensure accurate relative quantification of metabolites, the
instrument should have operations in its linear range. The linear range of
machine depends upon the sensitivity of the instrument, hence varies from
instrument to instrument (and sometimes even for the same instrument). In
order to identify this range, calibration curves were run at different split ratios
which changes the amount of metabolites entering the mass spectrometer for the
same injected quantity. The linear range of operation for our instrument, with the
injection/GC-MS conditions described above was obtained at 75:1 split ratio. In
order to ensure that this range was valid for all the samples, the equipment was
tested everyday using ribitol calibration samples. The calibration curves obtained
are shown in Figure 5.3 along with calibration curves used to identify the linear
range. In order to confirm that characteristic ion peak area can be used instead of

total ion intensity peak area we plotted the ratio of ribitol marker ion (217 m/z)

73



peak area to total intensity peak area over the entire operational range, which is
shown in Table 5.1 and Figure 5.4.
As can be seen from the table and the plot, the ratio does decrease from 0.17 to
0.12 over the entire concentration range spanning three orders of magnitude.
Since in metabolic profiling we rarely expect a single metabolite to have a
concentration variation up to three orders of magnitude, the error caused by this
deviation would be very small.
In order to confirm this, in plant samples total ion intensity as well as marker ion
intensity peak areas were calculated for non-coeluting compounds and their
normalized profile was compared. (the normalization procedure is discussed in
later part of this report). Figure 5.5 shows this comparison of normalized total
intensity peak area and marker ion peak area for two metabolites succinate and
glycine. As can be seen from the figure both the total ion current and the marker
ions give almost the same profile and hence marker ion can be used for
quantification.
The advantages of using marker ion intensity for quantification are as follows:

* it allows quantification of co-eluting metabolites,

* it allows quantification with better signal to noise ratio
Typically the noise observed in GC-MS is due to constant leaks into the mass

spectrometer which mostly remain constant throughout the sample run for a
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Ribitol Peak Area Ratio
Microgm | Injection 1 Injection 2 | Average

100 0.122 0.124 0.123
80 0.125 0.120 0.122
50 0.131 0.131 0.131
20 0.141 0.146 0.144
10 0.148 0.150 0.149

5 0.155 0.154 0.155

1 0.169 0.164 0.166
0.5 0.163 0.163 0.163
0.1 0.170 0.172 0.171
0.05 0.172 0.172
average --—->  (0.150

Table 5.1: Ratio of ribitol marker ion intensity peak area to total intensity peak area, for

different ribitol quantities.
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Figure 5.5 Comparison of normalized profile for TIC and marker ion (specific m/z) for
glycine and succinate.

given GC-MS system. Hence the noise recorded is typically higher for certain
m/z values which correspond to the ions generated by these impurities. So the
noise does contribute to total ion current peak area reducing the signal to noise
ratio. However, by choosing a marker ion whose m/z value has lower noise
levels, the metabolite can be quantified without the effect of the constant noise
factors. This can be seen more clearly from Figure 5.6. As we can see from figure
5.6(a), using the total ion intensity chromatogram only two metabolites can be
quantified with sufficient signal to noise ratio in the chromatogram between 31
to 32.5 min retention time. Even though the chromatogram does indicate the
presence of more compounds, the peaks are very small and have irregular peak
areas, so they cannot be quantified. However the 3-Dimension intensity map of
the same region Figure 5.6(b), shows that the noise intensity is high only for
certain m/z values. As shown in Figure 5.6(c) by choosing different marker ions

which do not have high noise levels, not only the presence of co-elution of two
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peaks (TIC peak having retention time 31.17 min) be detected but also other
peaks present at retention time 31.50, 31.63, 31.68, 31.98 and 32.28 can be detected
which were part of the noise before. Due to these advantages associated with
using marker ions, they were used for quantification of all the metabolites
detected.

Since 10% of the CO:used was labeled, there was a possibility of redistribution of
isotopomers of an ion as the labeled CO: is fixed in the plant. In order to avoid
errors arising out of labeling effects, instead of a specific m/z, a range of m/z
which included all possible isotopomers of the marker ions was used when
possible. For e.g. in order to quantify the peak area of a Glutamate marker ion
having 246 m/z, a range of 246-249 m/z was used for quantification. Whenever
the metabolite concentrations were low, and the marker ion represented <5% of
the total intensity, more than one marker ions of the same metabolite was used
for quantification so as to obtain stronger signal and better separation from
neighboring peaks.

5.3 Data normalization and filtering;:

The objective of the experiment is to identify the effect of elevated CO: in A.
thaliana growth atmosphere. The methodology being used at the experiment
design level is of having a control system which undergoes the same conditions

as the perturbed system, except for a certain period of time in its growth
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(depending on what time point the plant sample represents) for which it
experienced the presence of elevated CO: in its atmosphere. However in real
environment, it is difficult to control all the parameters which could affect the
final measurement of the metabolite concentration. One of the aims of the
normalization and filtering process is to remove or minimize the biases created
by experimental, instrumental deviations or error, allowing us to obtain
conclusions independent of these errors.
The other aim of the normalization and filtering process specific to the metabolic
profiling process is to scale the data in such a way so as to allow:
(a) better visualization or comparison between experiments / metabolite
profiles
(b) use of multivariate statistics for data analysis, ensuring that a particular
metabolite/ group of metabolites create a bias in the analysis.
This is particularly important in metabolic profiling, because the variation in
concentration of different metabolites in plant samples can be up to three orders
of magnitude. Due to these differences in some of the analysis, variations in high
concentration metabolites may get additional weightage, which may not be
desirable. Thus scaling the data to one level allows us to have almost equal

weightage to variation in each metabolite concentration.
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In order to achieve these aims, there were six stages of data filtering and

normalization, starting from the raw peak area obtained from quantification:

1.

2.

Normalization using internal standard — gives relative peak areas,
Filtering specific metabolic profiles containing gross errors,

Filtering injections with gross errors — injection outlier analysis,

Filtering plant samples which show abnormal metabolism — biological
outlier analysis,

Normalizing average relative peak area of each time point w. r. t. time
zero average relative peak area for that time point — gives normalized
peak area and,

Logarithm w. r. t. base 2 of ratio of normalized peak area of perturbed

system at time t over control system at the same time point.

The identification and quantification strategy discussed in the previous sections

gives a vector containing two hundred peak areas of marker ions from each

injection. Since the control set contained 19 plant samples and each sample was

injected three times, a 57200 matrix containing peak areas of marker ions

(having values ranging from ~1,000 to ~1,000,000) is obtained. Similarly from the

perturbed system, which had 20 plant samples, a 60*200 matrix is obtained. This

is the starting raw data used for normalization process which is described below.
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5.3.1 Normalization w. r. t. Internal Standard:

Internal standard is a compound of known concentration added externally to the
sample in order to facilitate quantification of peak in GC-MS analysis. As
discussed in Chapter 3 of this report, internal standard has been used regularly:
in many GC-MS analysis applications in general and metabolic profiling in
particular. In this normalization, we divide each metabolite marker ion peak area
w. 1. t. the ribitol marker ion peak area in the same injection. As discussed in
detail in earlier chapter, this process allows removal of variations generated due
to errors in methanol extraction procedure, drying and GC-MS instrumental
variations. In absence of these variations, the ribitol peak area would have been
constant for all plant samples, for all injections. But as can be seen from Figure
5.7 (a) and (b), there is variation in ribitol marker ion peak area between
injections and between different plant samples, representing presence of the
errors discussed. The average standard deviation between the injections is 3%,
with minimum deviation being 1% and maximum deviation being 9%. Since in
most cases, all the three injections of the same plant samples were run

simultaneously, using the same derivatized plant sample, this deviation
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represents the deviation caused by various errors related to sample injection or
variation in the split ratio of the GC-MS. The total variation between the ribitol
marker ion peak area is due to variations caused in methanol extraction, drying,
derivatization, injection errors and instrumental variation. The standard
deviation in ribitol caused by all these factors (measured as standard deviation of
ribitol peak area for all injections) is 35%. Thus, in absence of normalization,
using internal standard could have resulted in a deviation of about 35%, which
would have been unaccounted for, consequently creating a bias in the analysis.

The average ribitol marker ion peak area for all injections is ~750,000, hence on
normalizing the raw peak area matrix w. r. t. ribitol area, relative peak area
matrix of the same size was obtained, in which the relative peak area values

varied from ~5 to ~0.001.

5.3.2 Filtering specific metabolic profiles:

The metabolic profiles which could contain gross errors or those which could
create error in our analysis were identified and removed from further analysis at
this stage of data normalization. In order to identify metabolites having gross
error, a matrix indicating overall consistency of the metabolic profile was
produced, which is given in Appendix IV. The metabolites to be removed were

selected based on following criterion:



1. From the total presence score of the metabolite in the matrix, metabolites
which were present in less than 89% time points (i.e. absent in more than
two time points out of total 18 time points) were removed from the
analysis.

2. Using the total standard deviation of the metabolite in the matrix,
metabolites which showed very large total standard deviation were also
removed. These metabolites typically had very low relative area which
was the cause of the problem.

3. For metabolites which exhibit dual derivatization forms, profile of one of
the derivatization form was removed. For e.g. fructose is present in two
derivatization form: fructose methoxime-1 5 TMS or fructose methoxime-
2, 5 TMS. These are two derivatization forms which are different in
positions of the methoxime group that was generated during
derivatization from the same fructose compound. Even though these dual
derivatization forms have been reported by other researchers in their
library, there is no reference of how they are used in the data analysis.
Since each derivatized molecule represents one non-derivatized molecule,
the peak areas of the two derivatization forms should be added up in the
order to obtain the total metabolic profile. However due to co-elution of

metabolites it is not always possible to add the total peak areas. Also it is
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observed from derivatization chemistry that the ratio in which these are
distributed should remain constant. This is also seen from comparing their
final normalized profiles, shown in Figure 5.8. Since these metabolites
give the same biological information for our analysis, one of the peaks of
the two derivatization form was removed.

Similarly some of the amino acids also show two derivatization states, for
example glycine N, O TMS and glycine N,N,O TMS. The second form
contains an additional TMS group in the amine group, i.e. both the H
atoms of -NH: group are replaced by TMS group. This additional
derivatization was detected only in some of the plant samples, and
typically also showed other problems like high injection standard
deviation (present only in some of the time points), low percentage
presence, and high min/max ratio. This indicated that the second
derivatization form did not truly represent the original metabolite present
in the plant sample. Since enough information was not available to add to
the peak areas of the two derivatization forms, they were removed from
turther analysis.

Some of the peaks showed a very high deviation between the minimum

and maximum recorded concentration (ratio ~1000) in the control system.
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Figure 5.8 Normalized profiles for multiple derivatization forms of sugars and sugar
derivatives.

These peaks were mostly unknown peaks. Since we did not expect the
metabolism to change so much in absence of perturbation, the profile of
these peaks was removed from further analysis.

6. Sucrose peak was removed as sucrose was present in the plant growth
media, and since the plants couldn’t be completely washed to remove
sucrose on the plant surface, it was difficult to differentiate between
sucrose produced in the plant and sucrose impurity due to media so the

same was removed.
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Based on this criteria around 50 metabolite profiles were removed (shown in

Appendix V) from analysis, and the relative data matrix was reduced to

57*150 for control and 60* 150 for Perturbed system.
5.3.3 Injection Outlier Analysis:
The aim of injection outlier analysis is to detect those injections which contain
gross errors due to abnormal instrumental variations. In order to detect these
errors, the Multi Experiment Viewer (MeV, Version 2.1) of TIGR TM-4 package
[Saeed et. al., 2003] was used. Specifically the Hierarchical clustering Algorithm
(HCL) was used with Euclidean distances. The CY 3 intensity column of the
standard TAV file was replaced by raw peak area of ribitol marker ion for that
injection, and CY 5 intensity column was replaced by peak area of marker ion of
an individual metabolite. The gene label column contents were replaced by
metabolite names. This was done so that the CY5 over CY3 ratio represents the
relative area of the metabolite. 57 TAV files, each representing an individual
injection, were prepared for the control system and 60 TAV files were prepared
for the perturbed system. The injections were now clustered and the clustering
pattern obtained for control and perturbed system is shown in Figure 5.9. From
the clustering pattern of the control injections we can see that in most cases,
injections of the same plant samples cluster together, or cluster along with its

biological replicate which were harvested at the same time. Only injections
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19B_01, 1G_02 and 08G_01 cluster separately. Looking closely we can see that
even though in the clustering pattern 08G_01 seems to be clustering separately, it
is only one level away in the pattern from the cluster containing two other
injections. Hence 19B_01 and 1G_02 injections were identified as those having
some problems and were considered outliers and removed from further analysis.
Using similar analysis in the perturbed system injections 9D_02, 4D_01, 2D_01
and 1D_01 were identified as outliers and removed from further analysis.

After removing the injection outliers, the relative areas for three injections for a
plant sample (two in case of plant samples in which outlier injection was
removed) were averaged, giving average relative area for each metabolite of the
plant sample. This generated a 19*150 matrix for the control system and 20*150
matrix for perturbed system.

5.3.4 Biological Outlier Analysis:

The above analysis indicates that the three injections of the same plant sample
cluster together under ideal conditions, since they represent the metabolite
concentration for the same derivatized plant sample. Similarly, we would expect
that the plants belonging to two flasks which were harvested at the same time
point, should have almost the same metabolite concentration since they represent
the same metabolic state of the plant. So, under perfect experimental conditions,

the biological duplicates (representing flasks removed at the same time point)
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Figure 5.9 Injection hierarchical clustering— (A) control samples before outlier removal (B)
control sample after outlier removal (C) Perturbed samples before outlier removal (D)

Perturbed samples after outlier removal
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should cluster together in HCL analysis of the averaged relative area for the
plant sample. This was partially evident from the injection clustering analysis
where the injections of the biological duplicates clustered close to each other.

