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ABSTRACT

Interactive exploration of multidimensional data sets is challenging because: (1) it is difficult to
comprehend patterns in more than three dimensions, and (2) current systems often are a
patchwork of graphical and statistical methods leaving many researchers uncertain about how to
explore their data in an orderly manner. We offer a set of principles and a novel rank-by-feature
framework that could enable users to better understand distributions in one (1D) or two
dimensions (2D), and then discover relationships, clusters, gaps, outliers, and other features.
Users of our framework can view graphical presentations (histograms, boxplots, and
scatterplots), and then choose a feature detection criterion to rank 1D or 2D axis-parallel
projections. By combining information visualization techniques (overview, coordination, and
dynamic query) with summaries and statistical methods users can systematically examine the
most important 1D and 2D axis-parallel projections. We summarize our Graphics, Ranking, and
Interaction for Discovery (GRID) principles as: (1) 1D, 2D, then features (2) graphics, ranking,
summaries, then statistics. We implemented the rank-by-feature framework in the Hierarchical
Clustering Explorer, but the same data exploration principles could enable users to organize their
discovery process so as to produce more thorough analyses and extract deeper insights in any
multidimensional data application, such as spreadsheets, statistical packages, or information
visualization tools.

Keywords: rank-by-feature framework, information visualization, exploratory data analysis,
dynamic query, feature detection/selection, graphical displays, summaries, statistical tests.



1 INTRODUCTION

Multidimensional or multivariate data sets are common in data analysis applications; e.g.,
microarray gene expression, demographics, and economics. A data set that can be represented in
a spreadsheet where there are more than three columns can be thought of as multidimensional.
Without losing generality, we can assume that each column is a dimension (or a variable), and
each row is a data item. Dealing with multidimensionality has been challenging to researchers in
many disciplines due to the difficulty in comprehending more than three dimensions to discover
relationships, outliers, clusters, and gaps. This difficulty is so well recognized that it has a
provocative name: “the curse of high dimensionality.”

One of the commonly used methods to cope with multidimensionality is to use low
dimensional projections. Since human eyes and minds are effective in understanding two-
dimensional (2D) and three-dimensional (3D) spaces, and computer displays are intrinsically 2D,
2D projections have been widely used as useful representations of the original multidimensional
data. This is imperfect since some features will be hidden, but at least users can understand what
they are seeing and come away with some insights.

The three categories of two-dimensional presentations are distinguished by the way axes are
composed: (1) Non axis-parallel projection methods use a (linear/nonlinear) combination of two
or more dimensions for an axis of the projection plane. Principal component analysis (PCA) is a
well-established technique in this category, (2) Axis parallel projection methods use existing
dimensions as axes of the projection plane. One of the existing dimensions is selected as the
horizontal axis, and another as the vertical axis, to make a familiar and comprehensible
presentation. Sometimes, other dimensions can be mapped as color, size, length, angle, etc., (3)
Novel methods use axes that are not directly derived from any combination of dimensions. For
example, the parallel coordinate presentation is a powerful concept in which dimensions are
aligned sequentially and presented perpendicular to a horizontal axis [16].

Although presentations in category (1), non-axis-parallel, can show all possible 2D projections
of a multidimensional data set, they suffer from users’ difficulty in interpreting 2D projections
whose axes are linear/nonlinear combination of two or more dimensions. For example, even
though users may find a strong linear correlation on a projection where the horizontal axis is
3.7*body weight - 2.3*height and the vertical axis is waist size + 2.6*chest size, the finding is not
so useful because it is difficult to understand the meaning of such projections.

Techniques in category (2), axis-parallel, have a limitation that features can be detected in only
the two selected dimensions. However, since it is familiar and comprehensible for users to
interpret the meaning of the projection, these projections have been widely used and
implemented in visualization tools. A problem with these category (2) presentations is how to
deal with the large number of possible low dimensional projections. If we have an m-
dimensional data set, we can generate m*(m-1)/2 2D projections using the category (2)
techniques. We believe that our work offers an attractive solution to coping with the large
numbers of low-dimensional projections and that it provides practical assistance in finding
features in multidimensional data.



Techniques in category (3) remain important, because many relationships and features are
visible and meaningful only in higher dimensional presentations. Our principles could be applied
to support these techniques as well, but that subject is beyond this paper’s scope.

