State-Space Search, Problem Reduction, and
Iterative Deepening: A Comparative Analysis

by D.S. Nau

TECHNICAL
RESEARCH
REPORT

Institute for
Systems
Research

The Institute for Systems
Research is supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 93-38

State-Space Search, Problem Reduction, and Iterative Deepening:
A Comparative Analysis

Dana S. Nau®
Computer Science Department, and Institute for Systems Research
University of Maryland
College Park, Maryland 20742
Email: nau@cs.umd.edu

Abstract

In previous work, Korf showed that by introducing one problem-reduction step into a state-
space search, one could reduce the number of node generations from O((26)%¢) to O(b¢), where
b and d are the branching factor and search depth. My results are as follows:

1. The O(b%) bound is tight, but the O((26)*%) bound is not: the A* procedure does only
©(b%9) node generations. Thus, the improvement produced by one problem-reduction step
is not always as great as the previous results might suggest.

2. In an AND/OR tree where multiple problem-reduction steps are possible, problem reduc-
tion produces a much more dramatic improvement: both the time complexity and the
space complexity decrease from doubly exponential to singly exponential.

3. For iterative-deepening procedures like IDA* that only remember the nodes on the current
path, the space complexity decreases but the time complexity increases—by exponential
amounts in Korf’s model, and doubly exponential amounts in the AND/OR-tree model.
This 1s true even for IDAO*, a new procedure that improves IDA*’s performance by
combining it with problem reduction.

These results lead to the following conclusions:
» In general, problem reduction can save huge amounts of both time and space.

o Whether to use a procedure that remembers every node it has visited, or instead use a
limited-memory iterative-deepening procedure, depends on whether the primary objective
is to save space or save time,

*This work was supported in part by NSF Grants IRI-8307890 and NSFD CDR-88003012.

1 Introduction

In his paper, “Planning as Search” [3], Korf showed that by introducing one problem-reduction step

into a state-space search, one could reduce the number of node generations (which is polynomially

related to the time complexity) from O((26)%¢) to O(b%), where b was the branching factor of the

search space, and d was the search depth. Yang, Nau, and Hendler [12] later extended Korf’s

result by showing that even if the subproblems produced by the problem-reduction step were not

completely independent, in some cases one could still achieve the same big-O reductions.
Although interesting, these results were not completely conclusive, for two reasons:

1. It was not clear how tight the big-O bounds might be. For example, even if state-space search
and problem-reduction search both did ©(b%) node generations, this would still be consistent

with the big-O bounds.

2. Since these bounds were based on a model in which only one problem-reduction step was
possible, this left it unclear how much savings one might achieve by doing multiple levels of
problem reduction.

This paper presents an analysis of state-space search vs. probicm reduction that addresses both of
these issues. My results are as follows.

State-Space Search vs. Problem Reduction. If only one problem-reduction step is allowed,
then the O(b%) bound for problem-reduction search is tight, but the O((26)?¢) bound for
state-space search is not: the actual figure depends on which state-space search procedure we
use. For the IDA* procedure (2], the bound is nearly tight—IDA* does somewhere between
Q((26)%¢/4/d) and O((26)%%) node generations. But the A* procedure [10] does much better:
only ©(b%%) node generations. Thus, even though problem-reduction search still produces an
exponential-time improvement over state-space search, the improvement is not always as big
as the previous results had suggested.

Rather than allowing only one problem-reduction step, suppose we search a binary AND/OR
tree in which there are d problem-reduction steps: one before each state-space step. In this
case, problem reduction produces a much more impressive improvement. Rather than merely
reducing the time complexity from one exponential function to a smaller one (as happens
above), problem reduction reduces both the time complexity and the space complexity from
doubly exponential to singly exponential.

Limited-Memory Search vs. Full-Memory Search. It is well known that by using a limited-
memory iterative-deepening search procedure such as IDA*, one can make a large reduction in
the number of nodes stored (which is polynomially related to the space complexity). Further-
more, by combining limited-memory iterative deepening with problem reduction (in a new
search procedure called IDAO*), we can achieve the same space complexity as IDA*, while
reducing IDA*’s time complexity by an exponential amount (in Korf’s model) or a doubly
exponential amount (in the AND/OR-tree model).

