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Eigenvalues of Graded Matrices andthe Condition Numbers of aMultiple EigenvalueG. W. Stewart�G. ZhangyABSTRACTThis paper concerns two closely related topics: the behavior of the eigenvaluesof graded matrices and the perturbation of a nondefective multiple eigenvalue.We will show that the eigenvalues of a graded matrix tend to share the gradedstructure of the matrix and give precise conditions insuring that this tendency isrealized. These results are then applied to show that the secants of the canonicalangles between the left and right invariant subspaces of a multiple eigenvalue tendto characterize its behavior when its matrix is slightly perturbed.1. IntroductionIn this paper we will be concerned with the distribution of the eigenvalues ofa graded matrix. The speci�c problem that gave rise to this investigation isthat of explaining the behavior of a nondefective multiple eigenvalue of a generalmatrix when the matrix is slightly perturbed.1 Under such circumstances, aneigenvalue of multiplicity m will typically spawn m simple eigenvalues, as mightbe expected. What requires explanation is that the new eigenvalues will be foundat varying distances from the original eigenvalue, and these distances are more acharacteristic of the matrix than of the perturbation. Thus, a multiple eigenvaluecan have several condition numbers that re
ect the di�erent sensitivities of itsprogeny.�Department of Computer Science and Institute for Advanced Computer Studies, Universityof Maryland, College Park, MD 20742. This work was supported in part by the Air Force O�ceof Sponsored Research under Contract AFOSR-87-0188.yInstitute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.1There is a body of literature on the perturbation of multiple eigenvalues of Hermitian matri-ces or Hermitian pencils when the perturbation is an analytic function of one or more variables.For an entry into this literature, see [9]. 1



2 Eigenvalues of Graded MatricesAs an illustration, consider the variation of the eigenvalues of the matrixA = 1� 0BB@ 11� 1CCA (� � 1);where � is small. This matrix has a simple eigenvalue 3 and a double eigenvalue0. Let � = 10�5 and letE = 0BB@ �6:7248e�13 �3:2031e�11 1:6070e�10�5:5392e�11 �1:0694e�10 6:2824e�12�4:0564e�11 �5:0153e�11 �1:6116e�10 1CCA :Then the eigenvalues of A+ E are�1 =�3:244714710216396e�12;�2 = 3:023765334447618e�06;�3 = 2:999996975969131e+00: (1:1)Both �2 and �3 come from the unperturbed eigenvalue 0, however, �2 is six ordersof magnitude greater than �1. This di�erence is not an arti�ce of the perturbationE : almost any randomly chosen perturbation would cause the same behavior.Some insight into this phenomenon may be obtained by choosing a suitableset of eigenvectors for A. Speci�cally letX = 0BB@ 1:0000e+00 1:0000e+02 1:0000e+02�1:0000e+00 1:0000e+02 1:0000e+020 �2:0000e�03 1:0000e�03 1CCAbe a matrix of right eigenvectors of A. ThenX�1(A+ E)X = 0BB@ �1:0096e�11 6:4813e�09 6:4816e�09�3:1963e�09 3:0238e�06 3:0239e�063:1967e�09 �3:0239e�06 3:0000e+00 1CCA :Now from the theory of the perturbation of invariant subspaces, we know that upto terms of order 10�12 the eigenvalues of the leading principle matrix0@ �1:0096e�11 6:4813e�09�3:1963e�09 3:0238e�06 1A (1:2)



