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ABSTRACT

It is observed that an algorithm proposed in the 1980s for the solution of nonconvex constrained optimization
problems is in fact a primal-dual logarithmic barrier interior-point method closely related to methods under current
investigation in the research community. Its main distinguishing features are judicious selection and update of the
multiple barrier parameters (one per constraint), use of the objective function as merit function, and careful bending
of the search direction. As a pay-o�, global convergence and fast local convergence ensue. The purpose of the present
note is to describe the algorithm in the interior-point framework and language and to provide a preliminary numerical
evaluation. The latter shows that the method compares well with algorithms recently proposed by other research
groups.

1. Introduction

Consider the problem

min
x2Rn

f(x) subject to d (x) � 0 (P1)

where f : Rn ! R and d : Rn ! Rp are smooth and the relation d(x) � 0 is understood
componentwise.

Over a decade ago, a feasible-iterate algorithm for solving (P1) was proposed based on the
following idea. First, given strictly feasible estimates x̂ of a solution and ẑ of the corresponding
Karush-Kuhn-Tucker (KKT) multiplier vector, compute the Newton (or a quasi-Newton) direction
(�x;�z) for the solution of the equalities in the KKT �rst order necessary conditions of optimality.
Note that, if the Hessian (or Hessian estimate) is positive de�nite, the primal direction �x is a
direction of descent for f but that it may not allow a reasonably long step to be taken inside
the feasible set. Second, motivated by this observation, solve again the same system of equations,
but with the right-hand side perturbed so as to tilt the primal direction away from the constraint
boundaries into the feasible set. The perturbation should be small enough that the tilted primal
direction remains a descent direction for f and its size should decrease as a solution is approached,
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i.e., as k�xk decreases, so that a solution point located on the constraint boundaries can be reached.
Third, bend the primal direction by means of a second order correction, and perform a line search,
with f as a merit function, on the resulting arc. Bending is necessary if a Maratos-like e�ect is
to be avoided, i.e., if a full step of one is to be allowed by the line search criterion close to the
solution. These ideas were put forth in [1]. It was shown there that, under standard assumptions,
global convergence as well as local superlinear convergence (in the case of approximate Hessian)
can be achieved if the amounts of tilting and bending are appropriately chosen. It turns out that
the \correct" amounts depend on �x, �z as well as z. Note that the central idea in the algorithm
of [1] originated in earlier work by Herskovits and others [2, 3, 4]; see [5] for a detailed historical
account. Ideas were also borrowed from [6] and [7].

The main purpose of the present note is to present the algorithm of [1] in the framework and
language of recent interior-point methods. Indeed, it turns out that the tilted primal direction
and the dual direction described above are also the primal and dual directions produced by a
logarithmic barrier method very similar to methods recently discussed in the primal-dual interior-
point literature (e.g., [8, 9, 10, 11, 12, 13, 14]). In particular, the algorithm of [1] bears striking
similarities with that discussed by Gay, Overton and Wright [14]. The main di�erences are as
follows:

� multiple barrier parameters �j are used, one per constraint;

� the barrier parameters are updated based on the \untilted" primal direction (obtained with
�j = 0 for all j) and are allowed to occasionally increase;

� f is used as the merit function and the search is along an arc obtained by bending the primal
direction to allow, close to the solution, satisfaction of the line search criterion with a full step
of one (Maratos e�ect avoidance);

� di�erent steplengths are used for the primal and each component of the dual.

The paper is organized as follows. In Section 2, the algorithm is presented in full detail, in
the language used in the recent interior-point literature; speci�cally, we borrow the notation used
in [14]. In Section 3, assumptions are listed and convergence results are stated, including a local
convergence result not found in [1]. In Section 4, preliminary numerical results are presented,
Finally, Section 5 contains some concluding remarks. Throughout, k � k denotes the Euclidean
norm.

2. Algorithm

In this section we describe the algorithm of [1] from an interior-point perspective. In connection
with problem (P1), consider the logarithmic barrier function

�(x; �) = f(x)�

pX
j=1

�j log dj(x)
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where � = (�1; : : : ; �p)
T 2 Rp and the �js are positive. Note that the classical logarithmic barrier

function is recovered when all �js are equal. While the algorithm we are about to describe was
�rst introduced from a di�erent perspective, in the interior-point context, the selection of di�erent
barrier parameters for di�erent constraints can be thought of as allowing higher barrier values near
the boundary of constraints closer to being active. The barrier gradient is given by

r�(x; �) = g(x)�B(x)TD(x)�1�; (2.1)

where, like in [14], g denotes the gradient of f , B the Jacobian of d and D(x) the diagonal matrix
diag(dj(x)).

