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ABSTRACT

This paper concerns two closely related topics: the behavior of the
eigenvalues of graded matrices and the perturbation of a nondefective
multiple eigenvalue. We will show that the eigenvalues of a graded ma-
trix tend to share the graded structure of the matrix and give precise
conditions insuring that this tendency is realized. These results are
then applied to show that the secants of the canonical angles between
the left and right invariant subspaces of a multiple eigenvalue tend to
characterize its behavior when its matrix is slightly perturbed.
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ABSTRACT

This paper concerns two closely related topics: the behavior of the eigenvalues
of graded matrices and the perturbation of a nondefective multiple eigenvalue.
We will show that the eigenvalues of a graded matrix tend to share the graded
structure of the matrix and give precise conditions insuring that this tendency is
realized. These results are then applied to show that the secants of the canonical
angles between the left and right invariant subspaces of a multiple eigenvalue tend
to characterize its behavior when its matrix is slightly perturbed.

1. Introduction

In this paper we will be concerned with the distribution of the eigenvalues of
a graded matrix. The specific problem that gave rise to this investigation is
that of explaining the behavior of a nondefective multiple eigenvalue of a general
matrix when the matrix is slightly perturbed.! Under such circumstances, an
eigenvalue of multiplicity m will typically spawn m simple eigenvalues, as might
be expected. What requires explanation is that the new eigenvalues will be found
at varying distances from the original eigenvalue, and these distances are more a
characteristic of the matrix than of the perturbation. Thus, a multiple eigenvalue
can have several condition numbers that reflect the different sensitivities of its

progeny.
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of Maryland, College Park, MD 20742. This work was supported in part by the Air Force Office
of Sponsored Research under Contract AFOSR-87-0188.
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!There is a body of literature on the perturbation of multiple eigenvalues of Hermitian matri-
ces or Hermitian pencils when the perturbation is an analytic function of one or more variables.
For an entry into this literature, see [9].
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As an illustration, consider the variation of the eigenvalues of the matrix
A=—| 1 ](e el

where € is small. This matrix has a simple eigenvalue 3 and a double eigenvalue
0. Let ¢ = 107" and let
—6.7248e—13 —3.2031le—11  1.6070e—10
E =1 —=55392e—11 —1.0694e—10  6.2824e—12
—4.0564e—11 —5.0153e—11 —1.6116e—10

Then the eigenvalues of A 4+ E are

A = —3.244714710216396e—12,
Ay = 3.023765334447618e—06, (1.1)
Az = 2.999996975969131e+00.

Both Ay and A3 come from the unperturbed eigenvalue 0, however, A, is six orders
of magnitude greater than A;. This difference is not an artifice of the perturbation
FE: almost any randomly chosen perturbation would cause the same behavior.

Some insight into this phenomenon may be obtained by choosing a suitable
set of eigenvectors for A. Specifically let

1.0000e4-00  1.0000e+4-02 1.0000e+02
X =] —1.0000e4+00  1.0000e+02 1.0000e+02
0 —2.0000e—03 1.0000e—03

be a matrix of right eigenvectors of A. Then

—1.0096e—11  6.4813e—09 6.4816e—09
X YA+ E)X = —3.1963e—09  3.0238¢—06 3.0239e—06
3.1967e—09 —3.0239¢e—06 3.0000e+00

Now from the theory of the perturbation of invariant subspaces, we know that up
to terms of order 107'% the eigenvalues of the leading principle matrix

(1.2)

—1.0096e—11 6.4813e—09
—3.1963e—09 3.0238e—06
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are eigenvalues of A + E. But this matrix is graded, and the theory to be devel-
oped in the next two sections will show that it must have a small eigenvalue of
order 107! and a larger eigenvalue of order 107®. Hence, A + F must have two
eigenvalues of similar orders of magnitude. Since

5.0000e—01 —5.0000e—01 0
X' =1 1.6667e—03  1.6667e—03 —3.3333e+02
3.3333e—03  3.3333e—03  3.3333e+02

it is easily seen that X '(A 4+ F)X has the same graded structure for almost any
balanced perturbation K. Thus, the problem of assessing the effects of perturba-
tions on the zero eigenvalues of A is reduced to the problem of characterizing the
eigenvalues of graded matrices such as (1.2).

To investigate the distribution of the eigenvalues of a graded matrix, we need
a characterization of graded matrices. At this point it is useful not to be too
precise. We will call matrix A of order n a GRADED MATRIX if

A= DBD, (1.3)

where

D= diag(51, 52, s 75n)

with
o6 >26>---20,>0

and B = (f3;;) is “well behaved.” The imprecision in this definition lies in the
term “well behaved,” which will be given specific meaning through hypotheses in
the theorems of the next two sections. Note that this definition does not preclude
some of the é; being equal, in which case the matrix is said to be BLOCK GRADED.

