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CHAPTER ONE

INTRODUCTION

 1.1 Background

We live in an urbanizing world with more pervious surfaces being covered with 

pavements and with larger industries and more automobiles emitting greenhouse gases. 

The former has a direct impact on hydrology through reduced infiltration of precipitation 

while the latter may also have an impact through the temperature and precipitation 

changes associated with climate change. These influences are critical and may lead to 

permanent changes in the hydrology of streams. Some past studies have shown the 

outcome of climate change and urbanization as two drivers in reducing base flows during 

the low flow season and making peak flows much greater during storm events (e.g., 

Klein, 1979; Barringer et al., 1994; Paul and Meyer, 2001).  

The purpose of this research is to investigate the joint effects of both land use and 

climate change on the distribution of streamflows. Both a regression approach and a 

continuous streamflow modeling approach will be used to better understand the actual 

consequences of these two phenomena on streams in the Maryland Piedmont region.  

1.2 Problem statement

Climate change and urbanization are generally two man-made phenomena that 

have induced both direct and indirect negative consequences to our natural system. Past 

studies (Wilby et al., 1994; Querrner et al., 1997) suggest that under the condition of 

climate change and an urbanized watershed, flows in rivers will exhibit larger peaks 

during storms and smaller base flows during drought seasons.  Thus their studies are 
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important to better understand the consequences caused by each phenomenon.  

Understanding the consequences of climate change and urbanization can provide 

policymakers and legislators with better guidelines when developing policy on zoning the 

landscape or the allowable amount of carbon dioxide to be emitted by our vehicles and 

industry.

Precipitation and evaporation are other important drivers that can greatly affect 

streamflow distributions. Many studies have shown climate warming as a strong 

likelihood (e.g., I.P.C.C., 2001). Thus the effects of higher average temperatures and 

more extreme rainfall events on streamflow distribution need to be investigated in order 

to anticipate how streamflow might change with climate and adapt to any negative 

consequences on the conditions of our streams. Extreme rainfall events and longer 

durations between rainfall events will introduce greater peaks and drier base flows with 

longer drought events. Warming temperatures entail a bigger proportion of the budget for 

evaporated water back to the atmosphere. This would likely come at the expense of 

subsurface flow and groundwater flow. Thus it might be hypothesized that enhanced 

evaporation has the same effects on low flows as urbanization. 

The amount of water that infiltrates the land surface, recharges groundwater 

storage, and appears later in a stream is certainly important to both the hydrology and the 

ecology of the stream.  Additionally, more surface runoff implies less water to infiltrate 

as subsurface flow or groundwater flow. Water flowing through the ground takes a much 

longer time to reach the stream than surface water that travels freely. The longer time lags 

associated with groundwater contributions to the stream makes groundwater the main 

discharge source between storms and during dry seasons. Preventing the recharge of 
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groundwater implies less water reaching the stream when there is a drought or a lack of 

rainfall. Introducing longer drought durations in the streamflow can cause the death of all 

living organisms in the stream and the scarcity of water resources during times of low 

flow. 

Thus far, some possible consequences of climate and land use changes on the 

streamflow distribution have been identified. Anticipating such changes based solely on 

qualitative physical reasoning is not sufficient and quantitative analyses and modeling 

must be preformed. The use of a regression model approach or a continuous streamflow 

model to carry out such an investigation effort is widely utilized. In this research, both 

approaches will be used as separate tools, and the possibility of using them in a 

complementary fashion will be investigated. The regression model is based on observed 

data and can only convey what is imbedded in the these data. Thus having poor data, a 

poor functional form, or missing one important predictor that is not presented in the data 

can lead to poor results. The continuous streamflow model, on the other hand, is a 

conceptually-based modeling approach and provides greater insight into the functioning 

of the entire hydrologic system than the regression approach. However this approach is 

subjective where every modeller can end up with a different answer. Thus, we anticipate 

that the combination of both approaches might provide greater insight than either 

approach alone.

Past research (Simmons and Reynolds, 1982; Liebscher, 1983; Warner, 1984; 

Arnell,1989; Ferguson and Suckling, 1990; Wilby et al., 1994; Querrner et al., 1997; Paul 

and Meyer, 2001) have utilized statistical approaches and hydrologic modeling to identify 

long-term trends in the streamflow distribution under either climate change or land use 
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change.  Land use is usually dealt with as a static property of the watershed just like the 

area of the watershed. But in reality, land use varies temporally and should not be 

considered as a constant predictor especially if the watershed has undergone considerable 

development over the duration of the study period.  One of the strengths of this research 

effort is the fact that land use is allowed to vary on an annual basis. The study will also 

investigate the capability of using regression models imbedded into the later selected 

continuous streamflow model to reduce the number of predictors for which subjective 

calibration is required. This will allow for less tuning by researchers; thus, reducing the 

subjectivity and bias of the continuous streamflow model approach.

1.3 Objectives

The objective of this research is to investigate the joint effects of land use and 

climate change on the distribution of streamflows. A regression model approach and a 

conceptually-based model approach are pursued to best achieve the objectives of this 

research. The following objectives will be pursued:

1. The first objective is to illustrate the individual and joint effects of climate change 

and land use change on the distributions of streamflows by simulating three 

distinct scenarios: holding land use constant while varying climate, holding 

climate constant while varying land use, and lastly varying both land use and 

climate simultaneously. Considering all three scenarios are expected to provide 

answers to several crucial questions concerning the expected distribution of 

streamflow (low and peak flows) as a function of differing future land use 

scenarios and climate model inputs. First, do both climate and land use change 

contribute the same effects on low flows and peak flows? Do both climate and 
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land use drivers impose the same level of influence, or does either one dominate 

with a stronger influence on the magnitude of streamflows?  Answering these 

questions will possibly lead to better planning tools for developing future climate  

and land use policies.

2. The second objective is to select the most physically rational and practically 

attainable predictors when calibrating a regression model to predict low flows. 

Selecting the most representative predictors will allow us to effectively model the 

observed historical streamflow data. The calibrated model will provide the 

capability to predict the magnitude of low flow under the effects of both climate 

and land use change. Since low flows are the result of a lack of precipitation for a 

long duration, it is anticipated that physical predictors with some measure of long-

term antecedent precipitation and temperature to be meaningful in predicting low 

flows. 

3. The third objective is to employ a continuous streamflow model to perform the 

same analyses as described in the second objective. This will allow the 

computation of the distribution of streamflows using a numerical model in which 

the input variables need to be calibrated. In an effort to eliminate the subjectivity 

associated with calibrating hydrologic models, the continuous streamflow model 

will be embedded in to a numerical optimization program, NUMOPT, to provide 

the best match between predicted and observed streamflow. The level of 

acceptance of goodness-of-fit will rely on statistical measures. One of the 

advantages of using a continuous streamflow modeling approach over the 



6

regression approach is that the continuous streamflow model provides information 

on the statistical distribution of daily streamflows in a year.  

The continuous streamflow model to be used in this study is a 

conceptually-based hydrologic model modified somewhat from McCuen (1986) 

that takes as input a time series of precipitation and temperature and produces an 

output time series of streamflow.  This model follows the same basic structure of 

the Stanford watershed model (Crawford and Linsley 1966) now called HSPF 

(Bicknell et al., 1997).  We use this model because it is more readily modified 

than HSPF and will allow us greater flexibility in first calibrating streamflow 

response and ultimately in modifying the model to accept an input time series of 

land use.  The fact that the continuous streamflow model will deal with 

imperviousness as a dynamic rather than static input, is one of the strengths of this 

work over past studies, which generally treat land use as a static quantity.

The continuous streamflow model will be modified to accept an input time 

series of land use (e.g., imperviousness).  This version of the model will then be 

used to produce simulations that illustrate the model’s ability to reproduce 

historical streamflow in the study watersheds.  The consequences of future land 

use change on streamflow will then be simulated using the results from the 

scenarios mentioned in Objective 1.

4. The fourth objective of this thesis is to determine the primary sources of 

uncertainty in the regression and conceptual models, so future research can be 

directed to allocate greater weight to the most important sources of uncertainty in 

the model. The sources of uncertainty include the uncertainty of the structure of 
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the regression model, the uncertainty in the calibrated coefficients in the selected 

model form, the uncertainty in selecting the appropriate predictor variables for the 

regression model, and the uncertainty in the predicted streamflow values by the 

regression model and the continuous streamflow model. This analysis should 

address how much belief should be placed on the results of Objective 1 because 

the level of uncertainty might be sufficiently large to overwhelm any observed 

trend in magnitude of streamflows.

1.4 Summary

By calibrating both the regression and continuous streamflow models that predict 

stream discharges, this study will produce a better understanding of the consequences of 

climate change and urbanization on streams. Engineers need to calculate how the 

magnitude of streamflows will vary under the potential future scenarios when any 

hydrologic design is at stake. The ability to anticipate future streamflow distributions is 

valuable information to engineers to adequately manage and plan our water resources. 

Scientists can use the future predictions of streamflow distribution to study the effects of 

urbanization and climate change on the ecology and morphology of streams. Regional 

planners and policy makers can use the results of this study to aid in decision-making 

with regards to land use planning. Specifically, planners and policy makers could use 

these results to estimate potential changes in streamflow magnitudes that would result 

from different climate and land use scenarios.  Finally, the outcome of the research can 

be a starting point for future research on similar or more sophisticated studies of the 

effects of climate change and urbanization on streamflow.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction 

Understanding the statistical distribution of streamflows of a watershed, 

especially extreme events of low and peak flows, is important to hydrologists, ecologists, 

and engineers.  Researchers generally look at available historical data to make inferences 

about future predictions of streamflows, especially extreme events. With  suggested 

climate warming and the rapid and continuous urbanization which would have apparent 

influence on the hydrology of streams, it is important to investigate their effect on 

streamflow distributions. It is of great interest to many to learn the possible effects that 

climate and land use change can bring upon the distribution of streamflows.

2.2 Regression models to predict low flows     

Hydrologists are interested in low flows because they represent the extreme 

opposite of the flood response of the watershed. The low flow response of the watershed 

is indicative of the state of the underlying groundwater conditions, and reflects both the 

urbanization and the geology in the region.  Low flows may be used by ecologists as an 

index of the ecological health of the stream system. Low flows stress the survival of 

species dependant on certain flow characteristics within the stream.  Understanding and 

predicting low flows is a concern of engineers involved in water resources management 

to account for the availability of water-supply, the quality and quantity of water for 

human use, recreation, or irrigation purposes.  
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2.2.1 The effects of climate and land use change on low flows      

Low flows are generally estimated from streamflow time series using methods 

such as flow duration curves, frequency analysis of extreme low flow events, continuous 

low flow intervals, deficit volumes, base flow separation, and characterization of 

streamflow recessions (Smakhtin, 2000). These techniques are used when low flows are 

estimated for gauged sites and inferences are only made about the particular watershed 

from which the gauge streamflow time series are obtained. In the case when continuous 

streamflow time series are used in a regional sense to make inferences about ungauged 

sites, the regional regression approach is perhaps the most widely used approach (e.g. 

Tasker, 1972; Ludwig and Tasker, 1993).   This is generally accomplished by initially 

delineating a hydrologically homogeneous region with similar climate, geology, 

topography, vegetation and soils (Smakhtin, 2000). A regression model is then 

constructed by forming a relationship between dependant low flow characteristics and 

independent watershed and climatic predictors. This is generally accomplished by a 

multiple regression analysis. This process includes the selection of the form of the 

regression model, determination of the regression model parameters and the assessment 

of estimation errors.  

Stepwise regression is typically the common procedure to decide on the needed 

predictor variables in the regression model. Some of the predictors that are most 

commonly related to streamflows include: watershed area, mean annual precipitation, 

channel and/or watershed slope, stream frequency and/or density, percentage of lakes or 

forested areas, various soil and geological indices, length of the main stream, watershed 

shape, watershed perimeter, and mean watershed elevation (Smakhtin, 2000).  Tasker 
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(1972) concluded that drainage area and the average groundwater available from wells in 

some southeastern Massachusetts basins produce adequate regression models to predict 

the 7-day low flow at the 2-year and 10-year recurrence intervals (Tasker, 1972)

To assess the accuracy of the model, understanding the level of uncertainty can be 

an important part of the process of forming a regression model.  Uncertainty can be 

measured quantitatively by using a Monte Carlo simulation technique.  The Monte Carlo 

simulation technique is generally utilized in an effort to mimic the variability of a natural 

system, a hydrological system in this case, through many simulation runs (Ayyub and 

McCuen, 2003).  Tasker (1987) used a Monte Carlo technique to compare four methods 

for estimating the 7-day low flow for a 10-year and 20-year recurrence intervals. 

Additionally, many have used regression models to predict streamflows and to 

assess the effect of climate and land use on the magnitude of streamflows. As examples, 

Duell (1992) calibrated seasonal regression models; and Revelle and Waggoner (1983), 

and Duell (1994) calibrated annual regression models to study the sensitivity of 

streamflows to climate change. Duell (1994) concluded that precipitation has a greater 

effect on streamflows than temperature. 

Low flows are generally influenced by natural factors, such as climate, 

topography, geology, and soil, as well as man-induced effects, such as urbanization and 

upstream water use (Smakhtin, 2000).  Climate change, due to the increase in green-

house gases, and land use change, due to the continuous urbanization trend, are two

commonly studied factors to investigate the extent of their influence on streamflows and 

low flows in particular. Liebscher (1983) claimed that a climatic change is capable of 

exerting a change in the duration and volume of low flows as well as high flows and 
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suggested the additional use of long term temperature time series to better predict low 

flows. However, Arnell (1989) examined possible low flow trends in 89 catchments in 

western and northern Europe and observed a statistically significant increasing trend in 

annual number of low flows in only 7 of the basins attributable to climate warming.

Ferguson and Suckling (1990) studied an urbanizing watershed in Atlanta, 

Georgia, USA, and concluded through a regression approach that urbanization reduces 

low flows in dry years and increases low flows in wet years. Paul (2001) found that 

urbanizing watersheds exhibit a larger volume of the received precipitation as surface 

runoff and less as groundwater flow. The result is the observation of lower base flows in 

urbanizing watersheds.  Simmons and Reynolds (1982), Warner (1984), and Ferguson 

and Suckling (1990) concluded that low flows in urbanized watersheds have a tendency 

to decrease due to the effects of the impervious surface, limiting infiltration and 

enhancing evaporation.   

Wilby et al., (1994) studied the effects of both urbanization and climatic changes 

on low flows, and concluded that land use has a greater influence than climatic change.  

Querrner et al., (1997) also studied the effects of groundwater abstractions in addition to 

both urbanization and climatic change, on low flow trends in five small European 

catchments using physically-based models: BILAN (Kasparek and Krejcova, 1994), 

HBVMOR (Tallaksen and Erichsen, 1994), MODFLOW (McDonald and Harbaugh, 

1988), and MOGROW (Querner, 1997). Their study illustrated that both temperature and 

precipitation are factors that influence low flows. An increase of 2 oC led to a deficit 

volume of up to 20 percent.  For thorough details about low flows, many reviews have 
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been presented, include Riggs (1972), McMahon (1976), Beran and Gustard (1977), and 

a more recent review by Smakhtin (2000).  

2.3 Continuous streamflow models to predict low and peak flows     

Continuous streamflow models are generally used to better understand the 

hydrology of the watershed at stake and investigate the most effective indices that reflect 

the streamflow response in a watershed. Vogel and Kroll (1992) used a conceptual 

watershed model to identify the most representative indices to estimate low flows. They 

concluded that low flows are highly correlated with watershed area, average basin slope, 

and base flow recession constant. They also concluded that the use of a conceptually-

based model could suggest the predictor variables and the functional form of the regional 

regression equations. 

Continuous streamflow models are generally used as a tool to provide the best fit 

to the observed streamflow time series.  Such models are driven by weather data time 

series, such as: precipitation, temperature, soil moisture, etc. They are also generally 

calibrated to achieve the optimum agreement between simulated and observed flows for 

some selected hydrologic inputs values that in essence describe the hydrologic 

characteristics of the watershed. Then inputs that are considered to represent the effect of 

climate and land use change are then forced to vary under new simulations to study their 

effect on streamflows. The availability of future climatic time series is only a very recent 

capability with the global circulation models, such as the Canadian Climate Centre, CCC 

(Boer et al., 1992; Flato et al., 2000) and Hadley (Fang and Tung, 1999). Further, land 

use within the watershed is generally treated as a static quantity due to the lack of most 
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continuous streamflow models to accept land use time series as an input. Also land use 

data are seldom available on an annual basis to the modeler. 

The study of the effect of climate change on streamflows is, therefore, a more 

recent trend in the literature with the growing concerns about global warming in the 

research community.  Flaschka et al., (1987), Gleick (1987), and McCabe and Ayers 

(1989) used applied water-balance models to study the effects of climate change on 

streamflows. Puacko (1993) investigated the effect of climate change on streamflows 

based on the analysis of historical records.

There are numerous continuous streamflow models available, some very 

simplistic and others more complex.  We will utilize a continuous streamflow model 

developed by McCuen (1986), in which rainfall is disaggregated into three different 

storages: surface, unsaturated zone (near surface) and groundwater.  Each storage 

contributes to a total runoff produced by the model.  Losses from the system, in the form 

of evaporation, are also possible.  The model inputs include specification of storage 

volumes for each of the three storage “buckets”, as well as inputs that control flux rates 

between buckets. 

The continuous streamflow model takes as driver data input time series of

temperature and precipitation.  Additionally, we allowed two model inputs that quantify 

urbanization effects to be varied so that we could examine singly and jointly, varying 

climate and urbanization at two different scales.  However, one essential step prior to 

using any continuous streamflow model in a predictive sense is the calibration process of 

the model for some parameter values that describe the historical background of the 

watershed. This generally leads to a source of subjectivity which is a shortcoming of the 
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approach. The calibration process is generally considered complete based on some visual 

fit or goodness-of-fit measures set by the modeler. With the availability of numerical 

optimization packages, it may be more appropriate to allow a numerical optimization 

program to produce the optimum calibration based on some criterion variables set by the 

modeler.  This will grant the elimination of subjectivity. This, as will be discussed in 

Chapter 4, has inspired the incorporation of a numerical optimization program, 

NUMOPT (McCuen, 1993), to calibrate our continuous streamflow model. 

The details of how this study was performed and an analysis of the study results 

will be presented in the following chapters. Although this model is somewhat simpler 

compared to the more complicated hydrologic models that are available, this model is 

conceptually consistent with the more well-known Stanford Watershed Model (Crawford 

and Linsley, 1966), now commonly used as HSPF (Bicknell et al., 1997).  Another 

conceptually similar continuous streamflow model is SWMM (Huber and Dickinson 

1988, Roesner et al., 1988, Donigan and Huber 1991).    

2.4 Expansion from past research

This research effort is an expansion on previous work with regression and 

continuous streamflow models. Some new tools and capabilities that were not available 

in the past will be utilized in this study to assess the effects of climate and land use 

change on streamflows with greater sophistication. In addition to a rich database of daily 

observed streamflow, daily precipitation, and daily temperature time series, a historical 

annual imperviousness time series for various watersheds that had experienced 

urbanization will allow us to more effectively incorporate the effect of land use in our 

work. The ability to utilize the imperviousness time series as a hydrologic input in a 
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continuous streamflow model will eliminate the need to make the commonly used 

assumption of static land use conditions. Furthermore, the use of two global circulations 

models, CCC and Hadley, will provide future climate time series of daily precipitation 

and daily temperature based on the geographic location of our study watersheds. The 

inclusion of these capabilities will allow us, with greater sophistication, to quantitatively 

examine the effects of climate and land use on the distribution of streamflows. 
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CHAPTER THREE

A REGRESSION MODELING APPROACH:
TO ANALYZE THE EFFECTS OF CLIMATE CHANGE AND URBANIZATION 

ON STREAMFLOW DISTRIBUTIONS

3.1 Introduction

This chapter discusses the regression modeling approach as the means of 

quantifying the effects of urbanization and climate change on the distribution of 

streamflows. The study will concentrate on six single-watershed regression models, and 

then a more generalized regional model for the Maryland Piedmont will be calibrated.  

Each of the six single-watershed regression models as well as the regional regression 

model will be discussed at the conceptualization stage, the calibration stage, and the 

assessment stage for both goodness-of-fit and applicability.

The chapter will then investigate the significance of increasing or decreasing 

trends in streamflow distributions under three proposed future scenarios. The streamflow

distribution is divided into peak flows, median flows, and base flows. The chapter will 

briefly discuss the effects of urbanization and climate change with respect to the annual 

peak flows and the annual median flows. However, this chapter will concentrate on the 

effects of urbanization and climate change on the modelling of the annual 7-day low flow 

in particular. It will then quantitatively examine the effects of urbanization and climate on 

low flows.  Available observed daily flows will then be used to develop regression 

equations predicting low flows as a function of urbanization and climate. These equations 

will then be used to make inferences about possible future trends of minimum annual low 

flows under scenarios of continued urbanization and climate change. 
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Three future scenarios will be investigated to best understand the separate and 

joint effects of urbanization and climate change on low flows in particular. Some brief 

discussion will be directed to peaks and median flows and why their analyses were not 

carried out. Toward the end of the chapter, the outcome of the regression approach will 

be discussed and then summarized. 

3.2 Advantages of regression modeling

The main advantage of calibrating regression models is to attain the capability of 

predicting the distribution of streamflows with simple regression models. Most previous 

researchers have presented the effects of urbanization or climate change acting alone 

over the distribution of streamflows (Simmons and Reynolds, 1982; Revelle and 

Waggoner, 1983; Warner, 1984; Ferguson and Suckling, 1990; Duell, 1992; Lowell 

and Duell, 1994).  This chapter will explore further their effects by studying the joint 

effect of both land use and climate change simultaneously. Investigating whether 

urbanization and climatic changes contribute complementary or contradictory effects can 

provide a better understanding of changes in streamflows under such future scenarios. 

Moreover, past research has dealt with climate and land use variables as stationary 

variables while, in reality, they change temporally.  Thus, the addition of annual land use 

(percentage of imperviousness) as a predictor in the calibrated regression model may be 

capable of adding better goodness-of-fit to the outcome of the regression model.  

 3.2.1 The study of low flows

Understanding the low-flow characteristics of a watershed is important to 

hydrologists, ecologists, and engineers. Hydrologists are interested in low flows because 
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they represent the extreme opposite of the flood response of the watershed. The low-flow 

response of the watershed is indicative of the state of the underlying groundwater and 

may be used by ecologists as an index of the health of the ecological stream system. Low 

flows stress the survival of species dependant on certain flow characteristics within the 

stream.  Understanding and predicting low flows is a concern of engineers involved in 

water resources management to account for the availability of water supply, the quality 

and quantity of water for human use, recreation, or irrigation purposes.  

3.2.2 The study of median flows

Peak flows and base flows tell about the extremes but lack any information about 

the distribution of streamflows. The median flow is the 50th percentile streamflow event 

and thus conveys information about the center of the distribution of the streamflows.   It 

can be representative of the smaller magnitude peak-flows or the larger magnitude base-

flows.  Thus its significance to convey how climate change and urbanization affect 

streamflows is somewhat unclear at this stage.

3.2.3 The study of peak flows

Peak flows are generally studied by hydrologists and engineers to better 

comprehend their impacts on the hydrology of watersheds and to adequately draw up 

plans for hydrologic designs such as culverts, inlets, and spillways. The literature shows 

that peaks have been of more concern to researchers. This is probably because peaks 

(floods) are considered natural disasters that can lead to loss of lives and property. Peak 

flows are - as will be shown in this study - another telling indicator of the reaction of 

streams to climate and land use change. Klein (1979), Barringer et al., (1994), and Paul 
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and Meyer (2001) have concluded that climate change and urbanization lead to larger 

peak flows.  

3.3 Emphasis on the effects of climate change and urbanization on the magnitude of 
low flows 

The warmer temperatures associated with climate change lead to enhanced 

evapotransporation. This change alone would be expected to have the impact of reduced 

ground water storages and thus reduced base flow levels in streams. When the increased 

impervious areas associated with continued urbanization are superimposed on the 

changing climate signal, the expected result is even more diminished recharge to ground 

water storages.  The changes in precipitation magnitudes and temporal distribution also 

associated with climate change serve to further complicate the picture of how low base 

flows are expected to respond to climate and or land use change in the future.

3.4 Our selected study area

Six watersheds of varying drainage areas and varying urbanization levels in 

Montgomery County, Maryland, are selected to be studied as representatives of Maryland 

Piedmont region. The areas of the watershed ranged from 3.7 square miles to 101.0 

square miles. Seneca Creek, Rock Creek, Hawlings, and Little Falls watersheds had 

undergone minor changes in land use with increases of imperviousness of (12.6% to 

15.2%), (11.0% to 13.1%), (8.5% to 9.4%), and (35.2% to 36.6%), respectively. On the 

other hand, the Northwest Branch and Watts Branch watersheds have experienced much 

larger changes of imperviousness of (5.8% to 20.5%) and (16.1% to 28.9%), respectively. 

A more detailed description of each of the six watersheds is summarized below.
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3.4.1 Northwest  Branch watershed

The Northwest Branch (NWB) watershed of the Anacostia river has a drainage 

area of 54.7 km2 (21.1 mi2). The watershed outlet is the site of the USGS streamflow

gage (01650500). The NWB watershed has undergone a large increase in imperviousness 

from 5.8% to 20.5% over a 40 year period. Figure 3-1 below shows the location of the 

NWB watershed approximately 6.2 kilometers (3.8 miles) north of Washington, DC, in 

Maryland. 

3.4.2 Watts Branch watershed

The Watts Branch Branch watershed of the Potomac river has a drainage area of 

9.6 km2 (3.7 mi2). The watershed outlet is the site of the USGS streamflow gage 

(01645200). The Watts Branch Branch watershed has undergone a large increase in 

imperviousness from 16.1% to 28.9% over a 29 year period. Figure 3-1 below shows the 

location of the Watts Branch watershed approximately 15.4 kilometers (9.6 miles) north 

of Washington, DC, in Maryland.

3.4.3 Seneca Creek watershed

The Seneca Creek Creek watershed of the Potomac river has a drainage area of 

261.6 km2 (101.0 mi2). The watershed outlet is the site of the USGS streamflow gage 

(01645000). The Seneca Creek watershed has urbanized to some extent with an increase 

in imperviousness from 12.6% to 15.2% over a 50 year period. Figure 3-1 below shows 

the location of the Seneca Creek watershed approximately 29.4 kilometers (18.3 miles) 

north of Washington, DC, in Maryland. 
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3.4.4 Rock Creek watershed

The Rock Creek watershed of the Potomac river has a drainage area of 25.1 km2

(9.7 mi2). The watershed outlet is the site of the USGS streamflow gage (01647720). The 

Rock Creek watershed has urbanized somewhat with an increase in imperviousness from 

11.0% to 13.1% over a 10 year period. Figure 3-1 below shows the location of the Rock 

Creek watershed approximately 14.6 kilometers (9.1 miles) north of Washington, DC, in 

Maryland. 

3.4.5 Hawlings watershed

The Hawlings watershed of the Anacostia river has a drainage area of 69.9 km2

(27.0 mi2). The watershed outlet is the site of the USGS streamflow gage (01591700). 

The Hawlings watershed has urbanized slightly with an increase in imperviousness from 

8.5% to 9.4% over a 22 year period. Figure 3-1 below shows the location of the Hawlings 

watershed approximately 20.3 kilometers (12.6 miles) north of Washington, DC, in 

Maryland.

3.4.6 Little Falls watershed

The Little Falls watershed of the Potomac river has a drainage area of 10.6 km2

(4.1 mi2). The watershed outlet is the site of the USGS streamflow gage (01646550). The 

Little Falls watershed has urbanized very slightly with an increase in imperviousness 

from 35.2% to 36.6% over a 25 year period. Figure 3-1 below shows the Little Falls 

watershed to lie in both Washington, DC, and in Maryland, adjacent to the northwest 

border of Washington, DC. 
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Figure 3 -1. Location map of our study area s in Montgomery C ounty, Maryland.

3.5 Collecting historical data 

The first step of constructing a regression model to predict streamflow  data under 

the effects of urbanization and climate change is to collect land use and climate time 

series to be utilized as predictors . These times series are usually collected and archived 

by professionals hired by certain agencies and they placed on the World -Wide -Web for 

potential users. A historical database of available time series for daily streamflow , daily 

precipitation, daily te mperature, drainage area of the watershed, and annual percentage of 

imperviousness of the watershed were obtained and manipulated to produce the needed 

regression models.   
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3.5.1 Historical streamflow time series

Each of the later calibrated regression models is used to predict the magnitude of 

streamflow based on physical indices that best describe the reaction of the watershed to 

urbanization and climate change. The daily observed runoff at each of the studied 

watersheds was obtained from the United States Geological Survey (USGS) website. It 

provided the daily runoff record at the six locations of our gages in Montgomery County, 

Maryland. The daily observed flows are then grouped on annual basis to produce the 

annual flow distribution of the particular stream or watershed.