There have been many commercial packages and research projects that utilize low dimensional
projections for exploratory data analysis, including spreadsheets, statistical packages, and
information visualization tools. However, users have to develop their own strategies to discover
which projections are interesting and to display them. We believe that existing packages and
projects, especially information visualization tools for exploratory data analysis, can be
improved by enabling users to systematically examine low-dimensional projections.

In this paper, we present a conceptual framework for interactive feature detection named
rank-by-feature framework to address these issues. In the rank-by-feature framework, users can
select an interesting ranking criterion, and then all possible axis-parallel projections are ranked
by the selected ranking criterion (Figure 1). The ranking result is visually presented in color-
coded grid (“Score Overview”), as well as a tabular display (“Ordered List”) where each row
represents a projection and is color-coded by the ranking score. With these presentations users
can not only easily perceive the most interesting projections, but also grasp the overall ranking
score distribution. It is also possible to manually browse projections by rapidly changing the
dimension for an axis using the item slider attached to the corresponding axis of the projection
VleW (histo ram and boxplot for 1D, and scatterplot for 2D).
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Figure 1. The Hierarchical Clustering Explorer (HCE) The rank-by-feature framework is implemented as two new tab windows in
HCE 3.0. The main view is the dendrogram view where users can interactively explore hierarchical clustering results [17].
Whenever users identify an interesting projection in the rank-by-feature framework, they can generate a separate child window that
will interactively coordinate with all other views in HCE 3.0. A 2D scatterplot ordering result (section 3.2) by correlation coefficient is
shown with the U.S. counties data set (section 5). Two scatterplots and two histograms are shown in separate views together with
the clustering result view. Four counties that are poor and have medium number of high school graduates are selected in the
scatterplot browser and they are all highlighted in other views (with triangles).




We implemented the rank-by-feature framework in our interactive exploration tool for
multidimensional data, the Hierarchical Clustering Explorer (HCE) [17] (Figure 1) as two new
tab windows (“Histogram Ordering” for 1D projections, and “Scatterplot Ordering” for 2D
projections). By using the rank-by-feature framework, users can easily find interesting
histograms and scatterplots, and generate separate windows to visualize those plots. All these
plots are interactively coordinated with other views (e.g. dendrogram and color mosaic view,
tabular view, parallel coordinate view) in HCE. If users select a group of items in any view, they
can see the selected items highlighted in all other views. Thus, it is possible to comprehend the
data from various perspectives to get more meaningful insights.

Section 2 introduces related work, and section 3 makes the case for the GRID principles and
the rank-by-feature framework for axis-parallel 1D and 2D projections. Potentially interesting
ranking criteria and transformations are discussed in section 4. An application example is
presented in section 5. Discussion and future work are in section 6. We conclude the paper in
section 7.

2 RELATED WORK

Two-dimensional projections have been utilized in many visualization tools and graphical
statistics tools for multidimensional data analysis. Projection techniques such as PCA,
multidimensional scaling (MDS), and parallel coordinates [16] are used to find informative two-
dimensional projections of multidimensional data sets. Self-organizing maps (SOM) [18] can
also be thought of as a projection technique. Taking a look at only a single projection for a
multidimensional data is not enough to discover all the interesting features in the original data
since any one projection may obscure some features [12]. Thus it is inevitable that users must
scrutinize a series of projections to reveal the features of the data set.

Projection methods belonging to category (1), non-axis-parallel, were developed by
statisticians. The idea of projection pursuit [12] is to find the most interesting low dimensional
projections to identify interesting features in the multidimensional data set. An automatic
projection pursuit method, known as the grand tour [5], is a method for viewing
multidimensional data via orthogonal projection onto a sequence of two-dimensional subspaces.
It changes the viewing direction, generating a movie-like animation that makes a complete
search of the original space. However, it might take several hours to complete a reasonably
complete visual search in four dimensions [15]. An exhaustive visual search is out of the
question as the number of dimensions grows.

Friedman and Tukey [12] devised a method to automate the task of projection pursuit. They
defined interesting projections as ones deviating from the normal distribution, and provide a
numerical index to indicate the interestingness of the projection. When an interesting projection
is found, the features on the projection are extracted and projection pursuit is continued until
there is no remaining feature found. XGobi [8] is a widely-used graphical tool that implemented
both the grand tour and the projection pursuit, but not the ranking that we propose.