Throughout this paper, norm || - || denotes the vector 2-norm and the subor-
dinate matrix operator norm. The magnitude of the largest element of B in (1.3)
will be written

def
ﬂmax é IIZIE]LX{|6”|}

We will also denote the ratio of 6,41 to é; by

 def biy1
pl 52 .

In §2 of this paper, we give a lower bound on the largest eigenvalue of a
graded matrix. In §3, we explore the relation between eigenvalues of a graded
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matrix and those of its Schur complements. These results are closely related to
results obtained by one of the authors [7],% and more distantly to results by Barlow
and Demmel [1] and Demmel and Veseli¢ [3] for graded symmetric matrices. Here
it should be stressed that our goal is not so much to derive tight bounds on
the eigenvalues as to make statements about their magnitudes —as befits our
intended application. Finally, in §4, we analyze the perturbation of a multiple
eigenvalue and show that the secants of the canonical angles between its left and
right invariant subspaces form a set of condition numbers for the eigenvalue.

2. The largest eigenvalue of a graded matrix

It is well known that the elements of a matrix can be arbitrarily larger than its
spectral radius. In this section we will show that under appropriate conditions
this is not true of graded matrices. Specifically, if 317 is not too small compared
t0 Bmax, the graded matrix A has an eigenvalue that approximates ay; = 874;.
The basic tool used to establish this result is Gerschgorin’s theorem (see, e.g., [5,
p. 341]). Related results may be found in [1].

The center of the Gerschgorin disk from the first row of A is 873, and its
radius is bounded by fmax61(62 + - -+ + 6,,). For each row other than the first, the
sum of the absolute values of its elements is bounded by fpax62(61 + -+ + 6,).
From these facts and the Gerschgorin theorem we have the following result.

Theorem 2.1. If

| A11] - §1(6g + -+ 8,) + 82(81 4+ -+ 6,)
6max - 5% 5

(2.1)

then the largest eigenvalue Ap.x of A is simple and satisfies
|)\max - Oé11| S 6max51(52 —I' e —I' 571)
The other eigenvalues of A satisfy

|)‘| S 6max52(51 —I' e —I' 571) S |0511| - 6max51(52 —I' e —I' 5n) S |)‘max|-

ZMention should also be made of two papers on low rank approximation [4, 2], whose results
can be regarded as limiting cases of block scaling.
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To gain more insight into the condition (2.1), suppose that A is UNIFORMLY
GRADED in the sense that the ratios p; are constant —say they are equal to p.
Then the condition (2.1) is certainly satisfied if

|511| < 2p

6max o 1_/)

When |511|/Bmax = 1, this condition is satisfied for p <
we must have
< l |ﬂ11|

p ~ 2 ﬂmaxl
Thus for the purpose of this section the “good behavior” of B means that the

As |511]/ Pmax decreases,

1
3

ratio |411|/Pmax is near one. As this ratio grows smaller, the grading ratio p must
decrease to compensate.

Theorem 2.1 is sufficient for assessing the magnitude of the largest eigen-
value. However, when the grading is strong, the bounds can be improved by the
well-known technique of diagonal similarities. For example, ordinary Gerschgorin
theory shows that the (2,2)-element of the matrix (1.2) is at least a three digit
approximation to an eigenvalue. However, if we multiply its second row by 1072
and its second column by 102, we obtain the matrix

—1.0096e—11 6.4813e—07

—3.1963e—11 3.0238e—06 |
from which it is seen that the (2, 2)-element approximates an eigenvalue to at least
five digits. Note the agreement of this element with the second eigenvalue in the
list (1.1).

Unfortunately, Gerschgorin theory can tell us little about the smaller eigen-
values. As an extreme example, the matrix

1 1072 107
1072 107* 107°
107* 107% 107®

has rank one, and hence its two smallest eigenvalues are zero. Nonetheless, it
often happens that the eigenvalues of a graded matrix share its graded structure.
In the next section we will show how this comes about.
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3. Eigenvalues and Schur complements

The principal result of this section is that under appropriate hypotheses the n — &
smallest eigenvalues of a graded matrix A are approximated by the eigenvalues of
the Schur complement of the k£ x k leading principal submatrix of A. Specifically,
partition A in the form

A= All A12 _ DlBllDl D1B12D2
A21 A22 D2B21D1 D2B22D2 ’

where Dy = diag(61,0q,---,0,) and Dy = diag(ég41,- -+, 06,). Then the Scuur
COMPLEMENT of Ay is the matrix

Ago — A21A1_11A12 = Dy( By — leBﬂle)Dz-

Note that the Schur complement of Ay; is the graded Schur complement of Byj.
Consequently, if the Schur complement of By is well behaved, by the results of
the last section it will have an eigenvalue of magnitude 6115134_17 which, under
conditions given below, will approximate an eigenvalue of A.

