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An emerging trend in processor architecture seems to indicate the doubling of the

number of cores per chip every two years with same or decreased clock speed. Of partic-

ular interest to this thesis is the class of many-core processors, which are becoming more

attractive due to their high performance, low cost, and low power consumption. The main

goal of this dissertation is to develop optimization techniques for mapping algorithms and

applications onto CUDA GPUs and CPU-GPU heterogeneous platforms.

The Fast Fourier transform (FFT) constitutes a fundamental tool in computational

science and engineering, and hence a GPU-optimized implementation is of paramount

importance. We first study the mapping of the 3D FFT onto the recent, CUDA GPUs

and develop a new approach that minimizes the number of global memory accesses and

overlaps the computations along the different dimensions. We obtain some of the fastest

known implementations for the computation of multi-dimensional FFT.

We then present a highly multithreaded FFT-based direct Poisson solver that is op-

timized for the recent NVIDIA GPUs. In addition to the massive multithreading, our al-



gorithm carefully manages the multiple layers of the memory hierarchy so that all global

memory accesses are coalesced into 128-bytes device memory transactions. As a result,

we have achieved up to 375GFLOPS with a bandwidth of 120GB/s on the GTX 480.

We further extend our methodology to deal with CPU-GPU based heterogeneous

platforms for the case when the input is too large to fit on the GPU global memory.

We develop optimization techniques for memory-bound, and computation-bound appli-

cation. The main challenge here is to minimize data transfer between the CPU memory

and the device memory and to overlap as much as possible these transfers with kernel

execution. For memory-bounded applications, we achieve a near-peak effective PCIe bus

bandwidth, 9-10GB/s and performance as high as 145 GFLOPS for multi-dimensional

FFT computations and for solving the Poisson equation. We extend our CPU-GPU based

software pipeline to a computation-bound application-DGEMM, and achieve the illusion

of a memory of the CPU memory size and a computation throughput similar to a pure

GPU.
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Chapter 1: Introduction

The advances in computing hardware over the past five decades have followed

Moore’s Law [2], which states that the density of transistors on a chip doubles approx-

imately every 2 years. At the same time, software has been enjoying performance im-

provements due to increased clock frequencies enabled by the shrinking size of the tran-

sistors. However, the free performance lunch [3] of the general-purpose single-core pro-

cessors has stopped around 2005, due to a number of physical constraints such as power

consumption and wire delays. Parallelism, which comes in various forms, is the only

direction forward to enable continued performance improvement for demanding applica-

tions. At the lowest level, instruction level, pipelining, superscalar execution, and SIMD

vector instruction execution have been widely used in modern processors. At the chip

scale, multi-core and many-core processors dominate today. Clusters of multi-socket,

multi-core CPU processors are typical in high end computing systems. General purpose

graphics processing units, or GPGPUs, have gained a major place in the area of high

performance computing (HPC) due to their advantages in performance/cost ratio, energy

consumption and improved programmability. GPU-based large scale clusters are promis-

ing platforms to address complex problems including those involving big data. Novel

algorithms that are aware of the underlying architectures are often required to exploit the
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substantial available resources in current HPC platforms. In this dissertation, we consider

two types of platforms: single NVIDIA GPU platforms and CPU-GPU heterogeneous

platforms, which are the basic components of the GPU based clusters and develop novel

methodologies to map complex scientific applications onto such platforms.

1.1 Parallel Computing Architecture

According to Hennessy and Patterson, computer architecture comprises three as-

pects: instruction set architecture, organization or micro architecture design, and hard-

ware [4]. In this thesis, we take the programmer’s perspective in that the architecture of a

computing system defines the available computing resources, their interactions, and how

these resources can be scheduled and coordinated.

High performance depends heavily on parallelism and exists in several forms. Ex-

amples of parallelism [5] in microprocessor design include: bit level parallelism, pipelined

instruction execution, multiple functional units and multiple cores.

Flynn’s taxonomy [6] has been the classic terminology used to distinguish paral-

lel computing architectures based on the concurrent instructions and data streams. It

includes:

• SISD - Single instruction stream single data stream

This is the traditional sequential CPU architecture; at any one time, only a single

instruction is executed, operating on a single data time. However, it can exploit

instruction-level parallelism, such as pipelining, superscalar and speculative execu-

tion.
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• SIMD - Single instruction stream, multiple data streams

For this type, there can be multiple processing units, each operating on its own

data item, but they all are executing the same instruction. The SIMD architecture

exploits data-level parallelism and includes classic examples such as vector archi-

tectures and multimedia extensions to standard instruction sets.

• MIMD - Multiple instruction stream, multiple data streams

Here, multiple processors operate on multiple data items, each owning its own

memory and executing its own independent instructions. The MIMD architecture is

more flexible than SIMD and is more generally applicable but it is more expensive

in both hardware cost and the software overhead in terms of communication and co-

ordination. The range of MIMD architectures spans the range from the tightly cou-

pled architectures such as multi-core CPU processors (shared memory MIMD ar-

chitecture) and loosely coupled architectures such as clusters and warehouse-scale

computers (distributed memory MIMD architecture) [4].

• MISD - Multiple instruction streams, single data stream

No commercial multiprocessors of this type have been built to date [4]. But they

are applicable to specific scenarios such as pattern matching [7] or for redundant

systems such as space flight controllers [8].

In the following, we discuss several important aspects in parallel architectures and

variations of the traditional Flynn’s taxonomy.
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1.1.1 SIMD

The SIMD architecture is designed to exploit data-parallelism. The first SIMD

instructions were essentially used to execute a vector of data with a single instruction

through pipelined processors with a throughput of one word at a time. The first modern

SIMD machines, e.g. Thinking machines CM-1 and CM-2, had thousands of limited-

funtionality processors that would execute the same instruction on thousands of operand

pairs simultaneously. Abundant data parallelism prevails in the context of scientific ap-

plications and graphics/video applications and their demands for higher performance are

expected to grow especially in the era of big data.

SIMD support is now very common in modern CPUs and is used to improve per-

formance for data parallel computations, real-time graphics processing, and digital signal

processing. Such applications require the same type of operations to be repeatedly applied

on a large amount of data. By amortizing the cost of decoding the common instruction

and accessing, and processing the data elements with memory architecture friendly access

pattern, a SIMD processor can achieve a speedup proportional to the vector size.

As early as 1996, MMX, a SIMD instruction set of integer operations, was intro-

duced by Intel. A couple of years later, the 3DNow! [9] and SSE, SIMD instruction set

extensions to the x86 architecture, were introduced by AMD and Intel for their processors

(in 1998 and 1999 respectively). SSE targets single precision floating point operations us-

ing its designated register set (XMM registers) and was subsequently expanded by Intel

to SSE2 through SSE4, achieving high popularity.

Advanced Vector Extensions (AVX), AVX2 and AVX-512 are the most recently

4



SIMD extension to the x86 instruction set architecture for microprocessors supported

or announced from Intel and AMD. They support SIMD instructions of 128-bit/256-bit,

256-bit and 512-bit respectively along with a trend of the increase width. The AVX is

supported on the Sandy Bridge and Ivy Bridge processors by Intel and on the Bulldozer,

Piledriver processors and Trinity series APU from AMD. It features an increased register

file width (128 bits to 256 bits), a three-operand SIMD instruction format and a new

coding scheme that introduces a new set of code prefixes that extends the opcode space.

1.1.2 Multi-threading

Multi-threading is a technique that allows multiple streams of execution to take

place concurrently within the same program, each stream processing a different transac-

tion or message [10]. To begin with, we address two important concepts: thread and pro-

cess. A process, typically created by the operating system, requires a significant amount

of “overhead”. Processes contain information about program resources and program ex-

ecution state, including operating system related IDs, environment, working directory,

registers, stack, inter-process communication tools, etc. Threads use and exist within

these process resources, yet are able to be scheduled by the operating system and run as

independent entities by duplicating only the bare essential resources that enable them to

exist as executable code.

There are mainly three types of multi-threading: 1) block multi-threading, 2) in-

terleaved multi-threading, and 3) simultaneous multi-threading. The first two types of

multi-threading both belong to temporal multithreading. Block multi-threading refers to
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the case that one thread runs until it is blocked by a long latency event when the OS

switches in another ready-to-run thread. This type of multi-threading is also called coop-

erative or coarse-grained multithreading. Interleaved multi-threading [11] aims to reduce

the data dependency stalls by enabling switching threads of execution on every clock cy-

cle. Interleaved multi-threading result in multiple-context processors but such kind of

processors require larger shared resources such as caches and TLBs to avoid thrashing

between the different threads. On the other hand, for simultaneous multithreading, more

than one thread can issue instructions on each cycle. Simultaneous multithreading is most

notably applied to superscalar processors. Superscalar processors allow one thread to is-

sue multiple instructions per cycle to explore instruction level parallelism. Simultaneous

multithreading aims at increasing the utilization of processing resources.

Hyper-threading (HT) [12] is a classic example of simultaneous multithreading. Ar-

chitecturally, an HT processor consists of two logical processors, each of which has its

own processor architectural state, but sharing the execution resources. The architectural

state resembles the context of a thread, including a number of data and control registers,

and their own advanced programmable interrupt controller. On the other hand, the exe-

cution resources include the execution engine, the caches, the system-bus interface and

the firmware. One key implication of HT is that from a software (OS’s or programmers’)

perspective, the one physical processor appears to be two logical processors. Instructions

from both threads are dispatched for execution by the execution source of the same phys-

ical processor core simultaneously. Out-of-order instruction scheduling is used to further

explore instruction level parallelism. Due to the specific optimization target, namely,

increasing the resource utilization, the actual performance scalability of applying hyper
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threading or not is highly dependent on the nature of the application [10].

1.1.3 Graphics Processing Units (GPUs) and SIMT

The popularity of CPU-assisted real-time 3D graphics led to the development of

hardware-accelerated 3D graphics, and eventually led to the popularity of the Graphics

Processing Unit (GPU). Each of the multiprocessors of a GPU can be viewed as a SIMD

architecture with substantially enhanced resources.

GPUs were introduced in 1999, replacing fixed-function graphics pipelines with

fully programmable processors, ushering in the era of GPU-based high performance com-

putation systems. By 2003, early pioneers were using graphics APIs to perform general

purpose scientific calculations on GPUs. BionicFX, an audio processing company, used

an NVIDIA GeForce 6800 card with their custom software architecture to “render” the

data as needed. Since then, General Purpose GPUs, have been widely used to accelerate

a wide range of applications.

On one hand, graphics processor providers have worked to develop GPUs specif-

ically as general-purpose streaming processors, such as the NVIDIA Tesla series cards.

On the other hand, GPGPU programming models and languages have evolved signifi-

cantly. By 2007, NVIDIA addressed this need by introducing CUDA (Compute Unified

Device Architecture), a general purpose parallel computing platform and programming

model, which leverages the parallel compute engine in NVIDIA GPUs to allow efficient

solutions for many complex computational problems.

To emphasize that CUDA is more flexible than the SIMD extension, for exam-
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ple, allowing threads within the same warp to branch into different execution streams,

NVIDIA extends the SIMD notion to SIMT (Single Instruction, Multiple Thread). The

SIMT notion also emphasizes its hardware support of context switching of warps in the

same thread block. Warp execution switching is a key CUDA technique to hide the high

memory latency or any other high latency instructions. The high memory latency trades

for the high memory bandwidth and less complicated memory caching mechanism.

A GPU consists of a number of streaming multi-processors and each streaming

multi-processor contains a number of streaming processors. The execution runtime sched-

ules thousands of threads in terms of thread blocks and dispatch blocks onto individ-

ual multi-processors based on resource requirements. Unlike CPUs being low latency,

low throughput processors, GPUs are high latency, high throughput processors. Threads

within a block are in turn organized as warps to be scheduled into execution. GPUs hide

memory latency by switching stalling warps with ready-to-execute warps very fast. Thus,

a good GPU application is able to hide the high memory latency while benefit from the

high memory bandwidth and eventually give every high overall throughput.

Recent GPUs utilizing the CUDA programming model have attracted considerable

interest in the high-performance computing community due to their extremely high peak

performance, low cost, and the relative simplicity of the programming model. Moreover,

these many-core processors tend to achieve much better performance-to-power ratios than

the corresponding multicore CPUs. At the same time they enable scaling to thousands

of cores on a single card. The power efficiency comes from the fact that processing

instructions is actually expensive compared to floating point operations; using SIMD can

amortize such overhead.
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The CUDA programming model uses fine-grained data parallelism and thread par-

allelism, nested within coarse-grained data parallelism and task parallelism. Problems

are partitioned into coarse sub-problems that can be solved independently in parallel by

blocks of threads, and each sub-problem can be organized into finer pieces that can be

solved cooperatively in parallel by all threads within the block [13]. The GPU executes

data parallel functions called kernels using thousands of threads. A typical CUDA ap-

plication achieves good performance by maximizing the utilization of the processor and

memory resources.

1.1.4 MIMD

For MIMD computers, there are multiple processing elements, each of which has

its own processor and memory. At each step, each processing element loads a separate

instruction using its own program counter and a separate data element, applies the instruc-

tion to the data element, and stores a possible result back into memory. The processing

elements work asynchronously relative to each other and communicate through an inter-

connection network. Clusters are typical examples of the MIMD model. Nearly all large

scale parallel computers are based on the MIMD model, which can be further classified

in terms of their memory organization and their interconnections. All supercomputers are

clusters of MIMD processors with likely SIMD support in an individual processor and/or

general purpose hardware accelerators. Memory can be organized as 1) distributed mem-

ory, 2) virtually shared memory or 3) shared memory. With distributed memory, each

processor has its own physical memory and its own address space; with virtually shared
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memory, the physical memory is typically distributed but there is a software layer that

manages the overall memory as a single address space; with shared memory, all proces-

sors shared the same address space through hardware support.

From the programmer’s point of view, memory can be viewed as distributed address

space or shared address space. In the shared address space programming model, any pro-

cessor can access any memory location, so its programming is comparatively easier rela-

tive to that of the distributed address space. The shared memory and the virtually shared

memory make use of the shared address space and result the so-called UMA (Uniform

Memory Access) and NUMA (Non-Uniform Memory Access). As the name indicates,

UMA also requires that the access time from different processors to memory locations

is the same while NUMA does not. However, the physically distributed property of the

NUMA memory requires cache coherence between copies of a memory location, which

makes the system harder to build.

Finally, for the distributed address space model, a processor can exchange informa-

tion with another through message passing explicitly. One potential advantage of such

systems is better potential scalability; however, achieving scalability of complex applica-

tions on a large system is usually non-trivial.

1.2 Parallel Programming Models

A parallel programming model presents an abstraction of the programming aspects

of a parallel architecture or system. Such abstraction allows you to express concurrency

and control flows of the objective application in particular ways. Parallel programming is
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more complicated than sequential programming. There are several parallel programming

models that are commonly used: 1) implicit model, 2) shared memory, 3) distributed

memory, 4) data parallel and 5) task parallel, etc. [14]. We note that these programming

models are not specific to a particular type of machine or memory architecture. In fact,

any of these models can (theoretically) be implemented on any underlying hardware [14],

though maybe unrealistically expensive.

1.2.1 Implicit Model

In an implicit model, the programmer does not need to take care of the concurrency

or parallelism; instead, the compiler or interpreter would analyze the source code and ex-

tract the parallelism automatically based on the inherent language features. The implicit

model is typically found in domain-specific languages where the concurrency is abundant

for a typical application. Since the programmer is free of controlling parallelism manu-

ally, he/she can focus on expressing the algorithms. A pure implicitly parallel language

does not require special directives, operators or functions to enable or guide parallel ex-

ecution. HPF [15], LabVIEW [16], and MATLAB M-code [17] are typical examples of

implicit parallelism. A frequent outcome of implicit parallelism is the less-than-optimal

parallel efficiency, partially because the automatic parallelism is under-explored, also due

to the fact that domain specific programmers tend to focus more on correctness rather

than strive for performance.
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1.2.2 Shared Memory Model

In a shared memory model, a program is basically a collection of threads having ac-

cess to a shared memory. Communication is conducted implicitly by writing and reading

shared variables, and special protection mechanisms such as locks, semaphores, atomic

operations, and monitors are used to control concurrent access to shared resources. An

advantage of this model is the relative straightforward programming concepts in terms

of the data “ownership” - shared or private. The relatively low overhead of communica-

tion also allows very efficient utilization of the parallel computing resources. A handful

of shared memory programming languages or systems are playing a significant role in

high performance computing. Examples include Pthreads [18], OpenMP [19], Thread

Building Blocks (TBB) [20], CILK [21], and Java threads [22]. A potential performance

issue may result from the sophisticated memory hierarchy to ensure cache/data coherence.

For example, it can incur significant overhead from cache refreshes and bus traffic when

multiple processors are using the same data; this is especially severe for NUMA shared

memory computers.

For shared memory models, the most prevalent theoretical model is the Parallel

Random Access Machine (PRAM) model [23]. In the PRAM model, an arbitrary number

of processors have access to an unboundedly large memory and operate synchronously on

a shared input to produce some output. This is essentially a parallel version of the classic

RAM model. The Parallel Memory Hierarchy (PMH) [24] model was proposed later,

which uses a single mechanism to model the costs of both interprocessor communication

and memory hierarchy traffic.
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GPU programming models such as OpenCL and CUDA belong to the shared mem-

ory model. These shared memory programming models share similarities of underlying

hardware in that they adhere to the PMH model of computation. Modern CPUs and GPUs

all exhibit such a memory hierarchy where memory locality is typically exploited in an

effort to match the processor performance. For example, memory hierarchies composed

of registers, L1, L2 and L3 caches are typical in the current Intel and AMD’s high-end

processors such as the Intel Xeon E5 family processors. Registers, shared memory, L1,

L2 caches and the global memory form the standard memory hierarchy of NVIDIA’s most

recent GPUs (e.g. Tesla K40).

A very important example of shared memory programming is OpenMP (Open Mul-

tiprocessing), which is a specification for a set of compiler directives, library routines,

and environment variables that can be used to specify high-level parallelism in Fortran

and C/C++ programs. Programmers specify a number of compiler directives to guide the

parallelism. The compiler directives, library routines and environment variables together

then determine runtime behavior. A master thread forks a number of parallelizing work

threads according to the preprocessor directives, which then join back into the master

thread after completion. Both task parallelism and data parallelism can be achieved using

OpenMP in this way. The core elements of OpenMP are the constructs for thread cre-

ation, workload distribution (work sharing), data-environment management, thread syn-

chronization, user-level runtime routines and environment variables [19].

Along with the simplicity and the productivity of the programming model of OpenMP,

a notable drawback is that its lack of performance scalability in general. Another weak-

ness is their limited expressiveness and that linear scalability is hard to achieve for a broad
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application areas due to the high possibility of non-parallelizable tasks such as data de-

pendency and non-parallelizable resources (most of which may be alleviated to a certain

level given programmers’ effort).

A more flexible example of the shared memory programming model is the POSIX

Threads (Pthread), the POSIX (Portable Operating System Interface) standard API for

creating and manipulating threads. Implementations of Pthread API are available on var-

ious platforms such as Unix-like operating systems such as GNU/linux, Mac OS X, etc,

as well as Microsoft Windows. Most hardware vendors now support Pthreads in addition

to their proprietary APIs. Pthreads are defined as a set of C language programming types

and procedure calls, implemented with a pthread.h header file and a thread library. As

all threads reside within the same address space as the process, which provide potentially

efficient inter-thread communication. In many cases, programming with pthreads is eas-

ier to express the algorithms and can achieve optimum performance for shared memory

processor architecture based application. Moreover, threaded applications enjoy practical

advantages over non-threaded applications in several ways: 1) the CPU work can be over-

lapped with “time-consuming” I/O operations; 2) Priority or real-time tasks can be sched-

uled accordingly; and 3) asynchronous events can be handled by interleaved tasks. [18]

However, a notorious pitfall for Pthread programming is the uneasiness of debugging in

that data race bugs and deadlocks are easy to create and hard to locate.
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1.2.3 Message Passing Model

In a message passing model, a parallel program consists of a number of cooperative

processes, each with its own memory. Parallel processes exchange data through passing

messages to one another. Process synchronization is done through waiting for messages

to be delivered. Message passing systems can be either synchronous or asynchronous

depending on the way the sender and receiver wait for the messages. Messages may have

tags that can be used to sort messages. Two notable message passing models are the

Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) [25].

Message Passing Interface (MPI) is a message-passing library interface specifica-

tion aiming at portability and ease of use. It is now a de facto standard specification

for varied parallel architectures and is the dominant model used in the high-performance

computing community. MPI is widely available including vendor-supplied implementa-

tions and royalty-free implementations. The standard defines the syntax and semantics of

a core library routines useful to a wide range of users writing portable message-passing

programs in Fortran and the C programming language. There has been three major gener-

ations of MPI standard: MPI 1.X, MPI 2.X and MPI 3.0. Popular MPI implementations

include MPICH, MPICH2, Open MPI, LAM, MVAPICH2, etc. [26]

MPI is extremely portable - it is suitable for general MIMD or SPMD programs

running distributed memory multiprocessors, networks of workstations, multi-core shared

memory processors or a hybrid system [26]. In the beginning, MPI was designed for

distributed memory architectures, which were becoming increasingly popular at that time.

Later, shared memory SMPs were combined over networks, creating hybrid distributed
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memory/shared memory systems. MPI implementations were extended to perform on

both types of underlying memory architectures. However, the programming model is still

a distributed memory model, despite the underlying physical architecture of the machine.

In this programming model, the programmer is responsible for identify concurrency and

implementing parallel algorithms using MPI constructs explicitly [27].

MPI standards includes the following: 1) Point-to-point communication, 2) Datatypes,

3) Collective operations, 4) Process groups, 5) Communication contexts, 6) Process topolo-

gies, 7) Environmental management and inquiry, 8) The info object, 9) Process creation

and management, 10) One-sided communication, 11) External interfaces, 12) Parallel file

I/O, 13) Language bindings for Fortran and C, and 14) Tool support [26].

The advantages of using MPI include the following [27]:

• Standardization – MPI is the de facto standard message passing library and is sup-

ported on virtually all HPC platforms. It has practically replaced all previous mes-

sage passing libraries.

• Portability – There is no need to modify the source code when porting the applica-

tion to a different platform that supports (and is compliant with) the MPI standard.

• Performance Opportunities – Vendor implementations should be able to exploit

native hardware features to optimize performance.

• Functionality – A good number of routines are defined: over 115 routines in MPI-1

alone.

• Availability – A variety of implementations from vendors or from the public domain
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are available.

PVM (Parallel Virtual Machines), on the other hand, is a set of software tools and

libraries that emulate a general-purpose heterogeneous concurrent computing framework

on interconnected computers of different architecture and operating systems. The objec-

tive is to enable utilization of such a collection of computers for concurrent or parallel

computation. The individual computers can be shared- or local-memory multiprocessors,

vector supercomputers, specialized graphics engines, or scalar workstations and PCs. The

interconnection network is heterogeneous, such as Ethernet or FDDI. PVM consists of a

run-time environment and library for message-passing, task and resource management,

and fault notification. While PVM will not automatically make a commercial software

package run faster, it does provide a cost effective way for large computational problems.

PVM allows for world-wide distributed computing with tens of thousands of users [25].

1.2.4 Parallel Programming Abstraction and API

The learning curve and development lifecycle of parallel programs are two major

obstacles for developers who desire to adopt a certain programming model. Therefore,

in addition to these standard raw parallel programming models, and highly abstract par-

allel programming models, library APIs which free developers from keeping track of the

underlying communication and synchronizations have emerged.