Based on this hypothesis we conducted biological outlier analysis. 19 and 20
TAV files were prepared for 19 and 20 plant samples in the control and
perturbed system respectively using averaged relative areas. To prepare the TAV
tiles, the CY3 column was replaced with a value 1 in all the files and CY 5 was
replaced with the average relative area of the metabolite. The clustering pattern
obtained from hierarchical clustering analysis is shown in Figure 5.10 We can see
that even though the biological duplicates cluster together or very close for most
time points, in some cases like plant samples 1, 2 in control and 15, 16 in
perturbed cluster far away from each other. These are possible indications of the
presence of an outlier, however since only two biological duplicates were
available it was not possible to determine which of the two samples is an outlier.
We did have more than two plant samples in case of time zero however the three
bioduplicates at time zero in control cluster together (17-19) and in perturbed 18-
20 cluster immediately with a cluster containing 17, the fourth bioduplicate.
Hence none of the biological outliers were removed in the current analysis.
However if three flasks were harvested at each time point, it may have been

possible to remove the biological outlier which may cause bias in the analysis.
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Figure 5.10 Biological Outlier Analysis (A) Control Samples (B) Perturbed Samples.

At the end of this analysis, the relative areas of a metabolite representing a time

point (present in all the plant samples), were averaged, creating 9*150 matrix

containing average relative areas of each metabolite at the time point.
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To estimate the usefulness of the outlier removal process and the variability in
measurements (due to experimental conditions), a summary of the injection, bio
diversity and total standard deviation at each time point in control and
perturbed system was prepared after outlier removal (given in Table 5.2).The
average injection, biological and total standard deviation for each individual
metabolite is given in Appendix VI. The standard deviation analysis indicates
that the injection standard deviation for the current method is ~ 10% —smaller as
compared to standard deviation between plant samples representing biological
states — which is ~ 30%. Thus indicating biological variation is larger than
instrumental variation in metabolic profiling technique used.

5.3.5 Normalization w. r. t Time Zero:

The aim of the current data analysis is to compare the metabolic profile of each
metabolite in the control and the perturbed system to understand the effect of the
elevated CO2 on the plant metabolism. The other aim of the analysis is to
compare the variations in different metabolites within the system. In the current
experiments, the plants of the perturbed and the control system were grown
under identical conditions for the first 12 days.

Before connecting the system to the manifold, three plants in the control system
and four plants in the perturbed system were harvested at time zero on the

thirteenth day. Since these plants were grown for the first 12 days under same
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Avg. Deviation at time pt
Plants Time | Injection | Biological | Total

Control 17-19 - 6% 27% 26%
Control 15-16 23.0 7% 39% 34%
Control 13 12.0 5% | * *

Control 11-12 6.0 9% 36% 32%
Control 9-10 3.0 7% 33% 29%
Control 7-8 2.0 13% 51% 47%
Control 5-6 1.5 6% 23% 21%
Control 3-4 1.0 9% 29% 28%
Control 1-2 0.5 8% 38% 33%
Control | Average 8% 34% 31%
Perturbed | 17-20 - 5% 28% 27%
Perturbed | 15-16 23.0 8% 35% 31%
Perturbed | 13-14 12.0 8% 15% 17%
Perturbed | 11-12 6.0 19% 35% 39%
Perturbed | 9-10 3.0 4% 30% 25%
Perturbed | 7-8 2.0 8% 39% 32%
Perturbed | 5-6 1.5 10% 26% 27%
Perturbed | 3-4 1.0 8% 20% 19%
Perturbed | 1-2 0.5 5% 24% 22%
Perturbed | Average 8% 28% 27%
Average 8% 31% 29%

* only one sample was available for this time point

Table 5.2 Standard Deviation Analysis

conditions, under ideal conditions, these plants represent the same metabolic
state — which is the metabolic state of the plant grown as per the protocol
described earlier in this report for 12 days. However since the control and
perturbed experiment was performed on different days, due to various factors
related to plant growth environment which were not controlled or couldn’t be

controlled, the plants show variation in the metabolic state in the control and the
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perturbed system at time zero. Since we want to compare the effect of elevated
CO2 during the thirteenth day, in order to remove the effect of variation in the
tirst 12 days, the average relative peak area for each metabolite at each time point
is divided by the average relative peak area of the metabolite at time zero of the
same set. In the current analysis this ratio is called normalized peak area for the
metabolite. By carrying out this normalization, the starting point of each
metabolic profile becomes 1, which is a common reference point for comparison
as shown in Figure 5.11. Also normalization w.r.t. time zero scales the data from
~0.001 - ~5 (in case of relative peak area) to ~0.1 — ~10, as in the short term
response, for most metabolites the concentration variation is not more/less than
10 times the initial concentration. Thus scaling all the profiles to the same order
of magnitude, allows better comparison between different metabolic profiles and
also removes any bias for changes in high concentration metabolites during the
statistical analysis. The normalization generates two 9*150 matrix having data of
the order of 0.1 to 10.

5.3.6 Ratio Perturbed over control:

After normalizing the data w.r.t. time zero, we obtain normalized metabolic
profile for the control and the perturbed system. In order to facilitate comparison
between the perturbed and the control system, instead of comparing variations

in two different profiles, they can be combined into a single profile representing
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Figure5.11: Normalization w.r.t. time zero.

the differential response of the control and perturbed system. This can be done
by taking the ratio of normalized perturbed area to normalized control area, at
the same time point. As seen from Figure 5.12, the ratio allows us to see the effect
of elevated CO2 by directly looking at one graph (or data point) instead of two.
This also allows us to obtain those metabolites which show a similarity in their
response to elevated CO2. Thus by taking the ratio, we combine the two 9*150

matrix into a single 9150 matrix containing the ratio.
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Figure5.12 Ratio of Normalized Area

5.4 Data analysis using multivariate techniques:

As shown in Figure 5.13, as the result of the data normalization process
described above, 150 metabolic profiles are obtained and the aim is to identify
those metabolites which show differential expression in the perturbed system.
This can facilitate understanding the effect of elevated CO: on plant physiology.
The other aim of the data analysis is to identify co-relation in different metabolic
response to the perturbed system.

To achieve goals of the data analysis in a non-biased, high throughput way,
multivariate statistical techniques can be used. Since these techniques have been
extensively used in high throughput gene expression analysis, software tools
developed for gene-expression analysis were used for the current analysis. This

also created a common methodology for the analysis of gene expression and
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Figure5.13 Graph of log-ratio vs. timefor 150 metabolites obtained after nor malization.

metabolic expression analysis which will be important for achieving the larger
goal of integrated data analysis of the experiment. Hence Multi Experiment
Viewer (MeV) of TIGR — TM4 software was used for the current analysis as it
allows visualization and analysis of the data using different multivariate
statistics algorithm.

In order to use the MeV software, data files in the TAV format are needed. Two
sets of TAV files were generated for the current analysis. For analysis requiring

separate metabolic profiles of control and perturbed system, TAV files were
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generated by replacing the CY3 column values with relative area of the
metabolite at time zero, and CY5 column values with relative area of the
metabolite at time ‘t": so that the ratio of CY5/CY3 represents the normalized area
of the metabolite at time t. To carry out data analysis using ratio of normalized
peak area, TAV file for a particular time t was generated by replacing the CY3
intensity column with control Normalized peak area and Cy5 intensity column
with perturbed normalized peak area, so that the ratio CY5/CY3 would indicate
the ratio of the metabolites.

5.4.1 Experiment Clustering with Principal Component Analysis:

In order to understand the effect of elevated CO: on the overall metabolic state,
principal component analysis and HCL algorithm was used. Using the TAV files
for normalized peak area for control and perturbed, Principal Component
Analysis was carried out using Pearson Co-relation distance. The projection of
experiments using Pearson co-relation distance, the first three principal
components accounted for around 65% of the data and separated the perturbed
plant samples from the control as shown in Figure 5.14 (A). Also the plant
samples representing the initial response of plants in 0.5-2hrs were separated
from the samples representing longer response of plant (3-23 hr) in both the
control and the perturbed system. The point representing time zero of the

perturbed and the control system are located at the center of the plot.
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Hierarchical clustering using Pearson co-relation distance gave a similar result as
Principal component analysis which is shown in figure 5.14(B). In both the
clustering patterns the control experiments formed a separate cluster from the
control system. Also within the control and perturbed normalized area, the initial
time points 0.5-2 hr formed a separate cluster as compared to the longer
response.

Hence from both the perturbed and the control systems we could see that the
plants had a different initial metabolic state as compared to the longer response.
Since this differential response was observed in the initial time points for both
the controlled and the perturbed system, we decided to analyze the longer time
points separately (from the samples representing the shorter time points) for
further analysis.

5.4.2 Identifying Significant Metabolites:

For identifying metabolites that show differential expression in response to
elevated CO: in a non-biased, reproducible, high throughput manner,
multivariate statistical techniques were used. At present, no known example of
identifying metabolites, which show a differential response to environmental
perturbation using time series metabolic data, is available in the literature. Since
one of the aim of the current research is to carry out an integrated genomic and

metabolomic analysis of the system, the established methods and tools of gene
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Figure 5.14 Clustering of experiments using using pearson Co-relation using (A) Principal
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101



expression analysis for identifying differentially expressed metabolites were
used for the metabolic expression analysis.

Significant Analysis of Microarray (SAM), allows identification of genes which
show differential expression; the same was used to identify differentially
expressed metabolite. In order to identify metabolites which show significant
differential expression when comparing normalized metabolite of each time
point of the perturbed set to the same time point in the control set, Two Class -
paired SAM option was used. TAV files of the perturbed and control
representing the same time point were paired with each other. The standard
default for number of permutations and SO percentile (100 and 5% respectively)
were used. The imputed matrix was calculated using the default 10 nearest
neighbors of K — nearest neighbor imputers. A delta value of 0.91 with Median
number of false significant genes 0.657 (the smallest number above zero false
significant gene) was used. The SAM graph obtained from this analysis is shown
in Figure 5.15(A). The SAM analysis identified 37 negative significant
metabolites, i.e. metabolites which show reduction in the perturbed system as
compared to control system (enclosed by green ellipse). Figure 5.15(B) indicates a
typical SAM graph from gene expression analysis. Comparing these two graphs
we can see that, the SAM curve for metabolic expression does not pass through

the origin and shows a negative intercept as compared to SAM curve for gene fr
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Figure5.15 Two classpaired SAM Analysis (A) metabolic profile (B) Gene expression

expression. Due to this effect no positively significant metabolites were identified
from the SAM analysis. However the curve shows a marked change in the slope

for the last nine metabolites in the first quadrant indicating positive differential
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expression of the metabolites. Hence these metabolites were marked as
differential expressed (indicated by the red ellipse).
In order to ascertain these results, K-Means Clustering (with Euclidean distance)
of the ratio of normalized area of the metabolites was used. In order to identify
the number of clusters that should be used for the K-Means analysis FOM
analysis was used and the graph obtained from the same is shown in Figure 5.16
(A). Based on the FOM analysis, K-Means analysis was performed for 9 clusters.
The K-Means Clustering obtained using this analysis is shown in Figure 5.16(B). The
comparison between SAM and K-Means clustering indicated that the nine positively
significant metabolites found from SAM, form a separate cluster (cluster with
profiles shown in red color) using K-Means Clustering. The same nine metabolites
also form a separate cluster in PCA of the metabolites using Euclidean distance as
shown in Figure 5.17. Thus combining all the three analysis we can conclude that
these nine metabolites show differential expression, and the list of these metabolites
is available in Table 5.3. In case of 37 negatively significant metabolites found from
SAM analysis, these metabolites are distributed in three K-Means Cluster 1,3 and 8.
However the K-Means clusters also include certain other metabolites showing
reduction in their normalized area, but these are not part of the 37 negatively
significant metabolites found from SAM analysis. The comparison of the metabolites

can be seen from Table 5.3.
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significant

Figure5.17 Principal Component Analysisfor metaboliteswith

SAM K - Means Clusters
-ve Significant | +ve CL-1 CL-3 CL-8 CL-5
Asparagine Glycerol [ Fructose- 6-P | Asparagine Citrate Glycerol
Glutamate Arabinose | Glucose - 6 - P | Glutamate iso-Citrate Arabinose
Ornithine Xylitol Serine Ornithine Glycerate Xylitol

6 6

Citrate unknowns | 9 Unknowns | Ethanolamine | Inositol — P unknowns
iso-Citrate 4 Unknowns | Phenylaline
Lactate Glycine N, O Glucarate
Fructose - 6 - P Lactate
Glucose-6-P 10 unknowns
Inositol - P
Glycerate 4-Aminobutyrate
Phenylaline Asparatate
Serine B - Alanine
Glucarate Succinate

Ethanol Amine

8 Unknowns

23 Unknowns

Table 5.3 Comparison of +ve and -ve significant metabolites from SAM with K-Means

Clusters
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5.4.3 Identifying co-relation between Metabolites:

In order to identify metabolites showing similar response to elevated CO2 in the
atmosphere, K-Means clustering with Pearson Co-relation distance was used.
The Clustering Pattern obtained using 9 clusters is shown in Figure 5.18. The
color used for a particular metabolite is the same as the one used in Euclidean
clustering. We can see that using Pearson correlation we now have a different
clustering pattern due to regrouping of the metabolites, such that most of the
metabolites showing similar profile, cluster together. The list of metabolites
found in each cluster is given in Table 5.4

5.4.4 Labeling analysis:

In control and the perturbed systems, as discussed in section 5.1, 10% of the CO:
used was C® labeled. The purpose of using the labeled CO: was to measure the
difference in rates at which the labeling in the control and perturbed system
would change for different metabolites, with time. In order to understand effect
of the change in labeling, the redistribution of the isotopomers was studied for
each individual isotopomers, using the change in the peak area. For e.g. Figure
5.19(a) represents the Glutamate peak in the chromatograph and its typical mass

spectrum is shown in Figure 5.19(b).
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Figure 5.18 K-Means Clustering — Pearson co-relation distance to identify metabolites
having similar responseto elevated CO2 perturbation.

