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Chapter 1

Introduction

1.1 Motivation

The problems of statistics fall into two main classes: statistical modeling and in-

ference. The validity of most statistical analysis is conditional on the model being

correct. We need some model to proceed with an analysis, but a wrong model can

lead to a wrong conclusion. In this paper, our central question in formulating a

statistical model is whether certain sources of variation should be analyzed as sys-

tematic (nonrandom) effects, analyzed as random variables, or eliminated from the

analysis via conditioning.

In meta-analysis this question arises when one attempts to combine data from

many nonidentical studies having a common parameter of research interest, among

which study to study differences must be taken into account. A real world example,

which we analyze in detail later in this thesis, is described below.

Freedman (1994) [8] performed a meta-analysis of a collection of studies, each

of which was meant to relate tumor incidence in rats to dietary fat and/or total

caloric intake. The studies were similar in design. Female Sprague-Dawley rats

were randomly assigned to various diet groups differing in fat content and in some

studies also differing in total caloric intake. At a certain point all rats were dosed

with a known carcinogen. At the termination of the studies the rats were sacrificed
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and the number of rats which developed breast tumors was determined. There were

variations in the conduct of the studies, however, so it was felt that the data could

not be combined without accounting for study to study differences that might be

statistically significant.

The data are hierarchically structured: there were 43 studies with 2 to 4 groups

in each study and 20 to 40 rats for each group. Most of the original studies were

intended to study only dietary fat, and total caloric intake was not always varied

and in fact not always recorded. Freedman used a generalized linear model (GLM)

with 43 nuisance parameters to describe the data. Maximum likelihood in models

with many nuisance parameters may lead to inconsistent estimators, meaning that

inferences about diet may be invalid under this data structure.

Fay et al. (1998)[10] used conditional logistic regression to analyze the same

data and developed a statistic to adjust for small sample size problems and possible

model misspecification. This raises other questions: How much information is lost by

using conditional logistic regression? What if a generalized mixed model (GLMM) is

used? How do the three methods of analysis compare to each other? Although our

ultimate goal is the efficiency and consistency of models, there are some technical

difficulties to overcome, such as missing values in the data set, limitations of available

software, and combining data to make inferences which the original studies were

never intended to address.

We reanalyzed Freedman’s data using fixed effect logistic regression, random

intercept logistic regression and conditional logistic regression. We found that Freed-

man’s model could be improved by adding a quadratic term and that the three meth-
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ods produced nearly identical estimates of the regression coefficients. The study to

study differences can be modeled as either fixed effects or random effects without

affecting the estimates of the regression coefficients, which are the only parameters

of interest.

The data structure has many nuisance parameters (the study effects) and small

to moderate sample sizes in each of the 104 treatment groups. It is known that with

many nuisance parameters and small group sizes maximum likelihood estimators

may be inconsistent. On the other hand, the data involve observations on 2844 in-

dividual rats. Can one use large sample theory in this situation? We investigate the

accuracy of various large sample approximations using simulation studies, varying

sample sizes and numbers of studies to assess the performance of various estimation

schemes and tests of goodness of fit and to compare the results of using random

effects instead of the fixed effects modeling employed by Freedman. We also use

simulation to examine robustness of distributional assumptions for random effects.

The major conclusion which we draw from these investigations is that for data

structured like Freedman’s (many studies and small to moderate sample sizes in

each study) conditional regression seems to be the analysis of choice. It avoids the

need to impose assumptions about the nuisance parameters and produces consis-

tent estimators when the number of nuisance parameters grows large. However, it

involves a loss of some information (5–10% in our simulations) so caution is needed.
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1.2 Organization of the Thesis

Chapter 2 reviews selected literature on meta-analysis, generalized linear models,

generalized linear mixed models, and conditional logistic regression. In Chapter 3

we analyze the rat data using three methods: GLM, GLMM, and conditional logistic

regression. We formulate research questions, some of which come from the literature

review and some from the rat data analyses. Chapter 4 presents simulation results

which address the research questions of Chapter 3. In Chapter 5, we summarize the

results qualitatively and suggest topics for future research.

4



Chapter 2

Literature Review

2.1 Meta-Analysis

The term meta-analysis was first coined in 1976 by the psychologist Glass [11], and

since then there has been a surge of interest in quantitative methods for summarizing

results from a series of related studies in fields such as education, psychology and

the biomedical sciences.

In many different data analytic contexts, when all the studies are designed in

a similar way and the measure of outcome is similar, a combined estimation can be

conducted. Although the studies may have some minor differences, one may prefer

to ignore those differences and combine the results anyway. When the combina-

tion is valid, the result of combining many studies usually provide more accurate

estimators than does any individual study. However, when study to study differ-

ences are large, ignoring these differences and pooling the data can lead to biased

estimates and invalid inferences. Meta-analysis permits one to combine data from

many studies, taking account of study differences while producing valid inferences

on parameters of interest which affect all studies. Meta-analysis is used in general

data structures: linear models, analysis of variance models and generalized linear

models for categorical or count data.

As in the analysis of variance, in meta-analysis there are three related con-

5



ceptualizations of statistical models: fixed, random, and mixed effects models [12].

In a fixed-effect model, we assume no “between-study” heterogeneity of treatment

effects. The true values of treatment effects are fixed but unknown constants. One

tries to parameterize essentially all of the variation in the study results, including

study to study differences. Only the “within-study” sampling variability is assumed

to be random.

In random-effect models, we rely on the assumption that the study effects and

treatment effects are normally distributed or follow some other specified distribu-

tion across studies. This assumption is typically unverifiable except in certain large

sample situations. Between-study variation in treatment effects is described by esti-

mating the variance component for a treatment by study interaction term. Finally,

the mixed-effect model involves the combination of fixed and random effect models.

Treatment effects are regarded as fixed and study to study variation is regarded as

random.

An example of meta-analysis for binary outcome with no covariate is the heart

attack data of Yusuf et al. [21]. The data structure is a 2 × 2 × K table in which

the third dimension consists of K levels of a confounding factor “site” in a multisite

study. In site k there are n0k subjects in a control group and n1k in a treatment

group, with y0k and y1k observed deaths in the control and treatment groups, respec-

tively. The responses y0k and y1k are assumed to follow binomial distributions with

probabilities of deaths p0k and p1k and numbers of trials n0k and n1k, respectively.

The estimand of common interest across all K tables is, for example, the risk ratio,

p1k/p0k, which may be assumed the same for all k. One way to analyze this kind
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of stratified table is to compute a Mantel-Haenszel chi-square. This technique is

sometimes referred to as meta-analysis.

Because of the way meta-analysis is conducted, often only summary data are

available and individual unit (e.g. patient) level data are missing. These summary

data come from many studies, in which each study forms a cluster. The groups

within each cluster are likely to be more similar to one another, due to shared envi-

ronmental conditions, than they are to groups from other clusters. Here, the effects

describing individual studies (clusters) are nuisance parameters, that is, parameters

that are present in a model but are not of inferential interest. Consider the following

analysis of covariance example.

The ANCOVA model is

E[yij] = µ + αi + βxij, i = 1, . . . , I, j = 1, . . . , ni.

In ANCOVA, usually we are interested in the αi, i = 1, . . . , I, which are interpreted

as group or treatment effects, while β is a nuisance parameter. However, in meta-

analysis the study effect αi is a nuisance parameter and β is the parameter of

interest. What if we ignore the study effect αi and directly combine the data to

perform meta-analysis? Such an approach leads to a misspecified model:

E[yij] = µ + βxij, i = 1, . . . , I, j = 1, . . . , ni.

In this misspecified model the least squares estimate of β is

β̂ =

∑I
i=1

∑ni
j=1(xij − x̄)yij∑I

i=1

∑ni
j=1(xij − x̄)2

,

where x̄ =
∑I

i=1

∑ni
j=1 xij/

∑I
i=1 ni. This estimator is biased. Under the correct
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model, the slope β measures the relationship between y and x after adjusting for

study to study differences. The correct estimator is

β̂ =

∑I
i=1

∑ni
j=1(xij − x̄i)yij∑I

i=1

∑ni
j=1(xij − x̄i)2

,

where x̄i =
∑ni

j=1 xij/ni. The difference between the estimators is illustrated in

Figure 2.1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 2.1: Effect of misspecifying ANCOVA model. Lines with negative slope indi-

cate correct least squares estimate of β, while the line with positive slope is based on

misspecified estimate.

Note that in meta-analysis the sample size, N =
∑I

i=1 ni, increases as well

as the number of studies (nuisance parameters). The large number of nuisance

parameters can cause difficulties with the fitting process and with the properties of

ordinary ML estimators [4]. Is there a better way to overcome this problem?
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2.1.1 Approaches to Meta-Analysis

In many models Yij, j = 1, ..., ni, the outcomes in cluster i are assumed to be

independent. In meta-analysis, without fixed effects parameters for cluster differ-

ences, this assumption is implausible. The use of generalized linear mixed models

for non-normal data can incorporate the correlation via random effects. There are

two approaches to modeling such data.