Eigenvalues of Graded Matrices 3are eigenvalues of A+ E. But this matrix is graded, and the theory to be devel-oped in the next two sections will show that it must have a small eigenvalue oforder 10�11 and a larger eigenvalue of order 10�6. Hence, A + E must have twoeigenvalues of similar orders of magnitude. SinceX�1 = 0BB@ 5:0000e�01 �5:0000e�01 01:6667e�03 1:6667e�03 �3:3333e+023:3333e�03 3:3333e�03 3:3333e+02 1CCAit is easily seen that X�1(A+E)X has the same graded structure for almost anybalanced perturbation E. Thus, the problem of assessing the e�ects of perturba-tions on the zero eigenvalues of A is reduced to the problem of characterizing theeigenvalues of graded matrices such as (1.2).To investigate the distribution of the eigenvalues of a graded matrix, we needa characterization of graded matrices. At this point it is useful not to be tooprecise. We will call matrix A of order n a graded matrix ifA = DBD; (1:3)where D = diag(�1; �2; � � � ; �n)with �1 � �2 � � � � � �n > 0and B = (�ij) is \well behaved." The imprecision in this de�nition lies in theterm \well behaved," which will be given speci�c meaning through hypotheses inthe theorems of the next two sections. Note that this de�nition does not precludesome of the �i being equal, in which case the matrix is said to be block graded.Throughout this paper, norm k � k denotes the vector 2-norm and the subor-dinate matrix operator norm. The magnitude of the largest element of B in (1.3)will be written �max def= maxi;j fj�ijjg:We will also denote the ratio of �i+1 to �i by�i def= �i+1�i :In x2 of this paper, we give a lower bound on the largest eigenvalue of agraded matrix. In x3, we explore the relation between eigenvalues of a graded



4 Eigenvalues of Graded Matricesmatrix and those of its Schur complements. These results are closely related toresults obtained by one of the authors [7],2 and more distantly to results by Barlowand Demmel [1] and Demmel and Veseli�c [3] for graded symmetric matrices. Hereit should be stressed that our goal is not so much to derive tight bounds onthe eigenvalues as to make statements about their magnitudes|as be�ts ourintended application. Finally, in x4, we analyze the perturbation of a multipleeigenvalue and show that the secants of the canonical angles between its left andright invariant subspaces form a set of condition numbers for the eigenvalue.2. The largest eigenvalue of a graded matrixIt is well known that the elements of a matrix can be arbitrarily larger than itsspectral radius. In this section we will show that under appropriate conditionsthis is not true of graded matrices. Speci�cally, if �11 is not too small comparedto �max, the graded matrix A has an eigenvalue that approximates �11 = �21�11.The basic tool used to establish this result is Gerschgorin's theorem (see, e.g., [5,p. 341]). Related results may be found in [1].The center of the Gerschgorin disk from the �rst row of A is �21�11, and itsradius is bounded by �max�1(�2+ � � �+ �n). For each row other than the �rst, thesum of the absolute values of its elements is bounded by �max�2(�1 + � � � + �n).From these facts and the Gerschgorin theorem we have the following result.Theorem 2.1. If j�11j�max � �1(�2 + � � �+ �n) + �2(�1 + � � �+ �n)�21 ; (2:1)then the largest eigenvalue �max of A is simple and satis�esj�max � �11j � �max�1(�2 + � � � + �n):The other eigenvalues of A satisfyj�j � �max�2(�1 + � � � + �n) � j�11j � �max�1(�2 + � � �+ �n) � j�maxj:2Mention should also be made of two papers on low rank approximation [4, 2], whose resultscan be regarded as limiting cases of block scaling.