Cluster 1 Cluster 2 Cluster 5 Cluster 9
3-phosphoglycerate | 3-hydroxyglutarate | arabinose 2-methylmalate
Aconitate Glycine glycerol 4-aminobutyrate
Fructose Lactate xylitol Aconitate
Galactose Oxalate 6 unknowns Aspartate
Gluconate Threonate Cluster 6 citrate
Glucose 6 unknowns 10 unknowns Cytosine
Inositol Cluster 3 Cluster 7 Fumarate
proline beta-alanine sorbitol Glutamine
Mannose Ethanolamine tyrosine Glycerate
Shikimate 10 unknowns 10 unknowns Homocystine
Sorbitol-6-P Cluster 4 Cluster 8 inositol-6-P
11 unknowns Asparagine ascorbate iso-citrate
glucose-6-P fructose-6-P malate
ornithine glutamate Phenylaline
Serine succinate phosphoric acid
15 unknowns 10 unknowns Glucarate
Threonine

21 unknowns

Table 5.4 Clusters of metabolites obtained using K-M eans Clustering
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Figure 5.19 (A) Glutamate TIC Peak (B) Mass Spectrum (C) Glutamate marker ion
individual peak area (D) | sotopomer s of the marker ion

We can also quantify the relative abundance of each isotopomer using its peak
area as shown in Figure 5.19(c). The ratio of peak area that sentence fragment
represents the relative abundance of the isotopomers in the plant sample. Since
the time zero plants were harvested before connecting the plants to cylinder
containing labeled CO., the distribution of isotopomers in these plant samples
indicates natural abundance of the isotopomers in plants. Any deviation from
this distribution in other plant samples would be the result of labeled CO: used
in the experiment. In order to identify this deviation, we calculated the fraction

of a particular isotopomer peak area over total area of all the isotopomers

combined, which is shown in Figure 5.20(a). In order to better compare the
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profiles the fraction at each time point was divided by the fraction measured at
time zero which represents the natural abundance. This normalized mass
fractions are shown in Figure 5.20(b). The ratio of the normalized fraction at each
time point in perturbed system, to the normalized fraction at the same time point
in the control system, was taken as shown in Figure 5.20(b). By viewing the ratio,
one can compare the rate at which the metabolite in plant gets labeled. If the
fixation of labeled CO: was faster in the perturbed system as compared to
control, that would increase the Ratio normalized fraction [M+1] and decrease
the ratio of normalized fraction for [M+0] isotopomer. However since in the
current experiment, only 10% of the CO:2 used was labeled, we do not expect an
increase of more than 10% in the isotopomer area fraction. However we can see
from Figure 5.19 that the instrument variability itself is of the order of 10% and
hence it would be difficult to separate the variation in the measured isotopomer
fraction, due to use of labeled CO: from that of variation due to instrumental
variation confusing sentence. Only [M+3] isotopomer of glutamate shows some
deviation in normalized ratio, however this is more likely to be the result of noise
and other instrumental variation which significantly affects [M+3] peak area as it
is the smallest peak with lowest signal to noise ratio, as can be seen from Figure
5.20(c). Similar such comparison of isotopomers for more metabolites is given in

Appendix VII of the report.
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Chapter 6. Discussion of Results

6.1 Metabolic profiling Protocol:

The experimental protocol used in the described analysis allowed for the
identification and quantification of ~212 polar metabolites in the plant samples.
This number is comparable to the 214 polar metabolites that were detected in A.
thaliana leaves using similar protocol [Fiehn et. al., 2000a]. The current analysis
was performed at a split ratio of 75:1, i.e. only 1/75 of the 1 ul sample injected
was actually used for analysis as compared to split ratio of 25:1 in previous
studies [Roessner et. al., 2000, Fiehn et. al., 2000] which used quadrupole mass
spectrometer. This is an indication that the ion trap mass spectrometer provides
a more sensitive analysis platform for metabolic profiling. However the ion-trap
MS has the disadvantages of low reproducibility at high metabolite
concentration due to the saturation and space-charge effects [Kitson et. al., 1996].
These effects were not anticipated in the used ion-trap MS (Thermo Finnigan,
Inc), because it has been designed in such a way that the ionization source is
separated from the ion-trap. In any case, the split ratio was chosen in such a way
that the calibration curves of ribitol (Figure 5.3) were linear over a wide range of
concentrations, thereby ensuring that the equipment was functioning at the
linear detection range for the measured metabolites. The use of marker ions for

the metabolite quantification, allows for co-eluting metabolites to be quantified;
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this would not have been possible using TIC peaks. It also enables the
quantification of metabolites in very low concentration in the plant sample, by
allowing better signal to noise ratio. From current analysis, a library of
metabolites along with their retention times and marker ions has been
developed. Since previous libraries do not contain the marker ion for each
metabolite that gives the best separation of co-eluting metabolites, such a library
will allow for faster analysis of future metabolic profiles that are obtained from
the metabolic profiling protocol established in the context of the presented work.
Data Filtering and Normalization:

For the comparison between metabolic profiling data of a control and a
perturbed set of samples to provide any meaningful results, the variation
between the samples because of the applied perturbation should be higher than
the variation due to biases in the experimental setup and protocol and
biodiversity. As it has been shown in Chapter 5 the variability due to the
experimental setup and protocol is estimated from the variation between the
various (3) injections of each samples, while the variability due to biodiversity is
estimated from the variation between the duplicate samples at each time point.
In previous metabolic profiling study the average instrumental and biological
variabilities were estimated ~8% and ~35% ,respectively [Fiehn et. al., 2000a].

Similar values were obtained in the current analysis (see Table 5.1).
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6.2 Discussion of the metabolic profiling data in the context of A. thaliana
physiology:

As discussed in Chapter 4, The typical experiment design in most of the
previously reported plant metabolomics studies was involved the growth of two
sets of plant samples - having either different genetic backgrounds [Roessner et.
al., 2001a, Roessner et. al., 2001b, Fiehn et. al., 2000a ] or being subject to different
environmental conditions [Roessner et. al., 2001a] - for a specific period of time.
PCA and HCL was then subsequently used to show the difference in the
metabolic profiles of the two plant sets. In the current analysis, for the first time
time-series data over the growth of two plant sets in different environmental
conditions were obtained and their metabolic profile was measured. PCA & HCL
analysis of the two sets of data (control and perturbed) shown in Figure 5.14
clearly indicates that the presence of elevated CO: (even for a very short
exposure) alters plant metabolism significantly, as plants grown under elevated
CO: condition form a separate cluster from the control system. This indicates that
even if plants are not grown for their entire growth cycle under different
conditions, they exhibit a differential metabolic response, which can be measured
by metabolic profiling technique. The clear separation of the plant samples in the
perturbed and control system, from the beginning, also indicates that the change

in the metabolic state of the plant, in response to the perturbation, is bigger as
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compared to the changes within a system, of the normal growth cycle of the
plant.

6.2.1 Identification of Differentially expressed Metabolites:

The metabolic analysis techniques, used in previous long term metabolic studies,
of elevated CO2, were designed to measure for the change in the concentration of
specific metabolites because of the applied treatment. The high throughput
nature of metabolic profiling allows for the simultaneous measurement of many
metabolites in different functional groups. Previous studies using metabolic
profiles of plants, used classical t-test to identify metabolites; this showed a
differentiated expression between two sets of plants. This analysis is akin to
comparing two “averaged metabolic snapshots” of plants and identifying
differentiated metabolites. In the current analysis, however, the aim is to
compare multiple metabolic states, represented by plants harvested at different
time points of a control system, with those of a perturbed system, at the same
time points. The t-test approach cannot be used for such a problem. Instead, two
class paired Significant Analysis of Microarray (SAM) was used. Using this
analysis, negatively and positively differentiated metabolites can be identified.
However, comparison of the SAM graph obtained from metabolic profiling
results, to that of gene expression analysis, as can be seen from Figure 5.15,

indicates that the metabolic profiling analysis shows a negative intercept on the
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Y axis (representing Observed variation), which is not shown by the gene
expression data. Since the SAM analysis is designed for microarray gene
expression analysis, in which all the samples are adjusted to have the same total
mRNA concentration, the increase in gene expression of certain genes has to be
compensated by an almost equivalent decrease in the expression of other genes.
The negative intercept in the metabolic analysis can possibly be explained as
follows:

1. In the current study, only the concentration of the polar metabolites was
measured. An increase in the polar to non-polar metabolite ratio in the
plant biomass due to the applied perturbation means that the total polar
metabolite concentration per gram of plant is decreased. Measuring only
the polar metabolites, it is expected that most of them are under produced
in the perturbed compared to the control system. Since no non-polar
metabolites were measured such decrease is not “compensated” in some
by the equivalent increase in the non-polar metabolite concentration and
therefore the Y-intercept is negative.

2. After performing normalization of data w. r. t. time zero, the data for all
the metabolites gets scaled around 1 and the information about the
relative concentration of the metabolite is lost. Due to this, a 10 % change

in a fructose concentration receives the same weightage in the analysis as
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50% change in xylitol even though xylitol has relative area almost 100
times less as compared to fructose. Now consider a scenario in which a
small increase (for e.g. about 10%) in the metabolite with high relative
concentration (e.g. fructose, glucose or sucrose) is achieved through large
reductions (for e.g. about 75%) in many metabolites with smaller
concentration, the total normalized area of the large molecules being
produced increases only by 10% but the normalized area of the smaller
concentration metabolite would change by 75%. Under such a condition,
the total normalized area would indicate a decrease, though in absolute
terms there is no real decrease of mass in such an analysis.
Using the SAM analysis, 37 negatively significant and 9 positively significant
metabolites were identified. In order to confirm this result, we also performed a
K-Means analysis, and Principal component analysis for the metabolites. The 9
positively significant metabolites, clustered together in K-Means analysis
(Cluster 5, with red colored profiles in Figure 5.16), and also formed a separate
cluster in principal component analysis, as seen from Figure 5.17. From the 9
positively significant metabolites obtained using all the three analysis, (from
Table 5.3) only three of them have known structures. The three metabolites are
Xylitol, Arabinose and Glycerol, and their profile is shown in Figure 6. 1. As can

be seen from Figure 6.1, all the three metabolites are used in production of
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Figure 6.1: Positive Significant Metabolites: Constituents of primary cell wall

primary cell wall. Xylitol and arabinose are used for the production of
xyloglucan and glucuroarabinoxylans, which are structural carbohydrates used

for cross linking in the primary cell wall. Specifically, the xyloglucan is known to
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increase during cell wall expansion, facilitating the loosening of the primary cell
wall [Dey et. al,, 1997]. Apart from structural carbohydrates, the plant cell wall
also contains glycerolipids in the cell membrane. Since the current metabolic
analysis was performed only for polar metabolites, and not for non-polar
metabolites, the increase in the lipid could not be measured; however glycerol
(which is the polar part of the glycerolipids used in the cell membrane), showed
an increase in the perturbed system, with the same order of magnitude as the one
shown by xylitol and arabinose, thus, indirectly indicating an increase in the
plant lipid content, which has not been observed before.

The long term exposure of elevated CO: has shown accumulation of
carbohydrates in plants, as the first major response of plant to elevated CO..
However this increase has been observed in non structural energy storage
carbohydrates like sucrose and starch. Since sucrose was also used in the growth
liquid media, which could have contaminated the plant sample, sucrose was
excluded from the current analysis. Glucose and fructose the other two major
constituents of the hexoses pool and constituents of starch, even though
unidentified as positively significant, did, however, as shown in Figure 6.4.2,
show more increase in the perturbed system after an initial decrease at the end of
23 hours. However comparison of Figure 6.1 and Figure 6.2 indicates a much

more dramatic change in the increase in structural carbohydrates, (which form
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the primary cell wall) as compared to the hexoses pool (non-structural
carbohydrates).

This has not been reported in the literature before, and is similar to the increase
in the Glycerolipids, or the lipid content in the plant. The increase in structural

carbohydrates and glycerol lipids — constituents of the primary cell wall —

log,(Ratio: Normalized Area)
—*- Fructose
2 =
—— Glucose

2 _
©
[}
z 1
§ M
c 17
(@]
Q
g ° 1
£
2 -11
o}
o
X -1
(@]
o

-2 -

-2 T T T T T T T 1

0 3 6 9 12 15 18 21 24
Time (hrs) --->

Figure 6.2 Response of major non-structural carbohydrates

could be the immediate plant response to elevated CO.. This may not be a long
term effect and hence may have been undetected in the previous study. The
other possible explanation can be, that since the previous metabolic analysis
were designed specifically to measure effect of constituents like starch, glucose,

sucrose, etc., changes in metabolites, specific to cell wall, would not have been
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measured or detected. This also indicates one of the advantages of using high
throughput metabolic analysis technique, as compared to focused metabolic
analysis techniques, since the former is comparatively sensitive and can detect
results not directly related to initial hypothesis whereas the latter, usually, only
proves or disproves a hypothesis. The observed increase in the lipid content and
carbohydrates, also supports the possible explanation of the negative intercept in
the SAM graph, as discussed before.

A similar analysis of the 37 negatively significant metabolites, identified from
SAM, shows that these metabolites are distributed in three K-Means cluster as
shown in Figure 6.3. Apart from containing the 37 negatively significant
metabolites, the K-Means cluster also contain 12 more metabolites which show a
decrease in concentration. These metabolites could also be identified from the
SAM analysis by slightly reducing the delta value. Even though the negatively
significant metabolites cannot be separated from the non-significant metabolites
completely, in the PCA clustering of metabolites using Euclidean distance; the
eight most negatively significant metabolites in cluster 8, separate out clearly
from the rest of the metabolites. As can be seen from Figure 6.3, the most
negatively significant metabolites, contain two of the four nitrogen storage and

transport metabolites of the plant.
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Figure 6.3 Comparison of negatively significant metabolites obtained from K-Means
and SAM. (The metabolite names in red indicate metabolites part of KMC analysis
but not found from SAM).

From the other two nitrogen storage metabolites, aspartate (even though not
identified from SAM analysis) clusters along with other negatively significant
metabolites in K-Means clustering. Glutamine also shows a small decrease in
concentration, as shown in Figure 6.4 This decrease, in metabolites, is consistent
with the observation in the long term by other researchers in decrease in organic
nitrogen content (as discussed in Chapter 2). Thus the elevated CO: immediately
down-regulates the nitrogen assimilation, as most of the metabolic stores show a
significant decrease in nitrogen content during the first three hours itself. As

discussed before, in presence of light, the plant uses glutamine as the principal
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Figure 6.4 Response of plant nitrogen stores

nitrogen storage metabolite. Since the plants in the current experiment were
grown under constant light conditions, glutamine may have been the principal
nitrogen store for the plant. Glutamine also had a higher relative concentration as
compared to aspartate and asparagine in the plant samples. Since glutamine does
not show a large decrease in concentration, this supports the explanation for
reduced nitrogen content as a result of transfer of reduction resources to
photosynthesis in response to elevates CO, since the nitrogen is only available
for a short term from the plant nitrogen stores. From the other metabolites
detected, three negative, significant metabolites — glycine, serine and glycerate

— belong to photorespiration pathway shown in Figure 6.5.
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Figure 6.5 All observable metabolites of photorespiration pathway in plants exhibit a
reduced

As discussed in Chapter 2, presence of 1% CO: in the growth environment is
known to reduce the photorespiration pathway because of the competition for
RuBisCo between CO: and Oz. Since the accumulation of glycine and serine have
known to be associated with increased photorespiration, the decrease in all the
three observable metabolites of photorespiration, support the previous studies
that photorespiration is reduced in presence of elevated CO.. The other
metabolites showing a decrease were possibly related metabolically to the
nitrogen storage metabolites discussed above (beta alanine, 4-aminobutyrate and
ornithine). Apart from that, the hexose phosphate pool (Fructose -6- phosphate,
Glucose-6-Phosphate and inositol phosphate), which is the starting point for

production of larger molecular weight carbohydrates, part of the TCA cycle
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metabolites (citrate, iso-citrate and succinate) show a decrease in concentration in
the perturbed system along with lactic acid, phenylalanine, glucaric acid and
glyceric acid. Based on the current information available, the exact reason for
their decrease could not be ascertained.