One approach is through generalized estimating equations (GEE) [7]. It in-

volves dropping the usual assumption of independence between the outcomes Yij,

j = 1, ..., ni, and modeling the correlation structure explicitly. Usually the corre-

lation parameters are not of particular interest (i.e., they are nuisance parameters)

but they need to be included in the model in order to obtain consistent estimates of

those parameters that are of interest and to correctly calculate the standard errors

of these estimates. The correlation specification does not have to be completely

correct, but efficiency is better if it is [13].

The alternative approach to modeling clustered data is based on considering

the hierarchical structure of the study. It is called multilevel modeling. On each

branch, outcomes at the same level are assumed to be conditionally independent

given cluster effect and the correlation is a result of shared branch effects within the

multilevel structure. For multilevel models, the effects of levels may be described

by fixed parameters or random effects or both. In general, the linear mixed model

for normally distributed responses can be written in the form

y = Xβ + Zu + e (2.1)
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where β are the fixed effects, u is a vector of random effects and e N(0, σ2I)). The

matrices X and Z are design matrices. In (2.1) the random effect enters the model

as a predictor and reflects heterogeneity caused by omitting certain explanatory

variables or random measurement error in the explanatory variables.

For multilevel data, if the primary goal is to estimate the random effects, the

generalized linear model could be conceived as a Bayesian model with a parame-

ter vector u having some prior distribution, for example N(0,D). Then Bayesian

methods using Markov Chain Monte Carlo or Gibbs Sampling, as implemented in

the software BUGS, might be more appropriate to estimate u than the frequentist

approach adopted here [5].

2.2 General Form of Model

First, we start with a more general form of the generalized linear mixed model

(GLMM):

fYij |u(yij|u) = exp [(yijηij − b(ηij))/τ
2 − c(yij, τ)] (2.2)

for i = 1, . . . , I, j = 1, . . . , ni and u′ = [u′
1 . . .u′

I ]. Assume

Yij|u ∼ fyij |ui
(yij|ui) independently,

E[Yij|u] = µij,

g(µij) = ηij = x′
ijβ + z′ijui,

u ∼ fu(u).

10



The so-called dispersion parameter τ is often known to be 1, as in binomial or

Poisson models. We can see that the GLMM model has the following features:

1. The distribution of Yij is from an exponential family, conditionally given the

random effect u.

2. The link function, g(.), is applied to the conditional mean of Yij given u to

obtain the conditional linear predictors.

3. The linear predictor ηij is assumed to consist of two components, the fixed

effect portion, xij
′β, and the random effect portion, zij

′ui, and a distribution

is assigned to u.

We next describe the generalized linear mixed effect model for our particular

count data: Yij, i = 1, . . . , I, j = 1, . . . , Ji. Suppose that given a vector of random

effects u, the Yij|u are conditionally independent and have binomial distributions

with parameters (nij, πij). Assume

logitπij = log

(
πij

1 − πij

)
= ηij = xijβ + ziju (2.3)

where

X =




x11

...

xI,JI




, Z =




z11

...

zI,JI




,

X is the model matrix for the fixed effects, β is the vector of fixed effect parameters,

the parameters of interest, Z is the model matrix for the random effects, and u

is the vector of random effects. It is assumed that u has zero mean vector and
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covariance matrix D. One might specify in addition that u has a multivariate

normal distribution. Because the Yij are binomially distributed, this model is a

mixed effect logistic regression model. In the following subsections we state specific

models which are special cases of the general model above.

2.3 Fixed Intercept GLM

This model has no random effects u, no model matrix for random effects, and in

fact is an ordinary GLM. The linear predictor for this GLM has the form

g(µij) = xij
′β. (2.4)

or

logit(πij) = αi + β1TFAij + β2(TFAij)
2 + β3KCAij. (2.5)

where

nij is the number of rats in SET i, group j, i = 1, 2, . . . , 43,

Yij is the number of tumors in SET i, group j, j = 1, . . . , Ji, i = 1, 2, . . . , 43,

Yij ∼ Binomial(nij , πij),

β = [α1, . . . , α43, β1, β2, β3]
′.

Assume the SET effects, αi, are unknown but fixed. The SET parameters,

αi, i = 1, 2, . . . , 43, are treated as fixed intercepts. Also, the SET parameters are

nuisance parameters, while β1, β2, β3 are fixed parameters of interest.

The likelihood for this fixed effect GLM is

L =
43∏

i=1

Ji∏

j=1

(
nij

yij

)
exp[(αi + β1TFAij + β2(TFAij)

2 + β3KCAij)yij]

[1 + exp(αi + β1TFAij + β2(TFAij)2 + β3KCAij)]nij
.

12



Write

ηij = αi + β1TFAij + β2(TFAij)
2 + β3KCAij.

The log-likelihood is

log L = log(const) +
∑∑

yijηij −
∑∑

nij log[1 + exp(ηij)]. (2.6)

The goodness of fit of a GLM is often tested using the deviance statistic. If

L(µ) represents the likelihood for a GLM parameterized in terms of its mean vector

µ, the deviance is defined as

−2[log L(µ) − log L(Y)]

Here L(Y) is the likelihood function of the saturated model, under which the MLE

of µij is Yij. If the number of groups is fixed and the sample size in each group goes

to infinity, the deviance has a limiting χ2 distribution [1] with degrees of freedom

equal to the difference in the number of parameters in the saturated model and

model of interest. Large deviance values indicate that the model does not fit the

data. These distributional results do not hold if the number of groups increases with

the sample size. This topic is discussed further in Section 4.2.1.

2.3.1 Many Nuisance Parameters and Inconsistent MLE

In this model, the SET parameters, αi, i = 1, 2, . . . , 43, are treated as fixed inter-

cepts. If the total sample size N =
∑

i

∑
j nij is increased by adding more SETs, the

number of SET parameters αi, i = 1, . . . , I, also increases. Even though the number

of regression coefficients remain the same, the ordinary ML estimators of β1, β2, β3
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may not be consistent. Asymptotic optimality properties of ML estimators, such as

consistency, require the number of parameters to be fixed or to increase slowly as

N increases.

In classical estimation problems, bias is small relative to standard error, and

the bias goes away as the sample gets large. That is typically the case when the

number of nuisance parameters is small relative to the sample size. There is a genuine

concern, however, when bias does not disappear as the sample size gets large, or

when bias is large relative to standard error, resulting in inconsistent estimation.

This happens in many models when the number of parameters has an order

similar to that of the number of clusters. For example, consider the logistic matched-

pairs model. The data form two dependent binomial samples. Cluster i consists of

the responses (yi1, yi2) for matched pair i. Observation t in Cluster i has yit = 1 (a

success) or 0 (a failure), t = 1, 2. These data form a 2x2 table. Now an extension

of the logit matched-pairs model allows T > 2 observations in each cluster. ML

estimators of βt have an approximate asymptotic bias of order T/(T −1) (Andersen

1980, pp. 244-245) [4]. Neyman and Scott (1948) demonstrated that maximum

likelihood estimators can be severely biased even as the sample size gets large. This

is a common occurrence if there are “infinitely many” nuisance parameters.

For meta-analysis, the many nuisance parameters problem seems inevitable

because of the way data are collected. Nevertheless, the GLM is maximized numer-

ically by the function glm( ) in the software package R [16].
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2.4 Random Intercept GLMM

2.4.1 Randomness versus Determinism

The question of formulating a model for patterns of variation is not central in some

contexts. For example, in normal theory balanced randomized block designs, it is

unimportant whether or not block effects are regarded as random. In other contexts,

effects of some direct interest should be represented as random variables only as a

“last resort;” for example, an interaction between treatment effects and intrinsic

factors of interest (e.g.,“centers”) should be taken as random only if they cannot be

“explained” in some way. When there is a large number of parameters of secondary

interest representing similar effects in an unbalanced design, it will often be good to

consider representing them by random variables. This is partly because the occur-

rence of a large number of nuisance parameters means that unmodified maximum

likelihood methods may be inappropriate and partly because higher precision may

be achieved by a represention in terms of random variable with a well-behaved dis-

tribution [6]. In order to reduce the many nuisance parameters in fixed intercept

GLM, a random intercept Mixed GLMM is used.