3.5.1.1 Selection of the streamflow gages

The daily streamflow data at the outlet of each of the six watersheds were 

obtained by downloading the data from the USGS website online for each of the 

streamflow gages that define our watersheds. A list of the gage names, their USGS gage

numbers, and their associated watershed names are summarized in Table 3-1. All

available data were collected to be later matched with available temperature, 

precipitation, and imperviousness records for each of the watersheds.  Missing data were 

estimated based on averaging streamflow values for each day of the year over the 

duration of available streamflow gage records.  

Table 3-1. List of streamflow gages used to define the outlets of the six watersheds.
USGS Gage

# Name of USGS Gages
Watershed 

Name Abbrev. 
# of

Years
1650500 NW Branch Anacostia River Near Colesville NWB 40
1591700 Hawlings River Near Sandy Spring Hawlings 22
1646550 Little Falls Branch Near Bethesda Little Falls 25
1647720 North Branch Rock Creek Near Norbeck Rock Creek 10
1645000 Seneca Creek Creek at Dawsonville Seneca Creek 50
1645200 Watts Branch Branch at Rockville Watts Branch 29
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3.5.2 Historical climatic time series

The daily precipitation and daily (maximum, minimum, and average) temperature 

time series were collected from nine local weather stations. The stations were assumed to 

be the most representative since they were the nearest to our selected watersheds. Figure 

3-2 below shows the location of these stations. The precipitation and temperature time 

series were obtained electronically from National Climatic Data Center (NCDC, 2003). 

Precipitation and temperature are sufficient indices to represent the effects of climate 

change over the span of available historical record.   
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Figure 3-2. Locations of the weather stations in Montgomery, Maryland.
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3.5.2.1 Rules in selecting the weather stations

The first challenge in manipulating the database is to set fixed rules on dealing 

with missing data and on associating a particular weather station to a particular 

watershed. Table 3-2 below summarizes the available weather stations that are closest to 

our selected watersheds and their period of record for precipitation and temperature. 

Time series of precipitation and temperature were formed using these nine stations.

Table 3-2. List of stations used to compile climate time series.
Weather NCDC Precipitation available data Temperature available data
Station ID# start date End date start date end date

1 Boyds 181032 01/02/1953 28/01/1991 01/02/1953 28/02/1991
2 Brighton 181125 01/08/1948 28/02/1991 01/12/1948 31/12/1954
3 Brookdale 181170 01/08/1948 30/11/1973 N/A N/A
4 Damascus1 182335 01/09/1973 31/01/1992 01/09/1973 31/01/1992
5 Damascus2 182336 01/04/1993 28/02/2003 01/04/1993 28/02/2003
6 Reagan 448906 01/07/1945 28/02/2003 01/07/1945 28/02/2003
7 Rockville 187705 01/08/1948 28/02/2003 01/08/1948 28/02/2003
8 Wheaton 189502 01/06/1961 31/12/1977 01/06/1961 31/12/1977
9 Potomac 187272 01/01/1993 28/02/2003 N/A N/A

3.5.2.2 Dealing with missing data

Precipitation and temperature time series were created by compiling data from the 

multiple weather stations available to make a complete set. The goal was to produce 

continuous daily precipitation and temperature time series for the same durations of 

available daily runoff data for each of the six watersheds.  For each of the six watersheds, 

the nine weather stations were put in ascending order in terms of physical distance from 

each of the watersheds. So data were obtained from the closest station with available 

data. This approach produced complete time series with no missing data for each of the 

six watersheds. 
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3.5.2.2.1 Missing daily precipitation data

Table 3-3 lists the order of weather stations in which they were used as sources of 

daily precipitation data for each of the six watersheds of our study. Station 1 is 

considered the primary source of daily precipitation data, and if precipitation information 

is missing for any particular date, the subsequent stations are used.  This procedure was 

repeated for the compilation of daily precipitation time series for each of the watersheds. 

As a result, a complete precipitation time series was compiled for the same period of 

available daily streamflow data for each of the six watersheds from the list of nine 

weather stations. 

Table 3-3. Order of stations in which they were used to compile daily precipitation time 
series for each of the watersheds.

Watershed Hawlings Little Falls NWB Rockville
Seneca 
Creek

Watts 
Branch

Station 1 Brighton Brookdale Wheaton Rockville Boyds Rockville
Station 2 Rockville Reagan Rockville Brighton Damascus1 Wheaton
Station 3 Wheaton Wheaton Brighton Wheaton Damascus2 Brighton
Station 4 Damascus1 Rockville Brookdale Damascus1 Rockville Boyds
Station 5 Damascus2 Brighton Damascus1 Damascus2 Brighton Damascus1
Station 6 Boyds Boyds Damascus2 Boyds Wheaton Damascus2
Station 7 Brookdale Damascus1 Boyds Brookdale Brookdale Brookdale
Station 8 Reagan Damascus2 Reagan Reagan Reagan Reagan
Station 9 Potomac Potomac Potomac Potomac Potomac Potomac

3.5.2.2.2 Missing daily temperature data

In similarity to the construction of the precipitation time series, the temperature 

time series were compiled based on the selection of the closest weather station with 

available data as the preferred source. Hence, Table 3-4 below, which lists the priority of 

order of the weather stations, is almost identical to Table 3-3 except that Brookdale and 

Potomac weather stations lack the availability of temperature data and thus are eliminated 

as possible sources. 
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Table 3-4. Order of stations in which they were used to compile daily temperature time 
series for each of the watersheds.

Watershed Hawlings Little Falls NWB Rockville
Seneca 
Creek

Watts 
Branch

Station 1 Brighton Reagan Rockville Rockville Boyds Rockville
Station 2 Rockville Wheaton Wheaton Brighton Damascus 1 Wheaton
Station 3 Wheaton Rockville Brighton Wheaton Damascus 2 Brighton
Station 4 Damascus 1 Brighton Boyds Damascus 1 Rockville Boyds
Station 5 Damascus 2 Boyds Damascus 1 Damascus 2 Brighton Damascus 1
Station 6 Boyds Damascus 1 Damascus 2 Boyds Wheaton Damascus 2
Station 7 Reagan Damascus 2 Reagan Reagan Reagan Reagan

3.5.3 Historical land use time series

Historical land use data were obtained by first obtaining aerial maps of our six 

watersheds at different time frames. The maps were, then, imported into the GIS. Once 

the maps were electronically recognized by the GIS interface, each of the watersheds was 

digitized manually into polygons of three categories: residential, forest, and agriculture. 

Current land use coverage is available through the generalized land use data provided by 

the Maryland Department of Planning. Knowing the distribution of land use coverage at 

some preliminary stage and the current stage allowed us to obtain annual imperviousness 

values for each of the watersheds.  The detailed procedure of obtaining the annual land 

use values is presented by Moglen and Beighley (2002). 

3.6 Selection of the most meaningful indices

Regression models may be calibrated to estimate any element of the flow 

distribution over the periods of available observed runoff data in each of the six 

watersheds. These periods of study are dictated by the concurrent availability of stream 

gage, rain gage, and land use data.  This chapter will focus on the calibration of 

regression models to predict the annual minimum 7-day low flow under the effects of 
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climate and land use changes. The climatic factor is captured in the temperature and 

precipitation time series. Similarly, the imperviousness time series represents the effects 

of land use change.  

3.6.1 Precipitation

Precipitation is considered as the first potential predictor for the calibration of a 

low-flow regression model. Hence, precipitation is, in essence, the main predictor 

because it simply dictates how much water has entered into the system. The magnitude 

and sequential occurrence of rainfall events can greatly influence the magnitude and 

timing of low flows. Thus for each minimum low-flow event, the total antecedent 

precipitation from the time of the low flow event back to 30, 60, 90, …, 330, 360 days 

prior to the event were recorded. A statistical analysis was performed to investigate the 

most meaningful antecedent precipitation event that showed the strongest correlation to 

the annual 1-day, 2-day, 3-day, and 7-day low-flow events. 

Table 3-5. List of correlation values (R) between each of the four low flow events and 
their antecedent precipitation of 12 various durations to select the optimum precipitation 
index in the NWB watershed (Largest correlation values are shown in bold).

min. 1-day runoff min. 2-day runoff min. 3-day runoff min. 7-day runoff

prec-30 0.2011 0.2420 0.1500 0.1708

prec-60 0.4751 0.2797 0.4094 0.2343

prec-90 0.6175 0.3869 0.4925 0.5502

prec-120 0.6658 0.5718 0.5410 0.6513

prec-150 0.6887 0.5879 0.5795 0.6373

prec-180 0.6864 0.5784 0.5417 0.6461

prec-210 0.6691 0.6419 0.6048 0.6738

prec-240 0.7073 0.6918 0.6341 0.7268

prec-270 0.7161 0.6844 0.6685 0.7698

prec-300 0.7173 0.6835 0.6543 0.7769
prec-330 0.7195 0.6598 0.6454 0.7536

prec-360 0.6918 0.6160 0.6057 0.7565
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Calculating the correlation coefficients between each of the 1, 2, 3 and 7-day low 

flow historical time series for the NWB watershed and the various antecedent 

precipitation periods, shows that an approximate duration of 8 to 11 months probably best 

explains the low-flow event. Regression models were calibrated for each of the 240, 270, 

300, and 330-day antecedent precipitation durations to find the most telling duration to 

the low flow event. Three different model forms, which will be discussed later in this 

chapter, were calibrated for using each of the four antecedent precipitation durations. The 

nine months of antecedent precipitation was found to attain the optimum correlation 

coefficient value. This finding is in accordance with a past study that was performed by 

Ferguson and Suckling (1990).  The 270 days time window has some physical basis. Base 

flows in the Maryland Piedmont region are generally lowest around the end of the 

summer period after having gone through relatively hot and dry summer season 

dominated by intense thunderstorm activity and before the cooler, frontally driven winter 

season starts. So low flows are the results of rainfall events that happened over the period 

of nine months (January to September) in which groundwater flow and subsurface flow 

are more likely to exceed recharge rates. 

3.6.2 Temperature

Temperature time series were also obtained on a daily basis from the National 

Climatic Data and were also considered as a second potential predictor of the low flow 

regression model. A summary of the correlation coefficient between the historical low 

flow events in the NWB watershed and various ranges of average antecedent temperature 

records is listed in Table 3-6 for the purpose of selecting the most appropriate duration of 

antecedent temperature. 
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Table 3-6. List of correlation values (R) between each of the four low-flow events in the 
NWB watershed and their antecedent temperature of 12 various durations to select the 
optimum temperature index (Largest correlation values are shown in bold, and significant 
correlation (R) values for a 1% level of significance and a sample size of 35 are shown in 
italic)

Min. Annual low flow events (NWB)

Temp. Q1 Q2 Q3 Q7

1 -0.319 -0.502 -0.604 -0.441
7 -0.351 -0.554 -0.524 -0.510
14 -0.407 -0.606 -0.569 -0.560
30 -0.476 -0.619 -0.605 -0.558
60 -0.567 -0.681 -0.700 -0.612
90 -0.564 -0.559 -0.628 -0.526
120 -0.421 -0.290 -0.400 -0.329
150 -0.241 -0.019 -0.136 -0.123
180 -0.115 0.138 0.046 0.024
210 -0.029 0.233 0.147 0.123
230 0.044 0.290 0.214 0.189
270 0.077 0.303 0.242 0.220

Max. Annual low flow events (NWB)

Temp Q1 Q2 Q3 Q7
1 -0.399 -0.564 -0.651 -0.559
7 -0.473 -0.626 -0.616 -0.579
14 -0.503 -0.651 -0.621 -0.621
30 -0.533 -0.645 -0.637 -0.592
60 -0.601 -0.668 -0.700 -0.615
90 -0.640 -0.607 -0.676 -0.573
120 -0.534 -0.409 -0.504 -0.400
150 -0.296 -0.025 -0.164 -0.151
180 -0.155 0.155 0.045 0.005
210 -0.061 0.256 0.155 0.111
230 0.036 0.345 0.254 0.199
270 0.087 0.382 0.307 0.251

Avg Annual low flow events (NWB)

Temp. Q1 Q2 Q3 Q7
1 -0.368 -0.549 -0.650 -0.511
7 -0.422 -0.604 -0.587 -0.555
14 -0.469 -0.645 -0.611 -0.605
30 -0.521 -0.650 -0.636 -0.591
60 -0.611 -0.699 -0.724 -0.633
90 -0.639 -0.617 -0.686 -0.573
120 -0.506 -0.367 -0.476 -0.377
150 -0.281 -0.023 -0.157 -0.142
180 -0.140 0.153 0.047 0.015
210 -0.047 0.254 0.157 0.121
230 0.042 0.330 0.243 0.202
270 0.088 0.360 0.288 0.247
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Minimum, maximum, and average daily temperatures were initially considered as 

possible temperature indices. The average temperature was found to be the most 

representative quantity with the highest correlation for the 1, 2, 3, and 7-day low-flow 

magnitudes. Moreover, daily average temperature records over various durations from the 

time of the low flow event propagating back to 30, 60, 90, …, 330, 360 days prior to the 

event were collected and averaged as potential predictors. The average temperature over 

the antecedent two-months prior to the low flow event showed the highest correlation 

value. The fact that evapotranspiration is most active during the summer period, which is 

capable of reducing the magnitude of groundwater flows and as a result base flow, is a 

plausible explanation for the 60-day time window.

3.6.3 Imperviousness

Annual imperviousness time series were constructed based on methods developed 

by Moglen and Bieghley (2002). Imperviousness is the predictor intended to capture the 

effect of urbanization on low flows. It is anticipated that the higher the percentage of 

impervious area, the less groundwater recharge rates and thus the smaller base flows.

3.6.4 Watershed area

The area of a watershed is anticipated to strongly correlate to the magnitude of 

streamflow. Thus area is expected to be a very important predictor when generalizing this 

study to multiple watersheds of varying size. This predictor will be ignored when 

calibrating the six single-watershed regression models, but it will be used when 

calibrating the regional regression model.
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3.7 Calibration of the optimum regression model form using “NUMOPT”

Regression models can only convey what is embedded in our data sets and thus 

understanding the trends in each of the time series for each of the watersheds can help in 

producing the most representative model form. This might require the selection of a 

model form that does not necessarily produce the minimum standard error or relative 

bias. At this point, we will use “NUMOPT”, a numerical optimization package developed 

by McCuen (1993), to optimize each of the six regression models to give the lowest 

relative standard error, Se/Sy, and the lowest relative bias,∑(bias/Q) . Later in the 

chapter, the selection of the most appropriate model form and how much belief should be 

placed on the calibrated models will be discussed. 

3.8 Comparison among the various models forms

Selection of most representative model structure is an essential step in regression 

modeling and selecting the incorrect form can lead to irrational predictions and biased 

models. Three model structures were considered as candidates to reproduce historical 

annual low flow events: a linear model, a power model, and a linear model with a 

sinusoidal component. 

3.8.1 A linear model

)()( 43217 tICTCPCCtQ yx ⋅+⋅+⋅+= (3-1)

where 7Q is the annual minimum 7-day low flow in year t in ft3/s, xP is the x-day 

antecedent precipitation volume in mm, yT is the y-day antecedent average temperature in 
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C� , I(t) is the imperviousness in the watershed as a percentage in year t, and  C1,…, C4

are coefficients determined by numerical optimization.

3.8.2 A power model

)()( 432
17 tITPCtQ CC

y
C

x ⋅⋅⋅= (3-2)

where 7Q is also the annual minimum 7-day low flow in year t in ft3/s, xP is the x-day 

antecedent precipitation volume in mm, yT is the y-day antecedent average temperature in 

C� , I(t) is the imperviousness in the watershed as a percentage in year t, and  C1,…, C4

are coefficients determined by numerical optimization.

3.8.3 A linear model with a sinusoidal component

)(
25.365

2
)( 432107 tICTCPC

i
SinCCtQ yx ⋅+⋅+⋅+


 +⋅⋅+= φπ

(3-3)

where i  is the Julian day in which the low flow event took place and φ  is a phase shift to 

be determined by the optimization. Hence, the linear model form with a sinusoidal 

component considers the day of occurrence in the year, t, as a fourth predictor.

3.9 Criteria for selecting the most representative model structure

The process of selecting the most appropriate model form for the six 

single-watershed regression models was based solely on the NWB watershed data sets.  A 

regression model was calibrated for each of Equations 3-1, 3-2, and 3-3, for each of the 

durations of low-flow events, for each of the durations of the antecedent precipitation 

time series, and for each of the durations of antecedent temperature time series for the 

NWB watershed. A summary of the time series data for the criterion and the predictors is 
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listed in Table A-4. The values of the calibrated coefficients and the goodness-of-fit 

measures are all summarized in Table A-3. As previously concluded the 270-day 

antecedent precipitation always produced higher correlation (R) values when predicting 

the 1, 2, 3 and 7-day low flows.  Similarly the 7-day low flow showed the highest 

correlation coefficient (R) of 0.876 for the power model form (Equation 3-2), which is 

later selected as optimum model form due to rationality. Using correlation coefficients 

and rationality as the main measures of the accuracy of the models’ predictions, Equation 

3-2 with 270-day antecedent precipitation and the 60-day antecedent average temperature 

was selected as the best model.  This model emerged as the only rational model of the 

three forms, yielding no estimated flows below zero (Figure 3-3). Further it produced 

roughly the same goodness-of-fit as quantified by the correlation coefficient as the other 

two linear models (Equations 3-1 and 3-3). Note, in 1966 and 1999 the lowest seven-day 

low flow was zero, the power model (Equation 3-2) lacks the ability to produce low flows 

of zero. This is a shortcoming of Equation 3-2, but was considered preferable to the 

negative flows that Equations 3-1 and 3-3 can possibly predict. 

Fitting a regression model for the NWB watershed with the form of 

Equation 3-2, produced the following best-fit regression model:   

719.0325.0
60

122.2
2707 )t(ITP294.0)t(Q −− ⋅⋅⋅= (3-4)

Equation 3-4 has a 0.89 correlation coefficient between the predicted values and observed 

7-day low flow values, a relative accuracy (Se/Sy) of 0.46, and a relative bias of 1.2%. 

These quantities constituted the primary criteria of the selection of the most 

representative model form. They will be discussed in further detail below. The equivalent 

of Equation 3-4 will be calibrated for each of the remaining five watersheds.



35

3.9.1 Minimum relative standard error (Se/Sy)

One of the strengths of using NUMOPT over using the multiple regression 

calibration approach is that the former optimizes the standard error in term of Q7 while 

the latter optimizes the standard error in terms of the logarithm of Q7. Thus the absolute 

optimum Se is achieved through using NUMOPT. Table 3-7 shows that all three models 

provide moderately accurate predictions with the lowest standard relative error of 0.458 

associated with the power model (Model 2).  However, it is important to state the lowest 

will not necessarily constitute the best model form and thus other statistical measures will 

have to be considered. The correlation coefficients for all three models are practically the 

same and, thus, can not be used as a measure to differentiate the best model form.

Table 3-7. Goodness-of-fit statistics for each of the three calibrated model forms (Sample 
size is 35).

Goodness-of-fit MODEL 1 MODEL 2 MODEL 3

Corr. Coef. (R) 0.891 0.893 0.890
Bias (cfs) -3.525 12.062 -1.278
Avg. Bias (cfs) -0.101 0.345 -0.037
Avg. Q7 (cfs) 28.346 28.346 28.346
Rel. Bias (%) -0.355 1.216 -0.129
Se (cfs) 10.520 10.445 10.538
Sy (cfs) 22.805 22.805 22.805
Se/Sy 0.461 0.458 0.462
C1 33.4623 0.2943 6.3502
C2 1.8552 2.1221 1.8776
C3 -1.8907 -0.3254 -1.4203
C4 -1.5711 -0.7186 -1.5244
C0 27.2984

Bias: The sum of errors
Avg. Bias: The average magnitude of errors
Avg. Q7: The average annual 7-day low flow 
Rel. Bias: The ratio of average magnitude of errors to the average annual 7-day low 

flow
Se: The standard error of estimate
Se/Sy: The relative standard error of estimate
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Figure 3-3.  A plot of the predicted 7-day low flow events for the NWB watershed for 
each of the three proposed model forms.

3.9.2 Minimum relative bias

Although all three model forms produce low relative biases with the lowest being 

associated with the linear model with a sinusoidal component, there is no real difference 

among the three relative bias values. The two linear models (Equations 3-1 and 3-3) show 

a tendency to under predict the 7-day low flow whereas the power model (Equation 3-2) 

shows a tendency to over predict.  Thus far, both the standard error and average relative 

biases have shown no real distinction among the three proposed models. Other measures 

will have to distinguish the best regression model form.  

3.9.3 Residuals analyses

The study of the magnitude of residuals and their distributions can provide 

inferences on the selection of the proper model structure. The residuals are calculated by 

subtracting the observed 7-day low flow from the predicted value. If the difference is a 

positive quantity the model over predicts for that particular date, and if it is a negative 
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quantity then it under predicts. The mean bias for all three models is close to zero and all 

three histograms of the residual distributions show normal distributions. Thus all three 

models seem adequate. Additionally, none of the three models show any existence of 

local biases where the model would tend to under-predict or over-predict for certain 

range of values.

3.9.4 Sensitivity analyses

The intercorrelation matrix (Table A-5) shows that the precipitation time series is 

the most correlated predictor to the criterion variable of 7-day low flow. Temperature is 

the second most correlated, followed by the imperviousness. This is not completely in 

agreement with the magnitude of the calibrated coefficients for each of the three models

(Table 3-7). This is probably due to the moderate intercorrelation existing between the 

temperature predictor and both the precipitation and imperviousness predictors. However, 

the signs of the calibrated coefficients are all rational and in agreement with the physical 

relationship between the predictors and the quantity of the 7-day low flow event. 

Precipitation is positively correlated to the 7-day low flow and the calibrated coefficient 

associated with the precipitation predictor for each of the three models is a positive 

quantity.  Temperature and imperviousness are both negatively correlated to the 7-day 

low flow and the calibrated coefficients associated with them for each of the three models 

are negative quantities.   

3.9.5 Rationality

The model form must not only give the most accurate prediction but also rational 

results. The two linear models show a possibility of producing negative flows which is 
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physically impossible and thus irrational. This makes the power model the only rational 

form and thus the only appropriate model form. Rationality becomes the most important 

criterion in making the final selection of the best model form.

3.10 Necessity of a regional regression model

The calibrated power model is based on the NWB watershed and thus its outcome 

should only be applicable to predictions associated with the NWB. A regional model will 

be calibrated to expand the applicability of our regression model to a larger scale. The 

NWB watershed and five additional watersheds, all in the Maryland Piedmont region,

were analyzed separately and then combined to best understand the usefulness of the

regional model. The addition of the other five watersheds, Seneca Creek, Hawlings, 

Watts Branch, Rock Creek, and Little Falls, is to eliminate any idiosyncratic

characteristics of the NWB watershed that are captured by the selected predictors. All of 

the selected watersheds are all in Montgomery County, Maryland, of varying drainage 

area, and exhibit different urbanization levels. The regional model will be calibrated 

based on four indices: 270-day antecedent precipitation, 60-day average antecedent 

temperature, annual percentage of imperviousness, and watershed area. The regional 

model is then to be used in a predictive sense to simulate the effects of two phenomena: 

the effect of climate change and urbanization on the distribution of streamflows. 

Although the regional model was calibrated by using the data from all six watersheds 

combined, calibrating a regression model for each of the six watersheds individually and 

then a regional model will allow to us compare how the calibrated coefficient values vary 

and what final coefficients should be believed to be most representative.
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3.10.1 Calibration of a regional model of low flows

The decision of expanding the scale of this work to a regional regression model 

will require the analysis of selecting the most appropriate model structure to be applied to 

the combined data of all six watersheds. Four model structures were investigated to 

determine the best form. The power model form was determined to be the optimum 

model form to predict the NWB 7-day low flow data, but now historical 7-day low flow 

data from five additional watersheds were added. The model forms to be tested for are: a 

linear model, a power model, a linear model with a sinusoidal component, and a power 

model with a sinusoidal component. These models are similar to Equations 3-1, 3-2, and 

3-3 with the addition of a watershed area component, where area is in squared miles.

3.10.1.1 A linear model

The linear model form was calibrated using the multiple regression approach 

(MRA). The model form is as shown in Equation 3-5:

ACtICTCPCCtQ yx ⋅+⋅+⋅+⋅+= 543217 )()( (3-5)

The calibrated values for the coefficients C1, C2, C3, C4, and C5, are summarized in Table 

3-8.  The coefficient associated with the imperviousness predictor, I(t), is irrational 

because it carries a positive sign whereas I(t) is inversely correlated to the 7-day low flow 

quantity.

3.10.1.2 A power model

The power model form was calibrated using two approaches: using Stepwise 

regression and using a numerical optimization method (NUMOPT). As will be noted 

later, NUMOPT will deliver the more accurate calibrated coefficients because it produces 

the lower standard error. The model form is shown in Equation 3-6:
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The values of the calibrated coefficients based on both approaches are listed in Table 3-8 

below. Note, the values of the calibrated coefficients are different for each of the two 

approaches, but none of the values are irrational in terms of magnitude or sign. 

3.10.1.3 A linear model with a sinusoidal component

The sinusoidal component is used to possibly capture the seasonal trend of low 

flows based on the occurrence time in the year. However, as was the case with the model 

form associated with the NWB data set, this model form proves inadequate due to 

irrationality. The model form is as shown in Equation 3-7. The calibrated coefficients are 

listed in Table 3-8. The calibrated coefficient associated with imperviousness is irrational 

in sign.  

ACtICTCPC
i

SinCCtQ yx ⋅+⋅+⋅+⋅+


 +⋅⋅+= 5432107 )(
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(3-7)

3.10.1.4 A power model with a sinusoidal component

Since the power model has shown to perform well in the prediction of 7-day low 

flows, calibrating a power model with a sinusoidal component seems like it might 

produce good results. It will allow us to test for the necessity of the addition of the 

sinusoidal component to capture any seasonal trends in the unexplained variance 

experienced in Equation 3-6. The model form is as shown in Equation 3-8. The calibrated 

coefficients are summarized in Table 3-8. All calibrated values of coefficients are 

rational.
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
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(3-8)
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Table 3-8. List of calibrated coefficient values for the regional model proposed forms.
Model

Linear Power Power Linear + Sin Power + SinCalibrated
Coefficients Mult. Reg.

(Equ. 3-5)
Stepwise
(Equ. 3-6)

NUMOPT
(Equ. 3-6)

NUMOPT
(Equ. 3-7)

NUMOPT
(Equ. 3-8)

Ø -0.9078 -0.0797
C0 189.68 19.5193
C1 124.79 7.6393 0.1390 29.9224 28.6371
C2 3.6277 2.2963 1.9332 3.8956 0.1000
C3 -3.4030 -2.1123 -1.0066 -4.3430 1.9173
C4 0.2412 -0.4147 -0.1310 0.4400 -0.9148
C5 1.9381 1.1347 1.1438 1.9437 -0.0143
C6 1.0811

3.10.2 Comparison among the proposed regional model structures

A comparison of the goodness-of-fit statistics among the five calibrated models in 

Table 3-9 shows that the NUMOPT power model and the power model with a sinusoidal 

component are superior. The relative standard error, Se/Sy, for the power models is lower 

than the ones based on the other forms. Similarly, the explained variance based on the 

power model form is higher than the others. A further comparison between models 3-6 

and 3-8, shows that a slight improvement in accuracy was gained by adding the 

sinusoidal component. However, this does not necessarily recommend the addition of the 

sinusoidal component, because the addition of three extra coefficients is probably the 

main element in producing a better fit. Generally, the more coefficients are calibrated, the 

better fit that can be achieved. But additional coefficients add complexity to the model 

form. In this case, the additional accuracy achieved was judged not to be worth the added 

complexity.   Therefore, the power model, Equation 3-6, was determined to be the best 

model structure to predict the 7-day low flow in the Maryland Piedmont region. This is in 
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agreement with the conclusion that was reached based on the NWB watershed data

solely.