Problem (P1) can be tackled via a sequence of unconstrained minimizations of �(x; �) with
� ! 0. Thus, in view of (2.1), z = D(x)�1� can be viewed as an approximation to the KKT
multiplier vector associated with a solution of (P1) and the right-hand side of (2.1) as the value at
(x; z) of the gradient (w.r.t. x) of the Lagrangian

L(x; z) = f(x)� zT d(x):

Accordingly, and in the spirit of primal-dual interior point methods, we consider using a (quasi-)Newton
iteration for the solution of the system of equations in (x; z)

g(x)�B(x)T z = 0; (2.2)

D(x)z = �; (2.3)

i.e., "
�W B(x)T

ZB(x) D(x)

# "
�x

�z

#
=

 
g(x)�B(x)T z

��D(x)z

!
(2.4)

where Z = diag(zj) and where W is equal to, or approximates, the Hessian (w.r.t. x) of the
Lagrangian L(x; z). Next, as in [1], we assume that W is symmetric and positive de�nite. When
� = 0, a primal-dual feasible solution to (2.2)-(2.3) is a KKT point for (P1). Moreover, it turns
out that, given (x; z) primal-dual feasible, the primal direction �x0 obtained by setting � = 0
is a descent direction for f at x. In [1], such a property is sought for the search direction. On
the other hand, the components of � should be positive enough to prevent the primal steplength
from collapsing, but small enough that the fast local convergence properties associated with the
(quasi-)Newton iteration for (2.2)-(2.3) with � = 0 be preserved. This is achieved in [1] by selecting

�j = �zjk�x
0k� ; (2.5)

with � 2 (0; 1] as large as possible subject to the constraint

rf(x)T�x � � rf(x)T�x0;
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where � > 2 and � 2 (0; 1) are prespeci�ed.1

In [1] the line search criterion includes a decrease of f and strict feasibility. It involves a second
order correction �~x to allow a full (quasi-)Newton step to be taken near the solution. With index
sets I and J de�ned by

I = fj : dj(x) � zj +�zjg;

J = fj : zj +�zj � �dj(x)g;

�~x is the solution of the linear least squares problem

min
1

2
�~xTW�~x s.t. dj (x+�x) +rdj (x)

T �~x =  ; 8j 2 I (2.6)

where

 = max

�
k�xk� ;max

j2I

���� �zj
zj +�zj

����
�

k�xk2
�
; (2.7)

where � 2 (2; 3) and � 2 (0; 1) are prespeci�ed. If J 6= ; or k�~xk > k�xk, �~x is set to 0. Note
that I estimates the active index set and that J should be empty near the solution when strict
complementarity holds. An (Armijo-type) arc search is then performed as follows: given � 2 (0; 1),
compute the �rst number � in the sequence f1; �; �2; : : : g such that

f
�
x+ ��x+ �2�~x

�
� f (x) + ��rf(x)T�x (2.8)

dj
�
x+ ��x+ �2�~x

�
> 0; 8j (2.9)

dj
�
x+ ��x+ �2�~x

�
� dj(x); j 2 J (2.10)

where � 2 (0; 1=2) is prespeci�ed and where the third inequality is introduced to prevent convergence
to points with negative multipliers. The next primal iterate is then set to

x+ = x+ ��x+ �2�~x:

Finally, the dual variable z is reinitialized whenever J 6= ;; if J = ; the new value z+j of zj is
set to

z+j = minfzmax;maxfzj +�zj ; k�xkg;

where zmax is a prespeci�ed (large) number. Thus z+j is allowed to be close to 0 only if k�xk is
small, indicating proximity to a solution.

It is observed in [1, Section 5] that the total work per iteration (in addition to function evalua-
tions) is essentially one Cholesky decomposition of size p and one Cholesky decomposition of size p̂,
the number of active constraints at the solution.2

1Note that �x depends on � a�nely.
2There are two misprints in [1, Section 5]: in equation (5.3) (statement of Proposition 5.1) as well as in the last displayed

equation in the proof of Proposition 5.1 (expression for �0
k
), MkB

�1

k
should be B�1

k
Mk.
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3. Convergence

Let X = fx : d(x) � 0g; for x 2 X, let I(x) = fj : dj(x) = 0g; and let x0 be a strictly
feasible initial guess, i.e., d(x0) > 0. In addition to existence of a strictly feasible x0, we assume
the following.

1. X \ fx : f(x) � f(x0)g is bounded.

2. For all x 2 X, the vectors rdj(x), j 2 I(x), are linearly independent.

3. The sequence fWkg of Hessian values/approximations is bounded and uniformly positive def-
inite.

4. The set of points x 2 X such that, for some z1; : : : ; zp 2 R,

rxL(x; z) = 0;

zjdj(x) = 0; j = 1; : : : ; p

(with no restriction on the signs of the zjs) is �nite.
3

Under these assumptions, all accumulation points of the primal sequence fxkg generated by the
algorithm are KKT points.