2.4.2 Random Intercept Mixed Model

Conditional on u, a GLMM resembles an ordinary GLM. Let E[yij|u] = µij. The

conditional linear predictor for a GLMM has the form

g(µij) = x′
ijβ + z′ijui. (2.7)
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for link function g(·). The random effect vector u is often assumed to have a

multivariate normal distribution N(0,D). In our case, zij = 1, for j = 1, . . . , ni,

so this simplified ui has a univariate normal distribution. The model is called a

random intercept model. The random intercept GLMM can be also written

logit(πij) = µ + ai + β1TFAij + β2(TFAij)
2 + β3KCAij (2.8)

where µ+ai, i = 1, 2, ..., 43, are treated as random intercepts. Here µ is an unknown

parameter and the ai are i.i.d. N(0, σ2
a). Groups in the same set share the same

value of ai but different sets have different values of ai. These values are unobserved

and treated as independent random variables.

This is an alternative way of handling the large number of nuisance parameters

in the logistic model for the rat data. It eliminates ai by averaging with respect to

their distribution, yielding a marginal distribution. This mixed effect model only

involves 5 parameters. It is more manageable, in comparison to the previous fixed

effect model, which had 46 parameters.

Let ηij = β1TFAij + β2(TFAij)
2 + β3KCAij. Then the likelihood for the

mixed GLM is

L =
43∏

i=1

∫ ∞

−∞

Ji∏

j=1

(
nij

yij

)(
exp[(µ + ai + ηij)yij]

[1 + exp(µ + ai + ηij)]nij

)
1

σa

√
2π

exp

(
− a2

i

2σ2
a

)
dai (2.9)

Usually, the main focus in using a GLMM is inference about the fixed effects.

The random effects part of the model is a mechanism for representing how positive

correlation occurs between observation within a cluster. Parameters pertaining to

the random effects may themselves be of interest, however. For instance, the esti-

mate σ̂ of the standard deviation of a random intercept may be a useful summary
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of the degree of heterogeneity of the population. When σ = 0, the GLMM simplifies

to the ordinary model treating all observations as independent.

2.4.3 Inference in GLMM

How might one go about fitting a model like (2.7)? In general, evaluation of the

likelihood can be quite difficult, because the integration is of a dimension equal to

the dimension of ui. In our case, the random intercepts reduce to a product of

one-dimensional integrals and hence can be evaluated numerically. Inference using

ML would proceed using the usual asymptotic approximations:

• ML estimates are asymptotically normal, with standard error estimates coming

from second derivatives of the log likelihood.

• Tests for fixed effect parameters would be based on the likelihood ratio test,

comparing twice the negative of the log likelihood for nested models. Alter-

natively, Wald tests could be formed.

• Tests of whether variances of random effects are zero can be based on the

likelihood ratio statistic.

This likelihood is maximized numerically over ϑ = (µ, β1, β2, β3, σ
2
a) by D. Bates’

R function glmer(). These numerical calculations were also checked using Slud’s

software [18].
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2.5 Conditional Logistic Regression

ML estimators of logistic model parameters work best when the sample size N is

large compared to the number of parameters. If the number of parameters increases

in proportion to the data accumulated as in the GLM described above, consistency,

normality, or optimality might not hold. It is our objective to seek a modified

likelihood function that depends on as few of the nuisance parameters as possible

while sacrificing as little information as possible. Conditional likelihood is one of

the approaches in solving nuisance parameter problems like this, when sufficient

statistics for cluster-level parameter are available.

As in the fixed GLM model, the model for the conditional approach is:

logit(πij) = αi + β1TFAij + β2(TFAij)
2 + β3KCAij (2.10)

Again, there are nij rats in SET i, group j, i = 1, 2, . . . , 43, j = 1, . . . , Ji and Yij ob-

served tumors in SET i, groupj, with assumed distribution Yij ∼ Binomial(nij , πij),

and fixed but unknown SET effects,αi.

The conditional likelihood approach eliminates nuisance parameters from the

likelihood by conditioning on their sufficient statistics. In the present problem, the

nuisance parameters are the intercepts in each set, µ + αi. The sufficient statistics

are Si = Si(Yi1, . . . , YiJi
) =

∑
j Yij, the total number of rats with tumors in set i.

We also can start from the GLMM and then go on to the conditional approach. In

GLMM, we assume that the SET effects follow a specified distribution, while in the

conditional approach, we treat the SET effects as fixed unknown parameters. The
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conditional likelihood for conditional logistic regression is:

Lc =
43∏

i=1

Ji∏

j=1




(
nij

Yij

)
exp[(β1TFAij + β2(TFAij)

2 + β3KCAij)Yij]
∑

zi

(
nij

zij

)
exp[(β1TFAij + β2(TFAij)2 + β3KCAij)zij]


 (2.11)

where the sum in the denominator ranges over all vectors zi = [zi1, . . . , zi,Ji
]′ such

that
∑

j zij = Si =
∑

j Yij.

A conditional likelihood is used just like an ordinary likelihood. The condi-

tional ML estimates of parameters contained in Lc are the parameter values max-

imizing Lc. Calculating using iterative methods, the estimators are asymptotically

normal with covariance matrix equal to the negative inverse of the matrix of second

partial derivatives of the conditional log likelihood. For the rat data we estimate

β1, β2, β3 by maximizing Lc numerically by means of Fay’s software [10] in R.

2.5.1 Random Effect versus Conditional ML Approaches

Compared with the random effects approach, the conditional ML approach has

certain advantages. As I → ∞, the conditonal MLE’s are consistent [3]. One does

not have to assume a parametric distribution for ui. It is difficult to check this

assumption in the random effect approach. Conditional ML is also appropriate with

retrospective sampling. In that case, bias can occur with a random effect approach

because clusters are not randomly sampled [14].

However, the conditional ML approach has several disadvantages. It is re-

stricted to the canonical link (the logit), for which reduced sufficient statistics exist

for ui. More important, it is restricted to inference about within-cluster fixed effects.

The conditioning removes the source of variability needed for estimating between-
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cluster effects. Also, this approach does not provide information about ui. Finally,

in more general models with covariates, conditional ML can be less efficient that the

random effects approach for estimating the fixed effects. Neuhaus and Esperance

(1996) [15] note that conditional ML may lose considerable efficiency when sample

sizes are small and covariates have strong within cluster correlation. As this corre-

lation approaches +1, the covariate effect resembles a between cluster effect, which

conditional MLE can not estimate.
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Chapter 3

Analysis of the Rat Data

3.1 Data example - The rat data

The data used in this paper are taken from a large data set, which was originally

collected from many separate studies and analyzed by Freedman et al. (1990) [8],

and then reanalyzed by Freedman (1994) [9] and by Fay et al. (1998) [10]. In this

data example of meta-analysis, statistical models are used to answer the biological

question: What are the effects on mammary tumor development of increasing energy

intake (KCA) and fat intake (TFA), respectively?

The experimental data were drawn from public articles using MEDLINE, cov-

ering the years 1966–1987. There were 104 groups consisting of 2844 Sprague-Dawley

rats altogether in the 43 sets (clusters/experiments/studies). There were typically

20–40 rats in each group and 2–4 groups per set. Experiments received essentially

the same treatment and shared similar environments except for diets “controlled”

to be different.

Freedman et al. recorded the study indicator (SET), the number of animals in

the group (N), the number of animals developing mammary tumors (NTUM), the

percent of calories from fat (PCF) and the total calories consumed (KCA) for each

of the 104 groups of animals in the data. The variable KCA was often not reported

in the original articles. In such a case Freedman et al. imputed the missing KCA
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variable as 52.5 kCal. The justification was that rats typically self-regulate their

diets and eat essentially a constant amount of total calories.

3.1.1 Data Structure

Let Zijk, i = 1, . . . , 43, j = 1, . . . , Ji, k = 1, . . . , nij, be the response indicating

whether rat k in group j of set i does or does not develop tumors. Here Ji is the

number of groups in set i, and nij is the number of rats in group j of set i. So,

Zijk is 1 if a rat develops tumor and 0 otherwise. For group j in set i, the Zijk

k = 1, . . . , nij are assumed to be independent Bernoulli variables with parameter

πij. Let Yij =
∑nij

k=1 Zk ∼ Binomial(nij, πij), j = 1, . . . , Ji, i = 1, . . . , 43. Then Yij

is the outcome variable, the number of rats developing tumors in each group. So,

the effective sample size for these data is N = 104. We assume Yij, j = 1, . . . , Ji,

are independent and binomially distributed, given set i, with success probability

πij. Thus, the set identifier is treated as a grouping variable and also as a factor

covariate. The variable “SET” is really a multicolumn dummy covariate. Besides

“SET”, there are two other covariates: proportion of dietary fat (PCF) and total

calories (KCA).

3.1.2 Data issues

The formula TFA = KCA x PCF/100 shows the relation between fat and calories

(where PCF is the average percent calories from fat). The KCA values in 79 of

the groups were imputed by Freedman et al. [8]. Based on the belief that most
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rats will self-regulate their intake to eat a constant amount of the diet, the missing

KCA values were imputed as the constant 52.5 kCal. Freedman’s paper [9] shows

that there is some discrepancy between analysis with and without inclusion of the

experiments for which KCA was missing. I created an indicator variable (MISSING-

KCA) to investigate the effect of the missing variable. This MISSING-KCA turned

out to be not significant in the fixed effect model.