Table 3-9. Goodness-of-fit statistics for each of the proposed regional model forms.
Goodness-of-fit Linear Power Power Linear + Sin Power + Sin

Statistics Mult. Reg.
(Equ. 3-5)

Stepwise
(Equ. 3-6)

NUMOPT
(Equ. 3-6)

NUMOPT
(Equ. 3-7)

NUMOPT
(Equ. 3 -8)

Bias (cfs) N/A -7.5571 0.6070 -0.0001 0.0000
Se (cfs) 48.6835 53.0771 30.3459 47.3481 29.6534
Sy (cfs) 97.8579 97.8579 97.8579 97.8579 97.8579
Se/Sy 0.4975 0.5424 0.3101 0.4838 0.3030
R 0.8707 0.8441 0.9519 0.8797 0.9549
R2 0.7582 0.7125 0.9060 0.7739 0.9118

The goodness-of-fit statistics of the power model, Equation 3-6, shows a 

substantial difference between the outcomes of stepwise regression and NUMOPT. This 

illustrates that NUMOPT is a more accurate approach when calibrating for a power 

model form. NUMOPT optimizes to the lowest possible standard error value, Se, which 

is generally, but not necessarily always, the best form. Stepwise Regression, on the other 

hand, is based on an incremental F test or the analysis of variance on R. It illustrates the 

significance of the addition of each of the proposed predictors to the accuracy of the 

model; it will be later used as a tool to investigate the necessity of the incorporation of 

the four predictors. 

3.10.3 Residuals analyses

The goodness-of-fit statistics have concluded that Equation 3-9 is the best option 

from the pre-selected model structures:

1438.1
y

1310.00066.1
y

9332.1
x7 A)t(ITP1390.0)t(Q ⋅⋅⋅⋅= −− (3-9) 
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The residuals need to be examined to test for the normality of residuals and to identify 

any local biases among the six selected watersheds.  The study of errors will probably 

prove the adequacy of using the model form of Equation 3-9. 

 

3.10.3.1 Normality of the residuals

The distribution of residuals of the regional model form in Equation 3-9, are 

plotted below in Figure 3-4. The figure indicates that the residuals follow a normal 

distribution. This supports the power model form selected to reproduce the low flow data 

events for all six watersheds.  
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Figure 3-4. Distribution of residuals of the regional power model form.

3.10.3.2 Existence of local biases among the six selected watersheds

The existence of local biases in the residuals suggests that the selected model 

form is inadequate to predict the 7-day low flow in our study area.  Even though 

normality was shown above, it is important that the model does not consistently over or 

under predict for certain low flow ranges. Figure 3-5 below supports the claim of 

(cfs)
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normality of the residuals since fewer points exist as we move to larger low flow events. 

However, some shift of the level of variation is apparent, which might be associated with 

the variation in the range of magnitudes for each of the six watersheds. Thus it is 

probably more meaningful to look at the relative errors instead. 

Figure 3-5. Distribution of residuals of the regional power model form (Equation 3-9).

In Figure 3-6, it is shown that the regional power model produces larger 

magnitudes of relative errors for the smaller magnitudes of low flow events. This might 

be an indication of the poor performance of the model for the smaller watersheds. 

However, it might be that the larger relative errors are associated with perhaps only one 

or two of the six watersheds. 

-150

-100

-50

0

50

100

150

200

0 100 200 300 400 500 600 700

Observed 7-day low flow  values (cfs)

E
rr

o
r 

(c
fs

)



45

-5

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700

Observed 7-day low flow values (cfs)

R
el

at
iv

e 
E

rr
o

r

Figure 3-6. Distribution of relative residuals of the regional power model form
(Equation 3-9).

Thus, plotting errors separately for each of the watersheds will provide a better 

understanding of the reasons contributing to the existence of local biases and if they 

affect the adequacy of the calibrated regional model form. A set of plots that indicate the 

residuals of the regional power model associated with each of the six watersheds are 

shown below in Figure 3-7.

The plot associated with Little Falls (Figure 3-7) shows a strong signal of local 

biases. It also suggests that the power model is an inadequate model structure to predict 

low flow values associated with Little Falls watershed. This can explain the poor 

performance of the regional power model to predict some of the lower low flow values 

observed previously in Figure 3-5.  The surprising results for Little Falls watershed will 

be later related to the fact that the low flow data of Little Falls watershed exhibit an 

irrational correlation with urbanization, where low flows increase with an increase in 

urbanization. The residuals associated with the other five watersheds show no clear 

trends of local biases. Yet there seems to exist a slight tendency to under predict higher 

low flow magnitudes and over predict lower low flow magnitudes. 
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Figure 3-7. Distribution of residuals of each of the individual watersheds based on the 
predictions of the regional power model form.
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3.10.4 Sensitivity analyses

The relative sensitivity of the predictors is captured by the relative magnitudes of 

the calibrated coefficient associated with each of the predictors. So the predictor with the 

largest exponent is the most sensitive predictor. Obtaining the regional model form is 

achieved by substituting the calibrated values of the coefficients in equation 3-6.

The calibrated coefficients in Equation 3-9, show that antecedent precipitation is the most 

sensitive variable, then follows area of the watershed, and antecedent temperature, 

respectively. Imperviousness is the least sensitive predictor with a value that is close to 

zero. This prompts us to question the necessity of using imperviousness as a potential 

predictor to make inferences about 7-day low flow events. A thorough analysis will be 

discussed later in the chapter to statistically justify the necessity of each of the four 

predictors.

Constructing a one-dimensional response surface of relative standard error and 

relative bias can also convey the relative sensitivity of the predictors. The one-

dimensional response surfaces convey the same results as learned from the relative 

magnitude of the exponents. Precipitation is the most sensitive variable and a change in 

its coefficient value can cause the largest change in the accuracy of the model. So a 5% 

change in the value of the calibrated coefficient associated with the precipitation 

predictor leads to the largest shift in the values of the relative standard error, Se/Sy, and 

the relative bias of the regional model form.  This is also apparent in Figures 3-8 and 3-9 

since the precipitation predictor’s response surface forms the steepest curve. 
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Figure 3-8. One-dimensional response surface based on the relative error (Se/Sy) 
criterion, which compares the relative sensitivity of the calibrated exponents of the 
regional regression model.

Figure 3-9. One-dimensional response surface based on the relative bias criterion, which 
compares the relative sensitivity of the calibrated exponents of the regional regression 
model.

3.10.5 Rationality

Rationality is another important measure of the adequacy of the model structure. 

Irrationality of the linear model forms was sufficient to eliminate them as possible 

structures. The power model form, on the other hand, has rational coefficients’ signs and 

magnitudes. Precipitation was anticipated to have the largest influence on low flows and 
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has produced the largest exponent. The exponent of the area predictor is a positive value 

that is close to one. Temperature and imperviousness have inverse relationships with low 

flows and thus should attain negative quantities for their exponents. 

3.10.6 Comparing the regional model to each of the six single-watershed calibrated 
models

A power model of the form of Equation 3-2, was calibrated for each of the six 

watersheds including the NWB watershed. NUMOPT was used to determine the values 

of the coefficients. A summary of the goodness-of-fit statistics and the values of the 

calibrated coefficients is listed in Table 3-10 below. 

Table 3-10. Summary of goodness-of-fit statistics and calibrated coefficients for each of 
the single-watershed calibrated model forms (Calibrated coefficients with irrational signs 
are shown in bold).

Goodness-of-Fit Statistics NWB
Seneca 
Creek

Little 
Falls Hawlings

Rock 
Creek

Watts 
Branch

Mean of observed Q7 (cfs) 35.5243 190.9521 2.8170 39.5870 13.6056 4.6932
Mean of Predicted Q7 (cfs) 35.9587 189.8160 2.7960 39.2727 13.4900 4.6828
Standard Error of Estim., Se (cfs) 15.5056 54.0013 2.3482 17.6375 4.4350 1.8328
Standard Deviation of y, Sy (cfs) 26.1328 107.9954 2.2289 28.5435 6.7131 3.0926
Se/Sy 0.5933 0.5000 1.0535 0.6179 0.6607 0.5926
Correlation Coefficient, R 0.8015 0.8574 0.1776 0.7832 0.7597 0.7999
Explained Variance, R^2 0.6423 0.7351 0.0316 0.6134 0.5771 0.6399
Bias, sum of residuals (cfs) 0.4343 -0.6012 0.0145 0.2772 0.1293 -0.0007
Mean Bias (cfs) 0.4343 -0.6012 0.0145 0.2772 0.1293 -0.0007
Standard Deviation of Bias (cfs) 14.8390 52.3185 2.1965 16.3267 3.6186 1.7318
Relative Bias 0.0122 -0.0031 0.0052 0.0070 0.0095 -0.0001
C1 3.1568 7.1615 0.0164 1.5441 0.0046 1.0386
C2 (prec. In.) 1.9954 1.9223 -0.3677 2.7504 1.3921 2.0148
C3 (temp. F) -0.5682 -0.9610 -0.1900 -2.4075 0.4897 -0.8466
C4 (imperv. %) -0.8790 0.3209 2.0005 1.8467 0.4274 -0.5528

The relative magnitudes of the average 7-day low flows and standard errors are 

consistent with the size of the watersheds. Thus in order to compare the statistics of the 

six watersheds, it is more meaningful to concentrate on the values of the explained 
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variances, the relative bias, and the relative standard errors. The power model seems to fit 

the data for all the watersheds except the Little Falls watershed which exhibits an 

extremely low explained variance of 3.2%. So the model form can only explain 3.2% of 

the scatter of the data and the rest is considered random fluctuations. The relative 

standard error values are in agreement with the correlation coefficients values. All 

watersheds show a substantial reduction in standard error with the power model form 

except the Little Falls watershed which has a higher standard error than standard 

deviation of the criterion variable.  Relative bias values are small for all six watersheds,

and they do not suggest any inadequacy with the power model form.

When analyzing the rationality of the calibrated coefficients, only the NWB 

watershed and Watts Branch produce all rational coefficient values. Little Falls being the 

poorest, produces a negative coefficient value for the precipitation predictor and a 

positive coefficient value for the imperviousness predictor. This says that the historical 

record of Little Falls conveys smaller low flow events with larger antecedent 

precipitation magnitudes and smaller impervious areas. This is irrational and is probably 

better explained by the dominance of the much larger magnitude of the imperviousness 

coefficient, which in essence is capable to cause irrationality in the other less dominant 

predictors. The calibrated coefficients of the imperviousness predictor show irrationality 

in the case of Seneca Creek, Little Falls, Hawlings, and Rock Creek watersheds. This is 

mainly due to the modest changes of urbanization levels over their periods of record.
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Figure 3-10. Log-log plot of the historical time series for all four predictors as well as the 
7-day low flow variable; plot separates time series by watershed. 

Three questions arise and become important to answer to better assess the 

reliability of the regional power model structure. First, if in four out of six watersheds, 

the calibrated coefficients associated with imperviousness predictor are irrational, then is 

imperviousness really a statistically important predictor? Also acknowledging that the 

calibrated coefficients are random variables and that in the cases of Little Falls and Rock 

Creek some coefficients became irrational due to the dominance of other predictors, 

raises the question of how much we believe in these calibrated coefficients. This can be 

addressed by calculating confidence intervals on the exponent values. Last, the poor 

goodness-of-statistics and the irrationality of the calibrated coefficients associated with 

the Little Falls watershed question the credibility of the data for Little Falls. So should 

Little Falls be omitted?         

years
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3.11 Investigating the necessity of the four predictors statistically

This discussion will focus on the necessity of the imperviousness predictor in 

particular and to investigate if any significant trend in the historical data between the 7-

day low flow and imperviousness exist. Three different approaches were performed to 

confirm the need to maintain the imperviousness predictor in the regional model. 

3.11.1 Stepwise regression analysis

The stepwise regression approach has shown area to be the most sensitive 

variable. Antecedent precipitation and antecedent temperature are second and third, 

respectively, while imperviousness is the least sensitive variable. Table 3-11 below 

shows that the regional power model form is rational. Another observation is that the 

addition of the antecedent temperature predictor and then the imperviousness predictor 

have caused a large uncertainty in the accuracy of the coefficients.  The signs of the 

calibrated coefficients are all rational and in agreement with the signs of the correlation 

coefficient, R, values. This adds to the reliability of the regional power model form with 

the selected four predictor variables. 

Table 3-11. Summary of the outcome of stepwise regression goodness-of-fit statistics 
used in selecting the number of predictors that add significant accuracy to the regional 
power model form.
Variable b R R^2 Se(bi) Se(bi)/bi Intercept (cfs)

A 1.2366 0.8053 0.6485 0.0802 0.0649 0.4999

A 1.2504 0.8053 0.6485 0.0623 0.0499 0.0001
P 2.4829 0.2572 0.0661 0.3561 0.1434

A 1.2318 0.8053 0.6485 0.0602 0.0488 1.8653
P 2.3070 0.2572 0.0661 0.3472 0.1505
T -2.1207 -0.2400 0.0576 0.7404 0.3491

A 1.1347 0.8053 0.6485 0.0724 0.0638 7.6393
P 2.2963 0.2572 0.0661 0.3390 0.1476
T -2.1123 -0.2400 0.0576 0.7229 0.3422
I -0.4147 -0.5470 0.2992 0.1806 0.4355
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Investigating further the goodness-of-fit statistics of the regional power model 

with the addition of each of the predictors can convey which of the predictors add 

significant improvement to the accuracy of the model and which don’t.  The Table 3-12 

below summarizes the effects of the addition of each of the proposed predictors to all of 

the explained variance, R2, the relative standard error, Se/Sy, and the relative bias 

quantities. The addition of the area predictor has explained 58% of the total variance and 

has improved the accuracy of the model by 35%; but it has a very large relative bias of 

23%. The addition of the antecedent precipitation predictor improves the explained 

variance significantly by 24.6%, reduced the relative standard error and the relative bias 

significantly by 23 % and 10%, respectively. Unlike the first two predictors, the addition 

of antecedent temperature predictor reduces the explained variance by 23%, increases the 

relative standard error to approximately 64%. These are considered very significant 

losses to the accuracy of the model despite the reduction of relative error by 9%. 

Moreover, the addition of the imperviousness predictor, improves the accuracy of the 

model by increasing the explained variance by 11.6%, and reducing the relative standard 

error by 10%. Relative bias is worsened by 6.5%.   The outcome of the stepwise 

regression does not only question the necessity of an imperviousness predictor but also it 

recommends the elimination of the antecedent temperature predictor as well, thus further 

studies should be done to confirm the necessity of the predictors. 

Table 3-12. Summary of goodness-of-fit statistics of the regional power model after the 
addition of each of the four predictors (stepwise regression).

Variable ∆ R^2 R^2 R Se (cfs) Sy (cfs) Se/Sy Bias (cfs)
Relative 

bias
A 0.5812 0.5812 0.7624 63.5081 97.8579 0.6490 -15.7540 -0.2303
P 0.2455 0.8268 0.9093 40.9633 97.8579 0.4186 -9.1498 -0.1338
T -0.2298 0.5970 0.7726 62.6634 97.8579 0.6404 -3.1478 -0.0460
I 0.1156 0.7125 0.8441 53.0771 97.8579 0.5424 -7.5571 -0.1105
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3.11.2 Multiple part-correlation to eliminate the effects of more dominant predictors 
that tend to offset the effect of the least dominant predictors (imperviousness, 
temperature) 

The coefficient of correlation between the criterion variable and a predictor 

variable does not actually represent the actual relationship between them when other 

more dominant predictors exist. This is the purpose of the multiple-part correlation 

method. This method is the analog of a modified correlation coefficient after eliminating 

the effects of the more dominant predictors that tend to obscure the effect of the least 

dominant predictors. In this case each of imperviousness and antecedent temperature 

values were tested for significant correlation to the 7-day low flow. The null hypothesis is 

that there is no significant relationship between I (or T) and Q7, and the alternative 

hypothesis is that there exists a significant relationship. This test was performed on the 

NWB and Watts Branch historical time series.  A complete summary of the multiple-part 

correlation analysis is provided in Appendix A. The null hypothesis was rejected in both 

cases for the NWB and it showed that there exists strong relationships between base flow 

and both antecedent temperature and imperviousness. In the case of Watts Branch 

watershed, the null hypothesis was rejected at a significance level of 5% and 15% for the 

tests between base flow and imperviousness, and base flow and antecedent precipitation, 

respectively.  The outcome of the multiple part-correlation statistical test indicates that 

there exists significant relationships between base flow and both of antecedent 

temperature and imperviousness, but they were undetected during the calibration process 

because of the effects of the more dominant predictors.
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3.11.3 Plotting the residuals against the imperviousness time series to detect possible 
correlations

Another approach to study the effects of land use change on low flows in the 

NWB and Watts Branch watersheds was to calibrate a regression model based on the 

more dominant predictors- antecedent precipitation and antecedent temperature. Then, 

the imperviousness time series was plotted against the residuals time series obtained by 

the calibrated regression model based on two predictors. This allows us to first remove 

the influence of the first two predictors from the low flow time series; so a trend between 

urbanization (imperviousness) and low flow can emerge if it exists. This was done on 

both the NWB and Watts Branch time series. Summaries of the calibrated models and the 

residuals are listed in Tables A-15 and A-16, respectively. Figures 3-11 and 3-12 below, 

show an emerging relationship between the imperviousness time series and the residuals. 

The NWB produced a stronger signal between imperviousness and the residuals with a 

correlation coefficient of -0.5541 verses -0.3317 for the Watts Branch time series. 

Figure 3-11. The emerging relationship between low flow time series and 
imperviousness time series after the removal of the effects of precipitation and 
temperature (NWB).
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Figure 3-12. The emerging relationship between low flow time series and 
imperviousness time series after the removal of the effects of precipitation and 
temperature (Watts Branch).

3.11.4 Selecting subsets time series where some of the predictors are similar in 
magnitude so the effect of less dominant predictors can be observed 

Knowing that in regression modeling the effect of one predictor can be obscured 

by the influence of a more dominant predictor necessitates further study of the data time 

series to verify the need for an imperviousness predictor. This scenario generally exists 

when predictors are highly intercorrelated. In our case, to verify the importance of 

imperviousness as a potential predictor to predict 7-day low flows, subsets of the NWB 

and Watts Branch watersheds were further studied. The selection of these two watersheds 

in particular is because they are the only two watersheds out of the six watersheds that 

have experienced a considerable change in imperviousness over their period of gage 

record. The subsets are formed based on the relative closeness of the antecedent 

precipitation and temperature predictors. In other words, events with relatively similar 

values of antecedent precipitation and relatively similar antecedent temperature values 

are grouped together.  So the relationship between imperviousness and the 7-day low 
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flow can emerge if it exists. Six subsets from the NWB data and four subsets from the 

Watts Branch data, were formed with no fewer than four observations and an apparent 

inverse trend was noticeable as shown in Table A-20.  

A regression model was calibrated for each of the sets. A summary of the 

predicted values as well as the residuals are listed in Tables A-21 and A-22. Furthermore, 

a summary of the goodness-of-fit statistics and the calibrated coefficient values are listed 

for the NWB and Watts Branch in Tables A-23 and A-24, respectively.  All the sets 

except set 3 in the case of the NWB data, produced negative coefficient values for the 

imperviousness exponent. The four subsets of Watts Branch data did not show a 

pronounced influence of urbanization with only two of them producing negative 

exponents. The subsets were compiled based on collecting the low flow events associated 

with a close range of values for antecedent precipitation and evaporation predictors so the 

effect of urbanization on low flows could emerge. In another analyses, regression models 

were calibrated for the same subsets with the elimination of the precipitation and 

temperature predictors. This was done solely for the NWB data since it seemed to show a 

stronger urbanization effect on low flows.  The calibrated coefficients and the correlation 

coefficients suggest the existence of the relationship between urbanization and low flow.  

Based on the results from this and earlier tests, it was decided to keep all four predictors 

(A, P, I, T) in our regional model form.

3.12 Recalibration of the regional model form

Since we concluded that imperviousness is a significant predictor based on 

analyses of the NWB and Watts Branch watersheds, it is more meaningful to recalibrate 

for the imperviousness predictor based on inferences from these two watersheds only. 
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The other four watersheds produced irrational coefficients for the imperviousness 

predictor; thus, it is reasonable to omit them when calibrating with the imperviousness 

predictor.  The power models calibrated for the NWB and Watts Branch watersheds, 

produced imperviousness exponents of minus 0.88 and minus 0.55, respectively.  Those 

would seem more realistic and are more indicative of the expected relationship between 

imperviousness and low flow.  Another calibration to produce the equivalent of the 

regional model form was performed but with the use of only the NWB and Watts Branch 

data. This produced all rational coefficients with an imperviousness coefficient of minus 

0.89.  Thus, NUMOPT was used again to produce the equivalent of Equation 9 with the 

restriction of enforcing an exponent value for imperviousness. This was done for the 

values of minus 0.80, 0.85, and 0.90. 

The equivalent of Table 3-10 is reproduced for each of the proposed 

imperviousness coefficients.  They are summarized in Tables A-17 through A-19.  The 

results show that fixing the imperviousness predictor value at 0.90 reduced the relative 

error by 1.0% but also reduced the relative bias by 3.3%.  Thus, the optimum regional 

model form becomes as shown in Equation 3-10 below.

3642.19000.00366.1
60

0461.2
2707 A.)t(ITP2875.0)t(Q −− ⋅⋅⋅= (3-10) 

where 7Q (t) is the annual minimum 7-day low flow in year t in ft3/s, 270P is the 270-day 

antecedent precipitation volume in inches, 60T is the 60-day antecedent average 

temperature in F� , I(t) is the imperviousness in the watershed as a percentage in year t, 

and A is the area of the watershed in square miles.
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3.13 Investigating the primary sources of uncertainty in the calibrated regional 
model

Having decided on the final regression model form, we should illustrate the 

primary sources of uncertainty in the regression model, so future research can be directed 

to give greater emphasis to the more important sources of uncertainty in the model.  

Uncertainty in the calibrated regional model is anticipated in the selection of the proper 

model structure, the calibration process of the coefficients and their confidence intervals, 

the formation process of the predictors’ time series, and the lack of consideration of an 

important predictor that is not represented by the collected data.

3.13.1 Model structure

The decision on the best model structure is the first obvious source of uncertainty. 

Our analyses showed that the power model is the optimum form. However, it is possible 

that there exists another form that better predicts the annual 7-day low flows that was not 

considered. We only compared four model forms. So a power model form is not 

necessarily the absolute optimum relationship between low flows and each of the four 

predictors.    

3.13.2 Calibrated coefficients (confidence intervals)

Constructing 90%, 95%, and 99% confidence intervals around the values of the 

calibrated coefficients can reveal more information about how much belief we should 

place on the calibrated values.  Stepwise Regression was used to determine confidence 

intervals around each of the four calibrated coefficients. Table 3-13 below summarizes 

the results.
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Table 3-13. Summary of 99%, 95%, and 90% confidence intervals around the exponents 
associated with the four predictors of the regional power regression model.

Upper Limits Lower Limits
Var b at 99% at 95% at 90% b at 99% at 95% at 90%

P 1.84227 2.22585 2.13249 2.08544 1.84227 1.45869 1.55205 1.59910

T -1.67633 -0.86415 -1.06182 -1.16144 -1.67633 -2.48851 -2.29084 -2.19122

I -0.42810 -0.22475 -0.27424 -0.29918 -0.42810 -0.63144 -0.58195 -0.55701

A 1.13704 1.21832 1.19854 1.18857 1.13704 1.05576 1.07554 1.08551

Table 3-13 illustrates the ranges over which each of the coefficients is expected to 

vary. None of the coefficients switch signs, which is a notable indication of the reliability 

of our calibrated coefficients. This builds on our decision that all four predictors are 

significant in forming the regional regression model.

3.13.3 Determining the predictor variables (precipitation, temperature, 
imperviousness, and area)

There is a source of uncertainty in the process of collecting the time series of the 

four predictors. Initially, the fact that climate data are given at single points leads to 

uncertainty to take information from a single point to make inferences over an area. In 

some cases, the weather stations are not even located within our watersheds. In most, data 

had to be compiled from multiple stations to form a complete time series. This introduces 

the issue of intercorrelation among the various stations and biasedness of their data. 

Many factors actually contribute to the source of uncertainty in our climate time series. 

The same level of uncertainty is probably also expected in the imperviousness data. First, 

the step of scanning in aerial maps of our watersheds, transforming them into GIS data, 

geo-referencing them, and matching current coordinates, and then digitizing these 

watersheds into polygons of different land use, introduced a source of error and 

subjectivity by the digitizer.  Besides, land use data are usually classified into many 

categories whereas in our case, we grouped them in only three categories which required 
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judgment calls on what constitutes each one of them.  These all contribute to some source 

of error to be embedded in our urbanization data. Now, area is assumed to be a known 

value. Areas are precisely calculated by the GIS, and there is not a source of subjectivity 

in obtaining them. 

3.13.4 Unexplained variation due to not accounting for predictors that have an 
influence on streamflows but are unknown, unavailable or not strong enough 
to show a signal. 

As stated earlier, regression modeling can only convey what is embedded in our 

data sets. And it is often the case that we are not aware of all the contributing physical 

factors in a low flow event or we lack the ability to form a time series that physically 

represents each of the factors. In other cases, predictors are intercorrelated, which makes 

it far more complicated to predict low flows with a simple regression model; and the use 

of  physical models become preferred. Besides there can be other contributing factors that 

can not be shown when their signals are lost in the noise of the random component of the 

data. These are all shortcomings of the regression modeling approach which add up to the 

uncertainty in a calibrated regression model.

3.14 Future simulations and future trends

The thrust of all the analyses in the previous part of this chapter was to produce a 

reliable and sufficiently accurate regional regression model that can be utilized in a 

predictive sense to predict the annual 7-day low flow under the effects of climate change 

and urbanization.  The regional model form is given in Equation 3-10.  Future analyses 

will be performed on the NWB time series only for the reason of reducing the scale of 

this work, and because we anticipate the same outcome to be learned had we selected any 

of the other five watersheds.
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We will consider three future scenarios of base flows in the NWB watershed: base 

flows responding to future climate change with land use held constant at current 

conditions, base flows responding to future land use change with climate held constant at 

current conditions, and base flows responding to jointly changing climate and land use. 

3.14.1 Collecting data to represent future scenarios

The ability to simulate low flows under the effects of future climate and land use 

change requires the availability of a future temperature, precipitation, and imperviousness 

time series. Ideally, future imperviousness in a watershed is projected based on the 

ultimate development anticipated for the watershed. For purposes of illustration in this 

study imperviousness is projected to increase by an estimated percentage. We will 

consider a 10% change in imperviousness that increases linearly over the span of the 99-

year time series for the NWB watershed.  Future daily precipitation and future daily 

average temperature time series were obtained for a 99-year period, 1994 to 2093, from 

two commonly used global climate models: the Canadian Climate Centre (CCC) (Boer et 

al., 1992; Flato et al., 2000), and Hadley (Fang and Tung, 1999).  However, we need to 

initially investigate the selection of a grid point to represent our region of study and 

addressing the issue of correlations among the time series of the available grid points. 

3.14.1.1 Correlations among grid points

The CCC and Hadley only provide climatic data at very specific locations and it 

was not possible to select one point that falls within the NWB watershed. Thus, future 

climate time series were compiled for four grid points which are closest to the NWB 

watershed. Tables A-26 and A-27 show that there exist strong correlations among the 

minimum and maximum temperature time series of the four selected grid points. This is 
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physically rationale because temperature is generally spatially persistent at a regional 

scale. Precipitation, on the other hand, can be much more variable especially for 

thunderstorms events. The precipitation time series associated with the four selected grid 

points, as shown in Table A-28, are uncorrelated, with a highest correlation coefficient of 

0.0548. Table A-29 suggests that each of the four grids experiences approximately the 

same number of rainy events, and approximately 30 to 35 % of the days are rainy during 

the simulated 99 years of precipitation data. Yet the poor correlation would suggest 

independence between the series. So although they produce approximately the same 

number of rainy days in the 99 year time series as shown in Table A-29, their poor 

correlations would suggest that rainy events do not coincide among the four grid points. 

Thus, a simple experiment was performed to test whether an average precipitation time 

series based on the four time series would be representative. Only the rainy days at grid 

one was compared to each of the three neighboring grids during the same days. Table A-

30 shows that only 30 to 36 % of those days were also rainy at the other grid points. In 

other words, if it rains at station one, it is likely that only one other grid point will have a 

rainy event.