Eigenvalues of Graded Matrices 5To gain more insight into the condition (2.1), suppose that A is uniformlygraded in the sense that the ratios �i are constant|say they are equal to �.Then the condition (2.1) is certainly satis�ed ifj�11j�max � 2�1� �:When j�11j=�max = 1, this condition is satis�ed for � � 13. As j�11j=�max decreases,we must have � <� 12 j�11j�max :Thus for the purpose of this section the \good behavior" of B means that theratio j�11j=�max is near one. As this ratio grows smaller, the grading ratio � mustdecrease to compensate.Theorem 2.1 is su�cient for assessing the magnitude of the largest eigen-value. However, when the grading is strong, the bounds can be improved by thewell-known technique of diagonal similarities. For example, ordinary Gerschgorintheory shows that the (2; 2)-element of the matrix (1.2) is at least a three digitapproximation to an eigenvalue. However, if we multiply its second row by 10�2and its second column by 102, we obtain the matrix0@ �1:0096e�11 6:4813e�07�3:1963e�11 3:0238e�06 1A ;from which it is seen that the (2; 2)-element approximates an eigenvalue to at least�ve digits. Note the agreement of this element with the second eigenvalue in thelist (1.1).Unfortunately, Gerschgorin theory can tell us little about the smaller eigen-values. As an extreme example, the matrix0BB@ 1 10�2 10�410�2 10�4 10�610�4 10�6 10�8 1CCAhas rank one, and hence its two smallest eigenvalues are zero. Nonetheless, itoften happens that the eigenvalues of a graded matrix share its graded structure.In the next section we will show how this comes about.



6 Eigenvalues of Graded Matrices3. Eigenvalues and Schur complementsThe principal result of this section is that under appropriate hypotheses the n�ksmallest eigenvalues of a graded matrix A are approximated by the eigenvalues ofthe Schur complement of the k� k leading principal submatrix of A. Speci�cally,partition A in the formA = 0@ A11 A12A21 A22 1A = 0@ D1B11D1 D1B12D2D2B21D1 D2B22D2 1A ;where D1 = diag(�1; �2; � � � ; �k) and D2 = diag(�k+1; � � � ; �n). Then the Schurcomplement of A11 is the matrixA22 �A21A�111A12 = D2(B22 �B21B�111 B12)D2:Note that the Schur complement of A11 is the graded Schur complement of B11.Consequently, if the Schur complement of B11 is well behaved, by the results ofthe last section it will have an eigenvalue of magnitude ~�11�2k+1, which, underconditions given below, will approximate an eigenvalue of A.The approach taken here is to determine an (n � k)� k matrix P such that0@ IP 1Aspans an invariant subspace corresponding to the k largest eigenvalues of A. Itthen follows that the eigenvalues of the matrix~A22 = A22 � PA12 (3:1)are the eigenvalues associated with the complementary invariant subspace; i.e.,the n� k smallest eigenvalues of A. For details see [6] or [8, Ch. V].It can be shown that the matrix P must satisfy the equationPA11 �A22P = A21 � PA12P;or in terms of B and DPD1B11D1 �D2B22D2P = D2B21D1 � PD1B12D2P:



Eigenvalues of Graded Matrices 7In this form, the equation is badly scaled. A better scaling is obtained by replacingP with P̂ = D�12 PD1; (3:2)which satis�es the equationP̂ B11D1 �B22D22P̂D�11 = B21D1 � P̂B12D22P̂D�11 ;or P̂ = B21B�111 +B22D22P̂D�21 B�111 � P̂B12D22P̂D�21 B�111 : (3:3)The following theorem gives a su�cient condition for the existence of a solutionof (3.3) and a bound on P̂ .Theorem 3.1. If
 def= (kB12kkB21kkB�111 k+ 12kB22k)kB�111 k�2k < 14 (3:4)then equation (3.3) has a solution satisfyingkP̂ k � 2kB21kkB�111 k: (3:5)Proof. Let P̂0 = 0, and for k = 1; 2; : : : letP̂k = B21B�111 +B22D22P̂k�1D�21 B�111 � P̂k�1B12D22P̂k�1D�21 B�111 :We will show that if (3.4) is satis�ed P̂k converges to a solution of (3.3).3 Forbrevity set�1 = kB21kkB�111 k; �2 = �2kkB22kkB�111 k; �3 = �2kkB12kkB�111 k:By a simple inductionkP̂kk � �1(1 + �2(1 + sk�1) + �1�3(1 + sk�1)2) = �1(1 + sk); (3:6)where sk satis�es the recursions0 = 0;sk = �2(1 + sk�1) + �1�3(1 + sk�1)2:3An alternative is to follow [6] and de�ne P̂k as the solution ofP̂k � B22D22P̂kD�21 B�111 = B21B�111 � P̂k�1B12D22P̂k�1D�21 B�111 :This approach gives a slightly less stringent condition for convergence but a slightly larger bound.



