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ABSTRACT

In this paper, we address the problem of entity resolution, where
given many references to underlying objects, the task is to pre-
dict which references correspond to the same object. We propose
a probabilistic model for collective entity resolution. Our approach
differs from other recently proposed entity resolution approaches in
that it is a) unsupervised, b) generative and c) introduces a hidden
‘group’ variable to capture collections of entities which are com-
monly observed together. The entity resolution decisions are not
considered on an independent pairwise basis, but instead decisions
are made collectively. We focus on how the use of relational links
among the references can be exploited. We show how we can use
Gibbs Sampling to infer the collaboration groups and the entities
jointly from the observed co-author relationships among entity ref-
erences and how this improves entity resolution performance. We
demonstrate the utility of our approach on two real-world bibli-
ographic datasets. In addition, we present preliminary results on
characterizing conditions under which collaborative information is
useful.

1. INTRODUCTION

In many applications, there are a variety of ways of referring to the
same underlying object. Given a collection of objects, we would
like to a) determine the collection of ’true’ underlying entities and
b) correctly map the object references in the collection to these en-
tities. This problem comes up in many guises throughout com-
puter science. Examples include computer vision, where we need
to figure out when regions in two different images refer to the
same underlying object (the correspondence problem); natural lan-
guage processing when we would like to determine which noun
phrases refer to the same underlying entity (co-reference resolu-
tion); and databases, where, when merging two databases or clean-
ing a database, we would like to determine when two records are
referring to the same underlying individual (deduplication).

There is a long history of work in each of these research areas.
Recently, general probabilistic approaches have been proposed [15,
22] as well as discriminative approaches [17, 21]. However, not
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all of these approaches explicitly capture links and collaborative
information.

We introduce a generative probabilistic model for entity resolution.
Our model builds on the recently proposed Latent Dirichlet Allo-
cation model (LDA) [4]. While the LDA model was proposed for
modeling documents as mixtures of topics, we adapt the model to
the entity resolution problem. We motivate our approach on the
task of resolving author references (which are the observed author
names occurring in documents or document citations) in citation
databases, but our model and algorithms are applicable in more
general settings where noisy references to entities are observed to-
gether. Examples include names of people traveling together on the
same flight, names appearing together in the same email or groups
of people attending the same meeting.

Our approach differs from existing approaches in that we explic-
itly leverage the underlying structure in the group interactions to
improve the entity resolution performance. The group structure is
learned from the observed collaborative relationships among entity
references. For the case of author resolution, this means we make
use of co-author relations to infer collaborative groups.

One contribution of our approach is that we propose an unsuper-
vised collective entity resolution algorithm. It is unsupervised be-
cause we do not make use of a labeled training set and it is collec-
tive because the resolution decisions depend on each other through
the group labels. We also present a novel sampling algorithm for
inferring the entities. Furthermore, unlike the majority of other ap-
proaches to entity resolution, the collaborative group model that
we propose does not introduce a separate random variable for each
pairwise resolution decision, but uses latent entity and group labels
associated with each reference. We do not assume that equivalent
strings necessarily refer to the same entity. In addition, part of the
output of our algorithm is the set of entities and their canonical
descriptions.

2. MOTIVATING EXAMPLE

In this section, we look at a concrete example of collective res-
olution of author references. Figure 1 shows four papers, each
with its own author references. For instance, Paper P1 has three
author references “Alfred Aho”, “Jeffrey Ullman” and “S C John-
son”. In all, we have ten author references that correspond to the
three author entities: “Alfred V. Aho”, “Jeffrey D. Ullman” and “S
C Johnson”. For example, all three references “A V Aho”, “Alfred
V Aho” and “Alfred Aho” correspond to the author entity named
“Alfred V Aho”. If we look at pairs of references individually and
try to decide if they are duplicates, that may not be a difficult task
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Figure 1: An example author/paper resolution problem. Each
box represents a paper reference (in this case unique) and each
oval represents an author reference.

for uncommon names like “A V Aho” and “Alfred V Aho”. But
for frequently occurring names like “S Johnson” and “S C John-
son”, it is a problem. While they will be duplicates in some cases,
in others they will be distinct. We can however make use of addi-
tional evidence if we make these decisions collectively. Consider-
ing all the references together, we may decide that all the “Aho”’s
and the “Ullman’’s correspond to the same entity, and therefore the
two “Johnson”s are very likely to be references to the same author
since they collaborate with the same set of author entities. This is
what we would like to capture with our model. We would like to in-
fer that the two “Johnson”s belong to the same collaborative group
involving “Aho” and “Ullman” and use this additional evidence to
predict that they correspond to the same author entity.