MapReduce [28] is probably one of the most popular parallel programming models

in the era of big data. A MapReduce system normally consists of a large number of com-

modity machines and a specialized file system with a runtime framework to manage job
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scheduling, synchronization, and communication. Users express solutions to real-world

problems in terms of a number of map and reduce functions, and the runtime framework

would take care of the actual execution. It aims at scalability for large scale problems.

The low cost, high performance, and energy-efficiency features of GPGPUs offer

promising solutions for a wide range of real-world applications: Engineering/Manufac-

turing, Financial Services, Life Sciences, Entertainment and Digital Content Creation,

Earth and Geo sciences, etc [29]. Various acceleration solutions such as OpenACC [30],

PyCUDA [31], MATLAB GPU Computing [32], ArrayFire [33], etc allows easier access

to NVIDIA’s GPUs’ extremely high processing capabilities in a relatively abstract way.

1.3 Supercomputing trends

1.3.1 History of Supercomputers

In the 1960s, Seymour Cray, Jim Thornton, and Dean Roush and about 30 other

engineers built the CDC 6600 using silicon transistors made by Fairchild Semiconductor.

With a relatively high speed clock and refrigeration cooling, the 6600 outran all com-

puters of the time by about 10 times. It was dubbed a supercomputer and defined the

supercomputer market when a number of CDC6600 were sold at $8 million each. This

introduced the Cray-era of supercomputing, that spanned from mid-1970s to 1980s when

a relatively small number (1-8) of vector processors were used to crunch numbers.

In the 1990s, the concept of massive parallelism was key to supercomputers, with

thousands of processors connected by a high-speed network. In 1993, the Top500 [34]

project was started. It ranks and details the 500 most powerful (non-distributed) computer

18



systems in the world twice every year at International Supercomputing Conference in

June and Supercomputing Conference in November respectively. The yardstick is based

on the Rmax from LINPACK MPP [35]. The Intel ASCI Red supercomputer, a mesh-

based MIMD massively-parallel system with over 9000 computer nodes and well over

12 TB of disk storage, was the first system ever to break the 1TFLOPS barrier on the

MP-Linpack benchmark in 1996. Significant progress has been made which lead to the

introduction of more than 30 top supercomputers in the world which can perform more

than 1 PetaFlops for the Top500 benchmark, according to the Nov 2013 list. The top

1 supercomputer NUDT Tianhe-2 from Guangzhou, China, is rated at 33.86 PetaFLops

performance, almost twice as the top 2 Titan from Oak Ridge National Laboratory, in

Tenneessee, USA.

1.3.2 Exascale Computing

Exascale computing refers to computing systems capable of at least one Exaflops

(1018), with a projected implementation by 2018 at SC’09.

1.3.2.1 Driving Applications

High-fidelity simulations of real-word systems constitute the greatest frontiers in

computational physics, engineering and chemistry. Petascale computing opened the door

for such real-world system simulations which currently suffer limitations in terms of tem-

poral and spatial scales. “Predictive” science and engineering calculation requires Ex-

ascale computing capability to handle the complexity, for example, physical fidelity of
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real-world systems [36].

Supercomputers have been widely used in various scientific and engineering ar-

eas, such as computational fluid dynamics, N-body simulations, weather forecast, reactor

design simulation, bioinformatics and molecular dynamics, etc. Furthermore, with the

Exascale computing, great transformation into high-fidelity simulation could take place

in the following areas [36]:

• Aerospace, Airframes, and Jet Turbines

• Astrophysics

• Biological and Medical Systems

• Climate and Weather

• Combustion

• Materials Science

• Fusion Energy

• National Security

• Nuclear Engineering

1.3.2.2 Challenges of Exascale Computing

Exascale computing is expected to bring dramatic changes in high performance

computing architectures as well as in software applications and algorithms. Furthermore,

a key element of the strategy toward Exascale computing is the co-design of applications,

architectures, and programming environments [1].

On the hardware side, the key issues are power and cooling constraints. The tradi-
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tional Moore’s law of doubling the clock speeds and transistor density every 18-24 months

has been replaced by a doubling of cores/parallelism due to the power consumption, wire

delays and cooling constraints, etc. On the other hand, the aggregated computing power

of supercomputers requires hardware breakthrough to enable exascale computing later

this decade, at least within any reasonable power budget [1]. The rule of thumb number

for supercomputing power cost is around $1M per MW energy costs [1]. According to a

2013 DOE report [36], an exaflop system made entirely out of today’s technology would

probably cost $100B, requiring $1B per year to supply the needed power, and require

its own dedicated power plant to produce that power. Therefore, to keep Total Cost of

Ownership manageable, DOE’s Exascale Initiative Steering Committee adopted 20MW

as the upper limit for a reasonable system design (movable but at great cost and design

risk) with a platform capital cost under $200M.

The Green500 List provides some technology paths towards exascale computing:

heterogeneous supercomputing systems totally dominates the top 10 spots on the Nov

2013 release list. A heterogeneous system uses computational building blocks that con-

sists of traditional multi-core CPUs, general purpose GPUs and/or co-processors. Het-

erogenous systems of Exascale will have chips with thousands of tiny processor cores

and a few large ones. This is due to power consideration and core functionality and better

on-chip memory bandwidth (avoids chip pin limit). However, even projecting the top 1

Green supercomputer TSUBAME-KFC’s energy efficiency to exascale, the extrapolation

to an exaflop supercomputer would be 222MW, well beyond from the DOE’s target of

20-MW system power envelope [37].

Projecting from the current technology, by 2018 it is expected to be easy to put
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10 Teraflops on a single chip that consumes 100W. But to supply the processing units

with modest memory bandwidth to floating point ratio of 0.2, it would require 2000W

power for the memory. To meet such power budget target, it is expected that hardware

breakthroughs including memory subsystems, 3D memory, 3D packaging, large-scale

optics based interconnects, etc. are expected to take place [1].

On the software side, architecture-awareness algorithm and software design is a key

issue. Achievable performance per watt will likely be the primary measure of progress.

Data movement is expensive, in the sense of power consumption and application perfor-

mance. Table 1.1 shows an approximate power costs of different data operations credited

to John Shalf [1] and minimizing data movement and performing more work per unit data

movement is critical in future algorithms and software design.

Table 1.1: Approximate Power Costs (in picoJoules) [1]

2011
DF FMADD flop 100 pJ
DP DRAM read 4800 pJ

Local Interconnect 7500 pJ
Cross System 9000 pJ

Specific critical issues and features at Petascale and Exascale algorithm and soft-

ware design include the following [38]:

• Reduce the synchronization and communication

The traditional fork-join model generates choke points at the join and wastes cycles.

It makes sense to break the traditional fork-join model or build data-dependence

based synchronization. Communication avoidance algorithms [39] are more per-
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formance friendly in such a massively parallel environment. At a higher level, it is

more appealing to use methods which have lower bound on communication.

• Using mixed precision methods

Most processors that are targeting scientific computations execute twice flops as

fast for single precision as double precision operations. The 2x data size difference

between them also indicates 2x speed difference for data movement.

• Auto tuning or adaptive algorithms

Automatic performance tuning uses machine time instead of human time for tuning

to find the optimal or optimum execution plan by searching over possible imple-

mentations. Atlas (BLAS) [40], FFTW [41], Sprial(DSP) [42], PhiPAC(BLAS)

[43], etc are some of the most popular auto tuned libraries. In the era of Exascale

computing, architectures would be much more complicated and we would resort to

auto tuned programs using smart search space trimming. At the very least, auto-

tuning could ease code generation for new architectures and possibly help software

developers to learn the new architectures. Aside from the auto-tuned libraries and

subroutines, additional adaptive runtime could be used to resolve the precedence-

constraints as necessary to avoid wasted cycles during synchronization [44].

• Fault resilient algorithms

The chance of component failure grows with the size of the system. Today, Se-

quoia BG/Q node failure rate is 1.25 failures/day; with 1000x processing elements

increase, runtime errors would be much more frequent, and necessary measures are

required to identify and correct such errors.
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• Hierarchical Programming Model

It is unlikely to support globally flat bandwidth across a system for Exascale with-

out major breakthroughs in packaging technology or photonics. Moreover, due to

the heterogeneity of the future system, a hybrid of multi-core, many-core, and mas-

sively parallel accelerating cores, different types of parallelism needs to be distin-

guished in a programming environment. Hierarchical parallel programming model

(rather than the flat MPI or shared memory/PRAM model) that allows algorithm

designers to express and control data locality, data flow and parallel granularity and

hierarchy is necessary [1].

We have discussed above the Exascale computing challenges from the hardware and

software perspective separately. The application-driven design process aims to finding the

best technology to run the code; on the other hand, the technology driven design process

is to fit your application to the technology. Either solution is sub-optimal to the best pos-

sible achievable performance. Co-design of applications, architecture, and programming

environment was proposed as one key element to meet the Exascale challenges. It is

believed to be an unprecedented opportunity for application and algorithm developers to

influence the direction of future architectures so that the meet DOE mission needs [1].

A living example of the good performance of co-design is the development of

Anton [45] - a massively parallel supercomputer designed and built by D. E. Shaw Re-

search. It is a special purpose system for molecular dynamics simulations of proteins and

other biological macromolecules. The building blocks of the system are two subsystem

based specialized ASICs to deal with two different calculations with different underly-
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ing physics mechanisms for the simulation. The resulting system runs several orders of

magnitude faster and made previously impossible simulations possible.

1.3.3 GPU or CPU-GPU heterogeneous clusters

The massively-parallel hardware architecture and high performance of floating point

arithmetic and memory operations on GPUs match the requirements of computational de-

manding scientific computing applications, leading to the wide use of GPU accelerators

on HPC clusters. Such clusters are superior in terms of space, power, cooling demands

and reduced number of operating system images that must be managed relative to tradi-

tional CPU-only clusters of similar aggregate computational power [46].

The NVIDIA’s Tesla series GPUs and Intel’s Xeon Phi Coprocessors are two of

the most frequently used accelerators for the top supercomputers on the Top500 list. For

example, the top 1 supercomputer Tianhe-2 uses Intel Xeon Phi 31S1P Coprocessors and

the top 2 supercomputer Titan uses NVIDIA Tesla K20x cards. Another notable fact is

that all the top 10 supercomputers on the Green500 list are accelerated by NVIDIA Tesla

K20x/K20m GPU.

The scale of the clusters also varies from large-scale supercomputers with more than

18K nodes as in Titan [47], to relatively smaller scale clusters with 16 nodes as in [48]. A

larger amount of work have been reported using various GPU or CPU-GPU based clus-

ters in recent years where CUDA applications are extended into multiple GPUs using

OpenMP, MPI, and other standard parallel programming framework. Most of the cluster

based work try to optimize the inter-node interconnection network/communication and/or
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CPU-GPU memory transfer to improve the performance when communication is the bot-

tleneck [49], [48]. Other work seeks algorithmic improvement by altering algorithms

using the fixed-digit representation of floating-point data as long as the necessary/preci-

sion is preserved [50] [51].

With the increasing variety of GPU acceleration solutions, OpenCL [52] has been

designed for general purpose programming for GPUs as a platform-independent program-

ming model. It is available on most platforms including NVIDIA/AMD/ARM GPUs,

Intel/AMD’s multi-core CPUs, as well as Intel’s MIC architecture. However, OpenCL

requires performance-reducing initializations that do not exist in other languages such as

CUDA. In [53], Du et. al pointed out in 2011 that while the Khronos group developed

OpenCL with programming portability in mind, performance is not necessarily portable.

To simplify parallel programming of heterogeneous CPU/GPU systems, companies

including Cray, NVIDIA, PGI and CAPS developed a new parallel programming standard

- OpenACC (Open Accelerators) in 2011. It bares similarity of OpenMP which allows

programmers to provide simple “directives” to the compiler for parallelism. The Ope-

nACC API describes a collection of compiler directives to specify loops and regions of

code in standard C, C++ and Fortran to be offloaded from a host CPU to an attached accel-

erator. OpenACC is expected to be complementary to existing HPC programing models

such as OpenMP, MPI, CUDA and OpenCL. The target users are scientists interested in

accelerators who can benefit from a simpler programming model and organizations with

a significant investment in legacy production applications that have not yet been paral-

lelized. [54]
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1.4 Mathematical Background

1.4.1 Fast Fourier Transform

The Fourier Transform and its discrete version, the Discrete Fourier Transform

(DFT), constitute some of the most fundamental tools used throughout science and en-

gineering. The introduction of the Cooley-Tukey [55] Fast Fourier Transform (FFT) al-

gorithm is considered to be a breakthrough that has led to a number of very efficient

methods for computing the DFT. These methods have enabled the widespread use of the

FFT algorithm by both practitioners and researchers in a wide range of science and engi-

neering applications such as computational fluid dynamics and digital signal processing.

Since its introduction, considerable efforts have been devoted to map the FFT computa-

tion onto various specialized and general purpose parallel architectures, as they emerged

over the years, so as to enable computational scientists to handle larger and larger scale

applications.

1.4.1.1 FFT Algorithms

The one-dimensional discrete Fourier transform of n complex numbers represented

by an array X is the complex vector represented by the array Y defined by:

Y [k] =
n−1∑
j=0

X[j]ωjkn (1.1)
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where 0≤k<n, and ωn = e
−2π
√
−1

n the nth root of unity. Various Fast Fourier Transform

(FFT) algorithms have been proposed since the early 1960’s, each of which has compu-

tational complexity of O(n log n). The most famous FFT algorithm is the Cooley-Tukey

algorithm that uses a divide-and-conquer strategy to decompose a large size DFT into

smaller size DFT’s and compute these DFT’s recursively. More specifically, let n = n1n2

and let j = j1n2 + j2 and k = k1 + k2n1 for 0 ≤ j, k < n with 0 ≤ j1, k1 < n1, and

0≤j2, k2<n2. Then Eq (1.1) can be re-written as:

Y [k1+k2n1]=

n2−1∑
j2=0

[(
n1−1∑
j1=0

X[j1n2+j2]ω
j1k1
n1

)
ωj2k1n

]
ωj2k2n2

(1.2)

Eq (1.2) expresses the DFT computation as a sequence of three steps. The first step

consists of n2 DFT’s each of size n1, called radix-n1 DFT, and the second step consists

of a set of twiddle factor multiplications (multiplications by ωj2k1n ). Finally, the third step

consists of n1 DFTs each of size n2, called radix-n2 DFT.

The Cooley-Tukey algorithm can be implemented in a number of ways depending

on the recursive structure and the input/output order. Two important variations based on

the recursive structure are the so-called the decimation in time (DIT) and the decimation

in frequency (DIF) algorithms. The DIT algorithm uses n2 as the initial radix, and recur-

sively decomposes the DFTs of size n1; while the DIF algorithm uses n1 as the initial

radix, and recursively decomposes the DFTs of size n2. In this thesis, we will focus on

the DIF algorithm.

We note the two variations regarding the input and output orderings, namely in-

order and bit-reversed order. Assuming that all the steps are carried out in-place, an exam-
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ination of Eq(1.2) indicates that, after the first step, the output array becomes XA[k1n2 +

j2], and after the twiddle factor multiplication step, the output array is XB[k1n2 + j2],

while after the 3rd step, the output array becomes of the form XC[k1n2 + k2]. A quick

comparison against the DFT output array Y [k1 + k2n1] implies that if both the radix-n1

and radix-n2 DFTs are in order, we would need a transposition of the intermediate output

array after the 2nd step so that the output is in order. However, if both the radix-n1 and

radix-n2 DFTs are computed in bit-reversed order (namely, direct butterfly execution),

and no transposition is done after the 2nd step, we would generate a size n DFT with

bit-reversed order output. In this thesis, we will use the in-order input, bit-reversed order

output since the corresponding in-place computation will allow us to better exploit the

characteristics of the global memory. However, our algorithm can be converted to the

in-order input, in-order output version accordingly.

A multi-dimensional DFT can be defined recursively as a set of DFTs along each

of the dimensions of a multi-dimensional array. In particular, the 3D DFT of a 3D array

of size I×J×K is defined as follows:

Y [i, j, k] =
K−1∑
n=0

J−1∑
m=0

I−1∑
l=0

X[l,m, n]ωilI ω
jm
J ωknK (1.3)

For each element in the DFT array, it is a summation of all the input elements multiplied

by a specific coefficient determined by the input and output indices. Clearly, the order

of the dimensions can be arbitrary, and the computational can be carried out in any order

of the dimensions. Applying the Cooley-Tukey algorithm along each dimension, we can

compute the 3D FFT on N elements in O(N logN) complexity.
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1.4.2 Tridiagonal Solver

A tridiagonal solver handles a system of n linear equations of the form Ax = d,

where A is a tridiagonal matrix, x and d are vectors. This can be represented in matrix

form by: 

b1 c1 0

a2 b2 c2

a3 b3
. . .

. . . . . . cn−1

0 an bn





x1

x2

x3

...

xn


=



d1

d2

d3

...

dn


A simplified form of Gaussian elimination, called Thomas’ algorithm, is a well-

known classical algorithm to solve this problem. The algorithm consists of two sweeps:

forward elimination and backward substitution. The forward sweep updates both the

vectors b and d, and the backward substitution determines the unknown vector x.

f o r ( i n t i = 1 ; i < n ; i ++)
{

double m = a [ i ] / b [ i −1];
b [ i ] = b [ i ] − m∗c [ i −1];
d [ i ] = d [ i ] − m∗d [ i −1];

}

Listing 1.1: Forward Elimination

x [ n−1] = d [ n−1]/ b [ n−1];

f o r ( i n t i = n − 2 ; i >= 0 ; i−−)

x [ i ] = ( d [ i ]−c [ i ]∗ x [ i + 1 ] ) / b [ i ] ;

Listing 1.2: Backward Substitution
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We make the following observations regarding Thomas’ algorithm.

• The complexity of the algorithm is O(n), and the algorithm as described seems to

be inherently sequential.

• Four one-dimensional arrays for the input a, b, c and d are needed in the general

case.

• It may appear that we need an array for the output x vector; however, the unknown

vector can be stored in the d vector during the backward substitution step.

1.4.3 Poisson Equation and Background

Projection methods are very effective in solving time-dependent incompressible

flow problems [56]. The general algorithm is based on a Helmholtz decomposition of

the velocity vector field and typically consists of two stages: in the first stage, an inter-

mediate velocity that does not satisfy the incompressibility constraint is computed at each

time step; in the second stage, the pressure is used to project the intermediate velocity

onto a space of divergence-free velocity field. To facilitate the latter, a Poisson equa-

tion for the pressure is solved. In most cases this is a computationally expensive step,

which takes a large fraction of the CPU time per time step, and therefore is critical to the

performance of the overall solver.

Projection methods have been extensively used in high-fidelity computations of tur-

bulent and transitional flows, where eddy resolving techniques, such as Direct Numerical

Simulations (DNS) and large-eddy simulations (LES) are utilized. In most of the early

DNS/LES, building-block problems such as turbulent boundary layers and shear layers
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had been considered in simple geometrical configurations, where structured Cartesian

grids and compact discretization stencils can be used (see for example [57] and [58] for

reviews). Critical to the success of these simulations was the development of parallel and

efficient solvers for the Poisson equation. In most cases fast direct solvers were utilized,

based on FFT transforms [59], cyclic reduction [60] and their combination [61], Divide

& Conquer [62] and several other variances.

The need to simulate more complex flows, where boundary-fitted grids (i.e unstruc-

tured) are utilized, shifted the attention to iterative methods, which are able to deal with

the complexity of the resulting algebraic systems. Significant effort has been made to

optimize these methods on leadership high-performance computing platforms (see for

example [63]). On the other hand, the effort to further advance direct solvers was signif-

icantly less due to the relatively narrow area of applications, at least in fluid mechanics

related problems. Recently, however, with the advent of immersed-boundary (IB) meth-

ods (see [64] for a recent review) there is a renewed interest for highly efficient direct

solvers for structured Cartesian grids. In IB methods the requirement for the grid to

conform to the body is relaxed and boundary conditions are imposed using a specially

designed forcing function. As a result complex moving boundaries can be treated using

highly efficient structured solvers eliminated the need for grid regeneration/adaptation.

In the following we illustrate the mathematical formulation of the FFT-based Direct

Poisson Solver and the induced solvers on two different types of boundary conditions

(BC).
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1.4.3.1 FFT-based Direct Poisson Solver

Let us consider the three-dimensional Poisson equation,

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= f, in Ω, (1.4)

discretized using second-order, central finite difference approximations on a Cartesian

grid:

∇2φ ≈ 1

∆x2
(φ̃i+1,j,k − 2φ̃i,j,k + φ̃i−1,j,k) +

1

∆y2
(φ̃i,j+1,k − 2φ̃i,j,k + φ̃i,j−1,k)

+
1

∆z2
(φ̃i,j,k+1 − 2φ̃i,j,k + φ̃i,j,k−1) = f̃i,j,k (1.5)

By means of Fourier transformation the three-dimensional problem gets reduced to a sys-

tem of one- dimensional Helmholtz equations, which have to be solved for each Fourier

mode. We will consider two different boundary condition configurations in Ω, as dis-

cussed in the following sections.
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1.4.3.2 Three-Periodic Boundary Conditions

For all points on the computational grid we replace φ̃i,j,k and f̃i,j,k by their 3D DFT

decompositions to obtain:

1

IJK

K−1∑
n=0

J−1∑
m=0

I−1∑
l=0

( 2

∆x2
(cos(2πl/I)− 1) φ̂l,m,n +

2

∆y2
(cos(2πm/J)− 1) φ̂l,m,n

+
2

∆z2
(cos(2πn/K)− 1) φ̂l,m,n

)
e2πi

il
I e2πi

jm
J e2πi

kn
K

=
1

IJK

K−1∑
n=0

J−1∑
m=0

I−1∑
l=0

f̂l,m,ne
2πi il

I e2πi
jm
J e2πi

kn
K , (1.6)

Hence, in the frequency domain, the above system of equations reduces to a diagonal

linear system of the form:

(
2

∆x2
(cos(2πl/I)− 1) +

2

∆y2
(cos(2πm/J)− 1) +

2

∆z2
(cos(2πn/K)− 1)

)
φ̂l,m,n = f̂l,m,n,(1.7)

which can be solved very efficiently. In the present study this step will be fully integrated

into the FFT step to avoid global memory overhead. The diagonal entries are defined as

follows:

Dl,m,n = Dl +Dm +Dn

where,

Dl = 2I2
[
cos(2π

l

I
)− 1

]
, Dm = 2J2

[
cos(2π

m

J
)− 1

]
, Dn = 2K2

[
cos(2π

n

K
)− 1

]
(1.8)
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We refer to Dl,m,n as scalars and to Dl, Dm and Dn as subscalars. Note that the scalars

are uniquely determined by the l, m, n indices and the grid size. The procedure to handle

the three periodic boundary conditions case can be described as follows:

• Compute the 3D Fast Fourier Transform of the 3 dimensional source dataset f̃i,j,k

to generate f̂l,m,n .

• Divide each f̂l,m,n by the correspondent scalar Dl,m,n to get the 3 dimensional un-

known dataset φ̂l,m,n .

• Compute the 3D Fast Inverse Fourier Transform of the new 3 dimensional unknown

dataset φ̃i,j,k to obtain the solution.