6.2.2 Identifying correlation of metabolic data:

By performing k-Means clustering, using Pearson correlation distance, we
obtained clusters of metabolites which showed a correlation in their pattern of
response, irrespective of their absolute concentration. As shown in Figure 5.17,
the 9 clusters obtained from the analysis, were different from the 9 clusters
obtained from Euclidean analysis (which clustered metabolites based on their
absolute value of change rather than the pattern of change). The response of
known metabolites belonging to Cluster 9 and Cluster 1 — the two largest
clusters in the analysis — are shown in Figure 6.6 and Figure 6.7. The response of
positively significant metabolites, which still clustered together, has been already
shown in Figure 6.1. All the known metabolites of Cluster 1 belong to TCA cycle
or are closely related to TCA cycle as shown in Figure 6.6. From the 14
observable metabolites related to TCA cycle, when Pearson correlation is used,
nine of the TCA cycle metabolites cluster together, indicating presence of strong
correlation in their metabolic response. The metabolites that did not cluster with

the same group were succinate, glutamate, proline, asparagine and lactate, while,
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some other metabolites not directly related to TCA cycle (like glucaric acid
inositol phosphate, phosphoric acid) clustered along with the TCA cycle
metabolites.

Similarly as shown in Figure 6.7, metabolites belonging to, or related to,
glycolysis pathway, cluster together in Cluster 1. As in previous case, some of the
metabolites belonging to the pathway like glucose-6-phosphate, fructose-6-
phosphate, inositol-6-phosphate, sorbitol, do not cluster in the same group, and
some other metabolites like proline, though not directly related, clusters together
with the metabolites belonging to glycolysis group. As shown in Figure 6.1, in
the cluster containing positively significant metabolites, (from the three known
metabolites, xylitol and arabinose which belong to Pentose phosphate pathway)
show a stronger correlation as compared to glycerol, even though all three of
them are part of the primary cell wall. The current analysis thus indicates, that
clustering techniques using Pearson co-relation is a powerful tool to identify
correlation between metabolic profiles. However, the strong correlation, or
absence of correlation, in metabolic data cannot be directly used to conclude a
positive metabolic relationship between the metabolites. The main problem in
such an analysis is that metabolic profiling technique measures intracellular
metabolite concentration, and not metabolic fluxes. Biochemically related

chemical transformations may be directly related by their metabolic fluxes,
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however the change in flux may or may not create a proportional change in
metabolite concentration, hence the correlation may not be observed in the
concentrations measured - for e.g. glucose can be converted to glucose-6-
phosphate using hexokinase enzyme, and hence glucose and glucose-6-
phosphate are expected to show a correlation in their responses, especially when
the reaction is closer to equilibrium conditions. When the equilibrium condition
is satisfied, concentration of metabolically active glucose and glucose-6-
phosphate are in a constant ratio, and hence should show a high degree of
correlation in their response. However, this is not observed in the current
analysis — which is due to the fact that the variation in concentration of glucose
and glucose-6-phosphate is a net result of changes in metabolic flux of all the
chemical reactions in which they participate. Since these metabolites take part in
multiple reactions — the net change in their concentration is not highly correlated.
On the other hand, metabolites like xylitol, arabinose and glycerol which are all
used in the primary cell wall, would show a proportionate increase in their
response, which represents a similar response in cell wall production. In such
cases, metabolites related by a common function may show a similar response.
The metabolites which are linked both by common functions and through
metabolism (glucose and fructose, xylitol & arabinose) show the strongest co-

relation in their response. Thus the dual role, of some of the metabolites, as a
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structural element as well as a metabolic substrate, needs to be considered while
interpreting correlations in metabolic time profiles (or deviation within different
samples at the same time).

Certain metabolites like fructose-6-phosphate, 3-phosphoglycerate, may not be
part of any macromolecules. For such metabolites, the concentration measured
using metabolic profiling technique, represents the metabolically active
substrate. Also, if the metabolic reactions are at equilibrium condition, the
substrate and product would show a constant ratio (which is the equilibrium
constant for the reaction). Now if we assume a quasi-steady rate for such
metabolites, i.e. if we assume that over a period, the metabolite may change their
concentration but reach equilibrium at a much faster rate, and hence assumed to
be under equilibrium conditions all the time; we would obtain a perfect co-
relation between the response of the two profiles, as their concentration always
are related by the equilibrium constant. In such a case, a correlation value very
close to +1 would be obtained between the two profiles. A small deviation from
this assumption would still, give a correlation coefficient close to +1. Even
though analysis with such assumptions have been used in a bacterial system, in
plants, it is very difficult, experimentally, to create and monitor an experimental
setup which will ensure such a quasi-steady state, especially when using a

destructive measurement technique like metabolic profiling using GC-MS (as
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compared to NMR). Considering this, metabolites which may be closely related,
may not show correlation in their metabolic response if the quasi steady state
condition is not achieved during the experimental conditions. In the current
analysis, most of the TCA cycle metabolites (except succinate), which mostly are
present in metabolically active form, show a strong correlation in their response,
usually, indicating a presence of near quasi steady state condition for the TCA
cycle reactions.

Thus Pearson correlation distances, allow identification of metabolite clusters
which show a similar time response to a perturbation, however, the clustering
pattern cannot always identify metabolites belonging to a pathway. This is due
to limitations of the experimental design and metabolic profiling.

6.3 Significance of Metabolic Profiling for Plant Physiological Studies:

Most of the previous studies concerning the response of the plants to elevated
CO: levels involved the quantification of a small number of metabolites either of
a particular functional group of interest in plant studies or because previous
analyses or information about the metabolic pathway structure had indicated
that these metabolites might show a significant change due to the applied
perturbation. One of the major disadvantages of such a “hypothesis-driven”
approach is that, while the change in a metabolite of interest can be accurately

quantified, the change in other metabolites that might have been simultaneously
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changing is not measured and no conclusions about their correlation can be
derived. In this context, the high-throughput metabolic profiling analysis can
provide the advantages of a “data-driven” approach, which allow for the
simultaneous measurement of the changes in a large number of metabolites in
the plant biomass.

Finally, for the data-driven, systems biology approach in plant research,
metabolic profiling can prove to be a very important high throughput tool for
measuring the metabolic state of the plant. The current analysis of the time-series
metabolic data, using different multivariate statistical techniques (MEV, SAM)
and methods that are developed for gene expression analysis, shows a common
platform can be used to perform data analysis for an integrated study.

Metabolic Profiling analysis provides one extensive cellular fingerprint, which
could be used in conjunction with information from the other cellular levels in
the context of systems biology research. However, while comparing the genomic
or proteomic data, with metabolic profiling data, one needs to consider that
changes in metabolite concentration do not directly translate in changes in
metabolic fluxes, the latter being directly comparable to gene and protein
expression. Change in a reaction flux does not always mean similar change in

the concentration of its substrate(s) or product(s) and vice versa.
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Chapter 7: Future Work

Metabolic profiling provides a high throughput method which allows for an
extensive phenotypic fingerprint of the plants to be obtained. From the current
analysis many areas, which need to be improved, were identified, in order to
make metabolic profiling a more powerful tool, which can be easily established.
7.1 Metabolic Profiling Protocol:

In the current metabolic profiling analysis, protocol using GC-MS has been
established, and the parameters required for optimum operation of the
instrument have been identified. Based on the analysis following parameters
were identified which needs future work:

* Derivatization Protocol: Current derivatization protocol gives rise to

multiple derivatization forms of the metabolites. A modified protocol
which resolves this issue would resolve the limitation of the current
protocol.

» Internal Standard: In the current analysis a single compound was used as

internal standard. Even though this can account for most experimental
errors, it may not account for variations in derivatization which may be

dependent on the function of the metabolite.

* Peak Identification: Manual peak de-convolution approach was used in

the current analysis. In the past, a software tool like AMDIS [Fiehn, 2001a]
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had been used by researchers for conducting peak de-convolution.
However, no systematic method or approach is available to select the
parameters for AMDIS. Study of systematic use of AMDIS would allow a
much better de-convolution greatly improving the current protocol.
7.2 Metabolic Profiling Data Filtering and Normalization:
With the increasing number of metabolites that can now be identified with
metabolic profiling techniques, a systematic approach for data filtering is also
required. Few screening techniques have been suggested in the current analysis
however a more uniform and commonly used process should be developed.
7.3 Data analysis using multivariate statistics:
K-Means and SAM analysis were used to identify metabolites which show a
differentiated expression. However, the SAM graph obtained was different from
the standard SAM graph; thus the positive and negatively significant metabolites
could not be identified by specifying a particular delta value. This could be result
of either absence of lipid metabolites, or the difference between the
normalization of the metabolic and genetic analysis. Also, using the lipid data, a
more complete study needs to be conducted to identify the cause and correct the
same. Alternately, another systematic method needs to be developed for
identifying differentiated metabolites using time profiles of the different

metabolites.
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The current analytical technique, showed the use of Pearson correlation distance
in the metabolic analysis, to identify correlated metabolites and to map the plant
metabolic profile using K-Means and Principle Component Analysis
respectively. Even though the technique did cluster metabolites that show
similar profiles, some of the metabolites showing similar profiles (Glucose-6-
phosphate and Fructose-6-phosphate) were clustered separately. Hence a
method which allows a better, more consistent representation of Pearson
correlation between metabolic profiles is needed.

7.4 Design of more elaborate experiments:

The current analysis has shown the amount of information that can be obtained
by systematically designing a perturbation in a previously well studied system.
Related individual perturbation of the same system, would allow a much better
understanding of the perturbed system by comparing the similarities and
differences in the response of the system to various perturbations.

For such future experiments, based on current analysis following modifications
are suggested:

Labeling:

10% of the CO: used was labeled C®. However, the current analysis indicated
that due to instrumental variability, the changes in the labeling of the

metabolites, because of partially labeled substrate, could not be detected. Hence
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for future experiments, either a much larger portion of the substrate should be C-
13 labeled (50% to 100%) or alternatively labeled substrate should not be used at
all, as it would interfere with the marker ion quantification.

Selection of Time points:

Since this analysis was the first analysis involved in immediate response of the
elevated CO, the time points chosen for the analysis were distributed so as to get
the immediate response in first three hours, and the longer 1 day response. The
analysis indicated that the longer time points were much more useful for the
analysis as compared to shorter time points, where both the control and
perturbed system showed large deviations. Also many metabolites showed a
change in their response during 12 to 23 hour periods. Hence the time points for
harvesting should be distributed uniformly, throughout the time period, and
should specifically have a time point between 12 to 24 hours.

Nutrient Source:

Additionally, the results in the literature indicate that by using NH4+ ions as the
primary nitrogen source, a much larger increase in plant biomass is allowed by
removing the effect of nitrogen stress. Therefore, an experiment may be
conducted using NH4* as the source, in order to understand the plant response to

elevated CO» in absence of nitrogen stress.
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For metabolic profiling, the current analysis was conducted for polar metabolites;
the lipid metabolites were excluded from the analysis. However there were
indications that the lipid phase may be showing a change in response to the
perturbation, hence the same should be included in the future analysis.

7.5 Future applications for metabolic profiling:

In order to extend the role of metabolic profiling technique to larger research
areas in plant genetics and biochemistry, more experiments with different
experimental goals need to be performed, some of which are listed below:

Metabolic Profiling for screening mutants:

Even though it has been demonstrated that a single mutation changes the plant
metabolism (and hence this can be used as a screening technique to identify
mutant plants), the same has not been shown till now. For identifying possible
challenges in these issues and finding their solutions, experiments should be
designed to screen for mutants.

Metabolic profiling for plant hormones study:

The role of all plant hormones which control various plant physiological
properties at metabolic level is still not well understood. Due to its extensive
ability to profile metabolites, metabolic profiling can be used effectively to

understand the role of hormones in plant.
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Appendices

Appendix I. Protocols

Methanol Extraction Protocol:

1. Purpose

This protocol describes the extraction of metabolites from Arabidopsis
thaliana plant sample.

2. Instruments

2.1  Homogenizer

2.2 Water Bath

2.3 Conical Tubes, 15 and 50 ml
24  Tube Stand

2.5  Pipettor

2.6 Pipette tube 10 mL

2.7 Pipette Tips, 1 mL

2.8 Vortexor

2.9  Balance accurate upto 1 mg
210  Dry ice box

211 Timer

2.12 Permenant Marker

3. MATERIALS

3.1 Methanol

3.2 Ethanol

3.3  De-ionized water
3.4  Ribitol Solution
3.5 Dry ice

138



REAGENT PREPARATION

4.1 Ribitol Solution (2 mg/ml)

4.1.1 Measure Ribitol in a measuring plate. The weight of the

ribitol should be 1 mg * (No. of plant samples)* (Weight of
each plant sample) * 2. For a set of forty samples, one gram
each, measure 1¥40*1*2 = 80 mg

4.1.2 Transfer the Ribitol measured in a 50 ml tube (or a reagent

bottle if the quantity of ribitol is above 100 mg)

4.1.3 Add de-ionized water to the tube using 25 ml pipette so as to

produce a solution having ribitol concentration of 2 mg/ml.
So for 80 mg Ribitol add 160 ml water.

4.1.4 Ensure that you have enough Ribitol solution for the whole

batch of samples.

4.1.5 Store the solution at 4 deg. C temperature when not in use.

PROCEDURE

5.1 Plant Grinding;:

5.1.1 Before starting Grinding ensure that the water bath to be used
for extraction is set at 70 deg C.

5.1.2 Follow the procedure given in Sop# M001 for Grinding.

5.1.3 Take a labeled 50 ml tube with conical bottom. Mark the conical
tube for 2.5 ml mark (which is typically close to the junction of
cylindrical and conical bottom section).