These automatic projection pursuit methods made impressive gains in the problem of
multidimensional data analysis, but they have limitations. One of the most important problems is



the difficulty in interpreting the solutions from the automatic projection pursuit. Since the axes
are the linear combination of the variables (or dimensions) of the original data, it is hard to
determine what the projection actually means to users. Conversely, this is one of the reasons that
axis-parallel projections (projection methods in category (2)) are used in many multidimensional
analysis tools [14][22][24].

Projection methods belonging to category (2), axis-parallel, have been applied by researchers
in machine learning, data mining, and information visualization. In machine learning and data
mining, ample research has been conducted to address the problems of using projections. Most
work focuses on the detection of dimensions that are most useful for a certain application, for
example, supervised classification. In this work, the term, feature selection is a process that
chooses an optimal subset of features according to a certain criterion [19], where feature simply
means dimension. Basically, the goal is to find a good subset of dimensions (features) that
contribute to the construction of a good classifier. Unsupervised feature selection methods are
also studied in close relation with unsupervised clustering algorithms. In this case, the goal is to
find an optimal subset of features with which clusters are well identified [1][2][14]. In pattern
recognition, researchers want to find a subset of dimensions with which they can better detect
specific patterns in a data set. In subspace-based clustering analysis, researchers want to find
projections where it is easy to naturally partition the data set.

In the information visualization field, some researchers have tried to optimally arrange
dimensions so that similar or correlated dimensions are put close to each other. This helps users
to find interesting patterns in multidimensional data [4][13][25]. Yang et al. [25] proposed
innovative dimension ordering methods to improve the effectiveness of visualizations techniques
including the parallel coordinates view in category (3). They rearrange dimensions within a
single display according to similarities between dimensions or relative importance defined by
users. Our work is to rank all dimensions or all pairs of dimensions whose visualization contains
desired features. Since our work can provide a framework where statistical tools and algorithmic
methods can be incorporated into the analysis process as ranking criteria, we think our work
contributes to the advance of information visualization systems by bridging the analytic gaps that
were recently discussed by Amar & Stasko [3].

In early 1980’s, Tukey [23] envisioned a concept of ranking scatterplots by numerical indices
called “Scagnostics.” He i1s one of the prominent statisticians who foresaw the utility of
computers in exploratory data analysis. We brought his concept to reality with the rank-by-
feature framework in the Hierarchical Clustering Explorer. There are also some research tools
and commercial products for helping users to find more informative visualizations. Spotfire [22]
has a guidance tool called “View Tip” for rapid assessment of potentially interesting scatterplots,
which shows an ordered list of all possible scatterplots from the one with highest correlation to
the one with lowest correlation. Guo et al. [14] also evaluated all possible axis-parallel 2D
projections according to the maximum conditional entropy to identify ones that are most useful
to find clusters. They visualized the entropy values in a matrix display called the entropy matrix
[20]. Our work takes these nascent ideas with the goal of developing a potent framework for
discovery.



3 RANK-BY-FEATURE FRAMEWORK

A playful analogy may help clarify our goals. Imagine you are dropped by parachute into an
unfamiliar place — it could be a forest, prairie, or mountainous area. You could set out in a
random direction to see what is nearby and then decide where to turn next. Or you might go
towards peaks or valleys. You might notice interesting rocks, turbulent streams, scented flowers,
tall trees, attractive ferns, colorful birds, graceful impalas, and so on. Wandering around might
be greatly satistfying if you had no specific goals, but if you needed to survey the land to find
your way to safety, catalog the plants to locate candidate pharmaceuticals, or develop a wildlife
management strategy, you would need to be more systematic. Of course, each profession that
deals with the multi-faceted richness of natural landscapes has developed orderly strategies to
guide novices, to ensure thorough analyses, to promote comprehensive and consistent reporting,
and to facilitate cooperation among professionals.

Our principles for exploratory analysis of multidimensional data sets have similar goals.
Instead of wandering, analysts should clarify their goals and use appropriate techniques to ensure
a comprehensive analysis. A good starting point is the set of principles put forth by Moore and
McCabe, who recommended that statistical tools should (1) enable users to examine each
dimension first and then explore relationships among dimensions, and (2) offer graphical
displays first and then provide numerical summaries [21]. We extend Moore and McCabe’s
principles to include ranking the projections to guide discovery of desired features, and realize
this idea with overviews to see the range of possibilities and coordination to see multiple
presentations. An orderly process of exploration is vital, even though there will inevitably be
excursions, iterations, and shifts of attention from details to overviews and back.