8 Eigenvalues of Graded MatricesUsing (3.4), we can show by induction that the sequence fskg is monotonicallyincreasing and bounded by one. Let s � 1 be the limit of the sequence fskg. Thenfrom (3.6), kP̂kk � �1(1 + s): (3:7)Now kP̂k+1 � P̂kk � �2kP̂k � P̂k�1k+ �3kP̂k � P̂k�1k(kP̂kk+ kP̂k�1k)� f�2 + 2�1�3(1 + s)gkP̂k � P̂k�1k= �kP̂k � P̂k�1k � �k�1:Since � = �2 + 2�1�3(1 + s) < (�2 + 2�1�3)(1 + s) < 1, the sequence fP̂kg is aCauchy sequence and has a limit P̂ , which by continuity must satisfy (3.3). Thebound (3.5) follows from (3.7).For purposes of discussion, let�k = kBkkB�111 k:Then the condition (3.4) will be satis�ed if(�2k + 12�k)�2k < 14 :Moreover, it follows from (3.2) and (3.5) thatkPk � 2�k�k:Thus, for the purposes of our theorem, B is \well behaved" if �k is near one. As�k grows, it must be compensated for by a larger grading ratio �k.If �k is su�ciently small, then all but the �rst term on the right hand side of(3.3) are insigni�cant and P̂ �= B21B�111 :It follows from (3.1) that~A22 �= D2(B22 �B21B�111 B12)D2;which is just the Schur complement of A11, or equivalently the graded Schurcomplement of B11. If the Schur complement is well behaved in the sense ofthe last section, then A must have an eigenvalue the size of the leading diagonalelement of the Schur complement. The chief way in which ill behavior manifests



Eigenvalues of Graded Matrices 9itself is through cancellation producing a small leading diagonal element of theSchur complement of B11.4Since grading enters the condition (3.4) only through the grading ratio �k,Theorem 3.1 applies to block graded matrices. More important for our purposesis the fact that the condition of the theorem can fail for one value of k and holdfor another, larger value of k. Thus it is possible for the descending sequenceof eigenvalues to stutter, with occasional groups of eigenvalues having the wrongmagnitudes while the sequence itself remains generally correct. The followingexample exhibits this behavior.Consider the matrix A whose elements are given in the following array.-7.1532e-01 4.1271e-02 -2.0433e-03 1.7447e-03 -1.4459e-04 4.0821e-064.1745e-02 3.7412e-03 -1.4124e-03 3.1508e-04 -8.6632e-06 3.2593e-07-3.2573e-03 -3.5565e-04 8.7329e-05 1.0717e-05 7.6451e-07 -2.7899e-08-1.5509e-03 -1.2599e-04 9.1642e-06 6.8861e-07 -1.1000e-08 -1.7092e-09-2.5920e-05 -2.3092e-06 5.8399e-07 -3.0490e-08 -2.5573e-09 5.2496e-10-4.2303e-06 -1.0778e-07 -6.2901e-08 4.3068e-09 -6.5392e-10 1.2152e-11The matrix was generated by uniformly grading a matrix of normal random num-bers with mean zero and standard deviation one. The grading ratio is � = 0:1.The eigenvalues of A are:�1 =�7:1771e�01�2 = 6:2493e�03�3 =�1:3472e�05 + 3:0630e�05i�4 =�1:3472e�05 � 3:0630e�05i�5 =�6:3603e�09�6 = 2:6849e�11The table below exhibits the value of 
 from (3.4) and the �rst diagonal elementof the Schur complement .4We note in passing that the possibility of cancellation destroying the graded structure of amatrix is the bane of algorithmists who work with graded matrices.