3. RELATED WORK

There is a large body of work on deduplication, record linkage, and
co-reference detection. Here we review some of the main work, but
the review is not exhaustive; for a nice summary report, see [27].

The traditional approach to entity resolution considers similarity
of textual attributes. There has been extensive work on approxi-
mate string matching algorithms [19, 6] and adaptive algorithms
that learn string similarity measures [3, 7, 26]. Beyond applying
standard machine learning techniques, other approaches use active
learning [25]. In addition, data integration is an area of active re-
search [12, 19, 16].

The groundwork for posing record linkage as a probabilistic clas-
sification problem was done by Fellegi and Sunter[9]. Winkler[28]
builds upon this work by introducing a latent match variable esti-
mated using Expectation Maximization. More recently, hierarchi-
cal graphical models have been proposed [23].

Approaches that take relational features into account for data inte-
gration have been proposed [8, 5, 1, 20, 2]. Chaudhuri et al. [5]
make use of join information for deduplication but assume the sec-
ondary tables themselves to be clean. The notion of co-occurrence
in dimensional hierarchies has also been proposed [1], while other
approaches look at weighted combinations of attribute and rela-
tional distance measures [2].

Probabilistic models that take into account interaction between dif-
ferent entity resolution decisions have been proposed for named
entity recognition in natural language processing and for citation

matching. McCallum et al.[17] employ conditional random fields
(CRF) for noun coreference and use clique templates with tied pa-
rameters where the decision for one pair affects another through
their overlap. Parag et al.[21] extend the CRF model to merge
evidence across multiple fields. They are able to achieve signif-
icant benefit from generalizing the mapping of attribute matches
to multiple references, for example being able to generalize from
one match of the venue “Proc. of SIGMOD” with “Proceedings
of the International Conference on Management of Data” to other
instances.

Pasula et al.[22] propose a probabilistic relational model for the ci-
tation matching problem. This captures dependence between iden-
tities of co-authors of the same paper, but does not model collabo-
rative probabilities between authors directly. Li et al.[15] propose
a generative model for disambiguating entities in text documents
that captures joint probabilities for co-occurrence. They show im-
pressive benefits over a pairwise discriminative model. They model
pairwise co-occurrence probabilities rather than group memberships
and searching for the set of most likely entities is not a focus of their
work.

We model collaborative groups using LDA [4] which improves
Probabilistic Latent Semantic Indexing [13] as a generative topic
model for documents. The related author-topic model [24] notes
the problem of duplicate authors; here we propose a solution for it.
Kubica et al.[14] have proposed generative models for links using
underlying groups, but they do not handle identity uncertainty.

4. LDA FOR AUTHORS

In this section adapt the LDA model for topics and words in docu-
ments to a group mixture model for author entities. We start with
the simple case where there is no ambiguity in the author refer-
ences. In the next section, we will expand the model to handle am-
biguous author references and propose inference algorithms suited

to the new model.
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Figure 2: Plate representation for (a) group mixture model
for authors and (b) group mixture model for author resolution
from ambiguous references. Observed variables are shaded.



Consider a collection of D documents and a set of A authors cor-
responding to the authors of the documents. We have a set of R
author references, {a1,...,ar}. Each document can have multi-
ple authors and for now, we assume the authors of each document
are observed. For an author reference a;, we use d; to denote the
document in which it occurs. Further we introduce the notion of
collaborative author groups. These are groups of authors which
tend to co-author together. We will assume that there are 7' differ-
ent groups. Each author reference a; has an associated group label
Zi.

The probabilistic model is given using plate notation in Figure 2(a).
The probability distribution over authors for each group is rep-
resented as a multinomial with parameters ¢’, so the probability
P(a =i | 2z = j) of the 4*" author in the database being chosen
for the j* group is d){-' . We have T different multinomials, one
for each group. Each paper d is modeled as a mixture over the T’
groups. The distribution used is again a multinomial with parame-
ters 6<, so the probability P;(z = j) of the j** group being chosen
for document d is 6?. Each 6% is drawn from a Dirichlet distri-
bution with hyperparameters a; similarly each ¢’ is drawn from a
Dirichlet distribution with hyperparameters 3.