The rank-by-feature framework is especially potent for interactive feature detection in
unsupervised multidimensional data. We use the term, “features” to include relationships
between dimensions (or variables) but also interesting characteristics (patterns, clusters, gaps,
outliers, or items) of the data set. To promote comprehensibility, we concentrate on axis-parallel
projections, however, the rank-by-feature framework can be used with general geometric
projections. Although 3D projections are sometimes useful to reveal hidden features, they suffer
from occlusion and the disorientation brought on by the cognitive burden of navigation. On the
other hand, 2D projections are widely understood by users, allowing them to concentrate on the
data itself rather than being distracted by navigation controls.

Detecting interesting features in low dimensions (1D or 2D) by utilizing powerful human
perceptual abilities is crucial to understand the original multidimensional data set. Familiar
graphical displays such as histograms, scatterplots, and other well-known 2D plots are effective
to reveal features including basic summary statistics, and even unexpected features in the data
set. There are also many algorithmic or statistical techniques that are especially effective in low
dimensional spaces. While there have been many approaches utilizing such visual displays and
low dimensional techniques, most of them lack a systematic framework that organizes such
functionalities to help analysts in their feature detection tasks.

Our Graphics, Ranking, and Interaction for Discovery (GRID) principles are designed to
enable users to better understand distributions in one (1D) or two dimensions (2D), and then



discover relationships, clusters, gaps, outliers, and other features. Users work by viewing
graphical presentations (histograms, boxplots, and scatterplots), and then choose a feature
detection criterion to rank 1D or 2D axis-parallel projections. By combining information
visualization techniques (overview, coordination, and dynamic query) with summaries and
statistical methods users can systematically examine the most important 1D and 2D axis-parallel
projections. We summarize the GRID principles as:

(1) 1D, 2D, then features
(2) graphics, ranking, summaries, then statistics.

Abiding by these principles, the rank-by-feature framework has an interface for 1D
projections and a separate one for 2D projections. Users can begin their exploration with the
main graphical display - histograms for 1D and scatterplots for 2D - and they can also study
numerical summaries for more detail.

The rank-by-feature framework helps users systematically examine low dimensional (1D or
2D) projections to maximize the benefit of exploratory tools. In this framework, users can select
an interesting ranking criterion. Users can rank low dimensional projections (1D or 2D) of the
multidimensional data set according to the strength of the selected feature in the projection.
When there are many dimensions, the number of possible projections is too large to investigate
every one randomly looking for interesting features. The rank-by-feature framework relieves
users from such burdens by recommending projections to users in an ordered manner defined by
a ranking criterion that users selected. This framework has been implemented in our interactive
visualization tool, HCE 3.0 (www.cs.umd.edu/hcil/hce/) [17].

3.1 1D HISTOGRAM ORDERING

Users begin the exploratory analysis of a multidimensional data by scrutinizing each dimension
(or variable) one by one. Just looking at the distribution of values of a dimension gives us useful
insight into the dimension. The most familiar graphical display tools for 1D data are histograms
and boxplots. Histograms graphically reveal the scale and skewness of the data, the number of
modes, gaps, and outliers in the data. Boxplots are also excellent tools for detecting and
illustrating location and variation changes of a dimension. They graphically show the five-
number summary (the minimum, the first quartile, the median, the third quartile, and the
maximum). These numbers provide users with an informative summary of a dimension’s center
and spread, and they are the foundation of multidimensional data analysis for deriving a model
for the data or for selecting dimensions for effective visualization.

The main display for the rank-by-feature framework for 1D projections shows a combined
histogram and boxplot (Figure 2). The interface consists of four coordinated parts: control
panel, score overview, ordered list, and histogram browser. Users can select a ranking criterion
from a combo box in the control panel, and then they see the overview of scores for all
dimensions in the score overview according to the selected ranking criterion. All dimensions are
aligned from top to bottom in the original order, and each dimension is color-coded by the score
value. By default, cells of high value have bright red colors and cells of low value have bright



green colors. The cell of middle value has the black color. As a value gets closer to the middle
value, the color intensity attenuates. Users can change the colors for minimum, middle, and
maximum values. The color scale and mapping are shown at the top right corner of the overview
(B). Users can easily see the overall pattern of the score distribution, and more importantly they
can preattentively identify the dimension of the highest/lowest score in this overview. Once they
identify an interesting row on the score overview, they can just mouse over the row to view the
numerical score value and the name of the dimension is shown in a tooltip window (Figure 2).