5.1.4 Transfer the powdery ground plant to the conical tube, up to 2.5
ml mark which approximately corresponds to 1 gm of plant.

5.1.5 Keep the tube in Dry ice box and transfer it close to the Fume
hood along with other supplies required for extraction.

5.2 Methanol Addition

5.2.1 Take a tube tray for holding 50 ml conical tubes.

5.2.2 Take empty 50 ml conical tubes (the number of tubes should be
equal to number of samples being processed at a time) and
place them on the stand.

5.2.3 Measure 28 ml of methanol and add it in each tube.
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524

525
5.2.6

(Note: The Rosenner et. al. protocol used 1.4 ml for 0.1 mg
potato tubers. Since Arabidopsis thaliana has more dry biomass
and it’s root are more difficult to extract we use double the
quantity)

Measure 500 puL of 2 mg/ml Ribitol solution using a 1 mL
Pipette tip and add it to 28 mL methanol in each tube.

Close the lid, and shake the tube to ensure proper mixing.

Thus ensure that you have 50 ml tubes containing 28 mL
methanol and 0.5 mL Ribitol (2 mg/mL concentration in water)
before starting homogenization. (This gives a concentration of 1
mg of Ribitol for a gram of plant, if some other concentration is
desired adjust volume accordingly).

5.3 Homogenization

53.1

5.3.2

5.3.3

534

5.3.5

5.3.6

537

5.3.8

Fill a 100 ml measuring cylinder with de-ionized water and
insert the homogenizer tip into the cylinder. Start the
homogenizer and run it for few seconds. Clean the homogenizer
with a paper napkin.

Spray Ethanol on the homogenizer and wipe it again with a
paper napkin.

Take out one 50 ml conical tube containing 1 gm (2.5 ml) of
ground plant material from the dry ice box.

Transfer the 28.5 ml methanol and ribitol solution to the 50 ml
conical tube containing the plant.

Homogenize the methanol, plant and ribitol solution mixture,
for 2 to 5 minutes depending on the type of sample. The
homogenizer may become hot so in between after every one
minute, give it a break for a few seconds. Ensure that it becomes
a homogeneous mixture with no large solid plant pieces left.
Stir the homogenized mixture using a vortexor, and later with
hand to ensure that no solid particles settle down, and that they
are uniformly distributed in the entire tube.

Divide the 28-30 ml volume homogenized solution in four 15 ml
conical bottom tubes (labeled Plant Number followed by A, B,
C, D) equally such that each tube has 7-7.5 ml each of the
homogenized material.

Repeat the above procedure starting from 5.3.1 (i.e. cleaning the
homogenizer) for one more plant.
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5.4 Extraction in Water Bath

54.1

542

54.3

544

54.5

5.4.6

5.5 Water

551

5.5.2

5.5.3

554

5.5.5

5.5.6

5.5.7

Put the eight 15 ml conical tubes (A, B, C, D tubes for Plant 1
and Plant 2) on a stand and put the stand along with the tubes
in the Water bath.

Ensure that the tube lids are not tightly closed, before you put
them in the bath, to allow gas expansion and avoid tube bursts
on heating due to pressure.

Set the timer for 15 mins and start the timer.

Check the temperature in the thermometer as the digital
temperature indicator may have a small error.

After 15 minutes take the tubes out of the water bath.

You will observe precipitated solid matter at the bottom part of
the tube. This are methylated metabolites.

Treatment:

Set two 50 ml conical tubes prefilled with de-ionized water
inside the fume hood.

Attatch a 15 ml pipette tube to the pipettor.

Open caps for two 15 ml conical tubes containing the plant —
methanol mixture (which was just removed from the water
bath).

Add 7 ml of de-ionized water to each tube in order to neutralize
the methylated compound. (Total volume required 7*8 = 56 ml).
Close the lids tightly.

Shake each tube individually on the vortexer in order to ensure
very high degree of mixing. In between also mix the solution in
the tube with hand rotating it by 360 degrees about a horizontal
axis.

In the end ensure that the solution is more transluscent as
compared to after the methanol treatment and only fine solid
particles remain uniformly distributed in the solution.

Repeat the above procedure for all the eight tubes.

5.6 Sample Division:

5.6.1

Take four empty 15 ml tubes per sample. Label them Plant #, E,
F, G, H on the Cap and the tube. Place the tubes on a stand.
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5.6.2

5.6.3

5.6.4

Shake once more the tube containing solution in order to make
sure there is no setteling of the solid residue in the tube.
Transfer 7 ml sample from tube A (containing approximately 14
ml liquid) to tube E.

Similarly from tube B transfer 7 ml to F, from C transfer 7 ml to
G, from D transfer 7 ml to H.

5.7 Centrifugation:

5.7.1 Place the 15 ml conical tubes containing 7 ml of sample each in
the centrifuge. Loosen slightly the caps of the tube, in order to
avoide tube bursts.

5.7.2 Change the units of the centrifuge to “cfm”, the default units are
in rpm.

5.7.3 Set the speed to 2000 cfm, time to 5 mins and temperature to 25
deg C

5.7.4 Start the centrifuge.

5.7.5 At the end of the centrifuge operation take the tubes out, place
them on the stand without shaking it and close the lid of the
centrifuge.

5.8 Drying:

5.8.1 Ensure that the vacuum pump of the SpeedVac is running.
Open the top lid and place all the tubes that need to be dried in
the speedVac unit, ensuring that the tubes are placed in a way
so that they balance the centrifuge.

5.8.2 Close the lid and apply vacuum. Also start the rotation of the
SpeedVac.

5.8.3 Wait till you here a “clicking” sound indicating that the vacuum
seal is in effect. In case you don’t hear the same after 15 mins,
it’s an indication that the vacuum pump is not working
properly.

5.8.4 Dry the samples for 6-16 hours, till the sample is dry, and not
sticky.

5.8.5 Store the samples in 4/-20 deg C freezer in upright position.

5.8.6 This samples are now ready for derivatization for metabolic

profiling.
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Derivatization Protocol: Derivatization

Lipid phase

The remaining lipid phase is treated as follows: Take out 100 uL for LC/MS
analyses and refrigerate. To the remaining ~ 700 uL lipophilic phase, add 900 pL
CHCls. Add 1 mL MeOH containing 3% v/v H2504. Transmethylate lipids and
free fatty acids for 4 h at 100°C. Take care that your glass vial is sealed with a
teflonized seal, and not with rubber. Otherwise, you will lose a lot of your
solution and will find many rubber additives in your sample.

Extract your solution two times by adding 4 mL H:O, vortexing, centrifuging at
4000 rpm, and discarding the water phase. Dry the remaining chloroform phase
over anhydrous Na:SOs and transfer the supernatant into a new glass vial.
Concentrate to about 80 pL. Add 10 uL pyridine and 10 pL MSTFA to the
remaining 70 uL portion, silylate for 30 min at 37°C, and inject 2 puL into the
GC/MS with a split ratio of 25:1.

Polar phase

Add 50 pL of methoxyamine hydrochloride (20 mg/mL pyridine) to the dried (1
mL) fraction of your polar phase. Incubate for 90 min at 30°C with continuous
shaking. Add 80 uL of MSTFA for 30 min at 37°C and wait 120 min at 25°C
before injection. Inject 2 pL, split 25:1. The second portion of the dry polar
fraction can be used for LC/MS analyses or stored frozen at -80°C.

143



Appendix II. Retention Time Comparison

UMCP Max Planck List RT
Pea
k Mol. Differ
No Name RT | Wt RT Type ence
LACTIC
1 ACID,O,0-TMS | 6.70 | 234 | 6.447 | organic acid 0.25
ALANINE,N,O-
3 TMS 771 | 233 | 7.206 | amino acid 0.50
GLYCINE,N,O-
6 TMS 8.60 | 219 | 8.039 amino acid 0.56
PYRUVIC ACID
7 MEOX TMS 9.04 | 189 | 8.434 | organic acid 0.61
VALINE,N,O-
9 TMS 10.80 | 261 | 9.869 | amino acid 0.93
ETHANOLAMIN
10 E,N,N,O-TMS 11.02 | 277 |10.120 amine 0.90
OXALIC ACID
8 TMS 10.60 | 234 | 10.145 | organicacid | 0.46
GLYCEROL
13 3TMS 11.85 | 308 | 10.633 alcohol 1.22
LEUCINE, N,O-
15 TMS 1247 | 275 | 11.315| amino acid 1.16
ISOLEUCINE,N,
18 O-TMS 13.15 | 275 |11.925| amino acid 1.23
GLYCINE,N,N,O-
19 TMS 13.29 | 291 | 12.163 | amino acid 1.13
20 | SERINE,O,0O-TMS | 13.95 | 249 | 12.540 | amino acid 1.41
PROLINE,N,O-
21 TMS 14.40 | 259 |12.946 | amino acid 1.45
PHOSPHORIC
ACID,0,0,0- inorganic
22 TMS 14.40 | 314 | 13.062 acid 1.34
GLYCERIC
ACID,0,0,0-
24 TMS 14.69 | 322 | 13.346 | organic acid 1.34
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UMCP Max Planck List RT
Pea
k Mol. Differ
No Name RT [ Wt RT Type ence
SERINE,N,O,O-
25 TMS 15.21 | 321 |13.824 | amino acid 1.39
FUMARIC ACID
29 TMS 15.78 | 260 | 14.063 | organic acid 1.72
THREONINE,N,
28 0O,0-TMS 15.61 | 335 | 14.230 | amino acid 1.38
SUCCINIC ACID
30 2TMS 15.95 | 262 | 14.406 | organic acid 1.54
32 | B-ALANINE TMS | 16.64 | 305 | 15.243 | amino acid 1.40
HOMOSERINE
35 3TMS 17.47 | 335 | 15.986 | amino acid 1.48
2-METHYL
BENZOIC AVID
39 TMS 18.25
2-
METHYLMALIC
38 ACID 3TMS 18.47 | 364 | 17.005 | organic acid 1.47
3-HYDROXY
GLYTARIC ACID
40 TMS 18.47
4-
AMINOBUTYRIC
43 ACID 3TMS 19.40 | 319 | 28.156 | organicacid | (8.76)
MALIC ACID
44 TMS 19.44 | 350 | 17.890 | organicacid | 1.55
ASPARAGINE,N,
46 N,N,O-TMS 20.13 | 420 |19.435| amino acid 0.70
L-
HYDROXYPROLI
47 NE,N,O,0-TMS | 20.15 | 347 |17.949 | amino acid 2.20
ASPARTIC
ACID,N,O,0O-
49 TMS 20.15 | 349 [18.590 | amino acid 1.56
50 THREONIC 424 | 18.740 | organic acid
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UMCP Max Planck List RT
Pea
k Mol. Differ
No Name RT [ Wt RT Type ence
ACID,0,0,0,0- | 20.21 1.47
TMS
sugar alcohol
quantify
55 RIBITOL TMS 21.90 20.512 standard 1.39
57 XYLITOL 5TMS | 22.09 | 512 | 20.668 | sugar alcohol | 1.42
GLUTAMIC
58 ACID 3TMS 2222 | 363 |20.710 | amino acid 1.49
ARABINOSE monosacchari
59 MEOX1 4TMS 2254 | 467 |20.735 de 1.83
60 | CYTOSINE 2TMS | 22.89 21.717 | pyrimidine 1.17
HOMOCYSTEIN
62 E,N,N,O-TMS 2290 | 351 |21.789| amino acid 1.11
GLUTAMINE,N,
61 N,N,O-TMS 2290 | 434 |21.797 | amino acid 1.10
PHENYLALANI
68 NE,N,O-TMS 23.61 | 309 |22.083| amino acid 1.53
ORNITHINE,N,N
75 ,N',O-TMS 24.65 | 420 |23.497 | amino acid
ASPARAGINE,N,
77 N,O-TMS 24.66 | 348 |23.039 | amino acid 1.62
FRUCTOSE monosacchari
83 MEOX1 5TMS 25.81 | 569 |24.530 de 1.28
ACONITIC ACID
84 3TMS 25.81 | 390 |24.596 | organic acid 1.21
MANNOSE monosacchari
85 MEOX TMS 25.82 | 569 |24.599 de 1.22
86 SORBTOL TMS | 25.91 24.629 | sugar alcohol | 1.28
FRUCTOSE monosacchari
90 MEOX2 5TMS 26.15 | 569 |24.896 de 1.25
GALACTOSE monosacchari
89 MEOX1 TMS 26.15 | 569 |24.899 de 1.25
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UMCP Max Planck List RT
Pea
k Mol. Differ
No Name RT [ Wt RT Type ence
SHIKIMIC ACID
88 TMS 26.15 | 462 |24.912 | organicacid 1.24
GLUCOSE monosacchari
91 MEOX1 5TMS 26.35 | 569 |25.132 de 1.22
CITRIC ACID
93 TMS 26.63 | 480 |25.223 | organic acid 1.41
GLUCOSAMINE monosacchari
94 MEOX1 TMS 26.64 25.265 de 1.28
GLUTAMINE,N,
95 N,O-TMS 2691 | 362 |25.291 | amino acid 1.62
GLUCOSE monosacchari
96 MEOX2 5TMS 2691 | 569 | 25.361 de 1.65
LYSINE,N,N,N',O
99 -TMS 27.16 | 434 | 25.545| amino acid 1.62
ISOCITRIC ACID
98 TMS 27.05 | 480 |25.614 | organic acid 1.44
3- phosphorylat
PHOSPHOGLYC ed
101 ERATE TMS 27.58 | 474 |26.029 | compound 1.55
GLUCONIC
ACID,0,0,0,0,0,
104 O-TMS 27.87 26.669 | organicacid | 1.20
SACCHARIC
114 ACID TMS 28.77 27.411 | organic acid 1.36
INOSITOL,0,0,0
116 ,0,0,0-TMS 28.95 | 612 |27.701 | sugar alcohol | 1.22
ASCORBIC ACID
117 TMS 28.95 27.732 | organic acid 1.25
122 TYROSINE 29.54
SORBITOL-6- phosphorylat
PHOSPHATE ed
156 TMS 34.94 33.793 | compound 1.15
FRUCTOSE-6- phosphorylat
158 PHOSPHATE 35.03 33.839 ed 1.19