However, there is a tradeoff: the limited-memory procedures (IDA* and IDAO*) take much
more time than the corresponding full-memory procedures (A* and AO¥*, respectively). In
Korf’s model the time increase is exponential, and in the AND/OR tree model it is doubly ex-
ponential. The reason for thisis that the limited-memory procedures do many re-explorations
of paths or subtrees that the full-memory procedures explore only once.

This paper is organized as follows. Section 2 defines the basic terms, briefly discusses A* and
AO* and defines IDA* and IDAO*. Section 3 analyzes all four procedures in the case where only
one level of problem reduction is possible. Section 4 analyzes them using the AND/OR-tree model,
in which d levels of problem reduction are possible. Section 5 compares all of these results, and
Section 6 contains concluding remarks.

2 Preliminaries

2.1 Basic Definitions

Let § be any state space, and let s be its start node. If u is an arbitrary node of 5, then the depth
of u (denoted by depth(u)) is the length of the shortest path from s to u. The height of S (denoted
by height(5)) is the depth of S’s deepest node. A complete path of 5 is a path from s to a terminal
node of S. A solution path from a node u is a path from u to a goal node. A complete solution
path is a path from s to a goal node. nodes(.S), leaves(), and paths(S), respectively, denote the
number of nodes, leaf nodes, and complete paths in S.

Suppose we search S using a search procedure P. Then gen(P, 5) denotes the total number of
node generations done by P, and storage(P,) denotes the largest number of nodes 7 will need to
store at any one time.

If §; and S, are any two state spaces, then their compositionis the state space B = 51057 defined
as follows. The node set of R is {(vy,v9) : v1, vz are nodes of 57, 99, respectively}. In particular,
R’s start node is r = (s1,s2), where s; and s; are Si’s and Sp’s start nodes, respectively. If
v = (v1,v;) is a node of R, then v’s children are all nodes (wy,vy) such that wy is a child of v in
Sy, plus all nodes (vy, wy) such that ws is a child of vy in So. Alternatively, 5 e S, can be thought
of as an AND/OR graph ao(R), consisting of a start node r, the state spaces 91 and 5%, and an
AND-branch from r to their start nodes sq, s2.

Example. Let §; and S be complete binary trees of height 2, as shown in Figs. 1(a) and 1(b);
and let R = Sy S5,. Then R is the graph shown in Fig. 1(c¢), and ao(R) is the AND/OR tree shown
in Fig. 1(d).

2.2 A* and IDA*

The best-known heuristic state-space search procedure is A* [10], which is guided by a heuristic
function A{u) that gives a lower bound on the cost of the least-cost path from the node u to a goal
node. A* is basically a best-first branch-and-bound procedure [8, 4], so any solution path returned
by it is guaranteed to be a least-cost solution path. Since A* is well known, I will not describe it
further here.

Suppose the state space S is a complete b-ary tree of height d, such that every goal node has
depth d, and every arc has cost 1. Suppose we search S using A* with the heuristic function h=0.
Then A* will generate each node of S once, so

gen(A*, §) = O(b?). (1)
Since A* stores every node it generates,

storage(A*, §) = O(b%). (2)

aq az

bl (51 b2 Co

d; €1 fi g1 dy) fa g2

(a): the state space 5. (b): the state space S5.

a1a2

C1a2

a192) |fraz]glaz' c16

diby ||b1da||bres||e1bs||dical|bifa||biga i erca || frba||c1ds 16182 gibal| ficallcr fallcig2 || g1c2

dida||dieai|erdy||erer|idy falidigziler fa|| €192 || fid2|| frez ‘91d2 gie2i|fifel| frg2| |91 f2]| 9192

(c): the state space R = 51 o 9.

(d): the AND/OR graph ao(R).