This experiment was taken a further step by constructing a weighted average 

precipitation time series based on the relative distance of the NWB and Hawlings 

watersheds to each of the four grid points. The distances between the centers of the 

watersheds and each of the four grid points were measured using GIS capabilities. So the 

averaged daily precipitation value for the NWB, for example, is a weighted average 

based on the inverse distance squared to each of the four grids. So the furthest grid point 

would have the least weight contribution to the averaged time series.  Table A-31 
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summarizes the results of the number of rainy events that are determined to be assigned 

to NWB and Hawlings watersheds based on their relative inverse distances squared from 

the four grid points.  As concluded previously, the number of rainy days in the NWB and 

Hawlings are two to three times more frequent than at any of the grid points. This simple 

experiment confirms our claim and suggests that using a weighted average will lead to a 

precipitation time series with less extreme events and more rainy days. Thus it was 

concluded that any of the four points is as representative as any of the others, and the 

option of forming a weighted average time series based on all four grid points was 

omitted since it was proven inappropriate.  The grid point we selected to represent the 

future daily time series of precipitation and temperature in our study is located at 38.8 No

and 77.2 Wo and is closest to the NWB watershed. (NCAR, 2003).

3.14.2 Monte Carlo approach

The regression model developed earlier in Equation 3-10 allows us to 

simulate the effects of climate change and urbanization on low flows using the 99-year 

future time series of the four predictors, 270-day antecedent precipitation, 60-day average 

antecedent temperature, annual imperviousness, and the area of the watershed. However 

one essential component that the regression model lacks is the ability to predict the date 

when the low flow event is likely to occur.  An analysis was performed on the historical 

time series to better understand what dictates the occurrence of low flow on a particular 

day of the year. We concluded that although both the 270-day antecedent rainfall and the 

60-day antecedent temperature are excellent predictors of the magnitude of the low flow 

itself, they are not good predictors of the precise timing of the event. Generally the 7-day 

low flow event did not occur at the time of the absolute minimum of the 270-day 
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antecedent rainfall or maximum of the 60-day antecedent temperature. 

Precipitation magnitude is not the only factor that influences the timing of 

the minimum annual 7-day low flow.  The temporal distribution of precipitation over 

many months also plays a role.  Further evapotransporation rates and their dependencies 

on temperature also affect the low flow event timing. We also recognize a limitation in 

our data. The raingages were not actually located within the boundaries of the 

watersheds.  Moreover, since low flows generally occur in late summer when small-scale 

thunderstorms are the dominant precipitation form, the information reported at the 

raingages is much less representative of what occurs within each of the watersheds than 

during the frontal storm dominated cold season.   

A Monte Carlo modeling approach was used to address the issue of 

selecting the day of the minimum flow event.  Figure 3-13 below shows the frequency 

histogram of the month in which the 7-day low flow events occurred in the available 

years of historical data from all six watersheds. Both a normal and a triangular 

distribution were investigated as possible probability density functions that best capture 

the distribution of the timing of the observed low flow data. We found that a normal 

distribution of mean date of September 8 and a standard deviation of 35.8 days best 

approximated our observed data.  A summary of the calculation of the optimum normal 

curve parameters and the test for normality are presented in Appendix D. 
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Figure 3-13. Frequency histogram of day of occurrence of minimum 7-day low flow 
(data of all six watersheds combined, sample size of 231 events).

To implement the Monte Carlo approach, we generated 100,000 random values 

per year assuming the normal distribution parameters determined above. These values 

determined the date of each trial’s 7-day low flow. With the date determined, equation 3-

10 was then used to determine the simulated low flow for that trial. The distribution of 

the simulated low flows is shown as a whisker box for each year. Five plots (Figures 3-18 

through 3-22) were generated for the three previously proposed future scenarios using 

CCC and Hadley climate predictions. 

3.14.3 The CCC and Hadley models

Both the CCC and the Hadley models assume a 1% annual rate of increase in the 

concentration of CO2 in the atmosphere (Kittel et al., 2000; Kittel et al., 2003). Increased 

CO2 concentrations lead to an increasing trend in the projected daily temperature time 

series for both models as shown in Figure 3-14. Unlike the Hadley precipitation time 

series, the CCC precipitation time series did not show a significant trend over the period 

studied (See Figure 3-15). 
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Figure 3-14.  Projected average 60-day antecedent temperature
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Therefore, it will be later shown in Table 3-15 that the CCC and Hadley temperature time 

series and the Hadley precipitation time series have significant increasing trends in the 

future 99 years of data.  They were tested with the Cox-Stuart test (McCuen, 2003) for 

trend at a significance level of 5 percent. The Hadley predictions suggested a wetter and 

cooler period than did the CCC predictions.

3.14.4 Test the significance of simulated secular trends in streamflows

Table 3-14 summarizes the rejection probabilities for the Cox-Stuart trend test on 

the significance of observed trends in climate and streamflow time series. Tables 3-15 

and 3-16 show the outcomes of the Cox-Stuart trend test at a 5 percent level of 

significance for each of the scenarios studied. Given the trends already detected in the 

precipitation and temperature time series and the low flow equation calibrated in 

Equation 3-10, the outcomes in Table 3-16 are not surprising. Figure 3-16 supports 

graphically the results shown in Table 3-16.

Table 3-14.  Rejection probabilities for the Cox-Stuart trend test for the simulated 
precipitation, temperature, and the 7-day low flows under future predictions (significant 
trends at a 5 % level of significance are shown in bold).

T60 (
oF.)

historical
T60 (

oF.)
CCC

T60 (
oF.)

Hadley
P270 (in.)
historical

P270 (in.)
CCC

P270 (in.)
Hadley

(+) 7.62% (+) 0.00% (+) 0.19% (+) 19.58% (-) 38.77% (+) 0.47%
Q7 (in.)

Scenario 1a
Q7 (in.)

Scenario 1b
Q7 (in.)

Scenario 2
Q7 (in.)

Scenario 3a
Q7 (in.)

Scenario 3b
(-) 12.64% (+) 1.06% (-) 12.64% (-) 0.19% (-) 28.41%  

Table 3-15. Cox-Stuart test for trend at a 5 percent level of significance for both 
climatic inputs.

270-day Antecedent
Precipitation Time Series

60-day Antecedent
Temperature Time Series

Historical

no significant 
trend

no significant 
trend

significant 
increase

significant 
increase

CCC

no significant 
trend

Hadley

significant 
increase
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Table 3-16. Cox-Stuart test for trend at a 5 percent level of significance for low flows 
under the two proposed scenarios.

Climate and Land Use
Change

no significant trendLanduse Change Only

Climate Change Only

significant decrease

significant increase

CCCHadley

no significant trend

no significant trend
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Figure 3-16.  Simulated 7-day low flow events under all scenarios (the top plot is for 
scenario 1, the middle plot is for scenario 2, and the bottom plot is for scenario 3). CCC 
is shown in solid lines and Hadley is shown in dashed lines.
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3.14.5 Simulations of three future scenarios

3.14.5.1 Scenario 1: hold annual imperviousness constant / vary precipitation and 
temperature

Let us first consider the low flow predictions under climate change and constant 

land use. The positive trends in temperature for both the CCC and Hadley predictions 

indicated in Table 3-15 would be expected to physically lead to increased evaporation 

and thus a reduction in low flows. Turning to Equation 3-10, the negative exponent on 

temperature is consistent with this interpretation. Now we must also consider the 

superposition of the precipitation predictions. Under the CCC predictions, no significant 

trend in low flows was observed. The absence of an increasing trend in precipitation and 

the presence of an increasing trend in temperature, even warmer than predicted by 

Hadley, did not lead to a decrease in predicted base flows, Figure 3-17.  The strong 

increase in temperature was not sufficient to result in a decreasing trend in low flows 

because of the modest effect of temperature on low flows. Under the Hadley predictions, 

a positive trend in precipitation coupled with a positive exponent on the antecedent 

precipitation variable of equation 3-10 would be expected to lead to an increase in 

predicted base flows (See Figure 3-18). Hence, precipitation was capable of 

counteracting the effect of temperature on predicted base flows.  This indicates that 

precipitation was sufficient not only to counteract the significant positive trend in 

temperature, but also to produce a positive trend in low flows under the Hadley climate 

predictions.  This again indicates that low flows are more sensitive to precipitation than 

temperature. This finding is in agreement with the work of Duell (1994) which concluded 

that precipitation has a greater influence on streamflow than temperature.
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Figure 3-17.  Simulated 7-day low flow events under climate change only (Scenario 1: 
CCC) - Indicate no significant trend at a 5% level of significance.
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Figure 3-18.  Simulated 7-day low flow events under climate change only (Scenario 1: 
Hadley) - Indicate significant positive trend at a 5% level of significance.
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3.14.5.2 Scenario 2: vary annual imperviousness / hold precipitation and 
temperature constant

A constant climate condition was imposed by obtaining 99 years of historical data 

for the same grid point, 38.8 No and 77.2 Wo, used in predicting the future climate data. 

Table 3-15 indicates that the historical precipitation and temperature time series show no 

indication of an increasing trend over the 99-year historical record. Thus imperviousness 

is anticipated to be the main source of influence on low flows. To implement the 

urbanization effect, the current imperviousness of the NWB watershed was projected to 

increase linearly by 10 percent (from 20.5% to 30.5%) over a 99-year interval. Figure 3-

19 below indicates that land use change alone was not sufficient at a 5% level of 

significance to show a decreasing trend in low flows under the constant climate 

conditions.  This suggests that if the climate change effect is to be eliminated and the 

NWB watershed to urbanize by another 10%, low flows will not experience a 

significantly diminishing trend. It should be noted that a decreasing effect is apparent but 

is only considered significant at a confidence level of 12.6% or higher, Table 3-16.
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Figure 3-19.  Simulated 7-day low flow events under land use change only (Scenario 2: 
based historical climate data).
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3.14.5.3 Scenario 3: vary annual imperviousness / vary precipitation and 
temperature

In comparison to the outcomes of Scenario 1, the introduction of urbanization 

reduced the magnitude of the predicted low flows for both the CCC and Hadley 

scenarios.  The drier and warmer predictions in the CCC scenarios coupled with a 10% 

increase in impervious area, led to a significant decrease at a 5% level of significance in 

the magnitude of low flows (See Figure 3-20). Under the Hadley predictions, the addition 

of land use change joined with an increasing trend in temperature, were capable of 

offsetting the effects of the predicted increasing trend in precipitation on low flows 

leading to no significant trends in the predicted low flows (See Figure 3-21).  Further, 

Figure 3-20 shows that employing the 10 percent increase in urbanization in the NWB 

watershed reduced the magnitude and the variation around the mean annual 7-day low 

flow discharges. Note, however, both magnitude and variation are reduced by the same 

factor, that is urbanization. Thus, even though the addition of land use change leads to 

what seems to be a decreasing trend in variations around the mean 7-day low flow, the 

mean itself is also reduced by the same factor, urbanization, and the coefficient of 

variation is constant regardless of any change in land use.
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Figure 3-20.  Simulated 7-day low flow events under the joint effect of climate and land 
use change (Scenario 3: CCC).
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Figure 3-21.  Simulated 7-day low flow events under the joint effect of climate and land 
use change (Scenario 3: Hadley).



76

3.15 Summary

The regression approach presented here predicts trends in low flows considering 

the effects of both climate change and urbanization by using daily time series of 

precipitation, temperature and imperviousness as predictors of the low flow discharge. A 

Monte Carlo approach was used to predict the low flow estimates for the proposed future 

scenarios. The Cox-Stuart trend test has indicated a significant decreasing trend in future 

low flows under the CCC climate predictions with both climate and land use change. On 

the other hand, a significant increasing trend in future low flows was observed using the 

Hadley climate predictions. Comparing the CCC and Hadley predictions of low flows 

under constant land use, shows that the climatic inputs of temperature and precipitation 

play contradicting effects on low flows. These findings are explained by two arguments. 

First, the CCC model predicted a drier and warmer climate than the Hadley model. 

Second, low flows have a stronger dependency on precipitation than on urbanization or 

temperature. This is in agreement with the magnitude and signs of the exponents of the 

calibrated model form Equation 3-10, where precipitation has an exponent that is 

approximately two times higher in magnitude than the exponents of the temperature 

predictor and the imperviousness predictor.       
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CHAPTER FOUR

USING A CONTINUOUS STREAMFLOW MODEL TO INVESTIGATE THE 
EFFECTS OF CLIMATE AND LAND USE CHANGE ON STREAMFLOW 

DISTRBUTIONS 

4.1 Overview

To study the effects of climate and land use change on the distribution of the 

streamflows in the Maryland Piedmont region, a continuous streamflow model was applied 

at the same six watersheds that were utilized in the regression modeling approach.  The 

continuous streamflow model takes as input time series of temperature and precipitation.  

Additionally, two model inputs that quantify urbanization effects were allowed to vary so 

that varying climate and urbanization could be individually and jointly examined.  The 

details of how this study was performed and an analysis of the study results will be 

presented in this chapter.

4.2 The continuous streamflow model

The continuous flow model used in the analysis presented here is largely outlined in 

McCuen (1986).  Although this model is somewhat simpler compared to the more 

complicated continuous streamflow models that are available, this model is conceptually 

similar with the more well-known Stanford Watershed Model (Crawford and Linsley, 

1966), now commonly used as HSPF (Bicknell et al., 1997).  Another conceptually similar 

continuous streamflow model is SWMM (Huber and Dickinson, 1988; Roesner et al., 1988; 

Donigan and Huber, 1991).  

Some modifications have been made to the model structure presented in McCuen 

(1986).  Specifically, the infiltration mechanism has been modified slightly to capture 

saturation behavior and evaporation has been generalized to make it functionally 
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dependant on daily temperature values.  An extra input variable, PTHRESH, was created 

such that this is the maximum daily infiltration value possible.  For daily precipitation 

volume (PREC) less than the ratio of the maximum daily infiltration value (PTHRESH) 

to the fraction of precipitation that infiltrates (PINF), infiltration originally takes place 

with the fraction, PINF * PREC infiltrating (INFILT), and the fraction (1-PINF) * PREC 

going to surface runoff (SRO) (Equation 4-1a).  The difference is if PREC is greater than 

PTHRESH/PINF then the fraction PTHRESH infiltrates, and the remainder (PREC –

PTHRESH) goes to surface runoff (Equation 4-1b). This modification produces more 

realistic storm runoff behavior for large magnitude storms.

( ) PRECPINF1SRO

PRECPINFINFILT
PINFPTHRESHPREC ⋅−=

⋅=⇒≤ (4-1a)

( ) ( )PTHRESHPRECPTHRESHPINF1SRO

PTHRESHPINFINFILT
PINFPTHRESHRECP

−+⋅−=

⋅=⇒> (4-1b)

The second modification is implemented in handling the available evaporation back 

to the atmosphere from the available water in subflow storage.  Evaporation is modeled to 

be some fraction of the potential evaporation.  Potential evaporation is determined using 

the Hamon (1963) equation:

2.273

)(
)(8.29),(

*

+
⋅⋅=

a

aa
a T

Te
tDtTPE (4-2a)

where ),( tTPE a is the daily potential evaporation in millimeters/day, D(t) is a number of 

daylight hours, )(*
aa Te  is the saturation vapor pressure in KPa, aT  is the mean daily 

temperature in degrees Celsius, and t is the day of year. Actual evaporation, E, is 

determined as the product of ETCO and the potential evaporation, PE, given by equation 4-
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1a and a scaling input variable, PETAMP (Equation 4-2b). The variable, ETCO, is 

determined internally as a value between 0 and 1 that is non-linearly dependent on 

SUBFLO/SAT, which is the ratio of near sub-surface storage (SUBFLO) to a fitting input 

variable, SAT.  SAT represents the maximum storage volume possible in the near sub-

surface.  

PETAMPETCOPEE ⋅⋅= (4-2b)

4.2.1 Continuous streamflow model calibration

Calibration of any continuous streamflow model is necessary to capture the 

hydrologic characteristics of the watershed by trying to reproduce its observed streamflow 

time series.  In this study, calibration of the model was performed using temperature and 

precipitation time series as input and the observed daily discharge at the six USGS 

streamgages as the observed time series that were to be matched.  The continuous 

streamflow model also required the input of eleven hydrologic input variables in addition to 

the three mentioned before time series. The list of the eleven input variables and their 

physical interpretations are summarized in Table 4-1 below.  Area is determined for each 

watershed and is a fixed input variable. 

Table 4-1. Hydrologic input variables for the continuous streamflow model.
Variable Physical interpretation of variable 
AREA Drainage area in square miles
GWS Initial groundwater storage (inches)
SUBFLO Initial sub-surface storage (inches) 
PINF Fraction of precipitation that infiltrates
PTHRESH Maximum daily infiltration depth threshold (inches)
SROP Input variable that controls unit hydrograph shape
GWSM Maximum groundwater storage (inches)
BFPM Input variable that controls groundwater flux to stream (inches/day)
SFP Input variable that controls sub-surface flux to stream
PETAMP Potential evaporation scaling factor
SAT Input variable that quantifies saturation conditions (inches)
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4.2.2 Criteria of an optimum calibration

Calibration is generally achieved by adjusting the input variables until the model is 

optimized to best reproduce the observed streamflow time series. However this approach is 

subjective and the “best” calibration is based on the modeler’s judgment. The subjectivity 

is only eliminated by implementing a systematic procedure to reach the optimum 

calibration. This was achieved by the incorporation of the continuous streamflow model 

into NUMOPT. NUMOPT is a numerical optimization program that was used to produce 

the optimum regression model forms. It is again utilized as the tool to optimize the 

continuous streamflow model calibration. Instead of using NUMOPT to optimize a simple 

model form, it is used here to optimize a more complex model form that is the continuous 

streamflow model.  This allows NUMOPT to handle the job of the modeler to modify the 

input variables until the optimum simulated streamflow times series is produced.  

NUMOPT optimizes based on an objective function that minimizes the summation of 

errors squared. This in essence would lead to minimizing the standard error value. 

However, this did not necessarily produce the best visual fit because by minimizing the 

errors, NUMOPT would minimize peak flow errors at the expense of larger errors on 

smaller flows. Thus, a weighted average of two different objectives was incorporated in the 

NUMOPT program. 

While the visual assessment of a calibration is important, it is often necessary to 

quantitatively assert the quality of a given simulation in its approximation of observed 

streamflow.  Better goodness-of-fit statistics between two hydrographs can generally be 

achieved by minimizing the summation of errors squared, minimizing the standard error, or 

maximizing the correlation coefficient.  However, minimizing the summation of errors 
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squared or the standard errors tends to give higher emphasis to fitting the peaks since they 

are the largest contributors to the overall total sum of errors.  The correlation coefficient is 

also not an appropriate measure of goodness-of-fit in this case since the data are serially 

correlated and because this measure lacks the ability to take into consideration the 

difference in water volume between the simulated and observed flows.  Another measure of 

goodness-of-fit is the modified correlation coefficient, Rm, which is in essence equivalent to 

the correlation coefficient multiplied by a factor, a/b, that incorporates the water budget 

balance (McCuen and Snyder, 1975).

b
aRRm ⋅= (4-3)
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 −

= ∑ ∑  (4-3b)

Qp    : Simulated streamflow in inches

Qobs: Observed streamflow in inches

n     : Sample size 

However, optimizing on the modified correlation coefficient is not adequate either 

because NUMOPT would optimize the (a/b) ratio component at the cost of the 

correlation coefficient component.  Thus, the idea of a weighted objective emerged with 

fixed weights given to different objective functions. The objective function used in 

optimizing the calibration of the continuous streamflow model was a weighted average of 

two criteria: summation of errors squared and the (a/b) ratio. The objective function was 

to minimize the quantity, S, which minimizes the summation of errors squared (and thus 
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minimizing the standard error Se), and maximizes the ratio of a/b (Equation 4-4). The 

variable w, which ranges between 0 and 1, indicates the weight given to each component 

of the criterion variable. After some experimentations with various values for w, 

calibrations were performed with a w of 0.2, which gave 80% weigh to minimizing the 

sum of errors squared and 20% to maximizing the (a/b) ratio:

∑ −⋅−+−⋅=
b

a
1)w1()QQ̂(wS 2

obsp (4-4)

4.2.3 Calibration of the continuous streamflow model based on historical data from 
six watersheds in the Maryland Piedmont region  

After the successful merger between the continuous streamflow model and 

NUMOPT, the next step was to form the historical time series to carry out the calibration 

process of the continuous streamflow model. 174 watershed–year records of daily 

streamflow data on a daily basis with the corresponding daily precipitation and 

temperature data were available. The historical data consisted of data collected for six 

watersheds: the Northwest Branch (USGS streamflow gage # 01650500), Seneca (USGS 

streamflow gage # 01645000), Little Falls (USGS streamflow gage # 01646550), Rock 

Creek (USGS streamflow gage # 01647720), Hawlings (USGS streamflow gage # 

01591700), and Watts Branch (USGS streamflow gage # 01645200). The 174 years of 

data were split into 47 distinct runs (33 time series with 4-year durations and 14 with 3-

year durations). The calibration of 47 calibration runs will allow us to create an 

imperviousness time series and eventually to impose the land use change scenarios in the 

continuous streamflow model. Additionally, the use of a 3-year or 4-year duration for 

each calibration run instead of an annual duration was sought to eliminate the spin-up 



83

effect on the calibration which tends to affect the goodness-of-fit of the calibration at the 

beginning few months of the hydrograph.  Also, to minimize the effect of land use 

change during the duration of each run, time series were compiled with the consideration 

of grouping consecutive watershed-years of close annual imperviousness values. So an 

abrupt change in the annual imperviousness values for a particular watershed was 

considered as a suitable split point between two time series.   

4.2.4 Selection of input variables to be calibrated

Prior to start looking at the performance of the 47 calibrations, an investigation of 

how the calibration runs will be utilized to later impose the climate and land use change 

conditions on the continuous streamflow model should be performed. First, it is 

anticipated that some of the calibrated input coefficients might vary with land use change, 

specifically changes in imperviousness. Thus, a modest study was undertaken to 

determine which input variables were dependent on land use and it was determined that 

PINF and SROP exhibited such a dependency.  A cursory examination of the streamflow 

model formulation reinforces the view that these input variables vary with land use.   

Thus, the calibration process was allowed to calibrate for those two input variables. 

NUMOPT was also allowed to calibrate for GWS and SUBFLO which are initial 

condition input variables and have an influence solely on producing a better fit for the 

initial months of a calibration run reducing the spin-up effect. The spin-up effect 

generally occurs in the early simulation period in which the continuous streamflow model 

tries to come to a dynamic agreement with the initial water budget conditions of the 

watershed. Thus calibrating for GWS and SUBFLO lead to better goodness-of-fit 

statistics, yet they describe an initial condition of the watershed and have little hydrologic 
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value to our research context. The remaining six coefficients were fixed as constants and 

NUMOPT was used to calibrate for only four input variables: PINF, SROP, GWS, and 

SUBFLO. 

To obtain the values of the other six input variables, the 47 historical runs were 

initially calibrated for all 10 input variables listed in Table 4-1. Then SAT and PETAMP 

were averaged across the six watersheds since they capture in a sense the temperature or 

the evaporation component in the continuous streamflow model that is assumed to be 

constant across a region. The calculated averages of SAT and PETAMP are 1.0315 

inches and 1.2430, respectively.  A value of “1” was substituted for both of SAT and 

PETAMP as shown in Table 4-2 below.  Assigning a value of “1” to PETAMP suggests 

that the scaling factor to the potential evaporation rate is not necessary and the PETAMP 

component can be eliminated from equation 4-2b. Fixing the values of SAT and 

PETAMP led to a minor reduction in the accuracy of the model goodness-of-fit. 

Table 4-2.  Input variables used in the continuous streamflow model in calibrating the 47 
historical runs.

Hawlings Little Falls NWB Rock Creek Seneca Watts Branch
PINF f1[I(t)] f1[I(t)] f1[I(t)] f1[I(t)] F1[I(t)] f1[I(t)]

SROP f2[I(t)] f2[I(t)] f2[I(t)] f2[I(t)] F2[I(t)] f2[I(t)]

PTHRESH 2.3446 2.9608 2.6554 2.1249 1.9487 2.6050
GWS 14.3553 12.3928 16.7970 14.0838 11.6097 23.8425
SUBFLO 4.0176 7.8050 3.0435 5.6971 3.7336 5.0669
GWSM 14.31 46.92 16.63 16.82 10.50 32.56
BFPM 0.000057 0.000161 0.000043 0.000094 0.000123 0.000078
SFP 0.0108 0.0035 0.0109 0.0084 0.0092 0.0098
PETAMP 1 1 1 1 1 1
SAT 1 1 1 1 1 1

In addition, average values of GWSM, BFPM, SFP, and PTHRESH were 

determined for each of the watersheds. These values are summarized in Table 4-2. 
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Having produced the values of six of the ten input variables, they were input into the 

NUMOPT program as constants and the optimization was performed by calibrating for 

the remaining four input variables: PINF, SROP, GWS, and SUBFLO.  The values of 

GWS and SUBFLO that are listed in Table 4-2 above are the average values per 

watershed determined after optimizing the 47 historical runs. These values are later used 

as constant values under the future simulations. PINF and SROP are to be later used as 

the means through which land use change can be imposed in the future simulations.  

4.2.5 Adjusting model input variables for imperviousness

The continuous streamflow model was calibrated for the 47 historical runs, and the 

results were used to investigate any significant dependency between imperviousness and 

each of PINF and SROP (Figures 4-1 and 4-2).  Although results were noisy, the two input 

variables show a decline with increasing imperviousness, a result that is consistent with the 

physical interpretation of these input variables.  Simple linear regression models relating 

PINF and SROP to imperviousness were developed:

8003.0)(0017.0 +⋅−= tIPINF (4-5a) 

3842.0)(*0038.0 +−= tISROP (4-5b)

where I(t) is the percent imperviousness of the watershed at time, t. Equations 4-5a and 4-

5b indicate that PINF and SROP decrease with increasing imperviousness.  These 

indications are consistent with the physical interpretation of both of PINF and SROP: as 

imperviousness increases, less water would be expected to infiltrate into the ground, 

indicated by a smaller PINF value, and a faster surface runoff response would be expected, 
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indicated by a smaller value of SROP.  The correlation coefficients, R2=0.0596 and 

R2=0.0261, for equations 4-5a and 4-5b, respectively were not significant at a 5% level of 

significance, but these equations are used here to illustrate how the modeling process 

proceed.   

PINF = -0.0017*IMP. + 0.8003
R2 = 0.0596
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Figure 4-1. Dependency of infiltration input variable, PINF, on imperviousness based on a 
data set of 47 historical runs.
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SROP = -0.0036*IMP. + 0.3642
R2 = 0.0251
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Figure 4-2. Dependency of hydrograph shape input variable, SROP, on imperviousness 
based on a data set of 47 historical runs.

Equations 4-5a and 4-5b will be used in simulations of future streamflow along with 

predictions of future land use to help account for the anticipated changes in streamflow as a 

function of land use change alone or in concert with changing climate. However, it is 

instructive to investigate the level of loss of accuracy by reapplying the future version of 

the continuous streamflow model on the historical runs. This can be thought of as the 

validation step because it does not involve calibration of any coefficient. PINF and SROP 

are determined based on the imperviousness value associated with each run and the 

remaining eight coefficients are used as input to the model as constants for each watershed. 

Note that each of the 47 historical runs is assigned an imperviousness value by taking the 

arithmetic average of the annual values comprising the duration of each run. Figures B-2 

and B-3 show the loss of accuracy when using the continuous streamflow model in the 

predictive mode for the future scenario. They are presented in terms of loss in relative 
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standard error, Se/Sy, and bias.  They provide a comparison between the calibration 

statistics for the continuous streamflow model and the validation statistics. The average 

reduction in magnitude of the relative standard error, Se/Sy, and bias were 8.19% and 

0.29%, respectively.  The reader should note that the goodness-of-fit statistics are superior 

in the calibration runs, as would be expected.  

4.2.6 Visual goodness-of-fit of calibration runs

Figure 4-3 provides a snapshot of a 50-day stretch within the calibration period to 

illustrate model behavior in the Northwest Branch watershed versus observed flows across 

a range of hydrologic conditions.  It shows a typical 50-day period indicating good overall 

match although the tendency to under-predict base flows and to over-predict discharge for 

smaller storm events seems to exist.  

Figure 4-3. A 50-day stretch of calibrated streamflows that shows the performance of the 
continuous streamflow model at the NWB gage.
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Figures 4-4 and 4-5 show visual goodness-of-fit of the calibrated model for the 

NWB for the period between January 1, 1970, through December 31, 1973.  Figure 4-4 

shows that the model reasonably predicts runoff from large magnitude storms. It 

particularly shows that on Day 904 which corresponds to the June 22, 1972, event 

(Hurricane Agnes). However, it also shows the lack of the model to perform as well when 

fitting base flows. This is evident in Figure 4-4, where base flows are generally under 

estimated. Yet, it is important to note that these values are plotted in logarithmic scale and 

base flow values are generally very small values. Thus, although the discrepancy in 

predicting low flows seems substantial, the error magnitudes are generally very small 

values. This is clearer when plotting the same calibration run in the arithmetic space 

(Figure 4-5). 
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Figure 4-4. Visual representation of a calibration run of streamflows in logarithmic space 
for the years 1970 through 1973 at the NWB gage.
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Figure 4-5. Visual representation of a calibration run of streamflows in units of inches for 
the years 1970 through 1973 at the NWB gage.