UMCP Max Planck List RT
Pea
I3 Mol. Differ
No Name RT [ Wt RT Type ence
MEOX1 TMS compound
FRUCTOSE-6- phosphorylat
PHOSPHATE ed
159 MEOX2 TMS 35.20 34.000 | compound 1.20
GLUCOSE-6- phosphorylat
PHOSPHATE ed
160 MEOX1 TMS 35.38 34.193 | compound 1.19
GLUCOSE-6- phosphorylat
PHOSPHATE ed
161 MEOX2 TMS 35.58 34.377 | compound 1.20
TRYPTOPHANE,
163 N,N’,O-TMS 35.75 | 420 |34.693 | amino acid 1.06
170 | SUCROSE TMS | 38.34 37.149 | disaccharide | 1.19

Note: The retention time & spectrum of metabolites marked in bold letters were
verified using the standard substance obtained from Sigma.
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Appendix III. Metabolite List with Marker Ions & Retention Times

Peak
No | Name RT Marker ions
1 LACTIC ACID,O,0-TMS 6.70 117 191 219
2 unknown01 6.81 299 281
3 ALANINE,N,O-TMS 7.71 116 190 218
4 unknown(02 7.79 177
280.5-
5 unknown03 8.50 285
6 GLYCINE,N,O-TMS 8.60 204
7 PYRUVIC ACID MEOX TMS 9.04 115 174 189
8 OXALIC ACID TMS 10.60 190 220
144-
9 VALINE,N,O-TMS 10.80 145.5
ETHANOLAMINE,N,N,O-
10 TMS 11.02 106 114 174
11 unknown06 11.23 176 217
12 unknown(07 11.50 216 172
202-
13 GLYCEROL 3TMS 11.85 207
14 unknown07b 12.12 228 183
15 LEUCINE, N,O-TMS 12.47 158 232 260
149-
16 unknown8a 12.90 152 167 191
241- 163-
17 unknown08 13.11 2425 | 164.5
158- | 218-
18 ISOLEUCINE,N,O-TMS 13.15 100 159.5 | 219.5
174- 248-
19 GLYCINE,N,N,O-TMS 13.29 176.5 | 250.5 | 276
131-
20 SERINE,O,0-TMS 13.95 135
140- 214-
21 PROLINE,N,O-TMS 14.40 1445 | 219
PHOSPHORIC ACID,O,0,0- 299- | 387-
22 TMS 14.40 283 301 390
23 unknown9 14.58 262
24 GLYCERIC ACID,0,0,0-TMS | 14.69 292
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Peak

No | Name RT Marker ions
188- 204- | 218-
25 SERINE,N,O,O-TMS 15.21 189 206 220
26 unknown12 15.25 134 184 285
298- 344-
27 unknown13 15.36 301 347
100- 218- | 291-
28 THREONINE,N,O,O-TMS 15.61 103 220 293
29 FUMARIC ACID TMS 15.78 217
30 SUCCINIC ACID 2TMS 15.95 335 173
203- 262-
31 Unknownl14 16.53 205 264 149
174- 248- | 290-
32 B-ALANINE TMS 16.64 176.5 | 251 293
129- 219- 103-
33 unknown15 16.81 131 221 105
180- 197.5-
34 unknownl5a 17.04 149 182 200
128- 218-
35 HOMOSERINE 3TMS 17.47 130 220
174-
36 unknown15b 17.65 175
214-
37 unknown15c¢ 17.79 215
2-METHYL BENZOIC AVID 119- 193-
39 TMS 18.25 120.5 | 195.5
2-METHYLMALIC ACID 246-
38 3TMS 18.47 249
3-HYDROXY GLYTARIC
40 ACID TMS 18.47 163 190 231
221- 298-
41 unknownl16 18.58 2245 | 300.5
42 unknown18 19.13 232
4-AMINOBUTYRIC ACID
43 3TMS 19.40 304
232-
44 MALIC ACID TMS 19.44 234
45 unknown19 19.81 114 290-
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Peak

No | Name RT Marker ions
292
46 ASPARAGINE,N,N,N,O-TMS | 20.13 216
L-HYDROXYPROLINE,N,O,O-
47 TMS 20.15 140 348
232-
48 ASPARTIC ACID,N,O,0-TMS | 20.15 234.5
THREONIC  ACID,0,0,0,0- 318-
49 TMS 20.21 321
50 unknown?22 20.63 217
175-
51 METHIONINE TMS 20.99 176
52 unknown?25 21.13 188
142-
52b | CYSTEIN TMS 21.30 144
227-
53 unknown27 227 21.58 228
153-
54 unknown28 154 21.58 159
216-
55 RIBITOL TMS 21.90 219
317-
56 Ribitol 21.90 322
57 XYLITOL 5TMS 22.09 307 319
306- | 389-
58 ARABINOSE MEOX1 4TMS 22.22 277 309.5 | 390.5
245-
59 GLUTAMIC ACID 3TMS 22.54 249
98- 170- | 240-
60 CYTOSINE 2TMS 22.89 100 1715 | 241.5
20- 219- | 234-
62 HOMOCYSTEINE,N,N,O-TMS | 22.90 203.5 |[220.5 |235.5
154-
61 GLUTAMINE,N,N,N,O-TMS 22.90 158
63 unknown31 23.12 292 333
64 unknown32 23.29 275
65 unknown32b 23.30 215 240 254
66 unknown33 23.37 182 229 257
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Peak

No | Name RT Marker ions
67 unknown33b 23.41 320
218- 192-
68 PHENYLALANINE,N,O-TMS | 23.61 219.5 | 1935
245-
68b | unknown34 23.71 246.5
292-
69 unknown35 23.84 294
70 unknown36 23.95 204 257 347
217- 257- | 292-
71 unknown37 24.09 218 259 294
185- | 275-
72 unknown37b 24.22 142 186 277
292- 333-
73 unknown?38 24.28 294 335
257-
74 unknown39 24.40 259 319 347
75 ORNITHINE,N,N,N',O-TMS 24.65 142 174 200
171-
76 unknown40 24.65 173
116-
77 ASPARAGINE,N,N,O-TMS 24.66 118 132 159
116- 159- | 215-
77b unknown41 24.79 117 160.5 | 216
78 unknown4la 24.88 199 289
232-
79 unknown41b 24.95 234
80 unknown4?2 25.00 206 348
80b unknown43 25.12 181 230 257
81 unknown44 25.24 260
298-
82 unknown44b 25.46 301
82b | MANNITOL TMS 25.58 205 277 319
209- 375-
83 ACONITIC ACID 3TMS 25.81 212 376
306-
84 FRUCTOSE MEOX1 5TMS 25.81 309
85 MANNOSE MEOX TMS 25.82 158-
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Peak

No | Name RT Marker ions
162.5
86 SORBTOL TMS 2591 315 357 387
87 ACONITIC ACID TMS 25.91 211 375 385
191- 330-
87b | GALACTITOL TMS 25.96 193 333 342
88 SHIKIMIC ACID TMS 26.15 239 243 255
89 GALACTOSE MEOX1 TMS 26.15 160 229 319
306-
90 FRUCTOSE MEOX2 5TMS 26.15 309
159-
91 GLUCOSE MEOX1 5TMS 26.35 163
92 Unknown 45a 26.49 204 191
272.5-
93 CITRIC ACID TMS 26.63 276
205- 318-
94 GLUCOSE MEOX2 5TMS 26.64 207.5 |320.5
155-
95 GLUTAMINE,N,N,O-TMS 26.91 159
96 GLUCOSAMINE MEOX1 TMS | 26.91 203
97 unknown45 26.92 133 369
244.5-
98 ISOCITRIC ACID - TMS 27.05 247.5
155- 229- | 317-
99 LYSINE,N,N,N',O-TMS 27.16 157.5 |231.5 | 3185
100 | unknown46 27.44 204
3-PHOSPHOGLYCERATE 298-
101 | TMS 27.58 227 300.5 | 357
102 | unknown48 27.71 189.24
103 | unknown49 27.78 189 273
GLUCONIC
104 | ACID,0,0,0,0,0,0-TMS 27.87 333
405-
105 | unknownb1 28.02 408
106 | unknownb52 28.08 333
107 | unknownb3 28.10 299 319
108 | unknownb4 28.12 204
109 | unknownb5 28.19 191 204 217
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Peak
No | Name RT Marker ions
272-
110 | unknownb6 28.24 275 362 365
156-
110b | unknown56b 28.31 158 173 205
273- 362-
111 | unknown57 28.39 275 365
220-
112 | unknownb58 28.54 223 205
113 | unknown59 28.67 237 312
114 | SACCHARIC ACID TMS 28.77 333 393
269.5-
115 | Unknown 59b 28.94 272.5
330- 358-
116 | ASCORBIC ACID TMS 28.95 334 361.5
305-
117 | INOSITOL,0,0,0,0,0,0-TMS | 28.95 307
118 | unknown60 29.07 288 312
119 | unknown61 29.09 361
361-
120 | unknown62 29.27 364
203- 318-
121 | unknown63 29.43 206 321
192- 218- | 280-
122 | TYROSINE 29.54 193 221 283
361-
123 | unknown64 29.70 363
124 | unknown65 30.02 361
318-
125 | unknown66 30.14 321
126 | unknown67 30.24 174
204- 319-
127 | unknown68 30.33 206 321
232-
127b | unknown69 30.52 235
298- 354- | 428-
128 | unknown70 30.54 301 359 430
129 | unknown71 30.77 203 227-
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Peak

No | Name RT Marker ions
230
130 | unknown?72 30.80 331
361-
131 | unknown73 30.94 364
358-
132 | unknown74 31.12 360
264-
133 | unknown75 31.14 266
292- 299.5-
134 | unknown76 31.26 293 301
221-
135 | unknown77 31.33 223.5 | 383
136 | unknown77b 31.68 144 156 174
137 | unknown78 31.95 155 186
138 | unknown?79 31.98 201 257
139 | unknown80 32.21 269
116- 344-
140 | unknown80b 32.56 119 346.5
141 | unknown81 32.64 210 228
268-
142 | unknown81b 32.68 270
143 | unknown82 32.70 156
298-
144 | unknown83 32.82 268 281 301.5
203-
145 | unknown83b 33.02 205
146 | unknown84 33.23 156 289
228-
147 | unknown85 33.40 230
148 | Unknown 86 33.62 299 315 357
119- 290-
149 | unknown87 33.72 121 292
203-
150 | unknown88 33.89 206
151 | unknown89 34.04 268 430
117-
152 | unknown90 34.26 119 359
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Peak

No | Name RT Marker ions
153 | unknown91 34.51 180 229 245
154 | unknown92 34.78 130 155
155 | unknown93 34.87 243 358
SORBITOL-6-PHOSPHATE 315- 387-
156 | TMS 34.94 317 391
157 | unknown94 34.98 281 355
FRUCTOSE-6-PPHOSPHATE 315- 457-
158 | MEOX1 TMS 35.03 318 459
FRUCTOSE-6-PHOSPHATE 315- 457-
159 | MEOX2 TMS 35.20 318 459
GLUCOSE-6-PHOSPHATE 315- 387-
160 | MEOX1 TMS 35.38 318 390
GLUCOSE-6-PHOSPHATE 315- 387-
161 | MEOX2 TMS 35.58 319 389
162 | INOSITOL DERIVATIVE TMS | 35.74 315 318
202- | 291-
163 | TRYPTOPHANE,N,N’,O-TMS | 35.75 100 204.5 | 293
277- 333-
164 | unknown102 35.76 279 335.5
164b | unknown103 36.43 197 229 315
165 | unknown105 36.65 204 321 361
354-
166 | unknownl106 37.00 299 315 357
167 | unknownl107 37.47 139 169 319
168 | unknown108 37.76 273 362
305-
169 | unknown109 38.05 129 204 307
168-
170 | SUCROSE TMS 38.34 171.5
415-
171 | unknown110 38.63 343 417
172 | unknownl111 38.93 221 281 299
214- | 415-
173 | unknown119 39.13 186 216 417
173b | unknown120 39.24 -
174 | unknown121 39.25 -
175 | unknown123 39.59 169 361
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Peak

No | Name RT Marker ions
176 | unknown124 39.75 169 191 361
176b | unknown125 40.00 169 204 319
177 | unknown126 40.16 169 204 231
259- 298-
178 | unknown127 40.52 261 301
298-
179 | unknown128 40.77 281 301 355
298- 315-
180 | unknown129 41.17 301 319 461
181 | unknown130 41.26 169 194 267
204- 361-
181b | unknown131 41.31 205 362 149
203-
182 | unknown132 41.66 206
183 | unknown133 42.29 230 236 245
298- 355- | 428-
184 | unknownl134 42.51 300 358 431
298- 355- | 428-
185 | unknown135 42.60 300 358 431
324-
186 | unknownl136 42.93 245 327.5
187 | unknown139 43.07 204
422-
188 | unknown140 43.13 446
348-
188b | unknown143 43.28 197 350
189 | unknownl144 44.26 324 368 410
190 | unknown145 4472 297 408
191 | unknown147 45.01 204 361
192 | unknown148 45.16 361 391
193 | unknown149 45.34 324
193b | Unknown 150 46.10 299 315
194 | unknown155 46.92 324 361 450
195 | unknown157 47.47 361 437
196 | unknown159 47.86 354
484-
197 | unknown160 49.45 486.5
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Peak

No | Name RT Marker ions
198 | unknownl61 50.12 193
199 | unknownl162 50.22 382
200 | unknownl163 51.24 396
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Appendix IV. Presence/Quality Test for Metabolites

Control Perturbed Total
min/ min/
Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.
Time Dev. Dev.

Vlno
9 1-Valine peak” - 0% 0.085 1.0 - 11% | 6%

"no
18 iso_leucine peak” - 0% 0.018 125 77% 33% | 17%

Vlno
15 Leucine peak” - 0% 0.014 168 79% 33% |[17%
186  unknownl136 0.003 1.2 12%  22% [ 0.003 1.0 - 11% | 17%
35 I-homoserine 0.018 1.0 - 11% | 0.042 2.8 46% 33% | 22%
81 unknown44 0.001 1.1 3% 33% [ 0.002 1.0 - 11% | 22%
25 Serine N,O,0 0.073 23.6 130% 22% |0.587 156  100% 44% | 33%
3 Alanine 0.032 23 57%  22% ]0.093 8.5 58%  44% | 33%
174  unknownl21 0.190 9.6 121% 33% | 0.369 4.7 58%  44% | 39%
145  unknown83b 0.002 1.4 14%  44% | 0.005 3.8 80%  33% | 39%
48 Hydroxyproline | 0.001 3.7 61% 44% |(0.001 14 20%  33% | 39%
142 unknown81b 0.005 4.3 61% 56% |[0.004 2.4 43%  33% | 44%
153  unknown91 0.002 4.5 60% 44% | 0.003 2.3 34%  44% | 44%
7 Pyruvic_Acid 0.002 21 46%  33% ]0.002 1.8 25%  56% | 44%
167  unknownl07 0.021 6.5 109% 33% [0.029 21.7 120% 67% |[50%
175  unknownl123 0.012 3.9 60% 44% [0.012 2.6 36% 56% | 50%
185  unknownl135 0.004 1.8 26%  44% ]0.003 2.5 30%  56% | 50%
47 Hydroxyproline | 0.003 3.2 55%  56% ] 0.002 3.0 51%  44% | 50%
146  unknown84 41%  67% 66%  33% | 50%
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Control Perturbed Total
min/ min/

Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.