S. LDA FOR AUTHOR RESOLUTION

So far, we assumed that the author identity can be determined un-
ambiguously from each author reference. However, when we are
dealing with author names, this is typically not the case. The same
author may be represented in a variety of ways: ’Jonathan Elysia
Smith’, *John E. Smith’, ‘J. Smith’, etc. There may be mistakes
due to typos or extraction errors. Finally, two ’J. Smith’s may not
refer to the same author entity. One may refer to *John Smith’ and
another may refer to ’Jessica Smith’. The result is that we are no
longer sure of the mapping from the author reference to the author
entity. We must resort to inference to identify the true author for
each reference.

To capture this, we will associate an attribute v, with each author
a. In addition, we add an extra level to the model that probabilis-
tically corrupts the author attributes V; to generate the references
r = {ri,r2,...,rr}. Each reference is generated by first sam-
pling a group z and then an author entity a as before. Then, the
author reference r is generated from a by corrupting the attribute
v, according to a noise model A/. We use a sophisticated noise
model that we explain in Section 8. The probability of generating
an author reference r from a particular author entity is defined as
P(r|vg). The conditional probabilities for each reference are nor-
malized to sum to 1 over all author entities. It is the reference r
that is observed, while the entity a and group label z are hidden
variables. This is represented in Figure 2(b).

The probability of generating the set r of references for a corpus
given parameters «, 8 and V can be expressed as
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6. INFERENCE USING GIBBS SAMPLING

In general, the integral in Eq. (1) is intractable due to coupling be-
tween 6 and ¢. Different approximations have been proposed, in-
cluding variational methods [4], Gibbs Sampling [11] and Expec-
tation Propagation [18].

We follow the approach proposed by [11] where 6 and ¢ are not
directly estimated as parameters. Instead, the posterior distribution
P(z,a | r) is first constructed and then 6 and ¢ are estimated from
this posterior distribution. Now, the joint probability can be derived
from Eq. (1) as:

P(z,a,r) = P(z)P(a|z)P(r | a) (2)
where
(T ¢ , chT
P@) = (55 a) H o Ta+C£T ) ©

is the probability of the joint group assignment to all references and
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is the conditional probability of the references given the groups and
P(r | a) = [[; P(ri | va;) is the conditional probability of the
references given the authors. C5.” is the number of times group ¢
has been observed for the references in document d and C5T =
> cLT . Similarly, CAT is the number of times references to
author a have been observed with group label ¢ in all documents.

P(a|z) = (7

4

We construct a Markov chain that converges to the posterior distri-
bution P(z,a | r) and then draw samples from this Markov chain.
Each state in the Markov chain is an assignment of a group label
and an author label to all R references. In the Gibbs Sampling
approach, the labels for each reference are sequentially sampled
conditioned on the current labels of all other references. By con-
struction, this Markov chain converges to the target posterior dis-
tribution. However, we first need to define the full conditional dis-
tribution P(z; = t,a; = a | z_;,a_;,r), where z_; is the set of
all but the 5** group label and a_; all but the " author label. In
words, this is the probability that the ! reference comes from the
t** group considering the current group and author assignment to
all other references.

‘We can derive this full conditional distribution as
P(zi=t,a;=al|z_;,a_,r)
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The factorization makes intuitive sense. The first term is the prob-
ability of group ¢ in document d;, the second is the probability of
author a in group ¢ and the third is the probability of the author
attribute v, being corrupted into the i** reference.

Instead of sampling z; and a; as a block, they can be sampled sep-
arately:

Clhan+a Clha+ 8
CP%4, +Ta ClL ., + AP

P(z; =t|z—i,a,r) x Q)
C( i)at; +ﬂ

P(a; =a|z,a_;,r) x P(r; | va) (6)



7. MODELING AUTHOR ATTRIBUTES

In the previous section, we assumed that the author attribute val-
ues v, are known. But in general, the author attributes will not be
known and will need to be inferred from the references. The condi-
tional distribution for sampling groups z; is not directly affected by
the attributes. However, the attributes influence the assignment of
author labels a;, since a reference r; is more likely to be assigned to
an author with similar attributes. Conversely, any author attribute
v; depends on the references that have author label ¢. Incorporating
a prior P(v) = Hle P(v;) into the joint distribution in Eq. (2),
we derive the conditional distribution for assigning a value v to v;
given all author labels and references as:

R
P(vi =v |a,r) o« P(v) [[ P(r; | v)di(ay)