In an attempt to reduce the total number of SETs, a cluster analysis was used

to combine 43 SETs into 7 clusters. However, adding this cluster indicator to the

fixed effect model had no significant effect. Similarly, using Group ID and Cluster

indicator in place of SET had no significant effect on the model fit.

3.2 Fixed effect models

Notation:

TFA2 = calories from fat,

KCA2 = total calories,

SET = factor indicating set or experiment.

Three models for logit(πij)

Model A : SET + TFA2 + KCA2

Model B : SET + TFA2 + KCA2 + (TFA2)2

Model C : SET + TFA2 + KCA2 + TFA2 * SET

Model A is simplest and was originally used by Freedman [8]. Model B fits better

than Model A, but is less intuitive because of the square term of TFA2. Model
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C says that the slope of TFA2 depends on SET, so no meta-analysis is possible.

This could be due to inadequate specification of model (e.g., relevant explanatory

variables have been omitted or the link function is incorrect) or to a more complex

structure. (A more complicated model, SET + TFA2 + KCA2 + TFA2*SET +

KCA2*SET, was examined, but this model is overparameterized because KCA2

does not vary in most SETs, leading to confounding of SET and KCA2*SET. The

GLM fit of this model leads to singularities.)

From Table 3.1, comparing the deviance statistics to the nominal χ2 critical

values would suggest that Model A and Model B do not fit the data, but Model

C does fit, contradicting scientific belief. However, the theory behind the deviance

test of fit is based on asymptotics for fixed I and all nij → ∞. The applicability of

these asymptotics is questionable here.

Table 3.1: Comparison for models with different explanatory variables

Model Residual Deviance Degrees of Freedom Nominal p-value

Model A 91.924 59 0.003

Model B 81.241 58 0.024

Model C 22.621 16 0.125

We also tried a more general family of link functions, which is

g(π, α) = log

[
(1 − π)−α − 1

α

]
. (3.1)

If α = 1 then g(π) = log[π/(1 − π)], the logit link. As α → 0, then g(π) →
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log[− log(1−π)], the complementary log-log link. Unlike the logistic transformation,

the response function of the complementary log-log is not symmetric about π = 0.5.

Deviances based on the complementary log-log link function were larger than those

for the logit link and the same predictors.

Further, we look at the regression coefficients and their standard errors. From

Table 3.2, the regression coefficients including the SETs coefficients in Model A and

Model B are significant, but a lot of large estimated standard errors appeared in

Model C. This may indicate near singularity of Model C and raises doubts about

the validity of the computation.

Also, we look at the dispersion parameter, φ, so that Var(Yij) = nijπij(1−πij)φ.

The default for the dispersion parameter is 1 for the model fitting in software R

procedure glm(). By using “quasibinomial”, allowing a dispersion parameter to be

fitted from the data, the fitted dispersion parameters are 1.577 and 1.300 respec-

tively for Models A and B, which indicates there is dependence among observations.

Combining the information above, we choose Model B for further investigation.

Table 3.2: Comparison for regression coefficients and standard errors under three

different models with dispersion fixed at 1

Model A (s.e.) Model B(s.e.) Model C (s.e.)

TFA2 0.081 (0.008) 0.172 (0.028) 0.889 (3.28e+02)

KCA2 0.125 (0.023) 0.126 (0.018) 0.105 (3.09e-02)

(TFA2)2 – (–) -0.003 (0.001) – (–)
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3.3 Deviance issues

Let Yij be the outcome variable, the number of rats developing tumors in group j

within set i and let nij be the number of rats in the group. In the rat data, there

are 4 groups having 100 % cancer rate. We refit Model B on the data obtained after

removing the 4 SETs (out of 43) containing those groups, which left 96 groups (out

of the original 104), and compare the data analysis to the previous based on the full

data set. From Table 3.3, we see that the parameter estimates are almost equal, but

the residual deviance of the reduced data is considerably smaller. The square term,

(TFA2)2, is still needed. This analysis raises a question of whether the yij = nij is

a serious issue for the model fit.

Table 3.3: Fixed model analysis of full data (43 SETs) and reduced data (39 SETs)

Reduced Full

TFA2 0.171 (0.029) 0.172 (0.028)

KCA2 0.125 (0.018) 0.126 (0.018)

(TFA2)2 -0.004 (0.001) -0.003 (0.001)

Residual Deviance 63.991 81.241

d.f. 54 58

p-value 0.166 0.024
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3.4 Mixed Effect and Conditional Analyses

We fit Model B with random SET effect, using Bates’ glmer() function in R software.

In order to justify the use of random effect model, the SET effects in the fixed effect

model and the random effect model were tested by using the Shapiro-Wilk normality

test, and both appear normal. The mixed effect model point estimates of regression

coefficients are very close to those from the fixed effect model, as shown in Table

3.4. Bates’ glmer() function does not provide a test for significance of the random

SET effect, so we will conduct a simulation to test for the random SET effect in the

simulation study described in the next Chapter. Neither Bates’ glmer() function

nor the conditional logistic regression software of Fay provides a test of model fit.

Table 3.4: Mixed model analysis of full data (43 SETs) and reduced data (39 SETs)

Reduced Full

Intercept -6.840 (0.920) -6.897 ( 0.928)

TFA2 0.168 (0.027) 0.169 (0.027)

KCA2 0.122 (0.017) 0.125 (0.018)

(TFA2)2 -0.004 (0.001) -0.004 (0.001)

Var(SET) 0.829 (—-) 0.912(—-)

Residual Deviance 197.2 228.1

Log likelihood (from Eq. 2.9) -98.59 -114.1

d.f. 91 99
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Finally, we use Fay’s software for conditional logistic regression. Results are

presented in Table 3.5. The coefficient estimates agree well with those of the full

likelihood methods assuming either fixed or random SET effects.

This analysis is equally valid for either fixed effect or random effect models,

but it may lose information about the regression coefficients as a result of looking

only at the conditional distribution of the data. The efficiency of the conditional

logistic analysis will be examined in Chapter 4.

Table 3.5: Conditional logistic regression analysis of full data (43 SETs) and reduced

data (39 SETs)

Reduced Full

TFA2 0.168 (0.026) 0.172 (0.028)

KCA2 0.123 (0.018) 0.126 (0.018)

(TFA2)2 -0.004 (0.001) -0.003 (0.001)

Log likelihood (Eq. 2.11) -1386.364 -1434.096

3.5 Research Questions

1. How well does asymptotic theory describe the behavior of estimates with the

rat data structure and low dimensional parameters?

2. What is the relative efficiency of conditional logistic regression compared to

maximum likelihood in the generalized linear mixed model? How does the
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relative efficiency depend on the group sizes nij, the number of SETs, or the

true tumor probabilities πij?

3. How well does asymptotic theory describe the behavior of estimates in the

fixed effect model with many nuisance parameters? Does the classical theory

apply as the number of SETs gets large? Does the validity of the theory

depend on the true tumor probabilities πij?

4. What is the relative efficiency of conditional logistic regression compared to

maximum likelihood in the fixed effect model with many nuisance parameters?

How does the relative efficiency depend on the group sizes nij, the number of

SETs, or the true tumor probabilities πij?

5. Is the analysis of the mixed model robust against departures of the random

effect distribution from normality?

We address these questions by simulation studies in Chapter 4.
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Chapter 4

Simulation Studies

Each simulation study in this chapter varies one or several of the following factors.

Group size nij: The original nij, satisfying 20 ≤ nij ≤ 40 rats for each group, or

nij × 10.

Number of SETs: 43 SETs or 86 SETs.

Tumor rates for each group, πij: The original πij, satisfying 0.07 ≤ πij ≤ 0.98,

or adjusted πij, satisfying 0.10 ≤ πij ≤ 0.90. The adjusted tumor rates are

exp(ηij/2−1)/(1+exp(ηij/2−1)), where ηij are the original linear predictors.

Method of analysis: Fixed-intercept GLM, random-intercept GLMM, or condi-

tional logistic regression.

Random effect distribution: N(0, σ2), scaled Student t with 4 d.f., shifted and

scaled gamma(4,1) and uniform[−σ
√

3, σ
√

3]. The shift and scale factors are

chosen so that all four distributions have mean zero and variance σ2.

All the simulations are done by using the R (Version 2.6.2) software package.

Each simulation is based on 1000 Monte Carlo replications.
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4.1 Bounded πij and Many Nuisance Parameters in Fixed-effect GLM

4.1.1 Modeling Issues

In the logistic regression model, the responses Yij are independent and Yij ∼ binomial(nij , πij).