Drder by Soore Dvervien Ordered List Make Views| Trarspase > | ™ 1= | |
{Narmaliy =l C 6287 [Rank| ColumnName [ E 7 | 01 [ Med [ 03 | Max] Mean| Sid «
20

Min |

T oo UACC1057 B3 2602 0322 0185 0837 505 0359 08

Iskewnessh hutosis-3| SRS3 9 0516 0036 5541 0444 090

2 0143 0.423 0001 03

= 0078 0667 7 0220 08

™ UseOng | Values 0117 0461 5 0m3 08
W Show Cq ol Plot
¥ Show Hif bram
¥ ShowCI turve

l

3 UACC2837
4 UACC1273
5 UACCOT
B

7

g

UACCE2? 0173 0437 &
A 70 0237 0482 5
3 0211 0543 602
0502 4533

0023 09
5 -0.052 1.0¢
0003 1.00
0.077 0.7
0001 0.9

Ki
TC-1376-3

12 WM1791C
13 NILC

14 TD-1730
15 TD-1720

Ranking
Criteria

N 20
fusCCi0s

UACC1256
21 TD-1638
22 TC-HA 3 0050 0.9
23 TC-Ma
24 M32-001

5 1.00 2 60 U
0143 5378 -0.234 0.7:_ = =
:1 2401 NEA £4  Nono noon Eocn nwcué rﬂ_' Item S“der
A B C D
Figure 2. Rank-by-feature framework interface for histograms (1D) All 1D histograms are ordered according to the current
order criterion (A) in the ordered list (C). The score overview (B) shows an overview of scores of all histograms. A mouseover
event activates a cell in the score overview, highlights the corresponding item in the ordered list (C) and shows the corresponding
histogram in the histogram browser (D) simultaneously. A click on a cell selects the cell and the selection is fixed until another click
event occurs. A selected histogram is shown in the histogram browser (D), where users can easily traverse histogram space by
changing the dimension for the histogram using item slider. A boxpilot is also displayed above the histogram to show the graphical
summary of the distribution of the dimension. (Data shown is from a gene expression data set from a melanoma study (3614 genes
x 38 samples)).

The mouseover event is also instantaneously relayed to the ordered list and the histogram
browser, so that the corresponding list item is highlighted in the ordered list and the
corresponding histogram and boxplot are shown in the histogram browser. The score overview,
the ordered list, and the histogram browser are interactively coordinated according to the change
of the dimension in focus. In other words, a change of dimension in focus in one of the three
components leads to the instantaneous change of dimension in focus in the other two components.

In the ordered list, users can see the numerical detail about the distribution of each dimension
in an orderly manner. The numerical detail includes the five-number summary of each
dimension and the mean and the standard deviation. The numerical score values are also shown
at the third column whose background is color-coded using the same color-mapping as in the
score overview. While numerical summaries of distributions are very useful, sometimes they are
misleading. For example, when there are two peaks in a distribution, neither the median nor the
mean explains the center of the distribution. This is one of the cases for which a graphical
representation of a distribution (e.g., a histogram) works better. In the histogram browser, users
can see the visual representation of the distribution of a dimension at a time. A boxplot is a good
graphical representation of the five-number summary, which together with a histogram provides
an informative visual description of a dimension’s distribution. It is possible to interactively
change the dimension in focus just by dragging the item slider attached to the bottom of the
histogram.