Figure 1: Two binary trees, and the state space and AND/OR tree produced by composing them.

procedure IDA*
global k, k'
k := h(s), where s is the start node
k= o0
loop
P := the path containing only s
depth-first(P)
=k
repeat
end IDA*

procedure depth-first(P)
¢ := the sum of P’s arc costs and the h-value of P’s last node
if ¢ >k, then £/ := min(¥, ¢)
else if P’s last node is a goal node, then
exit from IDA*, returning P
else for every child v of P’s last node, do
P’ := the path formed by appending v to P
depth-first(P")
end
end depth-first

Figure 2: Pseudocode for IDA*.

Korf [2] developed the IDA* procedure in order to improve on A*’s space complexity. Basically,
IDA* performs a depth-first search, backtracking whenever it finds a path whose costs exceeds a
cutoff value k. It repeats this search for larger and larger values of &, until it finds a solution. Fig. 2
shows a pseudocode version of IDA*.

There are worst-cases in which IDA*’s time complexity is much worse than A*’s (6, 5]. However,
there are cases in which it has the same time complexity as A*, and much better space complexity
than A*. In particular, it is easy to show [2] that if we use IDA* with A = 0 to search the state
space S defined above, then

gen(IDA%,S) = O(s); 3)
storage(IDA*,9) = 0(d). (4)

2.3 AO¥* and IDAO*

AO* [10] (and other similar procedures [9, 7)) are analogues of A* that do problem-reduction search
on an AND/OR graph G. In an AND/OR graph, the concept of a path from a node u is replaced
by that of an AND-tree rooted at u, which is formed by starting at u, and recursively following
one edge at each OR-branch and all edges at each AND-branch. A solution tree T rooted at u is
an AND-tree rooted at u such that every leaf node of T' is a goal node. A solution for G is any
solution tree rooted at (’s start node.

procedure IDAO*
global k, k'
k := h{s), where s is the start node
k= o0
loop
T := the AND-tree containing only s
depth-first(7")
ki=Fk
end
end IDAO*

procedure depth-first(7T")
¢ := the sum of T’s arc costs and the A-values of T"s tip nodes
if ¢ >k, then &' := min(k’, ¢)
else if every tip node of T is a goal node, then
exit from IDAO*, returning T
else do
let u be T’s leftmost non-goal tip node
if the branch B from u is an AND-branch, then
T’ := the AND-tree formed by attaching B to T'
depth-first(T")
else for every child v of u, do
T’ := the AND-tree formed by attaching (u,v) to T'
depth-first(T")
end
end depth-first

Figure 3: Pseudocode for IDAO*.

Like A*, AO* is guided by a heuristic function h(u); in this case, h(u) gives a lower bound on
the cost of the least-cost solution tree rooted at u. Like A*, AO* is basically a best-first branch-
and-bound procedure [8], and thus the first time that it finds a solution for G, this guaranteed to
be the least-cost solution. Since AO* is well known, I will not describe it further in this paper.

Suppose the AND/OR graph G is a complete b-ary tree of height d, such that every goal node
has depth d, and every arc has cost 1. Suppose we search G using AO* with the heuristic function
h = 0. Then AO* will generate every node of G, so

gen(AO*, G) = O(b%). (5)
Since AO* stores every node it visits,
storage(AO*,G) = @(bd). (6)

AO*’s space complexity can be improved by defining a new search procedure that is analogous
to IDA* but also does problem reduction. This procedure, which I call IDAO* (Iterative Deepening

ajaz

m// ciay

€102 fraz g1a2

e1by *6162 flbil [f162 g1b2 9162}
N

dida||dieg di f digs||eidailerer 1€1f2 e1g21|f1da fies (flfz f192 91d2 91€2|91f2 g132

(a): the case where dy, ey, f1, g1 are all goals.

|d1azt €1a2 fiaz {;ql_ai

dl bz d]_ Co

)dld;)dlejndlfz d192

(b): the case where d; is a goal, but ey, f1, g1 are not.

Figure 4: Two different possibilities for serialize(R), where R is as shown in Fig. 1.