The binomial pmf can be written in exponential family form as

f(y|π) = h(y)c(π) exp[w1(π)t1(y)],

where

h(y) =





(
n
y

)
for y = 0, 1, . . . , n

0, otherwise,

c(π) = (1 − π)n, 0 < π < 1,

w1(π) = log(π/(1 − π), 0 < π < 1,

t1(y) = y.

Note that the parameter values π = 0 and π = 1 are sometimes included in the

binomial model, but we should exclude them here because in logistic regression

π = exp(η)/(1 + exp(η)), where η is the logit or log odds of success. The logit can

be any real number, but π must lie in the open interval (0, 1).

4.1.2 Convergence and Existence of Finite Estimators

The log-likelihood function for the logistic regression model is a strictly concave

function of the πij. Maximum likelihood estimates of the πij exist and are unique in

unrestricted binomial models. However, the existence, finiteness, and uniqueness of
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maximum likelihood estimates of the logistic regression parameters depend on the

patterns of data points in the observation space [2].

In some simulations performed in this Chapter, there are SETs having πij very

close to 1 for all groups j. Therefore, with a nonnegligible probability, simulated

data may have Yij = nij for all groups in set i. In such a case the MLE of πij is 1

and the MLE of αi is infinity under the fixed effect model.

In practice, the glm() function in R fails to recognize that α̂i = ∞. Instead

it produces a large but finite estimate of αi. After a few cycles of iterative fitting,

the log likelihood looks flat at the working estimate, and convergence criteria are

satisfied. The software then reports unreasonably large positive values of α̂i and

huge standard errors for α̂i in about 12% of simulated GLM analyses. The large

standard errors arise because they are calculated from the inverse matrix of negative

second derivatives, which will all be very close to zero [1].

4.1.3 Research Question

As mentioned above, the logistic regression model assumes 0 < πij < 1. However,

in practical situations we sometimes observe Yij/nij = 1. We would like to know

how this affects the estimation. Also, we know ML estimators of logistic model

parameters work best when the sample size n is large compared to the number

of parameters. If the number of nuisance parameters increases in proportion to

the data accumulated, as in the fixed effect model, does the increasing number of

nuisance parameters cause bad behavior of the analysis? Or is the bad behavior of
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analysis entirely due to cases where Yij/nij = 1?

4.1.4 Simulation Design

We design two pairs of comparisons:

1. Situation A vs. Situation B

Situation A: nij satisfy 20 ≤ nij ≤ 40 rats for each group; number of SETs

= 43; πij satisfy 0.07 ≤ πij ≤ 0.98.

Situation B: nij satisfy 20 ≤ nij ≤ 40 rats for each group; number of SETs

= 43; πij satisfy 0.10 ≤ πij ≤ 0.90.

2. Situation C vs. Situation D

Situation C: nij satisfy 20 ≤ nij ≤ 40 rats for each group; number of SETs

= 86; πij satisfy 0.07 ≤ πij ≤ 0.98.

Situation D: nij satisfy 20 ≤ nij ≤ 40 rats for each group; number of SETs

= 86; πij satisfy 0.10 ≤ πij ≤ 0.90.

With the different situations in the simulation, the true values for each situa-

tion are varied. Instead of looking at actual values of sample moments, we compare

their relative values. Let β̂Monte Carlo be the average of β̂ over 1000 Monte Carlo repli-

cations and let seMonte Carlo be the sample standard deviation of the Monte Carlo

realizations of β̂. Two statistics are calculated:

1. Relative bias = [(β̂Monte Carlo − βTrue)/|βTrue|] × 100% .
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2. Relative s.e. = coefficient of variation = (seMonte Carlo/βTrue) × 100% .

The SET parameters αi are nuisance parameters, so we do not report results

on all of them. Instead we only report results on SET 1, which is typical of the 36

SETs with only a single value of KCA2.

4.1.5 Simulation Results and Discussion

4.1.5.1 Effect of Bounding πij

In the comparison of Situation A vs. Situation B, we examine how the phenomenon

of Yij = nij affects the estimation of the regression coefficients and SET effects.

From Table 4.1, the estimated regression coefficients of TFA2, KCA2, and (TFA2)2

look good in both situations. Note that the relative s.e. values always are larger in

Situation B than in Situation A. This is because we adjusted the πij away from 0

or 1, and the variance will be the maximum when p = 0.5.

However, for the SET 1 effect, the relative bias is -40.59%, and Relative s.e. is

114.91% in SET 1 whenever Yij = nij for all groups within SET 1. In Situation A,

the estimates of SET 1 fall into two groups: one group is centered around −5 and

contains about 88% of 1000 simulations, and the other group is centered around 11

and contains 12% of 1000 simulations. See Figure 4.1. In contrast, in Situation B

the estimates of SET 1 are centered around −4 and have a bell shaped distribution.

See Figure 4.2. These results indicate that when yij = nij, estimates produced by

glm() are unreliable.
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Table 4.1: Effect of Bounding πij, where 20 ≤ nij ≤ 40 and number of SETs = 43

for both situations. In situation A, 0.07 ≤ original πij ≤ 0.98 and in situation B,

0.10 ≤ adjusted πij ≤ 0.90.

Original πij Adjusted πij

Coefficient Rel. Bias Rel. se Rel. Bias Rel. se

TFA2 2.34 16.24 2.42 28.62

KCA2 2.96 15.40 2.56 29.35

(TFA2)2 2.72 29.63 3.89 50.43

SET 1 −40.59 114.91 1.57 29.69

Simulated SET1 Effect

F
re

qu
en

cy

−10 −5 0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Figure 4.1: When 0.07 ≤ original πij ≤ 0.98, in 88% of 1000 simulations the SET 1

effect is centered around −5, and in 12% of 1000 simulations it is centered around

11.

We can explain the reason numerically based on the theory presented above.
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Adjusted Tumor Rates (simulation:ABC’4)
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Figure 4.2: When 0.10 ≤ adjusted πij ≤ 0.90, the estimates of SET 1 are centered

around −4 and have a bell shaped distribution.

The likelihood for the fixed effect model is:

L =
43∏

i=1

Ji∏

j=1

(
nij

yij

)
exp[(αi + β1TFAij + β2(TFAij)

2 + β3KCAij)yij]

[1 + exp(αi + β1TFAij + β2(TFAij)2 + β3KCAij)]nij

The log-likelihood is:

log L = log(const) +
∑∑

yij(αi + β1TFAij + β2(TFAij)
2 + β3KCAij)

−
∑∑

nij log[1 + exp(αi + β1TFAij + β2(TFAij)
2 + β3KCAij)].

We differentiate log L with respect to αi and set it equal to zero to obtain:

d log L

dαi

=
Ji∑

j=1

[
Yij − nij

(
exp(αi + β1TFAij + β2(TFAij)

2 + β3KCAij)

1 + exp(αi + β1TFAij + β2(TFAij)2 + β3KCAij

)]
= 0

Therefore, if yij = nij for each j,

exp(αi + β1TFAij + β2(TFAij)
2 + β3KCAij)

1 + exp(αi + β1TFAij + β2(TFAij)2 + β3KCAij)

is forced to be 1. If the covariates are not constant, this forces α̂i = ∞. Our

average estimated regression coefficients are β̂TFA2 = 0.172, β̂KCA2= 0.126, and
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β̂(TFA2)2 = −0.003. For Group 2 in SET 1, TFA2 = 20 and KCA2 = 52.5. So

β̂TFA2(TFA2) + β̂KCA2(KCA2) + β̂(TFA2)2(TFA2)2 = 8.855.

If α̂i ≈ 11, the typical value of our “bad” estimates, then the logit is log(π̂ij/(1 −

π̂ij) = 19.855. So α̂i appears to go to infinity, although in fact α̂i ≈ 11 is finite.

In the 1000 Monte Carlo replications, there are 12% bad estimates for SET 1.

This also can be explained. In SET 1, we have

π11 = 0.894 n11 = 14,

π12 = 0.981 n12 = 16.

Therefore

P [Y11 = n11, Y12 = n12] =

(
14

14

)
(0.894)14

(
16

16

)
(0.981)16 = 0.12256.

Note that the bad behavior of estimation on SET 1 happened only when all the

groups within that SET are have Yij = nij. When some but not all groups within

one SET have Yij = nij, the estimate of that SET parameter involves data from

other groups in the same SET, and the estimate will be finite.

4.1.5.2 Ratio of (Number of Nuisance Parameters)/(Number of Ob-

servations)

In the previous comparison, there were 43 SETs in both Situation A and Situation

B. In the following comparison there are 86 SETs in both Situation C and Situation

D. We investigate whether or not more nuisance parameters make the estimation
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worse. Usually, we want the ratio of (number of nuisance parameters)/(number of

observations) to go to zero. But here we force the ratio to be constant by doubling

the number of SETs and keeping the nij the same. From Table 4.2, Figure 4.3 and

Figure 4.4 we see the results are not much different from the previous comparison.