=1

Intuitively, v; should be set to the most likely value that explains
the generation of the references assigned to author ¢. For example,
if multiple “J.S. Smith” and “John Smith” references have been as-
signed author label ¢ along with the reference “Jhon Smth”, then
the author attribute v; is most likely to be “John S. Smith”. The
sampling algorithm now also samples the author attributes v; it-
eratively, conditioned on the references and current author assign-
ments, along with sampling the group and entity labels for each
reference. For ‘free authors’ to which no references are currently
assigned, we set the attributes to a special value ‘x’. We would
like our model to prefer free authors over assigned authors and ac-
cordingly we assign a higher prior probability P(*) than all other
attributes.

8. NOISE MODEL

The different ways for distorting or modifying an author attribute
to a reference in a document is captured by the noise model N.
It handles first, middle and last names independently. The first
name can be initialed with probability pr;, dropped with prob-
ability prp or retained as a whole with probability prr, where
pr1 +prp + prr = 1. There are similar parameters parr, pmp
and pur for the middle name. The probabilities for the first and
middle initials being incorrect are prr, and parrr. These are ex-
pected to be lower than pr. Last names and retained first or middle
names may be corrupted by characters being inserted, deleted or
replaced with probabilities pr, pp and pr respectively. The min-
imum numbers of insertion (nr), deletion (np)and replacement
(nr) operations for mutating an author attribute v to a reference
v’ are obtained using edit-distance for strings. Then the mutation
probability is P(v'|v) = p7? - p7P - pRE.

9. DETERMINING NUMBER OF ENTITIES

In the development up until now, we have considered the number of
authors A to be given, when in practice this needs to be estimated.
One of the contributions of this work is an unsupervised method
for determining the number of entities. We will avoid formulating
a separate elaborate procedure for searching over the number of
authors and adapt it within our sampling framework.

9.1 Block Assignment for Entity Resolution

Instead of assigning labels to references individually, we will jointly
(re)assign labels for a set of references. Specifically, we will pick
an author label j and consider the set s of reference indices that
have j as their author label: s = {i | a; = j}. We will assign
new author labels to all references indexed by s simultaneously.
Unfortunately, the number of possible author assignments to s is

exponential in |s| and it is virtually impossible to enumerate all
these different probabilities and sample from this distribution.

Instead, we restrict the space of candidates such that that allow
the set of references assigned to a particular author label may (a)
merge with a set currently assigned to another author label, (b) stay
unchanged or (c) split and have a portion assigned to a currently
unassigned author label j'. In case (a), the number of authors is
effectively decreased by one. In case (c), the number of authors
is effectively increased by one. However, the number of possible
partitions of s into j and j' is still 2. One simple but restricted
solution is splitting to the set that last merged into label j via op-
tion (a). This is also the best partition in terms of the reference
attributes.

We will first consider assigning a single author label to all of s.
The full conditional distribution we need to construct is P(as =
i | z,a—s,r) which is the probability of all the labels in as being
set to ¢ conditioned on all references and group labels and all other
author labels. Let us denote

Clayie
T(t,i)= [ B+CE)i +Clsje —n) )
n=1
Clayue
T(t,x) = [] (AB+Ct%)ui+ Clyue —m)
n=1

where C(f;)j;t is the number of times author a and group ¢ have
been jointly assigned to references in s, and C(A_Ts) o+ 18 the number
of such assignments outside s. Let zs be the set of groups currently
assigned to the references indexed by s. Then the conditional dis-
tribution can be derived as

P(as =i|z,a_s,1) x H ;:((:’:)) HP(""]‘ |vi) ()
tEzs ! JjEs

9.2 An Interpretation of Block Assignment
The terms in this conditional probability can be rearranged so that
the result makes intuitive sense. Let j be an index into s and t;
be the group label for that reference. Also, consider s to be an
ordered set and denote by s<; the set of elements in s strictly before
position j. Then we may rewrite Eqn. 8 as

P(ag =1i|z,a_s,r)
B+CEE it + O,
« Mgt Loy o

jes (s<j)*t; (=s)*t;

Here Cé:j)“ is the number of times author label ¢ and group label
t have occurred jointly when looking at just the references in s<;.
This may be interpreted as follows. We are assigning author labels
to the references in s in sequence. For each assignment, the second
term is the probability of the reference given the author and the first
term is the probability of the author label for the reference given its
current group label, including the assignments already made in the
sequence as added evidence. It must be stressed that this ordering
is introduced solely for interpretation purposes and the actual prob-
ability is independent of the ordering. Note that Eqn. 9 reduces to
Eqn. 6 when s has a single element.