The continuous streamflow model seems to perform better in fitting the middle range of 

flows. And the goodness-of-fit statistics are generally indicative of an adequate fits. A 

summary of the coefficients values obtained in calibration and the goodness-of-fit statistics 

for each of the individual 47 historical calibration runs is provided in Table A-34.

4.3 Simulations performed

With the model calibrated for all watersheds and with relationships for PINF and 

SROP as a function of land use, it is now possible to perform a number of different 

simulations corresponding to different permutations of climate and land use  conditions.  

Climate can either come from historical precipitation and temperature, or can come from 
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the future climate data as predicted by the Hadley and CCC models.  Land use may 

correspond either to present (2000) land use or predicted future land use.  Table 4-3 

summarizes the scenarios that are considered.

Table 4-3. Scenarios of Land Use and Climate Change.

Scenario Land Use Climate Purpose/Description

1a
Present

(No change)
CCC

Land use reflective of 2000 conditions 
with climate (temperature and 
precipitation) obtained from CCC 
model.

1b
Present

(No change)
Hadley

Land use reflective of 2000 conditions 
with climate (temperature and 
precipitation) obtained from Hadley 
model.

2
Future

(Linear incr.)
historical

Land use is changed to reflect 
anticipated ultimate urbanization while 
historical climate data is used to reflect 
the “no climate change” condition.

3a Future CCC
Land use is changed to reflect 
anticipated future urbanization with 
climate obtained from CCC model.

3b Future Hadley
Land use is changed to reflect 
anticipated future urbanization with
climate obtained from Hadley model.

Results from Scenarios 1a and 1b will represent the case of fixed land use but 

changing climate with the “a” and “b” runs illustrating the differences in the CCC and 

Hadley climate projections.  Results from Scenario 2 represent the case of changing 

(additional urbanization) land use but fixed climate.  Scenarios 3a and 3b will represent the 

case of jointly varying climate and land use.  Collectively, these simulations will allow us 

to project hydrologic change due solely to changing climate, solely to increasing 

urbanization, or to jointly varying climate and increasing urbanization. 
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4.4 Discussion of results

The hydrologic output will be examined solely from the viewpoint of the flow 

distributions.  The flow distribution is described in terms of the exceedence of x% of the 

streamflow over a period of time.  For example, the Q1 is the daily average discharge that 

exceeds only 1% of the streamflow over a study period – a very small discharge, that may 

likely correspond to drought conditions.  The Q99 is a very large discharge that exceeds 

99% of all discharges over a study period and corresponds to flood conditions.

The flow distribution of a watershed is useful to quantify the flashiness of the 

watershed’s response to a storm event.  A high degree of flashiness would be indicated by 

large peak flows and low base flows.  For instance, the larger the ratio of a watershed’s 

Q90 to its Q50 (the median discharge) or the smaller the ratio of its Q10 to Q50 the more 

flashy the watershed would be said to be.  It has been observed (Klein, 1979; Barringer et 

al., 1994; Paul and Meyer, 2001) that urbanization tends to lead to enhanced peak flows 

and reduced base flows.  Given the larger storm volumes and fewer number of storms 

predicted by both the CCC and Hadley models we might expect that future climate would 

lead to increased flashiness of watershed behavior as well.  Examining the flow distribution 

will help us test this hypothesis. 

The future simulations are imposed on the NWB watershed as a representative 

example to show the effects of land use and climate change on the streamflow distributions. 

The Cox-Stuart trend test on the significance of observed trends in simulated streamflow 

time series will be presented later in the chapter to quantify the significance of the effects 

of land use and climate change on streamflows under each of the three proposed scenarios.  

The annual values for each of Q1, Q5, Q10, Q50, Q90, Q95, Q99 will be shown as thin 
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traces while heavier lines of the same line-type will correspond to the 9-year moving 

average of these same quantities. 

4.4.1 Scenario 1

In Scenarios 1a and 1b, land use is kept constant at present (year 2000) conditions 

while climate is varied according to the predictions from both the CCC and Hadley 

models, respectively.  In Scenario 1a peak flows remain essentially unchanged while low 

flows decrease noticeably.  The median discharge, Q50, also seems unchanged relative to 

the historical periods. Figure 4-6 illustrates these observations. It also conveys that under 

the CCC climate change and while holding land use to current conditions, low flows tend 

to diminish to even lower values whereas no clear trends seem to emerge when 

comparing the higher flows, Q50, Q90, Q95 and Q99, to their historical counterpart 

values. Although Q50, Q90, Q95 and Q99 fall within the bounds of their historical 

counterpart values, one might argue that there exists, at least visually, a slightly 

decreasing trend for the median and the higher flows under the CCC climate condition.     
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Figure 4-6. Future streamflow distribution based on the continuous streamflow model 
approach when imposing climate change only under the CCC climate conditions 
(Scenario 1a).

The flow distribution under Scenario 1b (Hadley climate) suggests a slight 

tendency towards enhancing the higher flows: peak flows as well as the median flows 

increase relative to the historical periods (Figure 4-7). The increase in peak flows and 

median flows is more profound for Q50, Q90 and Q95. The extreme peak flows (Q99) 

seems to vary within the range of the historical records. Low flows, on the other hand, are 

lower in magnitude than their historical counterpart values. Peak flows and median flows 

show a more apparent positive trend in flows than is observed for the low flows.
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Figure 4-7. Future streamflow distribution based on the continuous streamflow model 
approach when imposing climate change only under the Hadley climate conditions 
(Scenario 1b). 

The overall increasing trend in the distribution of flows under the Hadley climate 

condition is mainly due to the fact that Hadley predicts a much wetter future than observed 

historically or even predicted by the CCC climate model. So even though Hadley also 

predicts a warmer climate condition in the future, precipitation seems to be more dominant 

than evaporation on the outcome of the continuous streamflow model. The larger amount of 

precipitation volume was capable to offset any possible reduction in low flows due to the 

warmer temperatures, and thus more potential evaporation. Figure 4-8, compares between 

the CCC based future simulations and the Hadley based future simulation under which land 

use is assumed to be fixed at current conditions.  Hadley predicts always larger flows than 

the CCC when looking at the simulated annual values for each of Q1, Q5, Q10, Q50, Q90, 

Q95, and Q99. This is mainly because Hadley predicts a wetter future scenario in which a 
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larger precipitation volume is driving into the continuous streamflow model than in the 

CCC climate conditions.

Figure 4-8. A comparison between the future streamflow distribution based on the 
continuous streamflow model approach when imposing climate change only under each 
of the CCC (Scenario 1a) and Hadley (Scenario 1b) climate conditions. The 9-day 
moving average is plotted here to convey the outcome of the simulations. CCC is shown 
in solid lines and Hadley is shown in dashed lines. 

4.4.2 Scenario 2

In Scenario 2, land use is changed to reflect urbanization while historical climate 

time series are used to reflect the “no climate change” condition. The constant climate 

condition was imposed by obtaining 99 years of historical data for the same grid point, 38.8 

No and 77.2 Wo, used in predicting the future climate data. Thus, this scenario considers the 

effects of continued urbanization only, in the absence of any change in climate. As 

previously indicated in Chapter 3, imperviousness will be assumed to increase linearly by 
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10% from the current condition of the NWB watershed (from 20.5 to 30.5%) over the 

course of 99 years. Imperviousness is modified on an annual basis. 

Figure 4-9 shows a slight increase in both peak flows and median flow and a clear 

reduction in low flows from their historical counterpart values. The figure also shows a 

very slight increase in peak and median flows, and no apparent changes in low flows over 

the span of the 99-year future simulation with only degree of urbanization changing. Our 

expectation was to observe a tendency to a flashier condition: peak flows becoming larger 

and low flows becoming smaller.  The reason for this expectation was straightforward.  

Increased imperviousness leads to less infiltration of precipitation during storm events.  

This increases peak flows during the storms themselves, and because less water infiltrates 

during these storm events, there is less available water to emerge as subsurface or 

groundwater flow at later times between storms.  The result is a flashier flow distribution 

under conditions of greater urbanization. Thus, the results in Figure 4-9 are not consistent 

with our expectations nor with those reported elsewhere by others (Klein, 1979; Barringer 

et al., 1994; Paul and Meyer, 2001) for watersheds undergoing urbanization.  
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Figure 4-9. Future streamflow distribution based on the continuous streamflow model 
approach when imposing land use change only (Scenario 2).

4.4.3 Scenario 3

Scenario 3 concerns the effects of jointly changing land use and climate.  

Simulations start in 1994 to be consistent with the available climate data. This scenario is 

of value because it addresses the potentially synergistic effects of jointly changing land use 

and climate.  In comparison between the results presented here against the corresponding 

results under Scenario 1, the differences (if any) will reflect the added effect of land use 

change (under Scenario 2) along with the climate change effect already contained in 

Scenario 1.

The results of the Scenario 3 simulations are not surprising. The figure shows that 

the addition of the effect of urbanization to the continuous streamflow model was able to 

make peak flows larger and the low flows smaller. Such results were anticipated even 

though Figure 4-9 in Scenario 2 could not conclude such an outcome when comparing the 

future simulations to the historical runs. The median flow also drops with the addition of 
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land use change component to the continuous streamflow model. Since both Scenarios 1a 

and 3a utilize the same future climate input time series to be used as input to the continuous 

streamflow model, the effect of climate change is common between them and thus any 

difference is solely due to urbanization. Furthermore, the same precipitation time series is 

used in both Scenario 1a and 3a; the water volume is conserved. In other words, if peak 

flows increase and low flows decrease then the median flow is expected to be lower if the 

increase in the peaks is larger (in total volume) than the reduction in low flows. This is the 

case illustrated in Figure 4-10 below. Streamflow values are plotted in logarithmic space 

and thus the gap observed between Q99 for Scenario 1 and Q99 for Scenario 3 is much 

larger than the reductions experienced by low flows (e.g. Q10 for Scenario 1 vs. Q10 for 

Scenario 3).  

Figure 4-10. Comparison between Scenario 1a and Scenario 3a and the effect of the 
addition of land use change on the distribution of streamflows. The 9-day moving average 
is plotted here to smooth noise in annual variations and more clearly convey trends. Solid 
lines are scenario 1a, dashed lines are scenario 3a. 
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Comparing Figures 4-11 and 4-12 against Figures 4-6 and 4-7, reiterates on the 

conclusions drawn from Figure 4-10 by indicating the additional consequences of land use 

change on flow distribution beyond those already remarked upon due to climate change.  

These changes manifest themselves as increases in peak flows (e.g. Q90, Q95, Q99) for 

Scenario 3 versus Scenario 1, for both climate model sets.  Changes to low flow (e.g. Q1, 

Q5, Q10) are small if at all observable.  Overall, these flow distribution results suggest a 

flashier streamflow behavior in Scenario 3 (with land use and climate change acting 

together) than in Scenario 1 or 2 where only climate or land use change are modeled 

individually.

Figure 4-11. Future streamflow distribution based on the continuous streamflow model 
approach when imposing climate and land use change under the CCC climate conditions 
(Scenario 3a). 
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Figure 4-12. Future streamflow distribution based on the continuous streamflow model 
approach when imposing climate and land use change under the Hadley climate 
conditions (Scenario 3b). 

The addition of the land use effect, however, in Scenario 3b was not sufficient to 

offset the trends initially observed under the sole climate change imposed in Scenario 1b.  

Scenario 3a, under the CCC climate predictions, shows a significant decreasing trend in 

low flows, and similarly the observed trends in Scenario 3b, under the Hadley climate 

predictions, are consistent with those that `emerged under Scenario 1b by showing a 

significant increasing trend in peak flows. This will be more apparent when discussing the 

rejection probabilities for the Cox-Stuart trend test for each of the flows under each 

scenario later in this chapter.       

4.5 Test the significance of simulated secular trends in streamflows

Table 4-4 summarizes the rejection probabilities for the Cox-Stuart trend test on 

the significance of observed trends in streamflow time series. It shows the significant 
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trends in bold, at a 5 percent level of significance for each of the Q1, Q5, Q10, Q50, Q90, 

Q95, and Q99 time series under each of the scenarios studied. Given the trends 

previously detected in the precipitation and temperature time series under the CCC and 

Hadley climate predictions, the outcomes in Table 4-4 are not surprising. 

Table 4-4.  Rejection probabilities for the Cox-Stuart trend test for the different 
continuous streamflow quantiles studied and across each Scenario. (significant trends at a 
5% level of significance are shown in bold).

%ile Scenario 1a Scenario 1b Scenario 2 Scenario 3a Scenario 3b

Q1 (-) 1.06% (+)19.58% (+)7.62% (-) 0.47% (+)50.00%
Q5 (-) 0.01% (+)12.64% (+)7.62% (-) 0.00% (+)19.58%

Q10 (-) 0.00% (+)19.58% (+)19.58% (-) 0.01% (+)19.58%
Q50 (-) 7.62% (+) 1.06% (+)38.77% (-) 1.06% (+) 0.19%
Q90 (-) 7.62% (+) 0.02% (+)28.41% (-) 19.58% (+) 0.00%
Q95 (-) 12.64% (+) 0.19% (+)12.64% (-) 28.41% (+) 0.47%
Q99 (-) 4.27% (+)19.58% (+)19.58% (-) 28.41% (+) 7.62%

Under the CCC climate conditions, precipitation showed no evident trends. Yet, 

the significant increase in temperature was capable to produce significant decreasing 

trends in low flows in Scenario 1a. The addition of land use change under Scenario 3a, 

built on the effect of the temperature by making the decreasing trends in low flow slightly 

more significant with slightly lower rejection probabilities. However, only a slight offset 

to the decreasing peak flows was observed, which was not sufficient enough to produce 

any increasing trend in peak flows with the addition of land use change in Scenario 3a.

The significant increasing trend in precipitation under the Hadley climate 

conditions was the dominant influence on streamflow distribution and thus led to 

significantly increasing peaks. The positive increasing trend in temperature was not 

capable to sufficiently enhance evaporation to counteract the effect of the significant 

increase in precipitation. The additions of land use slightly reduced the observed 

increasing trends but not sufficiently enough to offset the significant increases. In 
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Scenario 2, even though there are no observed significant trends, the direction of the 

change in low flows is in contrary of our expectations. Table 4-4 shows a slight 

increasing trend in low flows whereas we expect urbanization to cause diminished low 

flows. This is probably due to the slightly increasing trend in the simulated historical 

precipitation time series in Scenario 2. Although the trend was proven insignificant at a 

5% level of significance (Table 3-14), it probably was still capable to offset any 

decreasing effect on low flows due to the effect of urbanization. This builds on our 

previous findings that precipitation is stronger than an increase in imperviousness by 10% 

in creating a trend in streamflows.

4.6 Comparing the outcomes of the regression and continuous streamflow models

One of the advantages of the continuous streamflow model approach over the 

regression model approach discussed in Chapter 3, is that the former produces a complete 

daily simulated streamflow time series whereas the latter predicts a single value per year. 

The outcome of each of the future simulated runs is a simulated daily streamflow time 

series which enables us to study the whole distribution of streamflows. Thus, Chapter 4 

studies the effect of land use and climate change on the entire distribution of streamflows 

including the 7-day low flows. Although we don’t anticipate learning any new information 

from the 7-day low flow that was not presented by looking at the Q1, Q5, Q10, Q50, Q90, 

Q95, and Q99, it is presented here for consistency with the work presented in Chapter 3 

where it was only possible to adequately predict the 7-day low flow. 
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4.6.1 Simulated 7-day low flows under each of the three proposed future scenarios

In order to determine the 7-day low flow time series for each of the three 

proposed future scenarios, the minimum 7-day simulated streamflow is calculated on an 

annual basis. Then error bars will be considered to address the level of uncertainty in our 

future predictions of the 7-day low flows. These results can be compared to the results 

presented in Chapter 3, (Figures 3-17 through 3-21). 

Comparing the historical observed 7-day low flows with their corresponding 7-

day windows of simulated 7-day streamflows produced the error distribution shown in 

Figure B-4. Errors, E , are defined as simulated flow, Qp , minus  observed flow, obsQ , so 

a negative quantity suggests an under-estimation and a positive quantity suggests an over-

estimation (Equation 4-6a). The errors showed some local biases of having a tendency to 

over-predict 7-day low flows for the smallest low flow values and to under-predict at for 

medium and higher low flow values.  Errors were plotted for the individual watersheds 

and the same error structure emerged. The fact that errors contain local biases is certainly 

a shortcoming of the continuous streamflow model. This was observed in the calibration 

process and is shown in Figure 4-4, where base flows are generally under predicted by 

the calibrated continuous streamflow model.

obsp QQ̂E −= (4-6a)

The distribution of errors was then studied to better understand the error structure and to 

later address the level of uncertainty in the future predictions. Thus we needed to fit a 

distribution to the errors obtained from the historical runs to later impose on the future 

simulated values to address the level of uncertainty in the continuous streamflow model 

predictions. It is physically rational to expect minimum 7-day low flows to become 
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values very close to zero in dry years and to be much larger in magnitude in wet years. 

Thus, improperly imposing an error structure can lead to irrational flow values in the case 

that error bounds extend into the negative range. For this reason, relative errors were 

utilized instead to eliminate the possibility of irrationality. Relative errors, RE, are 

defined here as the error from equation 4-6a divided by the observed 7-day low flow 

value, obsQ  (See Equation 4-6b). Figure 4-13 below shows the distribution of the relative 

errors. Note, the relative error values can’t be lower than the value negative one. This can 

be simply explained by considering an extreme scenario where the continuous 

streamflow model predicts a 7-day drought with a flow value of zero. Substituting a 

simulated 7-day low flow value, Qp , of zero into Equation (4-6b), would produce a 

relative error value of negative one. This will eliminate the possibility of irrationality 

when imposing error bounds on the future simulations. 

obsobsp Q/)QQ̂(ER −= (4-6b)
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Figure 4-13. Relative errors based on the 47 simulation runs for the historical data using 
the hydrologic continuous streamflow model.

Figure 4-14 below shows a frequency histogram of the relative errors. The 

histogram has positive skew which agrees with our observation in Figure 4-13, which 

showed more negative values than positive ones. A 2-parameter gamma distribution of 

transformed data was fitted to the frequency histogram. Transforming the data by adding 

a value of one to the relative error time series would enforce relative error values to be 

larger than zero. The two gamma parameters were determined based on the method of 

moments. The scale parameter, b, and the shape parameter, c, are defined in equations 4-

7a and 4-7b below. The calculation of the sample mean ( X  = 0.9942), and the sample 

variance ( 2S = 1.0375) is detailed in Table A-35.  

X
Sb

2
= (4-7a)
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2




= S
Xc (4-7b)

Substituting the values of X  and 2S  into equations 4-7a and 4-7b produces a scale 

parameter, b, equal to 1.0436 and a shape parameter, c, equal to 0.9526. Using these two 

values produce the best fit gamma distribution to the relative errors (Figure 4-14). Placing 

a 90% two-tail confidence interval on the simulated 7-day low flow values, )(ˆ
7 tQ , would 

result in an error bar with high, )(7 tQ+ , and low bounds, )(7 tQ− , that are defined in 

equation 4-8a and 4-8b, respectively. 

)(ˆ)933715.2()( 77 tQtQ ⋅=+ (4-8a)

)(ˆ)056589.0()( 77 tQtQ ⋅=− (4-8b)
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Figure 4-14. Frequency histogram of the relative errors in using the continuous 
streamflow model approach to predict the minimum 7-day low flow for the historical 
values. A 2-parameter gamma distribution of transformed data is compared to actual 
frequency histogram.
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4.6.2 Simulated 7-day low flows using the continuous streamflow model

Figures 4-15 through 4-19 convey in a sense the same information that was 

learned when low flows: Q1, Q5 and Q10, were analyzed under each of the three 

proposed future scenarios: land use change only, climate change only under the CCC and 

Hadley climate conditions, and the joint effects of both land use and climate change 

under the CCC and Hadley climate conditions.  They are listed below for the purpose of 

completeness and to be consistent with the format of results presented in Chapter 3.  
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year

Scenario 1 (Climate Change Only (CCC))

Figure 4-15. Future 7-day low flows based on the continuous streamflow model when 
imposing climate change only under the CCC climate conditions (Scenario 1a). Heavy 
line shows mean behavior. Error bars show 90% confidence intervals. 
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Scenario 1 (Climate Change Only (Hadley))

Figure 4-16. Future 7-day low flows based on the continuous streamflow model when 
imposing climate change only under the Hadley climate conditions (Scenario 1b). Heavy 
line shows mean behavior. Error bars show 90% confidence intervals. 
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Figure 4-17. Future 7-day low flows based on the continuous streamflow model when 
imposing land use change only (Scenario 2). Heavy line shows mean behavior. Error bars 
show 90% confidence intervals.
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Scenario 3 (Land Use and Climate Change (CCC))

Figure 4-18. Future 7-day low flows based on the continuous streamflow model when 
imposing climate and land use change under the CCC climate conditions (Scenario 3a). 
Heavy line shows mean behavior. Error bars show 90% confidence intervals.
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Figure 4-19. Future 7-day low flows based on the continuous streamflow model when 
imposing climate and land use change under the Hadley climate conditions (Scenario 3b). 
Heavy line shows mean behavior. Error bars show 90% confidence intervals.

7-
da

y 
lo

w
 f

lo
w

 r
un

of
f 

 [
in

.]
7-

da
y 

lo
w

 f
lo

w
 r

un
of

f 
 [

in
.]



111

4.7 Summary of continuous streamflow model approach

One of the strengths of this work is the successful elimination of some subjectivity 

in the calibration of the continuous streamflow model. The merger of the continuous 

streamflow model with a numerical optimization algorithm, NUMOPT, allowed for a  

stand-alone program to perform the calibration process. In addition to the employment of a 

systematic calibration routine, it also allowed the achievement of the optimum calibration 

condition based on a fixed criterion objective or objectives. Another strength of this work is 

the ability to use imperviousness as a dynamic input variable into the continuous 

streamflow model. Past research has generally assumed imperviousness to be a static 

condition of the watershed. This shortcoming is overcome in the context of our work.

The continuous streamflow model used in this chapter is driven by climate and land 

use data as well as some hydrologic input variables that are watershed-dependent to study 

the effects of land use and climate change on the distribution of streamflows. Six 

watersheds in the Maryland Piedmont region and of different sizes and urbanization 

experiences were utilized to carry out the analysis. The introduction or urbanization only 

with a 10% increase in imperviousness over the duration of a 99-year span in the NWB 

watershed, showed little increasing effects in peak and median flows and no apparent 

changes in low flows. When climate change was introduced under both the CCC and 

Hadley climate models, precipitation became the main driver in causing future trends in the 

distribution of streamflows. With Hadley predicting wetter conditions, increasing trends 

were observed in the whole distribution: Peak flows as well as median and low flows 

increased over the span of the future simulation. The simultaneous increase in temperatures 

tended to enhance the evaporation rates and thus reduce low flows during the summer 
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season. However, since the climate change is imposed by the simultaneous simulation of 

temperature and precipitation time series, precipitation was dominant in controlling the 

outcome of Scenarios 1 and 3.   

The addition of the effect of urbanization to the conditions in Scenario 1 showed a 

very clear reduction in low flows and increase in peak flows. This agrees with the physical 

interpretation of the effect of urbanization on the distribution of flows in a watershed. The 

more impervious area, the less water that will infiltrate into the ground and appear later as 

base flows. Imperviousness allows water to travel faster to streams which leads to larger 

peak flow.  However the hydrologic effect of land use change on the distribution of 

streamflows was not apparent under Scenario 2 due to the variability introduced by the 

simulated historical climate drivers. 
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CHAPTER FIVE

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Overview

The main objective was to study the joint effect of both climate and land use 

change on streamflow and specifically how low flows and peak flows respond to these 

changes. Two approaches were used to fulfill the objectives: a regression approach and a 

continuous streamflow model approach.  A regional regression equation was developed 

to predict the 7-day low flow in the Maryland Piedmont region under three imposed 

future scenarios: climate change only, land use change only, and climate and land use 

change jointly. Similarly, a continuous streamflow model was calibrated and then 

modified to function as a predictive model to illustrate how streamflows change under 

each of the three imposed future scenarios. The findings of each of the two approaches 

are discussed. Then the limitations of the approach and possible future extensions will be 

presented.  

5.2 Summary of modeling results

The effect of climate and land use change on streamflows was studied under three 

proposed future scenarios in which each of climate and land use varied individually then 

jointly. Two approaches were used to achieve the objectives of this research. Regression 

equations and a continuous streamflow model were calibrated to best describe the 

historical conditions. Each of the two methods was then modified to be used in a 

predictive sense to produce future streamflow values or time series under each of the 
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three proposed scenarios: climate change only with current land use conditions, land use 

change only with current climate conditions, and climate and land use change jointly.   

5.2.1 Regression approach

A regional regression equation, Eq. 3-10, was calibrated based on historical 270-

day antecedent precipitation, 60-day antecedent temperature, and annual imperviousness 

time series for six watersheds in the Maryland Piedmont region. The equation predicts the 

7-day low flow based on the 270-day antecedent precipitation depth in inches, the 

average of the 60-day antecedent temperature in degrees Fahrenheit, the annual 

imperviousness value in percent, and the area of the watershed in square miles.  The 

equation was then used in a predictive sense to implement each of three proposed future 

scenarios on the NWB watershed. However, since the equation form lacks the capability 

of identifying the day of the year in which the 7-day low event is expected to occur, the 

probability distribution of the timing of historical low flows was determined and 

approximated by a normal distribution. Then a Monte Carlo analysis was performed 

based on the fitted normal distribution to identify the day of the year to apply the 

equation to and ultimately predict the low flow estimates for the proposed future 

scenarios. 

The Cox-Stuart trend test was applied to the 270-antecedent precipitation and the 

60-day antecedent temperature future time series under both the CCC and Hadley 

predictions. The test concluded at a 5 percent level of significance that both CCC and 

Hadley predict significant increasing trends in the simulated 60-day antecedent 

temperature time series whereas only Hadley at the same level of significance predicts a 

significant increasing trend in the simulated 270-day antecedent precipitation time series.  
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The Cox-Stuart trend test was then applied to the mean 7-day low flow time series 

over each of the future scenarios. The test indicated a significant increasing trend in 

future low flows under the Hadley climate predictions. On the other hand, a significant 

decreasing trend in future low flows was simulated using the CCC climate predictions 

under the conditions of jointly varying climate and land use. Comparing the CCC and 

Hadley predictions of low flows under constant land use, shows that the climatic inputs 

of temperature and precipitation play opposing effects on low flows. These findings are 

explained by two arguments. First, the CCC model predicted a drier and hotter future 

climate than the Hadley model. Second, low flows have stronger dependency on 

precipitation than on urbanization or temperature. This is in agreement with the 

magnitude and signs of the exponents of the calibrated model from Equation 3-10, where 

precipitation has an exponent that is approximately two times larger in magnitude than 

the exponents of the temperature predictor and the imperviousness predictor.       

5.2.2 Continuous streamflow model approach

In Chapter 4, the historical daily precipitation and average temperature time series 

were used as inputs to a continuous streamflow model, which is a conceptually-based, 

hydrologic model developed by McCuen (1986), and modified in this work to accept a 

daily temperature time series. The continuous streamflow model was then embedded in a 

numerical optimization program, NUMOPT (McCuen, 1993). This optimization program 

handled the calibration process of 47 historical runs, and in essence eliminated some of 

the subjectivity in calibration. The optimization was based on maximizing a weighted 

average of two criteria: minimizing the summation of squared errors and maximizing a 

core component of the modified correlation coefficient.



116

The continuous streamflow model initially required as input ten input variables 

that capture the hydrology characteristics of the watershed. These ten input variables 

were reduced to two input variables, PINF and SROP, which were anticipated to be 

correlated with the imperviousness time series. They were selected based on their 

physical relation to the land use condition of the watershed. Building regression 

equations that relate PINF and SROP to the imperviousness of a watershed, allowed the 

imposition of the land use change effect on the continuous streamflow model by varying 

these input variables as a function of imperviousness. However, the calibration of the 47-

historical runs showed no significant relationships between PINF or SROP and 

imperviousness. The exercise was continued although it ought to be noted that the results 

were presented to illustrate the methodology of our approach.  