So for the estimation, the ratio of (number of nuisance parameters)/(number of

observations) does matter but not the number of nuisance parameters.

Table 4.2: Effect of bounding πij while adding nuisance parameters (Situation C

vs. Situation D), where 20 ≤ nij ≤ 40 and number of SETs increase to 86 for

both situations. In situation C 0.07 ≤ original πij ≤ 0.98 , in situation D 0.10 ≤

Adjusted πij ≤ 0.90.

Original πij Adjusted πij

Coefficient Rel. Bias Rel. se Rel. Bias Rel. se

TFA2 1.44 11.61 1.49 20.43

KCA2 2.38 10.62 3.12 20.28

(TFA2)2 1.07 21.09 1.36 36.36

SET 1 −38.37 110.04 2.21 21.86
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86 SETs (simulation:AB’C3)
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Figure 4.3: SET1 effect (Situation C) where 20 ≤ nij ≤ 40 and 0.07 ≤ original

πij ≤ 0.98, but number of SETs increases to 86.

86 SETs & Adjusted Tumor Rates (simulation:AB’C’7)
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Figure 4.4: SET 1 effect (Situation D), where 20 ≤ nij ≤ 40 and 0.10 ≤ adjusted

πij ≤ 0.90, but number of SETs increasing to 86

4.1.5.3 The Consequence of Imputation for Missing Values and Bounded

πij on SET 1

When there is only one value of KCA2 in a SET, the SET effect and the KCA2

effect are confounded. (One can not decompose the sum αi + β2KCA2i into its

39



components.) The result is that there is correlation between α̂i and β̂2KCA2i, since

only their sum can be estimated. All SETs have two or more values of TFA2, so

there is no confounding of SET and TFA2 effects.

When some probabilities are close to 1, there is also the problem of “bad”

estimates of SET effects. Figure 4.5 and Figure 4.6 illustrate the situation for SET

1 under Situation A. Note that in each scatterplot there are two clouds of points,

corresponding to “good” and “bad” estimates. These clouds of points correspond

to the bimodal histogram in Figure 4.1. There is no correlation between β̂TFA2 and

the SET 1 effect, but considerable correlation between β̂KCA2 and the SET 1 effect.
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Figure 4.5: TFA (no missing value) vs. SET 1, where 20 ≤ nij ≤ 40 and 0.07 ≤

original πij ≤ 0.98.

40



0.08 0.10 0.12 0.14 0.16 0.18 0.20

−
5

0
5

10
15

Simulated Coeff. of KCA2

S
im

ul
at

ed
 S

E
T

1 
E

ffe
ct

Figure 4.6: KCA (imputation for missing value) vs. SET 1, where 20 ≤ nij ≤ 40

and 0.07 ≤ original πij ≤ 0.98.

The pattern is somewhat different under Situation B. Here the SET 1 estimates

have a unimodal distribution, so the scatterplots of Figure 4.7 and Figure 4.8 each

consist of a single cloud of points. There is no correlation between β̂TFA2 and the

SET 1 effect, but a high correlation between β̂KCA2 and the SET 1 effect.
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Figure 4.7: TFA(no missing value) vs. SET 1 (Situation B), where 20 ≤ nij ≤ 40

and 0.10 ≤ adjusted πij ≤ 0.90.
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Figure 4.8: KCA (imputation for missing value) vs. SET 1 (Situation B), where

20 ≤ nij ≤ 40 and 0.10 ≤ adjusted πij ≤ 0.90.

Though these simulation results look surprising and are not seen in the real

data, could these situations happen? One of our conjectures is that when nij = Yij

happens in laboratory studies, the laboratory researchers may put the “bad” results

aside and not bother to publish them. Is this a “publication bias” in Meta-analysis?

4.2 Behavior of Deviance in Fixed Effects Analyses

4.2.1 Sampling Distribution of the Deviance

In the following we consider the case where there is no nuisance parameter. One

way of assessing the adequacy of a model is to compare it with a more general

model with the maximum number of parameters that can be estimated while still

remaining within the class of generalized linear models with the same distribution

and same link function as the model of interest. If there are N binomial(ni, πi)

observations Yi, i = 1, . . . , N , with potentially different πi, then a saturated model
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can be specified with N parameters. Under the saturated model π̂i = Yi/ni.

Let πmax denote the parameter vector for the saturated model and pmax denote

the maximum likelihood estimator of πmax. The likelihood function, L(pmax; y) for

the saturated model will be larger than any other likelihood function for these ob-

servations with the same assumed distribution and link function, because it provides

the most detailed description of the data. Suppose that the model of interest is a

GLM with πi = πi(β) and let L(b; y) denote the maximum value of the likelihood

function for the model of interest. Then the likelihood ratio

λ =
L(pmax; y)

L(b; y)

provides a way of assessing the goodness of fit for the model. The deviance, also

called the log likelihood ratio statistic, is

D = 2[log L(pmax; y) − log L(b; y)] = 2 log λ.

If the fitted model is correct, the number of parameters N is fixed and all ni → ∞,

then the sampling distribution of the deviance is, approximately,

D ∼ χ2(N − p)

where

N is the number of parameters in the saturated model,

p is the number of parameters in the model of interest.

If one fits a linear model and the response variables Yi are Normally distributed

with known variance σ2, then D = SSE/σ2, where SSE is the usual residual sum

of squares and D has an exact chi-squared distribution. In this case, however, D
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depends on σ2 which, in practice, is usually unknown. This means that D cannot

be used directly as a goodness of fit statistic.

For Yi’s with other distributions, the sampling distribution of D may be only

approximately chi-squared. If the number of parameters under the saturated model

increases as the sample size N increases, the approximation will often not improve

and the usual likelihood ratio approximation argument does not apply.

However, for the Binomial distribution with fixed I and large values of ni,

i = 1, . . . , I, D can be calculated and used directly as a goodness of fit statistic

[20]. Notice that D does not involve any nuisance parameters (like σ2 for normal

response data). The deviance for a binomial model is

D = 2[l(pmax; y) − l(b; y)]

= 2
I∑

i=1

[
yi log

(
yi

πi(b)

)
+ (ni − yi) log

(
ni − yi

ni(1 − πi(b)

)]
.

This has the form

D = 2
∑

Obs log

(
Obs

Exp

)

where Obs denotes the observed frequencies Yij and nij − Yij and Exp denotes the

corresponding estimated expected frequencies of successes and failures.

4.2.2 Research Question

In previous chapter, the data analysis shows that the dispersion parameter is 1.3

and the deviance D is much greater than the nominal expected value of N −p = 58,

assuming the validity of the classical asymptotic theory. How accurate is the nominal
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χ2 approximation to the distribution of the deviance statistic? We want to know

whether the behavior of the deviance is related to group sample sizes, nij, the number

of nuisance parameters, or misspecification of the model, such as missing predictors,

measurement errors, etc.

4.2.3 Simulation Design

We design two groups of comparisons:

1. Situation A vs. Situation B

Situation A: nij satisfy 20 ≤ nij ≤ 40 rats for each group, number of SETs

= 43, πij satisfy 0.07 ≤ πij ≤ 0.98.

Situation B: nij satisfy 20 ≤ nij ≤ 40 rats for each group, number of SETs

= 86, πij satisfy 0.07 ≤ πij ≤ 0.98.

2. Situation C vs. Situation D vs. Situation E

Situation C: nij satisfy 200 ≤ nij ≤ 400 rats for each group, number of SETs

= 43, πij satisfy 0.07 ≤ πij ≤ 0.98.

Situation D: nij satisfy 20 ≤ nij ≤ 40 rats for each group, number of SETs

= 43, πij satisfy 0.10 ≤ πij ≤ 0.90.

Situation E: nij satisfy 200 ≤ nij ≤ 400 rats for each group, number of SETs

= 43, πij satisfy 0.10 ≤ πij ≤ 0.90.
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4.2.4 Simulation results and discussion

In the comparison of Situation A vs. Situation B, we investigate how a large numbers

of nuisance parameters may affect the behavior of the deviance. In comparisons

among A, C, D and E, we investigate the effect on deviance of group size, nij, and

of bounds imposed on πij.

From Table 4.3, Figure 4.9 and Figure 4.10 we can see that the distribution of

the deviance in both situations is stochastically larger than the nominal χ2 distrib-

ution. The means and variances are both larger than under a true χ2 distribution

and the graphs show that the deviance histograms are to the right of the theoretical

density. This means that doubling the sample size does not improve the agreement

of the deviance distribution to the theoretical χ2 distribution if the number of nui-

sance parameters is also doubled. It appears that the group sizes are too small to

justify the large sample theory of the deviance statistic. As a result, the deviance

test of fit is biased. For example, in Situation A the nominal χ2
58,0.05 cutoff point is

76.8, but from the simulation we find P [D > 77.7] = 0.10. Therefore a nominal 0.05

level deviance test has actual level greater than 0.10. In Situation B the results are

similar: χ2
119,0.05 = 145.5, but from the simulation P [D > 147.8] = 0.10.