1.4.3.3 The Two-Periodic, One-Neumann Boundary Conditions Case

Let us assume that periodic boundary conditions are imposed the X and Y direc-

tions, while Neumann boundary conditions apply in Z. As in the above case, if we replace

φ̃i,j,k and f̃i,j,k by their DFT decompositions along X and Y we get:

1

IJ

J−1∑
m=0

I−1∑
l=0

( 2

∆x2
(cos(2πl/I)− 1) φ̂l,m,k +

2

∆y2
(cos(2πm/J)− 1) φ̂l,m,k

+
1

∆z2

(
φ̂l,m,k+1 − 2φ̂l,m,k + φ̂l,m,k−1

))
e2πi

il
I e2πi

jm
J

=
1

IJ

J−1∑
m=0

I−1∑
l=0

f̂l,m,ke
2πi il

I e2πi
jm
J (1.9)
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For each coefficient, we have

1

∆z2
φ̂l,m,k+1 + 2

(
1

∆x2
(cos(2πl/I)− 1)+

1

∆y2
(cos(2πm/J)− 1)− 1

∆z2

)
φ̂l,m,k

+
1

∆z2
φ̂l,m,k−1 = f̂l,m,k (1.10)

The above expressions yield I × J tridiagonal linear systems, each of which involves K

equations. Note that the coefficients in the same tridiagonal linear system are determined

by their l, m indices and the grid size. Equations with the same [l,m] pairs are dependent

and belong to the same linear system while those with different [l,m] pairs are indepen-

dent and belong to different linear systems. The overall algorithm can be described as

follows:

• For each value of k, 0 ≤ k ≤ (K − 1), compute the 2D forward Fast Fourier

Transform on the corresponding slice of the 3 dimensional source dataset f̃i,j,k to

get f̂l,m,k.

• Solve the I × J tridiagonal linear systems (with size K ×K coefficient matrices)

to get φ̂l,m,k.

• For each value of k, compute the 2D inverse Fast Fourier Transform on the corre-

sponding slice of the 3 dimensional unknown dataset φ̃i,j,k.

1.5 Major Contributions of This Thesis

In this dissertation, we focus on developing optimization techniques of mapping

algorithms and applications on to CUDA GPUs and CPU-GPU heterogeneous platforms
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for a number of demanding scientific applications. More specifically, we start by tacking

multi-dimensional FFTs computation on single GPUs, then we integrate the FFT kernels

into a FFT-based Poisson solver on a single GPU. We then study the more practical cases,

CPU-GPU heterogeneous platform. We develop a software pipeline based scheme to port

the Poisson solver onto the heterogeneous platform. In the last, we extend the software

pipeline based scheme onto another core computation - DGEMM.

First, we address the problem of mapping three-dimensional FFTs onto a number

of CUDA GPUs. We exploit the high-degree of multi- threading offered by the CUDA

environment while carefully managing the multiple levels of the memory hierarchy in

such a way that: (i) all global memory accesses are coalesced into 128-byte device mem-

ory transactions issued in such a way as to optimize effects related to partition camping,

locality, and associativity. and (ii) all computations are carried out on the registers with

effective data movement involved in shared memory transposition. In particular, the num-

ber of global memory accesses to the entire 3-D dataset is minimized and the FFT com-

putations along the X dimension are almost completely overlapped with global memory

data transfers needed to compute the FFTs along the Y or Z dimensions.We were able to

achieve performance between 135 GFLOPS and 172 GFLOPS on the Tesla architecture

(Tesla C1060 and GTX280) and between 192 GFLOPS and 290 GFLOPS on the Fermi

architecture (Tesla C2050 and GTX480). The bandwidths achieved by our algorithms

reach over 90 GB/s for the GTX280 and around 140 GB/s for the GTX480.

Second, we develop a highly multithreaded FFT-based direct Poisson solver on

CUDA GPUs. We carefully decompose the direct Poisson solver into a number of proce-

dures and align and order the computation of (X, Y, and Z) to best suited to the memory hi-
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erarchy of the GPUs. In addition, we integrate some procedures together to minimize the

times of global memory access. Also we mix the single-precision and double-precision by

only boost the precision when necessary such that the global storage of single-precision

is necessary but guarantee the second-order accuracy of the solver. As a result, we have

achieved up to 140 GFLOPS and a bandwidth of 70 GB/s on the Tesla C1060, and up to

375GFLOPS with a bandwidth of 120GB/s on the GTX 480. The performance of our al-

gorithms is superior to what can be achieved using the CUDA FFT library in combination

with well-known parallel algorithms for solving tridiagonal linear systems of equations.

Next, we extend our high performance FFT-based direct Poisson solver on CPU-

GPU heterogeneous platforms for the case when the input is too large to fit on the GPU

global memory. Our scheme is consisted of a number of dependent techniques that work

together for an overall superior performance. First of all, the overall solver is decomposed

to be CPU-part work and GPU-part work, which the CPU-part work would not only suited

to the CPU’s strength but also tacked certain dependence for the resultant GPU work to be

a number of independent tasks. Then, based on our software pipeline, those independent

tasks are transferred from the CPU main memory to the GPU device memory through the

PCIe bus. This software pipeline is optimized in such a way that the PCIe bus transfer

time of one task is overlapped with some other task’s execute time in the GPU. The overall

effect is that only one PCIe bus memory transfer is used and the effective bandwidth is

optimal while the suitable part of the application is accelerated by the GPU. We were able

to achieve significantly better performance than what has been reported in previous related

work, including over 145 GFLOPS for the three periodic boundary conditions (single

precision version), and over 105 GFLOPS for the two periodic, one Neumann boundary
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conditions (single precision version). The effective bidirectional PCIe bus bandwidth

achieved is 9-10 GB/s, which is close to the best possible on our platform. For all the

cases tested, the single 3D data PCIe transfer time, which constitutes a lower bound on

what is possible on our platform, takes almost 70% of the total execution time of the

Poisson solver

Finally, we extend our software pipeline on the CPU-GPU heterogeneous platforms

to a computational-bounded algorithm - double precision matrix multiplication (GEMM).

Similarly, we address the case when the input is too large to fit onto the GPU global mem-

ory. We adapt the blocking algorithms into a strategy that achieves near peak GPU com-

putational rate within the bandwidth constraint of the PCIe bus bandwidth. By ensuring

contiguous and near-peak- rate kernel execution flows, we were able to achieve more than

1 and 2 TFLOPS performance on a single node with dual socket multicore CPU using 1

and 2 GPUs respectively. Our results suggest the possibility of developing matrix compu-

tations on heterogeneous platforms which achieve native GPU performance on very large

data sizes up to the capacity of the CPU memory.
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Chapter 2: Multi-dimensional FFT on GPUs

In this chapter, we address the problem of mapping three-dimensional Fast Fourier

Transforms (FFTs) onto the recent, highly multithreaded CUDA Graphics Processing

Units (GPUs) and present some of the fastest known algorithms for a wide range of 3-

D FFTs on the NVIDIA Tesla and Fermi architectures. We exploit the high-degree of

multithreading offered by the CUDA environment while carefully managing the multiple

levels of the memory hierarchy in such a way that: (i) all global memory accesses are

coalesced into 128-byte device memory transactions issued in such a way as to optimize

effects related to partition camping [65], locality [66], and associativity. and (ii) all com-

putations are carried out on the registers with effective data movement involved in shared

memory transposition. In particular, the number of global memory accesses to the entire

3-D dataset is minimized and the FFT computations along the X dimension are almost

completely overlapped with global memory data transfers needed to compute the FFTs

along the Y or Z dimensions. We were able to achieve performance between 135 GFlops

and 172 GFlops on the Tesla architecture (Tesla C1060 and GTX280) and between 192

GFlops and 290 GFlops on the Fermi architecture (Tesla C2050 and GTX480). The band-

widths achieved by our algorithms reach over 90 GB/s for the GTX280 and around 140

GB/s for the GTX480.
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Table 2.1: Basic Parameters of the Four Evaluated GPUs

SMs SPs/SM Regs Shared Mem Global Mem Mem BW Clock Freq
Tesla C1060 30 8 16K 16KB 4GB 102GB/s 1296MHz

GTX280 30 8 16K 16KB 1GB 141.7GB/s 1296MHz
Tesla C2050 14 32 32K 48KB1 3GB 144GB/s 1147MHz

GTX480 15 32 32K 48KB1 1.5GB 177.4GB/s 1401MHz

2.1 CUDA GPU Overview

Recent GPUs using the CUDA programming model have attracted considerable in-

terest in the high-performance computing community due to their extremely high peak

performance, low cost, and the relative simplicity of the programming model. Moreover

these many-core processors tend to achieve much better performance to power ratios than

the corresponding multicore CPUs while at the same time scaling to thousands of cores on

a single card. The CUDA programming model uses multi-threading and data parallelism

to exploit the many-core architectures of the recent NVIDIA GPUs, thereby achieving

orders of magnitude better performance compared to multicore CPUs, especially on sci-

entific applications. In this section, we start by giving an overview of such architectures,

focusing on the four platforms used in our tests, followed by a summary of the main fea-

tures of the CUDA programming model. We pay a particular attention to the memory

model since this will play a central role in our algorithms.

The basic architecture of the recent NVIDIA GPUs consists of a set of Streaming

Multiprocessors (SMs), each of which containing up to 32 Streaming Processors (SPs

or cores) executing in a SIMD fashion; a large number of registers; and a small shared

memory organized into multiple banks. Threads running on the same SM can share data

1The shared memory size of the two Fermi devices is the default size
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and synchronize, limited by the available resources (number of registers and size of the

shared memory) on the SM. Each GPU has small constant and texture caches (typically

around 64KB). All the SMs have access to a very high bandwidth Global Memory; such a

bandwidth is achieved only when simultaneous accesses are coalesced into contiguous 16-

word lines. However the latency to access the global memory is around 400-800 cycles,

which is quite high. A summary of the parameters of the four platforms we use in this

paper is given in Table 2.1.

The CUDA programming model envisions phases of computations running on a

host CPU and a massively data parallel GPU acting as a co-processor. The GPU executes

data parallel functions called kernels using thousands of threads. Each GPU phase is

defined by a grid consisting of all the threads that execute some kernel function. Each

grid consists of a number of thread blocks such that all the threads in a thread block are

assigned to the same SM. Several thread blocks can be executed on the same SM, but

this will limit the number of threads per thread block since they all have to compete for

the resources (registers and shared memory) available on the SM. Programmers need to

optimize the use of shared memory and registers among the thread blocks executing on

the same SM, if any.

Each SM schedules the execution of its threads into warps, each of which consists

of 32 parallel threads. For the Tesla architecture (16 banks), a shared memory request

for a warp is issued in two memory requests, one for each half-warp with a speed of two

clock cycles. On the other hand, for the Fermi architecture (32 banks), a shared memory

request for a warp is issued in one memory request with a speed of two clock cycles.

When all the operands of the warps are available in the shared memory, the SM issues a
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single instruction for the 16 threads in a half-warp. The cores within an SM will be fully

utilized as long as operands in the shared memory reside in different banks of the shared

memory (or access the same location from a bank). If a warp stalls, the SM switches to

another warp resident in the same SM.

Optimizing performance of multithreaded computations on CUDA requires careful

consideration of global memory accesses (as few as possible and should be coalesced

into multiple of contiguous 16-word lines); shared memory accesses (threads in a warp

should access different banks); and partitioning of thread blocks among SMs; in addition

to carefully designing highly data parallel implementations for all the kernels involved in

the computation. In particular, threads in a half-warp which access contiguous words in

the global memory are grouped together into a single coalesced global memory access

thereby achieving the best possible throughput. Otherwise CUDA uses the minimum

number of coalesced global memory accesses to cover the region touched by the half

warp.

2.2 Our Overall Strategy and Core Techniques

Our work is based on the DIF version of the original Cooley-Tukey algorithm with

in-order input and bit-reversed order output. A key feature of this algorithm is the “in-

place” computation for all stages of the computation, which we will exploit to use memory

access patterns that achieve good memory bandwidth. Our scheme targets large size 3D

FFT such that no dimension is smaller than 128 as long as the input data can fit in the

device memory. Every data element is assumed to be a complex number such that each of
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the real and imaginary parts is a single-precision floating point number, and hence each

complex number is represented by 8 consecutive bytes. Our implementations are tuned

to both the Tesla and Fermi architectures, which turn out to require slightly different

implementations but with the same overall approach.

2.2.1 Representation of the 3D FFT Decomposition

As noted before, the Cooley-Tukey algorithm to compute the DFT of n = n1 × n2

elements consists of three steps, the first of which involves n2 radix-n1 DFTs, followed by

twiddle factor multiplications, and ending with n1 radix-n2 DFTs. Since we are dealing

with 3D data, we need to specify the decomposition for computing the DFT along each

dimension, as well as the data sets used for each radix computation. We will represent

such a decomposition by making use of the tensor representation originally introduced in

FFTW.

We first note that the data elements of a 3-D array will be stored in the device

memory along the X dimension first, then the Y dimension followed by the Z dimension.

Consider for example an array of size 256×256×256. The entries of each vector along the

X dimension will appear as a contiguous block of 256 complex numbers, while the entries

of a vector along the Y dimension will have a stride of 256 between any consecutive

entries of the vector. Along the Z dimension, consecutive entries will be 256 × 256

entries apart on the device memory. The FFT computation along each dimension will be

specified by a number of FFTs each with a possibly different radix and each operating on

the data along the dimension using a stride relative to that dimension. The actual global
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memory stride can easily be computed from such a specification. More specifically, a

decomposition say n = n1 × n2 (that is, radix-n1 followed by radix-n2) along the X

dimension will be represented as follows:

• X(n2, n1, n2, n, tw)

• X(n1, n2, 1, n2, no−tw)

The above representation should be interpreted as follows. We start by performing n2

FFTs each of radix n1 on data along the X dimension with stride n2, and hence these

FFTs encompass n entries, followed by twiddle factor multiplications (which in our case

are computed on the fly using fast intrinsic sine/cosine functions provided by CUDA).

Then n1 FFTs, each of radix n2 is computed on the data along the X dimension with a

stride of 1, and hence each FFT encompasses n2 contiguous elements. We can extend

the same representation to a decomposition with more factors such as n = n1×n2×n3.

Assuming that n is the size of the X dimension, this decomposition can be represented

as:

• X(n2n3, n1, n2n3, n, tw)

• X(n1n3, n2, n3, n2n3, tw)

• X(n1n2, n3, 1, n3, no−tw)

The use of dimension name (X in the above equation) is necessary since we will be

interleaving the radix computations between the different dimensions. Let’s consider for

a simple example the case of 256 × 256 × 256 where the decomposition along the X

dimension is given by 256 = 16 × 4 × 4, while the decompositions along the Y and Z

dimensions are identical 256 = 16× 16. One (extremely inefficient) way to compute the

corresponding 3D FFT can be represented as follows:

45



• X(16, 16, 16, 256, tw)X(64, 4, 4, 16, tw)X(64, 4, 1, 4, no−tw)

• Y (16, 16, 16, 256, tw)Y (16, 16, 1, 16, no−tw)

• Z(16, 16, 16, 256, tw)Y (16, 16, 1, 16, no−tw)

2.3 CUDA Architecture Constraints

In this section we outline our main strategies to map the FFT computation on the

Tesla and Fermi architectures so as to optimize the use of the available resources (both

computation and memory resources) while managing the constraints imposed by these

architectures.

2.3.1 Managing the CUDA Memory Hierarchy

The CUDA memory hierarchy consists of a global memory accessible by all the

streaming processors, coupled with a shared memory and a set of registers on each of the

SMs. Given that the FFT computation involves operations along each of the dimensions

over a large 3D dataset stored in global memory, we have to pay a particular attention to

the memory hierarchy while trying to execute a highly multithreaded computation.

Given the typical size of our FFT computations, all the input, intermediate, and

output data have to be held in the global memory, which has the largest access latency

(400-800 cycles) in the memory hierarchy. Global memory accesses are carried out as

32-byte, 64-byte, or 128-byte device memory transactions. To achieve high bandwidth,

global memory accesses must be coalesced - that is, global memory loads and stores by a

half thread warp must be contiguous so as to result in a very few (one if possible) mem-
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ory transactions. Since each complex number in our computation is represented by 8

bytes, aligned consecutive memory access of threads of a half-warp satisfies the largest

128-byte memory transaction size. In fact, global memory accesses issued by the threads

in a warp will be executed as two 128-byte device memory transactions on either archi-

tecture thereby achieving a very good memory bandwidth. Unlike previously published

GPU FFT algorithms, we always ensure coalesced 128-byte global/device memory trans-

actions in addition to exploiting spatial and temporal locality to optimize effective device

memory bandwidth. In particular, we exploit low-level device memory system hardware

features to approach the theoretical device memory bandwidth. Device memory parti-

tion [65] and memory locality [66] are two important issues for a very good bandwidth.

For example, the device memory of GTX280 has 8 partitions and hence active warps

should avoid issuing transactions that touch only a subset of them (so-called partition

camping). Row access locality of device memory [66] is also preferred for high memory

bandwidth, which can be interrupted by both algorithm restrictions and memory access

streams issued by active warps. Note that the performance bottleneck of a relatively opti-

mized radix FFT kernel is still the effective global/device memory throughput and hence

we focus on memory optimization.

Compared to the global memory, the shared memory is much faster. The size of the

shared memory per SM is 16KB for compute capability 1.3 (GTX280 and Tesla C1060)

and 48KB (the default size) for compute capability 2.0 (GTX480 and Tesla C2050). Note

that the shared memory size of the Fermi architecture can be configured between 16 KB

and 48 KB. Each shared memory is divided into equal-sized memory modules (banks) so

as to enable concurrent access. For the Tesla architecture, the bank count is 16 (half-warp)
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and for the Fermi architecture, the bank count is 32 (warp). The shared memory access

is most efficient when bank conflicts are avoided, and hence we developed a general

bank conflict free data transposition strategy. We observe that the L1 cache available on

the Fermi architecture does not seem to significantly speed-up our FFT implementations

while the L2 cache plays an important role.

Registers represent the fastest level of the memory hierarchy and are allocated to

live threads; the peak arithmetic throughput can only be achieved by using registers rather

than the shared memory [67]. The total number of 32-bit registers available is 16KB for

compute capability 1.3 and 32 K for compute capability 2.0. We note that a thread is

allocated at most 128 registers for compute capability 1.3 and 64 registers for compute

capability 2.0 even though the compute capability 2.0 SM has more registers overall. The

number of registers available and the maximum number of registers that can be allocated

to a thread will have a direct impact on the radix decomposition adopted for each size.

In particular, the maximum number of registers that can be allocated to a single thread

on the Tesla architecture allows us to compute a radix-32 FFT using only the registers,

which cannot be done on the Fermi architecture. For the latter architecture, we have

to use more than a single thread to compute a radix-32 FFT. In our implementation, an

FFT of any radix along X, Y or Z dimension is computed directly on the registers, with

the FFT computations along the X dimension almost completely overlapped with global

memory data transfers needed to compute the FFTs along the Y or the Z dimension. This

constitutes a major feature of our algorithms which distinguishes it from other published

algorithms.
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2.3.2 Managing CUDA Threads

Note that CUDA programs rely on thread parallelism to hide memory and arith-

metic latencies. However, relying only on increasing thread parallelism to optimize per-

formance is not necessarily a good strategy because of the limits on several hardware

resources such as number of registers and size of shared memory. Based on our expe-

rience, 64 threads per block on the Tesla architecture and 128 threads per block on the

Fermi architecture seem to achieve the best balanced performance. In addition, we try

to overlap global data movement and small radix computations along the X dimension to

alleviate the latency dependency with the relatively small thread block parallelism. Our

strategy is to make each thread compute a relatively small size FFT directly and use more

threads to compute a single radix FFT if necessary. We will explain this process further

later.

2.4 Overall Strategy

In our implementation, each kernel loads and stores the entire 3D data once from

and into the global memory during which FFTs of certain radix sizes are carried out along

possibly two dimensions concurrently. In general, we attempt to overlap a small radix

FFT computation along the X dimension with data movement from the global memory

needed for FFT computations along other dimensions. The mathematical properties of

the Cooley-Tukey algorithm provide a rich set of possibilities for decomposing and re-

ordering the overall computation so as to exploit the main characteristics of either the

Tesla or Fermi architecture.
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We start by stating an immediate implication of the mathematical formulation of

the Cooley-Tukey FFT algorithm related to the ordering of the FFT subcomputations.

• Given a decomposition of the FFT along each dimension into a series of small-

radix FFTs, each of which to be called an FFT sub-computation, we can arbitrarily

inter-mix the FFT sub-computations of different dimensions as long as the relative

ordering of the FFT sub-computations along each dimension is preserved.

This property was also observed by Gu et al. [68] .

We are now in a position to provide the main features of our strategy.

• The FFTs along the Y and the Z dimension are computed through separate ker-

nels (typically two kernels for each dimension) while the FFT sub-computations

along the X dimension are inserted into the kernels corresponding to the Y and Z

dimensions. Occasionally, the FFT sub-computations along the Y and the Z dimen-

sion may be combined in the same kernel for improved performance on the Tesla

architecture.

• The kernels to execute the FFT sub-computations along the Y and Z dimensions

achieve high-bandwidth global memory accesses through the coalesced access of

chunks of contiguous 128-bytes (16 elements) along the X dimension and through

tuning the memory transactions issue sequence for device memory locality opti-

mization. The corresponding radix FFTs are computed directly on registers.

• The FFT sub-computations along the X dimension are computed during the execu-

tion of the kernels for the Y and Z dimension FFT computations through the use
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of the shared memory to transpose data across the registers while avoiding bank

conflicts.

• Within each kernel, the data loading (from global memory or shared memory re-

arrangement) and the FFT sub-computations are organized in such a way that the

dependency between the data supply and the computations is optimized to match

the execution pipeline.

The implementation of this strategy consists of three main steps. The first amounts

to decomposing appropriately each of the Y and Z dimension size into a product of radixes

(typically two) each of which is handled by a kernel. The second step involves a decom-

position of the X dimension, taking into consideration the decompositions along the Y

and Z dimensions. At this step, we need to figure how to insert each of the correspond-

ing FFT sub-computations along X into one of the Y or Z kernels so as to achieve high

memory bandwidth and overlapped computation and data movement. Finally, we have to

determine the workload of each thread and allocate the appropriate number of threads to

each FFT radix computation. We will next describe the strategy to carry out each of these

steps using the case of 256×256×256 on the Tesla architecture.

2.4.1 Y and Z Dimension Decomposition

Two main factors seem to play a dominant role in determining the best decomposi-

tion for each of the Y and Z dimensions. Given that each Y or Z FFT sub-computation

will access memory in a coalesced manner along the X dimension, the available resources

have to be able to support a batch of 16 × 2k Y and Z FFT sub-computations in the X
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dimension in parallel, for some non-negative integer k. The second factor is to try to

achieve a load balance between different kernels while ensuring overall effective global

memory access by the kernels.

The first factor puts an upper bound on the size of the radix that can be used on a

given architecture, and the second implies almost balanced decomposition for each of the

Y and Z dimensions whenever such a decomposition is needed.

Consider our running example of an input of size 256×256×256. Since we won’t

be able to accommodate 16 FFT(256) on a single SM of Tesla (which is usually the

case for large size Y/Z dimension transform), each of the Y and Z dimensions has to

be decomposed into a product of radixes. A balanced decomposition suggests that we

use 256 = 16×16 for each of the Y and Z dimensions, implying the following four FFT

sub-computations along the Y and Z dimensions:

• {Y (16, 16, 16, 256, tw)}

• {Y (16, 16, 1, 16, no−tw)}

• {Z(16, 16, 16, 256, tw)}

• {Z(16, 16, 1, 16, no−tw)}

Braces are used to indicate the boundaries of each kernel. We will next describe how

to insert the FFT sub-computations along X into these kernels in such a way that their

executions will be almost completely overlapped with the coalesced memory accesses for

the above kernels.
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2.4.2 X Dimension Decomposition

As we move data from the global memory in a coalesced fashion to carry out the

FFT sub-computations along Y and Z, we organize each of the X dimension transforms

into smaller-radix FFTs that can be incorporated into the kernels executing the Y and Z

FFT sub-computations. Therefore the data movement should be organized so that each of

the FFT sub-computations along X can be carried out by the same thread block executing

the kernels. However, our Cooley-Tukey algorithm (DIF version) requires larger strides

in early stages and smaller strides in later stages while the coalesced global memory

access requires consecutive accesses to contiguous 128 × 2k bytes of data. We resolve

this tension between these requirements by using a number of small contiguous chunks

with some stride in the X dimension for the earlier stages while using a large contiguous

chunk for the later stages. Loading the data through the use of multiple small chunks

(each chunk is of size 128 bytes) will incur a certain performance degradation, which

depends on the size of the strides. In general, the FFT along X dimension is decomposed

into three or four small-radix FFTs such as radix-2, radix-4, or radix-8 FFTs.