Time Dev. Dev.

0.002 3.6 0.010 3.5

171 unknownl110 0.002 3.1 44% 78% |0.010 125 120% 22% | 50%
151  unknown89 0.010 13.6 64% 67% |0.007 152 88% 56% | 61%
136  unknown77b 0.008 9.4 69%  67% ]0.009 1.9 25%  56% | 61%
155  unknown93 0.003 5.7 46%  78% | 0.005 2.7 2% 44% | 61%
134 unknown76 0.003 2.9 39% 44% |0.003 4.7 43%  78% | 61%
143 unknown82 0.002 1.8 19%  67% | 0.002 3.1 41%  56% | 61%
52 unknown25 0.001 2.6 39% 67% |0.001 6.7 56%  56% | 61%
173 unknown119 0.009 8.3 60% 89% | 0.003 1.9 26% 44% | 67%
154  unknown92 0.006 2.7 46% 33% |0.005 3.4 44%  100% | 67%
36 unknownl15b 0.005 169 56% 67% | 0.005 5.1 54%  67% | 67%
135  unknown77 0.002 2.3 34%  78% ]0.002 1.9 26%  56% | 67%
189  unknownl44 0.012 228 81% 89% |0.020 3.3 51%  56% | 72%
163  Tryptophan 0.003 3.0 43%  56% |0.003 2.4 28%  89% | 72%
188  unknown140 0.001 2.8 33% 78% |0.000 3.7 57%  78% | 78%
23 unknown9 0.142 3.0 34% 78% |0.221 3.7 34%  89% | 83%
32 beta-alanine 0.078 228 100% 100% | 0.116 143  92% 78% | 89%

unknown133 0.009 8.9 65% 100% | 0.017 7.0 56%  78% | 89%
138 unknown79 0.004 2.3 34% 89% |0.005 2.5 36%  89% | 89%
169  unknownl109 5031 9362 140% 100% | 4.980 3,095 98% 89% | 94%
133 unknown75 0.030 26,5 105% 100% | 0.017 30.8 92% 89% | 94%
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Control Perturbed Total
min/ min/
Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.
Time Dev. Dev.
181  unknown130 0.020 3.5 49%  100% | 0.016 6.3 55%  89% | 94%
180  unknown129 0.016 4.0 52%  100% | 0.013 5.8 54%  89% | 94%
80 unknown42 0.009 94 69%  100% | 0.005 4.5 52%  89% | 94%
147  unknown85 0.008 126 91% 89% | 0.006 1.9 23%  100% | 94%
164  unknown102 0.007 3.5 43%  89% |0.009 2.7 40%  100% | 94%
178  unknownl127 0.004 24 35% 89% |0.005 3.7 49%  100% | 94%
168  unknownl108 0.003 3.5 38% 89% |0.004 3.3 44%  100% | 94%
149  unknown87 0.003 4.3 56% 89% | 0.004 3.6 49%  100% | 94%
190  unknownl145 0.003 2.8 29%  89% | 0.002 3.1 34%  100% | 94%
193  unknown149 0.001 2.8 35% 89% |0.002 2.2 32%  100% | 94%
22 Phosphoric_Acid | 8206 2.5 30% 100% | 6.929 1.6 16%  100% | 100%
93 Citrate 6.430 3.6 48% 100% | 7.791 1.7 17%  100% | 100%
61 Glutamine 5640 2.5 32%  100% | 5.539 2.3 22%  100% | 100%
170 Sucrose 3.884 238 33%  100% | 3.803 2.3 24%  100% | 100%
84 fructose_Meox1 | 3.083 2.4 30% 100% | 2.839 1.7 17%  100% | 100%
90 fructose_Meox2 | 2.518 2.2 27%  100% | 2.393 1.6 15%  100% | 100%
Glutamine

95 _N,N.O 2.143 1824 109% 100% | 1.238 9,779 176% 100% | 100%
91 glucose_meox1 | 1.800 2.1 26%  100% | 1.767 1.7 17%  100% | 100%
94 glucose_meox2 1.586 3.5 46%  100% | 1.393 2.6 34%  100% | 100%
54 unknown?28 1.089 588 111% 100% | 0.956 36.0 68%  100% | 100%
55 Ribitol_217 0% 100% 0% 100% | 100%
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Control Perturbed Total
min/ min/

Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.

Time Dev. Dev.

1.000 1.0 1.000 1.0

117  Inositol 0967 24 35% 100% | 0.956 1.9 22%  100% | 100%
59 Glutamate 0.704 7.8 76%  100% | 0.557 17.0 85% 100% | 100%
2 unknown01 0.520 44 49% 100% | 0.571 4.2 33%  100% | 100%
56 Ribitol 0.509 1.1 5% 100% | 0.509 1.2 5% 100% | 100%
96 Glucosamine 0.457 1602 111% 100% | 0.234 338 198% 100% | 100%
152 unknown90 0455 7.2 77%  100% | 0.451 4.2 43%  100% | 100%
111 unknown57 0.429 4.7 56%  100% | 0.280 101 58%  100% | 100%
109  unknownb55 0.339 180 84% 100% | 0.286 209 92%  100% | 100%
130  unknown?72 0.332 3.7 48% 100% | 0.295 2.2 27%  100% | 100%
53 unknown27 0.302 753 115% 100% | 0.259 101 72%  100% | 100%
85 Mannose 0.268 2.2 27%  100% | 0.260 1.8 20%  100% | 100%
70 unknown36 0.267 3165 114% 100% | 0.129 649 159% 100% | 100%
121 unknown63 0.256 3.9 45%  100% | 0.224 4.0 49%  100% | 100%

Aconitic
83 _acid 0250 2.8 33% 100% | 0.244 2.2 30% 100% | 100%
21 1-Proline 0.244 2.8 38%  100% | 0.203 3.0 34%  100% | 100%
108  unknownb4 0240 11.8 82% 100% | 0.204 150 88% 100% | 100%
44 Malate 0.207 5.0 55% 100% | 0.235 2.5 37%  100% | 100%

Galactose
89 _meoxl1 0.193 2.2 29%  100% | 0.200 1.9 19%  100% | 100%
30 Succinate 0.186 3.7 47%  100% | 0.283 2.9 26%  100% | 100%
92 Hexopyranose 0.168 503 93% 100% | 0.159 10.1  82%  100% | 100%
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Control Perturbed Total
min/ min/
Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.
Time Dev. Dev.
Asparagine
77 _N,N 0.142 125 100% 100% | 0.075 12.1 100% 100% | 100%
110  unknownb56 0.133 5.0 56% 100% | 0.090 11.1 50% 100% | 100%
131 unknown?73 0.132 4.3 55% 100% | 0.073 17.8 76% 100% | 100%
71 unknown37 0.123 2.8 41% 100% | 0.116 5.1 61%  100% | 100%
129  unknown71 0.114 4.3 53% 100% | 0.129 36.7 130% 100% | 100%
99 Lysine 0.114 304 88% 100% | 0.097 125 107% 100% | 100%
Shikimic
88 _acid 0.114 24 33% 100% | 0.104 1.7 18%  100% | 100%
49 Asparatate 0.112 188 138% 100% | 0.103 346 107% 100% | 100%
Glycine_
19 N,N,O 0.108 520 92% 100% | 0.128 285 121% 100% | 100%
26 unknown12 0.107 9.3 78%  100% | 0.048 6.9 74%  100% | 100%
20 Serine_O,0 0.104 3.4 38% 100% | 0.108 6.7 54%  100% | 100%
4-Amino
43 butyrate 0.090 321 81% 100% | 0.104 1900 94%  100% | 100%
66 Unknown33 0.084 207 114% 100% | 0.112 193.8 85%  100% | 100%
74 Unknown39 0.078 228 95% 100% | 0.056 484 141% 100% | 100%
98 iso-citrate 0.076 3.6 44%  100% | 0.099 1.7 18%  100% | 100%
24 Glycerate 0.070 5.6 59%  100% | 0.102 2.3 27%  100% | 100%
73 Unknown38 0.067 4.6 49% 100% | 0.074 2.6 36%  100% | 100%
194  unknown155 0.065 8.4 72%  100% | 0.109 2.6 42%  100% | 100%
127  unknown68 0.060 6.7 59%  100% | 0.052 5.0 53%  100% | 100%
2.
38 methyl _benzoate | 0.049 3.1 31% 100% | 0.036 1.7 16%  100% | 100%
160  glucose-6-P 73%  100% 65%  100% | 100%
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Control Perturbed Total
min/ min/
Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.
Time Dev. Dev.
0.045 6.6 0.052 6.3

182  unknownl132 0.044 6.2 58%  100% | 0.040 4.6 39%  100% | 100%
124 unknown65 0.040 529 125% 100% | 0.074 129 79%  100% | 100%
13 Glycerol 0.036 4.3 52%  100% | 0.177 34.0 150% 100% | 100%
58 Arabinose 0.036 194 57% 100% | 0.050 4.0 46%  100% | 100%
1 Lactate 0.036 2.6 33% 100% | 0.046 4.1 50%  100% | 100%
103  Unknown49 0.036 5.2 56% 100% | 0.027 30.1 56% 100% | 100%
45 unknown19 0.035 4.6 49%  100% | 0.038 7.3 50%  100% | 100%
46 Asparagine 0.034 404 84% 100% | 0.029 78.3 110% 100% | 100%
60 Cytosine, 0.032 238 33% 100% | 0.032 2.4 24%  100% | 100%
29 Fumarate 0.032 29 36% 100% | 0.039 1.7 21%  100% | 100%
118  Unknown60 0.031 8.9 76%  100% | 0.024 49.0 70%  100% | 100%
16 Unknown8a 0.029 5.7 48%  100% | 0.045 3.3 41%  100% | 100%
187  Unknown139 0.029 3.6 41%  100% | 0.027 1.9 20%  100% | 100%
162  inositol-P-comp [ 0.028 4.3 48%  100% | 0.023 3.7 45%  100% | 100%
122 Tyrosine 0.025 112 80% 100% | 0.028 8.7 67%  100% | 100%
97 unknown45 0.024 223 94% 100% | 0.015 16.6 124% 100% | 100%
72 unknown37b 0.024 5.0 54%  100% | 0.012 2.8 37%  100% | 100%
86 Sorbitol 0.024 91 72%  100% | 0.029 5.1 53%  100% | 100%
102 unknown48 0.023 5.0 54% 100% | 0.017 421 62%  100% | 100%
105  unknown51 0.023 181 89%  100% | 0.018 9.5 59%  100% | 100%
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Control Perturbed Total
min/ min/
Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.
Time Dev. Dev.
10 Ethanolamine 0.022 142 74% 100% | 0.025 150 95% 100% | 100%
68 Phenylaline 0.022 34 43% 100% | 0.025 1.5 15%  100% | 100%
6 Glycine_N,O 0.022 4.1 48%  100% | 0.062 6.7 70%  100% | 100%
27 unknown13 0.021 3.0 43% 100% | 0.014 2.6 31%  100% | 100%
76 unknown40 0.020 3.6 38% 100% | 0.011 3.1 33%  100% | 100%
166  unknownl106 0.020 174 140% 100% | 0.012 106 95% 100% | 100%
176  unknown124 0.019 29 37%  100% | 0.018 2.1 26%  100% | 100%
196  unknownl159 0.019 5.2 51% 100% | 0.023 3.6 44%  100% | 100%
104  gluconic_acid 0.019 54 54%  100% | 0.024 4.5 57%  100% | 100%
114  saccharic_acid 0.019 7.8 68% 100% | 0.015 4.3 63%  100% | 100%
69 unknown35 0.018 7.5 77%  100% | 0.012 3.4 35%  100% | 100%
3-hydroxy-
39 glutaric_acid 0.018 11.3 94% 100% | 0.042 11.8 91% 100% | 100%
sugar_phospho
148  comp 0.017 4.8 52%  100% | 0.017 4.5 54%  100% | 100%
125  unknown66 0.017 8.0 80%  100% | 0.018 6.1 63%  100% | 100%
33 unknownl15 0.017 3.6 45%  100% | 0.016 3.1 37%  100% | 100%
78 unknown4la 0.017 313 109% 100% | 0.024 9.9 67%  100% | 100%
3-Phospho
101 glycerate 0.016 119 92% 100% | 0.015 4.3 60%  100% | 100%
172 unknownl11 0.016 16.0 140% 100% | 0.010 8.9 94%  100% | 100%
17 unknown08 0.016 120 90% 100% | 0.020 4.4 54%  100% | 100%
75 Ornithine 0.016 4.4 63% 100% | 0.011 4.7 57%  100% | 100%
115  Hexadecanoic 35%  100% 23%  100% | 100%
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Control Perturbed Total
min/ min/

Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.