Since different users may be interested in different features in the data sets, it is desirable to
allow users to customize the available set of ranking criteria. However, we have chosen the
following ranking criteria that we think fundamental and common for histograms as a starting
point, and we have implemented them in HCE:

(1) Normality of the distribution (0 to ixf):

Many statistical analysis methods such as t-test, ANOVA are based on the assumption that the
data set is sampled from a Gaussian normal distribution. Therefore, it is useful to know the
normality of the data set. Since a distribution can be nonnormal due to many different reasons,
there are at least ten statistical tests for normality including Shapiro-Wilk test and Kolmogorov-
Smirnov test. We used the omnibus moments test for normality in the current implementation.
The test returns two values, skewness (s) and kurtosis (k). Since s is 0 and k is 3 for a standard
normal distribution, we calculate |s|+|k-3| to measure how the distribution deviates from the
normal distribution and rank variables according to the measure. Users can confirm the ranking
result using the histogram browser to gain an understanding of how the distribution shape
deviates from the familiar bell-shaped normal curve.

(2) Uniformity of the distribution (0 to irnf):

For the uniformity test, we used an information-based measure called enfropy. Given k bins in
a histogram, the entropy of a histogram # is emmpy(H):_i p, logt » Where p; is the probability

i1

that an item belongs to the i-th bin. High entropy means that values of the dimension are from a
uniform distribution and the histogram for the dimension tends to be flat. While knowing a
distribution is uniform is helpful to understand the data set, it is sometime more informative to
know how far a distribution deviates from uniform distribution since a biased distribution
sometimes reveals interesting outliers.

(3) The number of potential outliers (0 to »):

To count outliers in a distribution, we used the 1.5*/QR (Interquartile range: the difference
between the first quartile (/) and the third quartile ((J3)) criterion that is the basis of a rule of
thumb in statistics for identifying suspected outliers [21]. An item of value d is considered as a
suspected (mild) outlier if d > (Q3+1.5%IQR) or d < (QI-1.5*IQR). To get more restricted
outliers (or extreme outliers), 3*/QR range can be used. It is also possible to use an outlier
detection algorithm developed in the data mining. Outliers are one of the most important
features not only as noisy signals to be filtered but also as a truly unusual response to a medical
treatment worth further investigation or as an indicator of credit card fraud.

(4) The number of unique values (0 to #)

At the beginning of the data analysis, it is useful to know how many unique values are in the
data. Only small number of unique values in a large set may indicate problems in sampling or
data collection or transcription. Sometime it may also indicate that the data is a categorical value
or the data was quantized. Special treatment may be necessary to deal with categorical or
quantized variables.

(5) Size of the biggest gap (0 to max range of dimensions)

10



Gap is an important feature that can reveal separation of data items and modality of the
distribution. Let # be a tolerance value, » be the number of bins, and mf be the maximum
frequency. We define a gap as a set of contiguous bins {b;} where b; (k=0 to #) has less than
*mf items. The procedure sequentially visits each bin and merges the satisfying bins to form a
bigger set of such bins. It is a simple and fast procedure. Among all gaps in the data, we rank
histograms by the biggest gap in each histogram. Since we use equal-sized bins, the biggest gap
has the most bins satisfying the tolerance value .

For some of the ranking criteria for histogram ordering such as normality, there are many
available statistical tests to choose from. We envision that many researchers could contribute
statistical tests that could be easily incorporated into the rank-by-feature framework as plug-ins.
For example, since outlier detection is a rich research area, novel statistical tests or new data
mining algorithms are likely to be proposed in the coming years, and they could be made
available as plug-ins.