10 Eigenvalues of Graded Matricesk 
 ~�111 0.10 6.1497e-032 0.35 -3.8747e-053 7.38 -2.9463e-054 0.05 -6.3180e-095 0.12 2.7030e-11For k = 2; 3, the distribution stutters. The reasons for the failure of the abovetheory to predict the eigenvalues are di�erent for the two values of k. For k = 2,the number 
 can be made smaller than one-fourth by choosing a slightly di�erentscaling matrix D. Thus, the failure is due to the cancellation in forming theleading diagonal element of the Schur complement of B11. For k = 3, the number
 is always greater than one-fourth, and Theorem 3.1 fails. Even so, the leadingdiagonal element of the Schur complement gives a ball-park estimate of the size ofthe complex pair| something not predicted by our theory. For the other valuesof k the leading diagonal element predicts the size of the corresponding eigenvaluevery well. In fact, when 
 is small it approximates the eigenvalue itself.4. The condition numbers of a multiple eigenvalueLet us now return to the problem that initiated the investigations of the last twosections: the perturbation of a multiple eigenvalue. Let A have a nondefectiveeigenvalue � of multiplicity m. Since we may replace A with �I � A, we mayassume without loss of generality that � = 0.Since zero is a nondefective eigenvalue of multiplicitym, there arem-dimension-al subspaces X and Y such that AX = 0 and AHY = 0: namely, the spaces of leftand right eigenvectors corresponding to the eigenvalue zero. In x1 we saw that ajudicious choice of eigenvectors led to a graded eigenvalue problem. The existenceof a suitable choice for the general case is stated in the following theorem [6].Theorem 4.1. There are n�m matrices X and Y whose columns spaces are Xand Y and which satisfyXHX = Y HY = diag(�1; : : : ; �m); �1 � � � � � �m > 0;and Y HX = I:



Eigenvalues of Graded Matrices 11The numbers �i may be de�ned sequentially as follows. First,�1 = maxx2X miny2Y sec 6 (x; y): (4:1)If x1 and y1 are vectors for which the extrema are attained in (4.1), then�2 = maxx2Xx?x1 miny2Yy?y1 sec 6 (x; y): (4:2)If x2 and y2 are vectors for which the extrema are attained in (4.2), then�3 = maxx2Xx?x1 ;x2 miny2Yy?y1;y2 sec 6 (x; y); (4:3)and so on. The maximizing angles are called the canonical angles between Xand Y. For more details see [8, xI.5].We must now relate this choice of basis to the eigenvalues of a perturbationA+ E of A. This is done in the following theorem [6].Theorem 4.2. Let C = Y HEX:Then there is a matrix Ĉ = C + O(kEk2) whose eigenvalues are eigenvalues ofA+ E.Since the eigenvalues of C approach zero, they must approximate the m eigen-values spawned by the zero eigenvalue of A. Now the (i; j)-element of C has theform yHi Exj. Hence, jcij j � p�i�jkEk:Thus, unless E has special structure, C will tend to be a graded matrix withgrading constants �i = p�i, and by the characterizations (4.1){(4.3) the gradingwill tend to be maximal. From the results of the last two sections, we know thatthe magnitudes of the eigenvalues of C will tend to be around �ikEk. For theexample of x1, we calculated that kEk is of order 10�10, and �1 and �2 are of orderone and 10+4, respectively. This explains the behavior of the double eigenvalue 0.It is unfortunate that we cannot say with complete rigor that the �i are condi-tion numbers for �. In the �rst place, without precise knowledge of E we cannotassert that C is graded. And even when C is graded, the example of the lastsection shows that the eigenvalues need not behave as we would like them to. Butthe phenomenon is no less real for having exceptions; and if we recognize thatwe are speaking about what is likely to be instead of what has to be, there canbe no objection to calling the numbers �i, the condition numbers of the multipleeigenvalue �.
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