Consider again our running example of 256×256×256 data size whose FFT has to

be computed on a Tesla GPU. We decompose the X dimension as 256 = 4 × 8 × 8 and

hence each such FFT can be computed as the sequence:

• X(64, 4, 64, 256, tw)

• X(32, 8, 8, 64, tw)

• X(32, 8, 1, 8, no−tw)

Suppose we want to insert the first FFT sub-computation into a Y kernel, which
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Figure 2.1: X Dimension Element Partition

implies 64 sets of radix-4, stride 64 computation with associated twiddle factors for each

row of 256 elements. For the Tesla architecture, we use a 64-thread block to load 64

elements for the X dimension in one row and exchange elements using block synchro-

nization. To accommodate the computation and performance requirement, 256 elements

in a row are partitioned into 4×4 sub-groups each of size 16 denoted from (0, 0), (0, 1) up

to (3, 3) accordingly. This partition imposes a stride-64 (Figure 2.1) between elements of

the same sub-group index from (0, x), (1, x), (2, x) and (3, x). Then 4 blocks of 64 threads

consisting of 16 half-warps will be responsible for the 16 sub-groups and 4 half-warps

from the same thread block will access the corresponding sub-group (0, x), (1, x), (2, x)

and (3, x), (x can be 0, 1, 2, 3 for 4 blocks). Note sub-group data chunks are each of size

128-byte, namely the maximum coalesced device memory transaction size. Finally our

overall algorithm for computing FFT(256×256×256) can be summarized by the following

representation in which each kernel is enclosed between braces.)

• {Y (16, 16, 16, 256, tw)}

• {X(64, 4, 64, 256, tw), Y (16, 16, 1, 16, no−tw)}

• {X(32, 8, 8, 64, tw), Z(16, 16, 16, 156, tw)}

• {X(32, 8, 1, 8, no−tw), Z(16, 16, 1, 16, no−tw)}

We will later provide the details about how the various small-radix FFTs are allocated

to the thread blocks. Since each of the last three kernels contains FFT sub-computations

along two distinct dimensions, the intermediate data needs to be appropriately transposed
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through the shared memory so that the corresponding FFT sub-computations can be car-

ried out effectively. This is explained next.

2.4.3 Bank Conflict Free Shared Memory Transposition

The FFT sub-computations along the Y and Z dimensions are always carried out

directly on registers. To compute a small-radix FFT along the X dimension, we have

to use the shared memory to transpose the data and move it back into registers before

completing the sub-computations, after which we have to transpose back the elements

into the registers as in the original layout for further processing.

To make efficient use of the shared memory, bank conflicts have to be avoided, al-

though occasionally, trading bank conflicts for smaller shared memory usage can actually

result in better performance. This will occur in some kernels on the Fermi architecture.

Additional requirements on the shared memory transposition include balanced work-

load and avoiding warp divergence among the threads in a thread block.

The word size of each bank is 32-bit, the same size of a register and half the size

of a complex number. To avoid bank conflicts, we separate the transposition of the real

parts and the imaginary parts and add padding as necessary. We only consider the real

parts for now; the imaginary parts are handled in a similar way. The transpose operation

is carried out more or less the same way on both the Tesla and the Fermi architectures. At

the beginning, the elements held in the registers are transferred into the shared memory

and then loaded back in a transposed fashion into the registers. After the X dimension

radix computation, a reverse transpose is conducted through the shared memory to restore

55



(a) Register Arrays of 64 threads;

(b) Store Elements from Registers to the Shared Memory Array

(c) Load Elements from the Shared Memory to Registers

Figure 2.2: Shared Memory Transposition

the original layout of the data.

Continuing with our 256×256×256 example and focusing on the second kernel

above, we use 64 threads to load a 64 × 16 sub-array along the X × Y dimensions such

that each half-warp loads four 128-byte chunks along the X dimension each time, for

a total of 16 times load, ending up with each thread holds 16 Y dimensional elements

with stride 16 in the end. Note that to ensure full utilization of the threads and maintain

balanced workloads, each thread will have to compute 4 sets of radix-4 FFT along the X

dimension and one set of radix-16 FFT along the Y dimension in four execution loops;

namely, each time 4 rows of 64 elements are transposed. The data layout in the registers
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is illustrated in (Figure 2.2a) where the column corresponding to thread i represents the

data held in the registers allocated to that thread. Our goal is to“transpose” this initial

data layout so that it is stored into the shared memory as illustrated in (Figure 2.2b) and

is loaded from the shared memory as illustrated in (Figure 2.2c).

Bank conflicts occur when multiple threads try to access different words from the

same bank. The Tesla architecture has 16 banks and in this transposition scenario, bank

conflicts do not occur. In other cases, we may have to use padding. Consider for example

the case when we have to perform X(8, 8, 8, 64, tw), namely, the workload of one block

from the 4 blocks computing one row of X(32, 8, 8, 64, tw). In this case, we need an

8×64 shared memory to transpose so that each thread will have its 8 elements required

by the radix-8 FFT along the X dimension. This time, upon loading, every 8 consecutive

threads will load 8 times of 8 consecutive elements from each 64-element row. Since 64

is a multiple of the number of banks (16), the number of banks used in the first row will

need to be shifted in the second row to avoid threads in two consecutive rows trying to

access the same bank. Namely, we need to pad 8 elements per 64-element row in this step

and hence the resulting shared memory is of size 8×(64 + 8).

In general, the key idea is to stagger the banks from row to row so that bank conflicts

are avoided. By using this strategy, it is clear that we will always be able to avoid bank

conflicts.
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2.4.4 Execution Plans

Once we have decided on the sequence of kernels to be executed, we have to allocate

the operations to threads, which have to be organized into thread blocks and grid blocks.

It turns out that we use more or less fixed-size thread blocks for each of the Tesla

and Fermi architectures. More specifically, we typically use 64 threads per block on the

Tesla and 128 threads per block on the Fermi. We assign operations to thread blocks in

such a way as to optimize the device memory throughput with respect to the partition

camping problem and the row locality issue. We use a 2D representation {xsize, ysize} for

each block. The xsize is used to represent the number of threads along the X dimension,

for each fixed value of X . The ysize is used to represent the number of threads used to

compute the radix-FFT sub-computations along either the Y or the Z dimension. There-

fore the total number of threads in a block is xsize × ysize. Clearly the xsize threads are

allocated to handle the X-dimension FFT sub-computations as well as transposition.

The organization of the grid of thread blocks is managed as a 2D array [x, y]. The

x dimension of the array corresponds to the number of blocks used to cover the X dimen-

sion of the input data. For example, if the X dimension FFT size is 256 and the number

of the threads in a block is 64, then we should have 4 blocks for the X dimension. The y

dimension of the grid corresponds to the number of blocks in Y and Z dimension. For our

running example, the first kernel of the Y dimension needs 16 of 256/16 blocks to cover

the data plane corresponding to a single Z coordinate value. To cover the entire data set,

we need 16× 256 blocks. We may change to a more balanced execution declaration (i.e.

4 × 16 as the x vector and 256 as the y vector) to avoid the CUDA grid size declaration
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limit. The thread blocks are executed in the order of their block IDs, so the block ID as-

signment should be tuned to optimize the device memory throughput, mainly for locality.

For the Y dimension sub-steps, assigning block ID according to memory layout {x, y, z}

is in general quite good.

We end this section by stating a couple of optimization techniques that may need to

be applied to achieve optimized device memory throughput.

• In-place or out-of-place execution. Our algorithm is an in-place algorithm (read-

ing and writing with the same stride), which helps to manipulate the memory access

pattern. However occasionally, we may want to exploit out-of-place execution order

(options) for global memory accesses locality possibility. Out-of-place execution

for Y and Z dimension involves transposition in Y/Z dimension between sub-steps

of the same dimension transform (which is merely a different stride access of de-

vice memory among rows (X dimension) of 256 elements). Such transposition can

be done together during the storing into and the loading from the global memory

step and results in global memory access with a balanced stride among kernels for

the same dimension FFT computation. Whether it is actually adopted needs to be

tuned with specific data sizes. Take size 256 FFT in the Y dimension for example.

It is decomposed into 16x16. An in-order execution will consist of (i)16 sets of

radix-16 with input and output stride 16 with twiddle, (ii) 16 sets of radix-16 with

input and output stride 1. However, an out-of-order execution will consist of two 16

sets of radix-16 with input stride 16 and output stride 1, in addition to the twiddle

multiplications. Note that we only tune this execution order for Y and Z dimension
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for the overall global memory latency while the properties of the memory access in

the X dimension are all preserved.

• Intermediate memory for smaller memory stride in Z dimension transform. Based

on the algorithm, the strides of the Z dimension are much larger than the Y di-

mension; if Z dimension transform is computed in more than one kernel, strictly

implemented from the algorithm will yield relatively large global memory latency.

This optimization attempts to make use of device memory transaction locality. We

believe such an approach will provide more opportunities to achieve better device

memory bandwidth throughput.

• Ordering of Y and Z dimensions. We always compute the Y dimension transform

before the Z dimension. Inserting the X dimension sub-steps will involve stride-

coalesced global memory access. Inserting such an X dimension access stride into

the Y dimension kernels is much smaller than that the corresponding Z dimension

kernels. Also, sub-steps of the same dimension matter when the sizes are not the

same. For example, if we decompose Y dimension FFT size 128 into 16x8, which

radix to compute first matters because this results in different memory strides. This

probably arises from different pipeline granularities of continuous device memory

transaction issues and computation workload of the same thread.
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2.5 Performance Evaluation

The performance of our 3D FFT scheme is evaluated on four NVIDIA GPU cards:

two Tesla architecture cards with compute capability 1.3 (GTX280 and Tesla C1060), and

two Fermi architecture cards with compute capability 2.0 (GTX480 and Tesla C2050).

Hence for each architecture we have two cards with similar execution units but different

memory bandwidths. Specifically, the GTX280 and the Tesla C1060 have the same num-

ber of identical streaming multiprocessors with respectively 141GB/s and 102GB/s peak

device memory bandwidths. For the other two variations of the Fermi architecture, the

peak device memory bandwidths are respectively 144GB/s (Tesla C2050) and 177GB/s

(GTX480).

In our tests, the size of each dimension of the 3D FFT is a power of two and all of

our implementations have been carefully compared to the output produced by CUFFT for

correctness.

We capture two performance measures: the number of GFlops and the global mem-

ory bandwidth by our implementations. More precisely, if the execution time of our 3D

FFT on data of size NX×NY×NZ is t seconds, then its GFlops is measured using the

standard formula:

GFlops =
5·NX ·NY ·NZ ·[log2 (NX ·NY ·NZ)]·10−9

t
(2.1)
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Regarding the effective global memory bandwidth achieved, we use the formula:

BW =
8 ·NX ·NY ·NZ ·# of accesses · 10−9

t
(2.2)

where the # of accesses is the total number of global memory accesses (loading or stor-

ing). Each of our tests (our algorithm and other libraries as available) is run 5 times

after which the arithmetic mean of the total runtime is used to compute the performance

measures introduced above.

2.5.1 Performance Evaluation on the Tesla Architecture

Figure 2.3a illustrates the performance of our algorithm on the Tesla C1060 card

compared to the best previous algorithms, and Figure 2.3b illustrates the corresponding

performance on the GTX280. For each case, we try to increase the 3D data size up to

the maximum possible that can fit into the global memory of the device. We run the

tests using our algorithm, the CUFFT library, and the Nukada Library [69]. For Gu’s

performance on GTX280, we extracted the numbers from their paper [68]. The detailed

decomposition, grouping and ordering schemes used for our implementations are given

in the appendix. It is clear that our strategy achieves significantly better performance than

the previous known schemes. Detailed execution plans can be found in [70].

In our implementations, we used the same programs for the Tesla architecture, ex-

cept for the data size 256×128×128. We slightly re-tuned the 256×128×128 directly on

the GTX280. As mentioned earlier, we expect better performance on the GTX280 since

the theoretical bandwidth increases from 102GB/s to 141.7GB/s. The performance for
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(a) Performance Comparison on Tesla C1060

(b) Performance Comparison on GTX280

Figure 2.3: Performance Evaluation on Tesla-based GPUs

the original code on data of size 256×128×128 is respectively 144 GFlops and 140 GFlops

on the Tesla C1060 and the GTX280. In the initial code, we decompose each of the Y

and Z dimension transforms into 32×4 and 4×32 and combine the radix-4 sub-steps from

the two dimensions into one kernel, inserting the X dimension transforms into kernels.

This results into a relatively significant computation workload for each kernel, including

large radix FFTs and transpositions. Such workload allocation is favored by the Tesla
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Figure 2.4: Actual Bandwidth on Tesla Devices

Table 2.2: Bandwidth achieved on the Tesla architecture cards

Data size BW on Tesla C1060 BW on GTX280
128x128x128 63.27 GB/s 65.85 GB/s
256x128x128 62.86 GB/s 89.70 GB/s
256x256x256 71.64 GB/s 91.76 GB/s
512x256x256 72.02 GB/s 87.92 GB/s
1024x256x256 71.39 GB/s NA1

512x512x512 65.37 GB/s NA1

C1060 since the overhead of the device memory latency is much more significant (around

30%) than that of the GTX280. The code for 128×128×128 is the same because of its

competitive performance on both cards; the computation overhead is not as significant as

that of 256×128×128 since the X dimension size is smaller.

Figure 2.4 and Table 2.2 show the actual bandwidth utilization of our implemen-

tations. As we can see from the figure, the actual device memory bandwidth of Tesla

C1060 is usually lower than that of the GTX280 except for the computation-bound data

size (128×128×128).
1“NA” indicates cases of memory size usage larger than the global memory capacity.
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Figure 2.5: Performance Evaluation on Tesla C2050

2.5.2 Performance Evaluation on the Fermi Architectures

Figures 2.5 and 2.6 illustrate the performance of our algorithms on the Tesla C2050

and the GTX480, compared to the best known 3D FFT algorithms on these platforms.

Figure 2.7 illustrates the actual global memory bandwidth achieved on the two Fermi

devices. The numbers reported were obtained by running our algorithms, the CUFFT

library, and the Nukada library [69], on the same size 3D datasets. Detailed execution

plans can be found in [70].

Similarly, we use the same code, initially tuned on Tesla C2050, and evaluate the

performance on both cards. Hence we are able to achieve around 200 GFlops on the

C2050 and above 260 GFlops on the GTX480. We note the possibility of using caching on

Fermi by setting the compilation flag on L1 and L2 cache. According to [71] all accesses

to GPU DRAM go through L2, including CPU-GPU memory copies. For Fermi devices,

global memory accesses are cached: the compilation flag -dlcm is used to determine if it
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Figure 2.6: Performance Evaluation on GTX480

can be cached in both L1 and L2 (the default setting) (dlcm=ca) or in L2 only (dlcm=cg).

We evaluate the performance difference of caching effects on the two cards and is shown

in Table 2.3 and Table 2.4. The evaluation indicates the L1 cache does not help much.

Table 2.3: Cache Effects of Performance on Tesla C2050

Data size Tesla C2050 with L1+L2
Cache

Tesla C2050 with L2 Cache
only

128x512x512 195.70 GFlops 195.42 GFlops
256x512x512 192.69 GFlops 200.97 GFlops
128x512x1024 202.97 GFlops 203.04 GFlops
512x512x512 191.70 GFlops 195.04 GFlops
256x512x1024 193.07 GFlops 191.04 GFlops
128x1024x1024 200.37 GFlops 201.60 GFlops

Table 2.4: Cache Effects of Performance on GTX480

Data size GTX480 with L1+L2 Cache GTX480 with L2 Cache only
128x512x512 275.58 GFlops 284.88 GFlops
256x512x512 266.42 GFlops 280.05 GFlops
128x512x1024 290.83 GFlops 289.53 GFlops
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Figure 2.7: Actual Bandwidth on Fermi Devices

Table 2.5: Actual Bandwidth on Fermi Devices (GB/s)

Data size C2050
L1+L2

C2050 L2 GTX480
L1+L2

GTX480
L2

128x512x512 100.20 100.06 141.10 145.86
256x512x512 94.86 98.94 131.14 137.87
128x512x1024 99.92 99.96 143.18 142.53
512x512x512 91.01 92.47 NA NA
256x512x1024 91.53 90.57 NA NA
128x1024x1024 94.99 95.58 NA NA

Table 2.5 shows the actual bandwidth utilization of our implementations with both

L1 and L2 cache and just with L2 cache. As expected, the actual device memory band-

width achieved on the Tesla C2050 is lower than that of the GTX480.
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Chapter 3: FFT Based Poisson Solver on a Single GPU

In this chapter, we present a highly multithreaded FFT-based direct Poisson solver

that makes effective use of the capabilities of the current Graphics Processing Units

(GPUs). Our algorithms carefully manage the multiple layers of the memory hierarchy

of the GPUs such that all the global memory accesses are coalesced into 128-byte device

memory transactions, and all computations are carried out directly on the registers. A new

strategy to interleave the FFT computation along each dimension with other computations

is used to minimize the total number of accesses to the 3D grid. We illustrate the perfor-

mance of our algorithms on the NVIDIA Tesla and Fermi architectures for a wide range

of grid sizes, up to the largest size that can fit on the device memory (512× 512× 512 on

the Tesla C1060 and Tesla C2050 and 512× 256× 256 on the GTX 280 and GTX 480).

The performance of our algorithms is superior to what can be achieved using the CUDA

FFT library in combination with well-known parallel algorithms for solving tridiagonal

linear systems of equations.
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3.1 Optimized GPU Implementation for the Case of Three Periodic BC

3.1.1 Overall Strategy

The basic approach was described earlier and consists of a 3D forward FFT, scaling

of each element, and a 3D inverse FFT. The scaling of each element during the intermedi-

ate step depends only on the three-dimensional indices of the element. Therefore we can

use any combination of DIF or DIT, in-order or bit-reversed order, FFT algorithm as long

as we can easily track the indices of each element. In our implementation, we modify the

small radix-k FFT no-twiddle codelets generated by genfft from FFTW [41] with twiddle

factor formula for convenience.

Recall the register pressure on the radix FFT size and the shared memory size in-

fluence over the maximum FFT size in the X, Y and Z dimension kernels. We start from

the Y and Z dimension FFT decompositions since the size handled by an efficient ker-

nel is relatively smaller than their X dimension counterparts. We view the X dimension

radix-FFTs as flexible helpers. Depending on the architecture influence, on the one hand,

we may want to insert X dimension radix-FFTs into the decomposed Y and Z kernels

as in most cases for the Tesla architecture GPUs; on the other hand, we may pad extra

Y and/or Z dimension radix FFTs into the X dimension kernels as in some cases for the

Fermi architecture GPUs. The bottle line is we would like a minimum number of, yet

efficient, kernels with good memory-computation data dependency scheduling.

To fix the ideas, let us assume that the three-dimensional grid is of size nmp such

that each of n,m, and p is large enough that it needs to be decomposed to be computed di-
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rectly in registers. We call these decomposed, directly computable size k FFT as radix−k

FFT. The complete FFT computation needs more than one radix− k FFT calls with data

exchange between two calls. Such data exchange can be done through the shared memory

within the same kernel or through the global memory between two kernels. Depending

on the shared memory size, we may arrange radix− k FFTs from the same dimension in

the same or different kernels to achieve an overall minimum number of efficient kernels.

This results in a thread-block configuration of the radix FFT work in the X dimension or

the Y/Z dimension.

Due to the above reason, for the Tesla architecture, X dimensional radix − k FFT

are normally decomposed into small radixes, say n = n1n2n3, while the decompositions

for the other two dimensions are relatively large, say m = m1m2 and p = p1p2. Such a

decomposition allows we complete X dimension FFT along we compute the Y and Z di-

mension FFT in kernels mainly for Y and Z dimensions while guarantee the efficiency of

these minimum number of kernels. For most of the problem sizes in our implementations

(limited by the device memory size), 4 efficient kernels would do the work.

On the other hand, for the Fermi architecture, the Y and/or Z dimension FFT size

that can be handled in one single yet efficient kernel is larger than the Tesla architecture.

For most of the problem sizes of our interest (limited by the device memory size), 3D

forward or inverse FFT can be done in 3 efficient kernels, one for each dimension. For

relatively large Y and Z dimension size, we delegate a small amount of radix FFT com-

putations to the accommodating X dimensional kernels to guarantee the good efficiency

of the Y and Z dimensional kernels. In general, we were able to save one kernel com-

paring to its Tesla architecture based counterpart yet all of the three kernels are of decent
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efficiency.

A straightforward implementation of the basic approach will require loading and

writing the 3D data for each radix computation from and into the device memory; the

same applies for the scaling step. Hence the total number of the 3D data accesses from

the global memory is 14, and such an implementation will not necessarily guarantee coa-

lesced memory accesses. Our implementation attempts to achieve the following goals.

• Minimization of the total number of 3D data accesses while guaranteeing coalesced

global memory access for each read and write transaction.

• All the computations are carried out on the contents of the registers directly.

• For the Tesla architecture, overlapping the small-radix FFTs along the X dimen-

sion with the FFT computations along the Y and Z dimensions, using conflict-free

shared memory transposition. For the Fermi architecture, one or more rows of FFTs

in the X dimension is usually computed by one kernel, with occasional extra radix

computations from the Y and/or Z dimension. The majority workload, if not all of,

the Y or Z dimensional FFT is computed using separate kernels using conflict-free

shared memory transposition between radix− k computations.

• The scaling operation should be embedded within the FFT computations. In partic-

ular, our scheme carries out the scaling operations within the last FFT computation

and the first radix computation of the inverse FFT computation, thereby completely

avoiding an additional 3D data access.
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3.1.2 Fermi Architecture Implementation Details

We first describe the detailed algorithm for the case that different dimensional FFTs

are computed in separate kernels of n = n1n2, m = m1m2, and p = p1p2. We still

make use of the 256 × 256 × 256 size as the example. Then we extend this algorithm to

accommodate problem sizes that have larger Y and/or Z dimension FFTs in which case

size 512× 512× 512 FFT execution plan is illustrated.

Each of the steps below corresponds to a kernel involving a coalesced scan of the

entire 3D data.

1. X dimension FFT: thread block is configured as (tidx, tidy, 1). Upon global mem-

ory load and store, tidy is for the independent X dimensional FFT and tidx is for

coalesced memory accesses for consecutive threads. 16 single precision complex

elements are allocated to each thread. This can be used for one radix-16 FFT, or

2 radix-8 FFT, 4 radix-4 FFT,or 8 radix-2 FFT. Take X dimension 256 FFT as an

example: thread block can be declared as (16, tidy, 1). The choice of tidy can

affect the occupancy by the required shared memory size and thread block size and

affect the shared memory transposition pattern and padding, though 128 threads

per block is typically a good choice. 16 threads compute 256 FFT as follows: 1)16

consecutive threads load 16 consecutive threads for 16 times with coalesced mem-

ory access each time; 2) compute the radix-16 FFT and multiply twiddle factors;

3) exchange data using the shared memory with bank conflict free transposition; 4)

compute the second radix-16 FFT; 5) exchange data using the shared memory for

coalesced global memory storing; 6) store data using a symmetric way as the first

72



step.