The effect of bounding the πij away from 0 and 1 is shown in the comparison of

Situations A and D. Table 4.3 shows that the mean and variance of the deviance un-

der Situation D are closer to the nominal values of 58 and 116 than under Situation

A. Figure 4.9 and Figure 4.11 support this finding: under Situation D the deviance

histogram agrees more closely with the asymptotic χ2 distribution. The tail prob-
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Table 4.3: Effect of Nuisance Parameters, Group Size and Bounding πij on Mean

and Variance of Deviance

d.f. mean variance

Situation A(20 ≤ nij ≤ 40, SETs = 43, 0.07 ≤ πij ≤ 0.98) 58 62.30 138.95

Situation B(20 ≤ nij ≤ 40, SETs = 86, 0.07 ≤ πij ≤ 0.98) 119 127.40 251.33

Situation C(200 ≤ nij ≤ 400, SETs = 43, 0.07 ≤ πij ≤ 0.98) 58 58.26 117.23

Situation D(20 ≤ nij ≤ 40, SETs = 43, 0.10 ≤ πij ≤ 0.90) 58 60.42 126.94

Situation E(200 ≤ nij ≤ 400, SETs = 43, 0.10 ≤ πij ≤ 0.90) 58 58.19 107.28

Estimated Deviance: ABC [1] 
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Figure 4.9: The behavior of the deviance. Situation A (20 ≤ nij ≤ 40, SETs = 43,

0.07 ≤ πij ≤ 0.98).

abilities in Situation D agree somewhat more closely with the nominal probability,

but the agreement is still not good: the Monte Carlo 90 percentile of the deviance

is 75.2, so that 0.05 < P [D > 76.8] < 0.10, where χ2
58,0.05 = 76.8. Apparently the
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86 SETs(simulation:AB’C3)

Estimated Deviance: AB’C [3] 
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Figure 4.10: The behavior of the deviance. Situation B (20 ≤ nij ≤ 40, SETs = 86,

0.07 ≤ πij ≤ 0.98).

Estimated Deviance

D
en

si
ty

0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

Figure 4.11: The behavior of the deviance. Situation D (20 ≤ nij ≤ 40, SETs = 43,

0.10 ≤ πij ≤ 0.90).

possibility of all rats developing tumors has some effect on the distribution of the

deviance. This is mitigated somewhat if the πij are bounded away from 0 and 1.

Situations C and E illustrate the effect of increasing sample size while control-

ling the number of nuisance parameters. Table 4.3 shows that the mean and variance
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are close to the nominal values in both situations. Figure 4.12 and Figure 4.13 show

good agreement between the actual and theoretical χ2 distributions. The sample

quantiles also agree well with the theoretical χ2 quantiles. For instance, under Situ-

ation C the sample 95 percentile is 76.5, under Situation E the 95 percentile is 75.9,

and the theoretical quantile is 76.8. The agreement is comparably good for other

quantiles. We conclude that with very large (200–400) samples in each group, the

asymptotic theory for the deviance is reliable and the chance that all rats develop

tumors in some group is negligible.

Estimated Deviance: A’BC [2] 
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Figure 4.12: The behavior of the deviance. Situation C(200 ≤ nij ≤ 400, SETs =

43, 0.07 ≤ πij ≤ 0.98).
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Estimated Deviance: A’BC’ [6] 
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Figure 4.13: The behavior of the deviance. Situation E(200 ≤ nij ≤ 400, SETs =

43, 0.10 ≤ πij ≤ 0.90).

4.3 Tests of Variance of Random Effects in GLMM

When using maximum likelihood analysis, tests are often based on the improvement

in the maximized value of the log likelihood. The difference in twice the log likelihood

is compared to a chi-squared distribution for statistical significance. For testing

whether a single variance component is equal to zero the usual method must be

slightly modified [17], [19]. Ordinarily we would take twice the difference in log

likelihoods of the model with and without the random effect and compare that

directly to a χ1
2 critical value. The modification is either to calculate a p-value and

then cut it in half, or to compare to a cutoff point with twice the nominal α level.

The test of

H0 : σ2
u = 0 versus H1 : σ2

u > 0
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is a one-sided test. The usual likelihood ratio test is inherently two-sided and must

be adjusted to reflect this fact. Specifically, consider the ML estimators of σ2
u in a

balanced, one way random model. Under the normal theory, the ML estimator is

σ̂2
u = [(1 − 1/k)MS(Betw) − MS(Error)]+/n

where [·]+ = max(. , 0) denotes positive part.

If σ2
u = 0, then the ML estimator is often zero. In that case, the likelihood

ratio test (LRT) statistic is given by

LRT = −2[log L(σ2
u = 0) − log L(σ2

u = σ̂2
u)]

= −2[log L(σ2
u = 0) − log L(σ2

u = 0)]

= 0

About half the time the estimate would be zero so that the LRT statistic would be

zero. With a point mass of approximately 0.5 at 0, the usual asymptotic distribution

theory (suggesting a χ2
1 distribution) clearly breaks down because the estimate gets

“stuck” on the boundary. So the actual large-sample distribution under H0 is a

50:50 mixture of a χ2
1 and 0.

The software glmer() in R does not test hypotheses about variances of random

effects, nor does it produce standard errors or confidence bounds for variances of

random effects. Bates’ glmer() was used and Slud’s GLMM software is used for

checking. The two programs agree with each other to six decimal places for regres-

sion coefficients and standard error. For the mixed-effect model the log likelihood is

−1597.033. For the Fixed-effect model, which we fit as a GLMM with the variance
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of random effect set equal to 10−7, the log likelihood is −1736.198. The difference is

−1597.033 − (−1736.198) = 142.165. The value is compared to a chi-square cutoff

of χ2
1,0.90 = 2.71 instead of χ2

1,0.95 = 3.84. The test is highly significant at α level

= 0.05. This GLMM likelihood optimization estimated the variance of the random

effect as 0.882.

The asymptotic theory for GLMMs applies as the number of clusters increases,

rather than as the numbers of observations within the clusters increase. To compute

a confidence interval for σ2
a we performed a parametric bootstrap analysis. Using the

parameter values as estimated by glmer(), we generated 1000 bootstrap replications

of the original rat data. The random effects ai were distributed as N(0, 0.9115).

This is also the glmer() fitted value. Using these simulated random effects, we

then generated 104 binomial observations from the conditional logistic model, given

the ai. The bootstrap mean of σ̂2
a, the variance of the random effects, was 0.8847

and its standard deviation is 0.2262. The 95% bootstrap confidence interval for the

variance of the random effects was [0.4414, 1.3279], which does not contain 0. Note

that the bootstrap mean is not identical to the original glmer() estimate but is

close to the estimate based on the log-likelihood analysis discussed in the previous

paragraph.
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4.4 Robustness of Mixed Analysis against Non-Normality of Random

Effects

The issue of sensitivity to assumptions about the random effects distribution is not

completely resolved. Some literature indicates that the choice is not so crucial while

other papers indicate that it may be [1]. We explored the topic a little. The following

distributions of random effects were simulated:

1. N(0, σ2).

2. scaled Student t with 4 d.f.. This distribution has heavy tails.

3. shifted and scaled gamma(4,1). This distribution is skewed.

4. uniform[−σ
√

3, σ
√

3]. This distribution has light tails.

All four distributions have mean zero and are scaled to have variance σ2 = 0.9115,

the value estimated by glmer() on the rat data.

We generated random SET effects from these distributions and then analyzed

the data using GLMM, under the working assumption that they were normal ran-

dom intercepts. Figure 4.14 displays the histogram of estimated SET effect vari-

ances for the case where the simulated random effect were N(0, σ2). For simulated

uniform[−σ
√

3, σ
√

3] SET effects, the results were very close to those with normal

random effects. For Student t with 4 d.f., estimates of fixed effects were similar

to normals, but the variance of the random effect is underestimated and its s.e.

is higher. For Gamma(4,1), estimates, the standard errors of the fixed effects are

like those in the normal case. The random effect variance was underestimated, but
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with same standard error as in the normal case. Overall, estimation of fixed effect

parameters seems quite robust against misspecification of random effects, but the

estimation of random effect variances is sensitive to distributional misspecification.
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Figure 4.14: Histogram and kernel estimate of random effect density (normal random

effect - Correct model)

4.5 Efficiency Loss - Comparing Coefficient Estimator Variance for

Three Methods

Of the three approaches to meta-analysis considered in this thesis, conditional lo-

gistic regression is the simplest and fixed effect analysis is the most complicated.