Time Dev. Dev.

acid 0.016 2.6 0.015 1.9
41 unknownl6 0.016 3.6 48% 100% | 0.014 6.4 42%  100% | 100%
79 unknown41b 0.015 3.6 37% 100% | 0.012 2.0 24%  100% | 100%
195  unknownl57 0.014 6.2 46% 100% | 0.012 19.8 47%  100% | 100%
51 unknown22 0.014 3.2 40% 100% | 0.013 1.6 16%  100% | 100%

Ascorbic
116  acid 0.014 2.9 36% 100% | 0.014 4.0 57%  100% | 100%
177  unknownl26 0.014 44 43% 100% | 0.013 3.4 38%  100% | 100%
42 unknownl18 0.013 8.2 59%  100% | 0.029 192.0 96%  100% | 100%
8 Oxalic_Acid 0.013 2.2 26% 100% | 0.026 5.6 68%  100% | 100%
141 unknown81 0.013 5.8 53% 100% | 0.012 1.9 23%  100% | 100%
65 unknown32b 0.012 3.0 40% 100% | 0.011 2.4 36%  100% | 100%
62 Homocystine 0.011 3.2 36% 100% | 0.011 2.5 29%  100% | 100%
107  unknown53 0.011 4.3 50% 100% | 0.010 3.1 39%  100% | 100%
179  unknownl128 0.011 13.6 114% 100% | 0.012 23.4 116% 100% | 100%
34 unknownlb5a 0.011 3.5 43% 100% | 0.011 2.8 32%  100% | 100%
128  unknown?70 0.011 6.6 55% 100% | 0.013 17.2 123% 100% | 100%

Fructose-6-
158  Phos_meox1 0.011 3.8 44%  100% | 0.011 3.2 37%  100% | 100%
132  unknown74 0.010 4.2 34%  100% | 0.010 3.8 35%  100% | 100%
37 unknown15c 0.010 24 32% 100% | 0.012 2.0 18%  100% | 100%
82 unknown44b 0.010 6.2 50%  100% | 0.010 8.7 74%  100% | 100%
150  unknown88 0.010 5.6 54%  100% | 0.013 2.2 26%  100% | 100%
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Control Perturbed Total
min/ min/
Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.
Time Dev. Dev.
200  unknownl163 0.010 153 68% 100% | 0.012 2.6 34%  100% | 100%
63 unknown31 0.009 3.3 42%  100% | 0.010 3.0 34%  100% | 100%
50 Threonate 0.009 5.4 49%  100% | 0.009 4.0 50%  100% | 100%
28 Threonine 0.009 3.3 38% 100% | 0.012 2.6 27%  100% | 100%
144  unknown83 0.009 54 58% 100% | 0.010 119 77%  100% | 100%
4 unknown02 0.008 2.5 29%  100% | 0.009 1.7 18%  100% | 100%
100  unknown46 0.008 4.9 48%  100% | 0.010 3.3 48%  100% | 100%
184  unknownl134 0.008 172 125% 100% | 0.005 105 88% 100% | 100%
165  unknown105 0.008 3.1 42%  100% | 0.025 23.8 186% 100% | 100%
137  unknown78 0.008 9.9 77%  100% | 0.009 2.5 29%  100% | 100%
140  unknown80b 0.008 4.7 55%  100% | 0.009 2.8 33%  100% | 100%
fructose-6-P-
159  meox2 0.007 3.8 44%  100% | 0.008 2.9 34%  100% | 100%
31 Unknownl4 0.007 6.3 53% 100% | 0.008 2.6 38%  100% | 100%
192  unknown148 0.007 3.9 31% 100% | 0.005 3.7 33%  100% | 100%
glucose-6-P-
161 meox2 0.007 4.2 50%  100% | 0.008 3.3 41%  100% | 100%
64 unknown32 0.007 3.8 53%  100% | 0.002 5.1 62%  100% | 100%
112  unknown58 0.006 7.2 82% 100% | 0.005 369 62% 100% | 100%
sorbitol-6-
156  phosphate 0.006 4.5 44%  100% | 0.006 2.6 35%  100% | 100%
106  unknown52 0.006 6.5 64%  100% | 0.008 3.0 44%  100% | 100%
119  unknowné61 0.006 143 74% 100% | 0.008 124 90% 100% | 100%
123  unknown64 58%  100% 47%  100% | 100%
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Control Perturbed Total
min/ min/

Peak Filename avg max Total % avg max Total % %
No  Sample ID Std.  Pres. Std.  Prs Pres.

Time Dev. Dev.

0.005 8.4 0.005 4.4

157  unknown94 0.005 3.7 49%  100% | 0.006 13.9 113% 100% | 100%
198  unknownlé6l 0.005 2.5 39% 100% | 0.004 2.4 29%  100% | 100%
191 unknown147 0.005 4.4 55%  100% | 0.005 4.3 39%  100% | 100%
57 Xylitol 0.004 6.7 48%  100% | 0.006 4.6 55%  100% | 100%
113  unknown59 0.004 2.7 32% 100% | 0.003 1.4 12%  100% | 100%

2-methyl
40 malate 0.004 2.9 37%  100% | 0.005 2.1 22%  100% | 100%
67 unknown33b 0.003 4.2 47%  100% | 0.006 8.9 78%  100% | 100%

actonic_
87 acid 0.003 6.3 58%  100% | 0.009 18.5 113% 100% | 100%
120  unknown62 0.003 5.1 56%  100% | 0.003 3.8 50%  100% | 100%
139  unknown80 0.003 5.8 58%  100% | 0.003 4.8 54%  100% | 100%
197  unknown160 0.002 5.9 58%  100% | 0.004 20.8 80% 100% | 100%
12 unknown07 0.002 4.6 48%  100% | 0.002 16.3 58% 100% | 100%
126  unknown67 0.002 4.9 50% 100% | 0.002 5.6 42%  100% | 100%
11 unknown06 0.001 124 104% 100% | 0.001 4.3 47%  100% | 100%
14 unknown07b 0.001 24 27%  100% | 0.001 1.8 17%  100% | 100%
199  unknown162 0.001 6.6 58%  100% | 0.001 3.4 43%  100% | 100%
5 unknown03 0.001 2.0 25% 100% | 0.001 1.5 16%  100% | 100%
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Appendix V. List of Metabolites Removed

Sr.

No | Metabolite Cause

1 Valine < 89% Present
2 Alanine < 89% Present
3 Leucine < 89% Present
4 iso leucine < 89% Present
5 homoserine < 89% Present
6 | hydroxy proline < 89% Present
7 | pyruvic acid <89% Present
8 | Tryptophan <89% Present
9 unknownl15b_m/z < 89% Present
10 | unknown25_m/z < 89% Present
11 | unknown44_m/z < 89% Present
12 | unknown77b < 89% Present
13 | unknown81b < 89% Present
14 | unknown82 < 89% Present
15 | unknown83b < 89% Present
16 | unknown84 < 89% Present
17 | unknown89 < 89% Present
18 | unknown91 < 89% Present
19 | unknown107 < 89% Present
20 | unknown121 < 89% Present
21 | unknown123 < 89% Present
22 | unknown 127 < 89% Present
23 | unknown135 < 89% Present
24 | unknown136 < 89% Present
25 | unknown 76 < 89% Present
26 | unknown 92 < 89% Present
27 | unknown 77 < 89% Present
28 | unknown 93 < 89% Present
29 | unknown 110 < 89% Present
30 | unknown 119 < 89% Present
31 | unknown 140 < 89% Present
32 | lysine high std. dev

33 | Glucosamine high std. dev

34 | unknown 39 high std. dev.
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Sr.

Metabolite

Cause

35

unknown 105

high std. dev.

36

unknown 155

high std. dev.

37 | Unknown 28 min/max high
38 | Unknown 27 min/max high
39 | unknown 75 min/max high

40 | unknown 109 min/max high
Dual

41 | fructose_Meox1_5TMS Derivatization

fructose-6-phosphate- Dual

42 | meox1 Derivatization
Dual

43 | glucose_meox2_5TMS Derivatization
Dual

44 | glucose-6-phosphate-meox?2 | Derivatization
Dual

45 | Glutamine N,N,O Derivatization
Dual

46 | Glycine_N,N,O Derivatization
Dual

47 | Serine_N,O,0O Derivatization
Dual

48 | Asparagine N,N,N, O Derivatization

49 | sucrose saturated
additional

50 | ribitol 319 marker ion
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Appendix VI. Standard Deviation Analysis

Average over all Time Points
% Standard Deviation

Peak Metabolite
No Inject. Biological | Total

Average 11% 32% 28%
55 Ribitol_217 0% 0% 0%
93 citrate 2% 25% 19%
117 Inositol 2% 18% 14%
920 fructose_Meox2_5 2% 20% 15%
13 glycerol 2% 43% 32%
38 2-methyl_benzoic_acid 2% 13% 10%
37 unknown15c 2% 20% 15%
61 Glutamine 2% 21% 16%
71 unknown37 2% 31% 23%
44 malate 3% 25% 19%
91 glucose_meox1_5 3% 22% 17%
73 unknown38 3% 21% 16%
104 gluconic_acid 3% 24% 18%
100 unknown46 3% 35% 26%
63 unknown31 3% 18% 14%
152 unknown90 3% 29% 23%
68 Phenylaline_N,O_ 3% 19% 14%
22 Phosphoric_Acid 3% 14% 12%
30 Succinate 3% 33% 26%
70 unknown36 3% 79% 59%
41 unknownl6 3% 26% 21%
78 unknown4la 3% 47% 35%
4 unknown(02 4% 16% 13%
58 Arabinose_Meox1 4% 49% 37%
140 unknown80b 4% 20% 17%
137 unknown78 4% 24% 19%
98 iso-citrate 4% 26% 20%
121 unknown63 4% 32% 24%
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Average over all Time Points

% Standard Deviation

Peak Metabolite

130 unknown?72 4% 19% 16%
159 fructose-6-phosphate-meox2 4% 21% 16%
182 unknown132 4% 29% 22%
24 Glyceric_Acid_O,0,0- 4% 36% 27%
160 glucose-6-phosphate-meox1 4% 26% 20%
2 unknown01 4% 21% 17%
85 mannose 5% 24% 20%
111 unknown57 5% 50% 38%
110 unknownb6 5% 45% 33%
89 galactose_meox1 5% 23% 18%
113 unknown59 5% 16% 13%
150 unknown88 5% 33% 26%
33 unknown15 5% 22% 18%
26 unknown12 5% 37% 27%
79 unknown41b 5% 20% 16%
115 hexadecanoic_acid 5% 17% 14%
176 unknown124 5% 27% 21%
162 inositol-phosphate-compound 6% 29% 22%
118 unknown60 6% 48% 37%
57 Xylitol _5_ 6% 36% 28%
21 I-Proline 6% 24% 20%
114 saccharic_acid 6% 36% 27%
147 unknown85 6% 22% 18%
60 Cytosine, 2_ 6% 23% 18%
50 Threonic_acid_0O,0,0,0 7% 28% 24%
112 unknown58 7% 31% 25%
200 unknown163 7% 30% 25%
83 aconitic_acid (1) 7% 27% 22%
139 unknown80 7% 27% 19%
40 2-METHYL_MALIC_ACID 7% 16% 15%
64 unknown32 7% 39% 29%
199 unknown162 7% 32% 25%
187 unknown139 7% 21% 19%
29 Fumarate 7% 17% 16%

172



Average over all Time Points

% Standard Deviation

Peak Metabolite
198 unknown161 7% 25% 21%
148 sugar_phospho_comp 8% 33% 30%
65 unknown32b 8% 26% 22%
92 hexopyranose 8% 56% 45%
34 unknownl15a 8% 19% 17%
132 unknown74 8% 17% 17%
141 unknown81 8% 31% 25%
189 unknown144 8% 42% 27%
196 unknown159 8% 28% 25%
86 sorbitol 8% 27% 23%
193 unknown149 8% 34% 27%
51 unknown22 8% 24% 20%
88 shikimic_acid 8% 18% 18%
126 unknown67 8% 24% 20%
14 unknown07b 8% 10% 13%
106 unknown52 8% 32% 26%
125 unknown66 9% 40% 34%
190 unknown145 9% 34% 30%
101 3-Phosphoglycerate 9% 25% 23%
20 Serine_O,0_ 9% 28% 23%
164 unknown102 9% 20% 19%
69 unknown35 9% 34% 31%
116 ascorbic_acid 9% 21% 21%
156 sorbitol-6-phosphate 9% 23% 20%
178 unknown127 9% 48% 27%
103 unknown49 10% 44% 35%
119 unknown61 10% 49% 40%
Lactate 10% 22% 21%
17 unknown08 10% 20% 19%
197 unknown160 10% 39% 32%
149 unknown87 11% 27% 26%
192 unknown148 11% 35% 27%
28 Threonine 11% 21% 20%
120 unknown62 11% 26% 26%
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Average over all Time Points
% Standard Deviation

Peak Metabolite

195 unknown157 11% 33% 28%
177 unknown126 11% 29% 23%
181 unknown130 11% 26% 25%
12 unknown(07 12% 25% 23%
127 unknown68 12% 40% 31%
109 unknown5b5 12% 57% 47%
43 4-Aminobutyric_acid 12% 25% 23%
62 homocystine_2_ 13% 27% 26%
16 unknown8a 13% 21% 22%
180 unknown129 14% 32% 30%
191 unknown147 14% 28% 28%
39 3-hydroxy-glutaric_acid 14% 43% 37%
183 unknown133 14% 49% 45%
138 unknown79 14% 31% 30%
32 beta-alanine 3 14% 40% 34%
108 unknown54 14% 51% 42%
6 Glycine_N,O 15% 51% 43%
8 Oxalic_Acid 15% 36% 32%
107 unknown5b3 15% 27% 28%
129 unknown71 15% 41% 36%
102 unknown48 15% 48% 43%
124 unknown65 15% 44% 41%
168 unknown108 16% 32% 37%
5 unknown03 18% 16% 22%
80 unknown4?2 18% 42% 35%
157 unknown94 19% 25% 33%
123 unknown64 19% 26% 31%
59 Glutamate Tri_ 19% 54% 47%
128 unknown?70 21% 29% 36%
166 unknown106_phosphoderivative | 21% 34% 42%
82 unknown44b 22% 25% 34%
76 unknown40 22% 40% 35%
122 Tyrosine 23% 43% 49%
184 unknown134 23% 28% 37%
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Average over all Time Points

% Standard Deviation

Peak Metabolite

72 unknown37b 23% 45% 41%
144 unknown83 23% 35% 46%
11 unknown06 23% 28% 34%
179 unknown128 24% 31% 45%
67 unknown33b 24% 51% 43%
105 unknown51 24% 65% 54%
172 unknownl111 25% 31% 46%
45 unknown19 25% 53% 45%
10 Ethanolamine 25% 55% 48%
42 unknown18 25% 60% 51%
131 unknown73 26% 47% 47%
49 Asparatate_232m/z 26% 59% 53%
87 actonic_acid(2) 26% 38% 52%
66 unknown33 26% 52% 50%
77 Asparagine_N,N 27% 38% 39%
75 ornithine 28% 31% 35%
97 unknown45 36% 48% 60%
31 Unknown14 37% 51% 60%
27 unknown13 47% 33% 54%
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Appendix VII. Control and Perturbed Graphs
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