2. Y and Z dimension FFTs: thread block is configured as (tidx, tidy, 1). tidx num-

ber of Y and Z dimensional (radix) FFTs are computed at once as the necessity for

coalesced global memory access. Still take the 256 FFT as an example, tidy is al-

located to be 16 so that two rounds of radix-16 FFTs can complete the computation

in that dimension as the intermediate transposition takes time and we would like

to minimize such overhead as much as possible. In such a case, tidx size strongly

affects the device memory transaction size and 128B size is preferable to Fermi

architecture since this would not waste device memory bandwidth since all the de-

vice memory requests are 128B in such scenario. On the other hand, increasing

tidx would increase the shared memory size per block proportionally and limit the

number of resident blocks per block and as a result may stall the SM upon block

synchronization. When the Y and/or Z dimension FFT sizes are too large, trying

to use one kernel for the entire FFT computations in that dimension would result

in prohibitively low device memory throughput and in such case, a experimentally

proven effective decomposition and delegation approach would be illustrate shortly.

3. Scaling: the intermediate division scaling can be done between the last kernel of the

forward FFT and the first kernel of the inverse FFT; and more these three steps can

be combined into one single kernel so as to reduce global memory access rounds.
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3.2 Optimized GPU Implementation for the Case of the Two-Periodic

One-Neumann BC

We first discuss the special type of tridiagonal linear systems which arises in FFT-

based direct Poisson solvers for this case, followed by a description of an optimized GPU

algorithm.

3.2.1 Special Tridiagonal Systems

For the two-periodic one-Neumann boundary conditions, the FFT-based direct Pois-

son solver involves a special type of tridiagonal linear system of equations whose coeffi-

cient matrix is given by:



−1 1 0 0 · · · 0

1 cc[l,m] 1 0 · · · 0

0 1 cc[l,m] 1 · · · 0

0 0
. . . . . . . . . 0

0 0 · · · 1 cc[l,m] 1

0 0 · · · 0 1 −1


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where cc[l,m] = ∆z2c[l,m] and vector d is



0

∆z2f̂l,m,1

∆z2f̂l,m,2

...

∆z2f̂l,m,K−1

∆z2f̂l,m,K−2

0


That is, unlike the general tridiagonal linear system introduced earlier, our appli-

cation allows us to generate the coefficient matrices on the fly, and each such system

involves only a few different numbers. Therefore no global memory accesses will be

needed to generate the linear systems.

When Thomas’ algorithm is applied to our simplified tridiagonal system, we use

the variable g to store the input (that is, vector d in the initial description of Thomas’

algorithm) and the output (vector x in the previous section). Since each step in the forward

sweep needs the immediately preceding computed element, we use the variable gprev

to hold the updated g value from the previous loop to avoid loading it from the global

memory. We now turn to the description of an optimized GPU algorithm. It turns out that

the algorithm depends on the dimension along which the Neumann boundary conditions

hold. We will describe the case when the Neumann BC is along the Z axis; the other cases

can be dealt with in a similar fashion.
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To simplify the presentation, we denote the size of our grid by m× n× p, where p

is the size along the Z dimension. Recall that the algorithm involves p 2D forward FFTs,

one for each (X,Y) slice, followed by applying the two stages of Thomas’ algorithm nm

times once for each index (i, j), and finally p inverse 2D FFTs are applied to generate the

final output.

The GPU algorithm is straightforward: similar to the three periodic case except that

the forward sweep of Thomas’ algorithm is carried out in a similar as the scaling step in

the previous algorithm and the backward process is carried out during the inverse FFT

computations. However, there are several things to be taken care of some of the variables

needed to be stored in the shared memory due to register pressure, especially for Fermi

GPUs of double precision division version. Thread divergence needs to be minimized for

the boundary conditions. In addition, for the double precision division, double precision

intrinsic functions can be used for Fermi GPUs for efficency. The main steps are described

next.

• Compute all the FFTs along the Y dimension. As before the data is initially loaded

from global memory in vector format along the X dimension to ensure coalesced

global memory accesses, followed by applying the in-order DIF FFT algorithm and

writing back into global memory the computed values. For large values of m (size

of the Y transform), we may decompose m = m1m2 and compute radix m1 and

radix m2 FFTs according to the shared memory size of the target GPU architecture,

similar as the Y dimensional FFT in the 3D FFT.

• Compute the FFTs along the X dimension while simultaneously applying the for-
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ward process of Thomas’ algorithm. We load data from the global memory for the

X dimensional forward FFT such that a thread block takes care of a slice of mp

elements in the Y dimension. That is, each thread block computes a set of size m

FFT, iterating along the Z dimension until all the FFTs in the corresponding slice

are computed. Such a traversal provides a way to simultaneously implement the

forward sweep of Thomas’ algorithm. More specifically, threads from a block load

one row of the elements in the X dimension, followed by applying the forward

in-order DIF FFT algorithm to each row.Then, a shared memory transposition is

performed to reconstruct the layout of the elements as they appeared right after the

initial loading step. Such memory layout makes it easy to solve the tridiagonal lin-

ear system and guarantees coalesced global memory storing of the results. In the

forward substitution step, we store the updated b [i] and v [i] into the global memory

and update the b [i− 1] and v [i− 1] using the newly computed b [i] and v [i].

• Apply the backward process of Thomas’ algorithm along the Z dimension while

simultaneously computing the inverse FFTs of the vectors along the X dimension.

Each thread block is responsible for loading mp elements of an (X ,Z) slice. We

start by loading the last row of the data, followed by applying the Z dimensional

backward substitution of the last rows, store the substituted row into the “working

memory” and then perform an IFFT on the last row in the X dimension, and fi-

nally storing the last row back into the global memory. Then proceed by loading

the second last row from the global memory, followed by applying the backward

substitution using the data stored “working memory”, and so on until we are com-
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pletely done with required processing along the Z and X dimensions.

• Compute the inverse FFTs for all the Y vectors in a similar way as the first step.

3.3 Performance Evaluation

The performance of our algorithms is evaluated on two Tesla architecture based

GPUs: Tesla C1060 and GeForce GTX280 and two Fermi architecture based GPUs: Tesla

C2050 and GeForce GTX480. The detailed specifications are listed in [72].

We compute the GFLOPS as before and compare the performance of our standalone

solvers with those using CUDA FFT library for the 3 periodic BC case and the hybrid

implementations with 2D CUFFT and our optimized Z dimensional tridiagonal solver for

the 2 periodic 1 Neumann BC case. The specific formula used the in the evaluation can

be found in [72] .

3.3.1 The Case of the Three Periodic BC

Recall that the algorithm for the three-periodic case consists of a forward 3D FFT,

a scaling step, followed by an inverse 3D FFT. Hence we compare the performance of our

algorithm against a GPU implementation using the CUFFT library, including or excluding

the scaling step. When the scaling step is included in library-based implementations,

we use a fairly optimized implementation of the 3D scaling operation and only the plan

execution time is counted toward the total runtime.

We start by comparing the performance of our algorithm to the CUFFT library

implementations on the Tesla C1060 and the GeForce GTX280. Figure 3.2 and Figure
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3.4 show the GFLOPS performance of these algorithms on various data sizes. As can be

seen from Figure 3.2, our algorithm consistently achieves around 140 GFLOPS for all

the input sizes considered, much better than the CUFFT library was able to achieve even

without the scaling step. Similarly, our algorithm achieves a performance ranging from

140 GFLOPS to over 160 GFLOPS on the GeForce GTX 280, again significantly better

than what the CUFFT was able to achieve on the same GPU.

On the Fermi GPUs, consistently good performance were able to be achieved on

both Tesla C2050 and GeForce GTX 480 as the runtime scalability shown in Figure 3.1.

On the Tesla C2050, Figure 3.3, it scores between 230 GFlOPS and 290 GFlOPS for most

cases and is consistently 70 GFlOPS better than the CUFFT based solver for all data sizes.

Especially for the larger data sizes, CUFFT was not able to perform well and runs sharply

slower. On the contrary, due to our effective technique to decompose the larger size Y

and/or Z dimension FFT into smaller radix FFT and optimized radix-256 FFT, the runtime

is as good as the smaller sizes. And due to the smaller radix FFT computations included

in the kernels mainly for the X dimension FFT, higher GFLOPS numbers were able to

be achieved. On the GeForce GTX 480, a similar good performance is demonstrated in

Figure 3.5: performance ranges from 330 GFLOPS to 375 GFLOPS for these data sizes

fit into the global memory and outperforms the CUFFT based counterparts by around 75

GFLOPS.
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Figure 3.1: 3 Periodic BC Fermi GPUs Runtime Scalability

3.3.2 The Case of the Two-Periodic and One-Neumann BC

For the 2 periodic 1 Neumann BC case, we employ the GFLOPS performance met-

ric as those used in the 3 periodic BC case. The number of GFLOPS consists of two

components: the 2D FFT computations, and the 1D tridiagonal solvers.

We start by reporting on the performance of our algorithm on the Tesla GPUs. Fig-

ures 3.6 and 3.7 show the performance of our algorithms on the Tesla C1060 and GTX

280 on various domain sizes for single precision and double precision respectively. Due

to the relatively weakness of double precision computation throughput, the Z dimensional

tridiagonal solver steps can be a big burden for the X dimensional forward FFT, especially

for small X dimension size. For such cases, we hybrid the highly optimized 2D CUFFT

library and our optimized Z dimensional tridiagonal solver for the solver. Though this

introduces two kernels with global memory accesses, each kernel could be efficient itself

and performs better than the our standalone version for these cases. We capture the best
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Figure 3.2: 3 Periodic Case Performance Comparison on Tesla C1060

Figure 3.3: 3 Periodic Case Performance Comparison on Tesla C2050
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Figure 3.4: 3 Periodic Case Performance Comparison on GeForce GTX 280

Figure 3.5: 3 Periodic Case Performance Comparison on GeForce GTX 480
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GFLOPS for the two variations in our performance evaluation. Recall that the double pre-

cision indicates double precision divisor representation and double precision division in

the forward reduction of Thomas’ algorithm, single precision otherwise. Note the double

precision GPU version enjoys the second-order accuracy while only using double pre-

cision for the division step rather than for the entire algorithm; single precision version

performs slightly worse in terms of accuracy but with around 25 percent overall runtime

performance gain. As indicated in these figures, the single precision solver overall perfor-

mance is from 115 GFLOPS to 140 GFLOPS on the Tesla C1060 and varies from around

120 GFLOPS to 150 GFLOPS on the GeForce GTX 280. For the double precision ver-

sion, the performance is around 90 GFlOPS to 110 GFLOPS on the Tesla C1060 and 110

GFLOPS to 120 GFLOPS on the GeForce GTX 280 respectively.

For the Fermi GPUs, the performance is significantly good. For single precision

version (Figure 3.8), GeForce GTX 480 yields around 200 GFLOPS to 275 GFLOPS and

the performance of Tesla C2050 ranges from 140 GFLOPS to 200 GFLOPS. These figures

use nvcc 4.2.9; however, the performance of single precision version of using nvcc 3.2.16

is generally better than using nvcc 4.2.9, though older. The double precision version, on

the other hand, degraded slightly from the single precision version, thanks to the double

precision intrinsic function support (Figure 3.9). On the GeForce GTX 480, the achieved

performance was between 180 GFLOPS and 220 GFLOPS and on the Tesla C2050, the

achieved performance was between 130 GFLOPS and 180 GFLOPS.
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Figure 3.6: Performance of 2 Periodic 1 Neumann BC on the Tesla based GPUs (I)

Figure 3.7: Performance of 2 Periodic 1 Neumann BC on the Tesla based GPUs (II)
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Figure 3.8: Performance of 2 Periodic 1 Neumann BC on the Fermi based GPUs (I)

Figure 3.9: Performance of 2 Periodic 1 Neumann BC on the Fermi based GPUs (II)
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Chapter 4: Out of Card Poisson Solver

We develop optimized multi-dimensional FFT implementations on CPU-GPU het-

erogeneous platforms for the case when the input is too large to fit on the GPU global

memory, and use the resulting techniques to develop a fast Poisson solver. The solver

involves memory bound computations for which the large 3D data may have to be trans-

ferred over the PCIe bus several times during the computation. We develop a new strategy

to decompose and allocate the computation between the GPU and the CPU such that the

3D data is transferred only once to the device memory, and the executions of the GPU ker-

nels are almost completely overlapped with the PCI data transfer. We were able to achieve

significantly better performance than what has been reported in previous related work, in-

cluding over 145 GFLOPS for the three periodic boundary conditions (single precision

version), and over 105 GFLOPS for the two periodic, one Neumann boundary conditions

(single precision version). The effective bidirectional PCIe bus bandwidth achieved is

9-10GB/s, which is close to the best possible on our platform. For all the cases tested, the

single 3D data PCIe transfer time, which constitutes a lower bound on what is possible

on our platform, takes almost 70% of the total execution time of the Poisson solver.
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4.1 Introduction

There has been recent interest in the development of high performance direct Pois-

son solvers due partly to the introduction of immersed-boundary methods [64]. A Poisson

solver is an extremely important tool used in many applications, which most often con-

stitute the most computationally demanding component of the application. In an earlier

work [70], we developed an FFT-based direct Poisson solver for GPUs, which was op-

timized for the case when the 3D grid fits onto the device memory. The performance

reported there assumes that both the input and output reside on the device memory, which

is the typical assumption made by most of the published GPU algorithms. In this chapter,

we consider the case when the grid is much larger than the size of the device memory,

but can still fit in the main memory of a host multicore CPU, and develop optimized FFT

computations, and FFT-based direct Poisson solver on such platforms, which significantly

expands our earlier work in [73]. Our approach [74] exploits the particular strengths of

each processor while carefully managing the data transfers needed between the CPU and

the GPU. In particular, our algorithm includes optimized 2D or 3D FFT implementations

and optimized tridiagonal solver implementations for such heterogeneous environments

in which both the input and the output reside in the main memory of the CPU.

Most of the recently published work of FFT algorithms on GPUs [68, 75–79], as-

sume data sizes limited by the device memory size. This assumption results in efforts that

are concentrated on GPU optimization, including data transfers between device memory

and the shared memory or registers of the streaming multiprocessors. For memory bound

computations, such as FFTs, the performance bottleneck becomes the device memory
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bandwidth and the type of the global memory accesses. For recent GPUs, the peak device

memory bandwidth can be 100-200 GB/s.

We compare our results to two recent results on a similar model. Chen et al [48]

used a cluster of 4 or 16 nodes, each node includes two GPUs (Tesla C1060 and GTX

285), to handle large 3D FFT computations. They reported a performance of around 50

GFLOPS on four nodes, somewhat lower than our performance on a single node with

a Tesla C1060 (in fact, our performance number is an under-estimate since it does not

take into consideration all the components of our Poisson solver). Another recent work is

reported by Gu et al [80], which tries to optimize both CPU-GPU data transfer and GPU

computations for 1D, 2D, and 3D FFTs. In particular, they develop a blocked buffered

technique for 1D FFTs which achieves a high bandwidth on the CPU-GPU data channel.

For their multidimensional FFTs, the data has to be transferred back and forth between the

CPU and GPU at least twice, and for 3D double-precision FFT, their best performance is

around 15 GFLOPS on the NVIDIA Tesla C2070, 13 GFLOPS on the NVIDIA GTX480

and 9 GFLOPS on the NVIDIA Tesla C1060 respectively. Our performance numbers

for the single-precision FFTs reach 60 GFLOPS using the Tesla C1060. And when us-

ing Tesla K20, which supports bidirectional PCIe bus transfers (similar as Tesla C2070),

we achieved more than 140 GFLOPS for the single precision FFTs and more than 70

GFLOPS for the double precision FFTs.

Our main contributions can be summarized as follows.

• The computation is organized in such a way that the 3D grid data is transferred

between the CPU memory and the device memory only once, while achieving a
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PCIe bus bandwidth close to the best possible on our platforms.

• The GPU kernel computations are almost completely overlapped with the data

transfers on the PCIe bus, and hence the GPU execution time contributes very little

to the overall execution time. This is due to an effective use of the CUDA page-

locked host memory allocation, asynchronous function calls, stream scheduling,

and write-combining.

• Our CPU-GPU workload decomposition is equally effective for both single preci-

sion and double precision implementations. While our single precision implemen-

tation achieves an accuracy comparable to a double precision implementation, it

achieves double the GFLOPS for the same data sizes.

• Experimental tests on our platform for problems of large sizes show that almost

70% of the total execution time is consumed by the single 3D grid data transfer

over the PCIe bus, and most of the rest is consumed by the initial CPU computation

of the FFT along the X dimension. The overall performance of our FFT-based

Poisson solver ranges of 50-60 GFLOPS for a relatively older CPU-GPU platform

and around 140 GFLOPS for a newer platform.

4.2 Overview and Background

In this section, we provide an overview of the algorithms behind the FFT-based

Poisson solver, which include FFT and tridiagonal linear system computations. Basic

FFT algorithms that are related to our work are then summarized, followed by an overview
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of Thomas’ algorithm for solving tridiagonal linear systems. We end this section with an

overview of the general architecture of our platforms that consists of a multicore processor

with a GPU accelerator.

4.2.1 Architecture Overview

Our experimental platforms are heterogeneous processors, each of which consists

of a multi-core CPU and a GPU accelerator, such that the CPU memory is substantially

larger than the GPU device memory. More specifically, we use two testbeds for our work.

The first is a dual socket quad-core Intel Xeon X5560 CPU with 24GB main memory

and an NVIDIA Tesla C1060 with 4GB device memory - we refer to this testbed as the

Nehalem-Tesla node, after the codename of the CPU and the architecture of the GPU

respectively. The second is a dual socket octal-core Intel E5-2690 with 128GB main

memory and an NVIDIA Tesla K20 with 5GB device memory - we refer to this testbed

as the Sandy-Kepler node (we use Sandy rather than Sandy Bridge for brevity). The input

data is much larger than the device memory and is assumed to be initially held in the CPU

memory. At the end of the computation, the output data must reside in the CPU memory

as well. Data transfers between the CPU main memory and the GPU device memory

are carried out by a PCIe 2.0 bus: unidirectional for the Nehalem-Tesla node (compute

capability 1.3) and bidirectional for the Sandy-Kepler node (compute capability 3.5).
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4.2.1.1 CUDA Programming Model

The CUDA programming model assumes a system consisting of a host CPU and a

massively data parallel GPU acting as a co-processor, each with its own separate memory

[81]. The GPUs consist of a number of Streaming Multiprocessors(SMs), each of which

containing a number of Streaming Processors (SPs or cores). The GPU executes data

parallel functions called kernels using thousands of threads. The mapping of threads onto

the GPU cores are abstracted from the programmers through - 1) a hierarchy of thread

groups, 2) shared memories, and 3) barrier synchronization. Such abstraction provides

fine-grained data parallelism and thread parallelism, nested within coarse-grained data

parallelism and task parallelism and this is based on similar hardware architecture among

generations. Details of the CUDA programming model can be found at [81] and we will

only refer to the aspects that are key to our optimization scheme. In this work, we are

concerned with Tesla C1060 and K20 whose main features are summarized in Table 5.1.

Note that, for the Tesla K20, the L1 cache and the shared memory per SM share a total

amount of 64KB on-chip memory whose ratio is configurable.

4.2.1.2 PCIe bus

The PCIe 2.0 bus between the CPU and GPU is of central importance for large size

problems and for memory bound computations such as ours. The PCIe 2.0 has a theoret-

ical single directional peak bandwidth of 8 GB/s - with a relatively smaller best achiev-

able bandwidth in our evaluation. On the Sandy-Kepler node, single directional mem-

ory transfer from pinned host memory to device memory (H2D-host to device) reaches
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Table 4.1: The Two GPUs Used in This Chapter

GPUs Tesla C1060 Tesla K20
SMs per GPU 30 14
SPs per SM 8 192

Registers per SM 16K 64K
Shared Mem per SM 16KB 16KB-48KB

L1 Cache per SM NA 48KB-16KB
L2 Cache per GPU NA 1.25MB

Global Mem per GPU 4GB 5GB
GPU clock rate 1296MHz 706MHz

Memory clock rate 800MHz 2600MHz
Memory bandwidth 102.4GB/s 208GB/s
Compute Capability 1.3 3.5

5.7GB/s bandwidth and from device memory to pinned host memory (D2H-device to

host) achieves 6.2GB/s bandwidth. However, when bidirectional memory transfer is done

concurrently, a further slight bandwidth degradation is observed: 5.44GB/s for D2H and

5.34GB/s for H2D are the best we were able to achieve for pure bidirectional memory

transfer with varying data sizes. This gives a combined 10.78GB/s upper bound on the

best achievable bandwidth. On the Nehalem-Tesla node, only single directional memory

transfer is supported and the observed H2D bandwidth is 5.4GB/s and for a D2H copy

the best bandwidth achievable is 5.3GB/s. Similar observations were reported by others

including NVIDIA [80, 82]. Clearly the data transfer between the host and the device

memories constitutes the major bottleneck for our problem.

4.2.1.3 Multi-core CPU

In addition to acting as the CUDA host, the multicore CPU offers in itself a multi-

threaded environment with a shared memory programming model. In most previous work,
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the focus has been on GPU optimization without trying to make use of the CPU computa-

tional resources. In our approach, we make use of the multicore CPU in two ways: 1) we

allocate part of the computation to the CPU cores and partition the CPU and GPU work

in such a way that the GPU work requires only one iteration of data transfer over the PCIe

bus; 2) we use the multi-core CPU to enable concurrent asynchronous transfers between

the host memory and the pinned memory: unidirectional for the Nehalem-Tesla node and

bidirectional for the Sandy-Kepler node. In addition, modern multi-core CPUs are built

with SIMD support: SSE is supported on the Xeon X5560 and AVX is supported on the

Xeon E5-2690. Such features allow us to carry out a limited amount of data intensive

parallel computations quite effectively on the CPU.

4.2.1.4 Asynchronous CUDA streams

CUDA supports asynchronous concurrent execution between host and device through

some asynchronous function calls - control is returned to the host thread before the device

has completed the requested task [81]. Data transfer and kernel execution from different

CUDA streams [81] can be overlapped when memory copies are performed between page-

locked host memory and device memory. Some devices of compute capability of 2.x and

higher (K20 in our evaluation) can perform memory copy from page-locked host memory

to device memory (H2D) concurrently with a copy from device memory to page-locked

host memory (D2H). With careful orchestration of the CPU work and CUDA streams, we

essentially establish a CPU-GPU work pipeline of depth of four (for the Nehalem-Tesla

node) and five (for the Sandy-Kepler node) in which computation and communication
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are almost completely overlapped. Moreover, our effective CPU-GPU work pipeline of

bidirectional PCIe bus transfer essentially doubles the PCIe bus performance of the uni-

directional PCIe bus transfer version.

4.3 Overall Approach

In this section and the following section, we describe our overall strategy to handle

the FFT-based direct Poisson solver computations for the cases of three periodic boundary

conditions, and the two periodic, one Neumann boundary conditions. In each case, we

describe how the overall computation is decomposed and scheduled onto each of the

CPU-GPU platforms, and how data transfers between the CPU memory and the GPU

global memory are managed to cause an almost complete overlap between computation

and data transfer.

4.3.1 Three Periodic Boundary Condition Case

The 3 periodic Boundary Condition (BC) case involves a 3D forward FFT, a scaling

of each element, and a 3D inverse FFT. The scaling (division) of each element during the

intermediate step depends only on the 3D indices of the element, which allows us to

incorporate the scaling operations within the forward FFT or inverse FFT computations.