AO*), is defined in Fig. 3. Like IDA*, IDAO* performs a depth-first search, backtracking whenever
the accumulated cost exceeds a cutoff value k; and it repeats this search for larger and larger values
of k until it finds a solution. However, the entities that it generates during this search are not paths
as in IDA*, but instead are AND-trees.

Basically, what IDAO* does is to serialize the subgoals in each AND-tree, and then do an IDA*-
style search of them. For example, suppose IDAO* is examining an AND-tree that contains an
AND-branch from some node u to two other nodes u; and ug. If u; is not a goal node, then IDAO*
will not even try to solve ug until it has found a solution tree for uy. Thus, IDAO* generates nodes
of the AND/OR graph G in the same order that IDA* generates nodes of the state-space graph
serialize(ss(G)), which can be described as follows.

Since each AND-branch of G corresponds to a composition operation, this means that G cor-
responds to the state-space graph ss(G) produced by doing one composition operation for each
AND-branch of G. For example, if G is the AND/OR graph shown in Fig. 1(d), then ss(G) is the
state space shown in Fig. 1(c). Thus, some or all of the nodes of ss(G) may be composed of “subn-
odes” from other, smaller state spaces (for example, the node (ay, a;) of Fig. 1(c) has subnodes a;
and ag). From the definition of the composition operation, it follows that if u is such a composite

node, then u’s children in ss(G) are produced by replacing subnodes of u with the children of those
subnodes. Of these children of u, the only ones that correspond to serializing G’s subgoals (and
hence the only ones that we include in serialize(ss(G))) are the ones we get by replacing the first
subnode that is not a goal node. For example, in Fig. 1(c), the first nongoal subnode of (a1, az) is
ay, so the tree serialize(R) (see Fig 4) includes (b1, as) and (c1,a2) but not (aq,bs) and {(ay, cz).

IDAO* generates nodes of G in the same order that IDA* generates nodes of serialize(ss(G)),
$0

gen(IDAO*,G) = O(gen(IDA*, serialize(ss(G)))); (7)
storage(IDAO*, G) = O(storage(IDA*,serialize(ss(G)))). (8)

The above equations will be useful for analyzing IDAO*’s performance.

3 State-Space Search vs. One-Step Problem Reduction

Let the state space .S be a complete b-ary tree of height d such that every arc has cost 1 and goal
node has depth d.! Then every complete solution path has length d. Let S; and S, be two disjoint
copies of 9, and let R = 91 ¢, (for example, see Fig. 1). Then R is a state space in which one level
of problem reduction is possible. R has the following properties, which will be useful in analyzing
how search procedures behave on it.

height(R) = height(S;) + height(S;) = 2d; (9)

leaves(R) = leaves(S))leaves(S;) = (b9)? = b2, (10)
bd+1 - 1 ?)

nodes(R) = nodes(S7)nodes(S;) = < P— > = 0%, (11)

Every complete path P of R is produced by interleaving a complete path P; of 57 and a complete
path P of 5. Since Py and P, each have length d, the number of possible ways to interleave them
is (de). Using Stirling’s approximation [1], it is easy to show that this is @(2%¢/v/d). Thus,

paths(R) = leaves(R) <2dd> = bz‘i@(—f—;—;) = @<(2[)\/§d> : (12)

Now, suppose we do a heuristic search of R, using the heuristic function ~ = 0. Below, we
consider four cases:

Case 1. Suppose we do a state-space search, using a procedure like A* that keeps track of every
node that it generates. A* will expand each non-leaf node of R once, so

gen(A*, R) = O(nodes(R)) = 0(b%). (13)
Since A* stores every node that it generates,

storage(A*, R) = O(nodes(R)) = 0(b*). (14)

'Thus every goal node is a leaf node, and this simplifies the derivation of some of the complexity bounds in
Egs. 13-23. However, it is straightforward to show that those complexity bounds are still correct if we generalize the
model to allow height(S) > d, where d is the depth of the shallowest goal node.