The continuous streamflow model was modified to accept annual land use data in 

the form of imperviousness time series as an input, so land use is no longer considered as 

a static characteristic of the watershed. The land use change scenarios allowed a linear 

increase in imperviousness of 10% over the 99-year simulation. Varying climate 

conditions were imposed by driving the continuous streamflow model with daily 

precipitation and temperature time series obtained through the CCC and Hadley 

predictions.  

5.3 Conclusions

The lessons learned from this research effort were only drawn from the results of 

the regression approach because the continuous streamflow model did not show a 

statistically significant relationship between imperviousness and model input variables. 

Climate and land use change both have proven to be able to shift the magnitudes both of 
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low and peak flows. Land use change scenarios showed that increasing the 

imperviousness of a watershed can lead to diminished low flows but observed trends 

were proven statistically insignificant at a 5% level of confidence. With imposing a 10% 

increase in imperviousness, climate change was still the dominant driver of low flows 

under future scenarios.  In Scenarios 1a and 2, neither the apparent significant increase in 

temperature under the CCC climate predictions nor the imposed increase in 

imperviousness by 10%, respectively, was individually capable in leading to a significant 

decreasing trend in low flows. However, the combination of the two effects was capable 

to induce a significant decreasing trend in streamflow at a 5% level of significance.  On 

the other hand, in the case of the Hadley climate predictions, precipitation exhibited a 

significant increasing trend which was capable of dominating the direction of low flow 

trends. The wetter climate led to an increasing trend in streamflow under the effect of 

climate solely while land use was held constant at current levels. The addition of land use 

change was capable of counteracting the significant increasing trend in streamflow 

previously observed by the climate change only condition, leading to no significant trend 

in streamflow when both the Hadley climate and urbanization were acting together.

Thus under the scenario of jointly varying climate and land use change, a trend in 

precipitation can dominate the influence on low flows: higher precipitation leads to 

higher low flows and vice versa. However, in the event when precipitation is not 

predicted to undergo any significant change (CCC predictions), the increase in 

temperature and land use led to a combined effect of lowering low flows.

In predicting low flows, the regression model approach and the continuous 

streamflow model approach agreed under certain scenarios and disagreed in others. Table 
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5-1 below summarizes findings under each of the proposed scenarios and both climate 

predictions.  

Table 5-1. Comparison between the outcomes of the regression model and the 
continuous streamflow model on low flows based on the Cox-Stuart test for trend at a 5 
percent level of significance under the three proposed scenarios.

Scenario 1a
Climate change 

only
(CCC)

Scenario 1b
Climate change 

only
(Hadley)

Scenario 2
Land use change 

only

Scenario 3a 
Climate & land 

use change
(CCC)

Scenario 3b
Climate & land 

use change
(Hadley)

Regression
Model

No significant 
Trend

Significant 
Increase

No significant 
Trend

Significant 
Decrease

No significant 
Trend

Continuous 
Streamflow 

Model

Significant 
Decrease

No significant 
Trend

No significant 
Trend

Significant 
Decrease

No significant 
Trend

Agreement NO NO YES YES YES

In Scenarios 1a and 1b, the regression model and the continuous streamflow 

model predict differently. Hence, the main difference was that one showed a significant 

trend based on a 5% level of significance and the other model failed to produce a 

significant trend at the same level of significance. Thus the outcomes under Scenarios 1a 

and 1b are not opposed, but they disagree about the presence of a significant trend. Their 

difference is due to the uncertainty in the simulated climate time series under both the 

CCC and Hadley. Additionally, when land use change alone is imposed in Scenarios 2 or 

coupled with the climate change in Scenarios 3a and 3b, both the regression model and 

the continuous streamflow model produce consistent results.

5.4 Limitations/assumptions/extensions

In a modeling exercise of this kind, it becomes very important to explicitly note the 

limitations and assumptions associated with the findings and results.  There are also several 
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extensions to this modeling exercise that would be useful to conduct, but were not 

performed here for lack of data, time, or the scientific means to carry them out. 

First and foremost, this exercise is premised on a chain of models.  Climate models 

provided the input time series of precipitation and temperature required by the regional 

regression model and the continuous streamflow model.  The continuous streamflow model 

is really a set of simplified empirical models of surface runoff, subsurface runoff, 

evaporation, and groundwater runoff.  The relationships between known land use and the 

appropriate model input variables in the continuous streamflow model were modeled here 

only crudely using simple regression results between PINF and SROP, and imperviousness.   

In reality, all of these models contain many uncertainties and potential errors.  Such 

uncertainty propagates from one model to the next and should be recognized to be present 

in the final results documented here.  It is appropriate to consider these results as a best 

estimate of scenarios considered, but caution should be exercised given the propagated 

uncertainty. 

The use of both the CCC and Hadley future climates illustrates the uncertainty in 

climate modeling.  These climates, when used as input to the regression equation and the 

continuous streamflow model, produced different results to the actual observed 

precipitation and temperature.  The Hadley climate indicated a significant increasing trend 

in precipitation and temperature. The CCC, on the other hand, showed a slightly larger 

departure in predicted temperatures, with a more significant increasing trend, from the 

historical records than did the Hadley climate.  These variations led to differing conclusions 

under Scenarios 1 and 3 as presented in Table 5-1. These discrepancies may be attributed to 

uncertainties in the chain of models used to derive these results.  
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The climate time series data used here, whether from actual observations or 

simulated weather data were point data and do not reflect any spatial variability that is 

present.  Future studies could easily employ time series of adjacent grid cells in the climate 

models to quantify uncertainty envelopes associated with spatial variability in temperature 

and precipitation.  In the context of the watersheds considered in this analysis, we expect 

this uncertainty to be relatively small, owing to the relatively small scale of the watersheds 

being considered.  Considerations of spatial variability would be more important across a 

larger region or within larger scale watersheds. 

Possible extensions to this study can be implemented in several dimensions. More 

data and larger regions can provide a better representation to how streamflows react to 

climate and land use changes on a regional scale. Investigating other regression model 

forms and more meaningful predictor variables may lead to more reliable predictions of 

streamflow under future scenarios. Another expansion of this work is to produce regional 

regression models for other levels of the flow distribution and to investigate how the length 

of antecedent precipitation and temperature periods shift as we predict different quantiles. 

Moreover, the continuous streamflow model used in Chapter Four is a lumped 

model form that assigns single input values to describe the characteristics over the entire 

watershed area. Thus using distributed models may provide a more realistic representation 

of the expected variation in the input variables in a watershed. Incorporating a distributed 

model form into the GIS interface, can grant the ability to consider each grid unit as a 

distinct hydrologic unit, in which all units that constitute the watershed are hydrologically 

connected.  Additionally, more sophisticated continuous streamflow models may provide 

better predictions of streamflows, and low flows in particular. The future of climate and 
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land use change modeling will need to take advantage of higher resolution data and 

simulations, faster computers, and more sophisticated ways to quantify the uncertainty 

inherent in all models used in the progression from increased CO2 concentrations to 

streamflow impacts.    
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APPENDIX A

SUPPLEMENTAL LIST OF TABLES

Table A-1. Summary of the highest correlation coefficient between the historical low 
flow events in the NWB watershed and various ranges of average antecedent temperature 
records. 

Antecedent 
Tmin of x-days Min Q-1 day Min Q-2 day Min Q-3 day Min Q-7 day

1 -0.3188 -0.5020 -0.6043 -0.4414
7 -0.3507 -0.5541 -0.5242 -0.5096
14 -0.4069 -0.6064 -0.5686 -0.5601
30 -0.4758 -0.6192 -0.6045 -0.5581
60 -0.5668 -0.6806 -0.7002 -0.6121
90 -0.5636 -0.5592 -0.6278 -0.5258
120 -0.4212 -0.2897 -0.4003 -0.3289
150 -0.2410 -0.0195 -0.1359 -0.1233
180 -0.1148 0.1384 0.0455 0.0236
210 -0.0285 0.2334 0.1474 0.1227
230 0.0438 0.2904 0.2145 0.1893
270 0.0772 0.3033 0.2422 0.2196

Tmax min1day min2day min3day min7day
1 -0.3990 -0.5643 -0.6515 -0.5588
7 -0.4727 -0.6258 -0.6163 -0.5793
14 -0.5034 -0.6511 -0.6214 -0.6209
30 -0.5335 -0.6446 -0.6367 -0.5915
60 -0.6013 -0.6680 -0.7001 -0.6147
90 -0.6396 -0.6070 -0.6760 -0.5729
120 -0.5340 -0.4086 -0.5041 -0.3999
150 -0.2957 -0.0248 -0.1640 -0.1509
180 -0.1545 0.1554 0.0454 0.0053
210 -0.0613 0.2562 0.1546 0.1110
230 0.0358 0.3453 0.2539 0.1993
270 0.0872 0.3819 0.3065 0.2510

Tavg min1day min2day min3day min7day
1 -0.3680 -0.5489 -0.6501 -0.5111
7 -0.4219 -0.6038 -0.5870 -0.5547
14 -0.4690 -0.6451 -0.6111 -0.6045
30 -0.5215 -0.6496 -0.6365 -0.5908
60 -0.6107 -0.6987 -0.7236 -0.6332
90 -0.6394 -0.6168 -0.6861 -0.5727
120 -0.5059 -0.3673 -0.4763 -0.3774
150 -0.2814 -0.0231 -0.1571 -0.1419
180 -0.1402 0.1527 0.0474 0.0152
210 -0.0470 0.2539 0.1565 0.1207
230 0.0417 0.3304 0.2433 0.2019
270 0.0878 0.3604 0.2882 0.2473
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Table A-2. Correlations between annual minimum low flows and various durations of 
antecedent precipitation.

min. 1-day runoff min. 2-day runoff min. 3-day runoff min. 7-day runoff

prec-30 0.2011 0.2420 0.1500 0.1708

prec-60 0.4751 0.2797 0.4094 0.2343

prec-90 0.6175 0.3869 0.4925 0.5502

prec-120 0.6658 0.5718 0.5410 0.6513

prec-150 0.6887 0.5879 0.5795 0.6373

prec-180 0.6864 0.5784 0.5417 0.6461

prec-210 0.6691 0.6419 0.6048 0.6738

prec-240 0.7073 0.6918 0.6341 0.7268

prec-270 0.7161 0.6844 0.6685 0.7698

prec-300 0.7173 0.6835 0.6543 0.7769

prec-330 0.7195 0.6598 0.6454 0.7536

prec-360 0.6918 0.6160 0.6057 0.7565
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Table A-3. A summary of the correlation coefficient (R), bias, and the calibrated 
coefficients for the power model form on the NWB time series of the 1, 2, 3, and 7-day 
low flows against the time series of antecedent precipitation of 8, 9, 10, and 11 months 
using the three proposed model forms.

Predicted Predicted Predicted Predicted

Runoff Runoff Runoff Runoff
Minimum 1-day 

lowflow
prec-240 prec-270 prec-300 prec-330

R 0.8118 0.8106 0.7978 0.7829

bias (cfs) 8.32E-07 2.79E-08 8.82E-07 1.53E-05

C1 -0.8087 -0.6795 -0.8260 -1.0977

C2 0.2764 0.2487 0.2264 0.2057

E
qu

at
io

n 
3-

1

C3 -0.2453 -0.2577 -0.2362 -0.2084

R 0.8120 0.8238 0.8082 0.7969

bias (cfs) 1.1481 1.0816 1.0729 0.6142

C1 0.0279 0.0235 0.0178 0.0160

C2 1.9640 2.0414 2.0025 1.9725

E
qu

at
io

n 
3-

2

C3 -0.6899 -0.8208 -0.7136 -0.7022

R 0.8305 0.8385 0.8195 0.8066

bias (cfs) -0.0322 -0.0423 0.0013 -0.0398

C1 3.5716 4.5984 3.8912 3.7225

C2 -10.5098 -12.8255 -11.2875 -11.6374

C3 0.2745 0.2495 0.2248 0.2052E
qu

at
io

n 
3-

3

C4 0.0444 0.0947 0.0737 0.1119

Predicted Predicted Predicted Predicted

Runoff Runoff Runoff Runoff
Minimum 2-day 

lowflow
prec-240 prec-270 prec-300 prec-330

R 0.7958 0.7955 0.7770 0.7413

bias (cfs) -1.80E-06 -6.79E-06 0.0015 1.71E-07

C1 -0.8514 -0.6373 -1.0723 -1.0202

C2 0.5607 0.5043 0.4593 0.4034

E
qu

at
io

n 
3-

1

C3 -0.5489 -0.5670 -0.5141 -0.4689

R 0.7985 0.8068 0.7884 0.7507

bias (cfs) 3.3823 3.6352 3.0984 2.3583

C1 0.0933 0.0866 0.0541 0.0667

C2 1.8988 1.9225 1.9502 1.8372

E
qu

at
io

n 
3-

2

C3 -0.7953 -0.8830 -0.7915 -0.7830

R 0.8205 0.8303 0.8048 0.7798

bias (cfs) -0.4640 -0.0726 0.0042 -0.0053

C1 9.0201 11.5992 9.8652 11.6831

C2 -23.9077 -29.8702 -26.3046 -31.0171

C3 0.5596 0.5083 0.4576 0.4077E
qu

at
io

n 
3-

3

C4 0.1102 0.2533 0.2076 0.3813
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Predicted Predicted Predicted Predicted

Runoff Runoff Runoff Runoff
Minimum 3-day 

lowflow
prec-240 prec-270 prec-300 prec-330

R 0.7597 0.7797 0.7548 0.7298

bias (cfs) -0.0013 -1.15E-04 -3.25E-05 0.0033

C1 0.2976 -0.5750 -0.6797 -1.0940

C2 0.8407 0.7674 0.6929 0.6153

E
qu

at
io

n 
3-

1

C3 -0.9245 -0.8837 -0.8260 -0.7457

R 0.7587 0.7915 0.7642 0.7413

bias (cfs) 7.8062 10.0185 11.6679 3.8601

C1 0.2999 0.2557 0.2300 0.1104

C2 1.7354 1.7607 1.6803 1.8143

E
qu

at
io

n 
3-

2

C3 -0.8691 -0.9203 -0.8089 -0.7787

R 0.7910 0.8158 0.7874 0.7683

bias (cfs) -0.0105 -0.6740 -0.3438 -0.8214

C1 17.9055 18.0434 17.8287 17.3104

C2 -42.3268 -44.9687 -44.4424 -44.5748

C3 0.8361 0.7681 0.6890 0.6166E
qu

at
io

n 
3-

3

C4 0.2389 0.3459 0.3926 0.4752

Predicted Predicted Predicted Predicted

Runoff Runoff Runoff Runoff
Minimum 7-day 

lowflow
prec-240 prec-270 prec-300 prec-330

R 0.8167 0.8449 0.8352 0.8075

bias (cfs) -7.9443 -11.9579 -14.6766 -14.4398

C1 -7.9443 -11.9579 -14.6766 -14.4398

C2 2.3286 2.1708 2.0227 1.8071

E
qu

at
io

n 
3-

1

C3 -2.0922 -1.9512 -1.7511 -1.6251

R 0.8241 0.8761 0.8515 0.8316

bias (cfs) 27.2552 7.0431 16.1817 10.2067

C1 0.4358 0.0935 0.0692 0.0690

C2 1.8699 2.2839 2.1914 2.1834

E
qu

at
io

n 
3-

2

C3 -0.8329 -0.8883 -0.6878 -0.7589

R 0.8391 0.8721 0.8546 0.8328

bias (cfs) -1.0871 -0.0372 -0.3931 2.4787

C1 33.3794 34.8338 22.3226 28.7608

C2 -98.9288 -111.4282 -89.4168 -102.3400

C3 2.3012 2.1482 2.0078 1.7803E
qu

at
io

n 
3-

3

C4 0.6477 1.1033 0.7390 1.1939
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Table A-4. Summary of the predicted annual 7-day low flow for the NWB watershed 
under each of the three proposed model forms.

1 2 3 4 5 6 Eq. 3-1 Eq. 3-2 Eq. 3-3 

year day of Observed P270 T60 I(t) Q7 Q7 Q7
year Q7 (cfs)  (in) [C]  (%) (cfs) (cfs) (cfs)

1951 225 85.6 31.79 23.75683 6.2529 37.6985 43.3483 37.7315
1952 308 59.4 36.87 15.76958 6.4067 61.9833 66.6699 61.4024
1953 319 76 37.53 14.48998 6.7288 65.1211 68.6963 65.0776
1954 1 77 35.02 6.29326 6.8262 75.8093 77.0053 76.8478
1955 214 9.6 22.25 24.56284 6.975 17.3411 18.5914 18.081
1956 243 19.6 21.88 23.898 7.1056 17.7065 17.8627 17.2601
1957 225 7.1 24 26.02459 7.1699 17.5178 21.0048 18.4864
1958 288 42 36.96 19.51275 7.2719 53.7136 57.088 53.2146
1959 184 19.2 21.29 22.14936 7.4547 19.3697 16.6927 21.2752
1960 246 37.1 36.45 24.24408 7.6015 43.3039 50.0291 43.367
1961 268 26.7 31.13 24.35792 7.7782 32.9412 35.155 33.442
1962 253 13.9 24.27 22.65027 8.0485 23.0183 20.7101 22.141
1963 218 8.8 17.93 23.97996 8.8637 7.4613 9.9766 7.7103
1964 249 6 20.91 23.77049 9.1305 12.9668 13.5727 12.5459
1965 225 12.7 23.67 23.39253 9.8473 17.6757 16.8116 17.5236
1966 248 0 13.56 25.2459 10.2787 -5.2627 4.8757 -5.107
1967 274 26.3 24.25 20.35974 10.7628 23.0476 17.3701 21.9376
1968 274 10.2 18.2 20.75137 11.0088 10.6965 9.2376 9.647
1969 181 12.9 17.25 19.96357 11.6472 9.4206 8.0173 10.6911
1970 282 20.5 27.05 21.20219 11.9909 24.72 20.0012 24.5975
1971 193 47 34.61 20.57832 12.2632 39.4973 33.5278 40.376
1972 284 55.6 46.33 19.8725 12.7703 61.7785 61.1614 61.6311
1973 290 46 42.21 19.84517 12.9485 53.9067 49.7182 54.0969
1974 198 24.6 31.92 20.67395 13.2804 32.7279 26.6266 33.2289
1975 236 47.8 39.87 23.18761 13.4884 42.3975 40.6636 42.3876
1976 252 21.5 28.9 21.53461 13.5983 24.9983 20.9203 23.9445
1977 262 11 20.79 22.3133 14.0237 7.8117 10.0551 7.1888
1978 270 32 36.69 21.95811 14.3704 37.4369 33.154 37.3289
1979 216 56.8 43.02 20.89253 14.456 51.0607 47.0324 50.7802
1980 255 18.1 30.89 23.72951 14.7444 22.7396 22.0278 22.8649
1981 280 16.2 24.47 20.57832 14.9396 16.4804 13.9406 16.0172
1982 238 14.9 23.73 22.29508 15.2764 11.3325 12.5228 10.5958
1998 272 4 29.61 23.48361 20.3554 12.0146 16.0252 12.8405
1999 208 0 21.38 24.64481 20.4182 -5.5482 7.8867 -3.8009
2000 255 26 29.63 22.47723 20.5233 13.6907 16.1828 13.4685

Table A-5. Intercorrelation matrix for the power model form for the annual 7-day low 
flow (NWB).

precip.(in) temp.(C) Imperv.(%) Simulated Q7 Observed Q7
precip.(in) 1
temp.(C) -0.397117 1

Imperv. (%) 0.0404291 0.200107 1
Simulated Q7 0.8439817 -0.67119 -0.36841 1
Observed Q7 0.7698421 -0.63317 -0.31677 0.8928261 1
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Table A-6. Summary of the residuals and the calculations associated with the three 
model forms calibrated on the NWB watershed 7-day low flow time series.

MODEL
1

MODEL
2

MODEL
3

MODEL
1

MODEL
2

MODEL
3

MODEL
1

MODEL
2

MODEL
3

min 
7-day

Runoff
(cfs)

Predicted
Runoff

(cfs)

Predicted
Runoff

(cfs)

Predicted
Runoff
(cfs)

e
(cfs)

e
(cfs)

e
(cfs)

e^2
 (cfs)

e^2
 (cfs)

e^2
 (cfs)

85.6 37.70 43.35 37.73 47.90 42.25 47.87 2294.55 1785.21 2291.39
59.4 61.98 66.67 61.40 -2.58 -7.27 -2.00 6.67 52.85 4.01
76 65.12 68.70 65.08 10.88 7.30 10.92 118.35 53.34 119.30
77 75.81 77.01 76.85 1.19 -0.01 0.15 1.42 0.00 0.02
9.6 17.34 18.59 18.08 -7.74 -8.99 -8.48 59.92 80.85 71.93
19.6 17.71 17.86 17.26 1.89 1.74 2.34 3.59 3.02 5.48
7.1 17.52 21.00 18.49 -10.42 -13.90 -11.39 108.53 193.34 129.65
42 53.71 57.09 53.21 -11.71 -15.09 -11.21 137.21 227.65 125.77

19.2 19.37 16.69 21.28 -0.17 2.51 -2.08 0.03 6.29 4.31
37.1 43.30 50.03 43.37 -6.20 -12.93 -6.27 38.49 167.16 39.28
26.7 32.94 35.16 33.44 -6.24 -8.46 -6.74 38.95 71.49 45.45
13.9 23.02 20.71 22.14 -9.12 -6.81 -8.24 83.14 46.38 67.91
8.8 7.46 9.98 7.71 1.34 -1.18 1.09 1.79 1.38 1.19
6 12.97 13.57 12.55 -6.97 -7.57 -6.55 48.54 57.35 42.85

12.7 17.68 16.81 17.52 -4.98 -4.11 -4.82 24.76 16.91 23.27
0 -5.26 4.88 -5.11 5.26 -4.88 5.11 27.70 23.77 26.08

26.3 23.05 17.37 21.94 3.25 8.93 4.36 10.58 79.74 19.03
10.2 10.70 9.24 9.65 -0.50 0.96 0.55 0.25 0.93 0.31
12.9 9.42 8.02 10.69 3.48 4.88 2.21 12.11 23.84 4.88
20.5 24.72 20.00 24.60 -4.22 0.50 -4.10 17.81 0.25 16.79
47 39.50 33.53 40.38 7.50 13.47 6.62 56.29 181.50 43.88

55.6 61.78 61.16 61.63 -6.18 -5.56 -6.03 38.17 30.93 36.37
46 53.91 49.72 54.10 -7.91 -3.72 -8.10 62.52 13.83 65.56

24.6 32.73 26.63 33.23 -8.13 -2.03 -8.63 66.06 4.11 74.46
47.8 42.40 40.66 42.39 5.40 7.14 5.41 29.19 50.93 29.29
21.5 25.00 20.92 23.94 -3.50 0.58 -2.44 12.24 0.34 5.98
11 7.81 10.06 7.19 3.19 0.94 3.81 10.17 0.89 14.53
32 37.44 33.15 37.33 -5.44 -1.15 -5.33 29.56 1.33 28.40

56.8 51.06 47.03 50.78 5.74 9.77 6.02 32.94 95.41 36.24
18.1 22.74 22.03 22.86 -4.64 -3.93 -4.76 21.53 15.43 22.70
16.2 16.48 13.94 16.02 -0.28 2.26 0.18 0.08 5.10 0.03
14.9 11.33 12.52 10.60 3.57 2.38 4.30 12.73 5.65 18.53

4 12.01 16.03 12.84 -8.01 -12.03 -8.84 64.23 144.61 78.15
0 -5.55 7.89 -3.80 5.55 -7.89 3.80 30.78 62.20 14.45
26 13.69 16.18 13.47 12.31 9.82 12.53 151.52 96.38 157.04

Total Bias (cfs) 3.52 -12.06 1.28 3652.38 3600.36 3664.49
Average Bias (cfs) 0.10 -0.34 0.04

Standard Error of Estimate, Se (cfs) 10.520 10.445 10.538
Correlation Coefficient, R 0.8908 0.8928 0.8904
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Table A-7. Summary of the NWB time series used to calibrate for the regional regression 
model.

Year
Obs. Q7 

(cfs)
P270

 (In.)
T60

(oF.)
I(t)
(%)

Area 
(mi^2)

1946 52.6 27.63 56.7705 5.7775 21.1
1947 50.3 26.07 68.3115 5.86592 21.1
1948 71.4 33.72 71.8115 5.94543 21.1
1949 88 37.39 68.8443 6.01161 21.1
1950 86 34.27 69.0164 6.1092 21.1
1951 85.6 31.79 75.6639 6.2529 21.1
1952 59.4 36.87 58.5 6.4067 21.1
1953 76 37.18 57.2377 6.7288 21.1
1954 81 22.24 53.6639 6.8262 21.1
1955 9.6 23.59 77.418 6.975 21.1
1956 19.6 22.02 75.041 7.1056 21.1
1957 7.1 23.29 78.3607 7.1699 21.1
1958 42 36.43 66.2541 7.2719 21.1
1959 19.2 21.29 72.3197 7.4547 21.1
1960 37.1 35.00 75.6885 7.6015 21.1
1961 26.7 30.63 74.6803 7.7782 21.1
1962 13.9 20.53 72.6311 8.0485 21.1
1963 8.8 22.83 75.2705 8.8637 21.1
1964 6 21.91 74.8279 9.1305 21.1
1965 12.7 24.82 75.7623 9.8473 21.1
1966 0 20.74 75.9918 10.2787 21.1
1967 26.3 27.54 67.7295 10.7628 21.1
1968 10.2 22.98 69.0902 11.0088 21.1
1969 12.9 20.10 69.2295 11.6472 21.1
1970 20.5 26.53 69.1311 11.9909 21.1
1971 47 30.57 70.0492 12.2632 21.1
1972 55.6 40.94 66.2459 12.7703 21.1
1973 46 32.84 66.1885 12.9485 21.1
1974 24.6 29.88 69.7869 13.2804 21.1
1975 47.8 36.64 73.8279 13.4884 21.1
1976 21.5 28.98 70.6311 13.5983 21.1
1977 11 20.43 71.8361 14.0237 21.1
1978 32 36.64 70.541 14.3704 21.1
1979 56.8 42.99 69.918 14.456 21.1
1980 18.1 30.85 74.1393 14.7444 21.1
1981 16.2 24.47 65.6803 14.9396 21.1
1982 14.9 23.11 71.5246 15.2764 21.1

1998 4 30.61 73.0656 20.3554 21.1

1999 0 21.36 76.8934 20.4182 21.1

2000 26 29.32 71.7541 20.5233 21.1
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Table A-8. Summary of the Seneca time series used to calibrate for the regional 
regression model. 

Year
Obs. Q7 

(cfs)
P270

 (In.)
T60

(oF.)
I(t)
(%)

Area 
(mi^2)

1951 182 27.16 71.4262 12.6141 101
1952 329 37.33 58.2377 12.6197 101
1953 193 31.62 68.7705 12.6226 101
1954 77.6 21.78 69.3115 12.6277 101
1955 42.8 18.22 74.6557 12.6337 101
1956 195 19.94 66.8934 12.6478 101
1957 54.1 19.52 73.8443 12.6608 101
1958 239 29.01 38.459 12.6721 101
1959 99 23.25 73.2787 12.685 101
1960 197 33.11 73.6393 12.7001 101
1961 166 29.70 69.4672 12.7247 101
1962 108 24.55 72.1311 12.7583 101
1963 63.9 22.16 72.5492 12.7804 101
1964 62.4 19.35 73.8689 12.8237 101
1965 105 26.59 74.2705 12.8712 101
1966 16 23.22 74.1557 12.9123 101
1967 203 26.78 72.6066 12.9352 101
1968 117 25.55 69.3033 12.9728 101
1969 121 21.00 69.6066 13.0036 101
1970 111 30.52 70.7541 13.0401 101
1971 325 33.98 71.2951 13.0772 101
1972 330 38.45 65.9098 13.1571 101
1973 291 34.47 65.7459 13.2525 101
1974 189 27.57 65.8033 13.3313 101
1975 247 32.01 74.4672 13.3481 101
1976 208 34.88 70.7295 13.3842 101
1977 92 24.73 73.3852 13.4819 101
1978 228 32.31 71.6311 13.6163 101
1979 478 42.28 70.4508 13.6692 101
1980 206 26.20 68.2459 13.7358 101
1981 145 25.64 73.5246 13.8138 101
1982 203 27.94 70.6066 13.882 101
1983 195 33.34 77.2541 13.985 101
1984 229 28.63 70.4508 14.0759 101
1985 127 23.67 72.1557 14.1808 101
1986 102 18.66 70.2377 14.3181 101
1987 161 28.01 76.6721 14.4994 101

1988 274 29.69 78 14.609 101

1989 236 30.55 73.5492 14.7096 101

1990 217 32.11 68.4262 14.7485 101

1991 151 22.17 76.0328 14.7798 101

1992 207 27.17 73.459 14.8297 101

1993 209 34.56 74.7705 14.8893 101



130

1994 313 37.99 61.1311 14.9492 101

1995 112 26.17 73.8197 15.0269 101

1996 602 35.48 33.3934 15.0631 101

1997 163 26.87 73.8689 15.1061 101

1998 136 38.70 71.6066 15.1189 101

1999 105 24.06 74.2295 15.1762 101

2000 328 37.76 69.9754 15.1762 101

Table A-9. Summary of the Watts time series used to calibrate for the regional regression 
model. 