3.2 2D SCATTERPLOT ORDERING

According to our fundamental principles for improving exploration of unsupervised
multidimensional data, after scrutinizing 1D projections, it is natural to move on to 2D
projections where pair-wise relationships will be identified. Relationships between two
dimensions (or variables) are conveniently visualized in a scatterplot. The values of one
dimension are aligned on the horizontal axis, and the values of the other dimension are aligned
on the vertical axis. Each data item in the data set is shown as a point in the scatterplot whose
position is determined by the values at the two dimensions. A scatterplot graphically reveals the
form (e.g., linear or curved), direction (e.g., positive or negative), and strength (e.g., weak or
strong) of relationships between two dimensions. It is also easy to identify outlying items in a
scatterplot, but it can suffer from overplotting in which many items are densely packed in one
area making it difficult to gauge the density.
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Figure 3. Rank-by-feature framework interface for scatterplots (2D) All 2D scatterplots are ordered according to the current
ordering criterion (A) in the ordered list (C). Users can select multiple scatterplots at the same time and generate separate
scatterplot windows for them to compare them in a screen. The score overview (B) shows an overview of scores of all scatterplots.
Mouseover event activates a cell in the score overview, highlights the corresponding item in the ordered list (C) and shows the
corresponding scatterplot in the scatterplot browser (D) simultaneously. A click on a cell selects the cell and the selection is fixed
until another click event occurs. A selected scatterplot is shown in the scatterplot browser (D), where it is also easy to traverse
scatterplot space by changing X or Y axis using item sliders on the horizontal or vertical axis. (A demographic and health related
statistics for 3138 U.S. counties with 17 attributes.)
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We used scatterplots as the main display for the rank-by-feature framework for 2D projections.
Figure 3 shows the interactive interface design for the rank-by-feature framework for 2D
projections. Analogous to the interface for 1D projections, the interface consists of four
coordinated components: control panel, score overview, ordered list, and scatterplot browser.
Users select an ordering criterion in the control panel on the left, and then they see the complete
ordering of all possible 2D projections according to the selected ordering criterion (Figure 3A).
The ordered list shows the result of ordering sorted by the ranking (or scores) with scores color-
coded on the background. Users can click on any column header to sort the list by the column.
Users can easily find scatterplots of the highest/lowest score by changing the sort order to
ascending or descending order of score (or rank). It is also easy to examine the scores of all
scatterplots with a certain variable for horizontal or vertical axis after sorting the list according to
X or Y column by clicking the corresponding column header.

However, users cannot see the overview of entire relationships between variables at a glance in
the ordered list. Overviews are important because they can show the whole distribution and
reveal interesting parts of data. We have implemented a new version of the score overview for
2D projections. It is an m-by-m grid view where all dimensions are aligned in the rows and
columns. Each cell of the score overview represents a scatterplot whose horizontal and vertical
axes are dimensions at the corresponding column and row respectively. Since this table is
symmetric, we used only the lower-triangular part for showing scores and the diagonal cells for
showing the dimension names as shown in Figure 3B. Each cell is color-coded by its score value
using the same mapping scheme as in 1D ordering. As users move the mouse over a cell, the
scatterplot corresponding to the cell is shown in the scatterplot browser simultaneously, and the
corresponding item is highlighted in the ordered list (Figure 3C). Score overview, ordered list,
and scatterplot browser are interactively coordinated according to the change of the dimension in
focus as in the 1D interface.

In the score overview, users can preattentively detect the highest/lowest scored combinations
of dimensions thanks to the linear color-coding scheme and the intuitive grid display.
Sometimes, users can also easily find a dimension that is the least or most correlated to most of
other dimensions by just locating a whole row or column where all cells are the mostly bright
green or bright red. It is also possible to find an outlying scatterplot whose cell has distinctive
color intensity compared to the rest of the same row or column. After locating an interesting
cell, users can click on the cell to select, and then they can scrutinize it on the scatterplot browser
and on other tightly coordinated views in HCE.

While the ordered list shows the numerical score values of relationships between two
dimensions, the interactive scatterplot browser best displays the relationship graphically. In the
scatterplot browser, users can quickly take a look at scatterplots by using item sliders attached to
the scatterplot view. Simply by dragging the vertical or horizontal item slider bar, users can
change the dimension for the horizontal or vertical axis. With the current version implemented
in HCE, users can investigate multiple scatterplots at the same time. They can select several
scatterplots in the ordered list by clicking on them with the control key pressed. Then, click
“Make Views” button on the top of the ordered list, and each selected scatterplot is shown in a
separate child window. Users can select a group of items by dragging a rubber rectangle over a
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scatterplot, and the items within the rubber rectangle are highlighted in all other views. On some
scatterplots they might gather tightly together, while on other scatterplots they scatter around.

Again interesting ranking criteria might be different from user to user, or from application to
application. Initially, we have chosen the following six ranking criteria that we think are
fundamental and common for scatterplots, and we have implemented them in HCE. The first
three criteria are useful to reveal statistical (linear or quadratic) relationships between two
dimensions (or variables), and the next three are useful to find scatterplots of interesting
distributions.