For the case when we are partitioning s into s1 and s2 and assign-
ing two different author labels to them, the conditional probability



looks very similar:
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In order to explicitly incorporate a preference for ‘free authors’ in
our model, we observe that when one author label merges with an-
other according to Eqn. 8, the attribute of the freed author j is set
to *x’. So the merge probability in Eqn 8 is augmented with an
additional term: P(x)/P(v;). Similarly, when splitting the refer-
ences assigned to author j between j and currently unassigned j’,
we are taking away one free author. This is reflected by augment-
ing the split with the term P(v;/)/P(%). Observe that a higher
prior probability of ‘x’ relative to other attributes favors merging
and discourages splits.

Putting everything together, our entity resolution algorithm starts
from an initial assignment of authors and groups to all references
and iterates over three steps sequentially until convergence. First,
it samples a group label for each reference. This has complexity
O(RT) for R references and 7' group labels. Then for each as-
signed author label, it samples the next author label for its current
references. This requires O(AS) operations for A author labels
and a maximum of S potential duplicates per author. Finally, it
samples an attribute for each assigned author label, requiring O(A4)
operations. For each round of sampling authors and attributes, we
do several iterations of group sampling to let the group labels sta-
bilize for the current author assignments. Note that all stages in an
iteration are linear in the number of references and author labels
allowing our model to scale to large datasets as we demonstrate in
the experimental section.

10. DETERMINING MODEL PARAMETERS

We have described how the numbers of authors can be determined
within the sampling procedure. The remaining aspects of the model
are the number of groups and the Dirichlet hyperparameters. Their
choice affects performance in different ways.

10.1 Number of Groups

Here we consider the effect of different numbers of groups. Recall
that our guiding intuition is to assign the same author label to sets
of references when they are similar and have similar group distri-
butions. When the number of groups 7' is too small, misleading
similarities in group distributions are likely to be observed, leading
to false positives. If T' is too high, references to the same author
can get split over different groups, making false negatives likely.
In other words, lower 1" favors higher recall and lower precision,
while higher T leads to lower recall with higher precision.

10.2 Hyperparameters

To appreciate the roles of a and 3, note from Eqn. 5 that when
a = 0, a reference is forced to pick a group label from the other
references in the same document. Similarly, when 8 = 0, a ref-
erence has to pick a group label from other references to the same
author, and also an author label from other references with the same
group label. In general, for low values of « and 3, the model tends
to over fit the data. This is particularly undesirable for us, since we
look to estimate the number of authors and need to generalize from
the current author assignments. To get a feel for what are good
values, observe that T'a is the number of pseudo reference counts

added to each document. Since in most cases documents will have
one or two authors, we set Ta to be 0.25. Similarly, AS is the
number of pseudo references for each topic. We set 3 according
to the number of references in the dataset and the number of topics
used. A typical value for AS is 5.

10.3 Noise Model Parameters

We iteratively estimate the noise parameters from data in a unsu-
pervised manner. We start from an initial value of the parameters
using domain knowledge, and then after each author sampling step,
we re-estimate the parameter values looking at each reference and
its author attribute. A weighted combination of the old parameter
values and the newly estimated ones yields the parameter values for
the next iteration.

11. ALGORITHM REFINEMENTS

Unlike the group labels, the author labels for references are sam-
pled from a restricted space. Here we look at two ways to improve
the sampling algorithm for inferring the author labels.

11.1 Bootstrapping Author Labels

Initialization of author labels is an issue both for convergence time
and quality. One option is to assign the same initial label to any
two references that have attributes v1 and v2, where either v1 = v»
or v1 is an initialed form of vs. However, for domains where
last names repeat very frequently, like Chinese, Japanese or Indian
names, this can affect the initial accuracy quite adversely, from
which it is hard to recover. For the case of such common last
names', we assign the same author label to pairs only when they
have document co-authors with the same initial author label. This
improves bootstrap accuracy significantly for one of our datasets
that has frequently repeating names. In addition, bootstrapping al-
lows us to estimate the maximum number of author labels that we
want to use.