Case 2. Suppose we do a state-space search, using a limited-memory iterative-deepening proce-
dure a procedure like IDA* that only keeps track of the nodes on the path it is currently exploring.
During each iteration of its loop, IDA* will generate each node u once for each path that it finds
to u, so

en(IDA*, R) = Q(paths(R)) = Q (20) (15)
, = S = .

g P Nz

Every node of R has 2b children, and IDA* behaves as if R were a tree, so IDA* does no more node
generations than it would do on a complete 2b-ary tree of depth 2d. Thus from Eq. 3,

gen(IDA*, R) = O((2b)). (16)

Like a depth-first search, IDA* stores only the nodes on the current path. Thus since every complete
path of R has length 24,
storage(IDA*, R) = O(d). (17)

Case 3. Suppose we do a problem-reduction search, using a procedure like AO* that keeps track
of every node that it generates. AO* will generate each node of ao(R) once, so

gen(AO* R) = O(nodes(S:) + nodes(Sy)) = O(6%). (18)
Since AO* stores every node that it generates,

storage(AO*, R) = O(nodes(S;) + nodes(S)) = O(b%). (19)

Case 4. Suppose we do a problem-reduction search, using a limited-memory iterative-deepening
procedure a procedure like IDAO* that only keeps track of the nodes on the AND-tree that it is
currently exploring. As discussed in Section 2.3, IDAO* will generate nodes in ao(R) in the same
order that IDA* would generate nodes in the state-space graph serialize(R). The worst case is
if every leaf node of 57 is a goal node. In this case, serialize(R) is a b-ary tree of height 2d, as
illustrated in Fig. 4(a). Thus from Egs. 3-4 and 7-8,

I}

gen(IDAO*, R) O(gen(IDA* serialize(R))) = O(b*); (20)
storage(IDAO*, R) = O(storage(IDA* serialize(R))) = O(d). (21)

The best case is if only one leaf node of S is a goal node. In this case, serialize(R) is the concate-
nation of two complete b-ary trees of height d, as illustrated in Fig. 4(b). If we explore this tree
using IDA*, there will be 2d complete iterations of IDA*’s loop, plus one more iteration during
which IDA* finds an answer and exits. During the first d iterations, IDA* only generates nodes
in the top half of the tree. During each subsequent iteration, IDA* will generate all of the O(b%)
nodes in the top half of the tree, plus one or more nodes in the bottom half of the tree. Thus,

il

Q(db™); (22)
Q(d). (23)

gen(IDAO*, serialize(R))
storage(IDAO™*, R)

(

515
l 31 xts? siz? shy? yls?
- —
l x ' y olp2 22 | [giz? Yy
(a): S1 (b): By
S2
1.2 1.2
sts? sis?
11.2 121 1,21 11,2 | [12,2 1,22 1,22 122
glls? || sz sy Y 31} 21242 [slx sly J Y 311

iy yilz y11y21 .’L’12.’l,‘22

'a:”y” ymz”J y12 22!

(c): 52

Figure 5: The state spaces Sy, Ri, and S2. The state space R, (not shown here) is a graph of
height 6, with 64 leaf nodes.

4 State-Space Search vs. Multi-Step Problem Reduction

The previous section discussed what happens when only one problem-reduction step is possible.
This section discusses what happens if it is possible to do multiple problem-reduction steps—one
between each application of a state-space search operator. For d = 1,2,..., let the state spaces fi4
and Sy be defined recursively as follows (see Fig. 5):

¢ 57 is a binary tree of height 1 in which every arc has cost 1.
o Let S}, 5% be two disjoint copies of Sg. Then Ry = S o 53.

o Let R}, R% be two disjoint copies of Ry, and r}, 72 be their start nodes. Then Sq41 contains all
nodes and edges of R} and R%, together with a start note sg41 and two new edges (Sa41,73)
and (s441,72), each of cost 1.