(1) Correlation coefficient (-1 to +1):
For the first criterion, we use Pearson's correlation coefficient (#) for a scatterplot (S) with »
points defined as
5D, )
r(S)= =

\/ > P

Pearson’s r is a number between -1 and 1. The sign tells us direction of the relationship and
the magnitude tells us the strength of the linear relationship. The magnitude of » increases as the
points lie closer to the straight line. Linear relationships are particularly important because
straight line patterns are common and simple to understand. Even though a strong correlation
between two variables doesn’t always mean that one variable causes the other, it can provide a
good clue to the true cause, which could be another variable. Moreover, dimensionality can be
reduced by combining two strongly correlated dimensions, and visualization can be improved by
juxtaposing correlated dimensions. As a visual representation of the linear relationship between
two variables, the line of best fit or the regression line is drawn over scatterplots.

(2) Least square error for curvilinear regression (0 to 1)

This criterion is to sort scatterplots in terms of least-square errors from the optimal quadratic
curve fit so that users can easily isolate ones where all points are closely/loosely arranged along a
quadratic curve. Users are often interested to find nonlinear relationships in the data set in
addition to linear relationship. For example, economists might expect that there is a negative
linear relationship between county income and poverty, which is easily confirmed by correlation
ranking. However, they might be intrigued to discover that there is a quadratic relationship
between the two, which can be easily revealed using this criterion.

(3) Quadracity (0 to inf)

If two variables show a strong linear relationship, they also produce small error for curvilinear
regression because the linear relationship is special cases of the quadratic relationship, where the
coefficient of the highest degree term (x?) equals zero. To emphasize the real quadratic
relationships, we add “Quadracity” criterion. It ranks scatterplots according to the coefficient of
the highest degree term, so that users can easily identify ones that are more quadratic than others.
Of course, the least square error criterion should be considered to find more meaningful
quadratic relationships, but users can easily see the error by viewing the fitting curve and points
at the scatterplot browser.

(4) The number of potential outliers (0 to 7)
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Even though there is a simple statistical rule of thumb for identifying suspected outliers in 1D,
there is no simple counterpart for 2D cases. Instead, there are many outlier detection algorithms
developed by data mining and database researchers. Among them, distance-based outlier
detection methods such as DB-out [10] define an object as an outlier if at least a fraction p of the
objects in the data set are apart from the object more than at a distance greater than a threshold
value. Density-based outlier detection methods such as LOF-based method [6] define an object
as an outlier if the relative density in the local neighborhood of the object is less than a threshold,
in other words the local outlier factor(LOF) of the object is greater than a threshold. Since the
LOF-based method is more flexible and dynamic in terms of the outlier definition and detection,
we included the LOF-based method in the current implementation.

(5) The number of items in the region of interest (0 to 7)

This criterion is the most interactive since it requires users to specify a (rectangular, elliptical,
or free-formed) region of interest. Then the algorithm uses the number of items in the region to
order scatterplots so that users can easily find ones with most/least number of items in the given
region. An interesting application of this ranking criterion is when a user specifies an upper left
or lower right corner of the scatterplot. Users can easily identify scatterplots where most/least
items have low value for one variable (e.g. salary of a baseball player) and high value for the
other variable (e.g. the batting average).

(6) Uniformity of scatterplots (0 to inf)

For this criterion, we calculate the entropy in the same way as we did for histograms, but this
time we divide the two-dimensional space into regular grid cells and then use each cell as a bin.
For example, 1f we have generated k-by-k grid, the entropy of a scatterplot S is

entropy(S) = ZZ p,log?” » where pj; is the probability that an item belongs to the cell at (i, j) of

i=1 j=1

the grid.

4 TRANSFORMATIONS AND POTENTIAL RANKING CRITERIA

Users sometimes want to transform the variable to get a better result. For example, log
transformations convert exponential relationships to linear relationships, straighten skewed
distributions, and reduce the variance. If variables have differing ranges, then comparisons must
be done carefully to prevent misleading results, e.g. a gap in a variable whose range is 0-1000 is
not usually comparable to a gap in a variable whose range is 2-6. Therefore transformations,
such as standardization to common scales, are helpful to ensure that the ranking results are
useful. In the current rank-by-feature framework, users can perform 5 transformations (natural
log, standardization, normalization to the first column or to median, and linear scaling to a
certain range) over each column or row of the data set when loading the data set. Then when
they use the rank-by-feature framework, the results will apply to the transformed values. An
improvement to the rank-by-feature framework would allow users to apply transformations
during their analyses, not only at the data loading time. More transformations, such as
polynomial or sinusoidal functions, would also be useful.
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