In our implementation, we choose the in-order input FFT DIF variation for the forward

FFT, and the in-order output FFT DIT variation for the inverse FFT computation. A

straightforward implementation of the 3D FFT algorithm would require moving the 3D

data once along each dimension, resulting in the 3D data being exchanged between the
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CPU and the GPU over the PCIe bus three times.

We start by noting that the CPU cores offer opportunities for a significant amount of

parallelism on highly irregular computations, and that the availability of caches makes the

CPU quite effective in handling FFTs along the X dimension due to the memory layout

of the 3D data. Note also that the SIMD capability of the CPU presents possibilities for

additional performance enhancement. On the other hand, the GPU architecture is much

more effective for massive data parallel computations using more structured memory ac-

cess patterns. Therefore, we decompose the overall work among the CPU and the GPU in

such a way that: (1) the volume of the data transferred over the PCIe bus is minimized. In

our case, the 3D data will be transferred only once between the two devices; (2) the FFT

computations along the X dimension will be effectively carried out by the CPU cores; and

(3) the rest of the FFT computations will be carried out by the GPU cores through a se-

quence of asynchronous streams of chunks of the 3D data. Each asynchronous stream will

go through a 5-stage pipeline consisting of: data transfer from the host system memory to

the host pinned memory; memory copy from the host to the device memory (H2D); GPU

kernel executions; memory copy from the device to the host pinned memory (D2H); and

data transfer to the host system memory. We orchestrate the data movements to overlap

H2D memory copy, kernel execution, and D2H memory copy.

We illustrate our strategy in details by focusing on the problem of size 1024 ×

1024× 1024. Similar strategies work as effectively for other sizes.
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Figure 4.1: Performance of Batched 1D DFT Using MKL library

4.3.1.1 Multi-threaded CPU forward X dimensional FFT

As mentioned before, the FFT computations along the X dimension are carried out

by the CPU cores. We make use of Intel’s Math Kernel Library (MKL) SIMD OpenMP

based DFT routines to execute this step. This library seems to effectively exploit the

multicore architecture, the memory hierarchy, and the SIMD capability of the core pro-

cessors. As an example, we demonstrate the performance of this library on batches of

one-dimensional FFTs of sizes ranging from 20 up to 219 on the CPU of the Sandy-Kepler

node. The results are shown in Figure 4.1, where the performance is illustrated through

two curves - one showing the GFLOPS performance and the second showing the memory

bandwidth achieved as a function of the input size assuming only one memory read and

store were done for each element. As can be seen from this figure, the memory bandwidth

achieved is quite good (relative to the peak of 79.55GB/s reported in [83]), especially in

the range we are interested in (between 1K and 4K). While the GFLOPS performance

varies over a relatively significant range, It is quite good over the range of interest to us
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(between 1K and 4K). Therefore, the forward and the inverse FFTs along the X dimension

are completed by calling the MKL library.

4.3.1.2 Asynchronous Streams of Data Movements and GPU Kernels

CUDA allows the use of streams for asynchronous memory copy and concurrent

kernel executions to hide long PCIe bus latency [81]. A stream is a sequence of commands

that execute in order; different streams may execute their commands out of order with

respect to one another or concurrently. Asynchronous memory copy has to be carried

out between page-locked host memory and device memory. The H2D and D2H memory

copies can be done concurrently on the Kepler GPUs but only one-directional memory

copy can be executed at a time on the Tesla GPUs. This would result in a slightly different

organization of the CPU and GPU pipeline on each platform.

Figure 4.2: 3D data memory layout

We now focus on the Nehalem-Tesla node and later address the streams used for

the Sandy-Kepler node. In order to make effective use of the asynchronous CPU-GPU

memory copy for our running example, we organize the remaining FFT computations into
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Figure 4.3: CPU and GPU device memory usage

four batches, each consisting of four asynchronous streams where each stream involves a

subarray of size 64× 1024× 1024 (0.5 GB) - this means a vector size of 64 along the X

dimension, which is demonstrated as “XW” in Figure 4.2. The choice of vector size 64 is

determined to optimize the use of the PCIe bus bandwidth. The corresponding memory

layout of the problem decomposition is shown in Figure 4.2.

Figure 4.4: CPU-GPU Pipeline for Nehalem-Tesla Node

For our running example, staging page-locked host memory of size 2GB (0.5GB*4)

is allocated to enable asynchronous memory copy, as indicated in Figure 4.3. By default,
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Figure 4.5: block memory copy for one stream (Tesla C1060)

page-locked host memory is allocated as cacheable and write-combining flag can be used

to enable the memory not to be snooped at during data transfer across the PCIe bus, which

can boost the host to device bandwidth in practice [81]. However, the bandwidth on the

opposite transfer direction is prohibitively slow. So we allocate two scratch page-locked

memories: one with default flag and using for device to host transfer and one with write-

combining flag and using for host to device transfer.

Figure 4.4 shows one batch of the complete pipelined execution of multi-threaded

CPU (including the main thread and the helper threads) and 4 GPU streams (stream 0, 1,

2, 3). Each stream is defined as follows.

• The 3D data subset allocated to each stream is 64 × 1024 × 1024 along the X, Y

and Z dimensions respectively. This corresponds to the system host memory layout

versus <batch#, stream#>in Figure 4.5, which indicates 1K × 1K lines of 64 8-

byte words with 1024×8-bytes stride between every two lines. Each line is denoted

by XW in the figure, corresponding to the X-dimensional-Width.

These apart elements need to be packed consecutively in the page-locked memory

so that the following PCIe bus transfer bandwidth would be effective. The data
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movement for each data subset is a pipeline of block-wise movement involving a

multi-threaded CPU memory copy of a large number of 64-element words into a

consecutive block in the paged-locked memory, followed by a PCIe bus transfer.

The data movement from the system host memory to the pinned host memory and

the data movement from the pinned host memory to the device memory is simulta-

neous as indicated by the two arrows in Figure 4.5.

The entire process overlaps PCIe bus transfers with multi-threaded CPU data copy

into pinned memory. Due to bandwidth differences of the PCIe bus and the multi-

threaded system memory copy, by the time PCIe bus is done with the previous

sub-chunk, the next sub-chunk will be ready for the asynchronous memory copy

into the device memory.

Figure 4.6: Async CUDA streams for Tesla C1060

Immediately after we execute the memory copy for one chunk of 64× 1024× 1024

data, and launch the asynchronous kernel calls for that stream and start the same

work of the next 64× 1024× 1024 data chunk. Upon the completion of the kernel

calls, we make use of asynchronous copy attached to the same stream for the copy
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Figure 4.7: Async CUDA streams for Tesla K20

back. However, due to the limitation of Tesla C1060, there are no concurrent data

transfers back and forth between pinned memory and device memory. When we

schedule the asynchronous work, we have to schedule the copy back calls after

executing all the copying from the pinned host memory to the device memory and

their kernel calls. This asynchronous stream execution is shown in Figure 4.6.

• Compute the 2D forward FFT, scaling and 2D inverse FFT computation (of 64

along the X dimension) on a chunk of size 64 × 1024 × 1024 on the GPU using 7

optimized kernels. The total execution time of the kernels (of the 4 streams) should

be smaller than the total transfer time of 3 streams (3 host to device and 3 device

to host, Figure 4.6); otherwise, one or more of the streams’ memory transfer back

needs to be held back until the completion of its kernel. This is illustrated in Figure

4.6. Since we want to achieve a high PCIe bus bandwidth, the kernels have to

execute as fast as well. Once the data is loaded onto the GPU device memory, we

can use techniques similar to those introduced in our previous work [70] to compute

the Y and Z dimensional FFTs of each subarray of size 64 × 1024 × 1024. An
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intermediate global memory (shared by 4 streams due to their sequential execution

of kernels) is introduced for smaller strides between consecutive global memory

accesses when multiple Z dimensional computation kernels are involved (Figure

4.3), without limiting the maximum number of concurrent streams. The scaling

step is included in the last step of the forward FFT and the first step of the inverse

FFT with the scalars computed using bit-reversed indices.

We borrow the following notation from our earlier work [70]: {Y (p, q, r, n), forward}

amounts to the execution of p radix-q forward FFTs along the Y dimension with a

stride of r with a group size of n. Using this notation, the GPU kernels can be

defined by the following computations:

– {Y (32, 32, 32, 1024), forward}

– {Y (32, 32, 1, 32), forward)}

– {Z(32, 32, 32, 1024), forward}

– {Z(32, 32, 1, 32), forward}

{scaling,GPU)}

{Z(32, 32, 1, 32), inverse}

– {Z(32, 32, 32, 1024), inverse}

– {Y (32, 32, 1, 32), inverse}

– {Y (32, 32, 32, 1024), inverse}

Note that all the arithmetic computations are carried out on register contents, all

global memory transfers involve coalesced memory access (the vector size along

the X dimension is selected to ensure the global memory coalescing). Therefore,

102



we complete the 64 sets of 1024×1024 forward FFT, scaling and inverse FFT using

7 kernels.

• Once the kernels are completed, we perform block-wise asynchronous memory

copy from the device memory to the pinned host memory and then to the sys-

tem host memory for each stream. cudaStreamSynchronize() is used to let the

CPU memory copy back wait for the completion of the asynchronous GPU-to-CPU

memory copy for that data chunk (Figure 4.4).

4.3.1.3 Asynchronous Streams of Data Transfers and GPU Kernels for

the Sandy-Kepler Node

On the Sandy-Kepler node, memory transfers between the host memory and the de-

vice memory are possible in both directions concurrently. Therefore, rather than postpone

the memory transfer of the next batch from the host memory to device memory until the

completion of device memory to host memory transfer, the next batch of memory trans-

fer could start immediately as long as the pinned host memory portion used by the same

stream in the previous batch is copied into the device memory, namely, we want to ensure

no overwrite hazard is possible as illustrated in Figure 4.8. Only in this way bidirectional

memory transfer could be maintained between batches without the pipeline being under-

fed - essentially we need to establish a 5-stage pipeline: 1) S2P memory copy; 2) H2D

memory copy; 3) kernel execution; 4) D2H memory copy; and 5) P2S memory copy. This

implies that we need at least 5 streams of data movements and GPU computations for a

non-stalling pipeline.
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Figure 4.8: CPU-GPU Pipeline for Sandy-Kepler Node

Moreover, CUDA 5.0 added a new runtime function that allows the insertion of a

callback function at any point in a stream. Such a callback function is executed on the

host once all commands issued on the stream before the callback have been completed.

We employ the callback for the data movement between the pinned host memory and the

system host memory for that stream. The callback function for each data subset needs a

private memory space to store the information about the source and destination addresses

of the data subset. Because of the asynchronous execution of the memory copy and

the kernel launches, we use separate space for each data subset to avoid any type of

data hazards. Therefore, a straightforward implementation would be to assign each data

subset to a stream, but the stream is scheduled in such a way that in the intermediate

execution a fixed number of streams are active as illustrated in Figure 4.8 - four streams

were illustrated in the figure for clarity.

In order to minimize the non-overlapping transfer time of the first and last streams,

we try to reduce the size of each data subset (while still large enough to achieve high PCIe

bandwidth). On the other hand, we need to guarantee the efficiency of the resultant GPU

kernels - one key feature being to ensure coalesced global memory access. As 128-byte
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being the largest device memory transaction size and the GPU L2 cache line size, we

choose 128 bytes as the X dimension size of each data subset. As we already completed

the X dimensional FFT, the choice of the 128 bytes for the X dimension is merely to

optimize the GPU memory throughput performance during kernel execution. Last, we

avoid the block-wise memory copy technique used in the Nehalem-Tesla node since each

subset is already small and the overhead of blocking the subset could not be justified

based on our tests.

For concreteness, let us focus on the single precision case for our running example.

The entire 1Kx1Kx1K data set is divided into 64 sets, each of size 16x1Kx1K (128MB)

and organized into 64 asynchronous streams. The double precision version is merely

half of the number of elements along the X dimension for each stream. The pinned host

memory is large enough to hold 8 data subsets. These 64 streams are mapped into the

8 slots, eight at a time, and scheduled into execution in a round-robin order while data

hazards are avoided through a shared status update protected by a MUTEX. Specifically,

the possible data overwrite can only happen between streams that map to the same pinned

host memory space one after another. As we are using two pinned host memory spaces

for the sake of better PCIe bus bandwidth, the forward copy pinned host memory space

is available for the next stream as long as the data is copied to the GPU’s device memory.

That is, we can proceed after the completion of the asynchronous memory copy from the

pinned host memory to the GPU’s device memory. As we are already using a CUDA

stream callback upon the completion of the asynchronous memory copy back from the

device memory to the host memory and we have enough concurrent streams ready to feed

the PCIe bus, we postpone this “Green” light status update in the callback function right
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before the multi-threaded memory copy from the pinned host memory to the system host

memory. Later, in the next round, the CPU main thread would check if the “Green” light

is on before launching another streaming of copy data from the system host memory to

the pinned host memory, otherwise, it would go to sleep for a while and repeat.

As a result, the GPU kernels can be defined by the following computations:

• {Y (4, 256, 4, 1024), forward)}

• {Y (256, 4, 1, 4), forward)}

• {Z(4, 256, 4, 1024), forward)}

• {Z(256, 4, 1, 4), forward)}

{scaling,GPU)}

{Z(256, 4, 1, 4), inverse)}

• {Z(4, 256, 4, 1024), inverse)}

• {Y (256, 4, 1, 4), inverse)}

• {Y (4, 256, 4, 1024), inverse)}

4.3.1.4 Multi-threaded CPU inverse radix FFT computation

This step is similar to the first step - we use the MKL library to compute the X

dimensional FFT with batched execution using all available cores.
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4.4 2 Periodic 1 Neumann Boundary Condition Case

4.4.1 Algorithm

Suppose our 3D input data is of size NX ×NY ×NZ. The 2 periodic 1 Neumann

BC case involves NZ sets of 2D forward FFTs, each of size NX × NY , followed by

NX × NY sets of tridiagonal linear systems, each of size NZ × NZ, followed by NZ

sets of 2D inverse FFT of sizeNX×NY . We use a strategy similar to the one used before

to decompose the computation between the CPU and GPU while carefully organizing

streams of data transfers between the two devices.

4.4.2 Strategy

We illustrate our strategy for the case of 1024× 1024× 1024, and examine in some

detail how the work is allocated between the CPU and the GPU for this case. The same

strategy works for other problem sizes as we demonstrate later. We start with the specific

details for the Nehalem-Tesla node, followed by the details for the Sandy-Kepler node.

4.4.2.1 Details on the Nehalem-Tesla Node

• As before, the first step is carried out on the CPU,using a batch of 1D X dimensional

MKL FFT library calls on all the available CPU cores.

• We launch a set of asynchronous streams involving memory copy such that each

of the streams performs the following computations of data size 64× 1024× 1024

running on the GPU:
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– Compute the forward FFTs along the Y dim:

{Y (1, 1024, 1, 1024, forward,GPU)}

– Using Thomas’ algorithm, solve the tridiagonal linear systems of equations

{Z(1024, tridiagonal solver,GPU)}

– Compute the inverse FFT along the Y dim:

{Y (1, 1024, 1, 1024, inverse,GPU)}

• After the GPU completes the execution of all the kernels and the intermediate re-

sults are written back in the CPU main memory, we execute a batch of 1D X di-

mensional MKL inverse FFT library calls on the available cores.

Note that, once a chunk is loaded into the GPU global memory, we ensure a fast

GPU execution by minimizing the number of global memory accesses, all of which are

guaranteed to be coalesced.

The CUDA streams are employed to combine the CPU and GPU work using asyn-

chronous memory copy and kernel executions in a similar way to what we did for the 3

periodic BC case: for our running example, 4 streams achieve a very good PCIe band-

width (around 4.5GB/s) on the Nehalem-Tesla node.

4.4.2.2 Details on the Sandy-Kepler Node

On the Sandy-Kepler node, a similar strategy using the MKL DFT library calls is

equally effective. The only difference of the 2 periodic 1 Neumann BC case from the 3

periodic BC case on the Sandy-Kepler node is that the Z dimensional kernels are done us-

ing different kernel functions and separate scratch space is allocated for the corresponding

108



data set to store vector B.

As a result, the GPU kernels can be defined by the following computations:

• {Y (4, 256, 4, 1024), forward)}

• {Y (256, 4, 1, 4), forward)}

• {Z dim forward reduction)}

• {Z dim backward elimination}

• {Y (256, 4, 1, 4), inverse)}

• {Y (4, 256, 4, 1024), inverse)}

4.4.3 Arithmetic Precision

When it comes to GPU performance, single precision floating point arithmetic en-

joys significant benefits over double precision arithmetic [84]. Since single precision

floating points use half of the memory space of double precision floating points, single

precision implementations potentially save half of the memory transfer time, for the PCIe

bus and for the global memory accesses. Also, single precision computations are faster

than double precision computations on many architectures, including the two GPUs we

are using. An important characteristic of our algorithm is to secure a 2nd order conver-

gence, and hence if we make the grid twice as dense, the accuracy would be four times

better. In our experiments, double precision arithmetics can easily guarantee such prop-

erty at the expense of slower computation time, while pure single precision implementa-

tions showed a relatively larger error when compared to the discretized analytic function

used in our tests. And due to the slow PCI peak bandwidth and fast GPU kernels, these
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two variations show almost the same performance in our experiments.

Figure 4.9: 3 Periodic BC Single Precision Perf. on the Sandy-Kepler Node

To achieve high performance while ensuring the 2nd order convergence, we make

use of a precision boost for the intermediate data. Through careful examination, we notice

that the step that most affects the precision is the division step in the forward elimination

stage: m = a[i]/b[i − 1]. More specifically, the error becomes large when b[i − 1] is

small. Note that in our implementation, the b[i − 1] is stored and updated as we iterate

along i. Hence we use double precision to store the b[i−1] values and immediately related

variables, and then cast the results back into single floating points. By using this trick, we

can avoid the performance degradation of converting the entire data into double precision

while achieving the desired accuracy.
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Figure 4.10: 3 Periodic BC Double Precision Perf. on the Sandy-Kepler Node

Figure 4.11: GPU Work Runtime Vs. Total Runtime on the Sandy-Kepler Node
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Figure 4.12: Bidirectional PCIe Bandwidth on the Sandy-Kepler Node

Figure 4.13: 2 Periodic 1 Neumann BC Single Precision Perf. on the Sandy-Kepler Node
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Figure 4.14: 2 Periodic 1 Neumann BC Double Precision Perf. on the Sandy-Kepler Node

Table 4.2: Compiler and Library configuration

Node Nehalem-Tesla Sandy-Kepler
CUDA driver 304.88 319.23
CUDA SDK 5.0 5.5

Intel Compiler & MKL
Library

2011 2013

4.5 Performance

In this section, we present a summary of the performance tests that have been con-

ducted on our CPU-GPU platforms.

In our tests, the problem size is a power of two in each of the three dimensions. We

use input sizes that cannot be accommodated by the device memory alone.

Since the essence of our algorithms is based on either 3D or 2D FFT computations,

we use the following well-known formula to estimate the FFT GFLOPS performance,
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assuming that the execution of a one dimensional FFT on data size NX is t seconds:

GFLOPS =
5 ·NX · log2 (NX) · 10−9

t
(4.1)

We compare the performance of our FFT implementations against implementations ob-

tained by employing SIMD enabled OpenMP based 2D or 3D FFT routines using Intel’s

MKL library.

We also evaluate the effective PCIe bandwidth achieved using Formula 4.2 to get a

sense about the performance of our CPU-GPU asynchronous streaming strategy.

BW =
2 · sizeof(element) ·NX ·NY ·NZ · 2−30

t
(4.2)

where sizeof(element) is the number of bytes occupied by each data element - 8 bytes

for a single precision complex number or 16 bytes for a double precision complex number.

The factor of 2 captures the fact that we are moving the data from the CPU to the GPU

and then back to the CPU. The time t used in the formula excludes the CPU runtime

for the X dimensional forward and inverse FFT work - it starts from the moment that

the CPU begins to copy data from the system host memory to the pinned memory for

the asynchronous memory copy and ends at the moment that all the results are copied

back into the system host memory. The performance numbers reported are the median

performance of 5 runs for each data size and boundary condition combination.
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4.5.1 The Case of the Three Periodic Boundary Conditions

Our three periodic BC Poisson solver consists of a forward 3D FFT, a scaling (divi-

sion) step for each element of the intermediate 3D array, followed by an inverse 3D FFT.

Therefore, the number of GFLOPS achieved by our algorithm can simply be calculated

based on the 3D FFT GFLOPS formula. Since we do not include the intermediate divi-

sion scaling step in our estimate, we under-estimate the performance of our algorithm.

Specifically, if the total execution time on a 3D data set of size NX×NY×NZ is t seconds,

then its GFLOPS can be measured using the standard formula:

GFLOPS =
2· 5·NX ·NY ·NZ ·[log2 (NX ·NY ·NZ)]·10−9

t
(4.3)

The coefficient 2 in the above formula captures the forward and the inverse FFT.

Figures 4.9 and 4.10 illustrate the GFLOPS performance on the Sandy-Kepler node

of our 3 periodic BC case Poisson solver and the combined 3D forward and inverse FFT

using the MKL library for the single precision and double precision cases respectively.

Figure 4.15 shows the GFLOPS performance on the Nehalem-Tesla node using single pre-

cision. Due to the Tesla C1060’s relatively low performance of double precision floating

point operations, we did not test our algorithms on the double precision version.

For the MKL library performance on each node, the performance improved with

the number of threads up to the maximum number of physical cores available on the

machine. We show only the curves corresponding to the best performance on our nodes.

In particular, the performance numbers of using 8 and 16 threads are similar on the dual
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Figure 4.15: 3 Periodic BC Single Precision Perf. on the Nehalem-Tesla Node

Figure 4.16: 2 Periodic 1 Neumann BC Single Precision Perf. on the Nehalem-Tesla Node
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Figure 4.17: GPU Work Runtime Vs. Total Runtime on the Nehalem-Tesla Node

Figure 4.18: Effective PCIe Bandwidth on the Nehalem-Tesla Node
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socket quad-core Nehalem-Tesla node’s CPU and the performance numbers of using 16

and 32 threads are similar on the dual socket octa-core Sandy-Kepler node’s CPU - both

cases achieve the peak performance of the MKL library on our platforms.

A quick comparison shows that our Poisson solver, which includes 3D forward FFT,

intermediate division scaling and 3D inverse FFT almost doubles the peak performance

of the MKL library on the same node. A cross comparison of the single precision version

and the double precision version on the Sandy-Kepler node shows that the single precision

version is almost double the performance of the double precision version - which indicates

the robustness of our CPU-GPU workload decomposition and that our implementation is

indeed limited by the PCIe bus bandwidth.

In Figure 4.12 we illustrate the effective bidirectional PCIe bus bandwidth of the 3

periodic BC case on the Sandy-Kepler node: it ranges from 9GB/s to 10GB/s. We indi-

cated the bidirectional bandwidth upper bound, which is the sum of pinned host memory

to device memory bandwidth (5.44GB/s) and device memory to pinned host memory

bandwidth (5.34GB/s) when the asynchronous memory copies are steady and completely

overlapped. As mentioned before, when only single directional memory transfer is con-

ducted, its performance is slightly better than concurrent memory transfer: the pinned

host memory to device memory copy has a bandwidth of 5.7GB/s and the device mem-

ory to pinned host memory has a bandwidth of 6.2GB/s. Similarly, an average 4.5GB/s

effective PCIe bus bandwidth is achieved on the Nehalem-Telsa node.