11.2 Group Evidence for Author Self Loops
In Eqn. 7, C(‘_q;)at is the number references outside s that have
author label a and group label ¢. For any ¢, we may imagine this
to be the group evidence for transition to author label a for s. Con-
sider the set s of references whose current author label is j and the
term T'(t, j) for reassigning label j to them. Since s includes all
references with author label j, C(A_j;) ;j+ Will be 0 for all group labels
t. Thus self-loops for author labels have a distinct disadvantage to
other transitions in terms of group evidence. We may remedy this
by considering a small fraction § of C(‘:)Tjt as external group evi-
dence for j. The higher the value of 4, the stronger has to be the
evidence to cause an existing author label to merge with another
label or to split into two.

12. EXPERIMENTAL EVALUATION

We began by evaluating our algorithm on two citation datasets from
different research areas. We compare our collaborative entity res-
olution model (LDA-ER) with models based solely on attributes.
Next, to gain further understanding of the conditions under which
entity resolution benefits from collaborative group information, we
evaluated our algorithm on a broad range of synthetic datasets with
varying relational structure.

'We use a list of common last names from
http://en.wikipedia.org/wiki/List_of_most_popular_family_names



12.1 Results on Citation Data

We performed our first set of experimental evaluations on two cita-
tion datasets. The first is the CiteSeer dataset containing citations to
papers from four different areas in machine learning, originally cre-
ated by Giles et al.[10]. This has 2,892 references to 1,165 authors,
contained in 1,504 documents. The second dataset is significantly
larger; arXiv (HEP) contains papers from high energy physics used
in KDD Cup 20032, This has 58,515 references to 9,200 authors,
contained in 29,555 papers. The authors for both datasets have been
hand-labeled.’

To evaluate our algorithms, we measure the performance of our
model for detecting duplicates in terms of precision, recall and F1
on pairwise duplicate decisions. It is practically infeasible to con-
sider all pairs, particularly for HEP, so as others have done, we em-
ploy a ‘blocking’ approach to extract the potential duplicates. This
approach retains ~99% of the true duplicates for both datasets.

We use a simple scheme for attribute priors, where last names that
occur in the common names list are set to be 10 times more likely
than other names, and ‘x’ is 10 times more likely than common
names.

When sampling group labels given the entity assignments at each
step, we iterate until the log-likelihood converges. Typically for the
first few steps, we perform 50 group sampling iterations for each
author iteration. Thereafter we proceed with 20 group iterations
for each author iteration. The F'1 converges in about 30 author
iterations for CiteSeer and 75 author iterations for HEP. On a IGHz
Dell PowerEdge 2500 Pentium III server, this takes between 10
and 20 minutes for CiteSeer and between 8 and 20 hours for HEP
depending on the number of groups. As discussed in Section 11.2,
we use a small fraction (0 = 0.5%) of group evidence for self
probabilities.

As a baseline (ATTR), we compare with the hybrid SoftTF-IDF
measure [6] that has been shown to outperform other unsupervised
approaches for text-based entity resolution. Essentially, it aug-
ments the TF-IDF similarity for matching token sets with approx-
imate token matching using a secondary string similarity measure.
Jaro-Winkler is reported to be the best secondary similarity mea-
sure for SoftTF-IDF. We also experiment with the Jaro and the
Scaled Levenstein measures. However, directly using an off-the-
shelf string similarity measure for matching names results in very
poor recall. From domain knowledge about names, we know that
first and middle names may be initialed or dropped. A black-box
string similarity measure would unfairly penalize such cases. To
deal with this, ATTR uses string similarity only for last names and
retained first and middle names. In addition, it uses drop probabili-
ties ppropr and ppropnr for dropped first and middle names, initial
probabilities prr and pasr for correct initials and prr, and parrr
for incorrect initials. The probabilities we used are 0.75, 0.001 and
0.001 for correctly initialing, incorrectly initialing and dropping
the first name, while the values for the middle name are 0.25,0.7
and 0.002. We arrived at these values by observing the true values
in the datasets and then hand-tuning them for performance. Our
observation is that baseline resolution performance does not vary
significantly as these values are varied over reasonable ranges.

Zhttp://www.cs.cornell.edu/projects/kddcup/index.html

*We would like to thank Aron Culotta and Andrew McCallum
for providing the author labels for the CiteSeer dataset and David
Jensen for providing the author labels for the HEP dataset. We per-
formed additional cleaning for both.