Suppose now that there is an accumulation point x� where the second order su�ciency conditions
with strict complementarity hold. Suppose further that

NT

k

�
Wk �r2

xxL (x�; ��)
�
Nk(�x)k




k(�x)kk

! 0 as k !1

where

Nk = I � B̂T
k

�
B̂kB̂

T
k

��1
B̂k

with

B̂k = [rdj(xk) s.t. j 2 I(x
�)]T 2 RjI(x�)j�n:

Also suppose zmax is larger than all KKT multipliers at x�. Then the sequence of primal vectors
converges two-step superlinearly to x�. In particular, the full (quasi-)Newton step is eventually
accepted by the line search criterion. Moreover, the sequence of barrier parameter vectors converges
to 0, the sequence of dual vectors converges to the associated KKT multipliers, J is eventually
empty, and I is eventually the index set of active constraints at x�.

3Such points are referred to in [1] as stationary points.
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Not shown in [1] is the fact that, if the sequence fWkg satis�es the stronger condition that

NT
k

�
Wk �r2

xxL (x�; ��)
�
Nk(�x)k




k(�x)kk

2

is bounded as k !1, then convergence is (at least) two-step quadratic.
Finally, stronger convergence results hold for a variation of the present algorithm, under weaker

assumptions, in the LP and convex QP cases (see [5]). In particular, global convergence to the
solution set X� takes place whenever X� is nonempty and bounded, X has a nonempty interior,
and for every x 2 X the gradients of the active constraints at x are linearly independent.

4. Numerical Examples

In [1], an initial guess for the dual variable provided by the user is employed both at the start and
whenever z is reinitialized because J 6= ; (see end of Section 2 above). The barrier parameter vector
� is then automatically initialized according to (2.5). Instead, when running our numerical tests,
we used an adaptation of a scheme used in [14] to the present case of a vector barrier parameter.
Given the current primal variable x, �rst obtain a least squares solution to (2.2)

zls = argmin kg(x) �B(x)T zk

and, based on (2.3), let

�ls = D(x)zls:

Next \clip" the barrier parameters,

�j = minf100;maxf1; j�lsj jgg

and select z to again satisfy (2.3), i.e.,

z = D(x)�1�:

Note however that (2.5) will not hold in general if both z and � are prescribed. This hurdle is cleared
by introducing a factor cj > 0 in the right-hand side of (2.5) and to reset cj to an appropriate value
every time z and � have been initialized or reinitialized. As a side point, following a recommendation
made in [1], in (2.5) we replace



�x0

� with min
�
:01


�x0

 ;

�x0

�� to improve the behavior of

the algorithm in the early iterations. Thus in the present implementation, (2.5) is replaced with

�j = �cjzj min
�
:01


�x0

 ;

�x0

�� (4.1)

where cj is kept constant between initializations/reinitializations of z and � and is reset to sat-
isfy (4.1) with � = 1 whenever z and � are initialized/reinitialized.
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Finally, we again followed [14] in our choice of a stopping criterion, i.e., the algorithm stops
when 






"
g(x) �B(x)T z

��D(x)z

#




 � tol (4.2)

and

max
i
�i � tol (4.3)

where tol > 0 is preselected.
The algorithm thus speci�ed was coded in MATLAB 5.0 and applied to a subset of the Hock

and Schittkowski test set [15] selected based on the identi�cation of problems with positive de�nite
Hessians and inequality constraints. The values for the parameters used in the algorithm are listed
in Table 1. Exact Hessian information was used throughout. The initial guess for the primal
variable was taken from [15], except for problem 65 in which the initial vector given in [15] is
not strictly feasible. Following [14], x0 = [0; 0; 0] was selected instead. The tests were run on a
Pentium-Pro 200MHz PC. Results are given in Table 2 where the �rst columns give the problem
number from [15], the second column the number of iterations, and the third column the �nal value
of the objective function. Our results compare well with those given in [14], [9], and [10].

Parameter Value

� .3

� .8

� .8

� 3

� 2.5

� .5

zmax 1e8

tol 1e-8

TABLE 1. Parameter Values

5. Concluding Remarks

An algorithm �rst proposed over a decade ago was described in the language of primal-dual
interior point methods. This algorithm can be viewed as involving a vector of barrier parameters.
It enjoys global convergence and a superlinear or quadratic local convergence rate. Promising
preliminary numerical results were given.
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Problem Name # of Iters Function Value

HS-12 6 -30.000

HS-35 7 0.1111

HS-43 9 -44.000

HS-65 10 0.9535

HS-76 9 -4.6818

HS-100 11 680.6301

HS-113 17 24.3062

TABLE 2. Results on Hock-Schittkowski Test Problems
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