Figures 4.11 and 4.17 illustrate the effectiveness of the work decomposition on

the Sandy-Kepler and the Nehalem-Tesla nodes respectively. As we can see from these

figures, the runtime of the GPU related work - including the CPU memory copy work for
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the GPU - constitutes more than 2/3 of the total runtime on both nodes. Recall that the

execution rate of our GPU work is close to the PCIe bus bandwidth limit, and assuming

more than one PCIe bus transfer is conducted, the additional runtime would surely exceed

our CPU part work runtime.

4.5.2 The case of Two Periodic One Neumann Boundary Conditions

As described before, for the problem of size NX×NY ×NZ, the two periodic and

one Neumann BC case Poisson Solver consists of NZ number of 2D forward FFTs, each

of size NX×NY , NX×NY tridiagonal linear systems with matrix size NZ×NZ, and NZ

number of 2D inverse FFTs, each of size NX×NY . We conduct a similar experimental

tests as those carried out for 3 periodic BC case; however, we employ a GFLOPS formula

that is appropriate for the corresponding computations. The number of GFLOPS now

consist of two components: the 2D FFT computations, and the 1D tridiagonal solvers.

The 2D FFT or IFFT component can be easily captured as follows. If the execution

time of 2D FFT or IFFT on data of size NX×NY is t seconds, then

GFLOPS =
5·NX ·NY ·[log2 (NX ·NY )]·10−9

t
(4.4)

The number of GFLOPS needed to solve a tridiagonal linear system of size N using

Thomas algorithm is 8N , and hence the total GFLOPS formula for the 2 periodic (say,

the X and Y dimensions) 1 Neumann (say, Z dimension) BC is the following:

GFLOPS =
NX ·NY ·NZ ·[10·log2 (NX ·NY ) + 8]·10−9

t
(4.5)

119



The total GFLOPS performance of our Poisson solver for this case is shown in Fig-

ure 4.13 (single precision-SP), Figure 4.14 (double precision-DP) and Figure 4.16 (SP).

In this case, we are comparing the performance of our algorithm to the multi-threaded

CPU version implementation based on OpenMP based MKL 2D DFT routines and a

fairly optimized multi-threaded tridiagonal solver. The multi-threaded CPU implemen-

tation includes the following steps: 1) NZ batched execution of the 2D forward DFT of

size NX ×NY ; 2) transpose data from memory layout of < x, y, z > to < z, x, y >; 3)

solve NX × NY tridiagonal linear systems, each of NZ unknowns; 4) transpose mem-

ory layout from < z, x, y > to < x, y, z >; 5)NZ batched execution of the 2D inverse

DFT of size NX × NY . The data transpositions of steps 2 and 4 are performed to en-

able better memory locality for the tridiagonal solver. Otherwise, the performance will be

significantly worse. In order to capture an idealized lower bound of this optimized imple-

mentation, we did not include the runtime of the memory transposition when we calculate

the GFLOPS performance. Note that in reality, no matter how the boundary conditions

are aligned in x, y, z dimensions, poor memory locality would be experienced in one di-

mension or additional memory transpositions are necessary, which would degrade the

performance of the CPU implementations significantly.

As we can see from the Sandy-Kepler node performance figures, our single preci-

sion complete solver is significantly faster than our idealized CPU version; however such

advantage decreases as we convert to double precision. The reason for the advantage

degradation is because for double precision, the same amount of data was transferred by

the PCIe bus with half the FLOPS computation as that of the single precision version

- with the vast compute power of the GPU under-utilized. However, considering the ex-
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cluded transposition time, which could be quite significant, our solvers still show superior

performance as a complete solver. Our solver naturally makes use of the memory locality

of the X dimension FFT computation, and carefully eliminates the need of matrix trans-

position when utilizing the GPU in a vector-processor way. Similar conclusion can be

drawn for the Nehalem-Tesla node - though it is single precision version, the advantage

of using GPU is degraded by the restriction of single directional PCIe bus transfer and the

relatively smaller best achievable bandwidth.

In terms of the PCIe bus bandwidth, Figures 4.12 and 4.18 indicate a good PCIe

bandwidth for the 2 Periodic 1 Neumann BC case - for both single and double precisions

on both nodes. Moreover, Figures 4.11 and 4.17 indicate our CPU-GPU work decompo-

sition is quite general and effective for both the 3 periodic BC case and the 2 periodic 1

Neumann BC case.

4.6 Conclusion

We presented in this chapter a new strategy to map an FFT-based direct Poisson

solver on a CPU-GPU heterogeneous platform, which optimizes the problem decomposi-

tion using both the CPU and the GPU. The new approach effectively pipelines the PCIe

bus transfer and GPU work, almost entirely overlapping the CPU-GPU memory trans-

fer time and the GPU computation time. Experimental results over a wide range of grid

sizes have shown very high performance, both in terms of the number of floating point

operations per second and the effective PCIe bus memory bandwidth. Our strategies were

demonstrated equally effective across platforms and for different precision requirement.
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Chapter 5: Out of Card Dense Matrix Multiplication Acceleration

5.1 Introduction

Clusters based on heterogeneous nodes currently are the trendy architecture for high

performance computing. In this chapter, we present a dense matrix multiplication strat-

egy specifically tailored for heterogeneous platforms in the case when the input is too

large to fit on the device memory. Our strategy involves a CUDA stream based software

pipeline that effectively exploits the hardware and software features of the CPU and the

GPU thereby achieving, over a wide range of large data sizes, more than 95% of the best

possible performance of the native CUDA DGEMM library. We adapt the blocking algo-

rithms into a strategy that achieves near peak GPU computational rate within the band-

width constraint of the PCIe bus bandwidth. By ensuring contiguous and near-peak-rate

kernel execution flows, we were able to achieve more than 1 and 2 TFLOPS performance

on a single node with dual socket multicore CPU using 1 and 2 GPUs respectively. Our

results suggest the possibility of developing matrix computations on heterogeneous plat-

forms which achieve native GPU performance on very large data sizes up to the capacity

of the CPU memory.

Dense matrix operations are widely used as building blocks in many scientific

and engineering problems. Double precision dense matrix multiplication (DGEMM),
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constituting the most important routine of the LINPACK benchmark which is used to

rank the top 500 supercomputers in the world, has been a major research focus in both

academia and processor vendors. Currently clusters consisting of nodes based on multi-

core CPU/many-core accelerators are very popular among the top 500 supercomputers list

due to their peak FLOPS performance and their energy efficiency. Such architectures are

likely to become more popular as we march toward the era of Exascale computing espe-

cially that power issues become quite critical. High performance native DGEMM libraries

with 90% peak efficiency are often provided by vendors of CPUs [85], GPUs [86,87], and

other accelerators such as Xeon Phi coprocessor [88]. However when it comes to the out

of card performance, the great efficiency is typically compromised due to the substantial

overhead caused by the memory transfers between the CPU and the accelerators.

In this chapter, we present a scalable scheme for accelerating DGEMM on hetero-

geneous CPU-GPU platforms, focusing on the case when the input is too large to fit on the

device memory. Our scheme exploits hardware and software features of the CPU-GPU

heterogeneous nodes and employ an asynchronous CUDA stream based software pipeline

to achieve close to the best possible native CUDA BLAS DGEMM performance (CUDA

BLAS assumes that both the input and output reside on the device memory).

The rest of the chapter is organized as follows. Section II provides an overview

of the hardware and software features that are heavily used in this work, followed by a

brief introduction of the most popular DGEMM libraries and related literature. Section

III starts by discussing popular blocking schemes which are essential to high performance

DGEMM followed by a description of our blocking scheme. Section IV provides details

about our software pipeline which enables near peak performance. Section V illustrates
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the performance of our strategy in terms of scalability.

5.2 Overview

Our target systems are CPU-GPU heterogeneous platforms consisting of multi-

socket multi-core CPU and one or more GPU accelerators. The input data is much larger

than the size of the device memory and is assumed to be initially held in the CPU memory.

At the end of the computation, the output data must reside in the CPU memory as well.

We use two testbeds for our work. The first is a dual socket quad-core Intel Xeon

X5560 CPU with 24GB main memory and two NVIDIA Tesla C1060 cards each with

4GB device memory - we refer to this testbed as the “Nehalem-Tesla node”, after the

codename of the CPU and the architecture of the GPU respectively. The second is a dual

socket octal-core Intel Xeon E5-2690 with 128GB main memory and two NVIDIA Tesla

K20 cards each with 5GB device memory - we refer to this testbed as the “Sandy-Kepler

node” (we use Sandy rather than Sandy Bridge for brevity). The input data is much larger

than the device memory and is assumed to be initially held in the CPU memory. At the

end of the computation, the output data must reside in the CPU memory as well. Data

transfers between the CPU main memory and the GPU device memory are carried out by

PCIe Gen2x16 bus: unidirectional for the Nehalem-Tesla node (compute capability 1.3)

and bidirectional for the Sandy-Kepler node (compute capability 3.5).
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5.2.1 CUDA Programing Model

The CUDA programming model assumes a system consisting of a host CPU and

massively data parallel GPUs acting as co-processors, each with its own separate memory

[81]. The GPUs consist of a number of Streaming Multiprocessors(SMs), each of which

containing a number of Streaming Processors (SPs or cores). The GPU executes data

parallel functions called kernels using thousands of threads. The mapping of threads onto

the GPU cores are abstracted from the programmers through - 1) a hierarchy of thread

groups, 2) shared memories, and 3) barrier synchronization. Such abstraction provides

fine-grained data parallelism and thread parallelism, nested within coarse-grained data

parallelism and task parallelism and this is based on similar hardware architecture among

generations. Details of the CUDA programming model can be found at [81] and we will

only refer to the aspects that are key to our optimization scheme. In this work, we are

concerned with Tesla C1060 and K20 whose main features are summarized in Table 5.1.

Note that, for the Tesla K20, the L1 cache and the shared memory per SM share a total

amount of 64KB on-chip memory whose ratio is configurable as 1:3, 1:1 or 3:1.

5.2.2 PCIe bus

The CPU and the GPU communicate through the PCIe bus whose peak bandwidth

is 8GB/s on PCIe Gen2x16 on both platforms. PCIe bus transfer typically uses pinned

memory to get better bandwidth performance because the GPU cannot access data di-

rectly from the pageable host memory. A temporary pinned memory is implicitly used as

a staging area. The bandwidth difference between using a pinned memory versus page-
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Table 5.1: The Two GPUs Used in This Chapter

GPUs Tesla C1060 Tesla K20
SMs per GPU 30 14
SPs per SM 8 192

Registers per SM 16K 64K
Shared Mem per SM 16KB 16KB-48KB

L1 Cache per SM NA 48KB-16KB
L2 Cache per GPU NA 1.25MB

Global Mem per GPU 4GB 5GB
GPU clock rate 1296MHz 706MHz

Memory clock rate 800MHz 2600MHz
Memory bandwidth 102.4GB/s 208GB/s
Compute Capability 1.3 3.5

able memory varies among platforms depending on whether both CPU and GPU support

the same generation of the PCIe bus, their own DRAM bandwidth, etc.. For example,

on our Sandy-Kepler node, the H2D bandwidth is around 3.3GB/s if we use pageable

memory and similarly, the bandwidth of D2H is around 3GB/s; on the other hand, using

pinned memory we can reach 5.7GB/s for H2D transfer and 6.3GB/s for D2H transfer.

However, we should not over-allocate pinned memory so as not to reduce overall system

performance but how much is too much is difficult to tell in advance and needs to be em-

pirically determined. Another technique that is typically used is combining many small

transfers into one large transfer to eliminate most of the per-transfer overhead. This is

very practical for applications of large data size and when GPU device memory can only

hold a subset of the dataset.
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5.2.3 Asynchronous Streams

CUDA supports asynchronous concurrent execution between host and device through

asynchronous function calls - control is returned to the host thread before the device has

completed the requested task [81]. Data transfer and kernel execution from different

CUDA streams can be overlapped when memory copies are performed between page-

locked host memory and device memory. Some devices of compute capability of 2.x and

higher (K20 in our evaluation) can perform memory copy from host memory to device

memory (H2D) concurrently with a copy from device memory to host memory (D2H).

With careful orchestration of the CPU work and CUDA streams, we essentially estab-

lish a CPU-GPU work pipeline of depth five in which computation and communication

are organized in such a way that each GPU accelerator (K20) is always busy executing

the kernel achieving 1TFLOPS performance. Since the data access pattern forces us to

batch/pack small segments of data, we make use of the pinned memory to achieve better

PCIe bus bandwidth rather than the pageable memory especially since as we need to use

such a staging area anyway.

5.2.4 Existing CPU/GPU DGEMM Libraries

Almost all vendors have developed optimized DGEMM libraries that exploit the

architectures of their processors quite effectively. The list includes the DGEMM libraries

developed by Intel [89] and AMD for their multicore CPUs, the NVIDIA CUBLAS DGEMM

for the NVIDIA GPUs, and Intel’s DGEMM library optimized for the Xeon Phi coproces-

sor. None of these libraries address heterogeneous platforms and each seems to have been
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tailored for a particular architecture, even from generations to generations. [86] and [90]

are such examples which optimized DGEMM for earlier CUDA Tesla architecture GPUs

and later Fermi architecture GPUs, respectively.

5.3 Overall Matrix Multiplication Blocking Scheme

5.3.1 General Blocking Scheme

Blocking is a common strategy for most optimized DGEMM implementations which

involves decomposing the matrices into blocks to fit into one or more levels of caches on

a given CPU architecture.

5.3.2 Overview

The general double-precision matrix multiplication is defined as C = αAB + βC,

whereA,B andC areM×K,K×N andM×N matrices. Our DGEMM kernel assumes

row-major format. The main strategy is to decompose the original CUBLAS DGEMM

kernel into a set of outer-products as jobs to be assigned to asynchronous CUDA streams.

The reasons for pursuing this approach are to: 1) accommodate the capacity difference

between the GPU device memory and the CPU main memory; 2) alleviate the PCIe bus

bandwidth requirement for a given computation requirement; 3) allow more {M,K,N}

combinations to benefit from the high FLOPS performance/memory ratio; and 4) assign

“independent” jobs to CUDA streams to make use of the parallelism of the CPU, the PCIe

bus and the GPU.
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The DGEMM kernel can be decomposed as follows:

Cij = α

K/bk∑
k=0

A
(0)
ik B

(0)
kj + βC

(0)
ij , (5.1)

where (0) indicates that the input data originally resides on the CPU, Aik, Bkj and Cij are

sub-blocks of matrices A, B and C of sizes bm× bk, bk × bn and bm× bn respectively.

Here, each job consists of computing a single Cij sub-block. Assuming s = K/bk,

the Cij computation consists of s steps, with step s generating the final answer of the

corresponding sub-block. We will refer to these steps as the s basic tasks for one job, that

of computing Cij . The staging of such computation can be represented in terms of the

following formula.

C
(s)
ij = α(0)

s∑
k=0

A
(0)
ik B

(0)
kj + β(0)C

(0)
ij

C
(1)
ij = α(0)A

(0)
i0 B

(0)
0j + β(0)C

(0)
ij (5.2)

C
(k+1)
ij = α(0)A

(0)
ik B

(0)
kj + C

(k)
ij , k = 1, ..., s

That is, for each step k of each job Cij , we compute the matrix multiplication of C(k+1)
ij =

α(0)A
(0)
ik B

(0)
kj + βC

(k)
ij , for k = 0, ..., s − 1 with β = 1 for k 6= 0 steps and β equal to the

original β(0) in the calling function when k = 0.

Such a decomposition offers for our platforms the following advantages:

1. The block sizes bm, bk and bn ofAik,Bkj andCij allow us to apply fast native GPU

DGEMM kernels, such as CUBLAS DGEMM, which yields near peak FLOPS

performance for a very broad range of problem sizes (that fit on the device memory).
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, as we will ensure later, saturating the PCI-e bus bandwidth.

2. The result of step k is the input for step k+1 - this reduces the pressure on the PCIe

bus as sub-matrix Cij is reused. We only need to load C(0)
ij before the first step and

store C(s)
ij after the last step. Hence, the cost of moving block Cij is amortized and

the PCIe bus bandwidth requirement is alleviated. Such block reuse of Aik, Bkj

and/or Cij can be applied to the other < M,N,K > scenarios.

3. Since separate streams are responsible for writing separate sub matrixCij , we avoid

synchronization overhead among streams and make the decomposition strategy

scalable - in fact, strongly scalable.

5.3.3 GPU Device Memory Blocking

In this section, we analyze the conditions that will “determine” the dimensions bm,

bk and bn of the blocks Aik, Bkj and Cij . We say “determine” because it turns out

there may be considerable flexibility in terms of the choices of bm, bk and bn which

will achieve near-optimal performance throughput on the GPU for certain < M,N,K >

scenarios . Recall that our target platform is a CPU-GPU heterogeneous platform - with

both the input and output data residing in the CPU main memory and using GPU(s) as

accelerators. We make an analogy of this model to a 1-level caching system assuming

a CPU based DGEMM implementation. We view the GPU(s) as the new “CPU”: multi-

socket CPU if we are using more than one GPU. Moreover, the GPU device memory can

now be viewed as the 1-level cache with a speed equal to the PCIe bus bandwidth and a

capacity equal to the GPU device memory.
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As we noticed earlier, the matrix block Cij is reused among the steps (aka, tasks)

for the same job. However, we need to consider how the three matrix blocks are trans-

ferred through the PCIe bus into the GPU memory. Different from CPU caching, the

GPU(s) has 1) a much larger ”cache” size (5GB for Tesla K20 vs 256KB per core for

Xeon E5-2690), 2) a much smaller memory bandwidth (5.7GB/s H2D and 6.3GB/s D2H

v.s. 73GB/s for dual-socket Xeon E5-2690 STREAM benchmark), 3) a much higher ex-

perimentally peak DGEMM library FLOPS rate (1053 GFLOPS (CUBLAS 5.5) on Tesla

K20 vs 320 GFLOPS on dual socket Xeon E5-2690). Therefore, the huge “caching GPU

device memory” offers a number of possibilities to adapt the block dimensions bm, bk

and bn so as to reach the near-peak GPU native DGEMM performance (1 TFLOPS) for

various matrix dimensions of M , K and N .

The space needed to store the three matrix blocks is given by 8 bytes·(bm·bn+bm·

bk + bn · bk), and such data will be used to perform 2mkn floating point operations. To

keep the GPU execution units at full speed, assuming a peak performance GFLOPSpeak

of CUBLAS DGEMM (1.053 TFLOPS), the resulting PCIe bus host to device transfer

bandwidth is:

BWreq =
8 · (bm · bk + bm · bn+ bk · bn)× 2−30

2·bm·bk·bn×10−9

GFLOPSpeak

(5.3)

To develop an intuition into the PCIe bus bandwidth requirement stated above, let us first

assume that bm = bn = bk = dim, which yields BWreq = (12 · 931.3/dim) GB/s which

has to be < 5.7GB/s (H2D). This inequality assumes that PCIe bus is not shared among

GPUs which is the case in our testbed - each GPU is directly connected to a CPU via PCI-

E as we are using dual-socket CPU. Otherwise, it may need to be adjusted according to
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the target platform by simply dividing the number of GPUs that are sharing a single PCIe

bus. Solving this inequality, we get dim > 1960 - which when rounded to dim = 2000,

the required space for the three blocks is merely 0.09GB.

Next let’s consider the more general case, that is, the blocking dimensions are dis-

tinct. This results

4× (
1

bm
+

1

bn
+

1

bk
)

2−30

10−9
× GFLOPSpeak < BWpeak (5.4)

Substituting our Sandy-Kepler platform’s GFLOPSpeak = 1053 and BWpeak = 5.7,

we get

1

bm
+

1

bn
+

1

bk
<

1

688
(5.5)

This provides an overall guideline for the block sizes - any block dimension smaller than

688 on that platform implies an under-utilization of the GPU kernels - how severe the

under-utilization depends how bad the chosen block size is. Note that no matter what

kind of blocking scheme and data reuse are employed, at least one block needs to be

transferred from the host memory. This also indicates, if we would like to use CUDA

GPUs to accelerate host-stored dense matrix multiplication, there is a minimum dimen-

sion requirement, for example, on Tesla K20, min{M, N, K} > 688 for achieving a good

efficiency relative to the native CUBLAS/DGEMM.

In Figure 5.1 we evaluate the GFLOPS performance of the LAPACK DGEMM on

the CPU and the CUBLAS DGEMM (CUDA 5.5) using one K20 on our platform. Giving

the peak FLOPS performance of the CPU and GPU, the best DGEMM performances
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Figure 5.1: Library Benchmark and PCIe BW Requirement

(which is attainable for most reasonably large data sizes) on both CPU and GPU achieve

more than 90% efficiency. Plugging the evaluated GFLOPS for a given square matrix

size into the PCIe bandwidth requirement formula, we get the actual PCIe bus bandwidth

requirement for that size, which is also plotted in Figure 5.1.

Since we are staging outer-product to compute the matrix block Cij , the PCIe bus

bandwidth requirement of later steps is alleviated compared to the first step as each time

only matrix blocks Aik and Bkj need to be loaded in later steps. Depending on the num-

ber of steps, if the chosen block dimensions bm, bn and bk only satisfy the PCIe bus

requirement for two blocks, this would result in an idle period of GPU in the pipeline.

From Figure 5.2, we can see that, as the square matrix size increases, the memory re-

quirement on the PCIe bus drops rapidly. At the same time, we observe that as the matrix

size increases, the required device memory space increases quadratically. This has sev-

eral effects: 1) fewer number of concurrent jobs (computing individual Cij blocks) can

be scheduled as concurrent CUDA streams on the same GPU as different streams need

separate space to store the matrix blocks; 2) the GPU idle time before its first stream starts

to execute increases - since this is a computation-bound application, prolonging the GPU
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Figure 5.2: PCIe BW Requirement of Staging Outer-Product

idle time should be avoided if at all possible.

As a result, we list the rules to follow for selecting the block dimensions bm, bn

and bk:

1. Using CUBLAS DGEMM kernels to compute block matrix multiplication should

achieve at least 1TFLOPS performance.

2. The space requirements for the matrix blocks Aik, Bik and Cij should be large

enough as stated in the formula above, but not be too large so that we are able to

accommodate a number of concurrent CUDA streams to allow overlapping memory

copy and kernel execution.

5.3.4 Packing and PCIe

Packing matrix blocks into micro- or macro- architecture friendly format is another

popular technique used in optimized DGEMM. In addition to the size of each matrix

block, the layout whether it is in row-major or column-major order is another issue to

consider. In [85], Goto et al. packed matrix blocks that can be fit into the L2 cache to
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achieve the minimal number of TLB entries. In [88], Heinecke et al. further extended the

packing scheme to be the so-called “Knights Corner-friendly” matrix format (column-

major format for sub-block A and row-major format for sub-block B) for their Xeon Phi

coprocessor. The “Knights Corner” strategy achieves 89.4% efficiency.

Similarly, our strategy performs “packing” for matrix blocks during each step (task)

of the outer-product of each job (Cij). One of the main reason behind our “packing”

scheme is to try to reach the peak experimental PCIe bus bandwidth. Recall that, on

our Sandy-Kepler node, which is typical for a CPU-GPU heterogeneous platform, using

pinned memory roughly doubles the bandwidth relative to using pageable memory. Such

choices include smaller blocking dimensions and/or rectangular blocks which would incur

larger PCIe bandwidth pressure given the same FLOPS count. Another key feature is

that we take full control of the packing step, often using multi-threading memory copy.