ATTR only reports pairwise match decisions. Since the duplicate
relation is transitive, we also evaluate ATTR* which removes in-
consistencies in the pairwise match decisions in ATTR by taking
a transitive closure. Note that this issue does not arise with LDA-
ER; it does not make pairwise decisions. Both ATTR and ATTR*
need a similarity threshold for deciding duplicates and determining
the right threshold is a problem for these algorithms. We consider
the best F'1 that can be achieved over all thresholds.

Table 1: Performance of ATTR and ATTR* in terms of F1
using various secondary similarity measures with Soft TF-IDF.
The measures compared are Scaled Levenstein (SL), Jaro (JA),
JaroWinkler (JW) and the generative similarity model used
with LDA-ER (Gen).

CiteSeer
SL JA W Gen
ATTR 0.980 0.981 0.980 0.982
ATTR* | 0.989 0.991 0.990 0.990
HEP
SL JA JW Gen
ATTR 0.976 0976 0972 0.975
ATTR* | 0971 0.968 0.965 0.970

Table 1 records baseline performance with various string similar-
ity measures coupled with SoftTF-IDF. Note that the best baseline
performance is with Jaro as secondary string similarity for Cite-
Seer and Scaled Levenstein for HEP. It is also worth noting that
a baseline without initial and drop probabilities scores below 0.5
F1 using Jaro and Jaro-Winkler for both datasets. It is higher with
Scaled Levenstein (0.7) but still significantly below the augmented
baseline. Transitive closure affects the baseline differently in the
two datasets. While it adversely affects precision for HEP, it im-
proves recall for CiteSeer.

Table 2 shows the best performance of each of the three algorithms
for each dataset. Note that the recall includes blocking, so that the
highest recall achievable is 0.993 for CiteSeer and 0.991 for HEP.
LDA-ER outperforms both forms of the baseline for both datasets.
For CiteSeer, LDA-ER gets close to the highest possible recall with
very high accuracy. Improvement over the baseline is greater for
HEP. While the improvement may not appear large in terms of F1,
note that LDA-ER reduces error rate over the baseline by 22% for
CiteSeer and by 25% for HEP. Also, HEP has more than 64, 6000
true duplicate pairs, so that a 1% improvement in F1 translates to
more than 6, 400 correct pairs.

Table 2: Performance of LDA-ER, ATTR and ATTR* for Cite-
Seer and HEP datasets. The standard deviation of the F1 is
3 x 104 for CiteSeer and 1.7 x 10~ * for HEP.

CiteSeer HEP
P R F1 P R F1
ATTR 0.990 0971 0981 | 0.987 0.965 0.976
ATTR* 0.992 0988 0991 | 0976 0.965 0.971
LDA-ER | 0.997 0.988 0.993 | 0.992 0.972 0.982

Looking more closely at the resolution decisions from CiteSeer, we
were able to identify some interesting combination of decisions by
LDA-ER that would be difficult or impossible for an attribute-only
model. There are instances in the dataset where reference pairs
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Figure 3: Improvement of LDA-ER over ATTR* in terms of F1 for varying (a) ambiguity of references, (b) average number of
references per author and (c) average number of references per document. Other parameters are held constant for each experiment.

are very similar but correspond to different author entities. Exam-
ples include (liu j, lu j) and (chang c, chiang c). LDA-ER cor-
rectly predicts that these are not duplicates. At the same time, there
are other pairs that are not any more similar in terms of attributes
than the examples above and yet are duplicates. These are also
correctly predicted by LDA-ER by leveraging common collabora-
tion patterns. The following are examples: (john m f, john m st),
(reisbech c, reisbeck c k), (shortliffe e h, shortcliffe e h), (tawara-
tumida s, tawaratsumida sukoya), (elliott g, elliot g 1), (mahedevan
s, mahadevan sridhar), (livezey b, livezy b), (brajinik g, brajnik g),
(kaelbing [ p, kaelbling leslie pack), (littmann michael I, littman m),
(sondergaard h, sndergaard h) and (dubnick cezary, dubnicki c).
An example of a particularly pathological case is (minton s, minton
andrew b), which is the result of a parse error. The attribute-only
baselines cannot make the right prediction for both these sets of ex-
amples simultaneously, whatever the decision threshold, since they
consider names alone.

We were also interested in exploring how the number of collab-
orative groups affect the performance of our entity resolution al-
gorithm. Table 3 records the performance of the group model on
the two datasets with varying number of groups. While we ob-
serve a general trend where precision improves and recall suffers
with more groups, note that the F'1 is largely stable over a range of
groups.