The approach taken here is to determine an (n — k) x k& matrix P such that

()

spans an invariant subspace corresponding to the k largest eigenvalues of A. It
then follows that the eigenvalues of the matrix

1422 = A22 - PAIQ (31)

are the eigenvalues associated with the complementary invariant subspace; i.e.,
the n — k smallest eigenvalues of A. For details see [6] or [8, Ch. V].
It can be shown that the matrix P must satisfy the equation

PAy — AP = Ayy — PALL P,
or in terms of B and D

PDyB11Dy — DyByy D3P = Dy Byy Dy — PD1Bia Do P.
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In this form, the equation is badly scaled. A better scaling is obtained by replacing
P with )
P =D;'PDy, (3.2)

which satisfies the equation
PBllDl - BQQD%PDI_I — B21D1 - PBlzDngl_l,

or
P = By By + BpDXPDTBS — PB,DXPDTBS. (3.3)
The following theorem gives a sufficient condition for the existence of a solution

of (3.3) and a bound on P.
Theorem 3.1. If

def - _ 1
3 (Bl BB + S Bl B < (3.4)
then equation (3.3) has a solution satisfying
1] < 2/ Ba || Bl (3.5)

Proof. Let Py = 0, and for £ =1,2,... let
Py = By By + By D2P,_ DB — P B D2P 1 DB

We will show that if (3.4) is satisfied Py converges to a solution of (3.3).% For
brevity set

m = 1BallllBRs e = pil|Baallll BRIl na = pill Baall 1 BRI
By a simple induction
1Pl < (14 a1+ s51) + mams(1 4 s5-1)%) = m(1 + sp), (3.6)
where s, satisfies the recursion

Sg = 0,
s =n2(1 + sk—1) + mus(1 + Sk—l)z-

3An alternative is to follow [6] and define Py as the solution of
Py — BysD2P,D7? B! = Boy BT} — Pa_1B12aD2P,_1D7? B

This approach gives a slightly less stringent condition for convergence but a slightly larger bound.
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Using (3.4), we can show by induction that the sequence {s;} is monotonically
increasing and bounded by one. Let s < 1 be the limit of the sequence {s;}. Then
from (3.6), )

[Pl < m(1 + ). (3.7)

Now

| Pesr — Pill < mal| Pe — Prca || + m5l| Pe — Prca ||| el + | Pia |])
< {n2 + 2mna(1 + )} Pr — Pra|
= n||Pe — Prect]| < nFi1.

Since 7 = n2 + 2mna(l + s) < (72 + 2mns)(1 + s) < 1, the sequence {P,} is a
Cauchy sequence and has a limit P, which by continuity must satisfy (3.3). The
bound (3.5) follows from (3.7). m

For purposes of discussion, let
wr = | BBl
Then the condition (3.4) will be satisfied if
2 1 2 1
(k% + 268)P) < 1
Moreover, it follows from (3.2) and (3.5) that

1P| < 26 pp.

Thus, for the purposes of our theorem, B is “well behaved” if x; is near one. As
K grows, it must be compensated for by a larger grading ratio p.

It py is sufficiently small, then all but the first term on the right hand side of
(3.3) are insignificant and

P~ By By
It follows from (3.1) that
Agy = D3(Bag — B21B1_11B12)D27

which is just the Schur complement of Ay;, or equivalently the graded Schur
complement of By;. If the Schur complement is well behaved in the sense of
the last section, then A must have an eigenvalue the size of the leading diagonal
element of the Schur complement. The chief way in which ill behavior manifests
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itself is through cancellation producing a small leading diagonal element of the
Schur complement of B;;.*

Since grading enters the condition (3.4) only through the grading ratio py,
Theorem 3.1 applies to block graded matrices. More important for our purposes
is the fact that the condition of the theorem can fail for one value of k£ and hold
for another, larger value of k. Thus it is possible for the descending sequence
of eigenvalues to stutter, with occasional groups of eigenvalues having the wrong
magnitudes while the sequence itself remains generally correct. The following
example exhibits this behavior.

Consider the matrix A whose elements are given in the following array.