Then for each d, ao(9y) and ao(Rq) are AND/OR trees of height 2d — 1 and 2d, respectively, as
illustrated in Fig. 6. In addition, Sy and Ry have the following properties, which will be useful in
analyzing how search procedures behave on them.

height(S1) = 1; (24)
height(Rgs) = 2(height(54)); (25)
height(S441) = height(Rg)) +1 = 2height(Sq-1) +1; (26)

™

52

31 51
z M mli Y1 Eﬂ 21 [ett]] 2 'yn 12| [y12 lmzz 22
(a): ao(S1) (b): ao(Ry) (c): ao(S2)

T2
s3 3
ril ri? rit 22
A
1 5211 5112 5212 s121 5221 122 222
i1l)ynl xzn‘ y21l 112 yl12 15212 y212 2l2Y |y12l) | o221 1y221 2127|122 | 222 y?2

(d): ao(Rz2)

Figure 6: The AND/OR trees ao(Sy), ao(R1), ao(S2), and ao(R2).

leaves(5y)
leaves(R4)
leaves(Syy1)

nodes(S1)
nodes(Ry)
nodes(S441)

2;
(1eaves(54))2;
2leaves(Ry);

3
(nodes(S); -
2(nodes(Rq)) +1 = 2(nodes(Ry))* + 1.

Solving these recurrence relationships, we get

height(54) = 2¢—1;
height(Ry) = 2471 —2;

leaves(.S4)
leaves(Ry)

I
[\ [oV]
nN n
a o
¥ oy
.
[
|
@
TN
®©
— 1)
N 1Y
S’
R

nodes(Sy) =~ @(2.482d); (37)

nodes(Ry) = @(6.172d). (38)
For every 7, every complete path of Sy or Ry has a length of height(54) or height(Ry), respectively.
Every complete path of Ry is produced by interleaving a complete path P} of S} and a complete
path P of 52. Since the length of each of these paths is height(Sy), the number of possible ways
to interleave them is

(2height(5d)>

22height(5d) 22‘1+1~2

B (\/height(Sd)> N ®<\/2d -1

height(S4)) = (22" /), (39)

Thus,
paths(Ry) = leaves(Rd)®(22d+l‘d/2)
= (2" e U7
= Q2 (40)

Now, suppose we do a heuristic search of Ry, using the heuristic function A = 0. Below, we
consider four cases:

Case 1. Suppose we do a state-space search, using a procedure like A* that keeps track of every
node that it generates. A* will expand each non-leaf node of R4 once, so the total number of node
generations will be

gen(A*, By) = O(nodes(Ry)) ~ 0(6.17%%). (41)
Since A* stores every node that it generates,
storage(A*, Ry) = O(nodes(Ry)) ~ @(6.172d). (42)

Case 2. Suppose we do a state-space search, using a limited-memory iterative-deepening proce-
dure a procedure like IDA* that only keeps track of the nodes on the path it is currently exploring.
During each iteration of its loop, IDA* will generate each node u once for each path that it finds
to u, so the number of generations will be at least as much as the number of complete paths in 4.
Thus,

gen(IDA*, Ry) = Q(paths(Ry)) = Q227 ~4/2), (43)
For 0 < k < height(R,), IDA* will find paths to the nodes of depth height(R4) — k during at most
k + 2 of its loop iterations; and for each %, the total number of paths to nodes at this depth is no
greater than paths(Ry). Therefore,

24419
gen(IDA*, Ry) = O(> (k+ 2)paths(Rd)) = 0(2%paths(Ry)) = O (227" +34/2), (44)
k=0
Thus,
gen(IDA*, R) ~ (22" = 0(162"). (45)
Furthermore, since the length of every complete path of R is height(Rg) = 2¢+! — 2,
storage(IDA*, Ry) = ©(2%F! —2) = 0(2%). (46)

11

1.2
$181
51
N s
z
Y rlg? z1y2 y1x2 y1y2
(a): serialize(S1) (b): serialize(Rq)
S92
1.2 1.2
8151 5181
11 .2 11,2 122 12,2
zttss ytlsy ztéss yresy
1121 |plly21) 1121 | 11,21) |12y 0g 12,220 f12,02) | 12,22

(c): serialize(S;)

Figure 7: The state spaces serialize(.S1), serialize(Ry), and serialize(55), in the case where z and y
are both goals. In this case, serialize(R,) (not shown here) is a complete binary tree of height 6.