Table 3: LDA-ER Performance over varying number of groups

Num. CiteSeer HEP

Grps P R F1 P R F1
100 0.995 0991 0.993 | 0986 0.972 0.979
200 0.997 0.988 0.993 | 0.988 0.972 0.980
300 0.998 0.980 0.989 | 0.990 0.971 0.980
400 0.999 0980 0.989 | 0.990 0.970 0.980
500 0.991 0971 0.981
600 0.991 0.969 0.980

12.2 Properties of Collaborative Graphs

While the LDA-ER model shows improvement for both citation
datasets, the improvement is much more significant for the HEP
dataset. On investigating why our model shows a larger improve-
ment for HEP than for CiteSeer, we found some notable differences
between the datasets. We call a reference ambiguous if there is
more than one author entity with that last name and first initial.
There is a significant difference in reference ambiguity between

the two datasets: only 0.5% of the references in CiteSeer are am-
biguous while 9% of HEP references are ambiguous. A second
difference is in the density of the author collaboration graph. The
average number of collaborators per author is 2.15 in CiteSeer and
4.5 in HEP. Finally, a third significant difference relates to the sam-
ple size. While the ratio of the number of references to the number
of authors is 2.5 for CiteSeer, for HEP it is 6.36. On the other hand,
one of the features that is preserved for both datasets is the average
number of references per document, which is 1.9 for both.

In order to investigate which of these features is responsible for
the performance difference, we ran our algorithm on a range of
synthetically generated datasets. This allowed us to investigate the
conditions under which our model is most likely to lead to signifi-
cant improvements over algorithms which do not take into account
collaborative structure. Due to space constraints, we provide only
the outline of the dataset generator; it is reasonably sophisticated. *
It attempts to mimic the way authors of academic papers are gen-
erated by the underlying collaborative pattern among researchers.
There are two phases in this generative process. First, a collab-
orative graph is created in steps, where in each step a collabora-
tive edge is added between two authors. Each author is given a
name sampled from US census data. By sampling from the top
k% of this distribution we can control the percentage of ambiguous
names in the data. Other parameters allow us to control the num-
ber of authors and the average collaboration degree. In the second
stage, documents are created from this collaborative graph by first
sampling an initiator author, who chooses randomly from collab-
orators to select co-authors for that document. The author names
for each document are corrupted by a noise model to generate the
references. Various parameters allow us to control the number of
documents generated, the average number of authors per document
and the level of noise in the references.

In our setup for experiments with synthetic data, we vary the syn-
thetic dataset parameters one at a time holding the others constant.
The datasets have 1000 authors with an average of 4.5 collabora-
tors, We generate 3000 documents with an average of 2 references
per document and 15% ambiguous references. We explore vary-
ing the fraction of ambiguous references, the ratio of references to
authors, the average number of collaborators and average number
of references per document. Since the results are averaged over
different datasets, we present only the improvement in F1 measure
observed for the group model over ATTR*.

“We plan to make this generator available to other researchers



Figure 3 summarizes the trends that we observe. One significant
improvement trend is over varying ambiguity in the references. As
shown in Figure 3(a), it climbs sharply from 0.01 for 10% ambigu-
ity (as in HEP) to 0.06 for 27% reference ambiguity. Figure 3(b)
shows that LDA-ER naturally benefits from higher sample sizes for
the author references. And Figure 3(c) shows that LDA-ER ben-
efits from a greater number of authors per document. However,
no statistically significant trends emerged from our experiments
with varying collaboration degree keeping other factors like sam-
ple size fixed; some experiments showed larger improvements with
higher degree, however the results were not consistent. We believe
that more thoroughly characterizing properties of the collaborative
graph structure, which will lead to improved entity resolution, is an
interesting area for future work.

13. CONCLUSIONS

In this paper, we have developed an unsupervised probabilistic gen-

erative model for entity resolution that is inspired by the LDA model.

It is novel in that it exploits collaborative group structure for mak-
ing resolution decisions. We have proposed a novel sampling al-
gorithm for determining this group structure from observed col-
laboration relationships among ambiguous references. We have
demonstrated the utility of the proposed model on two real-world
citation datasets. We have identified some of the conditions under
which these models are expected to provide greater benefit. Ar-
eas for future work include extending the models to resolve multi-
ple entity classes and better characterization of collaborative graphs
amenable to these models.
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