There are several reasons behind this choice. First, due to the memory capacity difference

between the CPU main memory and the GPU device memory, we would need certain

synchronization to avoid data hazards for the pinned memory - we make use of the CPU

main thread to accomplish such synchronization. Second, using multi-threading could

potentially improve the CPU system memory to pinned host memory copy bandwidth, as

the CPU packing step could contribute to the overall runtime.

Such a packing step is mainly used to achieve high PCIe bus bandwidth - without

packing, each step would require a good amount of small transfers. We make use of

pinned host memory for such “multithreading” packing to ensure better PCIe bus band-

width so as to offer better flexibility in terms of blocking size choices.
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5.4 Multi-stage Multi-stream Software Pipeline

CUDA allows the use of streams for asynchronous memory copy and concurrent

kernel executions to hide long PCIe bus latency [81]. A stream is a sequence of commands

that execute in order; different streams may execute their commands out of order with

respect to one another or concurrently. To obtain good performance, we need to overlap

the execution of the kernels and the PCIe bus memory transfers from different streams

to hide long device/host memory transfer latency. The PCIe bus memory transfer can be

carried out between host and the device using pageable or pinned host memory. For the

sake of performance, when the desired PCIe bus memory bandwidth is high, we explicitly

allocate a reasonable amount of pinned host memory and use multi-threading to move data

between the large pageable host memory and the the small pinned host memory.

We will start by discussing a typical five stage task that computes a matrix block

multiplication. Then we describe how to organize multiple CUDA streams into a multi-

stage multi-stream software pipeline. This will be followed by extending this software

pipeline to accommodate different data reuse requirements, which will be based on the

shapes of the matrices A, B and C so as to reduce the PCIe bus memory transfer amount.

5.4.1 A Simple Five-stage Task

We consider the task of computing C1
ij = A0

ikB
0
kj + C0

ij , where matrix block sizes

are bm×bn, bm×bk and bk×bn respectively. One “task” here corresponds to one “step”

for the job corresponding to the computation of Cij as discussed in Section III.B. Such a

task is completed by a single execution of a CUBLAS DGEMM kernel call on the data
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Figure 5.3: Matrix Blocking Scheme

Figure 5.4: Memory Space Mapping (Assuming 5 Streams)

blocks that have been brought from the CPU host memory to the device memory via the

pinned host memory. Once the kernel terminates, the result C0
ij is moved back to the CPU

host memory via the pinned host memory. Specifically, this task can be divided into the

following five stages:

1. Memory copy of blocks A0
ik, B0

kj and C0
ij from the system host memory to the

pinned host memory using multi-threading. We call this operation S2P memory

copy.

2. Asynchronous CUDA memory copy from the pinned host memory to the device

memory for blocks A0
ik, B0

kj and C0
ij . Such an operation is referred to as P2D

memory copy.

3. CUBLAS DGEMM kernel execution to compute C1
ij = A0

ikB
0
kj + C0

ij .
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Figure 5.5: Basic 5-stage Pipeline

4. Asynchronous CUDA memory copy from the device memory to the pinned host

memory for block C1
ij . This operation will be referred to as D2P memory copy.

5. Memory copy of block C1
ij from the pinned host memory to the system host mem-

ory, possibly using multi-threading. This operation will be referred to as P2S mem-

ory copy.

To accomplish one five-stage task, we allocate pinned host memory and the device

memory to hold blocks of Cij , Aik and Bkj . Assuming we can accommodate five inde-

pendent tasks on the platform, the corresponding memory mapping is illustrated in Figure

5.4.

The time spent on each of the five stages can differ significantly depending on

the block sizes, bus transfer bandwidth, and kernel performance, an issue that will be

addressed next.

5.4.2 Basic Multi-stage pipeline

CUDA applications use asynchronous streams to hide the PCIe bus transfer time

with kernel execution from different streams. For an SN-stage task with each stage con-

suming approximately the same amount of time t, we can allocate SN streams to handle
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the tasks so as to get each task executed during a time period of length t time. As we

assume a typical 5-stage tasks, we would expect to use in general 5 streams as illustrated

in Figure 5.5.

We have to consider several factors that influence the duration of each stage of

a task. First, we notice that stage 3 (Kernel execution stage) has to be the most time-

consuming stage since our goal is match the native GPU DGEMM performance. We

are of course assuming that this “time-consuming” stage is executed at optimal FLOPS

throughput at the GPU near-peak performance, i.e., more than 1 TFLOPS for the K20 on

DGEMM. This “time-consuming” characteristic is balanced by a good choice of block

sizes bm, bn and bk, as determined by the inequality formula in the previous section.

Second, stages 1 and 5 are expected to be the faster than stages 2 and 4, due to the

fact that the CPU DRAM bandwidth (in our case, 73GB/s [91]) is at least several times

larger than the PCIe Gen2x16 bandwidth. That should be reasonable as long as there are

no time gaps between the kernel executions among multiple streams, as we will show

later.

5.4.3 Data Reuse in Multi-stage pipeline

Given a matrix multiplication problem, a straightforward approach would be as-

signing tasks-based jobs of Cij to SN streams based on the decomposition formula in a

given order.

Cij = α

K/bk∑
k=0

A
(0)
ik B

(0)
kj + βC

(0)
ij (5.6)
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Suppose we already have a reasonable blocking scheme as illustrated in Figure 5.3. bm,

bn and bk for a problem size of M , N and K. We note mblocks = M/bm, nblocks = N/bn

and kblocks = K/bk. We assign jobid as the computation of Cij using the index mapping

jobid = i × nblocks + j. Note that our index mapping attempts to minimize the TLB

misses as the large input data need to be accessed from the CPU main memory. Let us

assume that a number (SN) of CUDA streams with streamid = 0, ..., (SN-1) are executed

concurrently. We assign the mblocks×nblocks jobs to the SN streams in a round-robin man-

ner, modulo SN. For every assigned job, the stream is responsible for moving, computing

and storing the final result of Cij into the original host memory. The computation of Cij

involves a sequence of (kblocks) of DGEMM function calls, that is, kblocks basic tasks. We

will describe later how what type of synchronization we need when we schedule consec-

utive jobs to the same stream. Figure 5.5 shows a simplified example of a 5-stage pipeline

consisting of 5 CUDA asynchronous streams. In this example, each stream is handling a

single job that includes a single task. Each stream uses its own pinned memory space and

device memory space to store the Aik, Bkj and Cij blocks. (kblocks = 1 in this figure.)

We use the matrix blocking scheme in Figure 5.3 as example to explain the resulting

streams for the general multiple-task-per-job case (kblocks > 1). According to our jobid

and streamid relationship, we assign the computation of C00 to stream0, which consists

of 8 (kblocks) iterations (sequence) of the basic five-stage stream tasks from k = 0, ..., 7.

As shown in Listing 5.1, the movement of block Cij is guarded by conditional

statements for data reuse. In general, at least one of the three blocks of Aik, or Bkj , or Cij

may be reused.
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Figure 5.6: CPU-GPU Software Pipeline

1 f o r ( i n t k = 0 ; k < 8 ; k ++)
2 {
3 / / s t a g e 1
4 i f ( k ==0) Memcpy S2P C ( 0 , 0 ) ;
5 Memcpy S2P A ( 0 , k ) ;
6 Memcpy S2P B ( k , 0 ) ;
7 / / s t a g e 2
8 i f ( k ==0) Memcpy P2D C ( 0 , 0 ) ;
9 Memcpy P2D A ( 0 , k ) ;

10 Memcpy P2D B ( k , 0 ) ;
11 / / s t a g e 3
12 CUBLAS DGEMM
13 / / s t a g e 4
14 i f ( k ==7) Memcpy D2P C ( 0 , 0 ) ;
15 / / s t a g e 5
16 i f ( k ==7) Memcpy P2S C ( 0 , 0 ) ;
17 }

Listing 5.1: Tasks Per Job

5.4.4 Multi-stage Multi-stream Pipeline

The main goal in our design of the software pipeline is to ensure the continuous

full utilization of the GPU near its peak performance. A key is to maintain a steady

supply of data blocks to each GPU on our platform. Note that CUDA asynchronous

streams can execute out of order with respect to each other but function calls within the
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same stream have to execute in order. For matrix multiplication problem, we orchestrate

the streams and their function calls in such a way that consecutive CUBLAS DGEMM

calls are executed immediately one after another, each resulting in near-peak performance

per GPU. The overall scheduling of the multi-stage multi-stream pipeline is described in

Listing 5.2. Note that we are able to achieve full utilization of the GPU for a much larger

problem size than the device memory capacity using a memory mapping illustrated in

Figure 5.4.

1 i n t j o b s = m blocks ∗ n b l o c k s ;
2 f o r ( i n t i = 0 ; i < j o b s ; i +=SN)
3 {
4 / / t i d = t a s k i d ;
5 f o r ( i n t t i d =0; t i d<k b l o c k s ; t i d ++){
6 / / s i d = s t r e a m i d ;
7 f o r ( i n t s i d =0; s i d<SN ; s i d ++) {
8 j o b i d = i + s i d ;
9 i f ( j o b i d >=j o b s ) b r e a k ;

10 / / s t a g e 1 ( sync and s c h e d u l e )
11 Wait for CPU S2P ( j o b i d , t i d ) ;
12 / / s t a g e 2
13 Launch AsyncMemcpy P2D ( j o b i d , t i d ) ;
14 / / s t a g e 3
15 CUBLAS DGEMM( j o b i d , t i d ) ;
16 / / s t a g e 4
17 Launch AsyncMemcpy D2P ( j o b i d , t i d ) ;
18 / / s t a g e 5
19 i f ( j o b i d +SN>=j o b s )
20 U p d a t e l a s t f l a g ( s i d ) ;
21 Launch CUDA Callbacks P2S ( j o b i d , t i d ) ;
22 }
23 }
24 }

Listing 5.2: Multi-Stage Multi-Stream Pipeline
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5.4.4.1 Synchronization

Memory reuse is used in our pipeline, which requires that mechanisms are put in

place to avoid data hazards. We use MUTEX to achieve this goal. As we allocate differ-

ent memory spaces for different streams, a data hazard can only happen within the same

stream. We first assign flags for each stream in each potential block that can be over-

written (A, B and C respectively). These are each protected by a MUTEX after which

we combine those flags appropriately to minimize the overhead of synchronization. Note

that such synchronization overhead is typically “invisible’ as long as it does not impede

the CUBLAS DGEMM executions as we have enough active CUDA streams to hide the

synchronizations within the same stream’s tasks/jobs as the black arrows illustrate in Fig-

ure 5.6. Specifically, we insert CUDA stream callbacks, executed as a CPU thread after

previous CUDA kernel calls associated with that stream are completed. In the callbacks,

we set the status flag to be “0” notifying the CPU worker threads to resume their memory

copy work from the system host memory to the pinned host memory, which would flip

the status to “1” and wait for the execution of another callback. A simplified pipeline with

one task per job is illustrated in Figure 5.6.

5.4.5 Multi-stage Multi-stream Pipeline For Small K

Previously, we focused on matrix multiplication with relatively similar< M,N,K >

which gave us a significant number of choices for the block sizes. In this section, we tune

the case, when M and N are much larger than K. That is, matrix A is skinny, matrix B

is fat, and matrix C is large and almost square. This case is frequently used in parallel
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dense matrix operations such as LU, QR and Cholesky factorizations. The challenge to

the strategy described earlier is two-fold: 1) there is much less flexibility in selecting the

block size for the dimension K; and 2) the large size of the input and output matrix C

puts much more pressure on the bi-directional PCIe bus bandwidth than the square case.

As discussed before, in order to achieve near peak performance, no blocking di-

mension should be smaller than 688 for platforms using PCIe Gen2x16 bus. Hence, we

assume K > 688 and we use K = 1024 as an example. Due to the inequality bound, we

necessarily have kblocks = 1, which yields this simple outer product Cij = Ai0B0j . This

means for each CUBLAS DGEMM kernel execution, we would have to load and store

Cij block, which is unavoidable. Even worse, due to the fact that K, aka bk is small, we

are left with no choice but to have larger bm and bn to guarantee the inequality will still

hold. As a result, this gives us a really big Cij block to transfer bi-directionally in addition

to the relatively smaller size A and B blocks.

We optimize such a situation in two ways. First, we assign jobs to the streams for

which blocks of A or B could be reused in different jobs. For example, we assign the

computation of C0j to stream 0 and keep matrix A00 in the device memory throughout the

computation of C0j other than swap it out. Second, we use two components of the pinned

host memory space for matrix C: one as Write-Combining Memory to conduct the H2D

memory transfers for better bandwidth utilization; and the other one as default cacheable

memory for the other way around as write-combining memory for D2H memory transfers.
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Table 5.2: Compiler and Library configuration

Node Nehalem-Tesla Sandy-Kepler
CPU Name Intel Xeon X5560 Intel Xeon E5-2690

Sockets x Cores 2x4 2x8
DRAM 24GB 128 GB

STREAM BW [91] 37GB/s 73 GB/s
icpc & MKL Lib 2013 2013

GPU Name Tesla C1060 Tesla K20
Device Mem Size 4GB GDDR5 5GB GDDR5
Device Mem BW 102.4GB/s 208GB/s

SMs x SPs 30x8 13x192
PCIe bus PCIe Gen2x16 PCIe Gen2x16

Bi-directional PCIe No Yes
PCIe achievable BW 5.4GB/s H2D 5.7GB/s H2D

5.3GB/s D2H 6.3GB/s D2H
CUDA driver 304.88 319.23
CUDA SDK 5.0 5.5

CUDA DGEMM Peak 75.3 GFLOPS 1053 GFLOPS

5.5 Performance

In this section, we evaluate the performance of our proposed multi-stage pipeline

based approach on two different platforms. Detailed specifications of the platforms are

listed in Table 5.2

5.5.1 Square Matrix Multiplication

The performance of our general blocking scheme for a range of matrix sizes from

N=1K to 52K on the Sandy-Kepler and Nahalem-Tesla nodes is shown in Figures 5.7 and

5.8 respectively. We compare the GFLOPS performance of our implementations using 1

and 2 GPUs as accelerators and Intel MKL multi-threading DGEMM using all the CPU

cores on the Sandy-Kepler node.
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Figure 5.7: DGEMM Performance on Sandy-Kepler Node

Figure 5.8: DGEMM Performance on Nehalem-Tesla Node
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Figure 5.9: Efficiency on Sandy-Kepler Node

Similar to previous work, the number of FLOPS is determined by the expression

2 ·MNK, where A is of size M × K, B of size K × N , and C of size M × N . On

the Sandy-Kepler, our approach greatly exploits the optimized performance of the CUDA

DGEMM library and achieves 1 or 2 TFLOPS for all reasonably large data sizes by using

either one or two GPUs. Such a performance is substantially better than the correspond-

ing performance on the multi-core CPUs. In addition, unlike the native CUDA DGEMM

library, whose problem size is limited by the device memory capacity, our approach es-

sentially gives an illusion of a device memory size equal to the CPU host memory while

delivering the same CUBLAS DGEMM GFLOPS performance. In order to illustrate the

generality of our scheme, we evaluate the same implementation on the Nahalem-Tesla

node. Due to its weak double precision performance - a peak native library performance

of 75.3GFLOPS - we are able to nearly match the native performance and double it for

two GPUs.

To evaluate the effectiveness of our multi-stream software pipeline, we define the

147



Figure 5.10: Efficiency on Nehalem-Tesla Node

Figure 5.11: Smaller Size Performance on Sandy-Kepler Node
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Figure 5.12: Small K DGEMM Performance Sandy-Kepler Node

efficiency as follows:

efficiency =
GFLOPSachieved

GFLOPS peak lib perf
(5.7)

We demonstrate the efficiency of our scheme in Figures 5.9 and 5.10. As we can

see from both figures, when the problem size is reasonably large, our software pipeline

is quite efficient and brings almost all of the native CUDA DGEMM library performance

out to the host memory. The same type of efficiency is obtained for both nodes in spite of

their differences.

We also notice decomposition is not always beneficial for small data size, which

was anticipated by our inequality bound. We demonstrate the performance of relatively

smaller size matrices in Figure 5.11. Though the native CUBLAS DGEMM performance

on K20 is more than 1TFLOPS for all problem size of N > 2K, transferring the input

from the CPU host memory and the output back to the CPU contribute a significant over-

head. In fact, when the the problem size is fairly small, say N = 2K, we may simply
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want to use a straightforward CUDA DGEMM call. Notice that in this case the problem

fits on the device memory, while the focus of this section is on problems that cannot fit on

the device memory.

5.5.2 Skinny A and Fat B Case

We now illustrate the performance for the case when matrix A is skinny and matrix

B is fat. We fix K = 1024 and vary M = N value over a wide range. Our strategy works

extremely well and shows scalability similar to the square case.

Similarly, we demonstrate the GFLOPS performance and the efficiency as shown

in Figure 5.12.

5.6 Conclusion

We have developed a pipelining strategy to carry out dense matrix multiplication

for the case when the input size is much larger than the size of the device memory. Our

strategy achieves almost the same native CUDA DGEMM library performance over a

wide range of large sizes. We achieve more than 1 teraflops on a single GPU and twice

the performance on two GPUs, thereby illustrating the possibility of using the GPUs with

a memory size equal to the size of the main memory on the host machine. The key to

this performance is the careful selection of the block sizes and the orchestration of the

various stages of a CUDA multi-stream that ensures continuous GPU executions near

peak performance. Our results raise the possibility of carrying out various dense matrix

operations on very large matrices stored in the CPU memory while achieving native GPU
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Figure 5.13: Small K DGEMM Efficiency on Sandy-Kepler Node

performance on matrices that fit on the device memory.
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Chapter 6: Concluding Remarks and Future Perspectives

In this dissertation, we developed optimization techniques for mapping algorithms

and applications onto CUDA GPU platform and CPU-GPU heterogeneous platforms for

a number of demanding scientific applications.

We first addressed the problem of mapping multidimensional FFTs onto GPUs

which resulted in extremely fast implementations for a wide number of data sizes across

the Tesla and Fermi architectures. Our approach was carefully tailored to exploit the

highly multithreaded environment in such a way as to almost completely overlap the FFT

computations along the X dimension with the data transfers needed for the FFT compu-

tations along the other two dimensions. Moreover we minimized the number of global

memory accesses while ensuring that each global memory access is a coalesced 128-byte

memory transaction and optimizing the effects of related to partition camping, locality,

and associativity. Our approach can easily be applied to 2D and 4D FFT computations to

generate fast implementations on GPUs.

We also presented new approach to map an FFT-based direct Poisson solver on

GPUs, which exploited the data parallel architecture of the GPUs Streaming Processors

and the high device memory bandwidth that can be achieved through coalesced device

memory transactions. The new approach used a novel strategy for computing three and

152



two-dimensional FFTs, while interleaving FFT computations along a dimension with

other numerical computations required by the direct Poisson solver. Experimental re-

sults over a wide range of grid sizes have shown very high performance, both in terms

of the number of floating point operations per second or the device memory bandwidth

achieved by our algorithms. The performance numbers were superior to those that can be

achieved using the CUDA FFT or the Nukada FFT Libraries in combination with well-

known multi-threaded tridiagonal solvers.

We also ported the multi-dimensional FFTs and FFT-based direct Poisson solvers

on CPU-GPU heterogeneous platforms. We minimized the data transfer on the PCIe

bus connecting the CPU and the GPU as well as optimized the problem decomposition

using both the CPU and the GPU. The new approach effectively pipelines the PCIe bus

transfer and GPU work, almost entirely overlapping the CPU-GPU memory transfer time

and the GPU computation time. Experimental results over a wide range of grid sizes have

shown very high performance, both in terms of the number of floating point operations per

second and the effective PCIe bus memory bandwidth. Our strategies were demonstrated

equally effective across plat- forms and for different precision requirements.

Last, we extended our CPU-GPU heterogeneous software pipeline and presented a

dense matrix multiplication strategy specifically tailored for heterogeneous platforms in

the case when the input is too large to fit on the device memory. Our strategy achieves

almost the same native CUDA DGEMM library performance over a wide range of large

sizes. We achieved more than 1 teraflops on a single GPU and twice the performance

on two GPUs, thereby illustrating the possibility of using the GPUs with a memory size

equal to the size of the main memory on the host machine. The key to this performance
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was the careful selection of the block sizes and the orchestration of the various stages of

a CUDA multi- stream that ensures continuous GPU executions near peak performance.

Our results raise the possibility of carrying out various dense matrix operations on very

large matrices stored in the CPU memory while achieving native GPU performance on

matrices that fit on the device memory.

A number of additional research questions are worth pursuing.

In Chapters 4 and 5, we developed a software pipeline for CPU-GPU heterogeneous

platforms that demonstrated significant performance for two representative algorithms:

memory-bound FFTs and computation-bound dense matrix multiplication. We expect a

similar software pipeline could be extended to many other demanding applications such

that the utilization of the heterogeneous node can be optimized. Many of the real-world

problems involve sparsity and using CPU-GPU heterogeneous platforms to accelerate

sparse applications is of fundamental importance [92].

Sparse matrix vector multiplication (SpMV) kernel is an important kernel used in

many iterative methods in scientific, engineering and economic applications, as well as

information retrieval. However, SpMV is often a bottleneck in that it demonstrates a low

fraction of peak processor performance [93]. [94] has demonstrated that the SpMV kernel

is a pure memory-bound problem, while GPUs are designed for computationally intensive

work. A number of works [95] [96] have demonstrated success of SpMV implementa-

tions on GPU platforms or GPUs without considering the more practical heterogeneous

platforms. With the PCIe bus bottleneck, the memory-bounded characteristics of SpMV

are expected to be more severe for heterogeneous platforms and therefore it is certainly

worth exploring the development of optimization strategies to solve this problem in het-
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erogeneous platforms.

Graph-based algorithms are widely used in many domains such as scientific com-

puting, social network analysis, data mining, etc. Optimizing the performance of such

algorithms is non-trivial on heterogeneous platforms due to the fact that the memory ac-

cess pattern is input-dependent, and can be quite irregular. Moreover, efficient parallel

graph processing algorithms are expected to be even challenging [97] as their random

memory access patterns do not benefit from the mainstream optimization techniques of

parallel hardware architectures. There are efforts in developing special high-end systems

for irregular applications such as graph processing featuring high memory bandwidth,

very large memory capacity, and many cores that can be heavily multi-threaded [98]. Im-

pressive performance of graph algorithms on such machines were reported [99] [100] but

their popularity is very limited.

Breadth-first search (BFS) is a core primitive widely used in many graph algorithms

and also serves as a core kernel in many graph benchmarks, such as Graph500 supercom-

puter benchmark [101]. Typically, a sparse graph is stored in the well-known Compressed

Sparse Row (CSR) sparse matrix format and a significant amount of BFS work demon-

strates great similarity from SpMV. Most of the GPU related work note such similarity and

develop quadratic parallelizations, which are isomorphic to iterative SpMV in the alge-

braic semi-ring [102]. Notably, the work in [103] presents a CPU-GPU hybrid method to

adapt the execution plans according to the graph features, which gives a marginal perfor-

mance improvement for practical graph traversal but avoids some GPU-only worst cases.

A notable drawback is that graph size of their work is limited by one GPU memory size

and in their evaluation they ignore the data copy time from the CPU to the GPU. Unlike
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others, [104] develops an asymptotically optimal BFS parallelization by fine-grained task

management constructed from efficient prefix sums with 3.3 billions TE/s (1 GPU) and

8.3 billions TE/s (4 GPUs). However, despite the fact that their implementation scales up

to four GPUs, linear scalability is not achieved. Moreover, it would be of very practical

importance to actually utilize both the CPU and the GPU for work while hiding the PCIe

bus data transfer since the moment we are adding additional data and work to the graph

applications the problem size for GPU-only based implementations will be decreased im-

mediately.
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