-7.1532e-01  4.1271e-02  -2.0433e-03  1.7447e-03  -1.4459e-04  4.0821e-06

4.1745e-02  3.7412e-03  -1.4124e-03  3.1508e-04 -8.6632¢-06  3.2593e-07
-3.2573e-03  -3.5565e-04  8.7329e-05 1.0717e-05  7.6451e-07 -2.7899e-08
-1.5509e-03  -1.2599e-04  9.1642e-06  6.8861e-07 -1.1000e-08 -1.7092e-09
-2.5920e-05  -2.3092e-06  5.8399e-07  -3.0490e-08 -2.5573e-09  5.2496e-10
-4.2303e-06  -1.0778e-07 -6.2901e-08  4.3068e-09 -6.5392¢-10  1.2152e-11

The matrix was generated by uniformly grading a matrix of normal random num-
bers with mean zero and standard deviation one. The grading ratio is p = 0.1.

The eigenvalues of A are:

A =—=T.1771e—01
Ay = 6.2493e—03
A = —1.3472e—05 + 3.0630e—052
Ay = —1.3472e—05 — 3.0630e—05:
A5 = —6.3603e—09
Ae = 2.6849e—11

The table below exhibits the value of v from (3.4) and the first diagonal element
of the Schur complement .

4We note in passing that the possibility of cancellation destroying the graded structure of a
matrix is the bane of algorithmists who work with graded matrices.
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v an
0.10  6.1497e-03
0.35 -3.8747e-05
7.38 -2.9463e-05
0.05 -6.3180e-09
0.12  2.7030e-11

U o= W DN = &

For k = 2,3, the distribution stutters. The reasons for the failure of the above
theory to predict the eigenvalues are different for the two values of k. For k& = 2,
the number ~ can be made smaller than one-fourth by choosing a slightly different
scaling matrix D). Thus, the failure is due to the cancellation in forming the
leading diagonal element of the Schur complement of Byy. For & = 3, the number
~ is always greater than one-fourth, and Theorem 3.1 fails. Even so, the leading
diagonal element of the Schur complement gives a ball-park estimate of the size of
the complex pair —something not predicted by our theory. For the other values
of k the leading diagonal element predicts the size of the corresponding eigenvalue
very well. In fact, when ~ is small it approximates the eigenvalue itself.

4. The condition numbers of a multiple eigenvalue

Let us now return to the problem that initiated the investigations of the last two
sections: the perturbation of a multiple eigenvalue. Let A have a nondefective
eigenvalue A of multiplicity m. Since we may replace A with A\l — A, we may
assume without loss of generality that A = 0.

Since zero is a nondefective eigenvalue of multiplicity m, there are m-dimension-
al subspaces X and ) such that AX = 0 and A"Y = 0: namely, the spaces of left
and right eigenvectors corresponding to the eigenvalue zero. In §1 we saw that a
judicious choice of eigenvectors led to a graded eigenvalue problem. The existence
of a suitable choice for the general case is stated in the following theorem [6].

Theorem 4.1. There are n x m matrices X and Y whose columns spaces are X
and Y and which satisfy

XX = YUY = diag(oy,...,0m), o> >0, >0,

and

YHEX =1,
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The numbers o; may be defined sequentially as follows. First,

o :rgle%g(gréi;lsec L(x,y). (4.1)

If 21 and y; are vectors for which the extrema are attained in (4.1), then

oy = r?e%(xrﬁigl sec L(x,y). (4.2)

zley ylyg
If 25 and y, are vectors for which the extrema are attained in (4.2), then

03 = max glel;l sec L(x,y), (4.3)

zlxy @y ylyg,u2

and so on. The maximizing angles are called the caNoNIcAL ANGLES between X
and Y. For more details see [8, §1.5].
We must now relate this choice of basis to the eigenvalues of a perturbation

A+ F of A. This is done in the following theorem [6].

Theorem 4.2. Let
C=YHUEX.

Then there is a matrix C = C + O(||E||*) whose eigenvalues are eigenvalues of

A+ E.

Since the eigenvalues of (' approach zero, they must approximate the m eigen-
values spawned by the zero eigenvalue of A. Now the (¢, j)-element of C' has the
form yFEz;. Hence,

leis| < /@il £l
Thus, unless F has special structure, ¢' will tend to be a graded matrix with
grading constants ¢; = \/7;, and by the characterizations (4.1)-(4.3) the grading
will tend to be maximal. From the results of the last two sections, we know that
the magnitudes of the eigenvalues of C' will tend to be around o;||E||. For the
example of §1, we calculated that || F|| is of order 107'°, and &y and o3 are of order
one and 1074, respectively. This explains the behavior of the double eigenvalue 0.

It is unfortunate that we cannot say with complete rigor that the o; are condi-
tion numbers for A. In the first place, without precise knowledge of F we cannot
assert that €' is graded. And even when (' is graded, the example of the last
section shows that the eigenvalues need not behave as we would like them to. But
the phenomenon is no less real for having exceptions; and if we recognize that
we are speaking about what is likely to be instead of what has to be, there can
be no objection to calling the numbers o;, the condition numbers of the multiple
eigenvalue \.
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