We want to compare their efficiencies. The Monte Carlo variances of regression

coefficients from the different approaches were compared. Two sets of comparisons

are made:
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1. GLM vs. Clogist:

nij satisfy 20 ≤ nij ≤ 40 rats for each group; number of SETs = 43.

nij satisfy 80 ≤ nij ≤ 160 rats for each group; number of SETs = 43.

2. GLMM vs. Clogist

nij satisfy 20 ≤ nij ≤ 40 rats for each group; number of SETs = 43.

nij satisfy 20 ≤ nij ≤ 40 rats for each group; number of SETs = 86.

In each case 1000 Monte Carlo samples are generated. Samples with fixed effects use

the parameter estimates obtained from the glm() analysis of the rat data. Samples

with random effects use the parameter estimates obtained from the glmer() analysis

of the rat data. The relative efficiency for a particular scalar parameter is defined as

the ratio of the Monte Carlo variance of the conditional logistic estimator divided

by the Monte Carlo variance of the MLE, which should be asymptotically most

efficient. Recall that conditional logistic regression involves loss of all information

about intercepts and may also lose information about regression coefficients.

The asymptotic theory for fixed effect models assumes min{nij} → ∞ while

the number of groups is fixed. For small nij, as in the original rat data, Table 4.4

shows that the relative efficiencies are mixed. However, in this case we may generate

artifacts due to the phenomenon of all rats in a SET developing tumors. When this

occurs, glm() produces large but finite estimates of the SET parameter although

the MLE should be infinite. When the sample sizes are increased by a factor of 4,

the conditional logistic estimators are less efficient by anywhere from 1% to 7%, as
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Table 4.4: Relative Efficiency of coefficient estimators: (Variance from glm) / (Vari-

ance from clogist); 43 SETs, for 20 ≤ nij ≤ 40.

Coefficient glm variance estimate clogist variance estimate efficiency

TFA2 7.810434 × 10−4 8.212567 × 10−4 95.10%

KCA2 3.779182 × 10−4 3.275509 × 10−4 115.38%

(TFA2)2 1.319375 × 10−6 1.388029 × 10−6 95.05%

Table 4.5: Relative Efficiency: (Variance from glm) / (Variance from clogist); 43

SETs, for 80 ≤ nij ≤ 160.

Coefficient glm variance estimate clogist variance estimate efficiency

TFA2 1.959070 × 10−4 2.035563 × 10−4 96.24%

KCA2 7.962770 × 10−5 8.029840 × 10−5 99.16%

(TFA2)2 3.252529 × 10−7 3.507202 × 10−5 92.74%

shown in Table 4.5.

The asymptotic theory for GLMM calls for the number of levels of the random

effect to increase to infinity. Therefore we simulate data from either 43 SETs (104

groups) or 86 SETs (208 groups), with normally distributed random effects. Ta-

ble 4.6 shows efficiency losses of 14%–17% for the coefficients of TFA2 and (TFA2)2

but 17% higher efficiency for KCA2, while Table 4.7 shows that conditional logistic

regression is less efficient by anywhere from 8% to 12%.
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Table 4.6: Relative Efficiency: (Variance from glmer) / (Variance from clogist); 43

SETs, for 20 ≤ nij ≤ 40.

Coefficient glmer clogist efficiency

TFA2 7.074027 × 10−4 8.212567 × 10−4 86.14%

KCA2 3.849120 × 10−4 3.275509 × 10−4 117.51%

(TFA2)2 1.157775 × 10−6 1.388029 × 10−6 83.41%

Table 4.7: Relative Efficiency: (Variance from glmer) / (Variance from clogist); 86

SETs, for 20 ≤ nij ≤ 40.

Coefficient glmer clogist efficiency

TFA2 3.326970 × 10−4 3.796903 × 10−4 87.62%

KCA2 1.944651 × 10−4 2.103535 × 10−4 92.45%

(TFA2)2 5.455341 × 10−7 6.177444 × 10−7 88.31%
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For smaller samples with either random effects (Table 4.6) or fixed effects

(Table 4.4), we note that conditional logistic regression is more efficient than the

full likelihood estimates for the KCA2. Previously we have seen that there are strong

correlations between the KCA2 coefficient and the SET effects in the fixed effect

models. We conjecture that the anomalous relative efficiency results for KCA2 are

related to the fact that in most SETs only one value of KCA2 is used in all groups,

and typically that one value is the imputed value of 52.5. It appears that in such

SETs, the SET effect, whether fixed or random, is confounded with the KCA2 effect,

and this is somehow related to the efficiencies in smaller samples.
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Chapter 5

Conclusions and Future Research

We performed a variety of analyses on Freedman’s meta-analysis data and conducted

several simulation studies to address issues related to our findings and to check the

reliability of large sample approximations associated with our analyses.

Our analyses of the rat tumor data led to the following findings:

1. The data were analyzed using a fixed effect model, a random effect model, and

conditional logistic regression. Estimates of the logistic regression coefficients

based on these three methods were nearly the same. The standard errors were

also nearly the same.

2. Freedman’s original model was a fixed-effect model with three terms: SET,

TFA2, and KCA2. We found that the squared term, (TFA2)2, is also sig-

nificant according to the Wald test. Adding the (TFA2)2 to the model also

reduces the deviance from 91 to 81, which represents a significant likelihood

ratio test for the hypothesis that the coefficient of (TFA2)2 is zero. No other

second degree terms improved the fit significantly.

3. Slud’s GLMM software was used to test the hypothesis that the random effect

variance is zero. This produced an approximate likelihood ratio test which

rejected the null hypothesis. We also generated 1000 bootstrap replications

to produce confidence bounds for the variance of the random effects. The two
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procedures agree with each other, so we conclude that the random effects are

significant.

Simulation studies were performed to check bias and standard errors of esti-

mates in problems resembling the original rat data. We also used simulations to

check on the validity of large sample theory, as either as the group sizes or the

number of SETs became large. The important findings were as follows:

1. Under the fixed effect model, the regression coefficients were slightly biased.

The bias was reduced if the number of observations per group, nij, were all

increased. However, if the number of SETs was increased while the nij were

unchanged, the bias was not improved. Similar results were observed when

the data were modeled as a GLMM.

2. In fixed-effect models, when Yij/nij = 1 for all groups in SET i, the estimates of

SET effect produced by glm() are unreliable. The ratio, (number of nuisance

parameters)/(number of observations), determines the quality of the estimates

of SET effect instead of the number of nuisance parameters.

3. In the fixed-effect model, the group sizes of the current data seem too small to

rely on the large sample theory of the deviance statistic. The possibility of all

rats developing tumors has some effect on the distribution of the deviance. As

a result, the deviance statistic is stochastically larger than the theoretical χ2

variable and the deviance test of fit is biased. The deviance statistic produces

excessive Type I errors.
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4. For GLMM, estimation of fixed effect parameters is robust against misspecifi-

cation of the distribution of the random effects, but estimation of the random

effect variance is sensitive to misspecification of the random effect distribution.

5. When the sample sizes are increased by a factor of 4, the conditional logistic

estimators are less efficient by anywhere from 1% to 7%, compared to those

in the fixed-effect model. When the number of SETs are increased by a factor

of 2, the conditional logistic regression is less efficient by anywhere from 8%

to 12%.

Our conclusion:

Conditional logistic regression avoids the possibility of bias when the number of

studies is very large in a GLM analysis and also avoids effects of misspecification

of the random effect distribution in a GLMM analysis, but at the cost of some

information loss. When the number of studies is very large, it is worth while to try

a GLMM analysis. If the number of observations within a group is large, one might

want to use a GLM analysis.

5.1 Topics for Future Research

The rat data consist of many SETs, each with an unknown nuisance parameter.

If the data are to be analyzed as a fixed effect model and the number of rats per

group, nij were very small, we might expect that maximum likelihood estimates of

the logistic regression coefficients might be inconsistent. However, in our problem,
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the sample sizes in each group are moderate (20 ≤ nij ≤ 40). We saw small biases

in our simulations, but the biases were not substantial. The natural question to

study is: if the number of nuisance parameters grows, how fast must the nij grow

to assure consistency of the MLE’s?

If Yij = nij in several groups, finite maximum likelihood estimates of the group

specific intercepts may not exist. How should one proceed if the intercept parame-

ters are of scientific interest? This problem might arise if the intercept parameters

represent effects of some treatment factor, for example.

All of the analyses presented in this thesis were based on frequentist methods.

Bayesian methods might also be applied, but one must devise reasonable prior dis-

tributions and analyze the performance of the resulting estimates. The behavior of

Bayes estimates when the number of nuisance parameters is large is of particular

interest.
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