Year
Obs. Q7 

(cfs)
P270

 (In.)
T60

(oF.)
I(t)
(%)

Area 
(mi^2)

1958 7.7 36.96 66.9344 16.0998 3.7
1959 2.6 25.20 75.8443 16.1105 3.7
1960 9.8 34.91 75.7377 17.9299 3.7
1961 5.2 30.28 74.6803 18.2339 3.7
1962 2.2 22.99 72.6393 18.4761 3.7
1963 3.2 21.96 75.2869 18.848 3.7
1964 3 20.85 71.5164 19.1898 3.7
1965 2.9 25.04 75.4016 19.828 3.7
1966 0.7 18.03 77.459 20.7749 3.7
1967 5.2 23.39 73.1393 21.26 3.7
1968 3.2 22.14 74.8115 22.8336 3.7
1969 2.9 18.47 72.7459 23.3489 3.7
1970 4.2 33.07 69.1311 23.744 3.7
1971 8.2 34.47 73.0984 23.9036 3.7
1972 9.7 46.70 70.4918 24.1036 3.7
1973 8.6 41.38 65.8033 24.1701 3.7
1974 4.1 36.88 69.6967 24.2115 3.7
1975 6.7 37.79 73.8525 24.2115 3.7
1976 4.2 28.79 70.959 24.2115 3.7
1977 1.8 20.22 68.9262 24.2263 3.7
1978 6 30.18 59.1557 24.4108 3.7
1979 14.3 39.14 65.1475 24.4175 3.7
1980 3.4 30.92 68.1475 27.9553 3.7
1981 1.9 24.27 68.4344 28.178 3.7
1982 3.3 23.11 71.6557 28.2044 3.7
1983 2.4 31.37 75.4426 28.3603 3.7
1984 4.5 31.98 72.9098 28.4556 3.7
1985 2.3 24.29 70.8525 28.4759 3.7
1986 1.6 21.62 66.6967 28.8515 3.7
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Table A-10. Summary of the Little Falls time series used to calibrate for the regional 
regression model. 

Year
Obs. Q7 

(cfs)
P270

 (In.)
T60

(oF.)
I(t)
(%)

Area 
(mi^2)

1951 0.8 31.73 73.5902 35.1855 4.1
1952 1.9 39.45 63.959 35.3043 4.1
1953 1 39.14 72.1721 35.518 4.1
1954 0.1 25.84 76.6475 35.7761 4.1
1955 0.8 25.87 77.459 35.9979 4.1
1956 0.8 30.52 65.8443 36.1976 4.1
1957 0.2 23.94 77.2459 36.4062 4.1
1958 0.4 43.55 74.4754 36.4115 4.1
1962 1.4 25.24 64.9672 36.6033 4.1
1963 1.4 28.28 74.8361 36.6033 4.1
1964 1.5 25.51 76.8279 36.6033 4.1
1965 1.4 22.74 47.2295 36.6033 4.1
1966 1.4 21.72 79.7459 36.6033 4.1
1967 3.2 31.12 70.877 36.5979 4.1
1968 2.8 27.63 79.2459 36.5979 4.1
1969 3 24.07 74.5656 36.5979 4.1
1970 4.2 28.96 78.1885 36.5979 4.1
1971 6.6 37.46 69.9016 36.5979 4.1
1972 3 42.64 68.2459 36.5979 4.1
1973 4.8 30.28 59.6967 36.5979 4.1
1974 4 27.70 70.2869 36.6137 4.1
1975 5 33.18 78.4918 36.6137 4.1
1976 7.2 24.18 78.082 36.6137 4.1
1977 6.2 21.09 76.7459 36.6414 4.1
1978 6.8 26.04 65.4672 36.6414 4.1
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Table A-11. Summary of the Hawlings time series used to calibrate for the regional 
regression model. 

Year
Obs. Q7 

(cfs)
P270

 (In.)
T60

(oF.)
I(t)
(%)

Area 
(mi^2)

1979 98 39.64 68.5738 8.46016 27
1980 32.6 23.37 67.0328 8.48445 27
1981 25.9 28.21 67.3443 8.49363 27
1982 25.9 29.84 69.4672 8.53343 27
1983 32.9 36.62 76.7131 8.56555 27
1984 49.3 32.14 72.0082 8.59997 27
1985 22.3 24.98 71.2295 8.66554 27
1986 15.2 22.61 66.6967 8.74907 27
1987 23.4 28.46 80.5902 8.92852 27
1988 30.6 34.00 78.9918 8.99874 27
1989 67.3 44.27 74.1803 9.05901 27
1990 45.5 33.31 68.3115 9.11846 27
1991 17.4 25.94 76.9426 9.16206 27
1992 39.8 27.24 70.5246 9.19743 27
1993 28.1 29.58 75.582 9.21277 27
1994 63.4 35.31 63.8852 9.26522 27
1995 12.5 24.71 76.3525 9.31849 27
1996 124 38.09 72.9836 9.35354 27
1997 24 23.21 67.7131 9.38796 27
1998 27.4 30.47 72.7295 9.41484 27
1999 2.4 21.01 77.6639 9.44573 27
2000 56.1 29.27 59.2295 9.44573 27

Table A-12. Summary of the Rock Creek time series used to calibrate for the regional 
regression model. 

Year
Obs. Q7 

(cfs)
P270

 (In.)
T60

(oF.)
I(t)
(%)

Area 
(mi^2)

1967 12.8 23.39 73.2131 11.0433 9.73
1968 3.8 23.40 74.8115 11.3581 9.73
1969 4.2 18.51 72.7459 11.5475 9.73
1970 10.8 33.86 68.8689 11.9007 9.73
1971 16.3 31.71 71.7541 12.3511 9.73
1972 19.7 46.51 70.2951 12.6423 9.73
1973 22.1 41.65 74.2459 12.9165 9.73
1974 9.8 31.92 69.6721 13.0488 9.73
1975 22.6 37.79 73.8525 13.0488 9.73
1976 12.8 28.79 70.959 13.0572 9.73
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Table A-13. Summary of the one-dimensional response surface (Se/Sy) for the regional 
regression model (Equation 3-9).

0.90*C(I) 0.95*C(I) 1.00*C(I) 1.05*C(I) 1.10*C(I)
C1 (Intercept) 0.332327 0.315794 0.310102 0.315836 0.332406
C2 (P) 0.664202 0.462444 0.310102 0.572324 1.19778
C3 (T) 0.689988 0.41517 0.310102 0.3826 0.510848
C4 (I) 0.312891 0.310791 0.310102 0.310761 0.312694
C5 (A) 0.575963 0.414035 0.310102 0.472261 0.876149

Table A-14. Summary of the one-dimensional response surface (relative bias) for the 
regional regression model (Equation 3-9).

0.90*C(I) 0.95*C(I) 1.00*C(I) 1.05*C(I) 1.10*C(I)
C1 (Intercept) -0.09201 -0.04157 0.008873 0.059317 0.10976
C2 (P) -0.47928 -0.27533 0.008873 0.405061 0.957552
C3 (T) 0.540353 0.246546 0.008873 -0.18341 -0.33898
C4 (I) 0.043246 0.025914 0.008873 -0.00788 -0.02436
C5 (A) -0.37701 -0.20797 0.008873 0.287341 0.645344

Table A-15. Determining the correlation coefficient (R) between imperviousness and low 
flow of the NWB watershed after removing the effects of precipitation and temperature.

Obs. Q7
(cfs)

Prec.
(In.)

Temp.
(Feh.)

Pred.
Q7(cfs)

Error
(cfs)

Imperv.
(%)

1 52.6 27.63 56.77 41.52 11.085 5.78
2 50.3 26.07 68.31 28.74 21.558 5.87
3 71.4 33.72 71.81 43.92 27.476 5.95
4 88 37.39 68.84 56.77 31.234 6.01
5 86 34.27 69.02 47.87 38.132 6.11
6 85.6 31.79 75.66 36.49 49.108 6.25
7 59.4 36.87 58.50 69.24 -9.839 6.41
8 76 37.18 57.24 72.52 3.483 6.73
9 81 22.24 53.66 29.61 51.394 6.83

10 9.6 23.59 77.42 19.95 -10.354 6.98
11 19.6 22.02 75.04 18.26 1.342 7.11
12 7.1 23.29 78.36 19.15 -12.047 7.17
13 42 36.43 66.25 56.95 -14.951 7.27
14 19.2 21.29 72.32 18.01 1.187 7.45
15 37.1 35.00 75.69 43.86 -6.762 7.60
16 26.7 30.63 74.68 34.60 -7.903 7.78
17 13.9 20.53 72.63 16.70 -2.801 8.05
18 8.8 22.83 75.27 19.48 -10.685 8.86
19 6 21.91 74.83 18.15 -12.155 9.13
20 12.7 24.82 75.76 22.66 -9.965 9.85
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21 0 20.74 75.99 16.00 -15.996 10.28
22 26.3 27.54 67.73 32.31 -6.010 10.76
23 10.2 22.98 69.09 22.22 -12.016 11.01
24 12.9 20.10 69.23 17.14 -4.239 11.65
25 20.5 26.53 69.13 29.24 -8.736 11.99
26 47 30.57 70.05 37.67 9.331 12.26
27 55.6 40.94 66.25 71.24 -15.643 12.77
28 46 32.84 66.19 46.74 -0.743 12.95
29 24.6 29.88 69.79 36.24 -11.644 13.28
30 47.8 36.64 73.83 49.57 -1.766 13.49
31 21.5 28.98 70.63 33.62 -12.116 13.60
32 11 20.43 71.84 16.80 -5.800 14.02
33 32 36.64 70.54 52.79 -20.793 14.37
34 56.8 42.99 69.92 72.61 -15.807 14.46
35 18.1 30.85 74.14 35.44 -17.336 14.74
36 16.2 24.47 65.68 26.88 -10.679 14.94
37 14.9 23.11 71.52 21.41 -6.506 15.28

Goodness-of-Fit Statistics for:  Q7 = b0 * P270
b1 * T60

b2

18.9517 = Standard Error of Estimate, Se
26.1328 = Standard Deviation of Y, Sy
0.7252 = Se/Sy
0.6920 = Correlation Coefficient
0.4788 = Explained Variance
0.4855 = Bias
0.0137 = Relative Bias

-0.5541 =
The correlation coefficient between Residuals and 
Imperviousness time series

19.2361 = b0

1.9171 = b1

-1.3848 = b2
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Table A-16. Determining the correlation coefficient between imperviousness and low 
flow of Watts Branch watershed after removing the effects of precipitation and 
temperature.

Obs.Q7
(cfs)

Prec.
(In.)

Temp.
(Feh.)

Pred.
Q7(cfs)

Error
(cfs)

Imperv.
(%)

1 7.7 36.96 66.93 7.59 0.105 16.10
2 2.6 25.2 75.84 3.12 -0.523 16.11
3 9.8 34.91 75.74 5.87 3.926 17.93
4 5.2 30.28 74.68 4.54 0.663 18.23
5 2.2 22.99 72.64 2.75 -0.553 18.48
6 3.2 21.96 75.29 2.41 0.785 18.85
7 3 20.85 71.52 2.32 0.678 19.19
8 2.9 25.04 75.40 3.11 -0.207 19.83
9 0.7 18.03 77.46 1.59 -0.895 20.77

10 5.2 23.39 73.14 2.82 2.377 21.26
11 3.2 22.14 74.81 2.47 0.728 22.83
12 2.9 18.47 72.75 1.80 1.100 23.35
13 4.2 33.07 69.13 5.90 -1.695 23.74
14 8.2 34.47 73.10 5.98 2.222 23.90
15 9.7 46.7 70.49 11.23 -1.525 24.10
16 8.6 41.38 65.80 9.64 -1.041 24.17
17 4.1 36.88 69.70 7.21 -3.109 24.21
18 6.7 37.79 73.85 7.05 -0.355 24.21
19 4.2 28.79 70.96 4.37 -0.172 24.21
20 1.8 20.22 68.93 2.29 -0.486 24.23
21 6 30.18 59.16 5.94 0.057 24.41
22 14.3 39.14 65.15 8.76 5.539 24.42
23 3.4 30.92 68.15 5.27 -1.866 27.96
24 1.9 24.27 68.43 3.28 -1.381 28.18
25 3.3 23.11 71.66 2.83 0.474 28.20
26 2.4 31.37 75.44 4.80 -2.400 28.36
27 4.5 31.98 72.91 5.19 -0.688 28.46
28 2.3 24.29 70.85 3.15 -0.854 28.48
29 1.6 21.62 66.70 2.71 -1.105 28.85

Goodness-of-Fit Statistics for:  Q7 = b0 * P270
b1 * T60

b2

1.8760 = Standard Error of Estimate, Se
3.0926 = Standard Deviation of Y, Sy
0.6066 = Se/Sy
0.7834 = Correlation Coefficient
0.6137 = Explained Variance
0.0069 = Bias
0.0015 = Relative Bias

-0.3317 =
The correlation coefficient between Residuals and 
Imperviousness time series

1.0363 = b0

1.9330 = b1

-1.1861 = b2
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Table A-17. Summary of the goodness-of-fit statistics and the calibrated coefficients for 
the regional power model form (Equation 3-6) for all the data while the exponent 
associated to the imperviousness predictor is fixed at a value of - 0.80.

G-o-f Statistics Low flow (all) NWB Seneca Little Falls Hawlings Rock Creek Watts Watts+NWB

Obs. Q7 (cfs) 68.655 34.430 190.952 2.817 39.587 13.606 4.693 21.879
Pred. Q7(cfs) 68.408 33.610 189.816 2.796 39.273 13.490 4.683 21.452
Se (cfs) 31.090 15.239 56.881 2.404 18.538 4.558 1.845 11.436
Sy  (cfs) 97.858 26.207 107.995 2.229 28.544 6.713 3.093 24.591
Se/Sy 0.318 0.581 0.527 1.079 0.649 0.679 0.597 0.465
R 0.944 0.811 0.845 -0.017 0.763 0.751 0.798 0.880
R^2 0.891 0.658 0.714 0.000 0.582 0.564 0.636 0.775
Bias  (cfs) -1.454 0.786 -3.029 -0.031 0.222 0.140 -0.032 0.536
Avg Bias (cfs) -1.454 0.786 -3.029 -0.031 0.222 0.140 -0.032 11.896
Sd. Dev. Bias 30.698 14.620 55.027 2.248 17.162 3.719 1.743 13.537
relative Bias -0.021 0.023 -0.016 -0.011 0.006 0.010 -0.007 0.544
c1 (Intercept) 0.181 2.654 55.326 2.928 41.031 0.006 1.675 1.018
c2 (prec. In.) 2.086 2.032 2.174 -0.159 2.707 1.526 2.050 1.935
c3 (temp. F) -1.010 -0.597 -0.957 0.785 -1.778 1.038 -0.808 -0.821
c4 (imp. %) -0.800 -0.800 -0.800 -0.800 -0.800 -0.800 -0.800 -0.800
c5 (A.  mi^2) 1.354 0.734

Table A-18. Summary of the goodness-of-fit statistics and the calibrated coefficients for 
the regional power model form (Equation 3-6) for all the data while the exponent 
associated to the imperviousness predictor is fixed at a value of - 0.85.
G-o-f 
Statistics Low flow (all) NWB Seneca Little Falls Hawlings Rock Creek Watts Watts+NWB
Obs. Q7 
(cfs) 68.655 34.430 190.952 2.817 39.587 13.606 4.693 21.879
Pred. 
Q7(cfs) 68.408 33.610 189.816 2.796 39.273 13.490 4.683 21.452
Se (cfs) 31.195 15.191 57.083 2.405 18.660 4.591 1.855 11.423
Sy  (cfs) 97.858 26.207 107.995 2.229 28.544 6.713 3.093 24.591
Se/Sy 0.319 0.580 0.529 1.079 0.654 0.684 0.600 0.465
R 0.944 0.812 0.844 -0.033 0.760 0.749 0.796 0.880
R^2 0.891 0.659 0.712 0.001 0.577 0.560 0.633 0.775
Bias  (cfs) -1.280 0.700 -3.187 -0.031 0.051 0.128 -0.045 0.416
Avg Bias 
(cfs) -1.280 0.700 -3.187 -0.031 0.051 0.128 -0.045 0.416
Sd. Dev. 
Bias 30.810 14.578 55.214 2.249 17.275 3.746 1.752 11.074
relative Bias -0.019 0.020 -0.017 -0.011 0.001 0.009 -0.010 0.019
c1 
(Intercept) 0.224 2.950 64.255 3.603 28.005 0.009 1.289 0.678
c2 (prec. 
In.) 2.063 2.009 2.179 -0.105 2.744 1.538 2.071 1.955
c3 (temp. F) -1.019 -0.578 -0.966 0.736 -1.695 0.958 -0.728 -0.704
c4 (imp. %) -0.850 -0.850 -0.850 -0.850 -0.850 -0.850 -0.850 -0.850
c5 (A.  
mi^2) 1.361 0.718
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Table A-19. Summary of the goodness-of-fit statistics and the calibrated coefficients for 
the regional power model form (Equation 3-6) for all the data while the exponent 
associated to the imperviousness predictor is fixed at a value of - 0.90.
G-o-f 
Statistics Low flow (all) NWB Seneca Little Falls Hawlings Rock Creek Watts Watts+NWB
Obs. Q7 
(cfs) 68.655 34.430 190.952 2.817 39.587 13.606 4.693 21.879
Pred. 
Q7(cfs) 68.408 33.610 189.816 2.796 39.273 13.490 4.683 21.452
Se (cfs) 31.322 15.161 57.741 2.404 18.660 4.432 1.871 11.425
Sy  (cfs) 97.858 26.207 107.995 2.229 28.544 6.713 3.093 24.591
Se/Sy 0.320 0.578 0.535 1.079 0.654 0.660 0.605 0.465
R 0.943 0.812 0.841 -0.033 0.760 0.763 0.793 0.880
R^2 0.890 0.659 0.708 0.001 0.577 0.582 0.628 0.774
Bias  (cfs) -1.136 0.538 -4.026 -0.030 0.063 0.207 -0.044 0.087
Avg Bias 
(cfs) -1.136 0.538 -4.026 -0.030 0.063 0.207 -0.044 0.087
Sd. Dev. 
Bias 30.941 14.556 55.798 2.249 17.275 3.613 1.767 11.083
relative Bias -0.017 0.016 -0.021 -0.011 0.002 0.015 -0.009 0.004
c1 
(Intercept) 0.287 3.906 44.693 5.095 35.005 0.000 0.668 0.602
c2 (prec. 
In.) 2.046 1.992 2.264 -0.123 2.738 1.502 2.068 1.983
c3 (temp. F) -1.037 -0.606 -0.919 0.711 -1.716 1.763 -0.534 -0.697
c4 (imp. %) -0.900 -0.900 -0.900 -0.900 -0.900 -0.900 -0.900 -0.900
c5 (A.  
mi^2) 1.364 0.748
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Table A-20. Summary of the subset time series from the NWB and Watts watersheds; 
subsets were formed based on the closeness of P270 and T60 data.

Subsets of NWB time series Subsets of Watts time series
Q7

(cfs)
P270

(in.)
T60

(oF.)
Imp.
(%)

Q7
(cfs)

P270

(in.)
T60

(oF.)
Imp.
(%)

32 36.64 70.541 14.3704 8.6 41.38 65.8033 24.1701
42 36.43 66.2541 7.2719 14.3 39.14 65.1475 24.4175
46 32.84 66.1885 12.9485 7.7 36.96 66.9344 16.0998

71.4 33.72 71.8115 5.94543

S
E

T
 1

4.1 36.88 69.6967 24.2115
86 34.27 69.0164 6.1092 Q7 P270 T60 Imp.

S
E

T
 1

88 37.39 68.8443 6.01161 2.4 31.37 75.4426 28.3603
Q7 P270 T60 Imp. 5.2 30.28 74.6803 18.2339
4 30.61 73.0656 20.3554 4.2 28.79 70.959 24.2115

85.6 31.79 75.6639 6.2529

S
E

T
 2

4.5 31.98 72.9098 28.4556
26.7 30.63 74.6803 7.7782 Q7 P270 T60 Imp.S

E
T

 2

18.1 30.85 74.1393 14.7444 1.9 24.27 68.4344 28.178
Q7 P270 T60 Imp. 2.2 22.99 72.6393 18.4761

21.5 28.98 70.6311 13.5983 2.3 24.29 70.8525 28.4759
24.6 29.88 69.7869 13.2804 5.2 23.39 73.1393 21.26
47 30.57 70.0492 12.2632

S
E

T
 3

3.3 23.11 71.6557 28.2044S
E

T
 3

26 29.32 71.7541 20.5233 Q7 P270 T60 Imp.
Q7 P270 T60 Imp. 2.9 18.47 72.7459 23.3489

50.3 26.07 68.3115 5.86592 3.2 21.96 75.2869 18.848
26.3 27.54 67.7295 10.7628 3.2 22.14 74.8115 22.8336
20.5 26.53 69.1311 11.9909 3 20.85 71.5164 19.1898S

E
T

 4

16.2 24.47 65.6803 14.9396

S
E

T
 4

0.7 18.03 77.459 20.7749
Q7 P270 T60 Imp.
0 20.74 75.9918 10.2787
0 21.36 76.8934 20.4182
6 21.91 74.8279 9.1305

7.1 23.29 78.3607 7.1699
8.8 22.83 75.2705 8.8637
9.6 23.59 77.418 6.975

S
E

T
 5

19.6 22.02 75.041 7.1056
Q7 P270 T60 Imp.

19.2 21.29 72.3197 7.4547
10.2 22.98 69.0902 11.0088
11 20.43 71.8361 14.0237

12.9 20.1 69.2295 11.6472
13.9 20.53 72.6311 8.0485

S
E

T
 6

14.9 23.11 71.5246 15.2764
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Table A-21. Summary of residuals of the calibrated power models for the 6 subsets 
(NWB).

Predicted 
Q7 (cfs)

Observed 
Q7 (cfs)

Residuals
(cfs)

Predicted 
Q7 (cfs)

Observed 
Q7 (cfs)

Residuals
(cfs)

51.52 52.6 -1.08 34.88 32 2.88
40.72 50.3 -9.58 61.55 42 19.55
65.26 71.4 -6.14 35.29 46 -10.71

81.31 88 -6.69 80.45 71.4 9.05
67.27 86 -18.73 75.21 86 -10.79

53.81 85.6 -31.79

S
E

T
 1

77.06 88 -10.94
81.92 59.4 22.52 Pred. Q7 Obs. Q7 Residuals
80.67 76 4.67 0.64 4 -3.36

29.69 81 -51.31 84.24 85.6 -1.36
26.56 9.6 16.96 31.61 26.7 4.91

23.18 19.6 3.58

S
E

T
 2

2.41 18.1 -15.69
25.08 7.1 17.98 Pred. Q7 Obs. Q7 Residuals
66.41 42 24.41 17.59 21.5 -3.91
21.19 19.2 1.99 33.10 24.6 8.50

54.59 37.1 17.49 42.78 47 -4.22

41.31 26.7 14.61

S
E

T
 3

24.72 26 -1.28
18.35 13.9 4.45 Pred. Q7 Obs. Q7 Residuals
20.35 8.8 11.55 50.23 50.3 -0.07
18.31 6 12.31 25.78 26.3 -0.52
21.77 12.7 9.07 21.96 20.5 1.46

14.62 0 14.62

S
E

T
 4

15.19 16.2 -1.01
26.34 26.3 0.04 Pred. Q7 Obs. Q7 Residuals
17.79 10.2 7.59 4.45 0 4.45
12.93 12.9 0.03 0.29 0 0.29
21.91 20.5 1.41 5.07 6 -0.93
28.25 47 -18.75 12.04 7.1 4.94
50.30 55.6 -5.30 4.82 8.8 -3.98
32.04 46 -13.96 11.92 9.6 2.32

25.17 24.6 0.57

S
E

T
 5

13.26 19.6 -6.34
36.08 47.8 -11.72 Pred. Q7 Obs. Q7 Residuals
23.02 21.5 1.52 16.59 19.2 -2.61
11.05 11 0.05 13.29 10.2 3.09
34.96 32 2.96 12.05 11 1.05
48.05 56.8 -8.75 12.17 12.9 -0.73
23.57 18.1 5.47 15.86 13.9 1.96

15.74 16.2 -0.46

S
E

T
 6

12.22 14.9 -2.68
13.11 14.9 -1.79
17.47 4 13.47
8.27 0 8.27

A
ll 

da
ta

16.08 26 -9.92
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Table A-22. Summary of residuals of the calibrated power models for the 4 subsets 
(Watts).

Predicted 
Q7 (cfs)

Observed 
Q7 (cfs)

Residuals
(cfs)

Predicted 
Q7 (cfs)

Observed 
Q7 (cfs)

Residuals
(cfs)

8.33 14.3 -5.97 11.54 8.6 2.94
6.95 9.8 -2.85 9.67 14.3 -4.63
11.18 9.7 1.48 7.25 7.7 -0.45

9.28 8.6 0.68 6.30 4.1 2.20
5.95 8.2 -2.25 Pred. Q7 Obs. Q7 Residuals

9.15 7.7 1.45 3.55 2.4 1.15
7.04 6.7 0.34 5.25 5.2 0.05
5.37 6 -0.63 3.67 4.2 -0.53

5.25 5.2 0.05

S
E

T
 2

3.88 4.5 -0.62
2.93 5.2 -2.27 Pred. Q7 Obs. Q7 Residuals

4.67 4.5 0.17 2.26 1.9 0.36
5.76 4.2 1.56 3.43 2.2 1.23
4.23 4.2 0.03 2.63 2.3 0.33
7.03 4.1 2.93 3.37 5.2 -1.83

4.66 3.4 1.26

S
E

T
 3

3.38 3.3 0.08

2.49 3.3 -0.81 Pred. Q7 Obs. Q7 Residuals
2.70 3.2 -0.50 2.14 2.9 -0.76
2.48 3.2 -0.72 2.95 3.2 -0.25
2.52 3 -0.48 3.60 3.2 0.40
3.41 2.9 0.51 2.88 3 -0.12

1.75 2.9 -1.15

S
E

T
 4

1.52 0.7 0.82
3.85 2.6 1.25
4.38 2.4 1.98
2.76 2.3 0.46
3.08 2.2 0.88
2.85 1.9 0.95
2.14 1.8 0.34
2.28 1.6 0.68

A
ll 

da
ta

1.69 0.7 0.99
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Table A-23. Summary of the goodness-of-fit statistics and calibrated coefficients for the 
power models associated the subsets of the NWB time series.

All data SET 1 SET 2 SET 3 SET 4 SET 5 SET 6
Se (cfs) 15.168 20.291 Infinity Infinity Infinity 5.959 3.809
Sy (cfs) 26.207 24.038 35.907 11.636 15.223 6.673 3.222
Se/Sy 0.579 0.844 --- --- --- 0.893 1.182

R 0.811 0.705 0.733 0.646 0.748 0.665 0.554
R^2 0.658 0.497 0.537 0.418 0.560 0.443 0.307

E (cfs) 0.541 -0.159 -3.877 -0.228 -0.035 0.105 0.016
Rel. Bias 0.016 -0.003 -0.115 -0.008 -0.001 0.014 0.001
C2 (P270) 1.991 0.138 2.450 16.319 1.069 -4.692 0.492
C3 (T60) -0.571 1.113 0.400 -12.755 0.400 4.641 1.798

C4 (Imp.) -0.906 -0.937 -4.050 0.854 -1.190 -3.880 -0.455
C1 (inter) 3.421 2.257 5.217 1.002 2.335 105.456 0.004

Table A-24. Summary of the goodness-of-fit statistics and calibrated coefficients for the 
power models associated the subsets of the Watts time series.