52
sts? | shs? ’ sts?
51 o5 yls? 12 Y12 ‘30123% Y1252
z Y zlz? | | zly? 1121 11420 4 Puxzz 12422
(a): serialize(.Sy) (b): serialize(Ry) (c): serialize(S2)

Figure 8: The state spaces serialize(S7), serialize(R;), and serialize(S2), in the case where z is a
goal but y is not. In this case, serialize(Rs) (not shown here) is a binary tree of height 6 whose
structure is similar to what we would get by taking serialize(5;) and attaching copies of itself to
the four bottom-level leaves.

12

Case 3. Suppose we do a problem-reduction search, using a procedure like AO* that keeps track
of every node that it generates. AO* will generate each node of ao(R4) once, so

gen(AO*, R;) = nodes(ao(Ry)) = 0(229). (47)
Since AO* stores every node that it generates,

storage(AO*, Ry) = nodes(ao(Ry)) = ©(2%%). (48)

Case 4. Suppose we do a problem-reduction search, using a limited-memory iterative-deepening
procedure a procedure like IDAO* that only keeps track of the nodes on the AND-tree that it is
currently exploring. As discussed in Section 2.3, IDAO* will generate nodes in ao(Ry) in the same
order that IDA* would do on the state space serialize(R4). The worst case occurs when every leaf
node of 5 is a goal node. In this case, serialize(Ry) is a complete binary tree of height 20+ 9.
as illustrated in Fig. 7. Thus from Egs. 3-4 and 7-8,

gen(IDAO*, Rg) = O(gen(IDA*, serialize(Ry)))
= 0(2*""'%) = o@4*, (49)
storage(IDAO*, R) = O(storage(IDA*, serialize(Ry4)))
= 02t -2) = 0(2%). (50)

The best case occurs when only one of 5’s leaf nodes is a goal node. In this case, it is straightforward
to prove by induction that serialize(R,) is a tree of depth 24+ — 2 with at least \,/§k nodes at depth
k for each k (for example, see Fig. 8), for an effective branching factor of > /2. Thus from Egs. 3-8,
24+ 9 d
gen(IDAO*, Ry) = Q(V2) = (2%, (51)
storage(IDAO*, R) = (241 -2) = Q(29). (52)

5 Comparisons

Table 1 summarizes the results of Sections 3 and 4. The results in Section 3 assume that the
branching factor is b, and the results in Section 4 assume that the branching factor is 2; so to make
these results comparable, Table 1 uses a branching factor b = 2 throughout.

First, consider the case where only one problem-reduction step is possible. Here, the number of
node generations is exponential for all four procedures (with AO* better than A* and IDAO*, and
A* and IDAO* better than IDA*). But for IDAO* and IDA*, the number of nodes stored is only
linear, whereas for A* and AO*, it is exponential (with AO* better than A*). Thus, AO* has the
best time complexity, and IDAO* and IDA* have the best space complexity.

Second, consider the case where multiple problem-reduction steps are possible. For AO*, the
number of node generations is singly exponential, but for the other three procedures it is doubly
exponential (with IDAO* better than A* better than IDA*). For A*, the number of nodes stored
is doubly exponential, and for the other three procedures it is only singly exponential (with IDAO*
and IDA* better than AO*). Thus again, AO* has the best time complexity, and IDAO* and IDA*
have the best space complexity.

13

Table 1: Time and space complexity of problem solving, depending on how many problem-reduction
steps are available, whether the search procedure does problem reduction, and whether it remembers
which nodes it has visited.