All data SET 1 SET 2 SET 3 SET 4
Se (cfs) 1.833 Infinity Infinity 2.261 1.222
Sy (cfs) 3.093 4.224 1.193 1.348 1.070
Se/Sy 0.593 --- --- 1.677 1.142

R 0.800 0.441 0.550 0.458 0.660
R^2 0.640 0.194 0.303 0.210 0.435

E (cfs) 0.013 0.014 0.010 0.033 0.018
Rel. Bias 0.003 0.002 0.002 0.011 0.007
C2 (P270) 1.991 3.720 2.481 -4.092 3.382
C3 (T60) -0.819 -3.078 -1.292 4.401 -2.628

C4 (Imp.) -0.553 -0.018 -1.055 0.156 0.805
C1 (inter) 1.005 4.679 6.252 0.005 0.689

Table A-25. Summary of the goodness-of-fit statistics and calibrated coefficients for the 
power models calibrated based on the imperviousness as the sole predictor for each of the 
subsets of the NWB time series.

All data SET 1 SET 2 SET 3 SET 4 SET 5 SET 6
Se (cfs) 24.273 14.823 17.623 13.204 1.575 5.496 2.997
Sy (cfs) 26.200 24.038 35.907 11.636 15.223 6.636 3.222
Se/Sy 0.926 0.617 0.491 1.135 0.103 0.828 0.930
Bias (cfs) -10.310 -1.389 -2.041 -1.269 0.017 -2.121 -0.221
Mean Rel. Error 6.952 0.185 0.386 0.252 0.036 2.459 0.151
Std. Of Rel. Error 30.881 0.159 0.158 0.129 0.027 5.419 0.106
Intercept coefficient 683.29 349.47 3473.10 116.48 437.39 127733 34.69
Slope coefficient -1.542 -0.866 -2.148 -0.527 -1.214 -4.851 -0.399
t -0.402 -0.837 -0.932 -0.352 -0.995 -0.816 -0.509
MULTIPLE R -0.402 -0.837 -0.932 -0.352 -0.995 -0.816 -0.509
MULTIPLE R^2 0.162 0.701 0.869 0.124 0.989 0.665 0.259
t*R 0.162 0.701 0.869 0.124 0.989 0.665 0.259
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Table A-26. Summary of the correlation coefficients (R) among minimum temperature 
time series at the four grid points nearest to the studied six watersheds.

Historical Climate Predictions CCC Climate Predictions Hadley Climate Predictions

Grid #1 #2 #3 Grid #1 #2 #3 Grid #1 #2 #3

#2 0.055 #2 0.038 #2 0.029

#3 0.047 0.044 #3 0.041 0.047 #3 0.028 0.020

#4 0.039 0.023 0.050 #4 0.033 0.036 0.026 #4 0.027 0.031 0.014

Table A-27. Summary of the correlation coefficients (R) among maximum temperature 
time series at the four grid points nearest to the studied six watersheds.

Historical Climate Predictions CCC Climate Predictions Hadley Climate Predictions

Grid #1 #2 #3 Grid #1 #2 #3 Grid #1 #2 #3

#2 0.775 #2 0.769 #2 0.783

#3 0.774 0.772 #3 0.775 0.771 #3 0.784 0.785

#4 0.805 0.806 0.806 #4 0.811 0.808 0.808 #4 0.816 0.815 0.819

Table A-28. Summary of the correlation coefficients (R) among precipitation time series 
at the four grid points nearest to the studied six watersheds.

Historical Climate Predictions CCC Climate Predictions Hadley Climate Predictions

Grid #1 #2 #3 Grid #1 #2 #3 Grid #1 #2 #3

#2 0.831 #2 0.824 #2 0.833

#3 0.819 0.819 #3 0.816 0.816 #3 0.824 0.822

#4 0.814 0.815 0.807 #4 0.815 0.813 0.804 #4 0.819 0.819 0.813

Table A-29. Summary of the numbers of rainy days in 99 years (36159 days) at the four 
grid points nearest to the studied six watersheds.

Grid # Historical Hadley CCC
1 12536 13184 12743
2 12773 13377 12545
3 11590 12438 11599
4 10929 11335 10753

Table A-30. Summary of the numbers of rainy days in 99 years (compared to station 1) 
at the four grid points nearest to the studied six watersheds.

Grid # Historical Hadley CCC
1 12536 13184 12743
2 4633 5014 4586
3 4148 4680 4215
4 3880 4275 3900
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Table A-31. Statistics of the weighted average precipitation time series (99 years) for the 
NWB and Hawlings watersheds based on the four grid points.

Historical (prec)
Station 

1
Station 

2
Station 

3
Station 

4 Hawlings NWB

Mean (in.) 0.11 0.12 0.11 0.12 0.11 0.11
Median (in.) 0 0 0 0 0.06 0.04
Mode (in.) 0 0 0 0 0 0
Standard Deviation 0.28 0.29 0.28 0.30 0.16 0.19
Kurtosis 49.15 67.75 28.48 24.00 24.25 14.89
Skewness 4.98 5.29 4.37 4.21 3.29 3.19
Minimum (in.) 0 0 0 0 0 0
Maximum (in.) 7.68 9.08 4.82 3.98 3.36 2.41
Annual Precipitation(in.) 41.83 42.50 40.58 42.73 41.88 41.88
Count 36159 36159 36159 36159 36159 36159
Numb. Of Rainy Days 12536 12773 11590 10929 28527 28527

Table A-32. Frequencies of the timing in the year of the observed 7-day low events for 
the data of all 6 watersheds combined.

Lower X Upper X Freq. %
0 31 3 0.01
32 59 2 0.01
60 90 0 0.00
91 120 0 0.00
121 151 0 0.00
152 181 0 0.00
182 212 22 0.10
213 243 54 0.23
244 273 81 0.35
274 304 55 0.24
305 334 11 0.05
335 365 3 0.01

TOTAL= 231 1
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Table A-33. Cumulative probability function for the Cox-Stuart trend test.

X Cumul. Binomial X Cumul. Binomial
1 0.00000000000009 26 0.71591379357542
2 0.00000000000218 27 0.80419854472626
3 0.00000000003491 28 0.87356513491620
4 0.00000000041127 29 0.92379611401926
5 0.00000000379858 30 0.95728343342130
6 0.00000002863883 31 0.97780791950643
7 0.00000018122892 32 0.98935294292931
8 0.00000098232689 33 0.99530037923806
9 0.00000463177320 34 0.99809917279513
10 0.00001922955847 35 0.99929865574815
11 0.00007098534260 36 0.99976512134100
12 0.00023487865900 37 0.99992901465740
13 0.00070134425185 38 0.99998077044153
14 0.00190082720487 39 0.99999536822680
15 0.00469962076194 40 0.99999901767311
16 0.01064705707069 41 0.99999981877108
17 0.02219208049357 42 0.99999997136117
18 0.04271656657870 43 0.99999999620142
19 0.07620388598074 44 0.99999999958873
20 0.12643486508380 45 0.99999999996510
21 0.19580145527375 46 0.99999999999782
22 0.28408620642458 47 0.99999999999991
23 0.38772482734078 48 1.00000000000000
24 0.50000000000000 49 1.00000000000000
25 0.61227517265922

Table A-34. Summary of the variable values obtained in calibration for the continuous 
streamflow model and the goodness-of-fit statistics for each of the 47 historical 
calibration runs.

Period PINF SROP GWS
(in.)

SUBFLO
(in.)

IMP.
(%)

Se/Sy Rm R

79-82 0.743 0.622 15.300 3.815 8.493 0.838 0.387 0.569
83-86 0.776 0.477 12.919 0.100 8.645 0.826 0.524 0.634
87-90 0.848 0.400 10.696 1.635 9.026 0.863 0.471 0.592
91-94 0.758 0.523 10.136 4.750 9.209 0.816 0.385 0.593
95-97 0.783 0.374 0.587 3.702 9.353 0.827 0.341 0.566H

aw
lin

gs
 

98-00 0.684 0.570 15.650 5.257 9.435 0.871 0.587 0.621
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Period PINF SROP GWS SUBFLO IMP. Se/Sy Rm R
51-54 0.739 0.107 3.756 5.254 35.446 0.630 0.783 0.802
55-58 0.767 0.010 0.513 0.103 36.253 0.701 0.662 0.735
62-65 0.776 0.383 0.512 4.015 36.603 0.712 0.754 0.754
66-69 0.768 0.237 0.525 7.154 36.599 0.711 0.748 0.748
70-72 0.800 0.593 0.525 3.948 36.598 1.001 0.500 0.500
73-75 0.692 0.250 3.239 3.081 36.608 0.710 0.727 0.744

Li
ttl

e 
F

al
ls

 

76-78 0.748 0.370 8.250 10.210 36.632 0.776 0.699 0.699
Period PINF SROP GWS SUBFLO IMP. Se/Sy Rm R
46-49 0.789 0.344 18.550 3.760 5.900 0.934 0.465 0.521
50-53 0.747 0.179 15.038 2.214 6.374 0.734 0.619 0.702
54-57 0.815 0.010 16.875 3.800 7.019 0.708 0.678 0.732
58-61 0.804 0.416 15.650 3.121 7.527 0.862 0.639 0.639
62-65 0.799 0.011 19.101 2.694 8.973 0.874 0.633 0.633
66-69 0.836 0.203 0.501 3.451 10.924 0.744 0.727 0.727
70-73 0.756 0.144 16.475 2.610 12.493 0.421 0.911 0.911
74-76 0.813 0.010 16.144 2.140 13.456 0.533 0.682 0.848
77-79 0.623 0.221 0.506 0.716 14.283 0.693 0.638 0.741
80-82 0.740 0.372 9.600 3.238 14.987 0.886 0.619 0.619

N
W

B

98-00 0.618 0.298 0.530 0.100 20.432 0.819 0.675 0.675
Period PINF SROP GWS SUBFLO IMP. Se/Sy Rm R
67-70 0.800 0.130 18.013 5.529 11.462 0.900 0.579 0.592
71-73 0.765 0.034 13.694 4.707 12.637 0.389 0.845 0.920

R
oc

k 
C

re
ek

74-76 0.832 0.010 12.922 6.116 13.052 0.551 0.591 0.849
Period PINF SROP GWS SUBFLO IMP. Se/Sy Rm R
51-54 0.891 0.794 14.519 4.744 12.621 0.984 0.515 0.553
55-58 0.766 0.371 10.550 0.311 12.654 0.841 0.542 0.612
59-62 0.824 0.416 6.643 1.341 12.717 0.920 0.595 0.595
63-66 0.976 0.858 9.405 2.559 12.847 1.193 0.389 0.528
67-70 0.892 0.443 12.050 3.274 12.988 0.772 0.707 0.707
71-74 0.803 0.305 10.637 1.782 13.205 0.525 0.862 0.862
75-78 0.663 0.475 8.050 0.118 13.458 0.780 0.437 0.638
79-82 0.798 0.072 11.100 8.384 13.775 0.719 0.470 0.697
83-86 0.746 0.410 10.701 3.889 14.140 0.748 0.680 0.714
87-90 0.776 0.409 11.250 2.620 14.642 0.726 0.545 0.694
91-94 0.783 0.340 5.462 9.705 14.862 0.757 0.405 0.657
95-97 0.679 0.511 0.503 2.512 15.065 0.808 0.459 0.616

S
en

ec
a

98-00 0.724 0.572 10.682 2.897 15.157 0.820 0.706 0.706
Period PINF SROP GWS SUBFLO IMP. Se/Sy Rm R
60-63 0.824 0.035 32.850 1.705 18.372 0.900 0.601 0.601
64-67 0.811 0.010 19.443 7.703 20.263 0.712 0.709 0.738
68-71 0.794 0.044 13.253 4.789 23.458 0.858 0.386 0.542
72-75 0.748 0.345 25.725 3.960 24.174 0.834 0.495 0.600
76-79 0.692 0.127 0.512 3.861 24.317 0.767 0.511 0.656
80-83 0.750 0.076 22.553 5.001 28.175 0.744 0.651 0.705W

at
ts

 B
ra

nc
h

84-86 0.644 0.316 7.558 4.560 28.594 0.588 0.834 0.834
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Table A-35. Summary of the calculations of the mean and variance of the relative errors 
based on the historical runs of the continuous streamflow model calibrations.

x Frequency p(x) x*p(x) (x-x') (x-x')^2
p(x)*(x-

x')^2
-0.2 0 0.0000 0.0000 -1.1942 1.4260 0.0000

0 0 0.0000 0.0000 -0.9942 0.9883 0.0000
0.2 28 0.1637 0.0327 -0.7942 0.6307 0.1033
0.4 32 0.1871 0.0749 -0.5942 0.3530 0.0661
0.6 25 0.1462 0.0877 -0.3942 0.1554 0.0227
0.8 18 0.1053 0.0842 -0.1942 0.0377 0.0040

1 15 0.0877 0.0877 0.0058 0.0000 0.0000
1.2 11 0.0643 0.0772 0.2058 0.0424 0.0027
1.4 6 0.0351 0.0491 0.4058 0.1647 0.0058
1.6 7 0.0409 0.0655 0.6058 0.3671 0.0150
1.8 6 0.0351 0.0632 0.8058 0.6494 0.0228

2 1 0.0058 0.0117 1.0058 1.0117 0.0059
2.2 1 0.0058 0.0129 1.2058 1.4541 0.0085
2.4 4 0.0234 0.0561 1.4058 1.9764 0.0462
2.6 0 0.0000 0.0000 1.6058 2.5787 0.0000
2.8 0 0.0000 0.0000 1.8058 3.2611 0.0000

3 1 0.0058 0.0175 2.0058 4.0234 0.0235
3.2 1 0.0058 0.0187 2.2058 4.8658 0.0285
3.4 0 0.0000 0.0000 2.4058 5.7881 0.0000
3.6 1 0.0058 0.0211 2.6058 6.7904 0.0397
3.8 1 0.0058 0.0222 2.8058 7.8728 0.0460

4 1 0.0058 0.0234 3.0058 9.0351 0.0528
4.2 3 0.0175 0.0737 3.2058 10.2775 0.1803
4.4 1 0.0058 0.0257 3.4058 11.5998 0.0678
4.6 1 0.0058 0.0269 3.6058 13.0021 0.0760
4.8 1 0.0058 0.0281 3.8058 14.4845 0.0847

5 0 0.0000 0.0000 4.0058 16.0468 0.0000
5.2 0 0.0000 0.0000 4.2058 17.6892 0.0000
5.4 0 0.0000 0.0000 4.4058 19.4115 0.0000
5.6 0 0.0000 0.0000 4.6058 21.2138 0.0000
5.8 1 0.0058 0.0339 4.8058 23.0962 0.1351

6 0 0.0000 0.0000 5.0058 25.0585 0.0000
0 5 0.0292 0.0000 -0.9942 0.9883 0.0000

Totals = 171 1.0000 0.9942 59.9930 226.3405 1.0375
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APPENDIX B

SUPPLEMENTAL LIST OF FIGURES
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Figure B-1. Determining the optimum correlation between the 1, 2, 3, and 7-day low 
flows and the various durations of antecedent precipitation.
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APPENDIX C

CALCULATIONS OF THE MULTIPLE-PART CORRELATION HYPOTHESIS 
TESTS ON RELATIONSHIPS BETWEEN LOW FLOW AND EACH OF 

IMPERVIOUSNESS AND TEMPERATURE BASED ON THE NORTHWEST 
BRANCH (NWB) AND WATTS BRANCH TIME SERIES

This appendix shows the calculations involved in determining the multiple-part 

correlation tests on both Imperviousness (I(t)) and antecedent temperature (T60) to verify 

their significance to the accuracy of the regression model form to predict the minimum 7-

day low flow (Q7). These tests are based on the Northwest Branch (NWB) and Watts 

Branch time series data.  The hypothesis test is as follows:

The null hypothesis:

H0: ρ  = 0 ; there is no significant relationship between I(t) (or T60) and Q7

The alternative hypothesis:

HA: ρ ≠ 0 ;  there exists a significant relationship between I(t) (or T60) and Q7

In the case of testing the significance between imperviousness and base flow, the 

procedure is as follow:

1- Regress the model:  602270107 TbPbbQ ⋅+⋅+=

2- Calculate the residuals on the regression model.

3- Determine the correlation coefficient (Rm) between the residuals and the 

imperviousness time series. 

4- Calculate the t-statistics and the critical t, where

5.0

m

m
statistics

4-n

R-1

R
t




= , where n is the sample size.

5- Compare the t-statistics to the critical t values to find the rejection regions
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Steps 1 through 3: Calculating the correlation coefficient between the 7-day low flow 

and the residuals time series 

The same steps are repeated for the relationship between antecedent temperature 

and base flow for both the NWB and Watts Branch. The regressed equations to address 

the relationship between Q7 and I(t) in both the NWB and Watts Branch data are 

presented in Equations C-1a and C-1b, respectively.  Equations C-2a and C-2b represent 

the initial step to investigate the relationship between Q7 and T60. The goodness-of-fit 

statistics associated with the four regression equations are summarized below in Table C-

1. These equations were calibrated using a numerical optimization program, NUMOPT. 

Tables C-2 and C-3 below summarize the residuals based on the regressed equations in 

Step 1 for both the NWB and Watts Branch.

60270  ⋅−⋅+= Τ1.728P2.27890.830Q7 (C-1a)

60270  ⋅−⋅+= Τ055.0P319.00.579-Q7 (C-1b)

)t(I449.3P2.7319.116-Q7 ⋅−⋅+= 270  (C-2a)

)t(I141.0P333.01.632-Q7 ⋅−⋅+= 270  (C-2b)

Table C-1. Summary of goodness-of-fit statistics associated with the calibrated 
regression models for the NWB and Watts Branch as described in Step 1.

Goodness-of-fit 
Statistics

Equation
(C-1a)

Equation
 (C-1b)

Equation
 (C-2a)

Equation
 (C-2b)

Multiple R2 0.587 0.640 0.632 0.667

Multiple R 0.766 0.800 0.795 0.817

Se/Sy 0.661 0.623 0.624 0.599
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Table C-2. Summary of residuals and the goodness-of-fit statistics associated with the 
calibrated regression models for the NWB as described in Step 2.

OBS.
NO.

Q7pred

(cfs)
Q7Obs

(cfs)
RESIDUAL

(cfs)
I(t)
(%)

OBS.
NO.

Q7pred

(cfs)
Q7Obs

(cfs)
RESIDUAL

(cfs)
T60

(oF.)
1 55.689 52.6 -3.089 5.778 1 46.419 52.6 6.181 56.771
2 32.197 50.3 18.103 5.866 2 41.854 50.3 8.446 68.312
3 43.576 71.4 27.824 5.945 3 62.473 71.4 8.927 71.812
4 57.062 88 30.938 6.012 4 72.268 88 15.732 68.844
5 49.657 86 36.343 6.109 5 63.410 86 22.590 69.016
6 32.524 85.6 53.076 6.253 6 56.141 85.6 29.459 75.664
7 73.748 59.4 -14.348 6.407 7 69.485 59.4 -10.085 58.500
8 76.635 76 -0.635 6.729 8 69.221 76 6.779 57.238
9 48.778 81 32.222 6.826 9 28.081 81 52.919 53.664
10 10.815 9.6 -1.215 6.975 10 31.255 9.6 -21.655 77.418
11 11.346 19.6 8.254 7.106 11 26.516 19.6 -6.916 75.041
12 8.503 7.1 -1.403 7.170 12 29.763 7.1 -22.663 78.361
13 59.350 42 -17.350 7.272 13 65.299 42 -23.299 66.254
14 14.384 19.2 4.816 7.455 14 23.318 19.2 -4.118 72.320
15 39.793 37.1 -2.693 7.602 15 60.257 37.1 -23.157 75.689
16 31.581 26.7 -4.881 7.778 16 47.712 26.7 -21.012 74.680
17 12.115 13.9 1.785 8.049 17 19.195 13.9 -5.295 72.631
18 12.794 8.8 -3.994 8.864 18 22.665 8.8 -13.865 75.271
19 11.463 6 -5.463 9.131 19 19.232 6 -13.232 74.828
20 16.478 12.7 -3.778 9.847 20 24.707 12.7 -12.007 75.762
21 6.787 0 -6.787 10.279 21 12.076 0 -12.076 75.992
22 36.551 26.3 -10.251 10.763 22 28.978 26.3 -2.678 67.730
23 23.813 10.2 -13.613 11.009 23 15.675 10.2 -5.475 69.090
24 17.012 12.9 -4.112 11.647 24 5.608 12.9 7.292 69.230
25 31.829 20.5 -11.329 11.991 25 21.984 20.5 -1.484 69.131
26 39.445 47 7.555 12.263 26 32.078 47 14.922 70.049
27 69.637 55.6 -14.037 12.770 27 58.652 55.6 -3.052 66.246
28 51.286 46 -5.286 12.949 28 35.914 46 10.086 66.189
29 38.327 24.6 -13.727 13.280 29 26.685 24.6 -2.085 69.787
30 46.743 47.8 1.057 13.488 30 44.431 47.8 3.369 73.828
31 34.818 21.5 -13.318 13.598 31 23.131 21.5 -1.631 70.631
32 13.261 11 -2.261 14.024 32 -1.688 11 12.688 71.836
33 52.422 32 -20.422 14.370 33 41.389 32 -9.389 70.541
34 67.963 56.8 -11.163 14.456 34 58.436 56.8 -1.636 69.918
35 33.017 18.1 -14.917 14.744 35 24.285 18.1 -6.185 74.139
36 33.098 16.2 -16.898 14.940 36 6.187 16.2 10.013 65.680
37 19.904 14.9 -5.004 15.276 37 1.311 14.9 13.589 71.525
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Table C3. Summary of residuals and the goodness-of-fit statistics associated with the 
calibrated regression models for Watts as described in Step 2.

OBS.
NO.

Q7pred

(cfs)
Q7Obs

(cfs)
RESIDUAL

(cfs)
I(t)
(%)

OBS.
NO.

Q7pred

(cfs)
Q7Obs

(cfs)
RESIDUAL

(cfs)
T60

(oF.)
1 7.513 7.7 0.187 16.100 1 8.390 7.7 -0.690 66.934
2 3.267 2.6 -0.667 16.111 2 4.475 2.6 -1.875 75.844
3 6.372 9.8 3.428 17.930 3 7.449 9.8 2.351 75.738
4 4.953 5.2 0.247 18.234 4 5.865 5.2 -0.665 74.680
5 2.739 2.2 -0.539 18.476 5 3.405 2.2 -1.205 72.639
6 2.264 3.2 0.936 18.848 6 3.009 3.2 0.191 75.287
7 2.119 3 0.881 19.190 7 2.592 3 0.408 71.516
8 3.241 2.9 -0.341 19.828 8 3.896 2.9 -0.996 75.402
9 0.890 0.7 -0.190 20.775 9 1.429 0.7 -0.729 77.459
10 2.839 5.2 2.361 21.260 10 3.144 5.2 2.056 73.139
11 2.348 3.2 0.852 22.834 11 2.506 3.2 0.694 74.812
12 1.291 2.9 1.609 23.349 12 1.211 2.9 1.689 72.746
13 6.150 4.2 -1.950 23.744 13 6.014 4.2 -1.814 69.131
14 6.377 8.2 1.823 23.904 14 6.457 8.2 1.743 73.098
15 10.424 9.7 -0.724 24.104 15 10.499 9.7 -0.799 70.492
16 8.986 8.6 -0.386 24.170 16 8.719 8.6 -0.119 65.803
17 7.334 4.1 -3.234 24.212 17 7.216 4.1 -3.116 69.697
18 7.395 6.7 -0.695 24.212 18 7.519 6.7 -0.819 73.853
19 4.683 4.2 -0.483 24.212 19 4.524 4.2 -0.324 70.959
20 2.061 1.8 -0.261 24.226 20 1.670 1.8 0.130 68.926
21 5.779 6 0.221 24.411 21 4.958 6 1.042 59.156
22 8.307 14.3 5.993 24.418 22 7.939 14.3 6.361 65.148
23 5.518 3.4 -2.118 27.955 23 4.703 3.4 -1.303 68.148
24 3.380 1.9 -1.480 28.178 24 2.458 1.9 -0.558 68.434
25 2.832 3.3 0.468 28.204 25 2.069 3.3 1.231 71.656
26 5.258 2.4 -2.858 28.360 26 4.795 2.4 -2.395 75.443
27 5.593 4.5 -1.093 28.456 27 4.985 4.5 -0.485 72.910
28 3.253 2.3 -0.953 28.476 28 2.423 2.3 -0.123 70.853
29 2.631 1.6 -1.031 28.852 29 1.481 1.6 0.119 66.697
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Step 4: Calculating the t-statistics values

NWB (Imperviousness Vs. Low flow)

Rm = -0.586

tstat =  (0.586) / ((1-0.586)/(40-4))0.5 = 5.4645

NWB (Temperature Vs. Low flow)

Rm = -0.498

tstat =  (0.498) / ((1-0.498)/(40-4))0.5 = 4.2172

Watts Branch (Imperviousness Vs. Low flow)

Rm = -0.337

tstat =  (0.337) / ((1-0.337)/(29-4))0.5 = 2.0694

Watts Branch (Temperature Vs. Low flow)

Rm = -0.216

tstat =  (0.216) / ((1-0.216)/(29-4))0.5 = 1.2197

Step 5: Calculating the t-critical values

NWB: 

Sample size = 40

Degrees of freedom = 40 – 4 = 36

Alpha 10 5 2 1 0.5 0.1

t-critical 1.689 2.028 2.435 2.720 2.991 3.583

Watts: 

Sample size = 29

Degrees of freedom = 29 – 4 = 25

Alpha 10 5 2 1 0.5 0.1
t-critical 1.708 2.060 2.485 2.787 3.078 3.725
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Decisions on t-tests and implications:

Comparing the tstatistics values in Step 4 and the tcriticl values in Step 5, we can make the 

following conclusions:

1- Selecting a 0.1% level of significance, imperviousness shows a significant 

relationship with the 7-day low flow for the NWB watershed after eliminating the 

effects of other two variables - antecedent precipitation and antecedent 

temperature.

2- Selecting a 0.1% level of significance, antecedent temperature shows a significant 

relationship with the 7-day low flow for the NWB watershed after eliminating the 

effects of other two variables - antecedent precipitation and imperviousness.

3- Selecting a 10% level of significance, imperviousness shows a significant 

relationship with the 7-day low flow for the Watts Branch watershed after 

eliminating the effects of other two variables - antecedent precipitation and 

antecedent temperature.

4- Selecting a 10% level of significance, antecedent temperature still does not show 

a significant relationship with the 7-day low flow for the Watts Branch watershed 

after eliminating the effects of other two variables - antecedent precipitation and 

imperviousness.
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APPENDIX D

KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST ON THE DISTRIBUTION 
OF TIMING OF THE YEAR OF 7 DAY LOW FLOW OCCURRENCE FOR THE 

REGRESSION MODEL APPROACH

Based on the 231 low flow events from all six watersheds, the Kolmogorov-

Smirnov one-sample test was performed to test for normality of the distribution of the 

timing of the 7-day low flow occurrence.  The mean of the normal distribution was 

calculated by simply finding the mean of the 231 values. The standard deviation, 

however, was calculated based on the optimum minimum maximum-difference value 

between the cumulative normal distribution formed by the data and the Weibull ranking 

cumulative probability of the data. (See Table D-1 and Figure D-1).

Table D-1: Determination of the optimum standard deviation of the normal curve by 
finding the minimum max-difference value. (Optimum values are shown in bold).

Std. Dev. max diff
35 0.078121698

35.1 0.078065674
35.2 0.078009969
35.3 0.077954579
35.4 0.077899501
35.5 0.077844733
35.6 0.077790273
35.7 0.077736117
35.8 0.077682264
35.9 0.077744037
36 0.078020905
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Figure D-1: Determination of the optimum standard deviation of the normal curve by 
finding the minimum max-difference value.

Having calculated the mean and standard deviation value to be 251.3 (September 

8) and 35.8 days, respectively, they were used then in producing the normal distribution 

curve.  A plot of the cumulative normal is shown in Figure D-2 below.  Figure D-3 shows 

the level of variation between the cumulative normal curve and the cumulative ranking 

curve formed by the data. Thus, since the maximum difference value is 0.077682 and 

based on the alpha values listed below in Table D-2, the data meets normality at a 

significance level of 12.46%.
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Figure D-2. Cumulative normal curve for the day of year of occurrence of 7-day low 
flow events.
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Figure D-3. Determination maximum-difference value of the Kolmogorov-Smirnov one-
sample test.

Table D-2.  The level of significance values used for the Kolmogorov-Smirnov one-
sample test.
alpha  = 20 0.070401
alpha  = 15 0.075006
alpha  = 10 0.080270
alpha  = 5 0.089481
alpha  = 1 0.107246
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