One problem-reduc- d problem-reduction

tion step is available steps are available
node | nodes node nodes
Type of search procedure generations | stored generations stored
limited-memory state-space (IDA*) ~ @(16d) 0(d) ~ O(1 62d) 0(2%)
full-memory state-space (A*) (4% | 6(4% ~ 0(6.17%%) | ~ 6(6. 172d)
limited-memory prob. reduction (IDAO*) | Q(d2%),0(4%) | ©(d) Q(sz) (42d) 0(24)
full-memory prob. reduction (AO*) 0(24) | 0(2%) 0(4%) 0(4%)

6 Conclusions

In this paper I have compared three approaches for trial-and-error problem solving: state-space
search, problem reduction, and limited-memory iterative deepening. I have tightened Korf’s results
3] (and thus also the results of Yang, Nau, and Hendler [12]) about what happens if one level of
problem reduction is possible. However, the more interesting results are the ones telling what
happens if multiple levels of problem reduction are possible, as occurs in an ordinary AND/OR
tree—so these are the results I discuss below.

In the AND/OR-tree model, problem reduction reduces both the number of node generations
and the number of stored nodes from approximately ©(6.172%) down to ©(4¢). This means that in
problems for which problem reduction is possible, it can produce truly dramatic savings.

In contrast, the results for limited-memory iterative deepening are mixed. Without problem
reduction, the number of stored nodes decreases from approximately @(6‘172‘1) down to ©(2%);
and with problem reduction, it decreases from @(4¢) to ©(2%). But in both cases, this reduction
in memory comes at the expense of an increase in time: without problem reduction, the number
of node generations increases from approximately G)(G.l?'2) to approximately @(162); and with
problem reduction, it increases from ©(4¢) to @(42d).2 Thus, whether we should use a procedure
that remembers every node it has visited, or one that just remembers the nodes on the current
path or solution tree, depends on which is more important: saving memory or saving time.

Note, however, that these results say nothing about the use of iterative deepening in game-tree
searching. On game trees, the nature and purpose of iterative deepening is very different: the idea
is not to try to save memory, but instead to find the largest value of k such that we can search to
depth % in the amount of time available (for a more detailed description, see for example [11]). On
a binary game tree, in the worst case an alpha-beta search to depth d takes ©(d) space and 0(2%)
time; and so does an iterative-deepening alpha-beta search.

2Furthermore, if we had used an AND/OR-graph model rather than an AND/OR-tree model, there would be even
more paths to each node, so limited-memory iterative deepening might do even more node generations.

14

Acknowledgement

I would like to acknowledge the students in my graduate-level Artificial Intelligence course (partic-
ularly Tamara Gibson), whose questions about one of my homework assignments prompted me to
do the work reported in this paper.

References

(1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press/McGraw Hill, 1990.

[2] Richard Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27:97-109, 1985.

[3] Richard Korf. Planning as search: A quantitative approach. Artificial Intelligence, 33(1):65-88,
September 1987.

(4] V.Kumar, D.S. Nau, and L. Kanal. A general branch-and-bound formulation for and/or graph
and game tree search. In L. Kanal and V. Kumar, editors, Search in Artificial Intelligence,
pages 91-130. Springer-Verlag, New York, 1988.

[5] A. Mahanti, D. S. Nau, S. Ghosh, A. K. Pal, and L. N. Kanal. Performance of limited-memory
heuristic search algorithms for networks: A theoretical and empirical analysis. 1991. Submitted
for publication.

[6] A. Mahanti, D. S. Nau, S. Ghosh, A. K. Pal, and L. N. Kanal. Performance of IDA* on trees
and graphs. In Proc. AAAI-92, pages 539-544, July 1992.

[7] A. Martelli and U. Montanari. Additive and/or graphs. In Proc. Third Internat. Joint Conf.
on Artif. Intell., pages 1~-11, 1973.

(8] D.S. Nau, V. Kumar, and L. N. Kanal. General branch and bound, and its relation to A*
and AO*. Artificial Intelligence, 23:29-58, 1984.

[9] N. Nilsson. Searching problem solving and game playing trees for minimum cost solutions. In
A. J. H. Morrel, editor, Information Processing-68, volume 2, pages 1556-1562. 1968.

[10] Nils Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

[11] T. R. Truscott. Techniques used in minimax game-playing programs. Master’s thesis, Duke

University, Durham, NC, 1981.

(12} Q. Yang, D. S. Nau, and J. Hendler. Merging separately generated plans with restricted
interactions. Computational Intelligence, 8(2):648-676, February 1992.

15

